]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Allow VFP and Neon to be disabled via a CPU property
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
74433bf0
RH
25#include "cpu-qom.h"
26#include "exec/cpu-defs.h"
9042c0e2 27
ca759f9e
AB
28/* ARM processors have a weak memory model */
29#define TCG_GUEST_DEFAULT_MO (0)
30
b8a9e8f1
FB
31#define EXCP_UDEF 1 /* undefined instruction */
32#define EXCP_SWI 2 /* software interrupt */
33#define EXCP_PREFETCH_ABORT 3
34#define EXCP_DATA_ABORT 4
b5ff1b31
FB
35#define EXCP_IRQ 5
36#define EXCP_FIQ 6
06c949e6 37#define EXCP_BKPT 7
9ee6e8bb 38#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 39#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 40#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 41#define EXCP_HYP_TRAP 12
e0d6e6a5 42#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
43#define EXCP_VIRQ 14
44#define EXCP_VFIQ 15
19a6e31c 45#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 46#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 47#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 48#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 49#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
50#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
51#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
2c4a7cc5 52/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
53
54#define ARMV7M_EXCP_RESET 1
55#define ARMV7M_EXCP_NMI 2
56#define ARMV7M_EXCP_HARD 3
57#define ARMV7M_EXCP_MEM 4
58#define ARMV7M_EXCP_BUS 5
59#define ARMV7M_EXCP_USAGE 6
1e577cc7 60#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
acf94941
PM
66/* For M profile, some registers are banked secure vs non-secure;
67 * these are represented as a 2-element array where the first element
68 * is the non-secure copy and the second is the secure copy.
69 * When the CPU does not have implement the security extension then
70 * only the first element is used.
71 * This means that the copy for the current security state can be
72 * accessed via env->registerfield[env->v7m.secure] (whether the security
73 * extension is implemented or not).
74 */
4a16724f
PM
75enum {
76 M_REG_NS = 0,
77 M_REG_S = 1,
78 M_REG_NUM_BANKS = 2,
79};
acf94941 80
403946c0
RH
81/* ARM-specific interrupt pending bits. */
82#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
83#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
84#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 85
e4fe830b
PM
86/* The usual mapping for an AArch64 system register to its AArch32
87 * counterpart is for the 32 bit world to have access to the lower
88 * half only (with writes leaving the upper half untouched). It's
89 * therefore useful to be able to pass TCG the offset of the least
90 * significant half of a uint64_t struct member.
91 */
92#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 93#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 94#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
95#else
96#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 97#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
98#endif
99
136e67e9 100/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
101#define ARM_CPU_IRQ 0
102#define ARM_CPU_FIQ 1
136e67e9
EI
103#define ARM_CPU_VIRQ 2
104#define ARM_CPU_VFIQ 3
403946c0 105
aaa1f954
EI
106/* ARM-specific extra insn start words:
107 * 1: Conditional execution bits
108 * 2: Partial exception syndrome for data aborts
109 */
110#define TARGET_INSN_START_EXTRA_WORDS 2
111
112/* The 2nd extra word holding syndrome info for data aborts does not use
113 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114 * help the sleb128 encoder do a better job.
115 * When restoring the CPU state, we shift it back up.
116 */
117#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 119
b7bcbe95
FB
120/* We currently assume float and double are IEEE single and double
121 precision respectively.
122 Doing runtime conversions is tricky because VFP registers may contain
123 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
124 s<2n> maps to the least significant half of d<n>
125 s<2n+1> maps to the most significant half of d<n>
126 */
b7bcbe95 127
200bf5b7
AB
128/**
129 * DynamicGDBXMLInfo:
130 * @desc: Contains the XML descriptions.
131 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
132 * @cpregs_keys: Array that contains the corresponding Key of
133 * a given cpreg with the same order of the cpreg in the XML description.
134 */
135typedef struct DynamicGDBXMLInfo {
136 char *desc;
137 int num_cpregs;
138 uint32_t *cpregs_keys;
139} DynamicGDBXMLInfo;
140
55d284af
PM
141/* CPU state for each instance of a generic timer (in cp15 c14) */
142typedef struct ARMGenericTimer {
143 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 144 uint64_t ctl; /* Timer Control register */
55d284af
PM
145} ARMGenericTimer;
146
147#define GTIMER_PHYS 0
148#define GTIMER_VIRT 1
b0e66d95 149#define GTIMER_HYP 2
b4d3978c
PM
150#define GTIMER_SEC 3
151#define NUM_GTIMERS 4
55d284af 152
11f136ee
FA
153typedef struct {
154 uint64_t raw_tcr;
155 uint32_t mask;
156 uint32_t base_mask;
157} TCR;
158
c39c2b90
RH
159/* Define a maximum sized vector register.
160 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
161 * For 64-bit, this is a 2048-bit SVE register.
162 *
163 * Note that the mapping between S, D, and Q views of the register bank
164 * differs between AArch64 and AArch32.
165 * In AArch32:
166 * Qn = regs[n].d[1]:regs[n].d[0]
167 * Dn = regs[n / 2].d[n & 1]
168 * Sn = regs[n / 4].d[n % 4 / 2],
169 * bits 31..0 for even n, and bits 63..32 for odd n
170 * (and regs[16] to regs[31] are inaccessible)
171 * In AArch64:
172 * Zn = regs[n].d[*]
173 * Qn = regs[n].d[1]:regs[n].d[0]
174 * Dn = regs[n].d[0]
175 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 176 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
177 *
178 * This corresponds to the architecturally defined mapping between
179 * the two execution states, and means we do not need to explicitly
180 * map these registers when changing states.
181 *
182 * Align the data for use with TCG host vector operations.
183 */
184
185#ifdef TARGET_AARCH64
186# define ARM_MAX_VQ 16
187#else
188# define ARM_MAX_VQ 1
189#endif
190
191typedef struct ARMVectorReg {
192 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
193} ARMVectorReg;
194
3c7d3086 195#ifdef TARGET_AARCH64
991ad91b 196/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086
RH
197typedef struct ARMPredicateReg {
198 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
199} ARMPredicateReg;
991ad91b
RH
200
201/* In AArch32 mode, PAC keys do not exist at all. */
202typedef struct ARMPACKey {
203 uint64_t lo, hi;
204} ARMPACKey;
3c7d3086
RH
205#endif
206
c39c2b90 207
2c0262af 208typedef struct CPUARMState {
b5ff1b31 209 /* Regs for current mode. */
2c0262af 210 uint32_t regs[16];
3926cc84
AG
211
212 /* 32/64 switch only happens when taking and returning from
213 * exceptions so the overlap semantics are taken care of then
214 * instead of having a complicated union.
215 */
216 /* Regs for A64 mode. */
217 uint64_t xregs[32];
218 uint64_t pc;
d356312f
PM
219 /* PSTATE isn't an architectural register for ARMv8. However, it is
220 * convenient for us to assemble the underlying state into a 32 bit format
221 * identical to the architectural format used for the SPSR. (This is also
222 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
223 * 'pstate' register are.) Of the PSTATE bits:
224 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
225 * semantics as for AArch32, as described in the comments on each field)
226 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 227 * DAIF (exception masks) are kept in env->daif
f6e52eaa 228 * BTYPE is kept in env->btype
d356312f 229 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
230 */
231 uint32_t pstate;
232 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
233
b90372ad 234 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 235 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
236 the whole CPSR. */
237 uint32_t uncached_cpsr;
238 uint32_t spsr;
239
240 /* Banked registers. */
28c9457d 241 uint64_t banked_spsr[8];
0b7d409d
FA
242 uint32_t banked_r13[8];
243 uint32_t banked_r14[8];
3b46e624 244
b5ff1b31
FB
245 /* These hold r8-r12. */
246 uint32_t usr_regs[5];
247 uint32_t fiq_regs[5];
3b46e624 248
2c0262af
FB
249 /* cpsr flag cache for faster execution */
250 uint32_t CF; /* 0 or 1 */
251 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
252 uint32_t NF; /* N is bit 31. All other bits are undefined. */
253 uint32_t ZF; /* Z set if zero. */
99c475ab 254 uint32_t QF; /* 0 or 1 */
9ee6e8bb 255 uint32_t GE; /* cpsr[19:16] */
b26eefb6 256 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 257 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 258 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 259 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 260
1b174238 261 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 262 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 263
b5ff1b31
FB
264 /* System control coprocessor (cp15) */
265 struct {
40f137e1 266 uint32_t c0_cpuid;
b85a1fd6
FA
267 union { /* Cache size selection */
268 struct {
269 uint64_t _unused_csselr0;
270 uint64_t csselr_ns;
271 uint64_t _unused_csselr1;
272 uint64_t csselr_s;
273 };
274 uint64_t csselr_el[4];
275 };
137feaa9
FA
276 union { /* System control register. */
277 struct {
278 uint64_t _unused_sctlr;
279 uint64_t sctlr_ns;
280 uint64_t hsctlr;
281 uint64_t sctlr_s;
282 };
283 uint64_t sctlr_el[4];
284 };
7ebd5f2e 285 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 286 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 287 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 288 uint64_t sder; /* Secure debug enable register. */
77022576 289 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
290 union { /* MMU translation table base 0. */
291 struct {
292 uint64_t _unused_ttbr0_0;
293 uint64_t ttbr0_ns;
294 uint64_t _unused_ttbr0_1;
295 uint64_t ttbr0_s;
296 };
297 uint64_t ttbr0_el[4];
298 };
299 union { /* MMU translation table base 1. */
300 struct {
301 uint64_t _unused_ttbr1_0;
302 uint64_t ttbr1_ns;
303 uint64_t _unused_ttbr1_1;
304 uint64_t ttbr1_s;
305 };
306 uint64_t ttbr1_el[4];
307 };
b698e9cf 308 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
309 /* MMU translation table base control. */
310 TCR tcr_el[4];
68e9c2fe 311 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
312 uint32_t c2_data; /* MPU data cacheable bits. */
313 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
314 union { /* MMU domain access control register
315 * MPU write buffer control.
316 */
317 struct {
318 uint64_t dacr_ns;
319 uint64_t dacr_s;
320 };
321 struct {
322 uint64_t dacr32_el2;
323 };
324 };
7e09797c
PM
325 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
326 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 327 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 328 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
329 union { /* Fault status registers. */
330 struct {
331 uint64_t ifsr_ns;
332 uint64_t ifsr_s;
333 };
334 struct {
335 uint64_t ifsr32_el2;
336 };
337 };
4a7e2d73
FA
338 union {
339 struct {
340 uint64_t _unused_dfsr;
341 uint64_t dfsr_ns;
342 uint64_t hsr;
343 uint64_t dfsr_s;
344 };
345 uint64_t esr_el[4];
346 };
ce819861 347 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
348 union { /* Fault address registers. */
349 struct {
350 uint64_t _unused_far0;
351#ifdef HOST_WORDS_BIGENDIAN
352 uint32_t ifar_ns;
353 uint32_t dfar_ns;
354 uint32_t ifar_s;
355 uint32_t dfar_s;
356#else
357 uint32_t dfar_ns;
358 uint32_t ifar_ns;
359 uint32_t dfar_s;
360 uint32_t ifar_s;
361#endif
362 uint64_t _unused_far3;
363 };
364 uint64_t far_el[4];
365 };
59e05530 366 uint64_t hpfar_el2;
2a5a9abd 367 uint64_t hstr_el2;
01c097f7
FA
368 union { /* Translation result. */
369 struct {
370 uint64_t _unused_par_0;
371 uint64_t par_ns;
372 uint64_t _unused_par_1;
373 uint64_t par_s;
374 };
375 uint64_t par_el[4];
376 };
6cb0b013 377
b5ff1b31
FB
378 uint32_t c9_insn; /* Cache lockdown registers. */
379 uint32_t c9_data;
8521466b
AF
380 uint64_t c9_pmcr; /* performance monitor control register */
381 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
382 uint64_t c9_pmovsr; /* perf monitor overflow status */
383 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 384 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 385 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
386 union { /* Memory attribute redirection */
387 struct {
388#ifdef HOST_WORDS_BIGENDIAN
389 uint64_t _unused_mair_0;
390 uint32_t mair1_ns;
391 uint32_t mair0_ns;
392 uint64_t _unused_mair_1;
393 uint32_t mair1_s;
394 uint32_t mair0_s;
395#else
396 uint64_t _unused_mair_0;
397 uint32_t mair0_ns;
398 uint32_t mair1_ns;
399 uint64_t _unused_mair_1;
400 uint32_t mair0_s;
401 uint32_t mair1_s;
402#endif
403 };
404 uint64_t mair_el[4];
405 };
fb6c91ba
GB
406 union { /* vector base address register */
407 struct {
408 uint64_t _unused_vbar;
409 uint64_t vbar_ns;
410 uint64_t hvbar;
411 uint64_t vbar_s;
412 };
413 uint64_t vbar_el[4];
414 };
e89e51a1 415 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
416 struct { /* FCSE PID. */
417 uint32_t fcseidr_ns;
418 uint32_t fcseidr_s;
419 };
420 union { /* Context ID. */
421 struct {
422 uint64_t _unused_contextidr_0;
423 uint64_t contextidr_ns;
424 uint64_t _unused_contextidr_1;
425 uint64_t contextidr_s;
426 };
427 uint64_t contextidr_el[4];
428 };
429 union { /* User RW Thread register. */
430 struct {
431 uint64_t tpidrurw_ns;
432 uint64_t tpidrprw_ns;
433 uint64_t htpidr;
434 uint64_t _tpidr_el3;
435 };
436 uint64_t tpidr_el[4];
437 };
438 /* The secure banks of these registers don't map anywhere */
439 uint64_t tpidrurw_s;
440 uint64_t tpidrprw_s;
441 uint64_t tpidruro_s;
442
443 union { /* User RO Thread register. */
444 uint64_t tpidruro_ns;
445 uint64_t tpidrro_el[1];
446 };
a7adc4b7
PM
447 uint64_t c14_cntfrq; /* Counter Frequency register */
448 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 449 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 450 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 451 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 452 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
453 uint32_t c15_ticonfig; /* TI925T configuration byte. */
454 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
455 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
456 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
457 uint32_t c15_config_base_address; /* SCU base address. */
458 uint32_t c15_diagnostic; /* diagnostic register */
459 uint32_t c15_power_diagnostic;
460 uint32_t c15_power_control; /* power control */
0b45451e
PM
461 uint64_t dbgbvr[16]; /* breakpoint value registers */
462 uint64_t dbgbcr[16]; /* breakpoint control registers */
463 uint64_t dbgwvr[16]; /* watchpoint value registers */
464 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 465 uint64_t mdscr_el1;
1424ca8d 466 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 467 uint64_t mdcr_el2;
5513c3ab 468 uint64_t mdcr_el3;
5d05b9d4
AL
469 /* Stores the architectural value of the counter *the last time it was
470 * updated* by pmccntr_op_start. Accesses should always be surrounded
471 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
472 * architecturally-correct value is being read/set.
7c2cb42b 473 */
c92c0687 474 uint64_t c15_ccnt;
5d05b9d4
AL
475 /* Stores the delta between the architectural value and the underlying
476 * cycle count during normal operation. It is used to update c15_ccnt
477 * to be the correct architectural value before accesses. During
478 * accesses, c15_ccnt_delta contains the underlying count being used
479 * for the access, after which it reverts to the delta value in
480 * pmccntr_op_finish.
481 */
482 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
483 uint64_t c14_pmevcntr[31];
484 uint64_t c14_pmevcntr_delta[31];
485 uint64_t c14_pmevtyper[31];
8521466b 486 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 487 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 488 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 489 } cp15;
40f137e1 490
9ee6e8bb 491 struct {
fb602cb7
PM
492 /* M profile has up to 4 stack pointers:
493 * a Main Stack Pointer and a Process Stack Pointer for each
494 * of the Secure and Non-Secure states. (If the CPU doesn't support
495 * the security extension then it has only two SPs.)
496 * In QEMU we always store the currently active SP in regs[13],
497 * and the non-active SP for the current security state in
498 * v7m.other_sp. The stack pointers for the inactive security state
499 * are stored in other_ss_msp and other_ss_psp.
500 * switch_v7m_security_state() is responsible for rearranging them
501 * when we change security state.
502 */
9ee6e8bb 503 uint32_t other_sp;
fb602cb7
PM
504 uint32_t other_ss_msp;
505 uint32_t other_ss_psp;
4a16724f
PM
506 uint32_t vecbase[M_REG_NUM_BANKS];
507 uint32_t basepri[M_REG_NUM_BANKS];
508 uint32_t control[M_REG_NUM_BANKS];
509 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
510 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
511 uint32_t hfsr; /* HardFault Status */
512 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 513 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 514 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 515 uint32_t bfar; /* BusFault Address */
bed079da 516 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 517 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 518 int exception;
4a16724f
PM
519 uint32_t primask[M_REG_NUM_BANKS];
520 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 521 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 522 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 523 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 524 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
525 uint32_t msplim[M_REG_NUM_BANKS];
526 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
527 uint32_t fpcar[M_REG_NUM_BANKS];
528 uint32_t fpccr[M_REG_NUM_BANKS];
529 uint32_t fpdscr[M_REG_NUM_BANKS];
530 uint32_t cpacr[M_REG_NUM_BANKS];
531 uint32_t nsacr;
9ee6e8bb
PB
532 } v7m;
533
abf1172f
PM
534 /* Information associated with an exception about to be taken:
535 * code which raises an exception must set cs->exception_index and
536 * the relevant parts of this structure; the cpu_do_interrupt function
537 * will then set the guest-visible registers as part of the exception
538 * entry process.
539 */
540 struct {
541 uint32_t syndrome; /* AArch64 format syndrome register */
542 uint32_t fsr; /* AArch32 format fault status register info */
543 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 544 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
545 /* If we implement EL2 we will also need to store information
546 * about the intermediate physical address for stage 2 faults.
547 */
548 } exception;
549
202ccb6b
DG
550 /* Information associated with an SError */
551 struct {
552 uint8_t pending;
553 uint8_t has_esr;
554 uint64_t esr;
555 } serror;
556
ed89f078
PM
557 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
558 uint32_t irq_line_state;
559
fe1479c3
PB
560 /* Thumb-2 EE state. */
561 uint32_t teecr;
562 uint32_t teehbr;
563
b7bcbe95
FB
564 /* VFP coprocessor state. */
565 struct {
c39c2b90 566 ARMVectorReg zregs[32];
b7bcbe95 567
3c7d3086
RH
568#ifdef TARGET_AARCH64
569 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 570#define FFR_PRED_NUM 16
3c7d3086 571 ARMPredicateReg pregs[17];
516e246a
RH
572 /* Scratch space for aa64 sve predicate temporary. */
573 ARMPredicateReg preg_tmp;
3c7d3086
RH
574#endif
575
b7bcbe95 576 /* We store these fpcsr fields separately for convenience. */
a4d58462 577 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
578 int vec_len;
579 int vec_stride;
580
a4d58462
RH
581 uint32_t xregs[16];
582
516e246a 583 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 584 uint32_t scratch[8];
3b46e624 585
d81ce0ef
AB
586 /* There are a number of distinct float control structures:
587 *
588 * fp_status: is the "normal" fp status.
589 * fp_status_fp16: used for half-precision calculations
590 * standard_fp_status : the ARM "Standard FPSCR Value"
591 *
592 * Half-precision operations are governed by a separate
593 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
594 * status structure to control this.
595 *
596 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
597 * round-to-nearest and is used by any operations (generally
598 * Neon) which the architecture defines as controlled by the
599 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
600 *
601 * To avoid having to transfer exception bits around, we simply
602 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 603 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
604 * only thing which needs to read the exception flags being
605 * an explicit FPSCR read.
606 */
53cd6637 607 float_status fp_status;
d81ce0ef 608 float_status fp_status_f16;
3a492f3a 609 float_status standard_fp_status;
5be5e8ed
RH
610
611 /* ZCR_EL[1-3] */
612 uint64_t zcr_el[4];
b7bcbe95 613 } vfp;
03d05e2d
PM
614 uint64_t exclusive_addr;
615 uint64_t exclusive_val;
616 uint64_t exclusive_high;
b7bcbe95 617
18c9b560
AZ
618 /* iwMMXt coprocessor state. */
619 struct {
620 uint64_t regs[16];
621 uint64_t val;
622
623 uint32_t cregs[16];
624 } iwmmxt;
625
991ad91b 626#ifdef TARGET_AARCH64
108b3ba8
RH
627 struct {
628 ARMPACKey apia;
629 ARMPACKey apib;
630 ARMPACKey apda;
631 ARMPACKey apdb;
632 ARMPACKey apga;
633 } keys;
991ad91b
RH
634#endif
635
ce4defa0
PB
636#if defined(CONFIG_USER_ONLY)
637 /* For usermode syscall translation. */
638 int eabi;
639#endif
640
46747d15 641 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
642 struct CPUWatchpoint *cpu_watchpoint[16];
643
1f5c00cf
AB
644 /* Fields up to this point are cleared by a CPU reset */
645 struct {} end_reset_fields;
646
e8b5fae5 647 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 648
581be094 649 /* Internal CPU feature flags. */
918f5dca 650 uint64_t features;
581be094 651
6cb0b013
PC
652 /* PMSAv7 MPU */
653 struct {
654 uint32_t *drbar;
655 uint32_t *drsr;
656 uint32_t *dracr;
4a16724f 657 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
658 } pmsav7;
659
0e1a46bb
PM
660 /* PMSAv8 MPU */
661 struct {
662 /* The PMSAv8 implementation also shares some PMSAv7 config
663 * and state:
664 * pmsav7.rnr (region number register)
665 * pmsav7_dregion (number of configured regions)
666 */
4a16724f
PM
667 uint32_t *rbar[M_REG_NUM_BANKS];
668 uint32_t *rlar[M_REG_NUM_BANKS];
669 uint32_t mair0[M_REG_NUM_BANKS];
670 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
671 } pmsav8;
672
9901c576
PM
673 /* v8M SAU */
674 struct {
675 uint32_t *rbar;
676 uint32_t *rlar;
677 uint32_t rnr;
678 uint32_t ctrl;
679 } sau;
680
983fe826 681 void *nvic;
462a8bc6 682 const struct arm_boot_info *boot_info;
d3a3e529
VK
683 /* Store GICv3CPUState to access from this struct */
684 void *gicv3state;
2c0262af
FB
685} CPUARMState;
686
bd7d00fc 687/**
08267487 688 * ARMELChangeHookFn:
bd7d00fc
PM
689 * type of a function which can be registered via arm_register_el_change_hook()
690 * to get callbacks when the CPU changes its exception level or mode.
691 */
08267487
AL
692typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
693typedef struct ARMELChangeHook ARMELChangeHook;
694struct ARMELChangeHook {
695 ARMELChangeHookFn *hook;
696 void *opaque;
697 QLIST_ENTRY(ARMELChangeHook) node;
698};
062ba099
AB
699
700/* These values map onto the return values for
701 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
702typedef enum ARMPSCIState {
d5affb0d
AJ
703 PSCI_ON = 0,
704 PSCI_OFF = 1,
062ba099
AB
705 PSCI_ON_PENDING = 2
706} ARMPSCIState;
707
962fcbf2
RH
708typedef struct ARMISARegisters ARMISARegisters;
709
74e75564
PB
710/**
711 * ARMCPU:
712 * @env: #CPUARMState
713 *
714 * An ARM CPU core.
715 */
716struct ARMCPU {
717 /*< private >*/
718 CPUState parent_obj;
719 /*< public >*/
720
5b146dc7 721 CPUNegativeOffsetState neg;
74e75564
PB
722 CPUARMState env;
723
724 /* Coprocessor information */
725 GHashTable *cp_regs;
726 /* For marshalling (mostly coprocessor) register state between the
727 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
728 * we use these arrays.
729 */
730 /* List of register indexes managed via these arrays; (full KVM style
731 * 64 bit indexes, not CPRegInfo 32 bit indexes)
732 */
733 uint64_t *cpreg_indexes;
734 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
735 uint64_t *cpreg_values;
736 /* Length of the indexes, values, reset_values arrays */
737 int32_t cpreg_array_len;
738 /* These are used only for migration: incoming data arrives in
739 * these fields and is sanity checked in post_load before copying
740 * to the working data structures above.
741 */
742 uint64_t *cpreg_vmstate_indexes;
743 uint64_t *cpreg_vmstate_values;
744 int32_t cpreg_vmstate_array_len;
745
200bf5b7
AB
746 DynamicGDBXMLInfo dyn_xml;
747
74e75564
PB
748 /* Timers used by the generic (architected) timer */
749 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
750 /*
751 * Timer used by the PMU. Its state is restored after migration by
752 * pmu_op_finish() - it does not need other handling during migration
753 */
754 QEMUTimer *pmu_timer;
74e75564
PB
755 /* GPIO outputs for generic timer */
756 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
757 /* GPIO output for GICv3 maintenance interrupt signal */
758 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
759 /* GPIO output for the PMU interrupt */
760 qemu_irq pmu_interrupt;
74e75564
PB
761
762 /* MemoryRegion to use for secure physical accesses */
763 MemoryRegion *secure_memory;
764
181962fd
PM
765 /* For v8M, pointer to the IDAU interface provided by board/SoC */
766 Object *idau;
767
74e75564
PB
768 /* 'compatible' string for this CPU for Linux device trees */
769 const char *dtb_compatible;
770
771 /* PSCI version for this CPU
772 * Bits[31:16] = Major Version
773 * Bits[15:0] = Minor Version
774 */
775 uint32_t psci_version;
776
777 /* Should CPU start in PSCI powered-off state? */
778 bool start_powered_off;
062ba099
AB
779
780 /* Current power state, access guarded by BQL */
781 ARMPSCIState power_state;
782
c25bd18a
PM
783 /* CPU has virtualization extension */
784 bool has_el2;
74e75564
PB
785 /* CPU has security extension */
786 bool has_el3;
5c0a3819
SZ
787 /* CPU has PMU (Performance Monitor Unit) */
788 bool has_pmu;
97a28b0e
PM
789 /* CPU has VFP */
790 bool has_vfp;
791 /* CPU has Neon */
792 bool has_neon;
74e75564
PB
793
794 /* CPU has memory protection unit */
795 bool has_mpu;
796 /* PMSAv7 MPU number of supported regions */
797 uint32_t pmsav7_dregion;
9901c576
PM
798 /* v8M SAU number of supported regions */
799 uint32_t sau_sregion;
74e75564
PB
800
801 /* PSCI conduit used to invoke PSCI methods
802 * 0 - disabled, 1 - smc, 2 - hvc
803 */
804 uint32_t psci_conduit;
805
38e2a77c
PM
806 /* For v8M, initial value of the Secure VTOR */
807 uint32_t init_svtor;
808
74e75564
PB
809 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
810 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
811 */
812 uint32_t kvm_target;
813
814 /* KVM init features for this CPU */
815 uint32_t kvm_init_features[7];
816
817 /* Uniprocessor system with MP extensions */
818 bool mp_is_up;
819
c4487d76
PM
820 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
821 * and the probe failed (so we need to report the error in realize)
822 */
823 bool host_cpu_probe_failed;
824
f9a69711
AF
825 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
826 * register.
827 */
828 int32_t core_count;
829
74e75564
PB
830 /* The instance init functions for implementation-specific subclasses
831 * set these fields to specify the implementation-dependent values of
832 * various constant registers and reset values of non-constant
833 * registers.
834 * Some of these might become QOM properties eventually.
835 * Field names match the official register names as defined in the
836 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
837 * is used for reset values of non-constant registers; no reset_
838 * prefix means a constant register.
47576b94
RH
839 * Some of these registers are split out into a substructure that
840 * is shared with the translators to control the ISA.
74e75564 841 */
47576b94
RH
842 struct ARMISARegisters {
843 uint32_t id_isar0;
844 uint32_t id_isar1;
845 uint32_t id_isar2;
846 uint32_t id_isar3;
847 uint32_t id_isar4;
848 uint32_t id_isar5;
849 uint32_t id_isar6;
850 uint32_t mvfr0;
851 uint32_t mvfr1;
852 uint32_t mvfr2;
853 uint64_t id_aa64isar0;
854 uint64_t id_aa64isar1;
855 uint64_t id_aa64pfr0;
856 uint64_t id_aa64pfr1;
3dc91ddb
PM
857 uint64_t id_aa64mmfr0;
858 uint64_t id_aa64mmfr1;
47576b94 859 } isar;
74e75564
PB
860 uint32_t midr;
861 uint32_t revidr;
862 uint32_t reset_fpsid;
74e75564
PB
863 uint32_t ctr;
864 uint32_t reset_sctlr;
865 uint32_t id_pfr0;
866 uint32_t id_pfr1;
867 uint32_t id_dfr0;
cad86737
AL
868 uint64_t pmceid0;
869 uint64_t pmceid1;
74e75564
PB
870 uint32_t id_afr0;
871 uint32_t id_mmfr0;
872 uint32_t id_mmfr1;
873 uint32_t id_mmfr2;
874 uint32_t id_mmfr3;
875 uint32_t id_mmfr4;
74e75564
PB
876 uint64_t id_aa64dfr0;
877 uint64_t id_aa64dfr1;
878 uint64_t id_aa64afr0;
879 uint64_t id_aa64afr1;
74e75564
PB
880 uint32_t dbgdidr;
881 uint32_t clidr;
882 uint64_t mp_affinity; /* MP ID without feature bits */
883 /* The elements of this array are the CCSIDR values for each cache,
884 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
885 */
886 uint32_t ccsidr[16];
887 uint64_t reset_cbar;
888 uint32_t reset_auxcr;
889 bool reset_hivecs;
890 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
891 uint32_t dcz_blocksize;
892 uint64_t rvbar;
bd7d00fc 893
e45868a3
PM
894 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
895 int gic_num_lrs; /* number of list registers */
896 int gic_vpribits; /* number of virtual priority bits */
897 int gic_vprebits; /* number of virtual preemption bits */
898
3a062d57
JB
899 /* Whether the cfgend input is high (i.e. this CPU should reset into
900 * big-endian mode). This setting isn't used directly: instead it modifies
901 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
902 * architecture version.
903 */
904 bool cfgend;
905
b5c53d1b 906 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 907 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
908
909 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
910
911 /* Used to synchronize KVM and QEMU in-kernel device levels */
912 uint8_t device_irq_level;
adf92eab
RH
913
914 /* Used to set the maximum vector length the cpu will support. */
915 uint32_t sve_max_vq;
74e75564
PB
916};
917
51e5ef45
MAL
918void arm_cpu_post_init(Object *obj);
919
46de5913
IM
920uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
921
74e75564
PB
922#ifndef CONFIG_USER_ONLY
923extern const struct VMStateDescription vmstate_arm_cpu;
924#endif
925
926void arm_cpu_do_interrupt(CPUState *cpu);
927void arm_v7m_cpu_do_interrupt(CPUState *cpu);
928bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
929
90c84c56 930void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags);
74e75564
PB
931
932hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
933 MemTxAttrs *attrs);
934
935int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
936int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
937
200bf5b7
AB
938/* Dynamically generates for gdb stub an XML description of the sysregs from
939 * the cp_regs hashtable. Returns the registered sysregs number.
940 */
941int arm_gen_dynamic_xml(CPUState *cpu);
942
943/* Returns the dynamically generated XML for the gdb stub.
944 * Returns a pointer to the XML contents for the specified XML file or NULL
945 * if the XML name doesn't match the predefined one.
946 */
947const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
948
74e75564
PB
949int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
950 int cpuid, void *opaque);
951int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
952 int cpuid, void *opaque);
953
954#ifdef TARGET_AARCH64
955int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
956int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 957void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
958void aarch64_sve_change_el(CPUARMState *env, int old_el,
959 int new_el, bool el0_a64);
0ab5953b
RH
960#else
961static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
962static inline void aarch64_sve_change_el(CPUARMState *env, int o,
963 int n, bool a)
964{ }
74e75564 965#endif
778c3a06 966
faacc041 967target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
968void aarch64_sync_32_to_64(CPUARMState *env);
969void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 970
ced31551
RH
971int fp_exception_el(CPUARMState *env, int cur_el);
972int sve_exception_el(CPUARMState *env, int cur_el);
973uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
974
3926cc84
AG
975static inline bool is_a64(CPUARMState *env)
976{
977 return env->aarch64;
978}
979
2c0262af
FB
980/* you can call this signal handler from your SIGBUS and SIGSEGV
981 signal handlers to inform the virtual CPU of exceptions. non zero
982 is returned if the signal was handled by the virtual CPU. */
5fafdf24 983int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
984 void *puc);
985
5d05b9d4
AL
986/**
987 * pmu_op_start/finish
ec7b4ce4
AF
988 * @env: CPUARMState
989 *
5d05b9d4
AL
990 * Convert all PMU counters between their delta form (the typical mode when
991 * they are enabled) and the guest-visible values. These two calls must
992 * surround any action which might affect the counters.
ec7b4ce4 993 */
5d05b9d4
AL
994void pmu_op_start(CPUARMState *env);
995void pmu_op_finish(CPUARMState *env);
ec7b4ce4 996
4e7beb0c
AL
997/*
998 * Called when a PMU counter is due to overflow
999 */
1000void arm_pmu_timer_cb(void *opaque);
1001
033614c4
AL
1002/**
1003 * Functions to register as EL change hooks for PMU mode filtering
1004 */
1005void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1006void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1007
57a4a11b 1008/*
bf8d0969
AL
1009 * pmu_init
1010 * @cpu: ARMCPU
57a4a11b 1011 *
bf8d0969
AL
1012 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1013 * for the current configuration
57a4a11b 1014 */
bf8d0969 1015void pmu_init(ARMCPU *cpu);
57a4a11b 1016
76e3e1bc
PM
1017/* SCTLR bit meanings. Several bits have been reused in newer
1018 * versions of the architecture; in that case we define constants
1019 * for both old and new bit meanings. Code which tests against those
1020 * bits should probably check or otherwise arrange that the CPU
1021 * is the architectural version it expects.
1022 */
1023#define SCTLR_M (1U << 0)
1024#define SCTLR_A (1U << 1)
1025#define SCTLR_C (1U << 2)
1026#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1027#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1028#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1029#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1030#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1031#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1032#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1033#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1034#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1035#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1036#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1037#define SCTLR_ITD (1U << 7) /* v8 onward */
1038#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1039#define SCTLR_SED (1U << 8) /* v8 onward */
1040#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1041#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1042#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1043#define SCTLR_SW (1U << 10) /* v7 */
1044#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1045#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1046#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1047#define SCTLR_I (1U << 12)
b2af69d0
RH
1048#define SCTLR_V (1U << 13) /* AArch32 only */
1049#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1050#define SCTLR_RR (1U << 14) /* up to v7 */
1051#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1052#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1053#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1054#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1055#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1056#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1057#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1058#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1059#define SCTLR_nTWE (1U << 18) /* v8 onward */
1060#define SCTLR_WXN (1U << 19)
1061#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1062#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1063#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1064#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1065#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1066#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1067#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1068#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1069#define SCTLR_VE (1U << 24) /* up to v7 */
1070#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1071#define SCTLR_EE (1U << 25)
1072#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1073#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1074#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1075#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1076#define SCTLR_TRE (1U << 28) /* AArch32 only */
1077#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1078#define SCTLR_AFE (1U << 29) /* AArch32 only */
1079#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1080#define SCTLR_TE (1U << 30) /* AArch32 only */
1081#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1082#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1083#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1084#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1085#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1086#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1087#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1088#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1089#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1090#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1091
c6f19164
GB
1092#define CPTR_TCPAC (1U << 31)
1093#define CPTR_TTA (1U << 20)
1094#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1095#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1096#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1097
187f678d
PM
1098#define MDCR_EPMAD (1U << 21)
1099#define MDCR_EDAD (1U << 20)
033614c4
AL
1100#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1101#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1102#define MDCR_SDD (1U << 16)
a8d64e73 1103#define MDCR_SPD (3U << 14)
187f678d
PM
1104#define MDCR_TDRA (1U << 11)
1105#define MDCR_TDOSA (1U << 10)
1106#define MDCR_TDA (1U << 9)
1107#define MDCR_TDE (1U << 8)
1108#define MDCR_HPME (1U << 7)
1109#define MDCR_TPM (1U << 6)
1110#define MDCR_TPMCR (1U << 5)
033614c4 1111#define MDCR_HPMN (0x1fU)
187f678d 1112
a8d64e73
PM
1113/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1114#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1115
78dbbbe4
PM
1116#define CPSR_M (0x1fU)
1117#define CPSR_T (1U << 5)
1118#define CPSR_F (1U << 6)
1119#define CPSR_I (1U << 7)
1120#define CPSR_A (1U << 8)
1121#define CPSR_E (1U << 9)
1122#define CPSR_IT_2_7 (0xfc00U)
1123#define CPSR_GE (0xfU << 16)
4051e12c
PM
1124#define CPSR_IL (1U << 20)
1125/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1126 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1127 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1128 * where it is live state but not accessible to the AArch32 code.
1129 */
1130#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
1131#define CPSR_J (1U << 24)
1132#define CPSR_IT_0_1 (3U << 25)
1133#define CPSR_Q (1U << 27)
1134#define CPSR_V (1U << 28)
1135#define CPSR_C (1U << 29)
1136#define CPSR_Z (1U << 30)
1137#define CPSR_N (1U << 31)
9ee6e8bb 1138#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1139#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1140
1141#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1142#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1143 | CPSR_NZCV)
9ee6e8bb
PB
1144/* Bits writable in user mode. */
1145#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1146/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
1147#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1148/* Mask of bits which may be set by exception return copying them from SPSR */
1149#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1150
987ab45e
PM
1151/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1152#define XPSR_EXCP 0x1ffU
1153#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1154#define XPSR_IT_2_7 CPSR_IT_2_7
1155#define XPSR_GE CPSR_GE
1156#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1157#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1158#define XPSR_IT_0_1 CPSR_IT_0_1
1159#define XPSR_Q CPSR_Q
1160#define XPSR_V CPSR_V
1161#define XPSR_C CPSR_C
1162#define XPSR_Z CPSR_Z
1163#define XPSR_N CPSR_N
1164#define XPSR_NZCV CPSR_NZCV
1165#define XPSR_IT CPSR_IT
1166
e389be16
FA
1167#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1168#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1169#define TTBCR_PD0 (1U << 4)
1170#define TTBCR_PD1 (1U << 5)
1171#define TTBCR_EPD0 (1U << 7)
1172#define TTBCR_IRGN0 (3U << 8)
1173#define TTBCR_ORGN0 (3U << 10)
1174#define TTBCR_SH0 (3U << 12)
1175#define TTBCR_T1SZ (3U << 16)
1176#define TTBCR_A1 (1U << 22)
1177#define TTBCR_EPD1 (1U << 23)
1178#define TTBCR_IRGN1 (3U << 24)
1179#define TTBCR_ORGN1 (3U << 26)
1180#define TTBCR_SH1 (1U << 28)
1181#define TTBCR_EAE (1U << 31)
1182
d356312f
PM
1183/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1184 * Only these are valid when in AArch64 mode; in
1185 * AArch32 mode SPSRs are basically CPSR-format.
1186 */
f502cfc2 1187#define PSTATE_SP (1U)
d356312f
PM
1188#define PSTATE_M (0xFU)
1189#define PSTATE_nRW (1U << 4)
1190#define PSTATE_F (1U << 6)
1191#define PSTATE_I (1U << 7)
1192#define PSTATE_A (1U << 8)
1193#define PSTATE_D (1U << 9)
f6e52eaa 1194#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1195#define PSTATE_IL (1U << 20)
1196#define PSTATE_SS (1U << 21)
1197#define PSTATE_V (1U << 28)
1198#define PSTATE_C (1U << 29)
1199#define PSTATE_Z (1U << 30)
1200#define PSTATE_N (1U << 31)
1201#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1202#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1203#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1204/* Mode values for AArch64 */
1205#define PSTATE_MODE_EL3h 13
1206#define PSTATE_MODE_EL3t 12
1207#define PSTATE_MODE_EL2h 9
1208#define PSTATE_MODE_EL2t 8
1209#define PSTATE_MODE_EL1h 5
1210#define PSTATE_MODE_EL1t 4
1211#define PSTATE_MODE_EL0t 0
1212
de2db7ec
PM
1213/* Write a new value to v7m.exception, thus transitioning into or out
1214 * of Handler mode; this may result in a change of active stack pointer.
1215 */
1216void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1217
9e729b57
EI
1218/* Map EL and handler into a PSTATE_MODE. */
1219static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1220{
1221 return (el << 2) | handler;
1222}
1223
d356312f
PM
1224/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1225 * interprocessing, so we don't attempt to sync with the cpsr state used by
1226 * the 32 bit decoder.
1227 */
1228static inline uint32_t pstate_read(CPUARMState *env)
1229{
1230 int ZF;
1231
1232 ZF = (env->ZF == 0);
1233 return (env->NF & 0x80000000) | (ZF << 30)
1234 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1235 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1236}
1237
1238static inline void pstate_write(CPUARMState *env, uint32_t val)
1239{
1240 env->ZF = (~val) & PSTATE_Z;
1241 env->NF = val;
1242 env->CF = (val >> 29) & 1;
1243 env->VF = (val << 3) & 0x80000000;
4cc35614 1244 env->daif = val & PSTATE_DAIF;
f6e52eaa 1245 env->btype = (val >> 10) & 3;
d356312f
PM
1246 env->pstate = val & ~CACHED_PSTATE_BITS;
1247}
1248
b5ff1b31 1249/* Return the current CPSR value. */
2f4a40e5 1250uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1251
1252typedef enum CPSRWriteType {
1253 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1254 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1255 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1256 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1257} CPSRWriteType;
1258
1259/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1260void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1261 CPSRWriteType write_type);
9ee6e8bb
PB
1262
1263/* Return the current xPSR value. */
1264static inline uint32_t xpsr_read(CPUARMState *env)
1265{
1266 int ZF;
6fbe23d5
PB
1267 ZF = (env->ZF == 0);
1268 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1269 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1270 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1271 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1272 | (env->GE << 16)
9ee6e8bb 1273 | env->v7m.exception;
b5ff1b31
FB
1274}
1275
9ee6e8bb
PB
1276/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1277static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1278{
987ab45e
PM
1279 if (mask & XPSR_NZCV) {
1280 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1281 env->NF = val;
9ee6e8bb
PB
1282 env->CF = (val >> 29) & 1;
1283 env->VF = (val << 3) & 0x80000000;
1284 }
987ab45e
PM
1285 if (mask & XPSR_Q) {
1286 env->QF = ((val & XPSR_Q) != 0);
1287 }
f1e2598c
PM
1288 if (mask & XPSR_GE) {
1289 env->GE = (val & XPSR_GE) >> 16;
1290 }
987ab45e
PM
1291 if (mask & XPSR_T) {
1292 env->thumb = ((val & XPSR_T) != 0);
1293 }
1294 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1295 env->condexec_bits &= ~3;
1296 env->condexec_bits |= (val >> 25) & 3;
1297 }
987ab45e 1298 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1299 env->condexec_bits &= 3;
1300 env->condexec_bits |= (val >> 8) & 0xfc;
1301 }
987ab45e 1302 if (mask & XPSR_EXCP) {
de2db7ec
PM
1303 /* Note that this only happens on exception exit */
1304 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1305 }
1306}
1307
f149e3e8
EI
1308#define HCR_VM (1ULL << 0)
1309#define HCR_SWIO (1ULL << 1)
1310#define HCR_PTW (1ULL << 2)
1311#define HCR_FMO (1ULL << 3)
1312#define HCR_IMO (1ULL << 4)
1313#define HCR_AMO (1ULL << 5)
1314#define HCR_VF (1ULL << 6)
1315#define HCR_VI (1ULL << 7)
1316#define HCR_VSE (1ULL << 8)
1317#define HCR_FB (1ULL << 9)
1318#define HCR_BSU_MASK (3ULL << 10)
1319#define HCR_DC (1ULL << 12)
1320#define HCR_TWI (1ULL << 13)
1321#define HCR_TWE (1ULL << 14)
1322#define HCR_TID0 (1ULL << 15)
1323#define HCR_TID1 (1ULL << 16)
1324#define HCR_TID2 (1ULL << 17)
1325#define HCR_TID3 (1ULL << 18)
1326#define HCR_TSC (1ULL << 19)
1327#define HCR_TIDCP (1ULL << 20)
1328#define HCR_TACR (1ULL << 21)
1329#define HCR_TSW (1ULL << 22)
099bf53b 1330#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1331#define HCR_TPU (1ULL << 24)
1332#define HCR_TTLB (1ULL << 25)
1333#define HCR_TVM (1ULL << 26)
1334#define HCR_TGE (1ULL << 27)
1335#define HCR_TDZ (1ULL << 28)
1336#define HCR_HCD (1ULL << 29)
1337#define HCR_TRVM (1ULL << 30)
1338#define HCR_RW (1ULL << 31)
1339#define HCR_CD (1ULL << 32)
1340#define HCR_ID (1ULL << 33)
ac656b16 1341#define HCR_E2H (1ULL << 34)
099bf53b
RH
1342#define HCR_TLOR (1ULL << 35)
1343#define HCR_TERR (1ULL << 36)
1344#define HCR_TEA (1ULL << 37)
1345#define HCR_MIOCNCE (1ULL << 38)
1346#define HCR_APK (1ULL << 40)
1347#define HCR_API (1ULL << 41)
1348#define HCR_NV (1ULL << 42)
1349#define HCR_NV1 (1ULL << 43)
1350#define HCR_AT (1ULL << 44)
1351#define HCR_NV2 (1ULL << 45)
1352#define HCR_FWB (1ULL << 46)
1353#define HCR_FIEN (1ULL << 47)
1354#define HCR_TID4 (1ULL << 49)
1355#define HCR_TICAB (1ULL << 50)
1356#define HCR_TOCU (1ULL << 52)
1357#define HCR_TTLBIS (1ULL << 54)
1358#define HCR_TTLBOS (1ULL << 55)
1359#define HCR_ATA (1ULL << 56)
1360#define HCR_DCT (1ULL << 57)
1361
ac656b16
PM
1362/*
1363 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1364 * HCR_MASK and then clear it again if the feature bit is not set in
1365 * hcr_write().
1366 */
f149e3e8
EI
1367#define HCR_MASK ((1ULL << 34) - 1)
1368
64e0e2de
EI
1369#define SCR_NS (1U << 0)
1370#define SCR_IRQ (1U << 1)
1371#define SCR_FIQ (1U << 2)
1372#define SCR_EA (1U << 3)
1373#define SCR_FW (1U << 4)
1374#define SCR_AW (1U << 5)
1375#define SCR_NET (1U << 6)
1376#define SCR_SMD (1U << 7)
1377#define SCR_HCE (1U << 8)
1378#define SCR_SIF (1U << 9)
1379#define SCR_RW (1U << 10)
1380#define SCR_ST (1U << 11)
1381#define SCR_TWI (1U << 12)
1382#define SCR_TWE (1U << 13)
99f8f86d
RH
1383#define SCR_TLOR (1U << 14)
1384#define SCR_TERR (1U << 15)
1385#define SCR_APK (1U << 16)
1386#define SCR_API (1U << 17)
1387#define SCR_EEL2 (1U << 18)
1388#define SCR_EASE (1U << 19)
1389#define SCR_NMEA (1U << 20)
1390#define SCR_FIEN (1U << 21)
1391#define SCR_ENSCXT (1U << 25)
1392#define SCR_ATA (1U << 26)
64e0e2de 1393
01653295
PM
1394/* Return the current FPSCR value. */
1395uint32_t vfp_get_fpscr(CPUARMState *env);
1396void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1397
d81ce0ef
AB
1398/* FPCR, Floating Point Control Register
1399 * FPSR, Floating Poiht Status Register
1400 *
1401 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1402 * FPCR and FPSR. However since they still use non-overlapping bits
1403 * we store the underlying state in fpscr and just mask on read/write.
1404 */
1405#define FPSR_MASK 0xf800009f
0b62159b 1406#define FPCR_MASK 0x07ff9f00
d81ce0ef 1407
a15945d9
PM
1408#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1409#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1410#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1411#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1412#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1413#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef
AB
1414#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1415#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1416#define FPCR_DN (1 << 25) /* Default NaN enable bit */
a4d58462 1417#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
d81ce0ef 1418
f903fa22
PM
1419static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1420{
1421 return vfp_get_fpscr(env) & FPSR_MASK;
1422}
1423
1424static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1425{
1426 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1427 vfp_set_fpscr(env, new_fpscr);
1428}
1429
1430static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1431{
1432 return vfp_get_fpscr(env) & FPCR_MASK;
1433}
1434
1435static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1436{
1437 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1438 vfp_set_fpscr(env, new_fpscr);
1439}
1440
b5ff1b31
FB
1441enum arm_cpu_mode {
1442 ARM_CPU_MODE_USR = 0x10,
1443 ARM_CPU_MODE_FIQ = 0x11,
1444 ARM_CPU_MODE_IRQ = 0x12,
1445 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1446 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1447 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1448 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1449 ARM_CPU_MODE_UND = 0x1b,
1450 ARM_CPU_MODE_SYS = 0x1f
1451};
1452
40f137e1
PB
1453/* VFP system registers. */
1454#define ARM_VFP_FPSID 0
1455#define ARM_VFP_FPSCR 1
a50c0f51 1456#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1457#define ARM_VFP_MVFR1 6
1458#define ARM_VFP_MVFR0 7
40f137e1
PB
1459#define ARM_VFP_FPEXC 8
1460#define ARM_VFP_FPINST 9
1461#define ARM_VFP_FPINST2 10
1462
18c9b560 1463/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1464#define ARM_IWMMXT_wCID 0
1465#define ARM_IWMMXT_wCon 1
1466#define ARM_IWMMXT_wCSSF 2
1467#define ARM_IWMMXT_wCASF 3
1468#define ARM_IWMMXT_wCGR0 8
1469#define ARM_IWMMXT_wCGR1 9
1470#define ARM_IWMMXT_wCGR2 10
1471#define ARM_IWMMXT_wCGR3 11
18c9b560 1472
2c4da50d
PM
1473/* V7M CCR bits */
1474FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1475FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1476FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1477FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1478FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1479FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1480FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1481FIELD(V7M_CCR, DC, 16, 1)
1482FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1483FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1484
24ac0fb1
PM
1485/* V7M SCR bits */
1486FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1487FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1488FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1489FIELD(V7M_SCR, SEVONPEND, 4, 1)
1490
3b2e9344
PM
1491/* V7M AIRCR bits */
1492FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1493FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1494FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1495FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1496FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1497FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1498FIELD(V7M_AIRCR, PRIS, 14, 1)
1499FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1500FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1501
2c4da50d
PM
1502/* V7M CFSR bits for MMFSR */
1503FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1504FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1505FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1506FIELD(V7M_CFSR, MSTKERR, 4, 1)
1507FIELD(V7M_CFSR, MLSPERR, 5, 1)
1508FIELD(V7M_CFSR, MMARVALID, 7, 1)
1509
1510/* V7M CFSR bits for BFSR */
1511FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1512FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1513FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1514FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1515FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1516FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1517FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1518
1519/* V7M CFSR bits for UFSR */
1520FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1521FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1522FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1523FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1524FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1525FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1526FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1527
334e8dad
PM
1528/* V7M CFSR bit masks covering all of the subregister bits */
1529FIELD(V7M_CFSR, MMFSR, 0, 8)
1530FIELD(V7M_CFSR, BFSR, 8, 8)
1531FIELD(V7M_CFSR, UFSR, 16, 16)
1532
2c4da50d
PM
1533/* V7M HFSR bits */
1534FIELD(V7M_HFSR, VECTTBL, 1, 1)
1535FIELD(V7M_HFSR, FORCED, 30, 1)
1536FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1537
1538/* V7M DFSR bits */
1539FIELD(V7M_DFSR, HALTED, 0, 1)
1540FIELD(V7M_DFSR, BKPT, 1, 1)
1541FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1542FIELD(V7M_DFSR, VCATCH, 3, 1)
1543FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1544
bed079da
PM
1545/* V7M SFSR bits */
1546FIELD(V7M_SFSR, INVEP, 0, 1)
1547FIELD(V7M_SFSR, INVIS, 1, 1)
1548FIELD(V7M_SFSR, INVER, 2, 1)
1549FIELD(V7M_SFSR, AUVIOL, 3, 1)
1550FIELD(V7M_SFSR, INVTRAN, 4, 1)
1551FIELD(V7M_SFSR, LSPERR, 5, 1)
1552FIELD(V7M_SFSR, SFARVALID, 6, 1)
1553FIELD(V7M_SFSR, LSERR, 7, 1)
1554
29c483a5
MD
1555/* v7M MPU_CTRL bits */
1556FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1557FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1558FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1559
43bbce7f
PM
1560/* v7M CLIDR bits */
1561FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1562FIELD(V7M_CLIDR, LOUIS, 21, 3)
1563FIELD(V7M_CLIDR, LOC, 24, 3)
1564FIELD(V7M_CLIDR, LOUU, 27, 3)
1565FIELD(V7M_CLIDR, ICB, 30, 2)
1566
1567FIELD(V7M_CSSELR, IND, 0, 1)
1568FIELD(V7M_CSSELR, LEVEL, 1, 3)
1569/* We use the combination of InD and Level to index into cpu->ccsidr[];
1570 * define a mask for this and check that it doesn't permit running off
1571 * the end of the array.
1572 */
1573FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1574
1575/* v7M FPCCR bits */
1576FIELD(V7M_FPCCR, LSPACT, 0, 1)
1577FIELD(V7M_FPCCR, USER, 1, 1)
1578FIELD(V7M_FPCCR, S, 2, 1)
1579FIELD(V7M_FPCCR, THREAD, 3, 1)
1580FIELD(V7M_FPCCR, HFRDY, 4, 1)
1581FIELD(V7M_FPCCR, MMRDY, 5, 1)
1582FIELD(V7M_FPCCR, BFRDY, 6, 1)
1583FIELD(V7M_FPCCR, SFRDY, 7, 1)
1584FIELD(V7M_FPCCR, MONRDY, 8, 1)
1585FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1586FIELD(V7M_FPCCR, UFRDY, 10, 1)
1587FIELD(V7M_FPCCR, RES0, 11, 15)
1588FIELD(V7M_FPCCR, TS, 26, 1)
1589FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1590FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1591FIELD(V7M_FPCCR, LSPENS, 29, 1)
1592FIELD(V7M_FPCCR, LSPEN, 30, 1)
1593FIELD(V7M_FPCCR, ASPEN, 31, 1)
1594/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1595#define R_V7M_FPCCR_BANKED_MASK \
1596 (R_V7M_FPCCR_LSPACT_MASK | \
1597 R_V7M_FPCCR_USER_MASK | \
1598 R_V7M_FPCCR_THREAD_MASK | \
1599 R_V7M_FPCCR_MMRDY_MASK | \
1600 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1601 R_V7M_FPCCR_UFRDY_MASK | \
1602 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1603
a62e62af
RH
1604/*
1605 * System register ID fields.
1606 */
1607FIELD(ID_ISAR0, SWAP, 0, 4)
1608FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1609FIELD(ID_ISAR0, BITFIELD, 8, 4)
1610FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1611FIELD(ID_ISAR0, COPROC, 16, 4)
1612FIELD(ID_ISAR0, DEBUG, 20, 4)
1613FIELD(ID_ISAR0, DIVIDE, 24, 4)
1614
1615FIELD(ID_ISAR1, ENDIAN, 0, 4)
1616FIELD(ID_ISAR1, EXCEPT, 4, 4)
1617FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1618FIELD(ID_ISAR1, EXTEND, 12, 4)
1619FIELD(ID_ISAR1, IFTHEN, 16, 4)
1620FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1621FIELD(ID_ISAR1, INTERWORK, 24, 4)
1622FIELD(ID_ISAR1, JAZELLE, 28, 4)
1623
1624FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1625FIELD(ID_ISAR2, MEMHINT, 4, 4)
1626FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1627FIELD(ID_ISAR2, MULT, 12, 4)
1628FIELD(ID_ISAR2, MULTS, 16, 4)
1629FIELD(ID_ISAR2, MULTU, 20, 4)
1630FIELD(ID_ISAR2, PSR_AR, 24, 4)
1631FIELD(ID_ISAR2, REVERSAL, 28, 4)
1632
1633FIELD(ID_ISAR3, SATURATE, 0, 4)
1634FIELD(ID_ISAR3, SIMD, 4, 4)
1635FIELD(ID_ISAR3, SVC, 8, 4)
1636FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1637FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1638FIELD(ID_ISAR3, T32COPY, 20, 4)
1639FIELD(ID_ISAR3, TRUENOP, 24, 4)
1640FIELD(ID_ISAR3, T32EE, 28, 4)
1641
1642FIELD(ID_ISAR4, UNPRIV, 0, 4)
1643FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1644FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1645FIELD(ID_ISAR4, SMC, 12, 4)
1646FIELD(ID_ISAR4, BARRIER, 16, 4)
1647FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1648FIELD(ID_ISAR4, PSR_M, 24, 4)
1649FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1650
1651FIELD(ID_ISAR5, SEVL, 0, 4)
1652FIELD(ID_ISAR5, AES, 4, 4)
1653FIELD(ID_ISAR5, SHA1, 8, 4)
1654FIELD(ID_ISAR5, SHA2, 12, 4)
1655FIELD(ID_ISAR5, CRC32, 16, 4)
1656FIELD(ID_ISAR5, RDM, 24, 4)
1657FIELD(ID_ISAR5, VCMA, 28, 4)
1658
1659FIELD(ID_ISAR6, JSCVT, 0, 4)
1660FIELD(ID_ISAR6, DP, 4, 4)
1661FIELD(ID_ISAR6, FHM, 8, 4)
1662FIELD(ID_ISAR6, SB, 12, 4)
1663FIELD(ID_ISAR6, SPECRES, 16, 4)
1664
ab638a32
RH
1665FIELD(ID_MMFR4, SPECSEI, 0, 4)
1666FIELD(ID_MMFR4, AC2, 4, 4)
1667FIELD(ID_MMFR4, XNX, 8, 4)
1668FIELD(ID_MMFR4, CNP, 12, 4)
1669FIELD(ID_MMFR4, HPDS, 16, 4)
1670FIELD(ID_MMFR4, LSM, 20, 4)
1671FIELD(ID_MMFR4, CCIDX, 24, 4)
1672FIELD(ID_MMFR4, EVT, 28, 4)
1673
a62e62af
RH
1674FIELD(ID_AA64ISAR0, AES, 4, 4)
1675FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1676FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1677FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1678FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1679FIELD(ID_AA64ISAR0, RDM, 28, 4)
1680FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1681FIELD(ID_AA64ISAR0, SM3, 36, 4)
1682FIELD(ID_AA64ISAR0, SM4, 40, 4)
1683FIELD(ID_AA64ISAR0, DP, 44, 4)
1684FIELD(ID_AA64ISAR0, FHM, 48, 4)
1685FIELD(ID_AA64ISAR0, TS, 52, 4)
1686FIELD(ID_AA64ISAR0, TLB, 56, 4)
1687FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1688
1689FIELD(ID_AA64ISAR1, DPB, 0, 4)
1690FIELD(ID_AA64ISAR1, APA, 4, 4)
1691FIELD(ID_AA64ISAR1, API, 8, 4)
1692FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1693FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1694FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1695FIELD(ID_AA64ISAR1, GPA, 24, 4)
1696FIELD(ID_AA64ISAR1, GPI, 28, 4)
1697FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1698FIELD(ID_AA64ISAR1, SB, 36, 4)
1699FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1700
cd208a1c
RH
1701FIELD(ID_AA64PFR0, EL0, 0, 4)
1702FIELD(ID_AA64PFR0, EL1, 4, 4)
1703FIELD(ID_AA64PFR0, EL2, 8, 4)
1704FIELD(ID_AA64PFR0, EL3, 12, 4)
1705FIELD(ID_AA64PFR0, FP, 16, 4)
1706FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1707FIELD(ID_AA64PFR0, GIC, 24, 4)
1708FIELD(ID_AA64PFR0, RAS, 28, 4)
1709FIELD(ID_AA64PFR0, SVE, 32, 4)
1710
be53b6f4
RH
1711FIELD(ID_AA64PFR1, BT, 0, 4)
1712FIELD(ID_AA64PFR1, SBSS, 4, 4)
1713FIELD(ID_AA64PFR1, MTE, 8, 4)
1714FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1715
3dc91ddb
PM
1716FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1717FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1718FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1719FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1720FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1721FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1722FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1723FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1724FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1725FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1726FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1727FIELD(ID_AA64MMFR0, EXS, 44, 4)
1728
1729FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1730FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1731FIELD(ID_AA64MMFR1, VH, 8, 4)
1732FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1733FIELD(ID_AA64MMFR1, LO, 16, 4)
1734FIELD(ID_AA64MMFR1, PAN, 20, 4)
1735FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1736FIELD(ID_AA64MMFR1, XNX, 28, 4)
1737
beceb99c
AL
1738FIELD(ID_DFR0, COPDBG, 0, 4)
1739FIELD(ID_DFR0, COPSDBG, 4, 4)
1740FIELD(ID_DFR0, MMAPDBG, 8, 4)
1741FIELD(ID_DFR0, COPTRC, 12, 4)
1742FIELD(ID_DFR0, MMAPTRC, 16, 4)
1743FIELD(ID_DFR0, MPROFDBG, 20, 4)
1744FIELD(ID_DFR0, PERFMON, 24, 4)
1745FIELD(ID_DFR0, TRACEFILT, 28, 4)
1746
602f6e42
PM
1747FIELD(MVFR0, SIMDREG, 0, 4)
1748FIELD(MVFR0, FPSP, 4, 4)
1749FIELD(MVFR0, FPDP, 8, 4)
1750FIELD(MVFR0, FPTRAP, 12, 4)
1751FIELD(MVFR0, FPDIVIDE, 16, 4)
1752FIELD(MVFR0, FPSQRT, 20, 4)
1753FIELD(MVFR0, FPSHVEC, 24, 4)
1754FIELD(MVFR0, FPROUND, 28, 4)
1755
1756FIELD(MVFR1, FPFTZ, 0, 4)
1757FIELD(MVFR1, FPDNAN, 4, 4)
1758FIELD(MVFR1, SIMDLS, 8, 4)
1759FIELD(MVFR1, SIMDINT, 12, 4)
1760FIELD(MVFR1, SIMDSP, 16, 4)
1761FIELD(MVFR1, SIMDHP, 20, 4)
1762FIELD(MVFR1, FPHP, 24, 4)
1763FIELD(MVFR1, SIMDFMAC, 28, 4)
1764
1765FIELD(MVFR2, SIMDMISC, 0, 4)
1766FIELD(MVFR2, FPMISC, 4, 4)
1767
43bbce7f
PM
1768QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1769
ce854d7c
BC
1770/* If adding a feature bit which corresponds to a Linux ELF
1771 * HWCAP bit, remember to update the feature-bit-to-hwcap
1772 * mapping in linux-user/elfload.c:get_elf_hwcap().
1773 */
40f137e1
PB
1774enum arm_features {
1775 ARM_FEATURE_VFP,
c1713132
AZ
1776 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1777 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1778 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1779 ARM_FEATURE_V6,
1780 ARM_FEATURE_V6K,
1781 ARM_FEATURE_V7,
1782 ARM_FEATURE_THUMB2,
452a0955 1783 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb
PB
1784 ARM_FEATURE_VFP3,
1785 ARM_FEATURE_NEON,
9ee6e8bb 1786 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1787 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1788 ARM_FEATURE_THUMB2EE,
be5e7a76 1789 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1790 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1791 ARM_FEATURE_V4T,
1792 ARM_FEATURE_V5,
5bc95aa2 1793 ARM_FEATURE_STRONGARM,
906879a9 1794 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
da97f52c 1795 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1796 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1797 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1798 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1799 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1800 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1801 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1802 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1803 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1804 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1805 ARM_FEATURE_V8,
3926cc84 1806 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1807 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1808 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1809 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1810 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1811 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1812 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1813 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1814 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1815 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1816 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1817};
1818
1819static inline int arm_feature(CPUARMState *env, int feature)
1820{
918f5dca 1821 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1822}
1823
19e0fefa
FA
1824#if !defined(CONFIG_USER_ONLY)
1825/* Return true if exception levels below EL3 are in secure state,
1826 * or would be following an exception return to that level.
1827 * Unlike arm_is_secure() (which is always a question about the
1828 * _current_ state of the CPU) this doesn't care about the current
1829 * EL or mode.
1830 */
1831static inline bool arm_is_secure_below_el3(CPUARMState *env)
1832{
1833 if (arm_feature(env, ARM_FEATURE_EL3)) {
1834 return !(env->cp15.scr_el3 & SCR_NS);
1835 } else {
6b7f0b61 1836 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1837 * defined, in which case QEMU defaults to non-secure.
1838 */
1839 return false;
1840 }
1841}
1842
71205876
PM
1843/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1844static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1845{
1846 if (arm_feature(env, ARM_FEATURE_EL3)) {
1847 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1848 /* CPU currently in AArch64 state and EL3 */
1849 return true;
1850 } else if (!is_a64(env) &&
1851 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1852 /* CPU currently in AArch32 state and monitor mode */
1853 return true;
1854 }
1855 }
71205876
PM
1856 return false;
1857}
1858
1859/* Return true if the processor is in secure state */
1860static inline bool arm_is_secure(CPUARMState *env)
1861{
1862 if (arm_is_el3_or_mon(env)) {
1863 return true;
1864 }
19e0fefa
FA
1865 return arm_is_secure_below_el3(env);
1866}
1867
1868#else
1869static inline bool arm_is_secure_below_el3(CPUARMState *env)
1870{
1871 return false;
1872}
1873
1874static inline bool arm_is_secure(CPUARMState *env)
1875{
1876 return false;
1877}
1878#endif
1879
f7778444
RH
1880/**
1881 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1882 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1883 * "for all purposes other than a direct read or write access of HCR_EL2."
1884 * Not included here is HCR_RW.
1885 */
1886uint64_t arm_hcr_el2_eff(CPUARMState *env);
1887
1f79ee32
PM
1888/* Return true if the specified exception level is running in AArch64 state. */
1889static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1890{
446c81ab
PM
1891 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1892 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1893 */
446c81ab
PM
1894 assert(el >= 1 && el <= 3);
1895 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1896
446c81ab
PM
1897 /* The highest exception level is always at the maximum supported
1898 * register width, and then lower levels have a register width controlled
1899 * by bits in the SCR or HCR registers.
1f79ee32 1900 */
446c81ab
PM
1901 if (el == 3) {
1902 return aa64;
1903 }
1904
1905 if (arm_feature(env, ARM_FEATURE_EL3)) {
1906 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1907 }
1908
1909 if (el == 2) {
1910 return aa64;
1911 }
1912
1913 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1914 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1915 }
1916
1917 return aa64;
1f79ee32
PM
1918}
1919
3f342b9e
SF
1920/* Function for determing whether guest cp register reads and writes should
1921 * access the secure or non-secure bank of a cp register. When EL3 is
1922 * operating in AArch32 state, the NS-bit determines whether the secure
1923 * instance of a cp register should be used. When EL3 is AArch64 (or if
1924 * it doesn't exist at all) then there is no register banking, and all
1925 * accesses are to the non-secure version.
1926 */
1927static inline bool access_secure_reg(CPUARMState *env)
1928{
1929 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1930 !arm_el_is_aa64(env, 3) &&
1931 !(env->cp15.scr_el3 & SCR_NS));
1932
1933 return ret;
1934}
1935
ea30a4b8
FA
1936/* Macros for accessing a specified CP register bank */
1937#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1938 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1939
1940#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1941 do { \
1942 if (_secure) { \
1943 (_env)->cp15._regname##_s = (_val); \
1944 } else { \
1945 (_env)->cp15._regname##_ns = (_val); \
1946 } \
1947 } while (0)
1948
1949/* Macros for automatically accessing a specific CP register bank depending on
1950 * the current secure state of the system. These macros are not intended for
1951 * supporting instruction translation reads/writes as these are dependent
1952 * solely on the SCR.NS bit and not the mode.
1953 */
1954#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1955 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1956 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1957
1958#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1959 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1960 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1961 (_val))
1962
0442428a 1963void arm_cpu_list(void);
012a906b
GB
1964uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1965 uint32_t cur_el, bool secure);
40f137e1 1966
9ee6e8bb 1967/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1968#ifndef CONFIG_USER_ONLY
1969bool armv7m_nvic_can_take_pending_exception(void *opaque);
1970#else
1971static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1972{
1973 return true;
1974}
1975#endif
2fb50a33
PM
1976/**
1977 * armv7m_nvic_set_pending: mark the specified exception as pending
1978 * @opaque: the NVIC
1979 * @irq: the exception number to mark pending
1980 * @secure: false for non-banked exceptions or for the nonsecure
1981 * version of a banked exception, true for the secure version of a banked
1982 * exception.
1983 *
1984 * Marks the specified exception as pending. Note that we will assert()
1985 * if @secure is true and @irq does not specify one of the fixed set
1986 * of architecturally banked exceptions.
1987 */
1988void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
1989/**
1990 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1991 * @opaque: the NVIC
1992 * @irq: the exception number to mark pending
1993 * @secure: false for non-banked exceptions or for the nonsecure
1994 * version of a banked exception, true for the secure version of a banked
1995 * exception.
1996 *
1997 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1998 * exceptions (exceptions generated in the course of trying to take
1999 * a different exception).
2000 */
2001void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2002/**
2003 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2004 * @opaque: the NVIC
2005 * @irq: the exception number to mark pending
2006 * @secure: false for non-banked exceptions or for the nonsecure
2007 * version of a banked exception, true for the secure version of a banked
2008 * exception.
2009 *
2010 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2011 * generated in the course of lazy stacking of FP registers.
2012 */
2013void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2014/**
2015 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2016 * exception, and whether it targets Secure state
2017 * @opaque: the NVIC
2018 * @pirq: set to pending exception number
2019 * @ptargets_secure: set to whether pending exception targets Secure
2020 *
2021 * This function writes the number of the highest priority pending
2022 * exception (the one which would be made active by
2023 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2024 * to true if the current highest priority pending exception should
2025 * be taken to Secure state, false for NS.
2026 */
2027void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2028 bool *ptargets_secure);
5cb18069
PM
2029/**
2030 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2031 * @opaque: the NVIC
2032 *
2033 * Move the current highest priority pending exception from the pending
2034 * state to the active state, and update v7m.exception to indicate that
2035 * it is the exception currently being handled.
5cb18069 2036 */
6c948518 2037void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2038/**
2039 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2040 * @opaque: the NVIC
2041 * @irq: the exception number to complete
5cb18069 2042 * @secure: true if this exception was secure
aa488fe3
PM
2043 *
2044 * Returns: -1 if the irq was not active
2045 * 1 if completing this irq brought us back to base (no active irqs)
2046 * 0 if there is still an irq active after this one was completed
2047 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2048 */
5cb18069 2049int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2050/**
2051 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2052 * @opaque: the NVIC
2053 * @irq: the exception number to mark pending
2054 * @secure: false for non-banked exceptions or for the nonsecure
2055 * version of a banked exception, true for the secure version of a banked
2056 * exception.
2057 *
2058 * Return whether an exception is "ready", i.e. whether the exception is
2059 * enabled and is configured at a priority which would allow it to
2060 * interrupt the current execution priority. This controls whether the
2061 * RDY bit for it in the FPCCR is set.
2062 */
2063bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2064/**
2065 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2066 * @opaque: the NVIC
2067 *
2068 * Returns: the raw execution priority as defined by the v8M architecture.
2069 * This is the execution priority minus the effects of AIRCR.PRIS,
2070 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2071 * (v8M ARM ARM I_PKLD.)
2072 */
2073int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2074/**
2075 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2076 * priority is negative for the specified security state.
2077 * @opaque: the NVIC
2078 * @secure: the security state to test
2079 * This corresponds to the pseudocode IsReqExecPriNeg().
2080 */
2081#ifndef CONFIG_USER_ONLY
2082bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2083#else
2084static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2085{
2086 return false;
2087}
2088#endif
9ee6e8bb 2089
4b6a83fb
PM
2090/* Interface for defining coprocessor registers.
2091 * Registers are defined in tables of arm_cp_reginfo structs
2092 * which are passed to define_arm_cp_regs().
2093 */
2094
2095/* When looking up a coprocessor register we look for it
2096 * via an integer which encodes all of:
2097 * coprocessor number
2098 * Crn, Crm, opc1, opc2 fields
2099 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2100 * or via MRRC/MCRR?)
51a79b03 2101 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2102 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2103 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2104 * For AArch64, there is no 32/64 bit size distinction;
2105 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2106 * and 4 bit CRn and CRm. The encoding patterns are chosen
2107 * to be easy to convert to and from the KVM encodings, and also
2108 * so that the hashtable can contain both AArch32 and AArch64
2109 * registers (to allow for interprocessing where we might run
2110 * 32 bit code on a 64 bit core).
4b6a83fb 2111 */
f5a0a5a5
PM
2112/* This bit is private to our hashtable cpreg; in KVM register
2113 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2114 * in the upper bits of the 64 bit ID.
2115 */
2116#define CP_REG_AA64_SHIFT 28
2117#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2118
51a79b03
PM
2119/* To enable banking of coprocessor registers depending on ns-bit we
2120 * add a bit to distinguish between secure and non-secure cpregs in the
2121 * hashtable.
2122 */
2123#define CP_REG_NS_SHIFT 29
2124#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2125
2126#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2127 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2128 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2129
f5a0a5a5
PM
2130#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2131 (CP_REG_AA64_MASK | \
2132 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2133 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2134 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2135 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2136 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2137 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2138
721fae12
PM
2139/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2140 * version used as a key for the coprocessor register hashtable
2141 */
2142static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2143{
2144 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2145 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2146 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2147 } else {
2148 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2149 cpregid |= (1 << 15);
2150 }
2151
2152 /* KVM is always non-secure so add the NS flag on AArch32 register
2153 * entries.
2154 */
2155 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2156 }
2157 return cpregid;
2158}
2159
2160/* Convert a truncated 32 bit hashtable key into the full
2161 * 64 bit KVM register ID.
2162 */
2163static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2164{
f5a0a5a5
PM
2165 uint64_t kvmid;
2166
2167 if (cpregid & CP_REG_AA64_MASK) {
2168 kvmid = cpregid & ~CP_REG_AA64_MASK;
2169 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2170 } else {
f5a0a5a5
PM
2171 kvmid = cpregid & ~(1 << 15);
2172 if (cpregid & (1 << 15)) {
2173 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2174 } else {
2175 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2176 }
721fae12
PM
2177 }
2178 return kvmid;
2179}
2180
4b6a83fb 2181/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2182 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2183 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2184 * TCG can assume the value to be constant (ie load at translate time)
2185 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2186 * indicates that the TB should not be ended after a write to this register
2187 * (the default is that the TB ends after cp writes). OVERRIDE permits
2188 * a register definition to override a previous definition for the
2189 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2190 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2191 * ALIAS indicates that this register is an alias view of some underlying
2192 * state which is also visible via another register, and that the other
b061a82b
SF
2193 * register is handling migration and reset; registers marked ALIAS will not be
2194 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2195 * NO_RAW indicates that this register has no underlying state and does not
2196 * support raw access for state saving/loading; it will not be used for either
2197 * migration or KVM state synchronization. (Typically this is for "registers"
2198 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
2199 * IO indicates that this register does I/O and therefore its accesses
2200 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2201 * registers which implement clocks or timers require this.
4b6a83fb 2202 */
fe03d45f
RH
2203#define ARM_CP_SPECIAL 0x0001
2204#define ARM_CP_CONST 0x0002
2205#define ARM_CP_64BIT 0x0004
2206#define ARM_CP_SUPPRESS_TB_END 0x0008
2207#define ARM_CP_OVERRIDE 0x0010
2208#define ARM_CP_ALIAS 0x0020
2209#define ARM_CP_IO 0x0040
2210#define ARM_CP_NO_RAW 0x0080
2211#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2212#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2213#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2214#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2215#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2216#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2217#define ARM_CP_FPU 0x1000
490aa7f1 2218#define ARM_CP_SVE 0x2000
1f163787 2219#define ARM_CP_NO_GDB 0x4000
4b6a83fb 2220/* Used only as a terminator for ARMCPRegInfo lists */
fe03d45f 2221#define ARM_CP_SENTINEL 0xffff
4b6a83fb 2222/* Mask of only the flag bits in a type field */
1f163787 2223#define ARM_CP_FLAG_MASK 0x70ff
4b6a83fb 2224
f5a0a5a5
PM
2225/* Valid values for ARMCPRegInfo state field, indicating which of
2226 * the AArch32 and AArch64 execution states this register is visible in.
2227 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2228 * If the reginfo is declared to be visible in both states then a second
2229 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2230 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2231 * Note that we rely on the values of these enums as we iterate through
2232 * the various states in some places.
2233 */
2234enum {
2235 ARM_CP_STATE_AA32 = 0,
2236 ARM_CP_STATE_AA64 = 1,
2237 ARM_CP_STATE_BOTH = 2,
2238};
2239
c3e30260
FA
2240/* ARM CP register secure state flags. These flags identify security state
2241 * attributes for a given CP register entry.
2242 * The existence of both or neither secure and non-secure flags indicates that
2243 * the register has both a secure and non-secure hash entry. A single one of
2244 * these flags causes the register to only be hashed for the specified
2245 * security state.
2246 * Although definitions may have any combination of the S/NS bits, each
2247 * registered entry will only have one to identify whether the entry is secure
2248 * or non-secure.
2249 */
2250enum {
2251 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2252 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2253};
2254
4b6a83fb
PM
2255/* Return true if cptype is a valid type field. This is used to try to
2256 * catch errors where the sentinel has been accidentally left off the end
2257 * of a list of registers.
2258 */
2259static inline bool cptype_valid(int cptype)
2260{
2261 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2262 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2263 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2264}
2265
2266/* Access rights:
2267 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2268 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2269 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2270 * (ie any of the privileged modes in Secure state, or Monitor mode).
2271 * If a register is accessible in one privilege level it's always accessible
2272 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2273 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2274 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2275 * terminology a little and call this PL3.
f5a0a5a5
PM
2276 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2277 * with the ELx exception levels.
4b6a83fb
PM
2278 *
2279 * If access permissions for a register are more complex than can be
2280 * described with these bits, then use a laxer set of restrictions, and
2281 * do the more restrictive/complex check inside a helper function.
2282 */
2283#define PL3_R 0x80
2284#define PL3_W 0x40
2285#define PL2_R (0x20 | PL3_R)
2286#define PL2_W (0x10 | PL3_W)
2287#define PL1_R (0x08 | PL2_R)
2288#define PL1_W (0x04 | PL2_W)
2289#define PL0_R (0x02 | PL1_R)
2290#define PL0_W (0x01 | PL1_W)
2291
b5bd7440
AB
2292/*
2293 * For user-mode some registers are accessible to EL0 via a kernel
2294 * trap-and-emulate ABI. In this case we define the read permissions
2295 * as actually being PL0_R. However some bits of any given register
2296 * may still be masked.
2297 */
2298#ifdef CONFIG_USER_ONLY
2299#define PL0U_R PL0_R
2300#else
2301#define PL0U_R PL1_R
2302#endif
2303
4b6a83fb
PM
2304#define PL3_RW (PL3_R | PL3_W)
2305#define PL2_RW (PL2_R | PL2_W)
2306#define PL1_RW (PL1_R | PL1_W)
2307#define PL0_RW (PL0_R | PL0_W)
2308
75502672
PM
2309/* Return the highest implemented Exception Level */
2310static inline int arm_highest_el(CPUARMState *env)
2311{
2312 if (arm_feature(env, ARM_FEATURE_EL3)) {
2313 return 3;
2314 }
2315 if (arm_feature(env, ARM_FEATURE_EL2)) {
2316 return 2;
2317 }
2318 return 1;
2319}
2320
15b3f556
PM
2321/* Return true if a v7M CPU is in Handler mode */
2322static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2323{
2324 return env->v7m.exception != 0;
2325}
2326
dcbff19b
GB
2327/* Return the current Exception Level (as per ARMv8; note that this differs
2328 * from the ARMv7 Privilege Level).
2329 */
2330static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2331{
6d54ed3c 2332 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2333 return arm_v7m_is_handler_mode(env) ||
2334 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2335 }
2336
592125f8 2337 if (is_a64(env)) {
f5a0a5a5
PM
2338 return extract32(env->pstate, 2, 2);
2339 }
2340
592125f8
FA
2341 switch (env->uncached_cpsr & 0x1f) {
2342 case ARM_CPU_MODE_USR:
4b6a83fb 2343 return 0;
592125f8
FA
2344 case ARM_CPU_MODE_HYP:
2345 return 2;
2346 case ARM_CPU_MODE_MON:
2347 return 3;
2348 default:
2349 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2350 /* If EL3 is 32-bit then all secure privileged modes run in
2351 * EL3
2352 */
2353 return 3;
2354 }
2355
2356 return 1;
4b6a83fb 2357 }
4b6a83fb
PM
2358}
2359
2360typedef struct ARMCPRegInfo ARMCPRegInfo;
2361
f59df3f2
PM
2362typedef enum CPAccessResult {
2363 /* Access is permitted */
2364 CP_ACCESS_OK = 0,
2365 /* Access fails due to a configurable trap or enable which would
2366 * result in a categorized exception syndrome giving information about
2367 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2368 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2369 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2370 */
2371 CP_ACCESS_TRAP = 1,
2372 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2373 * Note that this is not a catch-all case -- the set of cases which may
2374 * result in this failure is specifically defined by the architecture.
2375 */
2376 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2377 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2378 CP_ACCESS_TRAP_EL2 = 3,
2379 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2380 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2381 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2382 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2383 /* Access fails and results in an exception syndrome for an FP access,
2384 * trapped directly to EL2 or EL3
2385 */
2386 CP_ACCESS_TRAP_FP_EL2 = 7,
2387 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2388} CPAccessResult;
2389
c4241c7d
PM
2390/* Access functions for coprocessor registers. These cannot fail and
2391 * may not raise exceptions.
2392 */
2393typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2394typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2395 uint64_t value);
f59df3f2 2396/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2397typedef CPAccessResult CPAccessFn(CPUARMState *env,
2398 const ARMCPRegInfo *opaque,
2399 bool isread);
4b6a83fb
PM
2400/* Hook function for register reset */
2401typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2402
2403#define CP_ANY 0xff
2404
2405/* Definition of an ARM coprocessor register */
2406struct ARMCPRegInfo {
2407 /* Name of register (useful mainly for debugging, need not be unique) */
2408 const char *name;
2409 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2410 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2411 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2412 * will be decoded to this register. The register read and write
2413 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2414 * used by the program, so it is possible to register a wildcard and
2415 * then behave differently on read/write if necessary.
2416 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2417 * must both be zero.
f5a0a5a5
PM
2418 * For AArch64-visible registers, opc0 is also used.
2419 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2420 * way to distinguish (for KVM's benefit) guest-visible system registers
2421 * from demuxed ones provided to preserve the "no side effects on
2422 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2423 * visible (to match KVM's encoding); cp==0 will be converted to
2424 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2425 */
2426 uint8_t cp;
2427 uint8_t crn;
2428 uint8_t crm;
f5a0a5a5 2429 uint8_t opc0;
4b6a83fb
PM
2430 uint8_t opc1;
2431 uint8_t opc2;
f5a0a5a5
PM
2432 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2433 int state;
4b6a83fb
PM
2434 /* Register type: ARM_CP_* bits/values */
2435 int type;
2436 /* Access rights: PL*_[RW] */
2437 int access;
c3e30260
FA
2438 /* Security state: ARM_CP_SECSTATE_* bits/values */
2439 int secure;
4b6a83fb
PM
2440 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2441 * this register was defined: can be used to hand data through to the
2442 * register read/write functions, since they are passed the ARMCPRegInfo*.
2443 */
2444 void *opaque;
2445 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2446 * fieldoffset is non-zero, the reset value of the register.
2447 */
2448 uint64_t resetvalue;
c3e30260
FA
2449 /* Offset of the field in CPUARMState for this register.
2450 *
2451 * This is not needed if either:
4b6a83fb
PM
2452 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2453 * 2. both readfn and writefn are specified
2454 */
2455 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2456
2457 /* Offsets of the secure and non-secure fields in CPUARMState for the
2458 * register if it is banked. These fields are only used during the static
2459 * registration of a register. During hashing the bank associated
2460 * with a given security state is copied to fieldoffset which is used from
2461 * there on out.
2462 *
2463 * It is expected that register definitions use either fieldoffset or
2464 * bank_fieldoffsets in the definition but not both. It is also expected
2465 * that both bank offsets are set when defining a banked register. This
2466 * use indicates that a register is banked.
2467 */
2468 ptrdiff_t bank_fieldoffsets[2];
2469
f59df3f2
PM
2470 /* Function for making any access checks for this register in addition to
2471 * those specified by the 'access' permissions bits. If NULL, no extra
2472 * checks required. The access check is performed at runtime, not at
2473 * translate time.
2474 */
2475 CPAccessFn *accessfn;
4b6a83fb
PM
2476 /* Function for handling reads of this register. If NULL, then reads
2477 * will be done by loading from the offset into CPUARMState specified
2478 * by fieldoffset.
2479 */
2480 CPReadFn *readfn;
2481 /* Function for handling writes of this register. If NULL, then writes
2482 * will be done by writing to the offset into CPUARMState specified
2483 * by fieldoffset.
2484 */
2485 CPWriteFn *writefn;
7023ec7e
PM
2486 /* Function for doing a "raw" read; used when we need to copy
2487 * coprocessor state to the kernel for KVM or out for
2488 * migration. This only needs to be provided if there is also a
c4241c7d 2489 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2490 */
2491 CPReadFn *raw_readfn;
2492 /* Function for doing a "raw" write; used when we need to copy KVM
2493 * kernel coprocessor state into userspace, or for inbound
2494 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2495 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2496 * or similar behaviour.
7023ec7e
PM
2497 */
2498 CPWriteFn *raw_writefn;
4b6a83fb
PM
2499 /* Function for resetting the register. If NULL, then reset will be done
2500 * by writing resetvalue to the field specified in fieldoffset. If
2501 * fieldoffset is 0 then no reset will be done.
2502 */
2503 CPResetFn *resetfn;
2504};
2505
2506/* Macros which are lvalues for the field in CPUARMState for the
2507 * ARMCPRegInfo *ri.
2508 */
2509#define CPREG_FIELD32(env, ri) \
2510 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2511#define CPREG_FIELD64(env, ri) \
2512 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2513
2514#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2515
2516void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2517 const ARMCPRegInfo *regs, void *opaque);
2518void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2519 const ARMCPRegInfo *regs, void *opaque);
2520static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2521{
2522 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2523}
2524static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2525{
2526 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2527}
60322b39 2528const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2529
6c5c0fec
AB
2530/*
2531 * Definition of an ARM co-processor register as viewed from
2532 * userspace. This is used for presenting sanitised versions of
2533 * registers to userspace when emulating the Linux AArch64 CPU
2534 * ID/feature ABI (advertised as HWCAP_CPUID).
2535 */
2536typedef struct ARMCPRegUserSpaceInfo {
2537 /* Name of register */
2538 const char *name;
2539
d040242e
AB
2540 /* Is the name actually a glob pattern */
2541 bool is_glob;
2542
6c5c0fec
AB
2543 /* Only some bits are exported to user space */
2544 uint64_t exported_bits;
2545
2546 /* Fixed bits are applied after the mask */
2547 uint64_t fixed_bits;
2548} ARMCPRegUserSpaceInfo;
2549
2550#define REGUSERINFO_SENTINEL { .name = NULL }
2551
2552void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2553
4b6a83fb 2554/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2555void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2556 uint64_t value);
4b6a83fb 2557/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2558uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2559
f5a0a5a5
PM
2560/* CPResetFn that does nothing, for use if no reset is required even
2561 * if fieldoffset is non zero.
2562 */
2563void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2564
67ed771d
PM
2565/* Return true if this reginfo struct's field in the cpu state struct
2566 * is 64 bits wide.
2567 */
2568static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2569{
2570 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2571}
2572
dcbff19b 2573static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2574 const ARMCPRegInfo *ri, int isread)
2575{
dcbff19b 2576 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2577}
2578
49a66191
PM
2579/* Raw read of a coprocessor register (as needed for migration, etc) */
2580uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2581
721fae12
PM
2582/**
2583 * write_list_to_cpustate
2584 * @cpu: ARMCPU
2585 *
2586 * For each register listed in the ARMCPU cpreg_indexes list, write
2587 * its value from the cpreg_values list into the ARMCPUState structure.
2588 * This updates TCG's working data structures from KVM data or
2589 * from incoming migration state.
2590 *
2591 * Returns: true if all register values were updated correctly,
2592 * false if some register was unknown or could not be written.
2593 * Note that we do not stop early on failure -- we will attempt
2594 * writing all registers in the list.
2595 */
2596bool write_list_to_cpustate(ARMCPU *cpu);
2597
2598/**
2599 * write_cpustate_to_list:
2600 * @cpu: ARMCPU
b698e4ee 2601 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2602 *
2603 * For each register listed in the ARMCPU cpreg_indexes list, write
2604 * its value from the ARMCPUState structure into the cpreg_values list.
2605 * This is used to copy info from TCG's working data structures into
2606 * KVM or for outbound migration.
2607 *
b698e4ee
PM
2608 * @kvm_sync is true if we are doing this in order to sync the
2609 * register state back to KVM. In this case we will only update
2610 * values in the list if the previous list->cpustate sync actually
2611 * successfully wrote the CPU state. Otherwise we will keep the value
2612 * that is in the list.
2613 *
721fae12
PM
2614 * Returns: true if all register values were read correctly,
2615 * false if some register was unknown or could not be read.
2616 * Note that we do not stop early on failure -- we will attempt
2617 * reading all registers in the list.
2618 */
b698e4ee 2619bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2620
9ee6e8bb
PB
2621#define ARM_CPUID_TI915T 0x54029152
2622#define ARM_CPUID_TI925T 0x54029252
40f137e1 2623
012a906b
GB
2624static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2625 unsigned int target_el)
043b7f8d
EI
2626{
2627 CPUARMState *env = cs->env_ptr;
dcbff19b 2628 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2629 bool secure = arm_is_secure(env);
57e3a0c7
GB
2630 bool pstate_unmasked;
2631 int8_t unmasked = 0;
f7778444 2632 uint64_t hcr_el2;
57e3a0c7
GB
2633
2634 /* Don't take exceptions if they target a lower EL.
2635 * This check should catch any exceptions that would not be taken but left
2636 * pending.
2637 */
dfafd090
EI
2638 if (cur_el > target_el) {
2639 return false;
2640 }
043b7f8d 2641
f7778444
RH
2642 hcr_el2 = arm_hcr_el2_eff(env);
2643
043b7f8d
EI
2644 switch (excp_idx) {
2645 case EXCP_FIQ:
57e3a0c7
GB
2646 pstate_unmasked = !(env->daif & PSTATE_F);
2647 break;
2648
043b7f8d 2649 case EXCP_IRQ:
57e3a0c7
GB
2650 pstate_unmasked = !(env->daif & PSTATE_I);
2651 break;
2652
136e67e9 2653 case EXCP_VFIQ:
f7778444 2654 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2655 /* VFIQs are only taken when hypervized and non-secure. */
2656 return false;
2657 }
2658 return !(env->daif & PSTATE_F);
2659 case EXCP_VIRQ:
f7778444 2660 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2661 /* VIRQs are only taken when hypervized and non-secure. */
2662 return false;
2663 }
b5c633c5 2664 return !(env->daif & PSTATE_I);
043b7f8d
EI
2665 default:
2666 g_assert_not_reached();
2667 }
57e3a0c7
GB
2668
2669 /* Use the target EL, current execution state and SCR/HCR settings to
2670 * determine whether the corresponding CPSR bit is used to mask the
2671 * interrupt.
2672 */
2673 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2674 /* Exceptions targeting a higher EL may not be maskable */
2675 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2676 /* 64-bit masking rules are simple: exceptions to EL3
2677 * can't be masked, and exceptions to EL2 can only be
2678 * masked from Secure state. The HCR and SCR settings
2679 * don't affect the masking logic, only the interrupt routing.
2680 */
2681 if (target_el == 3 || !secure) {
2682 unmasked = 1;
2683 }
2684 } else {
2685 /* The old 32-bit-only environment has a more complicated
2686 * masking setup. HCR and SCR bits not only affect interrupt
2687 * routing but also change the behaviour of masking.
2688 */
2689 bool hcr, scr;
2690
2691 switch (excp_idx) {
2692 case EXCP_FIQ:
2693 /* If FIQs are routed to EL3 or EL2 then there are cases where
2694 * we override the CPSR.F in determining if the exception is
2695 * masked or not. If neither of these are set then we fall back
2696 * to the CPSR.F setting otherwise we further assess the state
2697 * below.
2698 */
f7778444 2699 hcr = hcr_el2 & HCR_FMO;
7cd6de3b
PM
2700 scr = (env->cp15.scr_el3 & SCR_FIQ);
2701
2702 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2703 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2704 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2705 * when non-secure but only when FIQs are only routed to EL3.
2706 */
2707 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2708 break;
2709 case EXCP_IRQ:
2710 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2711 * we may override the CPSR.I masking when in non-secure state.
2712 * The SCR.IRQ setting has already been taken into consideration
2713 * when setting the target EL, so it does not have a further
2714 * affect here.
2715 */
f7778444 2716 hcr = hcr_el2 & HCR_IMO;
7cd6de3b
PM
2717 scr = false;
2718 break;
2719 default:
2720 g_assert_not_reached();
2721 }
2722
2723 if ((scr || hcr) && !secure) {
2724 unmasked = 1;
2725 }
57e3a0c7
GB
2726 }
2727 }
2728
2729 /* The PSTATE bits only mask the interrupt if we have not overriden the
2730 * ability above.
2731 */
2732 return unmasked || pstate_unmasked;
043b7f8d
EI
2733}
2734
ba1ba5cc
IM
2735#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2736#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2737#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2738
9467d44c 2739#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2740#define cpu_list arm_cpu_list
9467d44c 2741
c1e37810
PM
2742/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2743 *
2744 * If EL3 is 64-bit:
2745 * + NonSecure EL1 & 0 stage 1
2746 * + NonSecure EL1 & 0 stage 2
2747 * + NonSecure EL2
2748 * + Secure EL1 & EL0
2749 * + Secure EL3
2750 * If EL3 is 32-bit:
2751 * + NonSecure PL1 & 0 stage 1
2752 * + NonSecure PL1 & 0 stage 2
2753 * + NonSecure PL2
2754 * + Secure PL0 & PL1
2755 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2756 *
2757 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2758 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2759 * may differ in access permissions even if the VA->PA map is the same
2760 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2761 * translation, which means that we have one mmu_idx that deals with two
2762 * concatenated translation regimes [this sort of combined s1+2 TLB is
2763 * architecturally permitted]
2764 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2765 * handling via the TLB. The only way to do a stage 1 translation without
2766 * the immediate stage 2 translation is via the ATS or AT system insns,
2767 * which can be slow-pathed and always do a page table walk.
2768 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2769 * translation regimes, because they map reasonably well to each other
2770 * and they can't both be active at the same time.
2771 * This gives us the following list of mmu_idx values:
2772 *
2773 * NS EL0 (aka NS PL0) stage 1+2
2774 * NS EL1 (aka NS PL1) stage 1+2
2775 * NS EL2 (aka NS PL2)
2776 * S EL3 (aka S PL1)
2777 * S EL0 (aka S PL0)
2778 * S EL1 (not used if EL3 is 32 bit)
2779 * NS EL0+1 stage 2
2780 *
2781 * (The last of these is an mmu_idx because we want to be able to use the TLB
2782 * for the accesses done as part of a stage 1 page table walk, rather than
2783 * having to walk the stage 2 page table over and over.)
2784 *
3bef7012
PM
2785 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2786 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2787 * NS EL2 if we ever model a Cortex-R52).
2788 *
2789 * M profile CPUs are rather different as they do not have a true MMU.
2790 * They have the following different MMU indexes:
2791 * User
2792 * Privileged
62593718
PM
2793 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2794 * Privileged, execution priority negative (ditto)
66787c78
PM
2795 * If the CPU supports the v8M Security Extension then there are also:
2796 * Secure User
2797 * Secure Privileged
62593718
PM
2798 * Secure User, execution priority negative
2799 * Secure Privileged, execution priority negative
3bef7012 2800 *
8bd5c820
PM
2801 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2802 * are not quite the same -- different CPU types (most notably M profile
2803 * vs A/R profile) would like to use MMU indexes with different semantics,
2804 * but since we don't ever need to use all of those in a single CPU we
2805 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2806 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2807 * the same for any particular CPU.
2808 * Variables of type ARMMUIdx are always full values, and the core
2809 * index values are in variables of type 'int'.
2810 *
c1e37810
PM
2811 * Our enumeration includes at the end some entries which are not "true"
2812 * mmu_idx values in that they don't have corresponding TLBs and are only
2813 * valid for doing slow path page table walks.
2814 *
2815 * The constant names here are patterned after the general style of the names
2816 * of the AT/ATS operations.
2817 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2818 * For M profile we arrange them to have a bit for priv, a bit for negpri
2819 * and a bit for secure.
c1e37810 2820 */
e7b921c2 2821#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2822#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2823#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2824
62593718
PM
2825/* meanings of the bits for M profile mmu idx values */
2826#define ARM_MMU_IDX_M_PRIV 0x1
2827#define ARM_MMU_IDX_M_NEGPRI 0x2
2828#define ARM_MMU_IDX_M_S 0x4
2829
8bd5c820
PM
2830#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2831#define ARM_MMU_IDX_COREIDX_MASK 0x7
2832
c1e37810 2833typedef enum ARMMMUIdx {
8bd5c820
PM
2834 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2835 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2836 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2837 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2838 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2839 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2840 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2841 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2842 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
62593718
PM
2843 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2844 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2845 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2846 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2847 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2848 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
c1e37810
PM
2849 /* Indexes below here don't have TLBs and are used only for AT system
2850 * instructions or for the first stage of an S12 page table walk.
2851 */
8bd5c820
PM
2852 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2853 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2854} ARMMMUIdx;
2855
8bd5c820
PM
2856/* Bit macros for the core-mmu-index values for each index,
2857 * for use when calling tlb_flush_by_mmuidx() and friends.
2858 */
2859typedef enum ARMMMUIdxBit {
2860 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2861 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2862 ARMMMUIdxBit_S1E2 = 1 << 2,
2863 ARMMMUIdxBit_S1E3 = 1 << 3,
2864 ARMMMUIdxBit_S1SE0 = 1 << 4,
2865 ARMMMUIdxBit_S1SE1 = 1 << 5,
2866 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2867 ARMMMUIdxBit_MUser = 1 << 0,
2868 ARMMMUIdxBit_MPriv = 1 << 1,
62593718
PM
2869 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2870 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2871 ARMMMUIdxBit_MSUser = 1 << 4,
2872 ARMMMUIdxBit_MSPriv = 1 << 5,
2873 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2874 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
8bd5c820
PM
2875} ARMMMUIdxBit;
2876
f79fbf39 2877#define MMU_USER_IDX 0
c1e37810 2878
8bd5c820
PM
2879static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2880{
2881 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2882}
2883
2884static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2885{
e7b921c2
PM
2886 if (arm_feature(env, ARM_FEATURE_M)) {
2887 return mmu_idx | ARM_MMU_IDX_M;
2888 } else {
2889 return mmu_idx | ARM_MMU_IDX_A;
2890 }
8bd5c820
PM
2891}
2892
c1e37810
PM
2893/* Return the exception level we're running at if this is our mmu_idx */
2894static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2895{
8bd5c820
PM
2896 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2897 case ARM_MMU_IDX_A:
2898 return mmu_idx & 3;
e7b921c2 2899 case ARM_MMU_IDX_M:
62593718 2900 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2901 default:
2902 g_assert_not_reached();
2903 }
c1e37810
PM
2904}
2905
fa6252a9
PM
2906/*
2907 * Return the MMU index for a v7M CPU with all relevant information
2908 * manually specified.
2909 */
2910ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2911 bool secstate, bool priv, bool negpri);
2912
ec8e3340 2913/* Return the MMU index for a v7M CPU in the specified security and
65e4655c 2914 * privilege state.
ec8e3340 2915 */
65e4655c
RH
2916ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2917 bool secstate, bool priv);
b81ac0eb 2918
ec8e3340 2919/* Return the MMU index for a v7M CPU in the specified security state */
65e4655c 2920ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
ec8e3340 2921
50494a27
RH
2922/**
2923 * cpu_mmu_index:
2924 * @env: The cpu environment
2925 * @ifetch: True for code access, false for data access.
2926 *
2927 * Return the core mmu index for the current translation regime.
2928 * This function is used by generic TCG code paths.
2929 */
65e4655c 2930int cpu_mmu_index(CPUARMState *env, bool ifetch);
6ebbf390 2931
9e273ef2
PM
2932/* Indexes used when registering address spaces with cpu_address_space_init */
2933typedef enum ARMASIdx {
2934 ARMASIdx_NS = 0,
2935 ARMASIdx_S = 1,
2936} ARMASIdx;
2937
533e93f1 2938/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2939static inline int arm_debug_target_el(CPUARMState *env)
2940{
81669b8b
SF
2941 bool secure = arm_is_secure(env);
2942 bool route_to_el2 = false;
2943
2944 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2945 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2946 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2947 }
2948
2949 if (route_to_el2) {
2950 return 2;
2951 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2952 !arm_el_is_aa64(env, 3) && secure) {
2953 return 3;
2954 } else {
2955 return 1;
2956 }
3a298203
PM
2957}
2958
43bbce7f
PM
2959static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2960{
2961 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2962 * CSSELR is RAZ/WI.
2963 */
2964 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2965}
2966
22af9025 2967/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
2968static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2969{
22af9025
AB
2970 int cur_el = arm_current_el(env);
2971 int debug_el;
2972
2973 if (cur_el == 3) {
2974 return false;
533e93f1
PM
2975 }
2976
22af9025
AB
2977 /* MDCR_EL3.SDD disables debug events from Secure state */
2978 if (arm_is_secure_below_el3(env)
2979 && extract32(env->cp15.mdcr_el3, 16, 1)) {
2980 return false;
3a298203 2981 }
22af9025
AB
2982
2983 /*
2984 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2985 * while not masking the (D)ebug bit in DAIF.
2986 */
2987 debug_el = arm_debug_target_el(env);
2988
2989 if (cur_el == debug_el) {
2990 return extract32(env->cp15.mdscr_el1, 13, 1)
2991 && !(env->daif & PSTATE_D);
2992 }
2993
2994 /* Otherwise the debug target needs to be a higher EL */
2995 return debug_el > cur_el;
3a298203
PM
2996}
2997
2998static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2999{
533e93f1
PM
3000 int el = arm_current_el(env);
3001
3002 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
3003 return aa64_generate_debug_exceptions(env);
3004 }
533e93f1
PM
3005
3006 if (arm_is_secure(env)) {
3007 int spd;
3008
3009 if (el == 0 && (env->cp15.sder & 1)) {
3010 /* SDER.SUIDEN means debug exceptions from Secure EL0
3011 * are always enabled. Otherwise they are controlled by
3012 * SDCR.SPD like those from other Secure ELs.
3013 */
3014 return true;
3015 }
3016
3017 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3018 switch (spd) {
3019 case 1:
3020 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3021 case 0:
3022 /* For 0b00 we return true if external secure invasive debug
3023 * is enabled. On real hardware this is controlled by external
3024 * signals to the core. QEMU always permits debug, and behaves
3025 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3026 */
3027 return true;
3028 case 2:
3029 return false;
3030 case 3:
3031 return true;
3032 }
3033 }
3034
3035 return el != 2;
3a298203
PM
3036}
3037
3038/* Return true if debugging exceptions are currently enabled.
3039 * This corresponds to what in ARM ARM pseudocode would be
3040 * if UsingAArch32() then
3041 * return AArch32.GenerateDebugExceptions()
3042 * else
3043 * return AArch64.GenerateDebugExceptions()
3044 * We choose to push the if() down into this function for clarity,
3045 * since the pseudocode has it at all callsites except for the one in
3046 * CheckSoftwareStep(), where it is elided because both branches would
3047 * always return the same value.
3a298203
PM
3048 */
3049static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3050{
3051 if (env->aarch64) {
3052 return aa64_generate_debug_exceptions(env);
3053 } else {
3054 return aa32_generate_debug_exceptions(env);
3055 }
3056}
3057
3058/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3059 * implicitly means this always returns false in pre-v8 CPUs.)
3060 */
3061static inline bool arm_singlestep_active(CPUARMState *env)
3062{
3063 return extract32(env->cp15.mdscr_el1, 0, 1)
3064 && arm_el_is_aa64(env, arm_debug_target_el(env))
3065 && arm_generate_debug_exceptions(env);
3066}
3067
f9fd40eb
PB
3068static inline bool arm_sctlr_b(CPUARMState *env)
3069{
3070 return
3071 /* We need not implement SCTLR.ITD in user-mode emulation, so
3072 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3073 * This lets people run BE32 binaries with "-cpu any".
3074 */
3075#ifndef CONFIG_USER_ONLY
3076 !arm_feature(env, ARM_FEATURE_V7) &&
3077#endif
3078 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3079}
3080
64e40755
RH
3081static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3082{
3083 if (el == 0) {
3084 /* FIXME: ARMv8.1-VHE S2 translation regime. */
3085 return env->cp15.sctlr_el[1];
3086 } else {
3087 return env->cp15.sctlr_el[el];
3088 }
3089}
3090
3091
ed50ff78
PC
3092/* Return true if the processor is in big-endian mode. */
3093static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3094{
ed50ff78
PC
3095 /* In 32bit endianness is determined by looking at CPSR's E bit */
3096 if (!is_a64(env)) {
b2e62d9a
PC
3097 return
3098#ifdef CONFIG_USER_ONLY
3099 /* In system mode, BE32 is modelled in line with the
3100 * architecture (as word-invariant big-endianness), where loads
3101 * and stores are done little endian but from addresses which
3102 * are adjusted by XORing with the appropriate constant. So the
3103 * endianness to use for the raw data access is not affected by
3104 * SCTLR.B.
3105 * In user mode, however, we model BE32 as byte-invariant
3106 * big-endianness (because user-only code cannot tell the
3107 * difference), and so we need to use a data access endianness
3108 * that depends on SCTLR.B.
3109 */
3110 arm_sctlr_b(env) ||
3111#endif
3112 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
64e40755
RH
3113 } else {
3114 int cur_el = arm_current_el(env);
3115 uint64_t sctlr = arm_sctlr(env, cur_el);
ed50ff78 3116
64e40755 3117 return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
ed50ff78 3118 }
ed50ff78
PC
3119}
3120
4f7c64b3 3121typedef CPUARMState CPUArchState;
2161a612 3122typedef ARMCPU ArchCPU;
4f7c64b3 3123
022c62cb 3124#include "exec/cpu-all.h"
622ed360 3125
3926cc84
AG
3126/* Bit usage in the TB flags field: bit 31 indicates whether we are
3127 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3128 * We put flags which are shared between 32 and 64 bit mode at the top
3129 * of the word, and flags which apply to only one mode at the bottom.
3926cc84 3130 */
aad821ac
RH
3131FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3132FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3133FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3134FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
9dbbc748 3135/* Target EL if we take a floating-point-disabled exception */
aad821ac
RH
3136FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3137FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3926cc84
AG
3138
3139/* Bit usage when in AArch32 state: */
aad821ac
RH
3140FIELD(TBFLAG_A32, THUMB, 0, 1)
3141FIELD(TBFLAG_A32, VECLEN, 1, 3)
3142FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
ea7ac69d
PM
3143/*
3144 * We store the bottom two bits of the CPAR as TB flags and handle
3145 * checks on the other bits at runtime. This shares the same bits as
3146 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3147 */
3148FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
7fbb535f
PM
3149/*
3150 * Indicates whether cp register reads and writes by guest code should access
3151 * the secure or nonsecure bank of banked registers; note that this is not
3152 * the same thing as the current security state of the processor!
3153 */
3154FIELD(TBFLAG_A32, NS, 6, 1)
aad821ac
RH
3155FIELD(TBFLAG_A32, VFPEN, 7, 1)
3156FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3157FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
e33cf0f8
PM
3158/* For M profile only, set if FPCCR.LSPACT is set */
3159FIELD(TBFLAG_A32, LSPACT, 18, 1)
6000531e
PM
3160/* For M profile only, set if we must create a new FP context */
3161FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1)
6d60c67a
PM
3162/* For M profile only, set if FPCCR.S does not match current security state */
3163FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1)
064c379c 3164/* For M profile only, Handler (ie not Thread) mode */
aad821ac 3165FIELD(TBFLAG_A32, HANDLER, 21, 1)
4730fb85 3166/* For M profile only, whether we should generate stack-limit checks */
aad821ac 3167FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3926cc84 3168
86fb3fa4 3169/* Bit usage when in AArch64 state */
476a4692 3170FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3171FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3172FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3173FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a
RH
3174FIELD(TBFLAG_A64, BT, 9, 1)
3175FIELD(TBFLAG_A64, BTYPE, 10, 2)
4a9ee99d 3176FIELD(TBFLAG_A64, TBID, 12, 2)
a1705768 3177
f9fd40eb
PB
3178static inline bool bswap_code(bool sctlr_b)
3179{
3180#ifdef CONFIG_USER_ONLY
3181 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3182 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3183 * would also end up as a mixed-endian mode with BE code, LE data.
3184 */
3185 return
3186#ifdef TARGET_WORDS_BIGENDIAN
3187 1 ^
3188#endif
3189 sctlr_b;
3190#else
e334bd31
PB
3191 /* All code access in ARM is little endian, and there are no loaders
3192 * doing swaps that need to be reversed
f9fd40eb
PB
3193 */
3194 return 0;
3195#endif
3196}
3197
c3ae85fc
PB
3198#ifdef CONFIG_USER_ONLY
3199static inline bool arm_cpu_bswap_data(CPUARMState *env)
3200{
3201 return
3202#ifdef TARGET_WORDS_BIGENDIAN
3203 1 ^
3204#endif
3205 arm_cpu_data_is_big_endian(env);
3206}
3207#endif
3208
a9e01311
RH
3209void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3210 target_ulong *cs_base, uint32_t *flags);
6b917547 3211
98128601
RH
3212enum {
3213 QEMU_PSCI_CONDUIT_DISABLED = 0,
3214 QEMU_PSCI_CONDUIT_SMC = 1,
3215 QEMU_PSCI_CONDUIT_HVC = 2,
3216};
3217
017518c1
PM
3218#ifndef CONFIG_USER_ONLY
3219/* Return the address space index to use for a memory access */
3220static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3221{
3222 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3223}
5ce4ff65
PM
3224
3225/* Return the AddressSpace to use for a memory access
3226 * (which depends on whether the access is S or NS, and whether
3227 * the board gave us a separate AddressSpace for S accesses).
3228 */
3229static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3230{
3231 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3232}
017518c1
PM
3233#endif
3234
bd7d00fc 3235/**
b5c53d1b
AL
3236 * arm_register_pre_el_change_hook:
3237 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3238 * CPU changes exception level or mode. The hook function will be
3239 * passed a pointer to the ARMCPU and the opaque data pointer passed
3240 * to this function when the hook was registered.
b5c53d1b
AL
3241 *
3242 * Note that if a pre-change hook is called, any registered post-change hooks
3243 * are guaranteed to subsequently be called.
bd7d00fc 3244 */
b5c53d1b 3245void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3246 void *opaque);
b5c53d1b
AL
3247/**
3248 * arm_register_el_change_hook:
3249 * Register a hook function which will be called immediately after this
3250 * CPU changes exception level or mode. The hook function will be
3251 * passed a pointer to the ARMCPU and the opaque data pointer passed
3252 * to this function when the hook was registered.
3253 *
3254 * Note that any registered hooks registered here are guaranteed to be called
3255 * if pre-change hooks have been.
3256 */
3257void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3258 *opaque);
bd7d00fc 3259
9a2b5256
RH
3260/**
3261 * aa32_vfp_dreg:
3262 * Return a pointer to the Dn register within env in 32-bit mode.
3263 */
3264static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3265{
c39c2b90 3266 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3267}
3268
3269/**
3270 * aa32_vfp_qreg:
3271 * Return a pointer to the Qn register within env in 32-bit mode.
3272 */
3273static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3274{
c39c2b90 3275 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3276}
3277
3278/**
3279 * aa64_vfp_qreg:
3280 * Return a pointer to the Qn register within env in 64-bit mode.
3281 */
3282static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3283{
c39c2b90 3284 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3285}
3286
028e2a7b
RH
3287/* Shared between translate-sve.c and sve_helper.c. */
3288extern const uint64_t pred_esz_masks[4];
3289
962fcbf2
RH
3290/*
3291 * 32-bit feature tests via id registers.
3292 */
7e0cf8b4
RH
3293static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3294{
3295 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3296}
3297
3298static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3299{
3300 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3301}
3302
09cbd501
RH
3303static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3304{
3305 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3306}
3307
962fcbf2
RH
3308static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3309{
3310 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3311}
3312
3313static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3314{
3315 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3316}
3317
3318static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3319{
3320 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3321}
3322
3323static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3324{
3325 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3326}
3327
3328static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3329{
3330 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3331}
3332
3333static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3334{
3335 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3336}
3337
3338static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3339{
3340 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3341}
3342
6c1f6f27
RH
3343static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3344{
3345 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3346}
3347
962fcbf2
RH
3348static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3349{
3350 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3351}
3352
87732318
RH
3353static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3354{
3355 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3356}
3357
9888bd1e
RH
3358static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3359{
3360 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3361}
3362
cb570bd3
RH
3363static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3364{
3365 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3366}
3367
5763190f
RH
3368static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3369{
3370 /*
3371 * This is a placeholder for use by VCMA until the rest of
3372 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3373 * At which point we can properly set and check MVFR1.FPHP.
3374 */
3375 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3376}
3377
b3ff4b87
PM
3378static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id)
3379{
3380 /* Return true if D16-D31 are implemented */
3381 return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2;
3382}
3383
266bd25c
PM
3384static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3385{
3386 return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0;
3387}
3388
602f6e42
PM
3389/*
3390 * We always set the FP and SIMD FP16 fields to indicate identical
3391 * levels of support (assuming SIMD is implemented at all), so
3392 * we only need one set of accessors.
3393 */
3394static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3395{
3396 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3397}
3398
3399static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3400{
3401 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3402}
3403
c0c760af
PM
3404static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3405{
3406 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3407}
3408
3409static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3410{
3411 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3412}
3413
3414static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3415{
3416 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3417}
3418
3419static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3420{
3421 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3422}
3423
962fcbf2
RH
3424/*
3425 * 64-bit feature tests via id registers.
3426 */
3427static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3428{
3429 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3430}
3431
3432static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3433{
3434 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3435}
3436
3437static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3438{
3439 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3440}
3441
3442static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3443{
3444 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3445}
3446
3447static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3448{
3449 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3450}
3451
3452static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3453{
3454 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3455}
3456
3457static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3458{
3459 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3460}
3461
3462static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3463{
3464 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3465}
3466
3467static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3468{
3469 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3470}
3471
3472static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3473{
3474 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3475}
3476
3477static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3478{
3479 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3480}
3481
3482static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3483{
3484 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3485}
3486
0caa5af8
RH
3487static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3488{
3489 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3490}
3491
b89d9c98
RH
3492static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3493{
3494 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3495}
3496
5ef84f11
RH
3497static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3498{
3499 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3500}
3501
de390645
RH
3502static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3503{
3504 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3505}
3506
6c1f6f27
RH
3507static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3508{
3509 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3510}
3511
962fcbf2
RH
3512static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3513{
3514 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3515}
3516
991ad91b
RH
3517static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3518{
3519 /*
3520 * Note that while QEMU will only implement the architected algorithm
3521 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3522 * defined algorithms, and thus API+GPI, and this predicate controls
3523 * migration of the 128-bit keys.
3524 */
3525 return (id->id_aa64isar1 &
3526 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3527 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3528 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3529 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3530}
3531
9888bd1e
RH
3532static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3533{
3534 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3535}
3536
cb570bd3
RH
3537static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3538{
3539 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3540}
3541
6bea2563
RH
3542static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3543{
3544 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3545}
3546
5763190f
RH
3547static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3548{
3549 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3550 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3551}
3552
0f8d06f1
RH
3553static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3554{
3555 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3556}
3557
cd208a1c
RH
3558static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3559{
3560 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3561}
3562
2d7137c1
RH
3563static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3564{
3565 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3566}
3567
be53b6f4
RH
3568static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3569{
3570 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3571}
3572
962fcbf2
RH
3573/*
3574 * Forward to the above feature tests given an ARMCPU pointer.
3575 */
3576#define cpu_isar_feature(name, cpu) \
3577 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3578
2c0262af 3579#endif