]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Implement v8.4-RCPC
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
74433bf0
RH
25#include "cpu-qom.h"
26#include "exec/cpu-defs.h"
9042c0e2 27
ca759f9e
AB
28/* ARM processors have a weak memory model */
29#define TCG_GUEST_DEFAULT_MO (0)
30
b8a9e8f1
FB
31#define EXCP_UDEF 1 /* undefined instruction */
32#define EXCP_SWI 2 /* software interrupt */
33#define EXCP_PREFETCH_ABORT 3
34#define EXCP_DATA_ABORT 4
b5ff1b31
FB
35#define EXCP_IRQ 5
36#define EXCP_FIQ 6
06c949e6 37#define EXCP_BKPT 7
9ee6e8bb 38#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 39#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 40#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 41#define EXCP_HYP_TRAP 12
e0d6e6a5 42#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
43#define EXCP_VIRQ 14
44#define EXCP_VFIQ 15
19a6e31c 45#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 46#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 47#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 48#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 49#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
50#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
51#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
2c4a7cc5 52/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
53
54#define ARMV7M_EXCP_RESET 1
55#define ARMV7M_EXCP_NMI 2
56#define ARMV7M_EXCP_HARD 3
57#define ARMV7M_EXCP_MEM 4
58#define ARMV7M_EXCP_BUS 5
59#define ARMV7M_EXCP_USAGE 6
1e577cc7 60#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
acf94941
PM
66/* For M profile, some registers are banked secure vs non-secure;
67 * these are represented as a 2-element array where the first element
68 * is the non-secure copy and the second is the secure copy.
69 * When the CPU does not have implement the security extension then
70 * only the first element is used.
71 * This means that the copy for the current security state can be
72 * accessed via env->registerfield[env->v7m.secure] (whether the security
73 * extension is implemented or not).
74 */
4a16724f
PM
75enum {
76 M_REG_NS = 0,
77 M_REG_S = 1,
78 M_REG_NUM_BANKS = 2,
79};
acf94941 80
403946c0
RH
81/* ARM-specific interrupt pending bits. */
82#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
83#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
84#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 85
e4fe830b
PM
86/* The usual mapping for an AArch64 system register to its AArch32
87 * counterpart is for the 32 bit world to have access to the lower
88 * half only (with writes leaving the upper half untouched). It's
89 * therefore useful to be able to pass TCG the offset of the least
90 * significant half of a uint64_t struct member.
91 */
92#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 93#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 94#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
95#else
96#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 97#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
98#endif
99
136e67e9 100/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
101#define ARM_CPU_IRQ 0
102#define ARM_CPU_FIQ 1
136e67e9
EI
103#define ARM_CPU_VIRQ 2
104#define ARM_CPU_VFIQ 3
403946c0 105
aaa1f954
EI
106/* ARM-specific extra insn start words:
107 * 1: Conditional execution bits
108 * 2: Partial exception syndrome for data aborts
109 */
110#define TARGET_INSN_START_EXTRA_WORDS 2
111
112/* The 2nd extra word holding syndrome info for data aborts does not use
113 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114 * help the sleb128 encoder do a better job.
115 * When restoring the CPU state, we shift it back up.
116 */
117#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 119
b7bcbe95
FB
120/* We currently assume float and double are IEEE single and double
121 precision respectively.
122 Doing runtime conversions is tricky because VFP registers may contain
123 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
124 s<2n> maps to the least significant half of d<n>
125 s<2n+1> maps to the most significant half of d<n>
126 */
b7bcbe95 127
200bf5b7
AB
128/**
129 * DynamicGDBXMLInfo:
130 * @desc: Contains the XML descriptions.
131 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
132 * @cpregs_keys: Array that contains the corresponding Key of
133 * a given cpreg with the same order of the cpreg in the XML description.
134 */
135typedef struct DynamicGDBXMLInfo {
136 char *desc;
137 int num_cpregs;
138 uint32_t *cpregs_keys;
139} DynamicGDBXMLInfo;
140
55d284af
PM
141/* CPU state for each instance of a generic timer (in cp15 c14) */
142typedef struct ARMGenericTimer {
143 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 144 uint64_t ctl; /* Timer Control register */
55d284af
PM
145} ARMGenericTimer;
146
8c94b071
RH
147#define GTIMER_PHYS 0
148#define GTIMER_VIRT 1
149#define GTIMER_HYP 2
150#define GTIMER_SEC 3
151#define GTIMER_HYPVIRT 4
152#define NUM_GTIMERS 5
55d284af 153
11f136ee
FA
154typedef struct {
155 uint64_t raw_tcr;
156 uint32_t mask;
157 uint32_t base_mask;
158} TCR;
159
c39c2b90
RH
160/* Define a maximum sized vector register.
161 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
162 * For 64-bit, this is a 2048-bit SVE register.
163 *
164 * Note that the mapping between S, D, and Q views of the register bank
165 * differs between AArch64 and AArch32.
166 * In AArch32:
167 * Qn = regs[n].d[1]:regs[n].d[0]
168 * Dn = regs[n / 2].d[n & 1]
169 * Sn = regs[n / 4].d[n % 4 / 2],
170 * bits 31..0 for even n, and bits 63..32 for odd n
171 * (and regs[16] to regs[31] are inaccessible)
172 * In AArch64:
173 * Zn = regs[n].d[*]
174 * Qn = regs[n].d[1]:regs[n].d[0]
175 * Dn = regs[n].d[0]
176 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 177 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
178 *
179 * This corresponds to the architecturally defined mapping between
180 * the two execution states, and means we do not need to explicitly
181 * map these registers when changing states.
182 *
183 * Align the data for use with TCG host vector operations.
184 */
185
186#ifdef TARGET_AARCH64
187# define ARM_MAX_VQ 16
0df9142d 188void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
c39c2b90
RH
189#else
190# define ARM_MAX_VQ 1
0df9142d 191static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
c39c2b90
RH
192#endif
193
194typedef struct ARMVectorReg {
195 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
196} ARMVectorReg;
197
3c7d3086 198#ifdef TARGET_AARCH64
991ad91b 199/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 200typedef struct ARMPredicateReg {
46417784 201 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 202} ARMPredicateReg;
991ad91b
RH
203
204/* In AArch32 mode, PAC keys do not exist at all. */
205typedef struct ARMPACKey {
206 uint64_t lo, hi;
207} ARMPACKey;
3c7d3086
RH
208#endif
209
c39c2b90 210
2c0262af 211typedef struct CPUARMState {
b5ff1b31 212 /* Regs for current mode. */
2c0262af 213 uint32_t regs[16];
3926cc84
AG
214
215 /* 32/64 switch only happens when taking and returning from
216 * exceptions so the overlap semantics are taken care of then
217 * instead of having a complicated union.
218 */
219 /* Regs for A64 mode. */
220 uint64_t xregs[32];
221 uint64_t pc;
d356312f
PM
222 /* PSTATE isn't an architectural register for ARMv8. However, it is
223 * convenient for us to assemble the underlying state into a 32 bit format
224 * identical to the architectural format used for the SPSR. (This is also
225 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
226 * 'pstate' register are.) Of the PSTATE bits:
227 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
228 * semantics as for AArch32, as described in the comments on each field)
229 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 230 * DAIF (exception masks) are kept in env->daif
f6e52eaa 231 * BTYPE is kept in env->btype
d356312f 232 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
233 */
234 uint32_t pstate;
235 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
236
fdd1b228
RH
237 /* Cached TBFLAGS state. See below for which bits are included. */
238 uint32_t hflags;
239
b90372ad 240 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 241 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
242 the whole CPSR. */
243 uint32_t uncached_cpsr;
244 uint32_t spsr;
245
246 /* Banked registers. */
28c9457d 247 uint64_t banked_spsr[8];
0b7d409d
FA
248 uint32_t banked_r13[8];
249 uint32_t banked_r14[8];
3b46e624 250
b5ff1b31
FB
251 /* These hold r8-r12. */
252 uint32_t usr_regs[5];
253 uint32_t fiq_regs[5];
3b46e624 254
2c0262af
FB
255 /* cpsr flag cache for faster execution */
256 uint32_t CF; /* 0 or 1 */
257 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
258 uint32_t NF; /* N is bit 31. All other bits are undefined. */
259 uint32_t ZF; /* Z set if zero. */
99c475ab 260 uint32_t QF; /* 0 or 1 */
9ee6e8bb 261 uint32_t GE; /* cpsr[19:16] */
b26eefb6 262 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 263 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 264 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 265 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 266
1b174238 267 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 268 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 269
b5ff1b31
FB
270 /* System control coprocessor (cp15) */
271 struct {
40f137e1 272 uint32_t c0_cpuid;
b85a1fd6
FA
273 union { /* Cache size selection */
274 struct {
275 uint64_t _unused_csselr0;
276 uint64_t csselr_ns;
277 uint64_t _unused_csselr1;
278 uint64_t csselr_s;
279 };
280 uint64_t csselr_el[4];
281 };
137feaa9
FA
282 union { /* System control register. */
283 struct {
284 uint64_t _unused_sctlr;
285 uint64_t sctlr_ns;
286 uint64_t hsctlr;
287 uint64_t sctlr_s;
288 };
289 uint64_t sctlr_el[4];
290 };
7ebd5f2e 291 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 292 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 293 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 294 uint64_t sder; /* Secure debug enable register. */
77022576 295 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
296 union { /* MMU translation table base 0. */
297 struct {
298 uint64_t _unused_ttbr0_0;
299 uint64_t ttbr0_ns;
300 uint64_t _unused_ttbr0_1;
301 uint64_t ttbr0_s;
302 };
303 uint64_t ttbr0_el[4];
304 };
305 union { /* MMU translation table base 1. */
306 struct {
307 uint64_t _unused_ttbr1_0;
308 uint64_t ttbr1_ns;
309 uint64_t _unused_ttbr1_1;
310 uint64_t ttbr1_s;
311 };
312 uint64_t ttbr1_el[4];
313 };
b698e9cf 314 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
315 /* MMU translation table base control. */
316 TCR tcr_el[4];
68e9c2fe 317 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
318 uint32_t c2_data; /* MPU data cacheable bits. */
319 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
320 union { /* MMU domain access control register
321 * MPU write buffer control.
322 */
323 struct {
324 uint64_t dacr_ns;
325 uint64_t dacr_s;
326 };
327 struct {
328 uint64_t dacr32_el2;
329 };
330 };
7e09797c
PM
331 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
332 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 333 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 334 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
335 union { /* Fault status registers. */
336 struct {
337 uint64_t ifsr_ns;
338 uint64_t ifsr_s;
339 };
340 struct {
341 uint64_t ifsr32_el2;
342 };
343 };
4a7e2d73
FA
344 union {
345 struct {
346 uint64_t _unused_dfsr;
347 uint64_t dfsr_ns;
348 uint64_t hsr;
349 uint64_t dfsr_s;
350 };
351 uint64_t esr_el[4];
352 };
ce819861 353 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
354 union { /* Fault address registers. */
355 struct {
356 uint64_t _unused_far0;
357#ifdef HOST_WORDS_BIGENDIAN
358 uint32_t ifar_ns;
359 uint32_t dfar_ns;
360 uint32_t ifar_s;
361 uint32_t dfar_s;
362#else
363 uint32_t dfar_ns;
364 uint32_t ifar_ns;
365 uint32_t dfar_s;
366 uint32_t ifar_s;
367#endif
368 uint64_t _unused_far3;
369 };
370 uint64_t far_el[4];
371 };
59e05530 372 uint64_t hpfar_el2;
2a5a9abd 373 uint64_t hstr_el2;
01c097f7
FA
374 union { /* Translation result. */
375 struct {
376 uint64_t _unused_par_0;
377 uint64_t par_ns;
378 uint64_t _unused_par_1;
379 uint64_t par_s;
380 };
381 uint64_t par_el[4];
382 };
6cb0b013 383
b5ff1b31
FB
384 uint32_t c9_insn; /* Cache lockdown registers. */
385 uint32_t c9_data;
8521466b
AF
386 uint64_t c9_pmcr; /* performance monitor control register */
387 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
388 uint64_t c9_pmovsr; /* perf monitor overflow status */
389 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 390 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 391 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
392 union { /* Memory attribute redirection */
393 struct {
394#ifdef HOST_WORDS_BIGENDIAN
395 uint64_t _unused_mair_0;
396 uint32_t mair1_ns;
397 uint32_t mair0_ns;
398 uint64_t _unused_mair_1;
399 uint32_t mair1_s;
400 uint32_t mair0_s;
401#else
402 uint64_t _unused_mair_0;
403 uint32_t mair0_ns;
404 uint32_t mair1_ns;
405 uint64_t _unused_mair_1;
406 uint32_t mair0_s;
407 uint32_t mair1_s;
408#endif
409 };
410 uint64_t mair_el[4];
411 };
fb6c91ba
GB
412 union { /* vector base address register */
413 struct {
414 uint64_t _unused_vbar;
415 uint64_t vbar_ns;
416 uint64_t hvbar;
417 uint64_t vbar_s;
418 };
419 uint64_t vbar_el[4];
420 };
e89e51a1 421 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
422 struct { /* FCSE PID. */
423 uint32_t fcseidr_ns;
424 uint32_t fcseidr_s;
425 };
426 union { /* Context ID. */
427 struct {
428 uint64_t _unused_contextidr_0;
429 uint64_t contextidr_ns;
430 uint64_t _unused_contextidr_1;
431 uint64_t contextidr_s;
432 };
433 uint64_t contextidr_el[4];
434 };
435 union { /* User RW Thread register. */
436 struct {
437 uint64_t tpidrurw_ns;
438 uint64_t tpidrprw_ns;
439 uint64_t htpidr;
440 uint64_t _tpidr_el3;
441 };
442 uint64_t tpidr_el[4];
443 };
444 /* The secure banks of these registers don't map anywhere */
445 uint64_t tpidrurw_s;
446 uint64_t tpidrprw_s;
447 uint64_t tpidruro_s;
448
449 union { /* User RO Thread register. */
450 uint64_t tpidruro_ns;
451 uint64_t tpidrro_el[1];
452 };
a7adc4b7
PM
453 uint64_t c14_cntfrq; /* Counter Frequency register */
454 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 455 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 456 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 457 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 458 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
459 uint32_t c15_ticonfig; /* TI925T configuration byte. */
460 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
461 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
462 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
463 uint32_t c15_config_base_address; /* SCU base address. */
464 uint32_t c15_diagnostic; /* diagnostic register */
465 uint32_t c15_power_diagnostic;
466 uint32_t c15_power_control; /* power control */
0b45451e
PM
467 uint64_t dbgbvr[16]; /* breakpoint value registers */
468 uint64_t dbgbcr[16]; /* breakpoint control registers */
469 uint64_t dbgwvr[16]; /* watchpoint value registers */
470 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 471 uint64_t mdscr_el1;
1424ca8d 472 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 473 uint64_t mdcr_el2;
5513c3ab 474 uint64_t mdcr_el3;
5d05b9d4
AL
475 /* Stores the architectural value of the counter *the last time it was
476 * updated* by pmccntr_op_start. Accesses should always be surrounded
477 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
478 * architecturally-correct value is being read/set.
7c2cb42b 479 */
c92c0687 480 uint64_t c15_ccnt;
5d05b9d4
AL
481 /* Stores the delta between the architectural value and the underlying
482 * cycle count during normal operation. It is used to update c15_ccnt
483 * to be the correct architectural value before accesses. During
484 * accesses, c15_ccnt_delta contains the underlying count being used
485 * for the access, after which it reverts to the delta value in
486 * pmccntr_op_finish.
487 */
488 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
489 uint64_t c14_pmevcntr[31];
490 uint64_t c14_pmevcntr_delta[31];
491 uint64_t c14_pmevtyper[31];
8521466b 492 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 493 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 494 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 495 } cp15;
40f137e1 496
9ee6e8bb 497 struct {
fb602cb7
PM
498 /* M profile has up to 4 stack pointers:
499 * a Main Stack Pointer and a Process Stack Pointer for each
500 * of the Secure and Non-Secure states. (If the CPU doesn't support
501 * the security extension then it has only two SPs.)
502 * In QEMU we always store the currently active SP in regs[13],
503 * and the non-active SP for the current security state in
504 * v7m.other_sp. The stack pointers for the inactive security state
505 * are stored in other_ss_msp and other_ss_psp.
506 * switch_v7m_security_state() is responsible for rearranging them
507 * when we change security state.
508 */
9ee6e8bb 509 uint32_t other_sp;
fb602cb7
PM
510 uint32_t other_ss_msp;
511 uint32_t other_ss_psp;
4a16724f
PM
512 uint32_t vecbase[M_REG_NUM_BANKS];
513 uint32_t basepri[M_REG_NUM_BANKS];
514 uint32_t control[M_REG_NUM_BANKS];
515 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
516 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
517 uint32_t hfsr; /* HardFault Status */
518 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 519 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 520 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 521 uint32_t bfar; /* BusFault Address */
bed079da 522 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 523 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 524 int exception;
4a16724f
PM
525 uint32_t primask[M_REG_NUM_BANKS];
526 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 527 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 528 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 529 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 530 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
531 uint32_t msplim[M_REG_NUM_BANKS];
532 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
533 uint32_t fpcar[M_REG_NUM_BANKS];
534 uint32_t fpccr[M_REG_NUM_BANKS];
535 uint32_t fpdscr[M_REG_NUM_BANKS];
536 uint32_t cpacr[M_REG_NUM_BANKS];
537 uint32_t nsacr;
9ee6e8bb
PB
538 } v7m;
539
abf1172f
PM
540 /* Information associated with an exception about to be taken:
541 * code which raises an exception must set cs->exception_index and
542 * the relevant parts of this structure; the cpu_do_interrupt function
543 * will then set the guest-visible registers as part of the exception
544 * entry process.
545 */
546 struct {
547 uint32_t syndrome; /* AArch64 format syndrome register */
548 uint32_t fsr; /* AArch32 format fault status register info */
549 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 550 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
551 /* If we implement EL2 we will also need to store information
552 * about the intermediate physical address for stage 2 faults.
553 */
554 } exception;
555
202ccb6b
DG
556 /* Information associated with an SError */
557 struct {
558 uint8_t pending;
559 uint8_t has_esr;
560 uint64_t esr;
561 } serror;
562
ed89f078
PM
563 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
564 uint32_t irq_line_state;
565
fe1479c3
PB
566 /* Thumb-2 EE state. */
567 uint32_t teecr;
568 uint32_t teehbr;
569
b7bcbe95
FB
570 /* VFP coprocessor state. */
571 struct {
c39c2b90 572 ARMVectorReg zregs[32];
b7bcbe95 573
3c7d3086
RH
574#ifdef TARGET_AARCH64
575 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 576#define FFR_PRED_NUM 16
3c7d3086 577 ARMPredicateReg pregs[17];
516e246a
RH
578 /* Scratch space for aa64 sve predicate temporary. */
579 ARMPredicateReg preg_tmp;
3c7d3086
RH
580#endif
581
b7bcbe95 582 /* We store these fpcsr fields separately for convenience. */
a4d58462 583 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
584 int vec_len;
585 int vec_stride;
586
a4d58462
RH
587 uint32_t xregs[16];
588
516e246a 589 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 590 uint32_t scratch[8];
3b46e624 591
d81ce0ef
AB
592 /* There are a number of distinct float control structures:
593 *
594 * fp_status: is the "normal" fp status.
595 * fp_status_fp16: used for half-precision calculations
596 * standard_fp_status : the ARM "Standard FPSCR Value"
597 *
598 * Half-precision operations are governed by a separate
599 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
600 * status structure to control this.
601 *
602 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
603 * round-to-nearest and is used by any operations (generally
604 * Neon) which the architecture defines as controlled by the
605 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
606 *
607 * To avoid having to transfer exception bits around, we simply
608 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 609 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
610 * only thing which needs to read the exception flags being
611 * an explicit FPSCR read.
612 */
53cd6637 613 float_status fp_status;
d81ce0ef 614 float_status fp_status_f16;
3a492f3a 615 float_status standard_fp_status;
5be5e8ed
RH
616
617 /* ZCR_EL[1-3] */
618 uint64_t zcr_el[4];
b7bcbe95 619 } vfp;
03d05e2d
PM
620 uint64_t exclusive_addr;
621 uint64_t exclusive_val;
622 uint64_t exclusive_high;
b7bcbe95 623
18c9b560
AZ
624 /* iwMMXt coprocessor state. */
625 struct {
626 uint64_t regs[16];
627 uint64_t val;
628
629 uint32_t cregs[16];
630 } iwmmxt;
631
991ad91b 632#ifdef TARGET_AARCH64
108b3ba8
RH
633 struct {
634 ARMPACKey apia;
635 ARMPACKey apib;
636 ARMPACKey apda;
637 ARMPACKey apdb;
638 ARMPACKey apga;
639 } keys;
991ad91b
RH
640#endif
641
ce4defa0
PB
642#if defined(CONFIG_USER_ONLY)
643 /* For usermode syscall translation. */
644 int eabi;
645#endif
646
46747d15 647 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
648 struct CPUWatchpoint *cpu_watchpoint[16];
649
1f5c00cf
AB
650 /* Fields up to this point are cleared by a CPU reset */
651 struct {} end_reset_fields;
652
e8b5fae5 653 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 654
581be094 655 /* Internal CPU feature flags. */
918f5dca 656 uint64_t features;
581be094 657
6cb0b013
PC
658 /* PMSAv7 MPU */
659 struct {
660 uint32_t *drbar;
661 uint32_t *drsr;
662 uint32_t *dracr;
4a16724f 663 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
664 } pmsav7;
665
0e1a46bb
PM
666 /* PMSAv8 MPU */
667 struct {
668 /* The PMSAv8 implementation also shares some PMSAv7 config
669 * and state:
670 * pmsav7.rnr (region number register)
671 * pmsav7_dregion (number of configured regions)
672 */
4a16724f
PM
673 uint32_t *rbar[M_REG_NUM_BANKS];
674 uint32_t *rlar[M_REG_NUM_BANKS];
675 uint32_t mair0[M_REG_NUM_BANKS];
676 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
677 } pmsav8;
678
9901c576
PM
679 /* v8M SAU */
680 struct {
681 uint32_t *rbar;
682 uint32_t *rlar;
683 uint32_t rnr;
684 uint32_t ctrl;
685 } sau;
686
983fe826 687 void *nvic;
462a8bc6 688 const struct arm_boot_info *boot_info;
d3a3e529
VK
689 /* Store GICv3CPUState to access from this struct */
690 void *gicv3state;
2c0262af
FB
691} CPUARMState;
692
bd7d00fc 693/**
08267487 694 * ARMELChangeHookFn:
bd7d00fc
PM
695 * type of a function which can be registered via arm_register_el_change_hook()
696 * to get callbacks when the CPU changes its exception level or mode.
697 */
08267487
AL
698typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
699typedef struct ARMELChangeHook ARMELChangeHook;
700struct ARMELChangeHook {
701 ARMELChangeHookFn *hook;
702 void *opaque;
703 QLIST_ENTRY(ARMELChangeHook) node;
704};
062ba099
AB
705
706/* These values map onto the return values for
707 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
708typedef enum ARMPSCIState {
d5affb0d
AJ
709 PSCI_ON = 0,
710 PSCI_OFF = 1,
062ba099
AB
711 PSCI_ON_PENDING = 2
712} ARMPSCIState;
713
962fcbf2
RH
714typedef struct ARMISARegisters ARMISARegisters;
715
74e75564
PB
716/**
717 * ARMCPU:
718 * @env: #CPUARMState
719 *
720 * An ARM CPU core.
721 */
722struct ARMCPU {
723 /*< private >*/
724 CPUState parent_obj;
725 /*< public >*/
726
5b146dc7 727 CPUNegativeOffsetState neg;
74e75564
PB
728 CPUARMState env;
729
730 /* Coprocessor information */
731 GHashTable *cp_regs;
732 /* For marshalling (mostly coprocessor) register state between the
733 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
734 * we use these arrays.
735 */
736 /* List of register indexes managed via these arrays; (full KVM style
737 * 64 bit indexes, not CPRegInfo 32 bit indexes)
738 */
739 uint64_t *cpreg_indexes;
740 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
741 uint64_t *cpreg_values;
742 /* Length of the indexes, values, reset_values arrays */
743 int32_t cpreg_array_len;
744 /* These are used only for migration: incoming data arrives in
745 * these fields and is sanity checked in post_load before copying
746 * to the working data structures above.
747 */
748 uint64_t *cpreg_vmstate_indexes;
749 uint64_t *cpreg_vmstate_values;
750 int32_t cpreg_vmstate_array_len;
751
200bf5b7
AB
752 DynamicGDBXMLInfo dyn_xml;
753
74e75564
PB
754 /* Timers used by the generic (architected) timer */
755 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
756 /*
757 * Timer used by the PMU. Its state is restored after migration by
758 * pmu_op_finish() - it does not need other handling during migration
759 */
760 QEMUTimer *pmu_timer;
74e75564
PB
761 /* GPIO outputs for generic timer */
762 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
763 /* GPIO output for GICv3 maintenance interrupt signal */
764 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
765 /* GPIO output for the PMU interrupt */
766 qemu_irq pmu_interrupt;
74e75564
PB
767
768 /* MemoryRegion to use for secure physical accesses */
769 MemoryRegion *secure_memory;
770
181962fd
PM
771 /* For v8M, pointer to the IDAU interface provided by board/SoC */
772 Object *idau;
773
74e75564
PB
774 /* 'compatible' string for this CPU for Linux device trees */
775 const char *dtb_compatible;
776
777 /* PSCI version for this CPU
778 * Bits[31:16] = Major Version
779 * Bits[15:0] = Minor Version
780 */
781 uint32_t psci_version;
782
783 /* Should CPU start in PSCI powered-off state? */
784 bool start_powered_off;
062ba099
AB
785
786 /* Current power state, access guarded by BQL */
787 ARMPSCIState power_state;
788
c25bd18a
PM
789 /* CPU has virtualization extension */
790 bool has_el2;
74e75564
PB
791 /* CPU has security extension */
792 bool has_el3;
5c0a3819
SZ
793 /* CPU has PMU (Performance Monitor Unit) */
794 bool has_pmu;
97a28b0e
PM
795 /* CPU has VFP */
796 bool has_vfp;
797 /* CPU has Neon */
798 bool has_neon;
ea90db0a
PM
799 /* CPU has M-profile DSP extension */
800 bool has_dsp;
74e75564
PB
801
802 /* CPU has memory protection unit */
803 bool has_mpu;
804 /* PMSAv7 MPU number of supported regions */
805 uint32_t pmsav7_dregion;
9901c576
PM
806 /* v8M SAU number of supported regions */
807 uint32_t sau_sregion;
74e75564
PB
808
809 /* PSCI conduit used to invoke PSCI methods
810 * 0 - disabled, 1 - smc, 2 - hvc
811 */
812 uint32_t psci_conduit;
813
38e2a77c
PM
814 /* For v8M, initial value of the Secure VTOR */
815 uint32_t init_svtor;
816
74e75564
PB
817 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
818 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
819 */
820 uint32_t kvm_target;
821
822 /* KVM init features for this CPU */
823 uint32_t kvm_init_features[7];
824
e5ac4200
AJ
825 /* KVM CPU state */
826
827 /* KVM virtual time adjustment */
828 bool kvm_adjvtime;
829 bool kvm_vtime_dirty;
830 uint64_t kvm_vtime;
831
74e75564
PB
832 /* Uniprocessor system with MP extensions */
833 bool mp_is_up;
834
c4487d76
PM
835 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
836 * and the probe failed (so we need to report the error in realize)
837 */
838 bool host_cpu_probe_failed;
839
f9a69711
AF
840 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
841 * register.
842 */
843 int32_t core_count;
844
74e75564
PB
845 /* The instance init functions for implementation-specific subclasses
846 * set these fields to specify the implementation-dependent values of
847 * various constant registers and reset values of non-constant
848 * registers.
849 * Some of these might become QOM properties eventually.
850 * Field names match the official register names as defined in the
851 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
852 * is used for reset values of non-constant registers; no reset_
853 * prefix means a constant register.
47576b94
RH
854 * Some of these registers are split out into a substructure that
855 * is shared with the translators to control the ISA.
1548a7b2
PM
856 *
857 * Note that if you add an ID register to the ARMISARegisters struct
858 * you need to also update the 32-bit and 64-bit versions of the
859 * kvm_arm_get_host_cpu_features() function to correctly populate the
860 * field by reading the value from the KVM vCPU.
74e75564 861 */
47576b94
RH
862 struct ARMISARegisters {
863 uint32_t id_isar0;
864 uint32_t id_isar1;
865 uint32_t id_isar2;
866 uint32_t id_isar3;
867 uint32_t id_isar4;
868 uint32_t id_isar5;
869 uint32_t id_isar6;
10054016
PM
870 uint32_t id_mmfr0;
871 uint32_t id_mmfr1;
872 uint32_t id_mmfr2;
873 uint32_t id_mmfr3;
874 uint32_t id_mmfr4;
47576b94
RH
875 uint32_t mvfr0;
876 uint32_t mvfr1;
877 uint32_t mvfr2;
a6179538 878 uint32_t id_dfr0;
4426d361 879 uint32_t dbgdidr;
47576b94
RH
880 uint64_t id_aa64isar0;
881 uint64_t id_aa64isar1;
882 uint64_t id_aa64pfr0;
883 uint64_t id_aa64pfr1;
3dc91ddb
PM
884 uint64_t id_aa64mmfr0;
885 uint64_t id_aa64mmfr1;
64761e10 886 uint64_t id_aa64mmfr2;
2a609df8
PM
887 uint64_t id_aa64dfr0;
888 uint64_t id_aa64dfr1;
47576b94 889 } isar;
74e75564
PB
890 uint32_t midr;
891 uint32_t revidr;
892 uint32_t reset_fpsid;
74e75564
PB
893 uint32_t ctr;
894 uint32_t reset_sctlr;
895 uint32_t id_pfr0;
896 uint32_t id_pfr1;
cad86737
AL
897 uint64_t pmceid0;
898 uint64_t pmceid1;
74e75564 899 uint32_t id_afr0;
74e75564
PB
900 uint64_t id_aa64afr0;
901 uint64_t id_aa64afr1;
74e75564
PB
902 uint32_t clidr;
903 uint64_t mp_affinity; /* MP ID without feature bits */
904 /* The elements of this array are the CCSIDR values for each cache,
905 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
906 */
907 uint32_t ccsidr[16];
908 uint64_t reset_cbar;
909 uint32_t reset_auxcr;
910 bool reset_hivecs;
911 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
912 uint32_t dcz_blocksize;
913 uint64_t rvbar;
bd7d00fc 914
e45868a3
PM
915 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
916 int gic_num_lrs; /* number of list registers */
917 int gic_vpribits; /* number of virtual priority bits */
918 int gic_vprebits; /* number of virtual preemption bits */
919
3a062d57
JB
920 /* Whether the cfgend input is high (i.e. this CPU should reset into
921 * big-endian mode). This setting isn't used directly: instead it modifies
922 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
923 * architecture version.
924 */
925 bool cfgend;
926
b5c53d1b 927 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 928 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
929
930 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
931
932 /* Used to synchronize KVM and QEMU in-kernel device levels */
933 uint8_t device_irq_level;
adf92eab
RH
934
935 /* Used to set the maximum vector length the cpu will support. */
936 uint32_t sve_max_vq;
0df9142d
AJ
937
938 /*
939 * In sve_vq_map each set bit is a supported vector length of
940 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
941 * length in quadwords.
942 *
943 * While processing properties during initialization, corresponding
944 * sve_vq_init bits are set for bits in sve_vq_map that have been
945 * set by properties.
946 */
947 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
948 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
7def8754
AJ
949
950 /* Generic timer counter frequency, in Hz */
951 uint64_t gt_cntfrq_hz;
74e75564
PB
952};
953
7def8754
AJ
954unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
955
51e5ef45
MAL
956void arm_cpu_post_init(Object *obj);
957
46de5913
IM
958uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
959
74e75564 960#ifndef CONFIG_USER_ONLY
8a9358cc 961extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
962#endif
963
964void arm_cpu_do_interrupt(CPUState *cpu);
965void arm_v7m_cpu_do_interrupt(CPUState *cpu);
966bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
967
74e75564
PB
968hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
969 MemTxAttrs *attrs);
970
971int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
972int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
973
200bf5b7
AB
974/* Dynamically generates for gdb stub an XML description of the sysregs from
975 * the cp_regs hashtable. Returns the registered sysregs number.
976 */
977int arm_gen_dynamic_xml(CPUState *cpu);
978
979/* Returns the dynamically generated XML for the gdb stub.
980 * Returns a pointer to the XML contents for the specified XML file or NULL
981 * if the XML name doesn't match the predefined one.
982 */
983const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
984
74e75564
PB
985int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
986 int cpuid, void *opaque);
987int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
988 int cpuid, void *opaque);
989
990#ifdef TARGET_AARCH64
991int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
992int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 993void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
994void aarch64_sve_change_el(CPUARMState *env, int old_el,
995 int new_el, bool el0_a64);
87014c6b 996void aarch64_add_sve_properties(Object *obj);
538baab2
AJ
997
998/*
999 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1000 * The byte at offset i from the start of the in-memory representation contains
1001 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1002 * lowest offsets are stored in the lowest memory addresses, then that nearly
1003 * matches QEMU's representation, which is to use an array of host-endian
1004 * uint64_t's, where the lower offsets are at the lower indices. To complete
1005 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1006 */
1007static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1008{
1009#ifdef HOST_WORDS_BIGENDIAN
1010 int i;
1011
1012 for (i = 0; i < nr; ++i) {
1013 dst[i] = bswap64(src[i]);
1014 }
1015
1016 return dst;
1017#else
1018 return src;
1019#endif
1020}
1021
0ab5953b
RH
1022#else
1023static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1024static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1025 int n, bool a)
1026{ }
87014c6b 1027static inline void aarch64_add_sve_properties(Object *obj) { }
74e75564 1028#endif
778c3a06 1029
91f78c58
PMD
1030#if !defined(CONFIG_TCG)
1031static inline target_ulong do_arm_semihosting(CPUARMState *env)
1032{
1033 g_assert_not_reached();
1034}
1035#else
faacc041 1036target_ulong do_arm_semihosting(CPUARMState *env);
91f78c58 1037#endif
ce02049d
GB
1038void aarch64_sync_32_to_64(CPUARMState *env);
1039void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1040
ced31551
RH
1041int fp_exception_el(CPUARMState *env, int cur_el);
1042int sve_exception_el(CPUARMState *env, int cur_el);
1043uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1044
3926cc84
AG
1045static inline bool is_a64(CPUARMState *env)
1046{
1047 return env->aarch64;
1048}
1049
2c0262af
FB
1050/* you can call this signal handler from your SIGBUS and SIGSEGV
1051 signal handlers to inform the virtual CPU of exceptions. non zero
1052 is returned if the signal was handled by the virtual CPU. */
5fafdf24 1053int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
1054 void *puc);
1055
5d05b9d4
AL
1056/**
1057 * pmu_op_start/finish
ec7b4ce4
AF
1058 * @env: CPUARMState
1059 *
5d05b9d4
AL
1060 * Convert all PMU counters between their delta form (the typical mode when
1061 * they are enabled) and the guest-visible values. These two calls must
1062 * surround any action which might affect the counters.
ec7b4ce4 1063 */
5d05b9d4
AL
1064void pmu_op_start(CPUARMState *env);
1065void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1066
4e7beb0c
AL
1067/*
1068 * Called when a PMU counter is due to overflow
1069 */
1070void arm_pmu_timer_cb(void *opaque);
1071
033614c4
AL
1072/**
1073 * Functions to register as EL change hooks for PMU mode filtering
1074 */
1075void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1076void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1077
57a4a11b 1078/*
bf8d0969
AL
1079 * pmu_init
1080 * @cpu: ARMCPU
57a4a11b 1081 *
bf8d0969
AL
1082 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1083 * for the current configuration
57a4a11b 1084 */
bf8d0969 1085void pmu_init(ARMCPU *cpu);
57a4a11b 1086
76e3e1bc
PM
1087/* SCTLR bit meanings. Several bits have been reused in newer
1088 * versions of the architecture; in that case we define constants
1089 * for both old and new bit meanings. Code which tests against those
1090 * bits should probably check or otherwise arrange that the CPU
1091 * is the architectural version it expects.
1092 */
1093#define SCTLR_M (1U << 0)
1094#define SCTLR_A (1U << 1)
1095#define SCTLR_C (1U << 2)
1096#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1097#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1098#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1099#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1100#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1101#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1102#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1103#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1104#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1105#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1106#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1107#define SCTLR_ITD (1U << 7) /* v8 onward */
1108#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1109#define SCTLR_SED (1U << 8) /* v8 onward */
1110#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1111#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1112#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1113#define SCTLR_SW (1U << 10) /* v7 */
1114#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1115#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1116#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1117#define SCTLR_I (1U << 12)
b2af69d0
RH
1118#define SCTLR_V (1U << 13) /* AArch32 only */
1119#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1120#define SCTLR_RR (1U << 14) /* up to v7 */
1121#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1122#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1123#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1124#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1125#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1126#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1127#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1128#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1129#define SCTLR_nTWE (1U << 18) /* v8 onward */
1130#define SCTLR_WXN (1U << 19)
1131#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1132#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1133#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1134#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1135#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1136#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1137#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1138#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1139#define SCTLR_VE (1U << 24) /* up to v7 */
1140#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1141#define SCTLR_EE (1U << 25)
1142#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1143#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1144#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1145#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1146#define SCTLR_TRE (1U << 28) /* AArch32 only */
1147#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1148#define SCTLR_AFE (1U << 29) /* AArch32 only */
1149#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1150#define SCTLR_TE (1U << 30) /* AArch32 only */
1151#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1152#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1153#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1154#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1155#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1156#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1157#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1158#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1159#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1160#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1161
c6f19164
GB
1162#define CPTR_TCPAC (1U << 31)
1163#define CPTR_TTA (1U << 20)
1164#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1165#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1166#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1167
187f678d
PM
1168#define MDCR_EPMAD (1U << 21)
1169#define MDCR_EDAD (1U << 20)
033614c4
AL
1170#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1171#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1172#define MDCR_SDD (1U << 16)
a8d64e73 1173#define MDCR_SPD (3U << 14)
187f678d
PM
1174#define MDCR_TDRA (1U << 11)
1175#define MDCR_TDOSA (1U << 10)
1176#define MDCR_TDA (1U << 9)
1177#define MDCR_TDE (1U << 8)
1178#define MDCR_HPME (1U << 7)
1179#define MDCR_TPM (1U << 6)
1180#define MDCR_TPMCR (1U << 5)
033614c4 1181#define MDCR_HPMN (0x1fU)
187f678d 1182
a8d64e73
PM
1183/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1184#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1185
78dbbbe4
PM
1186#define CPSR_M (0x1fU)
1187#define CPSR_T (1U << 5)
1188#define CPSR_F (1U << 6)
1189#define CPSR_I (1U << 7)
1190#define CPSR_A (1U << 8)
1191#define CPSR_E (1U << 9)
1192#define CPSR_IT_2_7 (0xfc00U)
1193#define CPSR_GE (0xfU << 16)
4051e12c 1194#define CPSR_IL (1U << 20)
220f508f 1195#define CPSR_PAN (1U << 22)
78dbbbe4
PM
1196#define CPSR_J (1U << 24)
1197#define CPSR_IT_0_1 (3U << 25)
1198#define CPSR_Q (1U << 27)
1199#define CPSR_V (1U << 28)
1200#define CPSR_C (1U << 29)
1201#define CPSR_Z (1U << 30)
1202#define CPSR_N (1U << 31)
9ee6e8bb 1203#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1204#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1205
1206#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1207#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1208 | CPSR_NZCV)
9ee6e8bb
PB
1209/* Bits writable in user mode. */
1210#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1211/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1212#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1213
987ab45e
PM
1214/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1215#define XPSR_EXCP 0x1ffU
1216#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1217#define XPSR_IT_2_7 CPSR_IT_2_7
1218#define XPSR_GE CPSR_GE
1219#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1220#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1221#define XPSR_IT_0_1 CPSR_IT_0_1
1222#define XPSR_Q CPSR_Q
1223#define XPSR_V CPSR_V
1224#define XPSR_C CPSR_C
1225#define XPSR_Z CPSR_Z
1226#define XPSR_N CPSR_N
1227#define XPSR_NZCV CPSR_NZCV
1228#define XPSR_IT CPSR_IT
1229
e389be16
FA
1230#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1231#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1232#define TTBCR_PD0 (1U << 4)
1233#define TTBCR_PD1 (1U << 5)
1234#define TTBCR_EPD0 (1U << 7)
1235#define TTBCR_IRGN0 (3U << 8)
1236#define TTBCR_ORGN0 (3U << 10)
1237#define TTBCR_SH0 (3U << 12)
1238#define TTBCR_T1SZ (3U << 16)
1239#define TTBCR_A1 (1U << 22)
1240#define TTBCR_EPD1 (1U << 23)
1241#define TTBCR_IRGN1 (3U << 24)
1242#define TTBCR_ORGN1 (3U << 26)
1243#define TTBCR_SH1 (1U << 28)
1244#define TTBCR_EAE (1U << 31)
1245
d356312f
PM
1246/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1247 * Only these are valid when in AArch64 mode; in
1248 * AArch32 mode SPSRs are basically CPSR-format.
1249 */
f502cfc2 1250#define PSTATE_SP (1U)
d356312f
PM
1251#define PSTATE_M (0xFU)
1252#define PSTATE_nRW (1U << 4)
1253#define PSTATE_F (1U << 6)
1254#define PSTATE_I (1U << 7)
1255#define PSTATE_A (1U << 8)
1256#define PSTATE_D (1U << 9)
f6e52eaa 1257#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1258#define PSTATE_IL (1U << 20)
1259#define PSTATE_SS (1U << 21)
220f508f 1260#define PSTATE_PAN (1U << 22)
9eeb7a1c 1261#define PSTATE_UAO (1U << 23)
d356312f
PM
1262#define PSTATE_V (1U << 28)
1263#define PSTATE_C (1U << 29)
1264#define PSTATE_Z (1U << 30)
1265#define PSTATE_N (1U << 31)
1266#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1267#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1268#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1269/* Mode values for AArch64 */
1270#define PSTATE_MODE_EL3h 13
1271#define PSTATE_MODE_EL3t 12
1272#define PSTATE_MODE_EL2h 9
1273#define PSTATE_MODE_EL2t 8
1274#define PSTATE_MODE_EL1h 5
1275#define PSTATE_MODE_EL1t 4
1276#define PSTATE_MODE_EL0t 0
1277
de2db7ec
PM
1278/* Write a new value to v7m.exception, thus transitioning into or out
1279 * of Handler mode; this may result in a change of active stack pointer.
1280 */
1281void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1282
9e729b57
EI
1283/* Map EL and handler into a PSTATE_MODE. */
1284static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1285{
1286 return (el << 2) | handler;
1287}
1288
d356312f
PM
1289/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1290 * interprocessing, so we don't attempt to sync with the cpsr state used by
1291 * the 32 bit decoder.
1292 */
1293static inline uint32_t pstate_read(CPUARMState *env)
1294{
1295 int ZF;
1296
1297 ZF = (env->ZF == 0);
1298 return (env->NF & 0x80000000) | (ZF << 30)
1299 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1300 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1301}
1302
1303static inline void pstate_write(CPUARMState *env, uint32_t val)
1304{
1305 env->ZF = (~val) & PSTATE_Z;
1306 env->NF = val;
1307 env->CF = (val >> 29) & 1;
1308 env->VF = (val << 3) & 0x80000000;
4cc35614 1309 env->daif = val & PSTATE_DAIF;
f6e52eaa 1310 env->btype = (val >> 10) & 3;
d356312f
PM
1311 env->pstate = val & ~CACHED_PSTATE_BITS;
1312}
1313
b5ff1b31 1314/* Return the current CPSR value. */
2f4a40e5 1315uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1316
1317typedef enum CPSRWriteType {
1318 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1319 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1320 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1321 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1322} CPSRWriteType;
1323
1324/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1325void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1326 CPSRWriteType write_type);
9ee6e8bb
PB
1327
1328/* Return the current xPSR value. */
1329static inline uint32_t xpsr_read(CPUARMState *env)
1330{
1331 int ZF;
6fbe23d5
PB
1332 ZF = (env->ZF == 0);
1333 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1334 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1335 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1336 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1337 | (env->GE << 16)
9ee6e8bb 1338 | env->v7m.exception;
b5ff1b31
FB
1339}
1340
9ee6e8bb
PB
1341/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1342static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1343{
987ab45e
PM
1344 if (mask & XPSR_NZCV) {
1345 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1346 env->NF = val;
9ee6e8bb
PB
1347 env->CF = (val >> 29) & 1;
1348 env->VF = (val << 3) & 0x80000000;
1349 }
987ab45e
PM
1350 if (mask & XPSR_Q) {
1351 env->QF = ((val & XPSR_Q) != 0);
1352 }
f1e2598c
PM
1353 if (mask & XPSR_GE) {
1354 env->GE = (val & XPSR_GE) >> 16;
1355 }
04c9c81b 1356#ifndef CONFIG_USER_ONLY
987ab45e
PM
1357 if (mask & XPSR_T) {
1358 env->thumb = ((val & XPSR_T) != 0);
1359 }
1360 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1361 env->condexec_bits &= ~3;
1362 env->condexec_bits |= (val >> 25) & 3;
1363 }
987ab45e 1364 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1365 env->condexec_bits &= 3;
1366 env->condexec_bits |= (val >> 8) & 0xfc;
1367 }
987ab45e 1368 if (mask & XPSR_EXCP) {
de2db7ec
PM
1369 /* Note that this only happens on exception exit */
1370 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1371 }
04c9c81b 1372#endif
9ee6e8bb
PB
1373}
1374
f149e3e8
EI
1375#define HCR_VM (1ULL << 0)
1376#define HCR_SWIO (1ULL << 1)
1377#define HCR_PTW (1ULL << 2)
1378#define HCR_FMO (1ULL << 3)
1379#define HCR_IMO (1ULL << 4)
1380#define HCR_AMO (1ULL << 5)
1381#define HCR_VF (1ULL << 6)
1382#define HCR_VI (1ULL << 7)
1383#define HCR_VSE (1ULL << 8)
1384#define HCR_FB (1ULL << 9)
1385#define HCR_BSU_MASK (3ULL << 10)
1386#define HCR_DC (1ULL << 12)
1387#define HCR_TWI (1ULL << 13)
1388#define HCR_TWE (1ULL << 14)
1389#define HCR_TID0 (1ULL << 15)
1390#define HCR_TID1 (1ULL << 16)
1391#define HCR_TID2 (1ULL << 17)
1392#define HCR_TID3 (1ULL << 18)
1393#define HCR_TSC (1ULL << 19)
1394#define HCR_TIDCP (1ULL << 20)
1395#define HCR_TACR (1ULL << 21)
1396#define HCR_TSW (1ULL << 22)
099bf53b 1397#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1398#define HCR_TPU (1ULL << 24)
1399#define HCR_TTLB (1ULL << 25)
1400#define HCR_TVM (1ULL << 26)
1401#define HCR_TGE (1ULL << 27)
1402#define HCR_TDZ (1ULL << 28)
1403#define HCR_HCD (1ULL << 29)
1404#define HCR_TRVM (1ULL << 30)
1405#define HCR_RW (1ULL << 31)
1406#define HCR_CD (1ULL << 32)
1407#define HCR_ID (1ULL << 33)
ac656b16 1408#define HCR_E2H (1ULL << 34)
099bf53b
RH
1409#define HCR_TLOR (1ULL << 35)
1410#define HCR_TERR (1ULL << 36)
1411#define HCR_TEA (1ULL << 37)
1412#define HCR_MIOCNCE (1ULL << 38)
1413#define HCR_APK (1ULL << 40)
1414#define HCR_API (1ULL << 41)
1415#define HCR_NV (1ULL << 42)
1416#define HCR_NV1 (1ULL << 43)
1417#define HCR_AT (1ULL << 44)
1418#define HCR_NV2 (1ULL << 45)
1419#define HCR_FWB (1ULL << 46)
1420#define HCR_FIEN (1ULL << 47)
1421#define HCR_TID4 (1ULL << 49)
1422#define HCR_TICAB (1ULL << 50)
1423#define HCR_TOCU (1ULL << 52)
1424#define HCR_TTLBIS (1ULL << 54)
1425#define HCR_TTLBOS (1ULL << 55)
1426#define HCR_ATA (1ULL << 56)
1427#define HCR_DCT (1ULL << 57)
1428
64e0e2de
EI
1429#define SCR_NS (1U << 0)
1430#define SCR_IRQ (1U << 1)
1431#define SCR_FIQ (1U << 2)
1432#define SCR_EA (1U << 3)
1433#define SCR_FW (1U << 4)
1434#define SCR_AW (1U << 5)
1435#define SCR_NET (1U << 6)
1436#define SCR_SMD (1U << 7)
1437#define SCR_HCE (1U << 8)
1438#define SCR_SIF (1U << 9)
1439#define SCR_RW (1U << 10)
1440#define SCR_ST (1U << 11)
1441#define SCR_TWI (1U << 12)
1442#define SCR_TWE (1U << 13)
99f8f86d
RH
1443#define SCR_TLOR (1U << 14)
1444#define SCR_TERR (1U << 15)
1445#define SCR_APK (1U << 16)
1446#define SCR_API (1U << 17)
1447#define SCR_EEL2 (1U << 18)
1448#define SCR_EASE (1U << 19)
1449#define SCR_NMEA (1U << 20)
1450#define SCR_FIEN (1U << 21)
1451#define SCR_ENSCXT (1U << 25)
1452#define SCR_ATA (1U << 26)
64e0e2de 1453
01653295
PM
1454/* Return the current FPSCR value. */
1455uint32_t vfp_get_fpscr(CPUARMState *env);
1456void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1457
d81ce0ef
AB
1458/* FPCR, Floating Point Control Register
1459 * FPSR, Floating Poiht Status Register
1460 *
1461 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1462 * FPCR and FPSR. However since they still use non-overlapping bits
1463 * we store the underlying state in fpscr and just mask on read/write.
1464 */
1465#define FPSR_MASK 0xf800009f
0b62159b 1466#define FPCR_MASK 0x07ff9f00
d81ce0ef 1467
a15945d9
PM
1468#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1469#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1470#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1471#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1472#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1473#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef
AB
1474#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1475#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1476#define FPCR_DN (1 << 25) /* Default NaN enable bit */
a4d58462 1477#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
d81ce0ef 1478
f903fa22
PM
1479static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1480{
1481 return vfp_get_fpscr(env) & FPSR_MASK;
1482}
1483
1484static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1485{
1486 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1487 vfp_set_fpscr(env, new_fpscr);
1488}
1489
1490static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1491{
1492 return vfp_get_fpscr(env) & FPCR_MASK;
1493}
1494
1495static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1496{
1497 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1498 vfp_set_fpscr(env, new_fpscr);
1499}
1500
b5ff1b31
FB
1501enum arm_cpu_mode {
1502 ARM_CPU_MODE_USR = 0x10,
1503 ARM_CPU_MODE_FIQ = 0x11,
1504 ARM_CPU_MODE_IRQ = 0x12,
1505 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1506 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1507 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1508 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1509 ARM_CPU_MODE_UND = 0x1b,
1510 ARM_CPU_MODE_SYS = 0x1f
1511};
1512
40f137e1
PB
1513/* VFP system registers. */
1514#define ARM_VFP_FPSID 0
1515#define ARM_VFP_FPSCR 1
a50c0f51 1516#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1517#define ARM_VFP_MVFR1 6
1518#define ARM_VFP_MVFR0 7
40f137e1
PB
1519#define ARM_VFP_FPEXC 8
1520#define ARM_VFP_FPINST 9
1521#define ARM_VFP_FPINST2 10
1522
18c9b560 1523/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1524#define ARM_IWMMXT_wCID 0
1525#define ARM_IWMMXT_wCon 1
1526#define ARM_IWMMXT_wCSSF 2
1527#define ARM_IWMMXT_wCASF 3
1528#define ARM_IWMMXT_wCGR0 8
1529#define ARM_IWMMXT_wCGR1 9
1530#define ARM_IWMMXT_wCGR2 10
1531#define ARM_IWMMXT_wCGR3 11
18c9b560 1532
2c4da50d
PM
1533/* V7M CCR bits */
1534FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1535FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1536FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1537FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1538FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1539FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1540FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1541FIELD(V7M_CCR, DC, 16, 1)
1542FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1543FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1544
24ac0fb1
PM
1545/* V7M SCR bits */
1546FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1547FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1548FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1549FIELD(V7M_SCR, SEVONPEND, 4, 1)
1550
3b2e9344
PM
1551/* V7M AIRCR bits */
1552FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1553FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1554FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1555FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1556FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1557FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1558FIELD(V7M_AIRCR, PRIS, 14, 1)
1559FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1560FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1561
2c4da50d
PM
1562/* V7M CFSR bits for MMFSR */
1563FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1564FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1565FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1566FIELD(V7M_CFSR, MSTKERR, 4, 1)
1567FIELD(V7M_CFSR, MLSPERR, 5, 1)
1568FIELD(V7M_CFSR, MMARVALID, 7, 1)
1569
1570/* V7M CFSR bits for BFSR */
1571FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1572FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1573FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1574FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1575FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1576FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1577FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1578
1579/* V7M CFSR bits for UFSR */
1580FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1581FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1582FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1583FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1584FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1585FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1586FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1587
334e8dad
PM
1588/* V7M CFSR bit masks covering all of the subregister bits */
1589FIELD(V7M_CFSR, MMFSR, 0, 8)
1590FIELD(V7M_CFSR, BFSR, 8, 8)
1591FIELD(V7M_CFSR, UFSR, 16, 16)
1592
2c4da50d
PM
1593/* V7M HFSR bits */
1594FIELD(V7M_HFSR, VECTTBL, 1, 1)
1595FIELD(V7M_HFSR, FORCED, 30, 1)
1596FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1597
1598/* V7M DFSR bits */
1599FIELD(V7M_DFSR, HALTED, 0, 1)
1600FIELD(V7M_DFSR, BKPT, 1, 1)
1601FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1602FIELD(V7M_DFSR, VCATCH, 3, 1)
1603FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1604
bed079da
PM
1605/* V7M SFSR bits */
1606FIELD(V7M_SFSR, INVEP, 0, 1)
1607FIELD(V7M_SFSR, INVIS, 1, 1)
1608FIELD(V7M_SFSR, INVER, 2, 1)
1609FIELD(V7M_SFSR, AUVIOL, 3, 1)
1610FIELD(V7M_SFSR, INVTRAN, 4, 1)
1611FIELD(V7M_SFSR, LSPERR, 5, 1)
1612FIELD(V7M_SFSR, SFARVALID, 6, 1)
1613FIELD(V7M_SFSR, LSERR, 7, 1)
1614
29c483a5
MD
1615/* v7M MPU_CTRL bits */
1616FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1617FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1618FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1619
43bbce7f
PM
1620/* v7M CLIDR bits */
1621FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1622FIELD(V7M_CLIDR, LOUIS, 21, 3)
1623FIELD(V7M_CLIDR, LOC, 24, 3)
1624FIELD(V7M_CLIDR, LOUU, 27, 3)
1625FIELD(V7M_CLIDR, ICB, 30, 2)
1626
1627FIELD(V7M_CSSELR, IND, 0, 1)
1628FIELD(V7M_CSSELR, LEVEL, 1, 3)
1629/* We use the combination of InD and Level to index into cpu->ccsidr[];
1630 * define a mask for this and check that it doesn't permit running off
1631 * the end of the array.
1632 */
1633FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1634
1635/* v7M FPCCR bits */
1636FIELD(V7M_FPCCR, LSPACT, 0, 1)
1637FIELD(V7M_FPCCR, USER, 1, 1)
1638FIELD(V7M_FPCCR, S, 2, 1)
1639FIELD(V7M_FPCCR, THREAD, 3, 1)
1640FIELD(V7M_FPCCR, HFRDY, 4, 1)
1641FIELD(V7M_FPCCR, MMRDY, 5, 1)
1642FIELD(V7M_FPCCR, BFRDY, 6, 1)
1643FIELD(V7M_FPCCR, SFRDY, 7, 1)
1644FIELD(V7M_FPCCR, MONRDY, 8, 1)
1645FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1646FIELD(V7M_FPCCR, UFRDY, 10, 1)
1647FIELD(V7M_FPCCR, RES0, 11, 15)
1648FIELD(V7M_FPCCR, TS, 26, 1)
1649FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1650FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1651FIELD(V7M_FPCCR, LSPENS, 29, 1)
1652FIELD(V7M_FPCCR, LSPEN, 30, 1)
1653FIELD(V7M_FPCCR, ASPEN, 31, 1)
1654/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1655#define R_V7M_FPCCR_BANKED_MASK \
1656 (R_V7M_FPCCR_LSPACT_MASK | \
1657 R_V7M_FPCCR_USER_MASK | \
1658 R_V7M_FPCCR_THREAD_MASK | \
1659 R_V7M_FPCCR_MMRDY_MASK | \
1660 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1661 R_V7M_FPCCR_UFRDY_MASK | \
1662 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1663
a62e62af
RH
1664/*
1665 * System register ID fields.
1666 */
2bd5f41c
AB
1667FIELD(MIDR_EL1, REVISION, 0, 4)
1668FIELD(MIDR_EL1, PARTNUM, 4, 12)
1669FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1670FIELD(MIDR_EL1, VARIANT, 20, 4)
1671FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1672
a62e62af
RH
1673FIELD(ID_ISAR0, SWAP, 0, 4)
1674FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1675FIELD(ID_ISAR0, BITFIELD, 8, 4)
1676FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1677FIELD(ID_ISAR0, COPROC, 16, 4)
1678FIELD(ID_ISAR0, DEBUG, 20, 4)
1679FIELD(ID_ISAR0, DIVIDE, 24, 4)
1680
1681FIELD(ID_ISAR1, ENDIAN, 0, 4)
1682FIELD(ID_ISAR1, EXCEPT, 4, 4)
1683FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1684FIELD(ID_ISAR1, EXTEND, 12, 4)
1685FIELD(ID_ISAR1, IFTHEN, 16, 4)
1686FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1687FIELD(ID_ISAR1, INTERWORK, 24, 4)
1688FIELD(ID_ISAR1, JAZELLE, 28, 4)
1689
1690FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1691FIELD(ID_ISAR2, MEMHINT, 4, 4)
1692FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1693FIELD(ID_ISAR2, MULT, 12, 4)
1694FIELD(ID_ISAR2, MULTS, 16, 4)
1695FIELD(ID_ISAR2, MULTU, 20, 4)
1696FIELD(ID_ISAR2, PSR_AR, 24, 4)
1697FIELD(ID_ISAR2, REVERSAL, 28, 4)
1698
1699FIELD(ID_ISAR3, SATURATE, 0, 4)
1700FIELD(ID_ISAR3, SIMD, 4, 4)
1701FIELD(ID_ISAR3, SVC, 8, 4)
1702FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1703FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1704FIELD(ID_ISAR3, T32COPY, 20, 4)
1705FIELD(ID_ISAR3, TRUENOP, 24, 4)
1706FIELD(ID_ISAR3, T32EE, 28, 4)
1707
1708FIELD(ID_ISAR4, UNPRIV, 0, 4)
1709FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1710FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1711FIELD(ID_ISAR4, SMC, 12, 4)
1712FIELD(ID_ISAR4, BARRIER, 16, 4)
1713FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1714FIELD(ID_ISAR4, PSR_M, 24, 4)
1715FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1716
1717FIELD(ID_ISAR5, SEVL, 0, 4)
1718FIELD(ID_ISAR5, AES, 4, 4)
1719FIELD(ID_ISAR5, SHA1, 8, 4)
1720FIELD(ID_ISAR5, SHA2, 12, 4)
1721FIELD(ID_ISAR5, CRC32, 16, 4)
1722FIELD(ID_ISAR5, RDM, 24, 4)
1723FIELD(ID_ISAR5, VCMA, 28, 4)
1724
1725FIELD(ID_ISAR6, JSCVT, 0, 4)
1726FIELD(ID_ISAR6, DP, 4, 4)
1727FIELD(ID_ISAR6, FHM, 8, 4)
1728FIELD(ID_ISAR6, SB, 12, 4)
1729FIELD(ID_ISAR6, SPECRES, 16, 4)
1730
3d6ad6bb
RH
1731FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1732FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1733FIELD(ID_MMFR3, BPMAINT, 8, 4)
1734FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1735FIELD(ID_MMFR3, PAN, 16, 4)
1736FIELD(ID_MMFR3, COHWALK, 20, 4)
1737FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1738FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1739
ab638a32
RH
1740FIELD(ID_MMFR4, SPECSEI, 0, 4)
1741FIELD(ID_MMFR4, AC2, 4, 4)
1742FIELD(ID_MMFR4, XNX, 8, 4)
1743FIELD(ID_MMFR4, CNP, 12, 4)
1744FIELD(ID_MMFR4, HPDS, 16, 4)
1745FIELD(ID_MMFR4, LSM, 20, 4)
1746FIELD(ID_MMFR4, CCIDX, 24, 4)
1747FIELD(ID_MMFR4, EVT, 28, 4)
1748
a62e62af
RH
1749FIELD(ID_AA64ISAR0, AES, 4, 4)
1750FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1751FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1752FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1753FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1754FIELD(ID_AA64ISAR0, RDM, 28, 4)
1755FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1756FIELD(ID_AA64ISAR0, SM3, 36, 4)
1757FIELD(ID_AA64ISAR0, SM4, 40, 4)
1758FIELD(ID_AA64ISAR0, DP, 44, 4)
1759FIELD(ID_AA64ISAR0, FHM, 48, 4)
1760FIELD(ID_AA64ISAR0, TS, 52, 4)
1761FIELD(ID_AA64ISAR0, TLB, 56, 4)
1762FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1763
1764FIELD(ID_AA64ISAR1, DPB, 0, 4)
1765FIELD(ID_AA64ISAR1, APA, 4, 4)
1766FIELD(ID_AA64ISAR1, API, 8, 4)
1767FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1768FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1769FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1770FIELD(ID_AA64ISAR1, GPA, 24, 4)
1771FIELD(ID_AA64ISAR1, GPI, 28, 4)
1772FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1773FIELD(ID_AA64ISAR1, SB, 36, 4)
1774FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1775
cd208a1c
RH
1776FIELD(ID_AA64PFR0, EL0, 0, 4)
1777FIELD(ID_AA64PFR0, EL1, 4, 4)
1778FIELD(ID_AA64PFR0, EL2, 8, 4)
1779FIELD(ID_AA64PFR0, EL3, 12, 4)
1780FIELD(ID_AA64PFR0, FP, 16, 4)
1781FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1782FIELD(ID_AA64PFR0, GIC, 24, 4)
1783FIELD(ID_AA64PFR0, RAS, 28, 4)
1784FIELD(ID_AA64PFR0, SVE, 32, 4)
1785
be53b6f4
RH
1786FIELD(ID_AA64PFR1, BT, 0, 4)
1787FIELD(ID_AA64PFR1, SBSS, 4, 4)
1788FIELD(ID_AA64PFR1, MTE, 8, 4)
1789FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1790
3dc91ddb
PM
1791FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1792FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1793FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1794FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1795FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1796FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1797FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1798FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1799FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1800FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1801FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1802FIELD(ID_AA64MMFR0, EXS, 44, 4)
1803
1804FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1805FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1806FIELD(ID_AA64MMFR1, VH, 8, 4)
1807FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1808FIELD(ID_AA64MMFR1, LO, 16, 4)
1809FIELD(ID_AA64MMFR1, PAN, 20, 4)
1810FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1811FIELD(ID_AA64MMFR1, XNX, 28, 4)
1812
64761e10
RH
1813FIELD(ID_AA64MMFR2, CNP, 0, 4)
1814FIELD(ID_AA64MMFR2, UAO, 4, 4)
1815FIELD(ID_AA64MMFR2, LSM, 8, 4)
1816FIELD(ID_AA64MMFR2, IESB, 12, 4)
1817FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1818FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
1819FIELD(ID_AA64MMFR2, NV, 24, 4)
1820FIELD(ID_AA64MMFR2, ST, 28, 4)
1821FIELD(ID_AA64MMFR2, AT, 32, 4)
1822FIELD(ID_AA64MMFR2, IDS, 36, 4)
1823FIELD(ID_AA64MMFR2, FWB, 40, 4)
1824FIELD(ID_AA64MMFR2, TTL, 48, 4)
1825FIELD(ID_AA64MMFR2, BBM, 52, 4)
1826FIELD(ID_AA64MMFR2, EVT, 56, 4)
1827FIELD(ID_AA64MMFR2, E0PD, 60, 4)
1828
ceb2744b
PM
1829FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
1830FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
1831FIELD(ID_AA64DFR0, PMUVER, 8, 4)
1832FIELD(ID_AA64DFR0, BRPS, 12, 4)
1833FIELD(ID_AA64DFR0, WRPS, 20, 4)
1834FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
1835FIELD(ID_AA64DFR0, PMSVER, 32, 4)
1836FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
1837FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
1838
beceb99c
AL
1839FIELD(ID_DFR0, COPDBG, 0, 4)
1840FIELD(ID_DFR0, COPSDBG, 4, 4)
1841FIELD(ID_DFR0, MMAPDBG, 8, 4)
1842FIELD(ID_DFR0, COPTRC, 12, 4)
1843FIELD(ID_DFR0, MMAPTRC, 16, 4)
1844FIELD(ID_DFR0, MPROFDBG, 20, 4)
1845FIELD(ID_DFR0, PERFMON, 24, 4)
1846FIELD(ID_DFR0, TRACEFILT, 28, 4)
1847
88ce6c6e
PM
1848FIELD(DBGDIDR, SE_IMP, 12, 1)
1849FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
1850FIELD(DBGDIDR, VERSION, 16, 4)
1851FIELD(DBGDIDR, CTX_CMPS, 20, 4)
1852FIELD(DBGDIDR, BRPS, 24, 4)
1853FIELD(DBGDIDR, WRPS, 28, 4)
1854
602f6e42
PM
1855FIELD(MVFR0, SIMDREG, 0, 4)
1856FIELD(MVFR0, FPSP, 4, 4)
1857FIELD(MVFR0, FPDP, 8, 4)
1858FIELD(MVFR0, FPTRAP, 12, 4)
1859FIELD(MVFR0, FPDIVIDE, 16, 4)
1860FIELD(MVFR0, FPSQRT, 20, 4)
1861FIELD(MVFR0, FPSHVEC, 24, 4)
1862FIELD(MVFR0, FPROUND, 28, 4)
1863
1864FIELD(MVFR1, FPFTZ, 0, 4)
1865FIELD(MVFR1, FPDNAN, 4, 4)
1866FIELD(MVFR1, SIMDLS, 8, 4)
1867FIELD(MVFR1, SIMDINT, 12, 4)
1868FIELD(MVFR1, SIMDSP, 16, 4)
1869FIELD(MVFR1, SIMDHP, 20, 4)
1870FIELD(MVFR1, FPHP, 24, 4)
1871FIELD(MVFR1, SIMDFMAC, 28, 4)
1872
1873FIELD(MVFR2, SIMDMISC, 0, 4)
1874FIELD(MVFR2, FPMISC, 4, 4)
1875
43bbce7f
PM
1876QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1877
ce854d7c
BC
1878/* If adding a feature bit which corresponds to a Linux ELF
1879 * HWCAP bit, remember to update the feature-bit-to-hwcap
1880 * mapping in linux-user/elfload.c:get_elf_hwcap().
1881 */
40f137e1 1882enum arm_features {
c1713132
AZ
1883 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1884 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1885 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1886 ARM_FEATURE_V6,
1887 ARM_FEATURE_V6K,
1888 ARM_FEATURE_V7,
1889 ARM_FEATURE_THUMB2,
452a0955 1890 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1891 ARM_FEATURE_NEON,
9ee6e8bb 1892 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1893 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1894 ARM_FEATURE_THUMB2EE,
be5e7a76 1895 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1896 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1897 ARM_FEATURE_V4T,
1898 ARM_FEATURE_V5,
5bc95aa2 1899 ARM_FEATURE_STRONGARM,
906879a9 1900 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 1901 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1902 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1903 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1904 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1905 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1906 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1907 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1908 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1909 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1910 ARM_FEATURE_V8,
3926cc84 1911 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1912 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1913 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1914 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1915 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1916 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1917 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1918 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1919 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1920 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1921 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1922};
1923
1924static inline int arm_feature(CPUARMState *env, int feature)
1925{
918f5dca 1926 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1927}
1928
0df9142d
AJ
1929void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1930
19e0fefa
FA
1931#if !defined(CONFIG_USER_ONLY)
1932/* Return true if exception levels below EL3 are in secure state,
1933 * or would be following an exception return to that level.
1934 * Unlike arm_is_secure() (which is always a question about the
1935 * _current_ state of the CPU) this doesn't care about the current
1936 * EL or mode.
1937 */
1938static inline bool arm_is_secure_below_el3(CPUARMState *env)
1939{
1940 if (arm_feature(env, ARM_FEATURE_EL3)) {
1941 return !(env->cp15.scr_el3 & SCR_NS);
1942 } else {
6b7f0b61 1943 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1944 * defined, in which case QEMU defaults to non-secure.
1945 */
1946 return false;
1947 }
1948}
1949
71205876
PM
1950/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1951static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1952{
1953 if (arm_feature(env, ARM_FEATURE_EL3)) {
1954 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1955 /* CPU currently in AArch64 state and EL3 */
1956 return true;
1957 } else if (!is_a64(env) &&
1958 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1959 /* CPU currently in AArch32 state and monitor mode */
1960 return true;
1961 }
1962 }
71205876
PM
1963 return false;
1964}
1965
1966/* Return true if the processor is in secure state */
1967static inline bool arm_is_secure(CPUARMState *env)
1968{
1969 if (arm_is_el3_or_mon(env)) {
1970 return true;
1971 }
19e0fefa
FA
1972 return arm_is_secure_below_el3(env);
1973}
1974
1975#else
1976static inline bool arm_is_secure_below_el3(CPUARMState *env)
1977{
1978 return false;
1979}
1980
1981static inline bool arm_is_secure(CPUARMState *env)
1982{
1983 return false;
1984}
1985#endif
1986
f7778444
RH
1987/**
1988 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1989 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1990 * "for all purposes other than a direct read or write access of HCR_EL2."
1991 * Not included here is HCR_RW.
1992 */
1993uint64_t arm_hcr_el2_eff(CPUARMState *env);
1994
1f79ee32
PM
1995/* Return true if the specified exception level is running in AArch64 state. */
1996static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1997{
446c81ab
PM
1998 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1999 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2000 */
446c81ab
PM
2001 assert(el >= 1 && el <= 3);
2002 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2003
446c81ab
PM
2004 /* The highest exception level is always at the maximum supported
2005 * register width, and then lower levels have a register width controlled
2006 * by bits in the SCR or HCR registers.
1f79ee32 2007 */
446c81ab
PM
2008 if (el == 3) {
2009 return aa64;
2010 }
2011
2012 if (arm_feature(env, ARM_FEATURE_EL3)) {
2013 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2014 }
2015
2016 if (el == 2) {
2017 return aa64;
2018 }
2019
2020 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
2021 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2022 }
2023
2024 return aa64;
1f79ee32
PM
2025}
2026
3f342b9e
SF
2027/* Function for determing whether guest cp register reads and writes should
2028 * access the secure or non-secure bank of a cp register. When EL3 is
2029 * operating in AArch32 state, the NS-bit determines whether the secure
2030 * instance of a cp register should be used. When EL3 is AArch64 (or if
2031 * it doesn't exist at all) then there is no register banking, and all
2032 * accesses are to the non-secure version.
2033 */
2034static inline bool access_secure_reg(CPUARMState *env)
2035{
2036 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2037 !arm_el_is_aa64(env, 3) &&
2038 !(env->cp15.scr_el3 & SCR_NS));
2039
2040 return ret;
2041}
2042
ea30a4b8
FA
2043/* Macros for accessing a specified CP register bank */
2044#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2045 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2046
2047#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2048 do { \
2049 if (_secure) { \
2050 (_env)->cp15._regname##_s = (_val); \
2051 } else { \
2052 (_env)->cp15._regname##_ns = (_val); \
2053 } \
2054 } while (0)
2055
2056/* Macros for automatically accessing a specific CP register bank depending on
2057 * the current secure state of the system. These macros are not intended for
2058 * supporting instruction translation reads/writes as these are dependent
2059 * solely on the SCR.NS bit and not the mode.
2060 */
2061#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2062 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2063 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2064
2065#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2066 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2067 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2068 (_val))
2069
0442428a 2070void arm_cpu_list(void);
012a906b
GB
2071uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2072 uint32_t cur_el, bool secure);
40f137e1 2073
9ee6e8bb 2074/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
2075#ifndef CONFIG_USER_ONLY
2076bool armv7m_nvic_can_take_pending_exception(void *opaque);
2077#else
2078static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2079{
2080 return true;
2081}
2082#endif
2fb50a33
PM
2083/**
2084 * armv7m_nvic_set_pending: mark the specified exception as pending
2085 * @opaque: the NVIC
2086 * @irq: the exception number to mark pending
2087 * @secure: false for non-banked exceptions or for the nonsecure
2088 * version of a banked exception, true for the secure version of a banked
2089 * exception.
2090 *
2091 * Marks the specified exception as pending. Note that we will assert()
2092 * if @secure is true and @irq does not specify one of the fixed set
2093 * of architecturally banked exceptions.
2094 */
2095void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2096/**
2097 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2098 * @opaque: the NVIC
2099 * @irq: the exception number to mark pending
2100 * @secure: false for non-banked exceptions or for the nonsecure
2101 * version of a banked exception, true for the secure version of a banked
2102 * exception.
2103 *
2104 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2105 * exceptions (exceptions generated in the course of trying to take
2106 * a different exception).
2107 */
2108void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2109/**
2110 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2111 * @opaque: the NVIC
2112 * @irq: the exception number to mark pending
2113 * @secure: false for non-banked exceptions or for the nonsecure
2114 * version of a banked exception, true for the secure version of a banked
2115 * exception.
2116 *
2117 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2118 * generated in the course of lazy stacking of FP registers.
2119 */
2120void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2121/**
2122 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2123 * exception, and whether it targets Secure state
2124 * @opaque: the NVIC
2125 * @pirq: set to pending exception number
2126 * @ptargets_secure: set to whether pending exception targets Secure
2127 *
2128 * This function writes the number of the highest priority pending
2129 * exception (the one which would be made active by
2130 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2131 * to true if the current highest priority pending exception should
2132 * be taken to Secure state, false for NS.
2133 */
2134void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2135 bool *ptargets_secure);
5cb18069
PM
2136/**
2137 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2138 * @opaque: the NVIC
2139 *
2140 * Move the current highest priority pending exception from the pending
2141 * state to the active state, and update v7m.exception to indicate that
2142 * it is the exception currently being handled.
5cb18069 2143 */
6c948518 2144void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2145/**
2146 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2147 * @opaque: the NVIC
2148 * @irq: the exception number to complete
5cb18069 2149 * @secure: true if this exception was secure
aa488fe3
PM
2150 *
2151 * Returns: -1 if the irq was not active
2152 * 1 if completing this irq brought us back to base (no active irqs)
2153 * 0 if there is still an irq active after this one was completed
2154 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2155 */
5cb18069 2156int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2157/**
2158 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2159 * @opaque: the NVIC
2160 * @irq: the exception number to mark pending
2161 * @secure: false for non-banked exceptions or for the nonsecure
2162 * version of a banked exception, true for the secure version of a banked
2163 * exception.
2164 *
2165 * Return whether an exception is "ready", i.e. whether the exception is
2166 * enabled and is configured at a priority which would allow it to
2167 * interrupt the current execution priority. This controls whether the
2168 * RDY bit for it in the FPCCR is set.
2169 */
2170bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2171/**
2172 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2173 * @opaque: the NVIC
2174 *
2175 * Returns: the raw execution priority as defined by the v8M architecture.
2176 * This is the execution priority minus the effects of AIRCR.PRIS,
2177 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2178 * (v8M ARM ARM I_PKLD.)
2179 */
2180int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2181/**
2182 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2183 * priority is negative for the specified security state.
2184 * @opaque: the NVIC
2185 * @secure: the security state to test
2186 * This corresponds to the pseudocode IsReqExecPriNeg().
2187 */
2188#ifndef CONFIG_USER_ONLY
2189bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2190#else
2191static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2192{
2193 return false;
2194}
2195#endif
9ee6e8bb 2196
4b6a83fb
PM
2197/* Interface for defining coprocessor registers.
2198 * Registers are defined in tables of arm_cp_reginfo structs
2199 * which are passed to define_arm_cp_regs().
2200 */
2201
2202/* When looking up a coprocessor register we look for it
2203 * via an integer which encodes all of:
2204 * coprocessor number
2205 * Crn, Crm, opc1, opc2 fields
2206 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2207 * or via MRRC/MCRR?)
51a79b03 2208 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2209 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2210 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2211 * For AArch64, there is no 32/64 bit size distinction;
2212 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2213 * and 4 bit CRn and CRm. The encoding patterns are chosen
2214 * to be easy to convert to and from the KVM encodings, and also
2215 * so that the hashtable can contain both AArch32 and AArch64
2216 * registers (to allow for interprocessing where we might run
2217 * 32 bit code on a 64 bit core).
4b6a83fb 2218 */
f5a0a5a5
PM
2219/* This bit is private to our hashtable cpreg; in KVM register
2220 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2221 * in the upper bits of the 64 bit ID.
2222 */
2223#define CP_REG_AA64_SHIFT 28
2224#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2225
51a79b03
PM
2226/* To enable banking of coprocessor registers depending on ns-bit we
2227 * add a bit to distinguish between secure and non-secure cpregs in the
2228 * hashtable.
2229 */
2230#define CP_REG_NS_SHIFT 29
2231#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2232
2233#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2234 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2235 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2236
f5a0a5a5
PM
2237#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2238 (CP_REG_AA64_MASK | \
2239 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2240 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2241 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2242 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2243 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2244 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2245
721fae12
PM
2246/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2247 * version used as a key for the coprocessor register hashtable
2248 */
2249static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2250{
2251 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2252 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2253 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2254 } else {
2255 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2256 cpregid |= (1 << 15);
2257 }
2258
2259 /* KVM is always non-secure so add the NS flag on AArch32 register
2260 * entries.
2261 */
2262 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2263 }
2264 return cpregid;
2265}
2266
2267/* Convert a truncated 32 bit hashtable key into the full
2268 * 64 bit KVM register ID.
2269 */
2270static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2271{
f5a0a5a5
PM
2272 uint64_t kvmid;
2273
2274 if (cpregid & CP_REG_AA64_MASK) {
2275 kvmid = cpregid & ~CP_REG_AA64_MASK;
2276 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2277 } else {
f5a0a5a5
PM
2278 kvmid = cpregid & ~(1 << 15);
2279 if (cpregid & (1 << 15)) {
2280 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2281 } else {
2282 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2283 }
721fae12
PM
2284 }
2285 return kvmid;
2286}
2287
4b6a83fb 2288/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2289 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2290 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2291 * TCG can assume the value to be constant (ie load at translate time)
2292 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2293 * indicates that the TB should not be ended after a write to this register
2294 * (the default is that the TB ends after cp writes). OVERRIDE permits
2295 * a register definition to override a previous definition for the
2296 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2297 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2298 * ALIAS indicates that this register is an alias view of some underlying
2299 * state which is also visible via another register, and that the other
b061a82b
SF
2300 * register is handling migration and reset; registers marked ALIAS will not be
2301 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2302 * NO_RAW indicates that this register has no underlying state and does not
2303 * support raw access for state saving/loading; it will not be used for either
2304 * migration or KVM state synchronization. (Typically this is for "registers"
2305 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
2306 * IO indicates that this register does I/O and therefore its accesses
2307 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2308 * registers which implement clocks or timers require this.
37ff584c
PM
2309 * RAISES_EXC is for when the read or write hook might raise an exception;
2310 * the generated code will synchronize the CPU state before calling the hook
2311 * so that it is safe for the hook to call raise_exception().
f80741d1
AB
2312 * NEWEL is for writes to registers that might change the exception
2313 * level - typically on older ARM chips. For those cases we need to
2314 * re-read the new el when recomputing the translation flags.
4b6a83fb 2315 */
fe03d45f
RH
2316#define ARM_CP_SPECIAL 0x0001
2317#define ARM_CP_CONST 0x0002
2318#define ARM_CP_64BIT 0x0004
2319#define ARM_CP_SUPPRESS_TB_END 0x0008
2320#define ARM_CP_OVERRIDE 0x0010
2321#define ARM_CP_ALIAS 0x0020
2322#define ARM_CP_IO 0x0040
2323#define ARM_CP_NO_RAW 0x0080
2324#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2325#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2326#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2327#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2328#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2329#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2330#define ARM_CP_FPU 0x1000
490aa7f1 2331#define ARM_CP_SVE 0x2000
1f163787 2332#define ARM_CP_NO_GDB 0x4000
37ff584c 2333#define ARM_CP_RAISES_EXC 0x8000
f80741d1 2334#define ARM_CP_NEWEL 0x10000
4b6a83fb 2335/* Used only as a terminator for ARMCPRegInfo lists */
f80741d1 2336#define ARM_CP_SENTINEL 0xfffff
4b6a83fb 2337/* Mask of only the flag bits in a type field */
f80741d1 2338#define ARM_CP_FLAG_MASK 0x1f0ff
4b6a83fb 2339
f5a0a5a5
PM
2340/* Valid values for ARMCPRegInfo state field, indicating which of
2341 * the AArch32 and AArch64 execution states this register is visible in.
2342 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2343 * If the reginfo is declared to be visible in both states then a second
2344 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2345 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2346 * Note that we rely on the values of these enums as we iterate through
2347 * the various states in some places.
2348 */
2349enum {
2350 ARM_CP_STATE_AA32 = 0,
2351 ARM_CP_STATE_AA64 = 1,
2352 ARM_CP_STATE_BOTH = 2,
2353};
2354
c3e30260
FA
2355/* ARM CP register secure state flags. These flags identify security state
2356 * attributes for a given CP register entry.
2357 * The existence of both or neither secure and non-secure flags indicates that
2358 * the register has both a secure and non-secure hash entry. A single one of
2359 * these flags causes the register to only be hashed for the specified
2360 * security state.
2361 * Although definitions may have any combination of the S/NS bits, each
2362 * registered entry will only have one to identify whether the entry is secure
2363 * or non-secure.
2364 */
2365enum {
2366 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2367 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2368};
2369
4b6a83fb
PM
2370/* Return true if cptype is a valid type field. This is used to try to
2371 * catch errors where the sentinel has been accidentally left off the end
2372 * of a list of registers.
2373 */
2374static inline bool cptype_valid(int cptype)
2375{
2376 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2377 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2378 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2379}
2380
2381/* Access rights:
2382 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2383 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2384 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2385 * (ie any of the privileged modes in Secure state, or Monitor mode).
2386 * If a register is accessible in one privilege level it's always accessible
2387 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2388 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2389 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2390 * terminology a little and call this PL3.
f5a0a5a5
PM
2391 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2392 * with the ELx exception levels.
4b6a83fb
PM
2393 *
2394 * If access permissions for a register are more complex than can be
2395 * described with these bits, then use a laxer set of restrictions, and
2396 * do the more restrictive/complex check inside a helper function.
2397 */
2398#define PL3_R 0x80
2399#define PL3_W 0x40
2400#define PL2_R (0x20 | PL3_R)
2401#define PL2_W (0x10 | PL3_W)
2402#define PL1_R (0x08 | PL2_R)
2403#define PL1_W (0x04 | PL2_W)
2404#define PL0_R (0x02 | PL1_R)
2405#define PL0_W (0x01 | PL1_W)
2406
b5bd7440
AB
2407/*
2408 * For user-mode some registers are accessible to EL0 via a kernel
2409 * trap-and-emulate ABI. In this case we define the read permissions
2410 * as actually being PL0_R. However some bits of any given register
2411 * may still be masked.
2412 */
2413#ifdef CONFIG_USER_ONLY
2414#define PL0U_R PL0_R
2415#else
2416#define PL0U_R PL1_R
2417#endif
2418
4b6a83fb
PM
2419#define PL3_RW (PL3_R | PL3_W)
2420#define PL2_RW (PL2_R | PL2_W)
2421#define PL1_RW (PL1_R | PL1_W)
2422#define PL0_RW (PL0_R | PL0_W)
2423
75502672
PM
2424/* Return the highest implemented Exception Level */
2425static inline int arm_highest_el(CPUARMState *env)
2426{
2427 if (arm_feature(env, ARM_FEATURE_EL3)) {
2428 return 3;
2429 }
2430 if (arm_feature(env, ARM_FEATURE_EL2)) {
2431 return 2;
2432 }
2433 return 1;
2434}
2435
15b3f556
PM
2436/* Return true if a v7M CPU is in Handler mode */
2437static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2438{
2439 return env->v7m.exception != 0;
2440}
2441
dcbff19b
GB
2442/* Return the current Exception Level (as per ARMv8; note that this differs
2443 * from the ARMv7 Privilege Level).
2444 */
2445static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2446{
6d54ed3c 2447 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2448 return arm_v7m_is_handler_mode(env) ||
2449 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2450 }
2451
592125f8 2452 if (is_a64(env)) {
f5a0a5a5
PM
2453 return extract32(env->pstate, 2, 2);
2454 }
2455
592125f8
FA
2456 switch (env->uncached_cpsr & 0x1f) {
2457 case ARM_CPU_MODE_USR:
4b6a83fb 2458 return 0;
592125f8
FA
2459 case ARM_CPU_MODE_HYP:
2460 return 2;
2461 case ARM_CPU_MODE_MON:
2462 return 3;
2463 default:
2464 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2465 /* If EL3 is 32-bit then all secure privileged modes run in
2466 * EL3
2467 */
2468 return 3;
2469 }
2470
2471 return 1;
4b6a83fb 2472 }
4b6a83fb
PM
2473}
2474
2475typedef struct ARMCPRegInfo ARMCPRegInfo;
2476
f59df3f2
PM
2477typedef enum CPAccessResult {
2478 /* Access is permitted */
2479 CP_ACCESS_OK = 0,
2480 /* Access fails due to a configurable trap or enable which would
2481 * result in a categorized exception syndrome giving information about
2482 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2483 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2484 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2485 */
2486 CP_ACCESS_TRAP = 1,
2487 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2488 * Note that this is not a catch-all case -- the set of cases which may
2489 * result in this failure is specifically defined by the architecture.
2490 */
2491 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2492 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2493 CP_ACCESS_TRAP_EL2 = 3,
2494 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2495 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2496 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2497 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2498 /* Access fails and results in an exception syndrome for an FP access,
2499 * trapped directly to EL2 or EL3
2500 */
2501 CP_ACCESS_TRAP_FP_EL2 = 7,
2502 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2503} CPAccessResult;
2504
c4241c7d
PM
2505/* Access functions for coprocessor registers. These cannot fail and
2506 * may not raise exceptions.
2507 */
2508typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2509typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2510 uint64_t value);
f59df3f2 2511/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2512typedef CPAccessResult CPAccessFn(CPUARMState *env,
2513 const ARMCPRegInfo *opaque,
2514 bool isread);
4b6a83fb
PM
2515/* Hook function for register reset */
2516typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2517
2518#define CP_ANY 0xff
2519
2520/* Definition of an ARM coprocessor register */
2521struct ARMCPRegInfo {
2522 /* Name of register (useful mainly for debugging, need not be unique) */
2523 const char *name;
2524 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2525 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2526 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2527 * will be decoded to this register. The register read and write
2528 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2529 * used by the program, so it is possible to register a wildcard and
2530 * then behave differently on read/write if necessary.
2531 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2532 * must both be zero.
f5a0a5a5
PM
2533 * For AArch64-visible registers, opc0 is also used.
2534 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2535 * way to distinguish (for KVM's benefit) guest-visible system registers
2536 * from demuxed ones provided to preserve the "no side effects on
2537 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2538 * visible (to match KVM's encoding); cp==0 will be converted to
2539 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2540 */
2541 uint8_t cp;
2542 uint8_t crn;
2543 uint8_t crm;
f5a0a5a5 2544 uint8_t opc0;
4b6a83fb
PM
2545 uint8_t opc1;
2546 uint8_t opc2;
f5a0a5a5
PM
2547 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2548 int state;
4b6a83fb
PM
2549 /* Register type: ARM_CP_* bits/values */
2550 int type;
2551 /* Access rights: PL*_[RW] */
2552 int access;
c3e30260
FA
2553 /* Security state: ARM_CP_SECSTATE_* bits/values */
2554 int secure;
4b6a83fb
PM
2555 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2556 * this register was defined: can be used to hand data through to the
2557 * register read/write functions, since they are passed the ARMCPRegInfo*.
2558 */
2559 void *opaque;
2560 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2561 * fieldoffset is non-zero, the reset value of the register.
2562 */
2563 uint64_t resetvalue;
c3e30260
FA
2564 /* Offset of the field in CPUARMState for this register.
2565 *
2566 * This is not needed if either:
4b6a83fb
PM
2567 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2568 * 2. both readfn and writefn are specified
2569 */
2570 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2571
2572 /* Offsets of the secure and non-secure fields in CPUARMState for the
2573 * register if it is banked. These fields are only used during the static
2574 * registration of a register. During hashing the bank associated
2575 * with a given security state is copied to fieldoffset which is used from
2576 * there on out.
2577 *
2578 * It is expected that register definitions use either fieldoffset or
2579 * bank_fieldoffsets in the definition but not both. It is also expected
2580 * that both bank offsets are set when defining a banked register. This
2581 * use indicates that a register is banked.
2582 */
2583 ptrdiff_t bank_fieldoffsets[2];
2584
f59df3f2
PM
2585 /* Function for making any access checks for this register in addition to
2586 * those specified by the 'access' permissions bits. If NULL, no extra
2587 * checks required. The access check is performed at runtime, not at
2588 * translate time.
2589 */
2590 CPAccessFn *accessfn;
4b6a83fb
PM
2591 /* Function for handling reads of this register. If NULL, then reads
2592 * will be done by loading from the offset into CPUARMState specified
2593 * by fieldoffset.
2594 */
2595 CPReadFn *readfn;
2596 /* Function for handling writes of this register. If NULL, then writes
2597 * will be done by writing to the offset into CPUARMState specified
2598 * by fieldoffset.
2599 */
2600 CPWriteFn *writefn;
7023ec7e
PM
2601 /* Function for doing a "raw" read; used when we need to copy
2602 * coprocessor state to the kernel for KVM or out for
2603 * migration. This only needs to be provided if there is also a
c4241c7d 2604 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2605 */
2606 CPReadFn *raw_readfn;
2607 /* Function for doing a "raw" write; used when we need to copy KVM
2608 * kernel coprocessor state into userspace, or for inbound
2609 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2610 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2611 * or similar behaviour.
7023ec7e
PM
2612 */
2613 CPWriteFn *raw_writefn;
4b6a83fb
PM
2614 /* Function for resetting the register. If NULL, then reset will be done
2615 * by writing resetvalue to the field specified in fieldoffset. If
2616 * fieldoffset is 0 then no reset will be done.
2617 */
2618 CPResetFn *resetfn;
e2cce18f
RH
2619
2620 /*
2621 * "Original" writefn and readfn.
2622 * For ARMv8.1-VHE register aliases, we overwrite the read/write
2623 * accessor functions of various EL1/EL0 to perform the runtime
2624 * check for which sysreg should actually be modified, and then
2625 * forwards the operation. Before overwriting the accessors,
2626 * the original function is copied here, so that accesses that
2627 * really do go to the EL1/EL0 version proceed normally.
2628 * (The corresponding EL2 register is linked via opaque.)
2629 */
2630 CPReadFn *orig_readfn;
2631 CPWriteFn *orig_writefn;
4b6a83fb
PM
2632};
2633
2634/* Macros which are lvalues for the field in CPUARMState for the
2635 * ARMCPRegInfo *ri.
2636 */
2637#define CPREG_FIELD32(env, ri) \
2638 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2639#define CPREG_FIELD64(env, ri) \
2640 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2641
2642#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2643
2644void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2645 const ARMCPRegInfo *regs, void *opaque);
2646void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2647 const ARMCPRegInfo *regs, void *opaque);
2648static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2649{
2650 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2651}
2652static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2653{
2654 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2655}
60322b39 2656const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2657
6c5c0fec
AB
2658/*
2659 * Definition of an ARM co-processor register as viewed from
2660 * userspace. This is used for presenting sanitised versions of
2661 * registers to userspace when emulating the Linux AArch64 CPU
2662 * ID/feature ABI (advertised as HWCAP_CPUID).
2663 */
2664typedef struct ARMCPRegUserSpaceInfo {
2665 /* Name of register */
2666 const char *name;
2667
d040242e
AB
2668 /* Is the name actually a glob pattern */
2669 bool is_glob;
2670
6c5c0fec
AB
2671 /* Only some bits are exported to user space */
2672 uint64_t exported_bits;
2673
2674 /* Fixed bits are applied after the mask */
2675 uint64_t fixed_bits;
2676} ARMCPRegUserSpaceInfo;
2677
2678#define REGUSERINFO_SENTINEL { .name = NULL }
2679
2680void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2681
4b6a83fb 2682/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2683void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2684 uint64_t value);
4b6a83fb 2685/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2686uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2687
f5a0a5a5
PM
2688/* CPResetFn that does nothing, for use if no reset is required even
2689 * if fieldoffset is non zero.
2690 */
2691void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2692
67ed771d
PM
2693/* Return true if this reginfo struct's field in the cpu state struct
2694 * is 64 bits wide.
2695 */
2696static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2697{
2698 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2699}
2700
dcbff19b 2701static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2702 const ARMCPRegInfo *ri, int isread)
2703{
dcbff19b 2704 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2705}
2706
49a66191
PM
2707/* Raw read of a coprocessor register (as needed for migration, etc) */
2708uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2709
721fae12
PM
2710/**
2711 * write_list_to_cpustate
2712 * @cpu: ARMCPU
2713 *
2714 * For each register listed in the ARMCPU cpreg_indexes list, write
2715 * its value from the cpreg_values list into the ARMCPUState structure.
2716 * This updates TCG's working data structures from KVM data or
2717 * from incoming migration state.
2718 *
2719 * Returns: true if all register values were updated correctly,
2720 * false if some register was unknown or could not be written.
2721 * Note that we do not stop early on failure -- we will attempt
2722 * writing all registers in the list.
2723 */
2724bool write_list_to_cpustate(ARMCPU *cpu);
2725
2726/**
2727 * write_cpustate_to_list:
2728 * @cpu: ARMCPU
b698e4ee 2729 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2730 *
2731 * For each register listed in the ARMCPU cpreg_indexes list, write
2732 * its value from the ARMCPUState structure into the cpreg_values list.
2733 * This is used to copy info from TCG's working data structures into
2734 * KVM or for outbound migration.
2735 *
b698e4ee
PM
2736 * @kvm_sync is true if we are doing this in order to sync the
2737 * register state back to KVM. In this case we will only update
2738 * values in the list if the previous list->cpustate sync actually
2739 * successfully wrote the CPU state. Otherwise we will keep the value
2740 * that is in the list.
2741 *
721fae12
PM
2742 * Returns: true if all register values were read correctly,
2743 * false if some register was unknown or could not be read.
2744 * Note that we do not stop early on failure -- we will attempt
2745 * reading all registers in the list.
2746 */
b698e4ee 2747bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2748
9ee6e8bb
PB
2749#define ARM_CPUID_TI915T 0x54029152
2750#define ARM_CPUID_TI925T 0x54029252
40f137e1 2751
ba1ba5cc
IM
2752#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2753#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2754#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2755
9467d44c 2756#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2757#define cpu_list arm_cpu_list
9467d44c 2758
c1e37810
PM
2759/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2760 *
2761 * If EL3 is 64-bit:
2762 * + NonSecure EL1 & 0 stage 1
2763 * + NonSecure EL1 & 0 stage 2
2764 * + NonSecure EL2
b9f6033c
RH
2765 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2766 * + Secure EL1 & 0
c1e37810
PM
2767 * + Secure EL3
2768 * If EL3 is 32-bit:
2769 * + NonSecure PL1 & 0 stage 1
2770 * + NonSecure PL1 & 0 stage 2
2771 * + NonSecure PL2
b9f6033c
RH
2772 * + Secure PL0
2773 * + Secure PL1
c1e37810
PM
2774 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2775 *
2776 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2777 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2778 * because they may differ in access permissions even if the VA->PA map is
2779 * the same
c1e37810
PM
2780 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2781 * translation, which means that we have one mmu_idx that deals with two
2782 * concatenated translation regimes [this sort of combined s1+2 TLB is
2783 * architecturally permitted]
2784 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2785 * handling via the TLB. The only way to do a stage 1 translation without
2786 * the immediate stage 2 translation is via the ATS or AT system insns,
2787 * which can be slow-pathed and always do a page table walk.
2788 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2789 * translation regimes, because they map reasonably well to each other
2790 * and they can't both be active at the same time.
b9f6033c
RH
2791 * 5. we want to be able to use the TLB for accesses done as part of a
2792 * stage1 page table walk, rather than having to walk the stage2 page
2793 * table over and over.
452ef8cb
RH
2794 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2795 * Never (PAN) bit within PSTATE.
c1e37810 2796 *
b9f6033c
RH
2797 * This gives us the following list of cases:
2798 *
2799 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2800 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
452ef8cb 2801 * NS EL1 EL1&0 stage 1+2 +PAN
b9f6033c 2802 * NS EL0 EL2&0
452ef8cb 2803 * NS EL2 EL2&0 +PAN
c1e37810 2804 * NS EL2 (aka NS PL2)
b9f6033c
RH
2805 * S EL0 EL1&0 (aka S PL0)
2806 * S EL1 EL1&0 (not used if EL3 is 32 bit)
452ef8cb 2807 * S EL1 EL1&0 +PAN
c1e37810 2808 * S EL3 (aka S PL1)
b9f6033c 2809 * NS EL1&0 stage 2
c1e37810 2810 *
452ef8cb 2811 * for a total of 12 different mmu_idx.
c1e37810 2812 *
3bef7012
PM
2813 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2814 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2815 * NS EL2 if we ever model a Cortex-R52).
2816 *
2817 * M profile CPUs are rather different as they do not have a true MMU.
2818 * They have the following different MMU indexes:
2819 * User
2820 * Privileged
62593718
PM
2821 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2822 * Privileged, execution priority negative (ditto)
66787c78
PM
2823 * If the CPU supports the v8M Security Extension then there are also:
2824 * Secure User
2825 * Secure Privileged
62593718
PM
2826 * Secure User, execution priority negative
2827 * Secure Privileged, execution priority negative
3bef7012 2828 *
8bd5c820
PM
2829 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2830 * are not quite the same -- different CPU types (most notably M profile
2831 * vs A/R profile) would like to use MMU indexes with different semantics,
2832 * but since we don't ever need to use all of those in a single CPU we
2833 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2834 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2835 * the same for any particular CPU.
2836 * Variables of type ARMMUIdx are always full values, and the core
2837 * index values are in variables of type 'int'.
2838 *
c1e37810
PM
2839 * Our enumeration includes at the end some entries which are not "true"
2840 * mmu_idx values in that they don't have corresponding TLBs and are only
2841 * valid for doing slow path page table walks.
2842 *
2843 * The constant names here are patterned after the general style of the names
2844 * of the AT/ATS operations.
2845 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2846 * For M profile we arrange them to have a bit for priv, a bit for negpri
2847 * and a bit for secure.
c1e37810 2848 */
b9f6033c
RH
2849#define ARM_MMU_IDX_A 0x10 /* A profile */
2850#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2851#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2852
b9f6033c
RH
2853/* Meanings of the bits for M profile mmu idx values */
2854#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2855#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2856#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2857
b9f6033c
RH
2858#define ARM_MMU_IDX_TYPE_MASK \
2859 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2860#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2861
c1e37810 2862typedef enum ARMMMUIdx {
b9f6033c
RH
2863 /*
2864 * A-profile.
2865 */
452ef8cb
RH
2866 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2867 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
b9f6033c 2868
452ef8cb
RH
2869 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2870 ARMMMUIdx_E10_1_PAN = 3 | ARM_MMU_IDX_A,
b9f6033c 2871
452ef8cb
RH
2872 ARMMMUIdx_E2 = 4 | ARM_MMU_IDX_A,
2873 ARMMMUIdx_E20_2 = 5 | ARM_MMU_IDX_A,
2874 ARMMMUIdx_E20_2_PAN = 6 | ARM_MMU_IDX_A,
b9f6033c 2875
452ef8cb
RH
2876 ARMMMUIdx_SE10_0 = 7 | ARM_MMU_IDX_A,
2877 ARMMMUIdx_SE10_1 = 8 | ARM_MMU_IDX_A,
2878 ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A,
2879 ARMMMUIdx_SE3 = 10 | ARM_MMU_IDX_A,
b9f6033c 2880
452ef8cb 2881 ARMMMUIdx_Stage2 = 11 | ARM_MMU_IDX_A,
b9f6033c
RH
2882
2883 /*
2884 * These are not allocated TLBs and are used only for AT system
2885 * instructions or for the first stage of an S12 page table walk.
2886 */
2887 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2888 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2889 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2890
2891 /*
2892 * M-profile.
2893 */
25568316
RH
2894 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2895 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2896 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2897 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2898 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2899 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2900 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2901 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2902} ARMMMUIdx;
2903
5f09a6df
RH
2904/*
2905 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2906 * for use when calling tlb_flush_by_mmuidx() and friends.
2907 */
5f09a6df
RH
2908#define TO_CORE_BIT(NAME) \
2909 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2910
8bd5c820 2911typedef enum ARMMMUIdxBit {
5f09a6df 2912 TO_CORE_BIT(E10_0),
b9f6033c 2913 TO_CORE_BIT(E20_0),
5f09a6df 2914 TO_CORE_BIT(E10_1),
452ef8cb 2915 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2916 TO_CORE_BIT(E2),
b9f6033c 2917 TO_CORE_BIT(E20_2),
452ef8cb 2918 TO_CORE_BIT(E20_2_PAN),
5f09a6df
RH
2919 TO_CORE_BIT(SE10_0),
2920 TO_CORE_BIT(SE10_1),
452ef8cb 2921 TO_CORE_BIT(SE10_1_PAN),
5f09a6df
RH
2922 TO_CORE_BIT(SE3),
2923 TO_CORE_BIT(Stage2),
2924
2925 TO_CORE_BIT(MUser),
2926 TO_CORE_BIT(MPriv),
2927 TO_CORE_BIT(MUserNegPri),
2928 TO_CORE_BIT(MPrivNegPri),
2929 TO_CORE_BIT(MSUser),
2930 TO_CORE_BIT(MSPriv),
2931 TO_CORE_BIT(MSUserNegPri),
2932 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2933} ARMMMUIdxBit;
2934
5f09a6df
RH
2935#undef TO_CORE_BIT
2936
f79fbf39 2937#define MMU_USER_IDX 0
c1e37810 2938
50494a27
RH
2939/**
2940 * cpu_mmu_index:
2941 * @env: The cpu environment
2942 * @ifetch: True for code access, false for data access.
2943 *
2944 * Return the core mmu index for the current translation regime.
2945 * This function is used by generic TCG code paths.
2946 */
65e4655c 2947int cpu_mmu_index(CPUARMState *env, bool ifetch);
6ebbf390 2948
9e273ef2
PM
2949/* Indexes used when registering address spaces with cpu_address_space_init */
2950typedef enum ARMASIdx {
2951 ARMASIdx_NS = 0,
2952 ARMASIdx_S = 1,
2953} ARMASIdx;
2954
533e93f1 2955/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2956static inline int arm_debug_target_el(CPUARMState *env)
2957{
81669b8b
SF
2958 bool secure = arm_is_secure(env);
2959 bool route_to_el2 = false;
2960
2961 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2962 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2963 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2964 }
2965
2966 if (route_to_el2) {
2967 return 2;
2968 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2969 !arm_el_is_aa64(env, 3) && secure) {
2970 return 3;
2971 } else {
2972 return 1;
2973 }
3a298203
PM
2974}
2975
43bbce7f
PM
2976static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2977{
2978 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2979 * CSSELR is RAZ/WI.
2980 */
2981 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2982}
2983
22af9025 2984/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
2985static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2986{
22af9025
AB
2987 int cur_el = arm_current_el(env);
2988 int debug_el;
2989
2990 if (cur_el == 3) {
2991 return false;
533e93f1
PM
2992 }
2993
22af9025
AB
2994 /* MDCR_EL3.SDD disables debug events from Secure state */
2995 if (arm_is_secure_below_el3(env)
2996 && extract32(env->cp15.mdcr_el3, 16, 1)) {
2997 return false;
3a298203 2998 }
22af9025
AB
2999
3000 /*
3001 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3002 * while not masking the (D)ebug bit in DAIF.
3003 */
3004 debug_el = arm_debug_target_el(env);
3005
3006 if (cur_el == debug_el) {
3007 return extract32(env->cp15.mdscr_el1, 13, 1)
3008 && !(env->daif & PSTATE_D);
3009 }
3010
3011 /* Otherwise the debug target needs to be a higher EL */
3012 return debug_el > cur_el;
3a298203
PM
3013}
3014
3015static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3016{
533e93f1
PM
3017 int el = arm_current_el(env);
3018
3019 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
3020 return aa64_generate_debug_exceptions(env);
3021 }
533e93f1
PM
3022
3023 if (arm_is_secure(env)) {
3024 int spd;
3025
3026 if (el == 0 && (env->cp15.sder & 1)) {
3027 /* SDER.SUIDEN means debug exceptions from Secure EL0
3028 * are always enabled. Otherwise they are controlled by
3029 * SDCR.SPD like those from other Secure ELs.
3030 */
3031 return true;
3032 }
3033
3034 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3035 switch (spd) {
3036 case 1:
3037 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3038 case 0:
3039 /* For 0b00 we return true if external secure invasive debug
3040 * is enabled. On real hardware this is controlled by external
3041 * signals to the core. QEMU always permits debug, and behaves
3042 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3043 */
3044 return true;
3045 case 2:
3046 return false;
3047 case 3:
3048 return true;
3049 }
3050 }
3051
3052 return el != 2;
3a298203
PM
3053}
3054
3055/* Return true if debugging exceptions are currently enabled.
3056 * This corresponds to what in ARM ARM pseudocode would be
3057 * if UsingAArch32() then
3058 * return AArch32.GenerateDebugExceptions()
3059 * else
3060 * return AArch64.GenerateDebugExceptions()
3061 * We choose to push the if() down into this function for clarity,
3062 * since the pseudocode has it at all callsites except for the one in
3063 * CheckSoftwareStep(), where it is elided because both branches would
3064 * always return the same value.
3a298203
PM
3065 */
3066static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3067{
3068 if (env->aarch64) {
3069 return aa64_generate_debug_exceptions(env);
3070 } else {
3071 return aa32_generate_debug_exceptions(env);
3072 }
3073}
3074
3075/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3076 * implicitly means this always returns false in pre-v8 CPUs.)
3077 */
3078static inline bool arm_singlestep_active(CPUARMState *env)
3079{
3080 return extract32(env->cp15.mdscr_el1, 0, 1)
3081 && arm_el_is_aa64(env, arm_debug_target_el(env))
3082 && arm_generate_debug_exceptions(env);
3083}
3084
f9fd40eb
PB
3085static inline bool arm_sctlr_b(CPUARMState *env)
3086{
3087 return
3088 /* We need not implement SCTLR.ITD in user-mode emulation, so
3089 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3090 * This lets people run BE32 binaries with "-cpu any".
3091 */
3092#ifndef CONFIG_USER_ONLY
3093 !arm_feature(env, ARM_FEATURE_V7) &&
3094#endif
3095 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3096}
3097
aaec1432 3098uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3099
8061a649
RH
3100static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3101 bool sctlr_b)
3102{
3103#ifdef CONFIG_USER_ONLY
3104 /*
3105 * In system mode, BE32 is modelled in line with the
3106 * architecture (as word-invariant big-endianness), where loads
3107 * and stores are done little endian but from addresses which
3108 * are adjusted by XORing with the appropriate constant. So the
3109 * endianness to use for the raw data access is not affected by
3110 * SCTLR.B.
3111 * In user mode, however, we model BE32 as byte-invariant
3112 * big-endianness (because user-only code cannot tell the
3113 * difference), and so we need to use a data access endianness
3114 * that depends on SCTLR.B.
3115 */
3116 if (sctlr_b) {
3117 return true;
3118 }
3119#endif
3120 /* In 32bit endianness is determined by looking at CPSR's E bit */
3121 return env->uncached_cpsr & CPSR_E;
3122}
3123
3124static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3125{
3126 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3127}
64e40755 3128
ed50ff78
PC
3129/* Return true if the processor is in big-endian mode. */
3130static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3131{
ed50ff78 3132 if (!is_a64(env)) {
8061a649 3133 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3134 } else {
3135 int cur_el = arm_current_el(env);
3136 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3137 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3138 }
ed50ff78
PC
3139}
3140
4f7c64b3 3141typedef CPUARMState CPUArchState;
2161a612 3142typedef ARMCPU ArchCPU;
4f7c64b3 3143
022c62cb 3144#include "exec/cpu-all.h"
622ed360 3145
fdd1b228
RH
3146/*
3147 * Bit usage in the TB flags field: bit 31 indicates whether we are
3926cc84 3148 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3149 * We put flags which are shared between 32 and 64 bit mode at the top
3150 * of the word, and flags which apply to only one mode at the bottom.
fdd1b228 3151 *
506f1498 3152 * 31 20 18 14 9 0
79cabf1f
RH
3153 * +--------------+-----+-----+----------+--------------+
3154 * | | | TBFLAG_A32 | |
3155 * | | +-----+----------+ TBFLAG_AM32 |
3156 * | TBFLAG_ANY | |TBFLAG_M32| |
cc28fc30
RH
3157 * | | +-+----------+--------------|
3158 * | | | TBFLAG_A64 |
3159 * +--------------+---------+---------------------------+
3160 * 31 20 15 0
79cabf1f 3161 *
fdd1b228 3162 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3163 */
aad821ac 3164FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
506f1498
RH
3165FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3166FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */
3167FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3168FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
9dbbc748 3169/* Target EL if we take a floating-point-disabled exception */
506f1498 3170FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
79cabf1f 3171/* For A-profile only, target EL for debug exceptions. */
506f1498 3172FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
79cabf1f 3173
8bd587c1 3174/*
79cabf1f 3175 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3176 */
79cabf1f
RH
3177FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */
3178FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */
3926cc84 3179
79cabf1f
RH
3180/*
3181 * Bit usage when in AArch32 state, for A-profile only.
3182 */
3183FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */
3184FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */
ea7ac69d
PM
3185/*
3186 * We store the bottom two bits of the CPAR as TB flags and handle
3187 * checks on the other bits at runtime. This shares the same bits as
3188 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3189 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3190 */
79cabf1f
RH
3191FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3192FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */
3193FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3194FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
7fbb535f
PM
3195/*
3196 * Indicates whether cp register reads and writes by guest code should access
3197 * the secure or nonsecure bank of banked registers; note that this is not
3198 * the same thing as the current security state of the processor!
3199 */
79cabf1f
RH
3200FIELD(TBFLAG_A32, NS, 17, 1)
3201
3202/*
3203 * Bit usage when in AArch32 state, for M-profile only.
3204 */
3205/* Handler (ie not Thread) mode */
3206FIELD(TBFLAG_M32, HANDLER, 9, 1)
3207/* Whether we should generate stack-limit checks */
3208FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3209/* Set if FPCCR.LSPACT is set */
3210FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */
3211/* Set if we must create a new FP context */
3212FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */
3213/* Set if FPCCR.S does not match current security state */
3214FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */
3215
3216/*
3217 * Bit usage when in AArch64 state
3218 */
476a4692 3219FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3220FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3221FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3222FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3223FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3224FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3225FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3226FIELD(TBFLAG_A64, UNPRIV, 14, 1)
a1705768 3227
f9fd40eb
PB
3228static inline bool bswap_code(bool sctlr_b)
3229{
3230#ifdef CONFIG_USER_ONLY
3231 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3232 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3233 * would also end up as a mixed-endian mode with BE code, LE data.
3234 */
3235 return
3236#ifdef TARGET_WORDS_BIGENDIAN
3237 1 ^
3238#endif
3239 sctlr_b;
3240#else
e334bd31
PB
3241 /* All code access in ARM is little endian, and there are no loaders
3242 * doing swaps that need to be reversed
f9fd40eb
PB
3243 */
3244 return 0;
3245#endif
3246}
3247
c3ae85fc
PB
3248#ifdef CONFIG_USER_ONLY
3249static inline bool arm_cpu_bswap_data(CPUARMState *env)
3250{
3251 return
3252#ifdef TARGET_WORDS_BIGENDIAN
3253 1 ^
3254#endif
3255 arm_cpu_data_is_big_endian(env);
3256}
3257#endif
3258
a9e01311
RH
3259void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3260 target_ulong *cs_base, uint32_t *flags);
6b917547 3261
98128601
RH
3262enum {
3263 QEMU_PSCI_CONDUIT_DISABLED = 0,
3264 QEMU_PSCI_CONDUIT_SMC = 1,
3265 QEMU_PSCI_CONDUIT_HVC = 2,
3266};
3267
017518c1
PM
3268#ifndef CONFIG_USER_ONLY
3269/* Return the address space index to use for a memory access */
3270static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3271{
3272 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3273}
5ce4ff65
PM
3274
3275/* Return the AddressSpace to use for a memory access
3276 * (which depends on whether the access is S or NS, and whether
3277 * the board gave us a separate AddressSpace for S accesses).
3278 */
3279static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3280{
3281 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3282}
017518c1
PM
3283#endif
3284
bd7d00fc 3285/**
b5c53d1b
AL
3286 * arm_register_pre_el_change_hook:
3287 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3288 * CPU changes exception level or mode. The hook function will be
3289 * passed a pointer to the ARMCPU and the opaque data pointer passed
3290 * to this function when the hook was registered.
b5c53d1b
AL
3291 *
3292 * Note that if a pre-change hook is called, any registered post-change hooks
3293 * are guaranteed to subsequently be called.
bd7d00fc 3294 */
b5c53d1b 3295void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3296 void *opaque);
b5c53d1b
AL
3297/**
3298 * arm_register_el_change_hook:
3299 * Register a hook function which will be called immediately after this
3300 * CPU changes exception level or mode. The hook function will be
3301 * passed a pointer to the ARMCPU and the opaque data pointer passed
3302 * to this function when the hook was registered.
3303 *
3304 * Note that any registered hooks registered here are guaranteed to be called
3305 * if pre-change hooks have been.
3306 */
3307void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3308 *opaque);
bd7d00fc 3309
3d74e2e9
RH
3310/**
3311 * arm_rebuild_hflags:
3312 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3313 */
3314void arm_rebuild_hflags(CPUARMState *env);
3315
9a2b5256
RH
3316/**
3317 * aa32_vfp_dreg:
3318 * Return a pointer to the Dn register within env in 32-bit mode.
3319 */
3320static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3321{
c39c2b90 3322 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3323}
3324
3325/**
3326 * aa32_vfp_qreg:
3327 * Return a pointer to the Qn register within env in 32-bit mode.
3328 */
3329static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3330{
c39c2b90 3331 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3332}
3333
3334/**
3335 * aa64_vfp_qreg:
3336 * Return a pointer to the Qn register within env in 64-bit mode.
3337 */
3338static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3339{
c39c2b90 3340 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3341}
3342
028e2a7b
RH
3343/* Shared between translate-sve.c and sve_helper.c. */
3344extern const uint64_t pred_esz_masks[4];
3345
873b73c0
PM
3346/*
3347 * Naming convention for isar_feature functions:
3348 * Functions which test 32-bit ID registers should have _aa32_ in
3349 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3350 * _aa64_ in their name. These must only be used in code where we
3351 * know for certain that the CPU has AArch32 or AArch64 respectively
3352 * or where the correct answer for a CPU which doesn't implement that
3353 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3354 * system registers that are specific to that CPU state, for "should
3355 * we let this system register bit be set" tests where the 32-bit
3356 * flavour of the register doesn't have the bit, and so on).
3357 * Functions which simply ask "does this feature exist at all" have
3358 * _any_ in their name, and always return the logical OR of the _aa64_
3359 * and the _aa32_ function.
873b73c0
PM
3360 */
3361
962fcbf2
RH
3362/*
3363 * 32-bit feature tests via id registers.
3364 */
873b73c0 3365static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3366{
3367 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3368}
3369
873b73c0 3370static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3371{
3372 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3373}
3374
873b73c0 3375static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3376{
3377 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3378}
3379
962fcbf2
RH
3380static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3381{
3382 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3383}
3384
3385static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3386{
3387 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3388}
3389
3390static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3391{
3392 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3393}
3394
3395static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3396{
3397 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3398}
3399
3400static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3401{
3402 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3403}
3404
3405static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3406{
3407 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3408}
3409
3410static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3411{
3412 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3413}
3414
6c1f6f27
RH
3415static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3416{
3417 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3418}
3419
962fcbf2
RH
3420static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3421{
3422 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3423}
3424
87732318
RH
3425static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3426{
3427 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3428}
3429
9888bd1e
RH
3430static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3431{
3432 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3433}
3434
cb570bd3
RH
3435static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3436{
3437 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3438}
3439
5763190f
RH
3440static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3441{
3442 /*
3443 * This is a placeholder for use by VCMA until the rest of
3444 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3445 * At which point we can properly set and check MVFR1.FPHP.
3446 */
3447 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3448}
3449
7fbc6a40
RH
3450static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3451{
3452 /*
3453 * Return true if either VFP or SIMD is implemented.
3454 * In this case, a minimum of VFP w/ D0-D15.
3455 */
3456 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3457}
3458
0e13ba78 3459static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3460{
3461 /* Return true if D16-D31 are implemented */
b3a816f6 3462 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3463}
3464
266bd25c
PM
3465static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3466{
b3a816f6 3467 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3468}
3469
f67957e1
RH
3470static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3471{
3472 /* Return true if CPU supports single precision floating point, VFPv2 */
3473 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3474}
3475
3476static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3477{
3478 /* Return true if CPU supports single precision floating point, VFPv3 */
3479 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3480}
3481
c4ff8735 3482static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3483{
c4ff8735 3484 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3485 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3486}
3487
f67957e1
RH
3488static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3489{
3490 /* Return true if CPU supports double precision floating point, VFPv3 */
3491 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3492}
3493
7d63183f
RH
3494static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3495{
3496 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3497}
3498
602f6e42
PM
3499/*
3500 * We always set the FP and SIMD FP16 fields to indicate identical
3501 * levels of support (assuming SIMD is implemented at all), so
3502 * we only need one set of accessors.
3503 */
3504static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3505{
b3a816f6 3506 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3507}
3508
3509static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3510{
b3a816f6 3511 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3512}
3513
c52881bb
RH
3514/*
3515 * Note that this ID register field covers both VFP and Neon FMAC,
3516 * so should usually be tested in combination with some other
3517 * check that confirms the presence of whichever of VFP or Neon is
3518 * relevant, to avoid accidentally enabling a Neon feature on
3519 * a VFP-no-Neon core or vice-versa.
3520 */
3521static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3522{
3523 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3524}
3525
c0c760af
PM
3526static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3527{
b3a816f6 3528 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3529}
3530
3531static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3532{
b3a816f6 3533 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3534}
3535
3536static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3537{
b3a816f6 3538 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3539}
3540
3541static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3542{
b3a816f6 3543 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3544}
3545
3d6ad6bb
RH
3546static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3547{
10054016 3548 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3549}
3550
3551static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3552{
10054016 3553 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3554}
3555
a6179538
PM
3556static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3557{
3558 /* 0xf means "non-standard IMPDEF PMU" */
3559 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3560 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3561}
3562
15dd1ebd
PM
3563static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3564{
3565 /* 0xf means "non-standard IMPDEF PMU" */
3566 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3567 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3568}
3569
4036b7d1
PM
3570static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3571{
3572 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3573}
3574
f6287c24
PM
3575static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3576{
3577 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3578}
3579
962fcbf2
RH
3580/*
3581 * 64-bit feature tests via id registers.
3582 */
3583static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3584{
3585 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3586}
3587
3588static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3589{
3590 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3591}
3592
3593static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3594{
3595 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3596}
3597
3598static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3599{
3600 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3601}
3602
3603static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3604{
3605 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3606}
3607
3608static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3609{
3610 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3611}
3612
3613static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3614{
3615 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3616}
3617
3618static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3619{
3620 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3621}
3622
3623static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3624{
3625 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3626}
3627
3628static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3629{
3630 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3631}
3632
3633static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3634{
3635 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3636}
3637
3638static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3639{
3640 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3641}
3642
0caa5af8
RH
3643static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3644{
3645 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3646}
3647
b89d9c98
RH
3648static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3649{
3650 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3651}
3652
5ef84f11
RH
3653static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3654{
3655 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3656}
3657
de390645
RH
3658static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3659{
3660 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3661}
3662
6c1f6f27
RH
3663static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3664{
3665 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3666}
3667
962fcbf2
RH
3668static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3669{
3670 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3671}
3672
991ad91b
RH
3673static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3674{
3675 /*
3676 * Note that while QEMU will only implement the architected algorithm
3677 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3678 * defined algorithms, and thus API+GPI, and this predicate controls
3679 * migration of the 128-bit keys.
3680 */
3681 return (id->id_aa64isar1 &
3682 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3683 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3684 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3685 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3686}
3687
9888bd1e
RH
3688static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3689{
3690 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3691}
3692
cb570bd3
RH
3693static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3694{
3695 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3696}
3697
6bea2563
RH
3698static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3699{
3700 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3701}
3702
0d57b499
BM
3703static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3704{
3705 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3706}
3707
3708static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3709{
3710 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3711}
3712
7d63183f
RH
3713static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3714{
3715 /* We always set the AdvSIMD and FP fields identically. */
3716 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3717}
3718
5763190f
RH
3719static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3720{
3721 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3722 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3723}
3724
0f8d06f1
RH
3725static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3726{
3727 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3728}
3729
cd208a1c
RH
3730static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3731{
3732 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3733}
3734
8fc2ea21
RH
3735static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3736{
3737 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3738}
3739
2d7137c1
RH
3740static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3741{
3742 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3743}
3744
3d6ad6bb
RH
3745static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3746{
3747 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3748}
3749
3750static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3751{
3752 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3753}
3754
9eeb7a1c
RH
3755static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3756{
3757 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3758}
3759
be53b6f4
RH
3760static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3761{
3762 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3763}
3764
2a609df8
PM
3765static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3766{
3767 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3768 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3769}
3770
15dd1ebd
PM
3771static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3772{
54117b90
PM
3773 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3774 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
3775}
3776
2677cf9f
PM
3777static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3778{
3779 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3780}
3781
a1229109
PM
3782static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3783{
3784 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3785}
3786
6e61f839
PM
3787/*
3788 * Feature tests for "does this exist in either 32-bit or 64-bit?"
3789 */
3790static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
3791{
3792 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
3793}
3794
22e57073
PM
3795static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
3796{
3797 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
3798}
3799
2a609df8
PM
3800static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
3801{
3802 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
3803}
3804
15dd1ebd
PM
3805static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
3806{
3807 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
3808}
3809
962fcbf2
RH
3810/*
3811 * Forward to the above feature tests given an ARMCPU pointer.
3812 */
3813#define cpu_isar_feature(name, cpu) \
3814 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3815
2c0262af 3816#endif