]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Make A32/T32 use new fpstatus_ptr() API
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
74433bf0
RH
25#include "cpu-qom.h"
26#include "exec/cpu-defs.h"
9042c0e2 27
ca759f9e
AB
28/* ARM processors have a weak memory model */
29#define TCG_GUEST_DEFAULT_MO (0)
30
e24fd076
DG
31#ifdef TARGET_AARCH64
32#define KVM_HAVE_MCE_INJECTION 1
33#endif
34
b8a9e8f1
FB
35#define EXCP_UDEF 1 /* undefined instruction */
36#define EXCP_SWI 2 /* software interrupt */
37#define EXCP_PREFETCH_ABORT 3
38#define EXCP_DATA_ABORT 4
b5ff1b31
FB
39#define EXCP_IRQ 5
40#define EXCP_FIQ 6
06c949e6 41#define EXCP_BKPT 7
9ee6e8bb 42#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 43#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 44#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 45#define EXCP_HYP_TRAP 12
e0d6e6a5 46#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
47#define EXCP_VIRQ 14
48#define EXCP_VFIQ 15
19a6e31c 49#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 50#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 51#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 52#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 53#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
54#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
55#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
2c4a7cc5 56/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
57
58#define ARMV7M_EXCP_RESET 1
59#define ARMV7M_EXCP_NMI 2
60#define ARMV7M_EXCP_HARD 3
61#define ARMV7M_EXCP_MEM 4
62#define ARMV7M_EXCP_BUS 5
63#define ARMV7M_EXCP_USAGE 6
1e577cc7 64#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
65#define ARMV7M_EXCP_SVC 11
66#define ARMV7M_EXCP_DEBUG 12
67#define ARMV7M_EXCP_PENDSV 14
68#define ARMV7M_EXCP_SYSTICK 15
2c0262af 69
acf94941
PM
70/* For M profile, some registers are banked secure vs non-secure;
71 * these are represented as a 2-element array where the first element
72 * is the non-secure copy and the second is the secure copy.
73 * When the CPU does not have implement the security extension then
74 * only the first element is used.
75 * This means that the copy for the current security state can be
76 * accessed via env->registerfield[env->v7m.secure] (whether the security
77 * extension is implemented or not).
78 */
4a16724f
PM
79enum {
80 M_REG_NS = 0,
81 M_REG_S = 1,
82 M_REG_NUM_BANKS = 2,
83};
acf94941 84
403946c0
RH
85/* ARM-specific interrupt pending bits. */
86#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
87#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
88#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 89
e4fe830b
PM
90/* The usual mapping for an AArch64 system register to its AArch32
91 * counterpart is for the 32 bit world to have access to the lower
92 * half only (with writes leaving the upper half untouched). It's
93 * therefore useful to be able to pass TCG the offset of the least
94 * significant half of a uint64_t struct member.
95 */
96#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 97#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 98#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
99#else
100#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 101#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
102#endif
103
136e67e9 104/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
105#define ARM_CPU_IRQ 0
106#define ARM_CPU_FIQ 1
136e67e9
EI
107#define ARM_CPU_VIRQ 2
108#define ARM_CPU_VFIQ 3
403946c0 109
aaa1f954
EI
110/* ARM-specific extra insn start words:
111 * 1: Conditional execution bits
112 * 2: Partial exception syndrome for data aborts
113 */
114#define TARGET_INSN_START_EXTRA_WORDS 2
115
116/* The 2nd extra word holding syndrome info for data aborts does not use
117 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
118 * help the sleb128 encoder do a better job.
119 * When restoring the CPU state, we shift it back up.
120 */
121#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
122#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 123
b7bcbe95
FB
124/* We currently assume float and double are IEEE single and double
125 precision respectively.
126 Doing runtime conversions is tricky because VFP registers may contain
127 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
128 s<2n> maps to the least significant half of d<n>
129 s<2n+1> maps to the most significant half of d<n>
130 */
b7bcbe95 131
200bf5b7
AB
132/**
133 * DynamicGDBXMLInfo:
134 * @desc: Contains the XML descriptions.
448d4d14
AB
135 * @num: Number of the registers in this XML seen by GDB.
136 * @data: A union with data specific to the set of registers
137 * @cpregs_keys: Array that contains the corresponding Key of
138 * a given cpreg with the same order of the cpreg
139 * in the XML description.
200bf5b7
AB
140 */
141typedef struct DynamicGDBXMLInfo {
142 char *desc;
448d4d14
AB
143 int num;
144 union {
145 struct {
146 uint32_t *keys;
147 } cpregs;
148 } data;
200bf5b7
AB
149} DynamicGDBXMLInfo;
150
55d284af
PM
151/* CPU state for each instance of a generic timer (in cp15 c14) */
152typedef struct ARMGenericTimer {
153 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 154 uint64_t ctl; /* Timer Control register */
55d284af
PM
155} ARMGenericTimer;
156
8c94b071
RH
157#define GTIMER_PHYS 0
158#define GTIMER_VIRT 1
159#define GTIMER_HYP 2
160#define GTIMER_SEC 3
161#define GTIMER_HYPVIRT 4
162#define NUM_GTIMERS 5
55d284af 163
11f136ee
FA
164typedef struct {
165 uint64_t raw_tcr;
166 uint32_t mask;
167 uint32_t base_mask;
168} TCR;
169
c39c2b90
RH
170/* Define a maximum sized vector register.
171 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
172 * For 64-bit, this is a 2048-bit SVE register.
173 *
174 * Note that the mapping between S, D, and Q views of the register bank
175 * differs between AArch64 and AArch32.
176 * In AArch32:
177 * Qn = regs[n].d[1]:regs[n].d[0]
178 * Dn = regs[n / 2].d[n & 1]
179 * Sn = regs[n / 4].d[n % 4 / 2],
180 * bits 31..0 for even n, and bits 63..32 for odd n
181 * (and regs[16] to regs[31] are inaccessible)
182 * In AArch64:
183 * Zn = regs[n].d[*]
184 * Qn = regs[n].d[1]:regs[n].d[0]
185 * Dn = regs[n].d[0]
186 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 187 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
188 *
189 * This corresponds to the architecturally defined mapping between
190 * the two execution states, and means we do not need to explicitly
191 * map these registers when changing states.
192 *
193 * Align the data for use with TCG host vector operations.
194 */
195
196#ifdef TARGET_AARCH64
197# define ARM_MAX_VQ 16
0df9142d 198void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
c39c2b90
RH
199#else
200# define ARM_MAX_VQ 1
0df9142d 201static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
c39c2b90
RH
202#endif
203
204typedef struct ARMVectorReg {
205 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
206} ARMVectorReg;
207
3c7d3086 208#ifdef TARGET_AARCH64
991ad91b 209/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 210typedef struct ARMPredicateReg {
46417784 211 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 212} ARMPredicateReg;
991ad91b
RH
213
214/* In AArch32 mode, PAC keys do not exist at all. */
215typedef struct ARMPACKey {
216 uint64_t lo, hi;
217} ARMPACKey;
3c7d3086
RH
218#endif
219
c39c2b90 220
2c0262af 221typedef struct CPUARMState {
b5ff1b31 222 /* Regs for current mode. */
2c0262af 223 uint32_t regs[16];
3926cc84
AG
224
225 /* 32/64 switch only happens when taking and returning from
226 * exceptions so the overlap semantics are taken care of then
227 * instead of having a complicated union.
228 */
229 /* Regs for A64 mode. */
230 uint64_t xregs[32];
231 uint64_t pc;
d356312f
PM
232 /* PSTATE isn't an architectural register for ARMv8. However, it is
233 * convenient for us to assemble the underlying state into a 32 bit format
234 * identical to the architectural format used for the SPSR. (This is also
235 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
236 * 'pstate' register are.) Of the PSTATE bits:
237 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
238 * semantics as for AArch32, as described in the comments on each field)
239 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 240 * DAIF (exception masks) are kept in env->daif
f6e52eaa 241 * BTYPE is kept in env->btype
d356312f 242 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
243 */
244 uint32_t pstate;
245 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
246
fdd1b228
RH
247 /* Cached TBFLAGS state. See below for which bits are included. */
248 uint32_t hflags;
249
b90372ad 250 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 251 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
252 the whole CPSR. */
253 uint32_t uncached_cpsr;
254 uint32_t spsr;
255
256 /* Banked registers. */
28c9457d 257 uint64_t banked_spsr[8];
0b7d409d
FA
258 uint32_t banked_r13[8];
259 uint32_t banked_r14[8];
3b46e624 260
b5ff1b31
FB
261 /* These hold r8-r12. */
262 uint32_t usr_regs[5];
263 uint32_t fiq_regs[5];
3b46e624 264
2c0262af
FB
265 /* cpsr flag cache for faster execution */
266 uint32_t CF; /* 0 or 1 */
267 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
268 uint32_t NF; /* N is bit 31. All other bits are undefined. */
269 uint32_t ZF; /* Z set if zero. */
99c475ab 270 uint32_t QF; /* 0 or 1 */
9ee6e8bb 271 uint32_t GE; /* cpsr[19:16] */
b26eefb6 272 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 273 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 274 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 275 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 276
1b174238 277 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 278 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 279
b5ff1b31
FB
280 /* System control coprocessor (cp15) */
281 struct {
40f137e1 282 uint32_t c0_cpuid;
b85a1fd6
FA
283 union { /* Cache size selection */
284 struct {
285 uint64_t _unused_csselr0;
286 uint64_t csselr_ns;
287 uint64_t _unused_csselr1;
288 uint64_t csselr_s;
289 };
290 uint64_t csselr_el[4];
291 };
137feaa9
FA
292 union { /* System control register. */
293 struct {
294 uint64_t _unused_sctlr;
295 uint64_t sctlr_ns;
296 uint64_t hsctlr;
297 uint64_t sctlr_s;
298 };
299 uint64_t sctlr_el[4];
300 };
7ebd5f2e 301 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 302 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 303 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 304 uint64_t sder; /* Secure debug enable register. */
77022576 305 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
306 union { /* MMU translation table base 0. */
307 struct {
308 uint64_t _unused_ttbr0_0;
309 uint64_t ttbr0_ns;
310 uint64_t _unused_ttbr0_1;
311 uint64_t ttbr0_s;
312 };
313 uint64_t ttbr0_el[4];
314 };
315 union { /* MMU translation table base 1. */
316 struct {
317 uint64_t _unused_ttbr1_0;
318 uint64_t ttbr1_ns;
319 uint64_t _unused_ttbr1_1;
320 uint64_t ttbr1_s;
321 };
322 uint64_t ttbr1_el[4];
323 };
b698e9cf 324 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
325 /* MMU translation table base control. */
326 TCR tcr_el[4];
68e9c2fe 327 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
328 uint32_t c2_data; /* MPU data cacheable bits. */
329 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
330 union { /* MMU domain access control register
331 * MPU write buffer control.
332 */
333 struct {
334 uint64_t dacr_ns;
335 uint64_t dacr_s;
336 };
337 struct {
338 uint64_t dacr32_el2;
339 };
340 };
7e09797c
PM
341 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
342 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 343 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 344 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
345 union { /* Fault status registers. */
346 struct {
347 uint64_t ifsr_ns;
348 uint64_t ifsr_s;
349 };
350 struct {
351 uint64_t ifsr32_el2;
352 };
353 };
4a7e2d73
FA
354 union {
355 struct {
356 uint64_t _unused_dfsr;
357 uint64_t dfsr_ns;
358 uint64_t hsr;
359 uint64_t dfsr_s;
360 };
361 uint64_t esr_el[4];
362 };
ce819861 363 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
364 union { /* Fault address registers. */
365 struct {
366 uint64_t _unused_far0;
367#ifdef HOST_WORDS_BIGENDIAN
368 uint32_t ifar_ns;
369 uint32_t dfar_ns;
370 uint32_t ifar_s;
371 uint32_t dfar_s;
372#else
373 uint32_t dfar_ns;
374 uint32_t ifar_ns;
375 uint32_t dfar_s;
376 uint32_t ifar_s;
377#endif
378 uint64_t _unused_far3;
379 };
380 uint64_t far_el[4];
381 };
59e05530 382 uint64_t hpfar_el2;
2a5a9abd 383 uint64_t hstr_el2;
01c097f7
FA
384 union { /* Translation result. */
385 struct {
386 uint64_t _unused_par_0;
387 uint64_t par_ns;
388 uint64_t _unused_par_1;
389 uint64_t par_s;
390 };
391 uint64_t par_el[4];
392 };
6cb0b013 393
b5ff1b31
FB
394 uint32_t c9_insn; /* Cache lockdown registers. */
395 uint32_t c9_data;
8521466b
AF
396 uint64_t c9_pmcr; /* performance monitor control register */
397 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
398 uint64_t c9_pmovsr; /* perf monitor overflow status */
399 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 400 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 401 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
402 union { /* Memory attribute redirection */
403 struct {
404#ifdef HOST_WORDS_BIGENDIAN
405 uint64_t _unused_mair_0;
406 uint32_t mair1_ns;
407 uint32_t mair0_ns;
408 uint64_t _unused_mair_1;
409 uint32_t mair1_s;
410 uint32_t mair0_s;
411#else
412 uint64_t _unused_mair_0;
413 uint32_t mair0_ns;
414 uint32_t mair1_ns;
415 uint64_t _unused_mair_1;
416 uint32_t mair0_s;
417 uint32_t mair1_s;
418#endif
419 };
420 uint64_t mair_el[4];
421 };
fb6c91ba
GB
422 union { /* vector base address register */
423 struct {
424 uint64_t _unused_vbar;
425 uint64_t vbar_ns;
426 uint64_t hvbar;
427 uint64_t vbar_s;
428 };
429 uint64_t vbar_el[4];
430 };
e89e51a1 431 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
432 struct { /* FCSE PID. */
433 uint32_t fcseidr_ns;
434 uint32_t fcseidr_s;
435 };
436 union { /* Context ID. */
437 struct {
438 uint64_t _unused_contextidr_0;
439 uint64_t contextidr_ns;
440 uint64_t _unused_contextidr_1;
441 uint64_t contextidr_s;
442 };
443 uint64_t contextidr_el[4];
444 };
445 union { /* User RW Thread register. */
446 struct {
447 uint64_t tpidrurw_ns;
448 uint64_t tpidrprw_ns;
449 uint64_t htpidr;
450 uint64_t _tpidr_el3;
451 };
452 uint64_t tpidr_el[4];
453 };
454 /* The secure banks of these registers don't map anywhere */
455 uint64_t tpidrurw_s;
456 uint64_t tpidrprw_s;
457 uint64_t tpidruro_s;
458
459 union { /* User RO Thread register. */
460 uint64_t tpidruro_ns;
461 uint64_t tpidrro_el[1];
462 };
a7adc4b7
PM
463 uint64_t c14_cntfrq; /* Counter Frequency register */
464 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 465 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 466 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 467 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 468 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
469 uint32_t c15_ticonfig; /* TI925T configuration byte. */
470 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
471 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
472 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
473 uint32_t c15_config_base_address; /* SCU base address. */
474 uint32_t c15_diagnostic; /* diagnostic register */
475 uint32_t c15_power_diagnostic;
476 uint32_t c15_power_control; /* power control */
0b45451e
PM
477 uint64_t dbgbvr[16]; /* breakpoint value registers */
478 uint64_t dbgbcr[16]; /* breakpoint control registers */
479 uint64_t dbgwvr[16]; /* watchpoint value registers */
480 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 481 uint64_t mdscr_el1;
1424ca8d 482 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 483 uint64_t mdcr_el2;
5513c3ab 484 uint64_t mdcr_el3;
5d05b9d4
AL
485 /* Stores the architectural value of the counter *the last time it was
486 * updated* by pmccntr_op_start. Accesses should always be surrounded
487 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
488 * architecturally-correct value is being read/set.
7c2cb42b 489 */
c92c0687 490 uint64_t c15_ccnt;
5d05b9d4
AL
491 /* Stores the delta between the architectural value and the underlying
492 * cycle count during normal operation. It is used to update c15_ccnt
493 * to be the correct architectural value before accesses. During
494 * accesses, c15_ccnt_delta contains the underlying count being used
495 * for the access, after which it reverts to the delta value in
496 * pmccntr_op_finish.
497 */
498 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
499 uint64_t c14_pmevcntr[31];
500 uint64_t c14_pmevcntr_delta[31];
501 uint64_t c14_pmevtyper[31];
8521466b 502 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 503 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 504 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
505 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
506 uint64_t gcr_el1;
507 uint64_t rgsr_el1;
b5ff1b31 508 } cp15;
40f137e1 509
9ee6e8bb 510 struct {
fb602cb7
PM
511 /* M profile has up to 4 stack pointers:
512 * a Main Stack Pointer and a Process Stack Pointer for each
513 * of the Secure and Non-Secure states. (If the CPU doesn't support
514 * the security extension then it has only two SPs.)
515 * In QEMU we always store the currently active SP in regs[13],
516 * and the non-active SP for the current security state in
517 * v7m.other_sp. The stack pointers for the inactive security state
518 * are stored in other_ss_msp and other_ss_psp.
519 * switch_v7m_security_state() is responsible for rearranging them
520 * when we change security state.
521 */
9ee6e8bb 522 uint32_t other_sp;
fb602cb7
PM
523 uint32_t other_ss_msp;
524 uint32_t other_ss_psp;
4a16724f
PM
525 uint32_t vecbase[M_REG_NUM_BANKS];
526 uint32_t basepri[M_REG_NUM_BANKS];
527 uint32_t control[M_REG_NUM_BANKS];
528 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
529 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
530 uint32_t hfsr; /* HardFault Status */
531 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 532 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 533 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 534 uint32_t bfar; /* BusFault Address */
bed079da 535 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 536 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 537 int exception;
4a16724f
PM
538 uint32_t primask[M_REG_NUM_BANKS];
539 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 540 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 541 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 542 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 543 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
544 uint32_t msplim[M_REG_NUM_BANKS];
545 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
546 uint32_t fpcar[M_REG_NUM_BANKS];
547 uint32_t fpccr[M_REG_NUM_BANKS];
548 uint32_t fpdscr[M_REG_NUM_BANKS];
549 uint32_t cpacr[M_REG_NUM_BANKS];
550 uint32_t nsacr;
9ee6e8bb
PB
551 } v7m;
552
abf1172f
PM
553 /* Information associated with an exception about to be taken:
554 * code which raises an exception must set cs->exception_index and
555 * the relevant parts of this structure; the cpu_do_interrupt function
556 * will then set the guest-visible registers as part of the exception
557 * entry process.
558 */
559 struct {
560 uint32_t syndrome; /* AArch64 format syndrome register */
561 uint32_t fsr; /* AArch32 format fault status register info */
562 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 563 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
564 /* If we implement EL2 we will also need to store information
565 * about the intermediate physical address for stage 2 faults.
566 */
567 } exception;
568
202ccb6b
DG
569 /* Information associated with an SError */
570 struct {
571 uint8_t pending;
572 uint8_t has_esr;
573 uint64_t esr;
574 } serror;
575
1711bfa5
BM
576 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
577
ed89f078
PM
578 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
579 uint32_t irq_line_state;
580
fe1479c3
PB
581 /* Thumb-2 EE state. */
582 uint32_t teecr;
583 uint32_t teehbr;
584
b7bcbe95
FB
585 /* VFP coprocessor state. */
586 struct {
c39c2b90 587 ARMVectorReg zregs[32];
b7bcbe95 588
3c7d3086
RH
589#ifdef TARGET_AARCH64
590 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 591#define FFR_PRED_NUM 16
3c7d3086 592 ARMPredicateReg pregs[17];
516e246a
RH
593 /* Scratch space for aa64 sve predicate temporary. */
594 ARMPredicateReg preg_tmp;
3c7d3086
RH
595#endif
596
b7bcbe95 597 /* We store these fpcsr fields separately for convenience. */
a4d58462 598 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
599 int vec_len;
600 int vec_stride;
601
a4d58462
RH
602 uint32_t xregs[16];
603
516e246a 604 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 605 uint32_t scratch[8];
3b46e624 606
d81ce0ef
AB
607 /* There are a number of distinct float control structures:
608 *
609 * fp_status: is the "normal" fp status.
610 * fp_status_fp16: used for half-precision calculations
611 * standard_fp_status : the ARM "Standard FPSCR Value"
612 *
613 * Half-precision operations are governed by a separate
614 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
615 * status structure to control this.
616 *
617 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
618 * round-to-nearest and is used by any operations (generally
619 * Neon) which the architecture defines as controlled by the
620 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
621 *
622 * To avoid having to transfer exception bits around, we simply
623 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 624 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
625 * only thing which needs to read the exception flags being
626 * an explicit FPSCR read.
627 */
53cd6637 628 float_status fp_status;
d81ce0ef 629 float_status fp_status_f16;
3a492f3a 630 float_status standard_fp_status;
5be5e8ed
RH
631
632 /* ZCR_EL[1-3] */
633 uint64_t zcr_el[4];
b7bcbe95 634 } vfp;
03d05e2d
PM
635 uint64_t exclusive_addr;
636 uint64_t exclusive_val;
637 uint64_t exclusive_high;
b7bcbe95 638
18c9b560
AZ
639 /* iwMMXt coprocessor state. */
640 struct {
641 uint64_t regs[16];
642 uint64_t val;
643
644 uint32_t cregs[16];
645 } iwmmxt;
646
991ad91b 647#ifdef TARGET_AARCH64
108b3ba8
RH
648 struct {
649 ARMPACKey apia;
650 ARMPACKey apib;
651 ARMPACKey apda;
652 ARMPACKey apdb;
653 ARMPACKey apga;
654 } keys;
991ad91b
RH
655#endif
656
ce4defa0
PB
657#if defined(CONFIG_USER_ONLY)
658 /* For usermode syscall translation. */
659 int eabi;
660#endif
661
46747d15 662 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
663 struct CPUWatchpoint *cpu_watchpoint[16];
664
1f5c00cf
AB
665 /* Fields up to this point are cleared by a CPU reset */
666 struct {} end_reset_fields;
667
e8b5fae5 668 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 669
581be094 670 /* Internal CPU feature flags. */
918f5dca 671 uint64_t features;
581be094 672
6cb0b013
PC
673 /* PMSAv7 MPU */
674 struct {
675 uint32_t *drbar;
676 uint32_t *drsr;
677 uint32_t *dracr;
4a16724f 678 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
679 } pmsav7;
680
0e1a46bb
PM
681 /* PMSAv8 MPU */
682 struct {
683 /* The PMSAv8 implementation also shares some PMSAv7 config
684 * and state:
685 * pmsav7.rnr (region number register)
686 * pmsav7_dregion (number of configured regions)
687 */
4a16724f
PM
688 uint32_t *rbar[M_REG_NUM_BANKS];
689 uint32_t *rlar[M_REG_NUM_BANKS];
690 uint32_t mair0[M_REG_NUM_BANKS];
691 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
692 } pmsav8;
693
9901c576
PM
694 /* v8M SAU */
695 struct {
696 uint32_t *rbar;
697 uint32_t *rlar;
698 uint32_t rnr;
699 uint32_t ctrl;
700 } sau;
701
983fe826 702 void *nvic;
462a8bc6 703 const struct arm_boot_info *boot_info;
d3a3e529
VK
704 /* Store GICv3CPUState to access from this struct */
705 void *gicv3state;
2c0262af
FB
706} CPUARMState;
707
5fda9504
TH
708static inline void set_feature(CPUARMState *env, int feature)
709{
710 env->features |= 1ULL << feature;
711}
712
713static inline void unset_feature(CPUARMState *env, int feature)
714{
715 env->features &= ~(1ULL << feature);
716}
717
bd7d00fc 718/**
08267487 719 * ARMELChangeHookFn:
bd7d00fc
PM
720 * type of a function which can be registered via arm_register_el_change_hook()
721 * to get callbacks when the CPU changes its exception level or mode.
722 */
08267487
AL
723typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
724typedef struct ARMELChangeHook ARMELChangeHook;
725struct ARMELChangeHook {
726 ARMELChangeHookFn *hook;
727 void *opaque;
728 QLIST_ENTRY(ARMELChangeHook) node;
729};
062ba099
AB
730
731/* These values map onto the return values for
732 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
733typedef enum ARMPSCIState {
d5affb0d
AJ
734 PSCI_ON = 0,
735 PSCI_OFF = 1,
062ba099
AB
736 PSCI_ON_PENDING = 2
737} ARMPSCIState;
738
962fcbf2
RH
739typedef struct ARMISARegisters ARMISARegisters;
740
74e75564
PB
741/**
742 * ARMCPU:
743 * @env: #CPUARMState
744 *
745 * An ARM CPU core.
746 */
747struct ARMCPU {
748 /*< private >*/
749 CPUState parent_obj;
750 /*< public >*/
751
5b146dc7 752 CPUNegativeOffsetState neg;
74e75564
PB
753 CPUARMState env;
754
755 /* Coprocessor information */
756 GHashTable *cp_regs;
757 /* For marshalling (mostly coprocessor) register state between the
758 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
759 * we use these arrays.
760 */
761 /* List of register indexes managed via these arrays; (full KVM style
762 * 64 bit indexes, not CPRegInfo 32 bit indexes)
763 */
764 uint64_t *cpreg_indexes;
765 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
766 uint64_t *cpreg_values;
767 /* Length of the indexes, values, reset_values arrays */
768 int32_t cpreg_array_len;
769 /* These are used only for migration: incoming data arrives in
770 * these fields and is sanity checked in post_load before copying
771 * to the working data structures above.
772 */
773 uint64_t *cpreg_vmstate_indexes;
774 uint64_t *cpreg_vmstate_values;
775 int32_t cpreg_vmstate_array_len;
776
448d4d14 777 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 778 DynamicGDBXMLInfo dyn_svereg_xml;
200bf5b7 779
74e75564
PB
780 /* Timers used by the generic (architected) timer */
781 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
782 /*
783 * Timer used by the PMU. Its state is restored after migration by
784 * pmu_op_finish() - it does not need other handling during migration
785 */
786 QEMUTimer *pmu_timer;
74e75564
PB
787 /* GPIO outputs for generic timer */
788 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
789 /* GPIO output for GICv3 maintenance interrupt signal */
790 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
791 /* GPIO output for the PMU interrupt */
792 qemu_irq pmu_interrupt;
74e75564
PB
793
794 /* MemoryRegion to use for secure physical accesses */
795 MemoryRegion *secure_memory;
796
8bce44a2
RH
797 /* MemoryRegion to use for allocation tag accesses */
798 MemoryRegion *tag_memory;
799 MemoryRegion *secure_tag_memory;
800
181962fd
PM
801 /* For v8M, pointer to the IDAU interface provided by board/SoC */
802 Object *idau;
803
74e75564
PB
804 /* 'compatible' string for this CPU for Linux device trees */
805 const char *dtb_compatible;
806
807 /* PSCI version for this CPU
808 * Bits[31:16] = Major Version
809 * Bits[15:0] = Minor Version
810 */
811 uint32_t psci_version;
812
813 /* Should CPU start in PSCI powered-off state? */
814 bool start_powered_off;
062ba099
AB
815
816 /* Current power state, access guarded by BQL */
817 ARMPSCIState power_state;
818
c25bd18a
PM
819 /* CPU has virtualization extension */
820 bool has_el2;
74e75564
PB
821 /* CPU has security extension */
822 bool has_el3;
5c0a3819
SZ
823 /* CPU has PMU (Performance Monitor Unit) */
824 bool has_pmu;
97a28b0e
PM
825 /* CPU has VFP */
826 bool has_vfp;
827 /* CPU has Neon */
828 bool has_neon;
ea90db0a
PM
829 /* CPU has M-profile DSP extension */
830 bool has_dsp;
74e75564
PB
831
832 /* CPU has memory protection unit */
833 bool has_mpu;
834 /* PMSAv7 MPU number of supported regions */
835 uint32_t pmsav7_dregion;
9901c576
PM
836 /* v8M SAU number of supported regions */
837 uint32_t sau_sregion;
74e75564
PB
838
839 /* PSCI conduit used to invoke PSCI methods
840 * 0 - disabled, 1 - smc, 2 - hvc
841 */
842 uint32_t psci_conduit;
843
38e2a77c
PM
844 /* For v8M, initial value of the Secure VTOR */
845 uint32_t init_svtor;
846
74e75564
PB
847 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
848 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
849 */
850 uint32_t kvm_target;
851
852 /* KVM init features for this CPU */
853 uint32_t kvm_init_features[7];
854
e5ac4200
AJ
855 /* KVM CPU state */
856
857 /* KVM virtual time adjustment */
858 bool kvm_adjvtime;
859 bool kvm_vtime_dirty;
860 uint64_t kvm_vtime;
861
74e75564
PB
862 /* Uniprocessor system with MP extensions */
863 bool mp_is_up;
864
c4487d76
PM
865 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
866 * and the probe failed (so we need to report the error in realize)
867 */
868 bool host_cpu_probe_failed;
869
f9a69711
AF
870 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
871 * register.
872 */
873 int32_t core_count;
874
74e75564
PB
875 /* The instance init functions for implementation-specific subclasses
876 * set these fields to specify the implementation-dependent values of
877 * various constant registers and reset values of non-constant
878 * registers.
879 * Some of these might become QOM properties eventually.
880 * Field names match the official register names as defined in the
881 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
882 * is used for reset values of non-constant registers; no reset_
883 * prefix means a constant register.
47576b94
RH
884 * Some of these registers are split out into a substructure that
885 * is shared with the translators to control the ISA.
1548a7b2
PM
886 *
887 * Note that if you add an ID register to the ARMISARegisters struct
888 * you need to also update the 32-bit and 64-bit versions of the
889 * kvm_arm_get_host_cpu_features() function to correctly populate the
890 * field by reading the value from the KVM vCPU.
74e75564 891 */
47576b94
RH
892 struct ARMISARegisters {
893 uint32_t id_isar0;
894 uint32_t id_isar1;
895 uint32_t id_isar2;
896 uint32_t id_isar3;
897 uint32_t id_isar4;
898 uint32_t id_isar5;
899 uint32_t id_isar6;
10054016
PM
900 uint32_t id_mmfr0;
901 uint32_t id_mmfr1;
902 uint32_t id_mmfr2;
903 uint32_t id_mmfr3;
904 uint32_t id_mmfr4;
47576b94
RH
905 uint32_t mvfr0;
906 uint32_t mvfr1;
907 uint32_t mvfr2;
a6179538 908 uint32_t id_dfr0;
4426d361 909 uint32_t dbgdidr;
47576b94
RH
910 uint64_t id_aa64isar0;
911 uint64_t id_aa64isar1;
912 uint64_t id_aa64pfr0;
913 uint64_t id_aa64pfr1;
3dc91ddb
PM
914 uint64_t id_aa64mmfr0;
915 uint64_t id_aa64mmfr1;
64761e10 916 uint64_t id_aa64mmfr2;
2a609df8
PM
917 uint64_t id_aa64dfr0;
918 uint64_t id_aa64dfr1;
47576b94 919 } isar;
e544f800 920 uint64_t midr;
74e75564
PB
921 uint32_t revidr;
922 uint32_t reset_fpsid;
74e75564
PB
923 uint32_t ctr;
924 uint32_t reset_sctlr;
925 uint32_t id_pfr0;
926 uint32_t id_pfr1;
cad86737
AL
927 uint64_t pmceid0;
928 uint64_t pmceid1;
74e75564 929 uint32_t id_afr0;
74e75564
PB
930 uint64_t id_aa64afr0;
931 uint64_t id_aa64afr1;
74e75564
PB
932 uint32_t clidr;
933 uint64_t mp_affinity; /* MP ID without feature bits */
934 /* The elements of this array are the CCSIDR values for each cache,
935 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
936 */
957e6155 937 uint64_t ccsidr[16];
74e75564
PB
938 uint64_t reset_cbar;
939 uint32_t reset_auxcr;
940 bool reset_hivecs;
941 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
942 uint32_t dcz_blocksize;
943 uint64_t rvbar;
bd7d00fc 944
e45868a3
PM
945 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
946 int gic_num_lrs; /* number of list registers */
947 int gic_vpribits; /* number of virtual priority bits */
948 int gic_vprebits; /* number of virtual preemption bits */
949
3a062d57
JB
950 /* Whether the cfgend input is high (i.e. this CPU should reset into
951 * big-endian mode). This setting isn't used directly: instead it modifies
952 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
953 * architecture version.
954 */
955 bool cfgend;
956
b5c53d1b 957 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 958 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
959
960 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
961
962 /* Used to synchronize KVM and QEMU in-kernel device levels */
963 uint8_t device_irq_level;
adf92eab
RH
964
965 /* Used to set the maximum vector length the cpu will support. */
966 uint32_t sve_max_vq;
0df9142d
AJ
967
968 /*
969 * In sve_vq_map each set bit is a supported vector length of
970 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
971 * length in quadwords.
972 *
973 * While processing properties during initialization, corresponding
974 * sve_vq_init bits are set for bits in sve_vq_map that have been
975 * set by properties.
976 */
977 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
978 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
7def8754
AJ
979
980 /* Generic timer counter frequency, in Hz */
981 uint64_t gt_cntfrq_hz;
74e75564
PB
982};
983
7def8754
AJ
984unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
985
51e5ef45
MAL
986void arm_cpu_post_init(Object *obj);
987
46de5913
IM
988uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
989
74e75564 990#ifndef CONFIG_USER_ONLY
8a9358cc 991extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
992#endif
993
994void arm_cpu_do_interrupt(CPUState *cpu);
995void arm_v7m_cpu_do_interrupt(CPUState *cpu);
996bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
997
74e75564
PB
998hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
999 MemTxAttrs *attrs);
1000
a010bdbe 1001int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1002int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1003
d12379c5
AB
1004/*
1005 * Helpers to dynamically generates XML descriptions of the sysregs
1006 * and SVE registers. Returns the number of registers in each set.
200bf5b7 1007 */
32d6e32a 1008int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
d12379c5 1009int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
200bf5b7
AB
1010
1011/* Returns the dynamically generated XML for the gdb stub.
1012 * Returns a pointer to the XML contents for the specified XML file or NULL
1013 * if the XML name doesn't match the predefined one.
1014 */
1015const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1016
74e75564
PB
1017int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1018 int cpuid, void *opaque);
1019int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1020 int cpuid, void *opaque);
1021
1022#ifdef TARGET_AARCH64
a010bdbe 1023int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1024int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1025void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1026void aarch64_sve_change_el(CPUARMState *env, int old_el,
1027 int new_el, bool el0_a64);
87014c6b 1028void aarch64_add_sve_properties(Object *obj);
538baab2
AJ
1029
1030/*
1031 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1032 * The byte at offset i from the start of the in-memory representation contains
1033 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1034 * lowest offsets are stored in the lowest memory addresses, then that nearly
1035 * matches QEMU's representation, which is to use an array of host-endian
1036 * uint64_t's, where the lower offsets are at the lower indices. To complete
1037 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1038 */
1039static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1040{
1041#ifdef HOST_WORDS_BIGENDIAN
1042 int i;
1043
1044 for (i = 0; i < nr; ++i) {
1045 dst[i] = bswap64(src[i]);
1046 }
1047
1048 return dst;
1049#else
1050 return src;
1051#endif
1052}
1053
0ab5953b
RH
1054#else
1055static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1056static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1057 int n, bool a)
1058{ }
87014c6b 1059static inline void aarch64_add_sve_properties(Object *obj) { }
74e75564 1060#endif
778c3a06 1061
91f78c58
PMD
1062#if !defined(CONFIG_TCG)
1063static inline target_ulong do_arm_semihosting(CPUARMState *env)
1064{
1065 g_assert_not_reached();
1066}
1067#else
faacc041 1068target_ulong do_arm_semihosting(CPUARMState *env);
91f78c58 1069#endif
ce02049d
GB
1070void aarch64_sync_32_to_64(CPUARMState *env);
1071void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1072
ced31551
RH
1073int fp_exception_el(CPUARMState *env, int cur_el);
1074int sve_exception_el(CPUARMState *env, int cur_el);
1075uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1076
3926cc84
AG
1077static inline bool is_a64(CPUARMState *env)
1078{
1079 return env->aarch64;
1080}
1081
2c0262af
FB
1082/* you can call this signal handler from your SIGBUS and SIGSEGV
1083 signal handlers to inform the virtual CPU of exceptions. non zero
1084 is returned if the signal was handled by the virtual CPU. */
5fafdf24 1085int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
1086 void *puc);
1087
5d05b9d4
AL
1088/**
1089 * pmu_op_start/finish
ec7b4ce4
AF
1090 * @env: CPUARMState
1091 *
5d05b9d4
AL
1092 * Convert all PMU counters between their delta form (the typical mode when
1093 * they are enabled) and the guest-visible values. These two calls must
1094 * surround any action which might affect the counters.
ec7b4ce4 1095 */
5d05b9d4
AL
1096void pmu_op_start(CPUARMState *env);
1097void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1098
4e7beb0c
AL
1099/*
1100 * Called when a PMU counter is due to overflow
1101 */
1102void arm_pmu_timer_cb(void *opaque);
1103
033614c4
AL
1104/**
1105 * Functions to register as EL change hooks for PMU mode filtering
1106 */
1107void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1108void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1109
57a4a11b 1110/*
bf8d0969
AL
1111 * pmu_init
1112 * @cpu: ARMCPU
57a4a11b 1113 *
bf8d0969
AL
1114 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1115 * for the current configuration
57a4a11b 1116 */
bf8d0969 1117void pmu_init(ARMCPU *cpu);
57a4a11b 1118
76e3e1bc
PM
1119/* SCTLR bit meanings. Several bits have been reused in newer
1120 * versions of the architecture; in that case we define constants
1121 * for both old and new bit meanings. Code which tests against those
1122 * bits should probably check or otherwise arrange that the CPU
1123 * is the architectural version it expects.
1124 */
1125#define SCTLR_M (1U << 0)
1126#define SCTLR_A (1U << 1)
1127#define SCTLR_C (1U << 2)
1128#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1129#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1130#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1131#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1132#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1133#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1134#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1135#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1136#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1137#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1138#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1139#define SCTLR_ITD (1U << 7) /* v8 onward */
1140#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1141#define SCTLR_SED (1U << 8) /* v8 onward */
1142#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1143#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1144#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1145#define SCTLR_SW (1U << 10) /* v7 */
1146#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1147#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1148#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1149#define SCTLR_I (1U << 12)
b2af69d0
RH
1150#define SCTLR_V (1U << 13) /* AArch32 only */
1151#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1152#define SCTLR_RR (1U << 14) /* up to v7 */
1153#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1154#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1155#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1156#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1157#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1158#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1159#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1160#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1161#define SCTLR_nTWE (1U << 18) /* v8 onward */
1162#define SCTLR_WXN (1U << 19)
1163#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1164#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1165#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1166#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1167#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1168#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1169#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1170#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1171#define SCTLR_VE (1U << 24) /* up to v7 */
1172#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1173#define SCTLR_EE (1U << 25)
1174#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1175#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1176#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1177#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1178#define SCTLR_TRE (1U << 28) /* AArch32 only */
1179#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1180#define SCTLR_AFE (1U << 29) /* AArch32 only */
1181#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1182#define SCTLR_TE (1U << 30) /* AArch32 only */
1183#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1184#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1185#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1186#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1187#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1188#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1189#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1190#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1191#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1192#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1193
c6f19164
GB
1194#define CPTR_TCPAC (1U << 31)
1195#define CPTR_TTA (1U << 20)
1196#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1197#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1198#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1199
187f678d
PM
1200#define MDCR_EPMAD (1U << 21)
1201#define MDCR_EDAD (1U << 20)
033614c4
AL
1202#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1203#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1204#define MDCR_SDD (1U << 16)
a8d64e73 1205#define MDCR_SPD (3U << 14)
187f678d
PM
1206#define MDCR_TDRA (1U << 11)
1207#define MDCR_TDOSA (1U << 10)
1208#define MDCR_TDA (1U << 9)
1209#define MDCR_TDE (1U << 8)
1210#define MDCR_HPME (1U << 7)
1211#define MDCR_TPM (1U << 6)
1212#define MDCR_TPMCR (1U << 5)
033614c4 1213#define MDCR_HPMN (0x1fU)
187f678d 1214
a8d64e73
PM
1215/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1216#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1217
78dbbbe4
PM
1218#define CPSR_M (0x1fU)
1219#define CPSR_T (1U << 5)
1220#define CPSR_F (1U << 6)
1221#define CPSR_I (1U << 7)
1222#define CPSR_A (1U << 8)
1223#define CPSR_E (1U << 9)
1224#define CPSR_IT_2_7 (0xfc00U)
1225#define CPSR_GE (0xfU << 16)
4051e12c 1226#define CPSR_IL (1U << 20)
220f508f 1227#define CPSR_PAN (1U << 22)
78dbbbe4
PM
1228#define CPSR_J (1U << 24)
1229#define CPSR_IT_0_1 (3U << 25)
1230#define CPSR_Q (1U << 27)
1231#define CPSR_V (1U << 28)
1232#define CPSR_C (1U << 29)
1233#define CPSR_Z (1U << 30)
1234#define CPSR_N (1U << 31)
9ee6e8bb 1235#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1236#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1237
1238#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1239#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1240 | CPSR_NZCV)
9ee6e8bb 1241/* Bits writable in user mode. */
268b1b3d 1242#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1243/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1244#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1245
987ab45e
PM
1246/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1247#define XPSR_EXCP 0x1ffU
1248#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1249#define XPSR_IT_2_7 CPSR_IT_2_7
1250#define XPSR_GE CPSR_GE
1251#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1252#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1253#define XPSR_IT_0_1 CPSR_IT_0_1
1254#define XPSR_Q CPSR_Q
1255#define XPSR_V CPSR_V
1256#define XPSR_C CPSR_C
1257#define XPSR_Z CPSR_Z
1258#define XPSR_N CPSR_N
1259#define XPSR_NZCV CPSR_NZCV
1260#define XPSR_IT CPSR_IT
1261
e389be16
FA
1262#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1263#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1264#define TTBCR_PD0 (1U << 4)
1265#define TTBCR_PD1 (1U << 5)
1266#define TTBCR_EPD0 (1U << 7)
1267#define TTBCR_IRGN0 (3U << 8)
1268#define TTBCR_ORGN0 (3U << 10)
1269#define TTBCR_SH0 (3U << 12)
1270#define TTBCR_T1SZ (3U << 16)
1271#define TTBCR_A1 (1U << 22)
1272#define TTBCR_EPD1 (1U << 23)
1273#define TTBCR_IRGN1 (3U << 24)
1274#define TTBCR_ORGN1 (3U << 26)
1275#define TTBCR_SH1 (1U << 28)
1276#define TTBCR_EAE (1U << 31)
1277
d356312f
PM
1278/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1279 * Only these are valid when in AArch64 mode; in
1280 * AArch32 mode SPSRs are basically CPSR-format.
1281 */
f502cfc2 1282#define PSTATE_SP (1U)
d356312f
PM
1283#define PSTATE_M (0xFU)
1284#define PSTATE_nRW (1U << 4)
1285#define PSTATE_F (1U << 6)
1286#define PSTATE_I (1U << 7)
1287#define PSTATE_A (1U << 8)
1288#define PSTATE_D (1U << 9)
f6e52eaa 1289#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1290#define PSTATE_IL (1U << 20)
1291#define PSTATE_SS (1U << 21)
220f508f 1292#define PSTATE_PAN (1U << 22)
9eeb7a1c 1293#define PSTATE_UAO (1U << 23)
4b779ceb 1294#define PSTATE_TCO (1U << 25)
d356312f
PM
1295#define PSTATE_V (1U << 28)
1296#define PSTATE_C (1U << 29)
1297#define PSTATE_Z (1U << 30)
1298#define PSTATE_N (1U << 31)
1299#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1300#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1301#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1302/* Mode values for AArch64 */
1303#define PSTATE_MODE_EL3h 13
1304#define PSTATE_MODE_EL3t 12
1305#define PSTATE_MODE_EL2h 9
1306#define PSTATE_MODE_EL2t 8
1307#define PSTATE_MODE_EL1h 5
1308#define PSTATE_MODE_EL1t 4
1309#define PSTATE_MODE_EL0t 0
1310
de2db7ec
PM
1311/* Write a new value to v7m.exception, thus transitioning into or out
1312 * of Handler mode; this may result in a change of active stack pointer.
1313 */
1314void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1315
9e729b57
EI
1316/* Map EL and handler into a PSTATE_MODE. */
1317static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1318{
1319 return (el << 2) | handler;
1320}
1321
d356312f
PM
1322/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1323 * interprocessing, so we don't attempt to sync with the cpsr state used by
1324 * the 32 bit decoder.
1325 */
1326static inline uint32_t pstate_read(CPUARMState *env)
1327{
1328 int ZF;
1329
1330 ZF = (env->ZF == 0);
1331 return (env->NF & 0x80000000) | (ZF << 30)
1332 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1333 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1334}
1335
1336static inline void pstate_write(CPUARMState *env, uint32_t val)
1337{
1338 env->ZF = (~val) & PSTATE_Z;
1339 env->NF = val;
1340 env->CF = (val >> 29) & 1;
1341 env->VF = (val << 3) & 0x80000000;
4cc35614 1342 env->daif = val & PSTATE_DAIF;
f6e52eaa 1343 env->btype = (val >> 10) & 3;
d356312f
PM
1344 env->pstate = val & ~CACHED_PSTATE_BITS;
1345}
1346
b5ff1b31 1347/* Return the current CPSR value. */
2f4a40e5 1348uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1349
1350typedef enum CPSRWriteType {
1351 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1352 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1353 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1354 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1355} CPSRWriteType;
1356
1357/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1358void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1359 CPSRWriteType write_type);
9ee6e8bb
PB
1360
1361/* Return the current xPSR value. */
1362static inline uint32_t xpsr_read(CPUARMState *env)
1363{
1364 int ZF;
6fbe23d5
PB
1365 ZF = (env->ZF == 0);
1366 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1367 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1368 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1369 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1370 | (env->GE << 16)
9ee6e8bb 1371 | env->v7m.exception;
b5ff1b31
FB
1372}
1373
9ee6e8bb
PB
1374/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1375static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1376{
987ab45e
PM
1377 if (mask & XPSR_NZCV) {
1378 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1379 env->NF = val;
9ee6e8bb
PB
1380 env->CF = (val >> 29) & 1;
1381 env->VF = (val << 3) & 0x80000000;
1382 }
987ab45e
PM
1383 if (mask & XPSR_Q) {
1384 env->QF = ((val & XPSR_Q) != 0);
1385 }
f1e2598c
PM
1386 if (mask & XPSR_GE) {
1387 env->GE = (val & XPSR_GE) >> 16;
1388 }
04c9c81b 1389#ifndef CONFIG_USER_ONLY
987ab45e
PM
1390 if (mask & XPSR_T) {
1391 env->thumb = ((val & XPSR_T) != 0);
1392 }
1393 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1394 env->condexec_bits &= ~3;
1395 env->condexec_bits |= (val >> 25) & 3;
1396 }
987ab45e 1397 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1398 env->condexec_bits &= 3;
1399 env->condexec_bits |= (val >> 8) & 0xfc;
1400 }
987ab45e 1401 if (mask & XPSR_EXCP) {
de2db7ec
PM
1402 /* Note that this only happens on exception exit */
1403 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1404 }
04c9c81b 1405#endif
9ee6e8bb
PB
1406}
1407
f149e3e8
EI
1408#define HCR_VM (1ULL << 0)
1409#define HCR_SWIO (1ULL << 1)
1410#define HCR_PTW (1ULL << 2)
1411#define HCR_FMO (1ULL << 3)
1412#define HCR_IMO (1ULL << 4)
1413#define HCR_AMO (1ULL << 5)
1414#define HCR_VF (1ULL << 6)
1415#define HCR_VI (1ULL << 7)
1416#define HCR_VSE (1ULL << 8)
1417#define HCR_FB (1ULL << 9)
1418#define HCR_BSU_MASK (3ULL << 10)
1419#define HCR_DC (1ULL << 12)
1420#define HCR_TWI (1ULL << 13)
1421#define HCR_TWE (1ULL << 14)
1422#define HCR_TID0 (1ULL << 15)
1423#define HCR_TID1 (1ULL << 16)
1424#define HCR_TID2 (1ULL << 17)
1425#define HCR_TID3 (1ULL << 18)
1426#define HCR_TSC (1ULL << 19)
1427#define HCR_TIDCP (1ULL << 20)
1428#define HCR_TACR (1ULL << 21)
1429#define HCR_TSW (1ULL << 22)
099bf53b 1430#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1431#define HCR_TPU (1ULL << 24)
1432#define HCR_TTLB (1ULL << 25)
1433#define HCR_TVM (1ULL << 26)
1434#define HCR_TGE (1ULL << 27)
1435#define HCR_TDZ (1ULL << 28)
1436#define HCR_HCD (1ULL << 29)
1437#define HCR_TRVM (1ULL << 30)
1438#define HCR_RW (1ULL << 31)
1439#define HCR_CD (1ULL << 32)
1440#define HCR_ID (1ULL << 33)
ac656b16 1441#define HCR_E2H (1ULL << 34)
099bf53b
RH
1442#define HCR_TLOR (1ULL << 35)
1443#define HCR_TERR (1ULL << 36)
1444#define HCR_TEA (1ULL << 37)
1445#define HCR_MIOCNCE (1ULL << 38)
e0a38bb3 1446/* RES0 bit 39 */
099bf53b
RH
1447#define HCR_APK (1ULL << 40)
1448#define HCR_API (1ULL << 41)
1449#define HCR_NV (1ULL << 42)
1450#define HCR_NV1 (1ULL << 43)
1451#define HCR_AT (1ULL << 44)
1452#define HCR_NV2 (1ULL << 45)
1453#define HCR_FWB (1ULL << 46)
1454#define HCR_FIEN (1ULL << 47)
e0a38bb3 1455/* RES0 bit 48 */
099bf53b
RH
1456#define HCR_TID4 (1ULL << 49)
1457#define HCR_TICAB (1ULL << 50)
e0a38bb3 1458#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1459#define HCR_TOCU (1ULL << 52)
e0a38bb3 1460#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1461#define HCR_TTLBIS (1ULL << 54)
1462#define HCR_TTLBOS (1ULL << 55)
1463#define HCR_ATA (1ULL << 56)
1464#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1465#define HCR_TID5 (1ULL << 58)
1466#define HCR_TWEDEN (1ULL << 59)
1467#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1468
64e0e2de
EI
1469#define SCR_NS (1U << 0)
1470#define SCR_IRQ (1U << 1)
1471#define SCR_FIQ (1U << 2)
1472#define SCR_EA (1U << 3)
1473#define SCR_FW (1U << 4)
1474#define SCR_AW (1U << 5)
1475#define SCR_NET (1U << 6)
1476#define SCR_SMD (1U << 7)
1477#define SCR_HCE (1U << 8)
1478#define SCR_SIF (1U << 9)
1479#define SCR_RW (1U << 10)
1480#define SCR_ST (1U << 11)
1481#define SCR_TWI (1U << 12)
1482#define SCR_TWE (1U << 13)
99f8f86d
RH
1483#define SCR_TLOR (1U << 14)
1484#define SCR_TERR (1U << 15)
1485#define SCR_APK (1U << 16)
1486#define SCR_API (1U << 17)
1487#define SCR_EEL2 (1U << 18)
1488#define SCR_EASE (1U << 19)
1489#define SCR_NMEA (1U << 20)
1490#define SCR_FIEN (1U << 21)
1491#define SCR_ENSCXT (1U << 25)
1492#define SCR_ATA (1U << 26)
64e0e2de 1493
01653295
PM
1494/* Return the current FPSCR value. */
1495uint32_t vfp_get_fpscr(CPUARMState *env);
1496void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1497
d81ce0ef
AB
1498/* FPCR, Floating Point Control Register
1499 * FPSR, Floating Poiht Status Register
1500 *
1501 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1502 * FPCR and FPSR. However since they still use non-overlapping bits
1503 * we store the underlying state in fpscr and just mask on read/write.
1504 */
1505#define FPSR_MASK 0xf800009f
0b62159b 1506#define FPCR_MASK 0x07ff9f00
d81ce0ef 1507
a15945d9
PM
1508#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1509#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1510#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1511#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1512#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1513#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef
AB
1514#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1515#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1516#define FPCR_DN (1 << 25) /* Default NaN enable bit */
a4d58462 1517#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
d81ce0ef 1518
f903fa22
PM
1519static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1520{
1521 return vfp_get_fpscr(env) & FPSR_MASK;
1522}
1523
1524static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1525{
1526 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1527 vfp_set_fpscr(env, new_fpscr);
1528}
1529
1530static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1531{
1532 return vfp_get_fpscr(env) & FPCR_MASK;
1533}
1534
1535static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1536{
1537 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1538 vfp_set_fpscr(env, new_fpscr);
1539}
1540
b5ff1b31
FB
1541enum arm_cpu_mode {
1542 ARM_CPU_MODE_USR = 0x10,
1543 ARM_CPU_MODE_FIQ = 0x11,
1544 ARM_CPU_MODE_IRQ = 0x12,
1545 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1546 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1547 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1548 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1549 ARM_CPU_MODE_UND = 0x1b,
1550 ARM_CPU_MODE_SYS = 0x1f
1551};
1552
40f137e1
PB
1553/* VFP system registers. */
1554#define ARM_VFP_FPSID 0
1555#define ARM_VFP_FPSCR 1
a50c0f51 1556#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1557#define ARM_VFP_MVFR1 6
1558#define ARM_VFP_MVFR0 7
40f137e1
PB
1559#define ARM_VFP_FPEXC 8
1560#define ARM_VFP_FPINST 9
1561#define ARM_VFP_FPINST2 10
1562
18c9b560 1563/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1564#define ARM_IWMMXT_wCID 0
1565#define ARM_IWMMXT_wCon 1
1566#define ARM_IWMMXT_wCSSF 2
1567#define ARM_IWMMXT_wCASF 3
1568#define ARM_IWMMXT_wCGR0 8
1569#define ARM_IWMMXT_wCGR1 9
1570#define ARM_IWMMXT_wCGR2 10
1571#define ARM_IWMMXT_wCGR3 11
18c9b560 1572
2c4da50d
PM
1573/* V7M CCR bits */
1574FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1575FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1576FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1577FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1578FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1579FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1580FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1581FIELD(V7M_CCR, DC, 16, 1)
1582FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1583FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1584
24ac0fb1
PM
1585/* V7M SCR bits */
1586FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1587FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1588FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1589FIELD(V7M_SCR, SEVONPEND, 4, 1)
1590
3b2e9344
PM
1591/* V7M AIRCR bits */
1592FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1593FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1594FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1595FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1596FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1597FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1598FIELD(V7M_AIRCR, PRIS, 14, 1)
1599FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1600FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1601
2c4da50d
PM
1602/* V7M CFSR bits for MMFSR */
1603FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1604FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1605FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1606FIELD(V7M_CFSR, MSTKERR, 4, 1)
1607FIELD(V7M_CFSR, MLSPERR, 5, 1)
1608FIELD(V7M_CFSR, MMARVALID, 7, 1)
1609
1610/* V7M CFSR bits for BFSR */
1611FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1612FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1613FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1614FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1615FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1616FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1617FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1618
1619/* V7M CFSR bits for UFSR */
1620FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1621FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1622FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1623FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1624FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1625FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1626FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1627
334e8dad
PM
1628/* V7M CFSR bit masks covering all of the subregister bits */
1629FIELD(V7M_CFSR, MMFSR, 0, 8)
1630FIELD(V7M_CFSR, BFSR, 8, 8)
1631FIELD(V7M_CFSR, UFSR, 16, 16)
1632
2c4da50d
PM
1633/* V7M HFSR bits */
1634FIELD(V7M_HFSR, VECTTBL, 1, 1)
1635FIELD(V7M_HFSR, FORCED, 30, 1)
1636FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1637
1638/* V7M DFSR bits */
1639FIELD(V7M_DFSR, HALTED, 0, 1)
1640FIELD(V7M_DFSR, BKPT, 1, 1)
1641FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1642FIELD(V7M_DFSR, VCATCH, 3, 1)
1643FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1644
bed079da
PM
1645/* V7M SFSR bits */
1646FIELD(V7M_SFSR, INVEP, 0, 1)
1647FIELD(V7M_SFSR, INVIS, 1, 1)
1648FIELD(V7M_SFSR, INVER, 2, 1)
1649FIELD(V7M_SFSR, AUVIOL, 3, 1)
1650FIELD(V7M_SFSR, INVTRAN, 4, 1)
1651FIELD(V7M_SFSR, LSPERR, 5, 1)
1652FIELD(V7M_SFSR, SFARVALID, 6, 1)
1653FIELD(V7M_SFSR, LSERR, 7, 1)
1654
29c483a5
MD
1655/* v7M MPU_CTRL bits */
1656FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1657FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1658FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1659
43bbce7f
PM
1660/* v7M CLIDR bits */
1661FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1662FIELD(V7M_CLIDR, LOUIS, 21, 3)
1663FIELD(V7M_CLIDR, LOC, 24, 3)
1664FIELD(V7M_CLIDR, LOUU, 27, 3)
1665FIELD(V7M_CLIDR, ICB, 30, 2)
1666
1667FIELD(V7M_CSSELR, IND, 0, 1)
1668FIELD(V7M_CSSELR, LEVEL, 1, 3)
1669/* We use the combination of InD and Level to index into cpu->ccsidr[];
1670 * define a mask for this and check that it doesn't permit running off
1671 * the end of the array.
1672 */
1673FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1674
1675/* v7M FPCCR bits */
1676FIELD(V7M_FPCCR, LSPACT, 0, 1)
1677FIELD(V7M_FPCCR, USER, 1, 1)
1678FIELD(V7M_FPCCR, S, 2, 1)
1679FIELD(V7M_FPCCR, THREAD, 3, 1)
1680FIELD(V7M_FPCCR, HFRDY, 4, 1)
1681FIELD(V7M_FPCCR, MMRDY, 5, 1)
1682FIELD(V7M_FPCCR, BFRDY, 6, 1)
1683FIELD(V7M_FPCCR, SFRDY, 7, 1)
1684FIELD(V7M_FPCCR, MONRDY, 8, 1)
1685FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1686FIELD(V7M_FPCCR, UFRDY, 10, 1)
1687FIELD(V7M_FPCCR, RES0, 11, 15)
1688FIELD(V7M_FPCCR, TS, 26, 1)
1689FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1690FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1691FIELD(V7M_FPCCR, LSPENS, 29, 1)
1692FIELD(V7M_FPCCR, LSPEN, 30, 1)
1693FIELD(V7M_FPCCR, ASPEN, 31, 1)
1694/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1695#define R_V7M_FPCCR_BANKED_MASK \
1696 (R_V7M_FPCCR_LSPACT_MASK | \
1697 R_V7M_FPCCR_USER_MASK | \
1698 R_V7M_FPCCR_THREAD_MASK | \
1699 R_V7M_FPCCR_MMRDY_MASK | \
1700 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1701 R_V7M_FPCCR_UFRDY_MASK | \
1702 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1703
a62e62af
RH
1704/*
1705 * System register ID fields.
1706 */
2bd5f41c
AB
1707FIELD(MIDR_EL1, REVISION, 0, 4)
1708FIELD(MIDR_EL1, PARTNUM, 4, 12)
1709FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1710FIELD(MIDR_EL1, VARIANT, 20, 4)
1711FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1712
a62e62af
RH
1713FIELD(ID_ISAR0, SWAP, 0, 4)
1714FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1715FIELD(ID_ISAR0, BITFIELD, 8, 4)
1716FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1717FIELD(ID_ISAR0, COPROC, 16, 4)
1718FIELD(ID_ISAR0, DEBUG, 20, 4)
1719FIELD(ID_ISAR0, DIVIDE, 24, 4)
1720
1721FIELD(ID_ISAR1, ENDIAN, 0, 4)
1722FIELD(ID_ISAR1, EXCEPT, 4, 4)
1723FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1724FIELD(ID_ISAR1, EXTEND, 12, 4)
1725FIELD(ID_ISAR1, IFTHEN, 16, 4)
1726FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1727FIELD(ID_ISAR1, INTERWORK, 24, 4)
1728FIELD(ID_ISAR1, JAZELLE, 28, 4)
1729
1730FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1731FIELD(ID_ISAR2, MEMHINT, 4, 4)
1732FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1733FIELD(ID_ISAR2, MULT, 12, 4)
1734FIELD(ID_ISAR2, MULTS, 16, 4)
1735FIELD(ID_ISAR2, MULTU, 20, 4)
1736FIELD(ID_ISAR2, PSR_AR, 24, 4)
1737FIELD(ID_ISAR2, REVERSAL, 28, 4)
1738
1739FIELD(ID_ISAR3, SATURATE, 0, 4)
1740FIELD(ID_ISAR3, SIMD, 4, 4)
1741FIELD(ID_ISAR3, SVC, 8, 4)
1742FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1743FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1744FIELD(ID_ISAR3, T32COPY, 20, 4)
1745FIELD(ID_ISAR3, TRUENOP, 24, 4)
1746FIELD(ID_ISAR3, T32EE, 28, 4)
1747
1748FIELD(ID_ISAR4, UNPRIV, 0, 4)
1749FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1750FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1751FIELD(ID_ISAR4, SMC, 12, 4)
1752FIELD(ID_ISAR4, BARRIER, 16, 4)
1753FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1754FIELD(ID_ISAR4, PSR_M, 24, 4)
1755FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1756
1757FIELD(ID_ISAR5, SEVL, 0, 4)
1758FIELD(ID_ISAR5, AES, 4, 4)
1759FIELD(ID_ISAR5, SHA1, 8, 4)
1760FIELD(ID_ISAR5, SHA2, 12, 4)
1761FIELD(ID_ISAR5, CRC32, 16, 4)
1762FIELD(ID_ISAR5, RDM, 24, 4)
1763FIELD(ID_ISAR5, VCMA, 28, 4)
1764
1765FIELD(ID_ISAR6, JSCVT, 0, 4)
1766FIELD(ID_ISAR6, DP, 4, 4)
1767FIELD(ID_ISAR6, FHM, 8, 4)
1768FIELD(ID_ISAR6, SB, 12, 4)
1769FIELD(ID_ISAR6, SPECRES, 16, 4)
1770
3d6ad6bb
RH
1771FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1772FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1773FIELD(ID_MMFR3, BPMAINT, 8, 4)
1774FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1775FIELD(ID_MMFR3, PAN, 16, 4)
1776FIELD(ID_MMFR3, COHWALK, 20, 4)
1777FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1778FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1779
ab638a32
RH
1780FIELD(ID_MMFR4, SPECSEI, 0, 4)
1781FIELD(ID_MMFR4, AC2, 4, 4)
1782FIELD(ID_MMFR4, XNX, 8, 4)
1783FIELD(ID_MMFR4, CNP, 12, 4)
1784FIELD(ID_MMFR4, HPDS, 16, 4)
1785FIELD(ID_MMFR4, LSM, 20, 4)
1786FIELD(ID_MMFR4, CCIDX, 24, 4)
1787FIELD(ID_MMFR4, EVT, 28, 4)
1788
a62e62af
RH
1789FIELD(ID_AA64ISAR0, AES, 4, 4)
1790FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1791FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1792FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1793FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1794FIELD(ID_AA64ISAR0, RDM, 28, 4)
1795FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1796FIELD(ID_AA64ISAR0, SM3, 36, 4)
1797FIELD(ID_AA64ISAR0, SM4, 40, 4)
1798FIELD(ID_AA64ISAR0, DP, 44, 4)
1799FIELD(ID_AA64ISAR0, FHM, 48, 4)
1800FIELD(ID_AA64ISAR0, TS, 52, 4)
1801FIELD(ID_AA64ISAR0, TLB, 56, 4)
1802FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1803
1804FIELD(ID_AA64ISAR1, DPB, 0, 4)
1805FIELD(ID_AA64ISAR1, APA, 4, 4)
1806FIELD(ID_AA64ISAR1, API, 8, 4)
1807FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1808FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1809FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1810FIELD(ID_AA64ISAR1, GPA, 24, 4)
1811FIELD(ID_AA64ISAR1, GPI, 28, 4)
1812FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1813FIELD(ID_AA64ISAR1, SB, 36, 4)
1814FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1815
cd208a1c
RH
1816FIELD(ID_AA64PFR0, EL0, 0, 4)
1817FIELD(ID_AA64PFR0, EL1, 4, 4)
1818FIELD(ID_AA64PFR0, EL2, 8, 4)
1819FIELD(ID_AA64PFR0, EL3, 12, 4)
1820FIELD(ID_AA64PFR0, FP, 16, 4)
1821FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1822FIELD(ID_AA64PFR0, GIC, 24, 4)
1823FIELD(ID_AA64PFR0, RAS, 28, 4)
1824FIELD(ID_AA64PFR0, SVE, 32, 4)
1825
be53b6f4
RH
1826FIELD(ID_AA64PFR1, BT, 0, 4)
1827FIELD(ID_AA64PFR1, SBSS, 4, 4)
1828FIELD(ID_AA64PFR1, MTE, 8, 4)
1829FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1830
3dc91ddb
PM
1831FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1832FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1833FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1834FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1835FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1836FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1837FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1838FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1839FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1840FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1841FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1842FIELD(ID_AA64MMFR0, EXS, 44, 4)
1843
1844FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1845FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1846FIELD(ID_AA64MMFR1, VH, 8, 4)
1847FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1848FIELD(ID_AA64MMFR1, LO, 16, 4)
1849FIELD(ID_AA64MMFR1, PAN, 20, 4)
1850FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1851FIELD(ID_AA64MMFR1, XNX, 28, 4)
1852
64761e10
RH
1853FIELD(ID_AA64MMFR2, CNP, 0, 4)
1854FIELD(ID_AA64MMFR2, UAO, 4, 4)
1855FIELD(ID_AA64MMFR2, LSM, 8, 4)
1856FIELD(ID_AA64MMFR2, IESB, 12, 4)
1857FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1858FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
1859FIELD(ID_AA64MMFR2, NV, 24, 4)
1860FIELD(ID_AA64MMFR2, ST, 28, 4)
1861FIELD(ID_AA64MMFR2, AT, 32, 4)
1862FIELD(ID_AA64MMFR2, IDS, 36, 4)
1863FIELD(ID_AA64MMFR2, FWB, 40, 4)
1864FIELD(ID_AA64MMFR2, TTL, 48, 4)
1865FIELD(ID_AA64MMFR2, BBM, 52, 4)
1866FIELD(ID_AA64MMFR2, EVT, 56, 4)
1867FIELD(ID_AA64MMFR2, E0PD, 60, 4)
1868
ceb2744b
PM
1869FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
1870FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
1871FIELD(ID_AA64DFR0, PMUVER, 8, 4)
1872FIELD(ID_AA64DFR0, BRPS, 12, 4)
1873FIELD(ID_AA64DFR0, WRPS, 20, 4)
1874FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
1875FIELD(ID_AA64DFR0, PMSVER, 32, 4)
1876FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
1877FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
1878
beceb99c
AL
1879FIELD(ID_DFR0, COPDBG, 0, 4)
1880FIELD(ID_DFR0, COPSDBG, 4, 4)
1881FIELD(ID_DFR0, MMAPDBG, 8, 4)
1882FIELD(ID_DFR0, COPTRC, 12, 4)
1883FIELD(ID_DFR0, MMAPTRC, 16, 4)
1884FIELD(ID_DFR0, MPROFDBG, 20, 4)
1885FIELD(ID_DFR0, PERFMON, 24, 4)
1886FIELD(ID_DFR0, TRACEFILT, 28, 4)
1887
88ce6c6e
PM
1888FIELD(DBGDIDR, SE_IMP, 12, 1)
1889FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
1890FIELD(DBGDIDR, VERSION, 16, 4)
1891FIELD(DBGDIDR, CTX_CMPS, 20, 4)
1892FIELD(DBGDIDR, BRPS, 24, 4)
1893FIELD(DBGDIDR, WRPS, 28, 4)
1894
602f6e42
PM
1895FIELD(MVFR0, SIMDREG, 0, 4)
1896FIELD(MVFR0, FPSP, 4, 4)
1897FIELD(MVFR0, FPDP, 8, 4)
1898FIELD(MVFR0, FPTRAP, 12, 4)
1899FIELD(MVFR0, FPDIVIDE, 16, 4)
1900FIELD(MVFR0, FPSQRT, 20, 4)
1901FIELD(MVFR0, FPSHVEC, 24, 4)
1902FIELD(MVFR0, FPROUND, 28, 4)
1903
1904FIELD(MVFR1, FPFTZ, 0, 4)
1905FIELD(MVFR1, FPDNAN, 4, 4)
1906FIELD(MVFR1, SIMDLS, 8, 4)
1907FIELD(MVFR1, SIMDINT, 12, 4)
1908FIELD(MVFR1, SIMDSP, 16, 4)
1909FIELD(MVFR1, SIMDHP, 20, 4)
1910FIELD(MVFR1, FPHP, 24, 4)
1911FIELD(MVFR1, SIMDFMAC, 28, 4)
1912
1913FIELD(MVFR2, SIMDMISC, 0, 4)
1914FIELD(MVFR2, FPMISC, 4, 4)
1915
43bbce7f
PM
1916QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1917
ce854d7c
BC
1918/* If adding a feature bit which corresponds to a Linux ELF
1919 * HWCAP bit, remember to update the feature-bit-to-hwcap
1920 * mapping in linux-user/elfload.c:get_elf_hwcap().
1921 */
40f137e1 1922enum arm_features {
c1713132
AZ
1923 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1924 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1925 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1926 ARM_FEATURE_V6,
1927 ARM_FEATURE_V6K,
1928 ARM_FEATURE_V7,
1929 ARM_FEATURE_THUMB2,
452a0955 1930 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1931 ARM_FEATURE_NEON,
9ee6e8bb 1932 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1933 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1934 ARM_FEATURE_THUMB2EE,
be5e7a76 1935 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1936 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1937 ARM_FEATURE_V4T,
1938 ARM_FEATURE_V5,
5bc95aa2 1939 ARM_FEATURE_STRONGARM,
906879a9 1940 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 1941 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1942 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1943 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1944 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1945 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1946 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1947 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1948 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1949 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1950 ARM_FEATURE_V8,
3926cc84 1951 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1952 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 1953 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1954 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1955 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1956 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1957 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1958 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1959 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1960 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1961};
1962
1963static inline int arm_feature(CPUARMState *env, int feature)
1964{
918f5dca 1965 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1966}
1967
0df9142d
AJ
1968void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1969
19e0fefa
FA
1970#if !defined(CONFIG_USER_ONLY)
1971/* Return true if exception levels below EL3 are in secure state,
1972 * or would be following an exception return to that level.
1973 * Unlike arm_is_secure() (which is always a question about the
1974 * _current_ state of the CPU) this doesn't care about the current
1975 * EL or mode.
1976 */
1977static inline bool arm_is_secure_below_el3(CPUARMState *env)
1978{
1979 if (arm_feature(env, ARM_FEATURE_EL3)) {
1980 return !(env->cp15.scr_el3 & SCR_NS);
1981 } else {
6b7f0b61 1982 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1983 * defined, in which case QEMU defaults to non-secure.
1984 */
1985 return false;
1986 }
1987}
1988
71205876
PM
1989/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1990static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1991{
1992 if (arm_feature(env, ARM_FEATURE_EL3)) {
1993 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1994 /* CPU currently in AArch64 state and EL3 */
1995 return true;
1996 } else if (!is_a64(env) &&
1997 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1998 /* CPU currently in AArch32 state and monitor mode */
1999 return true;
2000 }
2001 }
71205876
PM
2002 return false;
2003}
2004
2005/* Return true if the processor is in secure state */
2006static inline bool arm_is_secure(CPUARMState *env)
2007{
2008 if (arm_is_el3_or_mon(env)) {
2009 return true;
2010 }
19e0fefa
FA
2011 return arm_is_secure_below_el3(env);
2012}
2013
2014#else
2015static inline bool arm_is_secure_below_el3(CPUARMState *env)
2016{
2017 return false;
2018}
2019
2020static inline bool arm_is_secure(CPUARMState *env)
2021{
2022 return false;
2023}
2024#endif
2025
f7778444
RH
2026/**
2027 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2028 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2029 * "for all purposes other than a direct read or write access of HCR_EL2."
2030 * Not included here is HCR_RW.
2031 */
2032uint64_t arm_hcr_el2_eff(CPUARMState *env);
2033
1f79ee32
PM
2034/* Return true if the specified exception level is running in AArch64 state. */
2035static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2036{
446c81ab
PM
2037 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2038 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2039 */
446c81ab
PM
2040 assert(el >= 1 && el <= 3);
2041 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2042
446c81ab
PM
2043 /* The highest exception level is always at the maximum supported
2044 * register width, and then lower levels have a register width controlled
2045 * by bits in the SCR or HCR registers.
1f79ee32 2046 */
446c81ab
PM
2047 if (el == 3) {
2048 return aa64;
2049 }
2050
2051 if (arm_feature(env, ARM_FEATURE_EL3)) {
2052 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2053 }
2054
2055 if (el == 2) {
2056 return aa64;
2057 }
2058
2059 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
2060 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2061 }
2062
2063 return aa64;
1f79ee32
PM
2064}
2065
3f342b9e
SF
2066/* Function for determing whether guest cp register reads and writes should
2067 * access the secure or non-secure bank of a cp register. When EL3 is
2068 * operating in AArch32 state, the NS-bit determines whether the secure
2069 * instance of a cp register should be used. When EL3 is AArch64 (or if
2070 * it doesn't exist at all) then there is no register banking, and all
2071 * accesses are to the non-secure version.
2072 */
2073static inline bool access_secure_reg(CPUARMState *env)
2074{
2075 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2076 !arm_el_is_aa64(env, 3) &&
2077 !(env->cp15.scr_el3 & SCR_NS));
2078
2079 return ret;
2080}
2081
ea30a4b8
FA
2082/* Macros for accessing a specified CP register bank */
2083#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2084 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2085
2086#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2087 do { \
2088 if (_secure) { \
2089 (_env)->cp15._regname##_s = (_val); \
2090 } else { \
2091 (_env)->cp15._regname##_ns = (_val); \
2092 } \
2093 } while (0)
2094
2095/* Macros for automatically accessing a specific CP register bank depending on
2096 * the current secure state of the system. These macros are not intended for
2097 * supporting instruction translation reads/writes as these are dependent
2098 * solely on the SCR.NS bit and not the mode.
2099 */
2100#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2101 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2102 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2103
2104#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2105 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2106 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2107 (_val))
2108
0442428a 2109void arm_cpu_list(void);
012a906b
GB
2110uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2111 uint32_t cur_el, bool secure);
40f137e1 2112
9ee6e8bb 2113/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
2114#ifndef CONFIG_USER_ONLY
2115bool armv7m_nvic_can_take_pending_exception(void *opaque);
2116#else
2117static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2118{
2119 return true;
2120}
2121#endif
2fb50a33
PM
2122/**
2123 * armv7m_nvic_set_pending: mark the specified exception as pending
2124 * @opaque: the NVIC
2125 * @irq: the exception number to mark pending
2126 * @secure: false for non-banked exceptions or for the nonsecure
2127 * version of a banked exception, true for the secure version of a banked
2128 * exception.
2129 *
2130 * Marks the specified exception as pending. Note that we will assert()
2131 * if @secure is true and @irq does not specify one of the fixed set
2132 * of architecturally banked exceptions.
2133 */
2134void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2135/**
2136 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2137 * @opaque: the NVIC
2138 * @irq: the exception number to mark pending
2139 * @secure: false for non-banked exceptions or for the nonsecure
2140 * version of a banked exception, true for the secure version of a banked
2141 * exception.
2142 *
2143 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2144 * exceptions (exceptions generated in the course of trying to take
2145 * a different exception).
2146 */
2147void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2148/**
2149 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2150 * @opaque: the NVIC
2151 * @irq: the exception number to mark pending
2152 * @secure: false for non-banked exceptions or for the nonsecure
2153 * version of a banked exception, true for the secure version of a banked
2154 * exception.
2155 *
2156 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2157 * generated in the course of lazy stacking of FP registers.
2158 */
2159void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2160/**
2161 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2162 * exception, and whether it targets Secure state
2163 * @opaque: the NVIC
2164 * @pirq: set to pending exception number
2165 * @ptargets_secure: set to whether pending exception targets Secure
2166 *
2167 * This function writes the number of the highest priority pending
2168 * exception (the one which would be made active by
2169 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2170 * to true if the current highest priority pending exception should
2171 * be taken to Secure state, false for NS.
2172 */
2173void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2174 bool *ptargets_secure);
5cb18069
PM
2175/**
2176 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2177 * @opaque: the NVIC
2178 *
2179 * Move the current highest priority pending exception from the pending
2180 * state to the active state, and update v7m.exception to indicate that
2181 * it is the exception currently being handled.
5cb18069 2182 */
6c948518 2183void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2184/**
2185 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2186 * @opaque: the NVIC
2187 * @irq: the exception number to complete
5cb18069 2188 * @secure: true if this exception was secure
aa488fe3
PM
2189 *
2190 * Returns: -1 if the irq was not active
2191 * 1 if completing this irq brought us back to base (no active irqs)
2192 * 0 if there is still an irq active after this one was completed
2193 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2194 */
5cb18069 2195int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2196/**
2197 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2198 * @opaque: the NVIC
2199 * @irq: the exception number to mark pending
2200 * @secure: false for non-banked exceptions or for the nonsecure
2201 * version of a banked exception, true for the secure version of a banked
2202 * exception.
2203 *
2204 * Return whether an exception is "ready", i.e. whether the exception is
2205 * enabled and is configured at a priority which would allow it to
2206 * interrupt the current execution priority. This controls whether the
2207 * RDY bit for it in the FPCCR is set.
2208 */
2209bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2210/**
2211 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2212 * @opaque: the NVIC
2213 *
2214 * Returns: the raw execution priority as defined by the v8M architecture.
2215 * This is the execution priority minus the effects of AIRCR.PRIS,
2216 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2217 * (v8M ARM ARM I_PKLD.)
2218 */
2219int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2220/**
2221 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2222 * priority is negative for the specified security state.
2223 * @opaque: the NVIC
2224 * @secure: the security state to test
2225 * This corresponds to the pseudocode IsReqExecPriNeg().
2226 */
2227#ifndef CONFIG_USER_ONLY
2228bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2229#else
2230static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2231{
2232 return false;
2233}
2234#endif
9ee6e8bb 2235
4b6a83fb
PM
2236/* Interface for defining coprocessor registers.
2237 * Registers are defined in tables of arm_cp_reginfo structs
2238 * which are passed to define_arm_cp_regs().
2239 */
2240
2241/* When looking up a coprocessor register we look for it
2242 * via an integer which encodes all of:
2243 * coprocessor number
2244 * Crn, Crm, opc1, opc2 fields
2245 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2246 * or via MRRC/MCRR?)
51a79b03 2247 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2248 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2249 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2250 * For AArch64, there is no 32/64 bit size distinction;
2251 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2252 * and 4 bit CRn and CRm. The encoding patterns are chosen
2253 * to be easy to convert to and from the KVM encodings, and also
2254 * so that the hashtable can contain both AArch32 and AArch64
2255 * registers (to allow for interprocessing where we might run
2256 * 32 bit code on a 64 bit core).
4b6a83fb 2257 */
f5a0a5a5
PM
2258/* This bit is private to our hashtable cpreg; in KVM register
2259 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2260 * in the upper bits of the 64 bit ID.
2261 */
2262#define CP_REG_AA64_SHIFT 28
2263#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2264
51a79b03
PM
2265/* To enable banking of coprocessor registers depending on ns-bit we
2266 * add a bit to distinguish between secure and non-secure cpregs in the
2267 * hashtable.
2268 */
2269#define CP_REG_NS_SHIFT 29
2270#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2271
2272#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2273 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2274 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2275
f5a0a5a5
PM
2276#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2277 (CP_REG_AA64_MASK | \
2278 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2279 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2280 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2281 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2282 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2283 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2284
721fae12
PM
2285/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2286 * version used as a key for the coprocessor register hashtable
2287 */
2288static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2289{
2290 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2291 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2292 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2293 } else {
2294 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2295 cpregid |= (1 << 15);
2296 }
2297
2298 /* KVM is always non-secure so add the NS flag on AArch32 register
2299 * entries.
2300 */
2301 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2302 }
2303 return cpregid;
2304}
2305
2306/* Convert a truncated 32 bit hashtable key into the full
2307 * 64 bit KVM register ID.
2308 */
2309static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2310{
f5a0a5a5
PM
2311 uint64_t kvmid;
2312
2313 if (cpregid & CP_REG_AA64_MASK) {
2314 kvmid = cpregid & ~CP_REG_AA64_MASK;
2315 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2316 } else {
f5a0a5a5
PM
2317 kvmid = cpregid & ~(1 << 15);
2318 if (cpregid & (1 << 15)) {
2319 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2320 } else {
2321 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2322 }
721fae12
PM
2323 }
2324 return kvmid;
2325}
2326
4b6a83fb 2327/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2328 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2329 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2330 * TCG can assume the value to be constant (ie load at translate time)
2331 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2332 * indicates that the TB should not be ended after a write to this register
2333 * (the default is that the TB ends after cp writes). OVERRIDE permits
2334 * a register definition to override a previous definition for the
2335 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2336 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2337 * ALIAS indicates that this register is an alias view of some underlying
2338 * state which is also visible via another register, and that the other
b061a82b
SF
2339 * register is handling migration and reset; registers marked ALIAS will not be
2340 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2341 * NO_RAW indicates that this register has no underlying state and does not
2342 * support raw access for state saving/loading; it will not be used for either
2343 * migration or KVM state synchronization. (Typically this is for "registers"
2344 * which are actually used as instructions for cache maintenance and so on.)
2452731c 2345 * IO indicates that this register does I/O and therefore its accesses
55c812b7 2346 * need to be marked with gen_io_start() and also end the TB. In particular,
2452731c 2347 * registers which implement clocks or timers require this.
37ff584c
PM
2348 * RAISES_EXC is for when the read or write hook might raise an exception;
2349 * the generated code will synchronize the CPU state before calling the hook
2350 * so that it is safe for the hook to call raise_exception().
f80741d1
AB
2351 * NEWEL is for writes to registers that might change the exception
2352 * level - typically on older ARM chips. For those cases we need to
2353 * re-read the new el when recomputing the translation flags.
4b6a83fb 2354 */
fe03d45f
RH
2355#define ARM_CP_SPECIAL 0x0001
2356#define ARM_CP_CONST 0x0002
2357#define ARM_CP_64BIT 0x0004
2358#define ARM_CP_SUPPRESS_TB_END 0x0008
2359#define ARM_CP_OVERRIDE 0x0010
2360#define ARM_CP_ALIAS 0x0020
2361#define ARM_CP_IO 0x0040
2362#define ARM_CP_NO_RAW 0x0080
2363#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2364#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2365#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2366#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2367#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
eb821168
RH
2368#define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600)
2369#define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700)
2370#define ARM_LAST_SPECIAL ARM_CP_DC_GZVA
fe03d45f 2371#define ARM_CP_FPU 0x1000
490aa7f1 2372#define ARM_CP_SVE 0x2000
1f163787 2373#define ARM_CP_NO_GDB 0x4000
37ff584c 2374#define ARM_CP_RAISES_EXC 0x8000
f80741d1 2375#define ARM_CP_NEWEL 0x10000
4b6a83fb 2376/* Used only as a terminator for ARMCPRegInfo lists */
f80741d1 2377#define ARM_CP_SENTINEL 0xfffff
4b6a83fb 2378/* Mask of only the flag bits in a type field */
f80741d1 2379#define ARM_CP_FLAG_MASK 0x1f0ff
4b6a83fb 2380
f5a0a5a5
PM
2381/* Valid values for ARMCPRegInfo state field, indicating which of
2382 * the AArch32 and AArch64 execution states this register is visible in.
2383 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2384 * If the reginfo is declared to be visible in both states then a second
2385 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2386 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2387 * Note that we rely on the values of these enums as we iterate through
2388 * the various states in some places.
2389 */
2390enum {
2391 ARM_CP_STATE_AA32 = 0,
2392 ARM_CP_STATE_AA64 = 1,
2393 ARM_CP_STATE_BOTH = 2,
2394};
2395
c3e30260
FA
2396/* ARM CP register secure state flags. These flags identify security state
2397 * attributes for a given CP register entry.
2398 * The existence of both or neither secure and non-secure flags indicates that
2399 * the register has both a secure and non-secure hash entry. A single one of
2400 * these flags causes the register to only be hashed for the specified
2401 * security state.
2402 * Although definitions may have any combination of the S/NS bits, each
2403 * registered entry will only have one to identify whether the entry is secure
2404 * or non-secure.
2405 */
2406enum {
2407 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2408 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2409};
2410
4b6a83fb
PM
2411/* Return true if cptype is a valid type field. This is used to try to
2412 * catch errors where the sentinel has been accidentally left off the end
2413 * of a list of registers.
2414 */
2415static inline bool cptype_valid(int cptype)
2416{
2417 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2418 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2419 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2420}
2421
2422/* Access rights:
2423 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2424 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2425 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2426 * (ie any of the privileged modes in Secure state, or Monitor mode).
2427 * If a register is accessible in one privilege level it's always accessible
2428 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2429 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2430 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2431 * terminology a little and call this PL3.
f5a0a5a5
PM
2432 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2433 * with the ELx exception levels.
4b6a83fb
PM
2434 *
2435 * If access permissions for a register are more complex than can be
2436 * described with these bits, then use a laxer set of restrictions, and
2437 * do the more restrictive/complex check inside a helper function.
2438 */
2439#define PL3_R 0x80
2440#define PL3_W 0x40
2441#define PL2_R (0x20 | PL3_R)
2442#define PL2_W (0x10 | PL3_W)
2443#define PL1_R (0x08 | PL2_R)
2444#define PL1_W (0x04 | PL2_W)
2445#define PL0_R (0x02 | PL1_R)
2446#define PL0_W (0x01 | PL1_W)
2447
b5bd7440
AB
2448/*
2449 * For user-mode some registers are accessible to EL0 via a kernel
2450 * trap-and-emulate ABI. In this case we define the read permissions
2451 * as actually being PL0_R. However some bits of any given register
2452 * may still be masked.
2453 */
2454#ifdef CONFIG_USER_ONLY
2455#define PL0U_R PL0_R
2456#else
2457#define PL0U_R PL1_R
2458#endif
2459
4b6a83fb
PM
2460#define PL3_RW (PL3_R | PL3_W)
2461#define PL2_RW (PL2_R | PL2_W)
2462#define PL1_RW (PL1_R | PL1_W)
2463#define PL0_RW (PL0_R | PL0_W)
2464
75502672
PM
2465/* Return the highest implemented Exception Level */
2466static inline int arm_highest_el(CPUARMState *env)
2467{
2468 if (arm_feature(env, ARM_FEATURE_EL3)) {
2469 return 3;
2470 }
2471 if (arm_feature(env, ARM_FEATURE_EL2)) {
2472 return 2;
2473 }
2474 return 1;
2475}
2476
15b3f556
PM
2477/* Return true if a v7M CPU is in Handler mode */
2478static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2479{
2480 return env->v7m.exception != 0;
2481}
2482
dcbff19b
GB
2483/* Return the current Exception Level (as per ARMv8; note that this differs
2484 * from the ARMv7 Privilege Level).
2485 */
2486static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2487{
6d54ed3c 2488 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2489 return arm_v7m_is_handler_mode(env) ||
2490 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2491 }
2492
592125f8 2493 if (is_a64(env)) {
f5a0a5a5
PM
2494 return extract32(env->pstate, 2, 2);
2495 }
2496
592125f8
FA
2497 switch (env->uncached_cpsr & 0x1f) {
2498 case ARM_CPU_MODE_USR:
4b6a83fb 2499 return 0;
592125f8
FA
2500 case ARM_CPU_MODE_HYP:
2501 return 2;
2502 case ARM_CPU_MODE_MON:
2503 return 3;
2504 default:
2505 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2506 /* If EL3 is 32-bit then all secure privileged modes run in
2507 * EL3
2508 */
2509 return 3;
2510 }
2511
2512 return 1;
4b6a83fb 2513 }
4b6a83fb
PM
2514}
2515
2516typedef struct ARMCPRegInfo ARMCPRegInfo;
2517
f59df3f2
PM
2518typedef enum CPAccessResult {
2519 /* Access is permitted */
2520 CP_ACCESS_OK = 0,
2521 /* Access fails due to a configurable trap or enable which would
2522 * result in a categorized exception syndrome giving information about
2523 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2524 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2525 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2526 */
2527 CP_ACCESS_TRAP = 1,
2528 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2529 * Note that this is not a catch-all case -- the set of cases which may
2530 * result in this failure is specifically defined by the architecture.
2531 */
2532 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2533 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2534 CP_ACCESS_TRAP_EL2 = 3,
2535 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2536 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2537 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2538 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2539 /* Access fails and results in an exception syndrome for an FP access,
2540 * trapped directly to EL2 or EL3
2541 */
2542 CP_ACCESS_TRAP_FP_EL2 = 7,
2543 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2544} CPAccessResult;
2545
c4241c7d
PM
2546/* Access functions for coprocessor registers. These cannot fail and
2547 * may not raise exceptions.
2548 */
2549typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2550typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2551 uint64_t value);
f59df3f2 2552/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2553typedef CPAccessResult CPAccessFn(CPUARMState *env,
2554 const ARMCPRegInfo *opaque,
2555 bool isread);
4b6a83fb
PM
2556/* Hook function for register reset */
2557typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2558
2559#define CP_ANY 0xff
2560
2561/* Definition of an ARM coprocessor register */
2562struct ARMCPRegInfo {
2563 /* Name of register (useful mainly for debugging, need not be unique) */
2564 const char *name;
2565 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2566 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2567 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2568 * will be decoded to this register. The register read and write
2569 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2570 * used by the program, so it is possible to register a wildcard and
2571 * then behave differently on read/write if necessary.
2572 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2573 * must both be zero.
f5a0a5a5
PM
2574 * For AArch64-visible registers, opc0 is also used.
2575 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2576 * way to distinguish (for KVM's benefit) guest-visible system registers
2577 * from demuxed ones provided to preserve the "no side effects on
2578 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2579 * visible (to match KVM's encoding); cp==0 will be converted to
2580 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2581 */
2582 uint8_t cp;
2583 uint8_t crn;
2584 uint8_t crm;
f5a0a5a5 2585 uint8_t opc0;
4b6a83fb
PM
2586 uint8_t opc1;
2587 uint8_t opc2;
f5a0a5a5
PM
2588 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2589 int state;
4b6a83fb
PM
2590 /* Register type: ARM_CP_* bits/values */
2591 int type;
2592 /* Access rights: PL*_[RW] */
2593 int access;
c3e30260
FA
2594 /* Security state: ARM_CP_SECSTATE_* bits/values */
2595 int secure;
4b6a83fb
PM
2596 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2597 * this register was defined: can be used to hand data through to the
2598 * register read/write functions, since they are passed the ARMCPRegInfo*.
2599 */
2600 void *opaque;
2601 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2602 * fieldoffset is non-zero, the reset value of the register.
2603 */
2604 uint64_t resetvalue;
c3e30260
FA
2605 /* Offset of the field in CPUARMState for this register.
2606 *
2607 * This is not needed if either:
4b6a83fb
PM
2608 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2609 * 2. both readfn and writefn are specified
2610 */
2611 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2612
2613 /* Offsets of the secure and non-secure fields in CPUARMState for the
2614 * register if it is banked. These fields are only used during the static
2615 * registration of a register. During hashing the bank associated
2616 * with a given security state is copied to fieldoffset which is used from
2617 * there on out.
2618 *
2619 * It is expected that register definitions use either fieldoffset or
2620 * bank_fieldoffsets in the definition but not both. It is also expected
2621 * that both bank offsets are set when defining a banked register. This
2622 * use indicates that a register is banked.
2623 */
2624 ptrdiff_t bank_fieldoffsets[2];
2625
f59df3f2
PM
2626 /* Function for making any access checks for this register in addition to
2627 * those specified by the 'access' permissions bits. If NULL, no extra
2628 * checks required. The access check is performed at runtime, not at
2629 * translate time.
2630 */
2631 CPAccessFn *accessfn;
4b6a83fb
PM
2632 /* Function for handling reads of this register. If NULL, then reads
2633 * will be done by loading from the offset into CPUARMState specified
2634 * by fieldoffset.
2635 */
2636 CPReadFn *readfn;
2637 /* Function for handling writes of this register. If NULL, then writes
2638 * will be done by writing to the offset into CPUARMState specified
2639 * by fieldoffset.
2640 */
2641 CPWriteFn *writefn;
7023ec7e
PM
2642 /* Function for doing a "raw" read; used when we need to copy
2643 * coprocessor state to the kernel for KVM or out for
2644 * migration. This only needs to be provided if there is also a
c4241c7d 2645 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2646 */
2647 CPReadFn *raw_readfn;
2648 /* Function for doing a "raw" write; used when we need to copy KVM
2649 * kernel coprocessor state into userspace, or for inbound
2650 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2651 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2652 * or similar behaviour.
7023ec7e
PM
2653 */
2654 CPWriteFn *raw_writefn;
4b6a83fb
PM
2655 /* Function for resetting the register. If NULL, then reset will be done
2656 * by writing resetvalue to the field specified in fieldoffset. If
2657 * fieldoffset is 0 then no reset will be done.
2658 */
2659 CPResetFn *resetfn;
e2cce18f
RH
2660
2661 /*
2662 * "Original" writefn and readfn.
2663 * For ARMv8.1-VHE register aliases, we overwrite the read/write
2664 * accessor functions of various EL1/EL0 to perform the runtime
2665 * check for which sysreg should actually be modified, and then
2666 * forwards the operation. Before overwriting the accessors,
2667 * the original function is copied here, so that accesses that
2668 * really do go to the EL1/EL0 version proceed normally.
2669 * (The corresponding EL2 register is linked via opaque.)
2670 */
2671 CPReadFn *orig_readfn;
2672 CPWriteFn *orig_writefn;
4b6a83fb
PM
2673};
2674
2675/* Macros which are lvalues for the field in CPUARMState for the
2676 * ARMCPRegInfo *ri.
2677 */
2678#define CPREG_FIELD32(env, ri) \
2679 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2680#define CPREG_FIELD64(env, ri) \
2681 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2682
2683#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2684
2685void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2686 const ARMCPRegInfo *regs, void *opaque);
2687void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2688 const ARMCPRegInfo *regs, void *opaque);
2689static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2690{
2691 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2692}
2693static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2694{
2695 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2696}
60322b39 2697const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2698
6c5c0fec
AB
2699/*
2700 * Definition of an ARM co-processor register as viewed from
2701 * userspace. This is used for presenting sanitised versions of
2702 * registers to userspace when emulating the Linux AArch64 CPU
2703 * ID/feature ABI (advertised as HWCAP_CPUID).
2704 */
2705typedef struct ARMCPRegUserSpaceInfo {
2706 /* Name of register */
2707 const char *name;
2708
d040242e
AB
2709 /* Is the name actually a glob pattern */
2710 bool is_glob;
2711
6c5c0fec
AB
2712 /* Only some bits are exported to user space */
2713 uint64_t exported_bits;
2714
2715 /* Fixed bits are applied after the mask */
2716 uint64_t fixed_bits;
2717} ARMCPRegUserSpaceInfo;
2718
2719#define REGUSERINFO_SENTINEL { .name = NULL }
2720
2721void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2722
4b6a83fb 2723/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2724void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2725 uint64_t value);
4b6a83fb 2726/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2727uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2728
f5a0a5a5
PM
2729/* CPResetFn that does nothing, for use if no reset is required even
2730 * if fieldoffset is non zero.
2731 */
2732void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2733
67ed771d
PM
2734/* Return true if this reginfo struct's field in the cpu state struct
2735 * is 64 bits wide.
2736 */
2737static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2738{
2739 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2740}
2741
dcbff19b 2742static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2743 const ARMCPRegInfo *ri, int isread)
2744{
dcbff19b 2745 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2746}
2747
49a66191
PM
2748/* Raw read of a coprocessor register (as needed for migration, etc) */
2749uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2750
721fae12
PM
2751/**
2752 * write_list_to_cpustate
2753 * @cpu: ARMCPU
2754 *
2755 * For each register listed in the ARMCPU cpreg_indexes list, write
2756 * its value from the cpreg_values list into the ARMCPUState structure.
2757 * This updates TCG's working data structures from KVM data or
2758 * from incoming migration state.
2759 *
2760 * Returns: true if all register values were updated correctly,
2761 * false if some register was unknown or could not be written.
2762 * Note that we do not stop early on failure -- we will attempt
2763 * writing all registers in the list.
2764 */
2765bool write_list_to_cpustate(ARMCPU *cpu);
2766
2767/**
2768 * write_cpustate_to_list:
2769 * @cpu: ARMCPU
b698e4ee 2770 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2771 *
2772 * For each register listed in the ARMCPU cpreg_indexes list, write
2773 * its value from the ARMCPUState structure into the cpreg_values list.
2774 * This is used to copy info from TCG's working data structures into
2775 * KVM or for outbound migration.
2776 *
b698e4ee
PM
2777 * @kvm_sync is true if we are doing this in order to sync the
2778 * register state back to KVM. In this case we will only update
2779 * values in the list if the previous list->cpustate sync actually
2780 * successfully wrote the CPU state. Otherwise we will keep the value
2781 * that is in the list.
2782 *
721fae12
PM
2783 * Returns: true if all register values were read correctly,
2784 * false if some register was unknown or could not be read.
2785 * Note that we do not stop early on failure -- we will attempt
2786 * reading all registers in the list.
2787 */
b698e4ee 2788bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2789
9ee6e8bb
PB
2790#define ARM_CPUID_TI915T 0x54029152
2791#define ARM_CPUID_TI925T 0x54029252
40f137e1 2792
ba1ba5cc
IM
2793#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2794#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2795#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2796
9467d44c 2797#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2798#define cpu_list arm_cpu_list
9467d44c 2799
c1e37810
PM
2800/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2801 *
2802 * If EL3 is 64-bit:
2803 * + NonSecure EL1 & 0 stage 1
2804 * + NonSecure EL1 & 0 stage 2
2805 * + NonSecure EL2
b9f6033c
RH
2806 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2807 * + Secure EL1 & 0
c1e37810
PM
2808 * + Secure EL3
2809 * If EL3 is 32-bit:
2810 * + NonSecure PL1 & 0 stage 1
2811 * + NonSecure PL1 & 0 stage 2
2812 * + NonSecure PL2
b9f6033c
RH
2813 * + Secure PL0
2814 * + Secure PL1
c1e37810
PM
2815 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2816 *
2817 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2818 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2819 * because they may differ in access permissions even if the VA->PA map is
2820 * the same
c1e37810
PM
2821 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2822 * translation, which means that we have one mmu_idx that deals with two
2823 * concatenated translation regimes [this sort of combined s1+2 TLB is
2824 * architecturally permitted]
2825 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2826 * handling via the TLB. The only way to do a stage 1 translation without
2827 * the immediate stage 2 translation is via the ATS or AT system insns,
2828 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2829 * The only use of stage 2 translations is either as part of an s1+2
2830 * lookup or when loading the descriptors during a stage 1 page table walk,
2831 * and in both those cases we don't use the TLB.
c1e37810
PM
2832 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2833 * translation regimes, because they map reasonably well to each other
2834 * and they can't both be active at the same time.
b9f6033c
RH
2835 * 5. we want to be able to use the TLB for accesses done as part of a
2836 * stage1 page table walk, rather than having to walk the stage2 page
2837 * table over and over.
452ef8cb
RH
2838 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2839 * Never (PAN) bit within PSTATE.
c1e37810 2840 *
b9f6033c
RH
2841 * This gives us the following list of cases:
2842 *
2843 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2844 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
452ef8cb 2845 * NS EL1 EL1&0 stage 1+2 +PAN
b9f6033c 2846 * NS EL0 EL2&0
bf05340c 2847 * NS EL2 EL2&0
452ef8cb 2848 * NS EL2 EL2&0 +PAN
c1e37810 2849 * NS EL2 (aka NS PL2)
b9f6033c
RH
2850 * S EL0 EL1&0 (aka S PL0)
2851 * S EL1 EL1&0 (not used if EL3 is 32 bit)
452ef8cb 2852 * S EL1 EL1&0 +PAN
c1e37810 2853 * S EL3 (aka S PL1)
c1e37810 2854 *
bf05340c 2855 * for a total of 11 different mmu_idx.
c1e37810 2856 *
3bef7012
PM
2857 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2858 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2859 * NS EL2 if we ever model a Cortex-R52).
2860 *
2861 * M profile CPUs are rather different as they do not have a true MMU.
2862 * They have the following different MMU indexes:
2863 * User
2864 * Privileged
62593718
PM
2865 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2866 * Privileged, execution priority negative (ditto)
66787c78
PM
2867 * If the CPU supports the v8M Security Extension then there are also:
2868 * Secure User
2869 * Secure Privileged
62593718
PM
2870 * Secure User, execution priority negative
2871 * Secure Privileged, execution priority negative
3bef7012 2872 *
8bd5c820
PM
2873 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2874 * are not quite the same -- different CPU types (most notably M profile
2875 * vs A/R profile) would like to use MMU indexes with different semantics,
2876 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2877 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2878 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2879 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2880 * the same for any particular CPU.
2881 * Variables of type ARMMUIdx are always full values, and the core
2882 * index values are in variables of type 'int'.
2883 *
c1e37810
PM
2884 * Our enumeration includes at the end some entries which are not "true"
2885 * mmu_idx values in that they don't have corresponding TLBs and are only
2886 * valid for doing slow path page table walks.
2887 *
2888 * The constant names here are patterned after the general style of the names
2889 * of the AT/ATS operations.
2890 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2891 * For M profile we arrange them to have a bit for priv, a bit for negpri
2892 * and a bit for secure.
c1e37810 2893 */
b9f6033c
RH
2894#define ARM_MMU_IDX_A 0x10 /* A profile */
2895#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2896#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2897
b9f6033c
RH
2898/* Meanings of the bits for M profile mmu idx values */
2899#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2900#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2901#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2902
b9f6033c
RH
2903#define ARM_MMU_IDX_TYPE_MASK \
2904 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2905#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2906
c1e37810 2907typedef enum ARMMMUIdx {
b9f6033c
RH
2908 /*
2909 * A-profile.
2910 */
452ef8cb
RH
2911 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2912 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
b9f6033c 2913
452ef8cb
RH
2914 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2915 ARMMMUIdx_E10_1_PAN = 3 | ARM_MMU_IDX_A,
b9f6033c 2916
452ef8cb
RH
2917 ARMMMUIdx_E2 = 4 | ARM_MMU_IDX_A,
2918 ARMMMUIdx_E20_2 = 5 | ARM_MMU_IDX_A,
2919 ARMMMUIdx_E20_2_PAN = 6 | ARM_MMU_IDX_A,
b9f6033c 2920
452ef8cb
RH
2921 ARMMMUIdx_SE10_0 = 7 | ARM_MMU_IDX_A,
2922 ARMMMUIdx_SE10_1 = 8 | ARM_MMU_IDX_A,
2923 ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A,
2924 ARMMMUIdx_SE3 = 10 | ARM_MMU_IDX_A,
b9f6033c 2925
b9f6033c
RH
2926 /*
2927 * These are not allocated TLBs and are used only for AT system
2928 * instructions or for the first stage of an S12 page table walk.
2929 */
2930 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2931 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2932 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
bf05340c
PM
2933 /*
2934 * Not allocated a TLB: used only for second stage of an S12 page
2935 * table walk, or for descriptor loads during first stage of an S1
2936 * page table walk. Note that if we ever want to have a TLB for this
2937 * then various TLB flush insns which currently are no-ops or flush
2938 * only stage 1 MMU indexes will need to change to flush stage 2.
2939 */
2940 ARMMMUIdx_Stage2 = 3 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2941
2942 /*
2943 * M-profile.
2944 */
25568316
RH
2945 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2946 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2947 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2948 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2949 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2950 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2951 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2952 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2953} ARMMMUIdx;
2954
5f09a6df
RH
2955/*
2956 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2957 * for use when calling tlb_flush_by_mmuidx() and friends.
2958 */
5f09a6df
RH
2959#define TO_CORE_BIT(NAME) \
2960 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2961
8bd5c820 2962typedef enum ARMMMUIdxBit {
5f09a6df 2963 TO_CORE_BIT(E10_0),
b9f6033c 2964 TO_CORE_BIT(E20_0),
5f09a6df 2965 TO_CORE_BIT(E10_1),
452ef8cb 2966 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2967 TO_CORE_BIT(E2),
b9f6033c 2968 TO_CORE_BIT(E20_2),
452ef8cb 2969 TO_CORE_BIT(E20_2_PAN),
5f09a6df
RH
2970 TO_CORE_BIT(SE10_0),
2971 TO_CORE_BIT(SE10_1),
452ef8cb 2972 TO_CORE_BIT(SE10_1_PAN),
5f09a6df 2973 TO_CORE_BIT(SE3),
5f09a6df
RH
2974
2975 TO_CORE_BIT(MUser),
2976 TO_CORE_BIT(MPriv),
2977 TO_CORE_BIT(MUserNegPri),
2978 TO_CORE_BIT(MPrivNegPri),
2979 TO_CORE_BIT(MSUser),
2980 TO_CORE_BIT(MSPriv),
2981 TO_CORE_BIT(MSUserNegPri),
2982 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2983} ARMMMUIdxBit;
2984
5f09a6df
RH
2985#undef TO_CORE_BIT
2986
f79fbf39 2987#define MMU_USER_IDX 0
c1e37810 2988
9e273ef2
PM
2989/* Indexes used when registering address spaces with cpu_address_space_init */
2990typedef enum ARMASIdx {
2991 ARMASIdx_NS = 0,
2992 ARMASIdx_S = 1,
8bce44a2
RH
2993 ARMASIdx_TagNS = 2,
2994 ARMASIdx_TagS = 3,
9e273ef2
PM
2995} ARMASIdx;
2996
533e93f1 2997/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2998static inline int arm_debug_target_el(CPUARMState *env)
2999{
81669b8b
SF
3000 bool secure = arm_is_secure(env);
3001 bool route_to_el2 = false;
3002
3003 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
3004 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 3005 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
3006 }
3007
3008 if (route_to_el2) {
3009 return 2;
3010 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3011 !arm_el_is_aa64(env, 3) && secure) {
3012 return 3;
3013 } else {
3014 return 1;
3015 }
3a298203
PM
3016}
3017
43bbce7f
PM
3018static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3019{
3020 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3021 * CSSELR is RAZ/WI.
3022 */
3023 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3024}
3025
22af9025 3026/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
3027static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3028{
22af9025
AB
3029 int cur_el = arm_current_el(env);
3030 int debug_el;
3031
3032 if (cur_el == 3) {
3033 return false;
533e93f1
PM
3034 }
3035
22af9025
AB
3036 /* MDCR_EL3.SDD disables debug events from Secure state */
3037 if (arm_is_secure_below_el3(env)
3038 && extract32(env->cp15.mdcr_el3, 16, 1)) {
3039 return false;
3a298203 3040 }
22af9025
AB
3041
3042 /*
3043 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3044 * while not masking the (D)ebug bit in DAIF.
3045 */
3046 debug_el = arm_debug_target_el(env);
3047
3048 if (cur_el == debug_el) {
3049 return extract32(env->cp15.mdscr_el1, 13, 1)
3050 && !(env->daif & PSTATE_D);
3051 }
3052
3053 /* Otherwise the debug target needs to be a higher EL */
3054 return debug_el > cur_el;
3a298203
PM
3055}
3056
3057static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3058{
533e93f1
PM
3059 int el = arm_current_el(env);
3060
3061 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
3062 return aa64_generate_debug_exceptions(env);
3063 }
533e93f1
PM
3064
3065 if (arm_is_secure(env)) {
3066 int spd;
3067
3068 if (el == 0 && (env->cp15.sder & 1)) {
3069 /* SDER.SUIDEN means debug exceptions from Secure EL0
3070 * are always enabled. Otherwise they are controlled by
3071 * SDCR.SPD like those from other Secure ELs.
3072 */
3073 return true;
3074 }
3075
3076 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3077 switch (spd) {
3078 case 1:
3079 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3080 case 0:
3081 /* For 0b00 we return true if external secure invasive debug
3082 * is enabled. On real hardware this is controlled by external
3083 * signals to the core. QEMU always permits debug, and behaves
3084 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3085 */
3086 return true;
3087 case 2:
3088 return false;
3089 case 3:
3090 return true;
3091 }
3092 }
3093
3094 return el != 2;
3a298203
PM
3095}
3096
3097/* Return true if debugging exceptions are currently enabled.
3098 * This corresponds to what in ARM ARM pseudocode would be
3099 * if UsingAArch32() then
3100 * return AArch32.GenerateDebugExceptions()
3101 * else
3102 * return AArch64.GenerateDebugExceptions()
3103 * We choose to push the if() down into this function for clarity,
3104 * since the pseudocode has it at all callsites except for the one in
3105 * CheckSoftwareStep(), where it is elided because both branches would
3106 * always return the same value.
3a298203
PM
3107 */
3108static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3109{
3110 if (env->aarch64) {
3111 return aa64_generate_debug_exceptions(env);
3112 } else {
3113 return aa32_generate_debug_exceptions(env);
3114 }
3115}
3116
3117/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3118 * implicitly means this always returns false in pre-v8 CPUs.)
3119 */
3120static inline bool arm_singlestep_active(CPUARMState *env)
3121{
3122 return extract32(env->cp15.mdscr_el1, 0, 1)
3123 && arm_el_is_aa64(env, arm_debug_target_el(env))
3124 && arm_generate_debug_exceptions(env);
3125}
3126
f9fd40eb
PB
3127static inline bool arm_sctlr_b(CPUARMState *env)
3128{
3129 return
3130 /* We need not implement SCTLR.ITD in user-mode emulation, so
3131 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3132 * This lets people run BE32 binaries with "-cpu any".
3133 */
3134#ifndef CONFIG_USER_ONLY
3135 !arm_feature(env, ARM_FEATURE_V7) &&
3136#endif
3137 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3138}
3139
aaec1432 3140uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3141
8061a649
RH
3142static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3143 bool sctlr_b)
3144{
3145#ifdef CONFIG_USER_ONLY
3146 /*
3147 * In system mode, BE32 is modelled in line with the
3148 * architecture (as word-invariant big-endianness), where loads
3149 * and stores are done little endian but from addresses which
3150 * are adjusted by XORing with the appropriate constant. So the
3151 * endianness to use for the raw data access is not affected by
3152 * SCTLR.B.
3153 * In user mode, however, we model BE32 as byte-invariant
3154 * big-endianness (because user-only code cannot tell the
3155 * difference), and so we need to use a data access endianness
3156 * that depends on SCTLR.B.
3157 */
3158 if (sctlr_b) {
3159 return true;
3160 }
3161#endif
3162 /* In 32bit endianness is determined by looking at CPSR's E bit */
3163 return env->uncached_cpsr & CPSR_E;
3164}
3165
3166static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3167{
3168 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3169}
64e40755 3170
ed50ff78
PC
3171/* Return true if the processor is in big-endian mode. */
3172static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3173{
ed50ff78 3174 if (!is_a64(env)) {
8061a649 3175 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3176 } else {
3177 int cur_el = arm_current_el(env);
3178 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3179 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3180 }
ed50ff78
PC
3181}
3182
4f7c64b3 3183typedef CPUARMState CPUArchState;
2161a612 3184typedef ARMCPU ArchCPU;
4f7c64b3 3185
022c62cb 3186#include "exec/cpu-all.h"
622ed360 3187
fdd1b228
RH
3188/*
3189 * Bit usage in the TB flags field: bit 31 indicates whether we are
3926cc84 3190 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3191 * We put flags which are shared between 32 and 64 bit mode at the top
3192 * of the word, and flags which apply to only one mode at the bottom.
fdd1b228 3193 *
506f1498 3194 * 31 20 18 14 9 0
79cabf1f
RH
3195 * +--------------+-----+-----+----------+--------------+
3196 * | | | TBFLAG_A32 | |
3197 * | | +-----+----------+ TBFLAG_AM32 |
3198 * | TBFLAG_ANY | |TBFLAG_M32| |
81ae05fa
RH
3199 * | +-----------+----------+--------------|
3200 * | | TBFLAG_A64 |
3201 * +--------------+-------------------------------------+
3202 * 31 20 0
79cabf1f 3203 *
fdd1b228 3204 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3205 */
aad821ac 3206FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
506f1498
RH
3207FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3208FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */
3209FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3210FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
9dbbc748 3211/* Target EL if we take a floating-point-disabled exception */
506f1498 3212FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
79cabf1f 3213/* For A-profile only, target EL for debug exceptions. */
506f1498 3214FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
79cabf1f 3215
8bd587c1 3216/*
79cabf1f 3217 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3218 */
79cabf1f
RH
3219FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */
3220FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */
3926cc84 3221
79cabf1f
RH
3222/*
3223 * Bit usage when in AArch32 state, for A-profile only.
3224 */
3225FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */
3226FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */
ea7ac69d
PM
3227/*
3228 * We store the bottom two bits of the CPAR as TB flags and handle
3229 * checks on the other bits at runtime. This shares the same bits as
3230 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3231 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3232 */
79cabf1f
RH
3233FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3234FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */
3235FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3236FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
7fbb535f
PM
3237/*
3238 * Indicates whether cp register reads and writes by guest code should access
3239 * the secure or nonsecure bank of banked registers; note that this is not
3240 * the same thing as the current security state of the processor!
3241 */
79cabf1f
RH
3242FIELD(TBFLAG_A32, NS, 17, 1)
3243
3244/*
3245 * Bit usage when in AArch32 state, for M-profile only.
3246 */
3247/* Handler (ie not Thread) mode */
3248FIELD(TBFLAG_M32, HANDLER, 9, 1)
3249/* Whether we should generate stack-limit checks */
3250FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3251/* Set if FPCCR.LSPACT is set */
3252FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */
3253/* Set if we must create a new FP context */
3254FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */
3255/* Set if FPCCR.S does not match current security state */
3256FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */
3257
3258/*
3259 * Bit usage when in AArch64 state
3260 */
476a4692 3261FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3262FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3263FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3264FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3265FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3266FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3267FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3268FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3269FIELD(TBFLAG_A64, ATA, 15, 1)
3270FIELD(TBFLAG_A64, TCMA, 16, 2)
3271FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3272FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
a1705768 3273
fb901c90
RH
3274/**
3275 * cpu_mmu_index:
3276 * @env: The cpu environment
3277 * @ifetch: True for code access, false for data access.
3278 *
3279 * Return the core mmu index for the current translation regime.
3280 * This function is used by generic TCG code paths.
3281 */
3282static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3283{
3284 return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3285}
3286
f9fd40eb
PB
3287static inline bool bswap_code(bool sctlr_b)
3288{
3289#ifdef CONFIG_USER_ONLY
3290 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3291 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3292 * would also end up as a mixed-endian mode with BE code, LE data.
3293 */
3294 return
3295#ifdef TARGET_WORDS_BIGENDIAN
3296 1 ^
3297#endif
3298 sctlr_b;
3299#else
e334bd31
PB
3300 /* All code access in ARM is little endian, and there are no loaders
3301 * doing swaps that need to be reversed
f9fd40eb
PB
3302 */
3303 return 0;
3304#endif
3305}
3306
c3ae85fc
PB
3307#ifdef CONFIG_USER_ONLY
3308static inline bool arm_cpu_bswap_data(CPUARMState *env)
3309{
3310 return
3311#ifdef TARGET_WORDS_BIGENDIAN
3312 1 ^
3313#endif
3314 arm_cpu_data_is_big_endian(env);
3315}
3316#endif
3317
a9e01311
RH
3318void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3319 target_ulong *cs_base, uint32_t *flags);
6b917547 3320
98128601
RH
3321enum {
3322 QEMU_PSCI_CONDUIT_DISABLED = 0,
3323 QEMU_PSCI_CONDUIT_SMC = 1,
3324 QEMU_PSCI_CONDUIT_HVC = 2,
3325};
3326
017518c1
PM
3327#ifndef CONFIG_USER_ONLY
3328/* Return the address space index to use for a memory access */
3329static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3330{
3331 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3332}
5ce4ff65
PM
3333
3334/* Return the AddressSpace to use for a memory access
3335 * (which depends on whether the access is S or NS, and whether
3336 * the board gave us a separate AddressSpace for S accesses).
3337 */
3338static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3339{
3340 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3341}
017518c1
PM
3342#endif
3343
bd7d00fc 3344/**
b5c53d1b
AL
3345 * arm_register_pre_el_change_hook:
3346 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3347 * CPU changes exception level or mode. The hook function will be
3348 * passed a pointer to the ARMCPU and the opaque data pointer passed
3349 * to this function when the hook was registered.
b5c53d1b
AL
3350 *
3351 * Note that if a pre-change hook is called, any registered post-change hooks
3352 * are guaranteed to subsequently be called.
bd7d00fc 3353 */
b5c53d1b 3354void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3355 void *opaque);
b5c53d1b
AL
3356/**
3357 * arm_register_el_change_hook:
3358 * Register a hook function which will be called immediately after this
3359 * CPU changes exception level or mode. The hook function will be
3360 * passed a pointer to the ARMCPU and the opaque data pointer passed
3361 * to this function when the hook was registered.
3362 *
3363 * Note that any registered hooks registered here are guaranteed to be called
3364 * if pre-change hooks have been.
3365 */
3366void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3367 *opaque);
bd7d00fc 3368
3d74e2e9
RH
3369/**
3370 * arm_rebuild_hflags:
3371 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3372 */
3373void arm_rebuild_hflags(CPUARMState *env);
3374
9a2b5256
RH
3375/**
3376 * aa32_vfp_dreg:
3377 * Return a pointer to the Dn register within env in 32-bit mode.
3378 */
3379static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3380{
c39c2b90 3381 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3382}
3383
3384/**
3385 * aa32_vfp_qreg:
3386 * Return a pointer to the Qn register within env in 32-bit mode.
3387 */
3388static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3389{
c39c2b90 3390 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3391}
3392
3393/**
3394 * aa64_vfp_qreg:
3395 * Return a pointer to the Qn register within env in 64-bit mode.
3396 */
3397static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3398{
c39c2b90 3399 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3400}
3401
028e2a7b
RH
3402/* Shared between translate-sve.c and sve_helper.c. */
3403extern const uint64_t pred_esz_masks[4];
3404
149d3b31
RH
3405/* Helper for the macros below, validating the argument type. */
3406static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3407{
3408 return x;
3409}
3410
3411/*
3412 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3413 * Using these should be a bit more self-documenting than using the
3414 * generic target bits directly.
3415 */
3416#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
206adacf 3417#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
149d3b31 3418
873b73c0
PM
3419/*
3420 * Naming convention for isar_feature functions:
3421 * Functions which test 32-bit ID registers should have _aa32_ in
3422 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3423 * _aa64_ in their name. These must only be used in code where we
3424 * know for certain that the CPU has AArch32 or AArch64 respectively
3425 * or where the correct answer for a CPU which doesn't implement that
3426 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3427 * system registers that are specific to that CPU state, for "should
3428 * we let this system register bit be set" tests where the 32-bit
3429 * flavour of the register doesn't have the bit, and so on).
3430 * Functions which simply ask "does this feature exist at all" have
3431 * _any_ in their name, and always return the logical OR of the _aa64_
3432 * and the _aa32_ function.
873b73c0
PM
3433 */
3434
962fcbf2
RH
3435/*
3436 * 32-bit feature tests via id registers.
3437 */
873b73c0 3438static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3439{
3440 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3441}
3442
873b73c0 3443static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3444{
3445 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3446}
3447
873b73c0 3448static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3449{
3450 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3451}
3452
962fcbf2
RH
3453static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3454{
3455 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3456}
3457
3458static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3459{
3460 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3461}
3462
3463static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3464{
3465 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3466}
3467
3468static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3469{
3470 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3471}
3472
3473static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3474{
3475 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3476}
3477
3478static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3479{
3480 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3481}
3482
3483static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3484{
3485 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3486}
3487
6c1f6f27
RH
3488static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3489{
3490 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3491}
3492
962fcbf2
RH
3493static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3494{
3495 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3496}
3497
87732318
RH
3498static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3499{
3500 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3501}
3502
9888bd1e
RH
3503static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3504{
3505 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3506}
3507
cb570bd3
RH
3508static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3509{
3510 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3511}
3512
5763190f
RH
3513static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3514{
3515 /*
3516 * This is a placeholder for use by VCMA until the rest of
3517 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3518 * At which point we can properly set and check MVFR1.FPHP.
3519 */
3520 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3521}
3522
7fbc6a40
RH
3523static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3524{
3525 /*
3526 * Return true if either VFP or SIMD is implemented.
3527 * In this case, a minimum of VFP w/ D0-D15.
3528 */
3529 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3530}
3531
0e13ba78 3532static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3533{
3534 /* Return true if D16-D31 are implemented */
b3a816f6 3535 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3536}
3537
266bd25c
PM
3538static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3539{
b3a816f6 3540 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3541}
3542
f67957e1
RH
3543static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3544{
3545 /* Return true if CPU supports single precision floating point, VFPv2 */
3546 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3547}
3548
3549static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3550{
3551 /* Return true if CPU supports single precision floating point, VFPv3 */
3552 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3553}
3554
c4ff8735 3555static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3556{
c4ff8735 3557 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3558 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3559}
3560
f67957e1
RH
3561static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3562{
3563 /* Return true if CPU supports double precision floating point, VFPv3 */
3564 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3565}
3566
7d63183f
RH
3567static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3568{
3569 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3570}
3571
602f6e42
PM
3572/*
3573 * We always set the FP and SIMD FP16 fields to indicate identical
3574 * levels of support (assuming SIMD is implemented at all), so
3575 * we only need one set of accessors.
3576 */
3577static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3578{
b3a816f6 3579 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3580}
3581
3582static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3583{
b3a816f6 3584 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3585}
3586
c52881bb
RH
3587/*
3588 * Note that this ID register field covers both VFP and Neon FMAC,
3589 * so should usually be tested in combination with some other
3590 * check that confirms the presence of whichever of VFP or Neon is
3591 * relevant, to avoid accidentally enabling a Neon feature on
3592 * a VFP-no-Neon core or vice-versa.
3593 */
3594static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3595{
3596 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3597}
3598
c0c760af
PM
3599static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3600{
b3a816f6 3601 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3602}
3603
3604static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3605{
b3a816f6 3606 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3607}
3608
3609static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3610{
b3a816f6 3611 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3612}
3613
3614static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3615{
b3a816f6 3616 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3617}
3618
3d6ad6bb
RH
3619static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3620{
10054016 3621 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3622}
3623
3624static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3625{
10054016 3626 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3627}
3628
a6179538
PM
3629static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3630{
3631 /* 0xf means "non-standard IMPDEF PMU" */
3632 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3633 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3634}
3635
15dd1ebd
PM
3636static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3637{
3638 /* 0xf means "non-standard IMPDEF PMU" */
3639 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3640 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3641}
3642
4036b7d1
PM
3643static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3644{
3645 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3646}
3647
f6287c24
PM
3648static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3649{
3650 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3651}
3652
957e6155
PM
3653static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3654{
3655 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3656}
3657
ce3125be
PM
3658static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3659{
3660 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3661}
3662
962fcbf2
RH
3663/*
3664 * 64-bit feature tests via id registers.
3665 */
3666static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3667{
3668 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3669}
3670
3671static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3672{
3673 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3674}
3675
3676static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3677{
3678 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3679}
3680
3681static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3682{
3683 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3684}
3685
3686static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3687{
3688 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3689}
3690
3691static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3692{
3693 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3694}
3695
3696static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3697{
3698 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3699}
3700
3701static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3702{
3703 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3704}
3705
3706static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3707{
3708 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3709}
3710
3711static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3712{
3713 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3714}
3715
3716static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3717{
3718 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3719}
3720
3721static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3722{
3723 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3724}
3725
0caa5af8
RH
3726static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3727{
3728 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3729}
3730
b89d9c98
RH
3731static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3732{
3733 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3734}
3735
5ef84f11
RH
3736static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3737{
3738 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3739}
3740
de390645
RH
3741static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3742{
3743 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3744}
3745
6c1f6f27
RH
3746static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3747{
3748 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3749}
3750
962fcbf2
RH
3751static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3752{
3753 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3754}
3755
991ad91b
RH
3756static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3757{
3758 /*
3759 * Note that while QEMU will only implement the architected algorithm
3760 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3761 * defined algorithms, and thus API+GPI, and this predicate controls
3762 * migration of the 128-bit keys.
3763 */
3764 return (id->id_aa64isar1 &
3765 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3766 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3767 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3768 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3769}
3770
9888bd1e
RH
3771static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3772{
3773 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3774}
3775
cb570bd3
RH
3776static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3777{
3778 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3779}
3780
6bea2563
RH
3781static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3782{
3783 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3784}
3785
0d57b499
BM
3786static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3787{
3788 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3789}
3790
3791static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3792{
3793 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3794}
3795
7d63183f
RH
3796static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3797{
3798 /* We always set the AdvSIMD and FP fields identically. */
3799 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3800}
3801
5763190f
RH
3802static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3803{
3804 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3805 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3806}
3807
0f8d06f1
RH
3808static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3809{
3810 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3811}
3812
cd208a1c
RH
3813static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3814{
3815 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3816}
3817
8fc2ea21
RH
3818static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3819{
3820 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3821}
3822
2d7137c1
RH
3823static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3824{
3825 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3826}
3827
3d6ad6bb
RH
3828static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3829{
3830 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3831}
3832
3833static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3834{
3835 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3836}
3837
9eeb7a1c
RH
3838static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3839{
3840 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3841}
3842
be53b6f4
RH
3843static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3844{
3845 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3846}
3847
c7fd0baa
RH
3848static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3849{
3850 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3851}
3852
3853static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3854{
3855 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3856}
3857
2a609df8
PM
3858static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3859{
3860 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3861 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3862}
3863
15dd1ebd
PM
3864static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3865{
54117b90
PM
3866 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3867 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
3868}
3869
2677cf9f
PM
3870static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3871{
3872 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3873}
3874
a1229109
PM
3875static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3876{
3877 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3878}
3879
957e6155
PM
3880static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
3881{
3882 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
3883}
3884
ce3125be
PM
3885static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
3886{
3887 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
3888}
3889
6e61f839
PM
3890/*
3891 * Feature tests for "does this exist in either 32-bit or 64-bit?"
3892 */
3893static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
3894{
3895 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
3896}
3897
22e57073
PM
3898static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
3899{
3900 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
3901}
3902
2a609df8
PM
3903static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
3904{
3905 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
3906}
3907
15dd1ebd
PM
3908static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
3909{
3910 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
3911}
3912
957e6155
PM
3913static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
3914{
3915 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
3916}
3917
ce3125be
PM
3918static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
3919{
3920 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
3921}
3922
962fcbf2
RH
3923/*
3924 * Forward to the above feature tests given an ARMCPU pointer.
3925 */
3926#define cpu_isar_feature(name, cpu) \
3927 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3928
2c0262af 3929#endif