]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Fix int128_make128 lo, hi order in paired_cmpxchg64_be
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
72b0cd35 25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
3926cc84
AG
29#else
30# define TARGET_LONG_BITS 32
3926cc84 31#endif
9042c0e2 32
ca759f9e
AB
33/* ARM processors have a weak memory model */
34#define TCG_GUEST_DEFAULT_MO (0)
35
9349b4f9 36#define CPUArchState struct CPUARMState
c2764719 37
9a78eead 38#include "qemu-common.h"
74e75564 39#include "cpu-qom.h"
022c62cb 40#include "exec/cpu-defs.h"
2c0262af 41
b8a9e8f1
FB
42#define EXCP_UDEF 1 /* undefined instruction */
43#define EXCP_SWI 2 /* software interrupt */
44#define EXCP_PREFETCH_ABORT 3
45#define EXCP_DATA_ABORT 4
b5ff1b31
FB
46#define EXCP_IRQ 5
47#define EXCP_FIQ 6
06c949e6 48#define EXCP_BKPT 7
9ee6e8bb 49#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 50#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 51#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 52#define EXCP_HYP_TRAP 12
e0d6e6a5 53#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
54#define EXCP_VIRQ 14
55#define EXCP_VFIQ 15
19a6e31c 56#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 57#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 58#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 59#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 93
e4fe830b
PM
94/* The usual mapping for an AArch64 system register to its AArch32
95 * counterpart is for the 32 bit world to have access to the lower
96 * half only (with writes leaving the upper half untouched). It's
97 * therefore useful to be able to pass TCG the offset of the least
98 * significant half of a uint64_t struct member.
99 */
100#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 101#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 102#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
103#else
104#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 105#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
106#endif
107
136e67e9 108/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
109#define ARM_CPU_IRQ 0
110#define ARM_CPU_FIQ 1
136e67e9
EI
111#define ARM_CPU_VIRQ 2
112#define ARM_CPU_VFIQ 3
403946c0 113
62593718 114#define NB_MMU_MODES 8
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
140 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141 * @cpregs_keys: Array that contains the corresponding Key of
142 * a given cpreg with the same order of the cpreg in the XML description.
143 */
144typedef struct DynamicGDBXMLInfo {
145 char *desc;
146 int num_cpregs;
147 uint32_t *cpregs_keys;
148} DynamicGDBXMLInfo;
149
55d284af
PM
150/* CPU state for each instance of a generic timer (in cp15 c14) */
151typedef struct ARMGenericTimer {
152 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 153 uint64_t ctl; /* Timer Control register */
55d284af
PM
154} ARMGenericTimer;
155
156#define GTIMER_PHYS 0
157#define GTIMER_VIRT 1
b0e66d95 158#define GTIMER_HYP 2
b4d3978c
PM
159#define GTIMER_SEC 3
160#define NUM_GTIMERS 4
55d284af 161
11f136ee
FA
162typedef struct {
163 uint64_t raw_tcr;
164 uint32_t mask;
165 uint32_t base_mask;
166} TCR;
167
c39c2b90
RH
168/* Define a maximum sized vector register.
169 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170 * For 64-bit, this is a 2048-bit SVE register.
171 *
172 * Note that the mapping between S, D, and Q views of the register bank
173 * differs between AArch64 and AArch32.
174 * In AArch32:
175 * Qn = regs[n].d[1]:regs[n].d[0]
176 * Dn = regs[n / 2].d[n & 1]
177 * Sn = regs[n / 4].d[n % 4 / 2],
178 * bits 31..0 for even n, and bits 63..32 for odd n
179 * (and regs[16] to regs[31] are inaccessible)
180 * In AArch64:
181 * Zn = regs[n].d[*]
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n].d[0]
184 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 185 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
186 *
187 * This corresponds to the architecturally defined mapping between
188 * the two execution states, and means we do not need to explicitly
189 * map these registers when changing states.
190 *
191 * Align the data for use with TCG host vector operations.
192 */
193
194#ifdef TARGET_AARCH64
195# define ARM_MAX_VQ 16
196#else
197# define ARM_MAX_VQ 1
198#endif
199
200typedef struct ARMVectorReg {
201 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202} ARMVectorReg;
203
3c7d3086 204#ifdef TARGET_AARCH64
991ad91b 205/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086
RH
206typedef struct ARMPredicateReg {
207 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208} ARMPredicateReg;
991ad91b
RH
209
210/* In AArch32 mode, PAC keys do not exist at all. */
211typedef struct ARMPACKey {
212 uint64_t lo, hi;
213} ARMPACKey;
3c7d3086
RH
214#endif
215
c39c2b90 216
2c0262af 217typedef struct CPUARMState {
b5ff1b31 218 /* Regs for current mode. */
2c0262af 219 uint32_t regs[16];
3926cc84
AG
220
221 /* 32/64 switch only happens when taking and returning from
222 * exceptions so the overlap semantics are taken care of then
223 * instead of having a complicated union.
224 */
225 /* Regs for A64 mode. */
226 uint64_t xregs[32];
227 uint64_t pc;
d356312f
PM
228 /* PSTATE isn't an architectural register for ARMv8. However, it is
229 * convenient for us to assemble the underlying state into a 32 bit format
230 * identical to the architectural format used for the SPSR. (This is also
231 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
232 * 'pstate' register are.) Of the PSTATE bits:
233 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
234 * semantics as for AArch32, as described in the comments on each field)
235 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 236 * DAIF (exception masks) are kept in env->daif
f6e52eaa 237 * BTYPE is kept in env->btype
d356312f 238 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
239 */
240 uint32_t pstate;
241 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
242
b90372ad 243 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 244 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
245 the whole CPSR. */
246 uint32_t uncached_cpsr;
247 uint32_t spsr;
248
249 /* Banked registers. */
28c9457d 250 uint64_t banked_spsr[8];
0b7d409d
FA
251 uint32_t banked_r13[8];
252 uint32_t banked_r14[8];
3b46e624 253
b5ff1b31
FB
254 /* These hold r8-r12. */
255 uint32_t usr_regs[5];
256 uint32_t fiq_regs[5];
3b46e624 257
2c0262af
FB
258 /* cpsr flag cache for faster execution */
259 uint32_t CF; /* 0 or 1 */
260 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
261 uint32_t NF; /* N is bit 31. All other bits are undefined. */
262 uint32_t ZF; /* Z set if zero. */
99c475ab 263 uint32_t QF; /* 0 or 1 */
9ee6e8bb 264 uint32_t GE; /* cpsr[19:16] */
b26eefb6 265 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 266 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 267 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 268 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 269
1b174238 270 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 271 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 272
b5ff1b31
FB
273 /* System control coprocessor (cp15) */
274 struct {
40f137e1 275 uint32_t c0_cpuid;
b85a1fd6
FA
276 union { /* Cache size selection */
277 struct {
278 uint64_t _unused_csselr0;
279 uint64_t csselr_ns;
280 uint64_t _unused_csselr1;
281 uint64_t csselr_s;
282 };
283 uint64_t csselr_el[4];
284 };
137feaa9
FA
285 union { /* System control register. */
286 struct {
287 uint64_t _unused_sctlr;
288 uint64_t sctlr_ns;
289 uint64_t hsctlr;
290 uint64_t sctlr_s;
291 };
292 uint64_t sctlr_el[4];
293 };
7ebd5f2e 294 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 295 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 296 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 297 uint64_t sder; /* Secure debug enable register. */
77022576 298 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
299 union { /* MMU translation table base 0. */
300 struct {
301 uint64_t _unused_ttbr0_0;
302 uint64_t ttbr0_ns;
303 uint64_t _unused_ttbr0_1;
304 uint64_t ttbr0_s;
305 };
306 uint64_t ttbr0_el[4];
307 };
308 union { /* MMU translation table base 1. */
309 struct {
310 uint64_t _unused_ttbr1_0;
311 uint64_t ttbr1_ns;
312 uint64_t _unused_ttbr1_1;
313 uint64_t ttbr1_s;
314 };
315 uint64_t ttbr1_el[4];
316 };
b698e9cf 317 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
318 /* MMU translation table base control. */
319 TCR tcr_el[4];
68e9c2fe 320 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
321 uint32_t c2_data; /* MPU data cacheable bits. */
322 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
323 union { /* MMU domain access control register
324 * MPU write buffer control.
325 */
326 struct {
327 uint64_t dacr_ns;
328 uint64_t dacr_s;
329 };
330 struct {
331 uint64_t dacr32_el2;
332 };
333 };
7e09797c
PM
334 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
335 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 336 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 337 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
338 union { /* Fault status registers. */
339 struct {
340 uint64_t ifsr_ns;
341 uint64_t ifsr_s;
342 };
343 struct {
344 uint64_t ifsr32_el2;
345 };
346 };
4a7e2d73
FA
347 union {
348 struct {
349 uint64_t _unused_dfsr;
350 uint64_t dfsr_ns;
351 uint64_t hsr;
352 uint64_t dfsr_s;
353 };
354 uint64_t esr_el[4];
355 };
ce819861 356 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
357 union { /* Fault address registers. */
358 struct {
359 uint64_t _unused_far0;
360#ifdef HOST_WORDS_BIGENDIAN
361 uint32_t ifar_ns;
362 uint32_t dfar_ns;
363 uint32_t ifar_s;
364 uint32_t dfar_s;
365#else
366 uint32_t dfar_ns;
367 uint32_t ifar_ns;
368 uint32_t dfar_s;
369 uint32_t ifar_s;
370#endif
371 uint64_t _unused_far3;
372 };
373 uint64_t far_el[4];
374 };
59e05530 375 uint64_t hpfar_el2;
2a5a9abd 376 uint64_t hstr_el2;
01c097f7
FA
377 union { /* Translation result. */
378 struct {
379 uint64_t _unused_par_0;
380 uint64_t par_ns;
381 uint64_t _unused_par_1;
382 uint64_t par_s;
383 };
384 uint64_t par_el[4];
385 };
6cb0b013 386
b5ff1b31
FB
387 uint32_t c9_insn; /* Cache lockdown registers. */
388 uint32_t c9_data;
8521466b
AF
389 uint64_t c9_pmcr; /* performance monitor control register */
390 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
391 uint64_t c9_pmovsr; /* perf monitor overflow status */
392 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 393 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 394 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
395 union { /* Memory attribute redirection */
396 struct {
397#ifdef HOST_WORDS_BIGENDIAN
398 uint64_t _unused_mair_0;
399 uint32_t mair1_ns;
400 uint32_t mair0_ns;
401 uint64_t _unused_mair_1;
402 uint32_t mair1_s;
403 uint32_t mair0_s;
404#else
405 uint64_t _unused_mair_0;
406 uint32_t mair0_ns;
407 uint32_t mair1_ns;
408 uint64_t _unused_mair_1;
409 uint32_t mair0_s;
410 uint32_t mair1_s;
411#endif
412 };
413 uint64_t mair_el[4];
414 };
fb6c91ba
GB
415 union { /* vector base address register */
416 struct {
417 uint64_t _unused_vbar;
418 uint64_t vbar_ns;
419 uint64_t hvbar;
420 uint64_t vbar_s;
421 };
422 uint64_t vbar_el[4];
423 };
e89e51a1 424 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
425 struct { /* FCSE PID. */
426 uint32_t fcseidr_ns;
427 uint32_t fcseidr_s;
428 };
429 union { /* Context ID. */
430 struct {
431 uint64_t _unused_contextidr_0;
432 uint64_t contextidr_ns;
433 uint64_t _unused_contextidr_1;
434 uint64_t contextidr_s;
435 };
436 uint64_t contextidr_el[4];
437 };
438 union { /* User RW Thread register. */
439 struct {
440 uint64_t tpidrurw_ns;
441 uint64_t tpidrprw_ns;
442 uint64_t htpidr;
443 uint64_t _tpidr_el3;
444 };
445 uint64_t tpidr_el[4];
446 };
447 /* The secure banks of these registers don't map anywhere */
448 uint64_t tpidrurw_s;
449 uint64_t tpidrprw_s;
450 uint64_t tpidruro_s;
451
452 union { /* User RO Thread register. */
453 uint64_t tpidruro_ns;
454 uint64_t tpidrro_el[1];
455 };
a7adc4b7
PM
456 uint64_t c14_cntfrq; /* Counter Frequency register */
457 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 458 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 459 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 460 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 461 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
462 uint32_t c15_ticonfig; /* TI925T configuration byte. */
463 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
464 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
465 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
466 uint32_t c15_config_base_address; /* SCU base address. */
467 uint32_t c15_diagnostic; /* diagnostic register */
468 uint32_t c15_power_diagnostic;
469 uint32_t c15_power_control; /* power control */
0b45451e
PM
470 uint64_t dbgbvr[16]; /* breakpoint value registers */
471 uint64_t dbgbcr[16]; /* breakpoint control registers */
472 uint64_t dbgwvr[16]; /* watchpoint value registers */
473 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 474 uint64_t mdscr_el1;
1424ca8d 475 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 476 uint64_t mdcr_el2;
5513c3ab 477 uint64_t mdcr_el3;
5d05b9d4
AL
478 /* Stores the architectural value of the counter *the last time it was
479 * updated* by pmccntr_op_start. Accesses should always be surrounded
480 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
481 * architecturally-correct value is being read/set.
7c2cb42b 482 */
c92c0687 483 uint64_t c15_ccnt;
5d05b9d4
AL
484 /* Stores the delta between the architectural value and the underlying
485 * cycle count during normal operation. It is used to update c15_ccnt
486 * to be the correct architectural value before accesses. During
487 * accesses, c15_ccnt_delta contains the underlying count being used
488 * for the access, after which it reverts to the delta value in
489 * pmccntr_op_finish.
490 */
491 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
492 uint64_t c14_pmevcntr[31];
493 uint64_t c14_pmevcntr_delta[31];
494 uint64_t c14_pmevtyper[31];
8521466b 495 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 496 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 497 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 498 } cp15;
40f137e1 499
9ee6e8bb 500 struct {
fb602cb7
PM
501 /* M profile has up to 4 stack pointers:
502 * a Main Stack Pointer and a Process Stack Pointer for each
503 * of the Secure and Non-Secure states. (If the CPU doesn't support
504 * the security extension then it has only two SPs.)
505 * In QEMU we always store the currently active SP in regs[13],
506 * and the non-active SP for the current security state in
507 * v7m.other_sp. The stack pointers for the inactive security state
508 * are stored in other_ss_msp and other_ss_psp.
509 * switch_v7m_security_state() is responsible for rearranging them
510 * when we change security state.
511 */
9ee6e8bb 512 uint32_t other_sp;
fb602cb7
PM
513 uint32_t other_ss_msp;
514 uint32_t other_ss_psp;
4a16724f
PM
515 uint32_t vecbase[M_REG_NUM_BANKS];
516 uint32_t basepri[M_REG_NUM_BANKS];
517 uint32_t control[M_REG_NUM_BANKS];
518 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
519 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
520 uint32_t hfsr; /* HardFault Status */
521 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 522 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 523 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 524 uint32_t bfar; /* BusFault Address */
bed079da 525 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 526 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 527 int exception;
4a16724f
PM
528 uint32_t primask[M_REG_NUM_BANKS];
529 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 530 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 531 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 532 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 533 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
534 uint32_t msplim[M_REG_NUM_BANKS];
535 uint32_t psplim[M_REG_NUM_BANKS];
9ee6e8bb
PB
536 } v7m;
537
abf1172f
PM
538 /* Information associated with an exception about to be taken:
539 * code which raises an exception must set cs->exception_index and
540 * the relevant parts of this structure; the cpu_do_interrupt function
541 * will then set the guest-visible registers as part of the exception
542 * entry process.
543 */
544 struct {
545 uint32_t syndrome; /* AArch64 format syndrome register */
546 uint32_t fsr; /* AArch32 format fault status register info */
547 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 548 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
549 /* If we implement EL2 we will also need to store information
550 * about the intermediate physical address for stage 2 faults.
551 */
552 } exception;
553
202ccb6b
DG
554 /* Information associated with an SError */
555 struct {
556 uint8_t pending;
557 uint8_t has_esr;
558 uint64_t esr;
559 } serror;
560
ed89f078
PM
561 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
562 uint32_t irq_line_state;
563
fe1479c3
PB
564 /* Thumb-2 EE state. */
565 uint32_t teecr;
566 uint32_t teehbr;
567
b7bcbe95
FB
568 /* VFP coprocessor state. */
569 struct {
c39c2b90 570 ARMVectorReg zregs[32];
b7bcbe95 571
3c7d3086
RH
572#ifdef TARGET_AARCH64
573 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 574#define FFR_PRED_NUM 16
3c7d3086 575 ARMPredicateReg pregs[17];
516e246a
RH
576 /* Scratch space for aa64 sve predicate temporary. */
577 ARMPredicateReg preg_tmp;
3c7d3086
RH
578#endif
579
40f137e1 580 uint32_t xregs[16];
b7bcbe95
FB
581 /* We store these fpcsr fields separately for convenience. */
582 int vec_len;
583 int vec_stride;
584
516e246a 585 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 586 uint32_t scratch[8];
3b46e624 587
d81ce0ef
AB
588 /* There are a number of distinct float control structures:
589 *
590 * fp_status: is the "normal" fp status.
591 * fp_status_fp16: used for half-precision calculations
592 * standard_fp_status : the ARM "Standard FPSCR Value"
593 *
594 * Half-precision operations are governed by a separate
595 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
596 * status structure to control this.
597 *
598 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
599 * round-to-nearest and is used by any operations (generally
600 * Neon) which the architecture defines as controlled by the
601 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
602 *
603 * To avoid having to transfer exception bits around, we simply
604 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 605 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
606 * only thing which needs to read the exception flags being
607 * an explicit FPSCR read.
608 */
53cd6637 609 float_status fp_status;
d81ce0ef 610 float_status fp_status_f16;
3a492f3a 611 float_status standard_fp_status;
5be5e8ed
RH
612
613 /* ZCR_EL[1-3] */
614 uint64_t zcr_el[4];
b7bcbe95 615 } vfp;
03d05e2d
PM
616 uint64_t exclusive_addr;
617 uint64_t exclusive_val;
618 uint64_t exclusive_high;
b7bcbe95 619
18c9b560
AZ
620 /* iwMMXt coprocessor state. */
621 struct {
622 uint64_t regs[16];
623 uint64_t val;
624
625 uint32_t cregs[16];
626 } iwmmxt;
627
991ad91b
RH
628#ifdef TARGET_AARCH64
629 ARMPACKey apia_key;
630 ARMPACKey apib_key;
631 ARMPACKey apda_key;
632 ARMPACKey apdb_key;
633 ARMPACKey apga_key;
634#endif
635
ce4defa0
PB
636#if defined(CONFIG_USER_ONLY)
637 /* For usermode syscall translation. */
638 int eabi;
639#endif
640
46747d15 641 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
642 struct CPUWatchpoint *cpu_watchpoint[16];
643
1f5c00cf
AB
644 /* Fields up to this point are cleared by a CPU reset */
645 struct {} end_reset_fields;
646
a316d335
FB
647 CPU_COMMON
648
1f5c00cf 649 /* Fields after CPU_COMMON are preserved across CPU reset. */
9ba8c3f4 650
581be094 651 /* Internal CPU feature flags. */
918f5dca 652 uint64_t features;
581be094 653
6cb0b013
PC
654 /* PMSAv7 MPU */
655 struct {
656 uint32_t *drbar;
657 uint32_t *drsr;
658 uint32_t *dracr;
4a16724f 659 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
660 } pmsav7;
661
0e1a46bb
PM
662 /* PMSAv8 MPU */
663 struct {
664 /* The PMSAv8 implementation also shares some PMSAv7 config
665 * and state:
666 * pmsav7.rnr (region number register)
667 * pmsav7_dregion (number of configured regions)
668 */
4a16724f
PM
669 uint32_t *rbar[M_REG_NUM_BANKS];
670 uint32_t *rlar[M_REG_NUM_BANKS];
671 uint32_t mair0[M_REG_NUM_BANKS];
672 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
673 } pmsav8;
674
9901c576
PM
675 /* v8M SAU */
676 struct {
677 uint32_t *rbar;
678 uint32_t *rlar;
679 uint32_t rnr;
680 uint32_t ctrl;
681 } sau;
682
983fe826 683 void *nvic;
462a8bc6 684 const struct arm_boot_info *boot_info;
d3a3e529
VK
685 /* Store GICv3CPUState to access from this struct */
686 void *gicv3state;
2c0262af
FB
687} CPUARMState;
688
bd7d00fc 689/**
08267487 690 * ARMELChangeHookFn:
bd7d00fc
PM
691 * type of a function which can be registered via arm_register_el_change_hook()
692 * to get callbacks when the CPU changes its exception level or mode.
693 */
08267487
AL
694typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
695typedef struct ARMELChangeHook ARMELChangeHook;
696struct ARMELChangeHook {
697 ARMELChangeHookFn *hook;
698 void *opaque;
699 QLIST_ENTRY(ARMELChangeHook) node;
700};
062ba099
AB
701
702/* These values map onto the return values for
703 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
704typedef enum ARMPSCIState {
d5affb0d
AJ
705 PSCI_ON = 0,
706 PSCI_OFF = 1,
062ba099
AB
707 PSCI_ON_PENDING = 2
708} ARMPSCIState;
709
962fcbf2
RH
710typedef struct ARMISARegisters ARMISARegisters;
711
74e75564
PB
712/**
713 * ARMCPU:
714 * @env: #CPUARMState
715 *
716 * An ARM CPU core.
717 */
718struct ARMCPU {
719 /*< private >*/
720 CPUState parent_obj;
721 /*< public >*/
722
723 CPUARMState env;
724
725 /* Coprocessor information */
726 GHashTable *cp_regs;
727 /* For marshalling (mostly coprocessor) register state between the
728 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
729 * we use these arrays.
730 */
731 /* List of register indexes managed via these arrays; (full KVM style
732 * 64 bit indexes, not CPRegInfo 32 bit indexes)
733 */
734 uint64_t *cpreg_indexes;
735 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
736 uint64_t *cpreg_values;
737 /* Length of the indexes, values, reset_values arrays */
738 int32_t cpreg_array_len;
739 /* These are used only for migration: incoming data arrives in
740 * these fields and is sanity checked in post_load before copying
741 * to the working data structures above.
742 */
743 uint64_t *cpreg_vmstate_indexes;
744 uint64_t *cpreg_vmstate_values;
745 int32_t cpreg_vmstate_array_len;
746
200bf5b7
AB
747 DynamicGDBXMLInfo dyn_xml;
748
74e75564
PB
749 /* Timers used by the generic (architected) timer */
750 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
751 /*
752 * Timer used by the PMU. Its state is restored after migration by
753 * pmu_op_finish() - it does not need other handling during migration
754 */
755 QEMUTimer *pmu_timer;
74e75564
PB
756 /* GPIO outputs for generic timer */
757 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
758 /* GPIO output for GICv3 maintenance interrupt signal */
759 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
760 /* GPIO output for the PMU interrupt */
761 qemu_irq pmu_interrupt;
74e75564
PB
762
763 /* MemoryRegion to use for secure physical accesses */
764 MemoryRegion *secure_memory;
765
181962fd
PM
766 /* For v8M, pointer to the IDAU interface provided by board/SoC */
767 Object *idau;
768
74e75564
PB
769 /* 'compatible' string for this CPU for Linux device trees */
770 const char *dtb_compatible;
771
772 /* PSCI version for this CPU
773 * Bits[31:16] = Major Version
774 * Bits[15:0] = Minor Version
775 */
776 uint32_t psci_version;
777
778 /* Should CPU start in PSCI powered-off state? */
779 bool start_powered_off;
062ba099
AB
780
781 /* Current power state, access guarded by BQL */
782 ARMPSCIState power_state;
783
c25bd18a
PM
784 /* CPU has virtualization extension */
785 bool has_el2;
74e75564
PB
786 /* CPU has security extension */
787 bool has_el3;
5c0a3819
SZ
788 /* CPU has PMU (Performance Monitor Unit) */
789 bool has_pmu;
74e75564
PB
790
791 /* CPU has memory protection unit */
792 bool has_mpu;
793 /* PMSAv7 MPU number of supported regions */
794 uint32_t pmsav7_dregion;
9901c576
PM
795 /* v8M SAU number of supported regions */
796 uint32_t sau_sregion;
74e75564
PB
797
798 /* PSCI conduit used to invoke PSCI methods
799 * 0 - disabled, 1 - smc, 2 - hvc
800 */
801 uint32_t psci_conduit;
802
38e2a77c
PM
803 /* For v8M, initial value of the Secure VTOR */
804 uint32_t init_svtor;
805
74e75564
PB
806 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
807 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
808 */
809 uint32_t kvm_target;
810
811 /* KVM init features for this CPU */
812 uint32_t kvm_init_features[7];
813
814 /* Uniprocessor system with MP extensions */
815 bool mp_is_up;
816
c4487d76
PM
817 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
818 * and the probe failed (so we need to report the error in realize)
819 */
820 bool host_cpu_probe_failed;
821
f9a69711
AF
822 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
823 * register.
824 */
825 int32_t core_count;
826
74e75564
PB
827 /* The instance init functions for implementation-specific subclasses
828 * set these fields to specify the implementation-dependent values of
829 * various constant registers and reset values of non-constant
830 * registers.
831 * Some of these might become QOM properties eventually.
832 * Field names match the official register names as defined in the
833 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
834 * is used for reset values of non-constant registers; no reset_
835 * prefix means a constant register.
47576b94
RH
836 * Some of these registers are split out into a substructure that
837 * is shared with the translators to control the ISA.
74e75564 838 */
47576b94
RH
839 struct ARMISARegisters {
840 uint32_t id_isar0;
841 uint32_t id_isar1;
842 uint32_t id_isar2;
843 uint32_t id_isar3;
844 uint32_t id_isar4;
845 uint32_t id_isar5;
846 uint32_t id_isar6;
847 uint32_t mvfr0;
848 uint32_t mvfr1;
849 uint32_t mvfr2;
850 uint64_t id_aa64isar0;
851 uint64_t id_aa64isar1;
852 uint64_t id_aa64pfr0;
853 uint64_t id_aa64pfr1;
3dc91ddb
PM
854 uint64_t id_aa64mmfr0;
855 uint64_t id_aa64mmfr1;
47576b94 856 } isar;
74e75564
PB
857 uint32_t midr;
858 uint32_t revidr;
859 uint32_t reset_fpsid;
74e75564
PB
860 uint32_t ctr;
861 uint32_t reset_sctlr;
862 uint32_t id_pfr0;
863 uint32_t id_pfr1;
864 uint32_t id_dfr0;
cad86737
AL
865 uint64_t pmceid0;
866 uint64_t pmceid1;
74e75564
PB
867 uint32_t id_afr0;
868 uint32_t id_mmfr0;
869 uint32_t id_mmfr1;
870 uint32_t id_mmfr2;
871 uint32_t id_mmfr3;
872 uint32_t id_mmfr4;
74e75564
PB
873 uint64_t id_aa64dfr0;
874 uint64_t id_aa64dfr1;
875 uint64_t id_aa64afr0;
876 uint64_t id_aa64afr1;
74e75564
PB
877 uint32_t dbgdidr;
878 uint32_t clidr;
879 uint64_t mp_affinity; /* MP ID without feature bits */
880 /* The elements of this array are the CCSIDR values for each cache,
881 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
882 */
883 uint32_t ccsidr[16];
884 uint64_t reset_cbar;
885 uint32_t reset_auxcr;
886 bool reset_hivecs;
887 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
888 uint32_t dcz_blocksize;
889 uint64_t rvbar;
bd7d00fc 890
e45868a3
PM
891 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
892 int gic_num_lrs; /* number of list registers */
893 int gic_vpribits; /* number of virtual priority bits */
894 int gic_vprebits; /* number of virtual preemption bits */
895
3a062d57
JB
896 /* Whether the cfgend input is high (i.e. this CPU should reset into
897 * big-endian mode). This setting isn't used directly: instead it modifies
898 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
899 * architecture version.
900 */
901 bool cfgend;
902
b5c53d1b 903 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 904 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
905
906 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
907
908 /* Used to synchronize KVM and QEMU in-kernel device levels */
909 uint8_t device_irq_level;
adf92eab
RH
910
911 /* Used to set the maximum vector length the cpu will support. */
912 uint32_t sve_max_vq;
74e75564
PB
913};
914
915static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
916{
917 return container_of(env, ARMCPU, env);
918}
919
51e5ef45
MAL
920void arm_cpu_post_init(Object *obj);
921
46de5913
IM
922uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
923
74e75564
PB
924#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
925
926#define ENV_OFFSET offsetof(ARMCPU, env)
927
928#ifndef CONFIG_USER_ONLY
929extern const struct VMStateDescription vmstate_arm_cpu;
930#endif
931
932void arm_cpu_do_interrupt(CPUState *cpu);
933void arm_v7m_cpu_do_interrupt(CPUState *cpu);
934bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
935
936void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
937 int flags);
938
939hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
940 MemTxAttrs *attrs);
941
942int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
943int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
944
200bf5b7
AB
945/* Dynamically generates for gdb stub an XML description of the sysregs from
946 * the cp_regs hashtable. Returns the registered sysregs number.
947 */
948int arm_gen_dynamic_xml(CPUState *cpu);
949
950/* Returns the dynamically generated XML for the gdb stub.
951 * Returns a pointer to the XML contents for the specified XML file or NULL
952 * if the XML name doesn't match the predefined one.
953 */
954const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
955
74e75564
PB
956int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
957 int cpuid, void *opaque);
958int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
959 int cpuid, void *opaque);
960
961#ifdef TARGET_AARCH64
962int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
963int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 964void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
965void aarch64_sve_change_el(CPUARMState *env, int old_el,
966 int new_el, bool el0_a64);
0ab5953b
RH
967#else
968static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
969static inline void aarch64_sve_change_el(CPUARMState *env, int o,
970 int n, bool a)
971{ }
74e75564 972#endif
778c3a06 973
faacc041 974target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
975void aarch64_sync_32_to_64(CPUARMState *env);
976void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 977
ced31551
RH
978int fp_exception_el(CPUARMState *env, int cur_el);
979int sve_exception_el(CPUARMState *env, int cur_el);
980uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
981
3926cc84
AG
982static inline bool is_a64(CPUARMState *env)
983{
984 return env->aarch64;
985}
986
2c0262af
FB
987/* you can call this signal handler from your SIGBUS and SIGSEGV
988 signal handlers to inform the virtual CPU of exceptions. non zero
989 is returned if the signal was handled by the virtual CPU. */
5fafdf24 990int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
991 void *puc);
992
ec7b4ce4 993/**
5d05b9d4
AL
994 * pmccntr_op_start/finish
995 * @env: CPUARMState
996 *
997 * Convert the counter in the PMCCNTR between its delta form (the typical mode
998 * when it's enabled) and the guest-visible value. These two calls must always
999 * surround any action which might affect the counter.
1000 */
1001void pmccntr_op_start(CPUARMState *env);
1002void pmccntr_op_finish(CPUARMState *env);
1003
1004/**
1005 * pmu_op_start/finish
ec7b4ce4
AF
1006 * @env: CPUARMState
1007 *
5d05b9d4
AL
1008 * Convert all PMU counters between their delta form (the typical mode when
1009 * they are enabled) and the guest-visible values. These two calls must
1010 * surround any action which might affect the counters.
ec7b4ce4 1011 */
5d05b9d4
AL
1012void pmu_op_start(CPUARMState *env);
1013void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1014
4e7beb0c
AL
1015/*
1016 * Called when a PMU counter is due to overflow
1017 */
1018void arm_pmu_timer_cb(void *opaque);
1019
033614c4
AL
1020/**
1021 * Functions to register as EL change hooks for PMU mode filtering
1022 */
1023void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1024void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1025
57a4a11b 1026/*
bf8d0969
AL
1027 * pmu_init
1028 * @cpu: ARMCPU
57a4a11b 1029 *
bf8d0969
AL
1030 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1031 * for the current configuration
57a4a11b 1032 */
bf8d0969 1033void pmu_init(ARMCPU *cpu);
57a4a11b 1034
76e3e1bc
PM
1035/* SCTLR bit meanings. Several bits have been reused in newer
1036 * versions of the architecture; in that case we define constants
1037 * for both old and new bit meanings. Code which tests against those
1038 * bits should probably check or otherwise arrange that the CPU
1039 * is the architectural version it expects.
1040 */
1041#define SCTLR_M (1U << 0)
1042#define SCTLR_A (1U << 1)
1043#define SCTLR_C (1U << 2)
1044#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1045#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1046#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1047#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1048#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1049#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1050#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1051#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1052#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1053#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1054#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1055#define SCTLR_ITD (1U << 7) /* v8 onward */
1056#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1057#define SCTLR_SED (1U << 8) /* v8 onward */
1058#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1059#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1060#define SCTLR_F (1U << 10) /* up to v6 */
b2af69d0
RH
1061#define SCTLR_SW (1U << 10) /* v7, RES0 in v8 */
1062#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1063#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1064#define SCTLR_I (1U << 12)
b2af69d0
RH
1065#define SCTLR_V (1U << 13) /* AArch32 only */
1066#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1067#define SCTLR_RR (1U << 14) /* up to v7 */
1068#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1069#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1070#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1071#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1072#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1073#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1074#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1075#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1076#define SCTLR_nTWE (1U << 18) /* v8 onward */
1077#define SCTLR_WXN (1U << 19)
1078#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1079#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1080#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1081#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1082#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1083#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1084#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1085#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1086#define SCTLR_VE (1U << 24) /* up to v7 */
1087#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1088#define SCTLR_EE (1U << 25)
1089#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1090#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1091#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1092#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1093#define SCTLR_TRE (1U << 28) /* AArch32 only */
1094#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1095#define SCTLR_AFE (1U << 29) /* AArch32 only */
1096#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1097#define SCTLR_TE (1U << 30) /* AArch32 only */
1098#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1099#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1100#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1101#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1102#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1103#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1104#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1105#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1106#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1107#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1108
c6f19164
GB
1109#define CPTR_TCPAC (1U << 31)
1110#define CPTR_TTA (1U << 20)
1111#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1112#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1113#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1114
187f678d
PM
1115#define MDCR_EPMAD (1U << 21)
1116#define MDCR_EDAD (1U << 20)
033614c4
AL
1117#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1118#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1119#define MDCR_SDD (1U << 16)
a8d64e73 1120#define MDCR_SPD (3U << 14)
187f678d
PM
1121#define MDCR_TDRA (1U << 11)
1122#define MDCR_TDOSA (1U << 10)
1123#define MDCR_TDA (1U << 9)
1124#define MDCR_TDE (1U << 8)
1125#define MDCR_HPME (1U << 7)
1126#define MDCR_TPM (1U << 6)
1127#define MDCR_TPMCR (1U << 5)
033614c4 1128#define MDCR_HPMN (0x1fU)
187f678d 1129
a8d64e73
PM
1130/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1131#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1132
78dbbbe4
PM
1133#define CPSR_M (0x1fU)
1134#define CPSR_T (1U << 5)
1135#define CPSR_F (1U << 6)
1136#define CPSR_I (1U << 7)
1137#define CPSR_A (1U << 8)
1138#define CPSR_E (1U << 9)
1139#define CPSR_IT_2_7 (0xfc00U)
1140#define CPSR_GE (0xfU << 16)
4051e12c
PM
1141#define CPSR_IL (1U << 20)
1142/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1143 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1144 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1145 * where it is live state but not accessible to the AArch32 code.
1146 */
1147#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
1148#define CPSR_J (1U << 24)
1149#define CPSR_IT_0_1 (3U << 25)
1150#define CPSR_Q (1U << 27)
1151#define CPSR_V (1U << 28)
1152#define CPSR_C (1U << 29)
1153#define CPSR_Z (1U << 30)
1154#define CPSR_N (1U << 31)
9ee6e8bb 1155#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1156#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1157
1158#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1159#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1160 | CPSR_NZCV)
9ee6e8bb
PB
1161/* Bits writable in user mode. */
1162#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1163/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
1164#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1165/* Mask of bits which may be set by exception return copying them from SPSR */
1166#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1167
987ab45e
PM
1168/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1169#define XPSR_EXCP 0x1ffU
1170#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1171#define XPSR_IT_2_7 CPSR_IT_2_7
1172#define XPSR_GE CPSR_GE
1173#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1174#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1175#define XPSR_IT_0_1 CPSR_IT_0_1
1176#define XPSR_Q CPSR_Q
1177#define XPSR_V CPSR_V
1178#define XPSR_C CPSR_C
1179#define XPSR_Z CPSR_Z
1180#define XPSR_N CPSR_N
1181#define XPSR_NZCV CPSR_NZCV
1182#define XPSR_IT CPSR_IT
1183
e389be16
FA
1184#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1185#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1186#define TTBCR_PD0 (1U << 4)
1187#define TTBCR_PD1 (1U << 5)
1188#define TTBCR_EPD0 (1U << 7)
1189#define TTBCR_IRGN0 (3U << 8)
1190#define TTBCR_ORGN0 (3U << 10)
1191#define TTBCR_SH0 (3U << 12)
1192#define TTBCR_T1SZ (3U << 16)
1193#define TTBCR_A1 (1U << 22)
1194#define TTBCR_EPD1 (1U << 23)
1195#define TTBCR_IRGN1 (3U << 24)
1196#define TTBCR_ORGN1 (3U << 26)
1197#define TTBCR_SH1 (1U << 28)
1198#define TTBCR_EAE (1U << 31)
1199
d356312f
PM
1200/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1201 * Only these are valid when in AArch64 mode; in
1202 * AArch32 mode SPSRs are basically CPSR-format.
1203 */
f502cfc2 1204#define PSTATE_SP (1U)
d356312f
PM
1205#define PSTATE_M (0xFU)
1206#define PSTATE_nRW (1U << 4)
1207#define PSTATE_F (1U << 6)
1208#define PSTATE_I (1U << 7)
1209#define PSTATE_A (1U << 8)
1210#define PSTATE_D (1U << 9)
f6e52eaa 1211#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1212#define PSTATE_IL (1U << 20)
1213#define PSTATE_SS (1U << 21)
1214#define PSTATE_V (1U << 28)
1215#define PSTATE_C (1U << 29)
1216#define PSTATE_Z (1U << 30)
1217#define PSTATE_N (1U << 31)
1218#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1219#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1220#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1221/* Mode values for AArch64 */
1222#define PSTATE_MODE_EL3h 13
1223#define PSTATE_MODE_EL3t 12
1224#define PSTATE_MODE_EL2h 9
1225#define PSTATE_MODE_EL2t 8
1226#define PSTATE_MODE_EL1h 5
1227#define PSTATE_MODE_EL1t 4
1228#define PSTATE_MODE_EL0t 0
1229
de2db7ec
PM
1230/* Write a new value to v7m.exception, thus transitioning into or out
1231 * of Handler mode; this may result in a change of active stack pointer.
1232 */
1233void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1234
9e729b57
EI
1235/* Map EL and handler into a PSTATE_MODE. */
1236static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1237{
1238 return (el << 2) | handler;
1239}
1240
d356312f
PM
1241/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1242 * interprocessing, so we don't attempt to sync with the cpsr state used by
1243 * the 32 bit decoder.
1244 */
1245static inline uint32_t pstate_read(CPUARMState *env)
1246{
1247 int ZF;
1248
1249 ZF = (env->ZF == 0);
1250 return (env->NF & 0x80000000) | (ZF << 30)
1251 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1252 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1253}
1254
1255static inline void pstate_write(CPUARMState *env, uint32_t val)
1256{
1257 env->ZF = (~val) & PSTATE_Z;
1258 env->NF = val;
1259 env->CF = (val >> 29) & 1;
1260 env->VF = (val << 3) & 0x80000000;
4cc35614 1261 env->daif = val & PSTATE_DAIF;
f6e52eaa 1262 env->btype = (val >> 10) & 3;
d356312f
PM
1263 env->pstate = val & ~CACHED_PSTATE_BITS;
1264}
1265
b5ff1b31 1266/* Return the current CPSR value. */
2f4a40e5 1267uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1268
1269typedef enum CPSRWriteType {
1270 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1271 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1272 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1273 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1274} CPSRWriteType;
1275
1276/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1277void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1278 CPSRWriteType write_type);
9ee6e8bb
PB
1279
1280/* Return the current xPSR value. */
1281static inline uint32_t xpsr_read(CPUARMState *env)
1282{
1283 int ZF;
6fbe23d5
PB
1284 ZF = (env->ZF == 0);
1285 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1286 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1287 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1288 | ((env->condexec_bits & 0xfc) << 8)
1289 | env->v7m.exception;
b5ff1b31
FB
1290}
1291
9ee6e8bb
PB
1292/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1293static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1294{
987ab45e
PM
1295 if (mask & XPSR_NZCV) {
1296 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1297 env->NF = val;
9ee6e8bb
PB
1298 env->CF = (val >> 29) & 1;
1299 env->VF = (val << 3) & 0x80000000;
1300 }
987ab45e
PM
1301 if (mask & XPSR_Q) {
1302 env->QF = ((val & XPSR_Q) != 0);
1303 }
1304 if (mask & XPSR_T) {
1305 env->thumb = ((val & XPSR_T) != 0);
1306 }
1307 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1308 env->condexec_bits &= ~3;
1309 env->condexec_bits |= (val >> 25) & 3;
1310 }
987ab45e 1311 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1312 env->condexec_bits &= 3;
1313 env->condexec_bits |= (val >> 8) & 0xfc;
1314 }
987ab45e 1315 if (mask & XPSR_EXCP) {
de2db7ec
PM
1316 /* Note that this only happens on exception exit */
1317 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1318 }
1319}
1320
f149e3e8
EI
1321#define HCR_VM (1ULL << 0)
1322#define HCR_SWIO (1ULL << 1)
1323#define HCR_PTW (1ULL << 2)
1324#define HCR_FMO (1ULL << 3)
1325#define HCR_IMO (1ULL << 4)
1326#define HCR_AMO (1ULL << 5)
1327#define HCR_VF (1ULL << 6)
1328#define HCR_VI (1ULL << 7)
1329#define HCR_VSE (1ULL << 8)
1330#define HCR_FB (1ULL << 9)
1331#define HCR_BSU_MASK (3ULL << 10)
1332#define HCR_DC (1ULL << 12)
1333#define HCR_TWI (1ULL << 13)
1334#define HCR_TWE (1ULL << 14)
1335#define HCR_TID0 (1ULL << 15)
1336#define HCR_TID1 (1ULL << 16)
1337#define HCR_TID2 (1ULL << 17)
1338#define HCR_TID3 (1ULL << 18)
1339#define HCR_TSC (1ULL << 19)
1340#define HCR_TIDCP (1ULL << 20)
1341#define HCR_TACR (1ULL << 21)
1342#define HCR_TSW (1ULL << 22)
099bf53b 1343#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1344#define HCR_TPU (1ULL << 24)
1345#define HCR_TTLB (1ULL << 25)
1346#define HCR_TVM (1ULL << 26)
1347#define HCR_TGE (1ULL << 27)
1348#define HCR_TDZ (1ULL << 28)
1349#define HCR_HCD (1ULL << 29)
1350#define HCR_TRVM (1ULL << 30)
1351#define HCR_RW (1ULL << 31)
1352#define HCR_CD (1ULL << 32)
1353#define HCR_ID (1ULL << 33)
ac656b16 1354#define HCR_E2H (1ULL << 34)
099bf53b
RH
1355#define HCR_TLOR (1ULL << 35)
1356#define HCR_TERR (1ULL << 36)
1357#define HCR_TEA (1ULL << 37)
1358#define HCR_MIOCNCE (1ULL << 38)
1359#define HCR_APK (1ULL << 40)
1360#define HCR_API (1ULL << 41)
1361#define HCR_NV (1ULL << 42)
1362#define HCR_NV1 (1ULL << 43)
1363#define HCR_AT (1ULL << 44)
1364#define HCR_NV2 (1ULL << 45)
1365#define HCR_FWB (1ULL << 46)
1366#define HCR_FIEN (1ULL << 47)
1367#define HCR_TID4 (1ULL << 49)
1368#define HCR_TICAB (1ULL << 50)
1369#define HCR_TOCU (1ULL << 52)
1370#define HCR_TTLBIS (1ULL << 54)
1371#define HCR_TTLBOS (1ULL << 55)
1372#define HCR_ATA (1ULL << 56)
1373#define HCR_DCT (1ULL << 57)
1374
ac656b16
PM
1375/*
1376 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1377 * HCR_MASK and then clear it again if the feature bit is not set in
1378 * hcr_write().
1379 */
f149e3e8
EI
1380#define HCR_MASK ((1ULL << 34) - 1)
1381
64e0e2de
EI
1382#define SCR_NS (1U << 0)
1383#define SCR_IRQ (1U << 1)
1384#define SCR_FIQ (1U << 2)
1385#define SCR_EA (1U << 3)
1386#define SCR_FW (1U << 4)
1387#define SCR_AW (1U << 5)
1388#define SCR_NET (1U << 6)
1389#define SCR_SMD (1U << 7)
1390#define SCR_HCE (1U << 8)
1391#define SCR_SIF (1U << 9)
1392#define SCR_RW (1U << 10)
1393#define SCR_ST (1U << 11)
1394#define SCR_TWI (1U << 12)
1395#define SCR_TWE (1U << 13)
99f8f86d
RH
1396#define SCR_TLOR (1U << 14)
1397#define SCR_TERR (1U << 15)
1398#define SCR_APK (1U << 16)
1399#define SCR_API (1U << 17)
1400#define SCR_EEL2 (1U << 18)
1401#define SCR_EASE (1U << 19)
1402#define SCR_NMEA (1U << 20)
1403#define SCR_FIEN (1U << 21)
1404#define SCR_ENSCXT (1U << 25)
1405#define SCR_ATA (1U << 26)
64e0e2de 1406
01653295
PM
1407/* Return the current FPSCR value. */
1408uint32_t vfp_get_fpscr(CPUARMState *env);
1409void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1410
d81ce0ef
AB
1411/* FPCR, Floating Point Control Register
1412 * FPSR, Floating Poiht Status Register
1413 *
1414 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1415 * FPCR and FPSR. However since they still use non-overlapping bits
1416 * we store the underlying state in fpscr and just mask on read/write.
1417 */
1418#define FPSR_MASK 0xf800009f
0b62159b 1419#define FPCR_MASK 0x07ff9f00
d81ce0ef 1420
a15945d9
PM
1421#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1422#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1423#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1424#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1425#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1426#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef
AB
1427#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1428#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1429#define FPCR_DN (1 << 25) /* Default NaN enable bit */
1430
f903fa22
PM
1431static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1432{
1433 return vfp_get_fpscr(env) & FPSR_MASK;
1434}
1435
1436static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1437{
1438 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1439 vfp_set_fpscr(env, new_fpscr);
1440}
1441
1442static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1443{
1444 return vfp_get_fpscr(env) & FPCR_MASK;
1445}
1446
1447static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1448{
1449 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1450 vfp_set_fpscr(env, new_fpscr);
1451}
1452
b5ff1b31
FB
1453enum arm_cpu_mode {
1454 ARM_CPU_MODE_USR = 0x10,
1455 ARM_CPU_MODE_FIQ = 0x11,
1456 ARM_CPU_MODE_IRQ = 0x12,
1457 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1458 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1459 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1460 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1461 ARM_CPU_MODE_UND = 0x1b,
1462 ARM_CPU_MODE_SYS = 0x1f
1463};
1464
40f137e1
PB
1465/* VFP system registers. */
1466#define ARM_VFP_FPSID 0
1467#define ARM_VFP_FPSCR 1
a50c0f51 1468#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1469#define ARM_VFP_MVFR1 6
1470#define ARM_VFP_MVFR0 7
40f137e1
PB
1471#define ARM_VFP_FPEXC 8
1472#define ARM_VFP_FPINST 9
1473#define ARM_VFP_FPINST2 10
1474
18c9b560 1475/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1476#define ARM_IWMMXT_wCID 0
1477#define ARM_IWMMXT_wCon 1
1478#define ARM_IWMMXT_wCSSF 2
1479#define ARM_IWMMXT_wCASF 3
1480#define ARM_IWMMXT_wCGR0 8
1481#define ARM_IWMMXT_wCGR1 9
1482#define ARM_IWMMXT_wCGR2 10
1483#define ARM_IWMMXT_wCGR3 11
18c9b560 1484
2c4da50d
PM
1485/* V7M CCR bits */
1486FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1487FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1488FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1489FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1490FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1491FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1492FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1493FIELD(V7M_CCR, DC, 16, 1)
1494FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1495FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1496
24ac0fb1
PM
1497/* V7M SCR bits */
1498FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1499FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1500FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1501FIELD(V7M_SCR, SEVONPEND, 4, 1)
1502
3b2e9344
PM
1503/* V7M AIRCR bits */
1504FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1505FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1506FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1507FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1508FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1509FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1510FIELD(V7M_AIRCR, PRIS, 14, 1)
1511FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1512FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1513
2c4da50d
PM
1514/* V7M CFSR bits for MMFSR */
1515FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1516FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1517FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1518FIELD(V7M_CFSR, MSTKERR, 4, 1)
1519FIELD(V7M_CFSR, MLSPERR, 5, 1)
1520FIELD(V7M_CFSR, MMARVALID, 7, 1)
1521
1522/* V7M CFSR bits for BFSR */
1523FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1524FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1525FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1526FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1527FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1528FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1529FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1530
1531/* V7M CFSR bits for UFSR */
1532FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1533FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1534FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1535FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1536FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1537FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1538FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1539
334e8dad
PM
1540/* V7M CFSR bit masks covering all of the subregister bits */
1541FIELD(V7M_CFSR, MMFSR, 0, 8)
1542FIELD(V7M_CFSR, BFSR, 8, 8)
1543FIELD(V7M_CFSR, UFSR, 16, 16)
1544
2c4da50d
PM
1545/* V7M HFSR bits */
1546FIELD(V7M_HFSR, VECTTBL, 1, 1)
1547FIELD(V7M_HFSR, FORCED, 30, 1)
1548FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1549
1550/* V7M DFSR bits */
1551FIELD(V7M_DFSR, HALTED, 0, 1)
1552FIELD(V7M_DFSR, BKPT, 1, 1)
1553FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1554FIELD(V7M_DFSR, VCATCH, 3, 1)
1555FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1556
bed079da
PM
1557/* V7M SFSR bits */
1558FIELD(V7M_SFSR, INVEP, 0, 1)
1559FIELD(V7M_SFSR, INVIS, 1, 1)
1560FIELD(V7M_SFSR, INVER, 2, 1)
1561FIELD(V7M_SFSR, AUVIOL, 3, 1)
1562FIELD(V7M_SFSR, INVTRAN, 4, 1)
1563FIELD(V7M_SFSR, LSPERR, 5, 1)
1564FIELD(V7M_SFSR, SFARVALID, 6, 1)
1565FIELD(V7M_SFSR, LSERR, 7, 1)
1566
29c483a5
MD
1567/* v7M MPU_CTRL bits */
1568FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1569FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1570FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1571
43bbce7f
PM
1572/* v7M CLIDR bits */
1573FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1574FIELD(V7M_CLIDR, LOUIS, 21, 3)
1575FIELD(V7M_CLIDR, LOC, 24, 3)
1576FIELD(V7M_CLIDR, LOUU, 27, 3)
1577FIELD(V7M_CLIDR, ICB, 30, 2)
1578
1579FIELD(V7M_CSSELR, IND, 0, 1)
1580FIELD(V7M_CSSELR, LEVEL, 1, 3)
1581/* We use the combination of InD and Level to index into cpu->ccsidr[];
1582 * define a mask for this and check that it doesn't permit running off
1583 * the end of the array.
1584 */
1585FIELD(V7M_CSSELR, INDEX, 0, 4)
1586
a62e62af
RH
1587/*
1588 * System register ID fields.
1589 */
1590FIELD(ID_ISAR0, SWAP, 0, 4)
1591FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1592FIELD(ID_ISAR0, BITFIELD, 8, 4)
1593FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1594FIELD(ID_ISAR0, COPROC, 16, 4)
1595FIELD(ID_ISAR0, DEBUG, 20, 4)
1596FIELD(ID_ISAR0, DIVIDE, 24, 4)
1597
1598FIELD(ID_ISAR1, ENDIAN, 0, 4)
1599FIELD(ID_ISAR1, EXCEPT, 4, 4)
1600FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1601FIELD(ID_ISAR1, EXTEND, 12, 4)
1602FIELD(ID_ISAR1, IFTHEN, 16, 4)
1603FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1604FIELD(ID_ISAR1, INTERWORK, 24, 4)
1605FIELD(ID_ISAR1, JAZELLE, 28, 4)
1606
1607FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1608FIELD(ID_ISAR2, MEMHINT, 4, 4)
1609FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1610FIELD(ID_ISAR2, MULT, 12, 4)
1611FIELD(ID_ISAR2, MULTS, 16, 4)
1612FIELD(ID_ISAR2, MULTU, 20, 4)
1613FIELD(ID_ISAR2, PSR_AR, 24, 4)
1614FIELD(ID_ISAR2, REVERSAL, 28, 4)
1615
1616FIELD(ID_ISAR3, SATURATE, 0, 4)
1617FIELD(ID_ISAR3, SIMD, 4, 4)
1618FIELD(ID_ISAR3, SVC, 8, 4)
1619FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1620FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1621FIELD(ID_ISAR3, T32COPY, 20, 4)
1622FIELD(ID_ISAR3, TRUENOP, 24, 4)
1623FIELD(ID_ISAR3, T32EE, 28, 4)
1624
1625FIELD(ID_ISAR4, UNPRIV, 0, 4)
1626FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1627FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1628FIELD(ID_ISAR4, SMC, 12, 4)
1629FIELD(ID_ISAR4, BARRIER, 16, 4)
1630FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1631FIELD(ID_ISAR4, PSR_M, 24, 4)
1632FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1633
1634FIELD(ID_ISAR5, SEVL, 0, 4)
1635FIELD(ID_ISAR5, AES, 4, 4)
1636FIELD(ID_ISAR5, SHA1, 8, 4)
1637FIELD(ID_ISAR5, SHA2, 12, 4)
1638FIELD(ID_ISAR5, CRC32, 16, 4)
1639FIELD(ID_ISAR5, RDM, 24, 4)
1640FIELD(ID_ISAR5, VCMA, 28, 4)
1641
1642FIELD(ID_ISAR6, JSCVT, 0, 4)
1643FIELD(ID_ISAR6, DP, 4, 4)
1644FIELD(ID_ISAR6, FHM, 8, 4)
1645FIELD(ID_ISAR6, SB, 12, 4)
1646FIELD(ID_ISAR6, SPECRES, 16, 4)
1647
ab638a32
RH
1648FIELD(ID_MMFR4, SPECSEI, 0, 4)
1649FIELD(ID_MMFR4, AC2, 4, 4)
1650FIELD(ID_MMFR4, XNX, 8, 4)
1651FIELD(ID_MMFR4, CNP, 12, 4)
1652FIELD(ID_MMFR4, HPDS, 16, 4)
1653FIELD(ID_MMFR4, LSM, 20, 4)
1654FIELD(ID_MMFR4, CCIDX, 24, 4)
1655FIELD(ID_MMFR4, EVT, 28, 4)
1656
a62e62af
RH
1657FIELD(ID_AA64ISAR0, AES, 4, 4)
1658FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1659FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1660FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1661FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1662FIELD(ID_AA64ISAR0, RDM, 28, 4)
1663FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1664FIELD(ID_AA64ISAR0, SM3, 36, 4)
1665FIELD(ID_AA64ISAR0, SM4, 40, 4)
1666FIELD(ID_AA64ISAR0, DP, 44, 4)
1667FIELD(ID_AA64ISAR0, FHM, 48, 4)
1668FIELD(ID_AA64ISAR0, TS, 52, 4)
1669FIELD(ID_AA64ISAR0, TLB, 56, 4)
1670FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1671
1672FIELD(ID_AA64ISAR1, DPB, 0, 4)
1673FIELD(ID_AA64ISAR1, APA, 4, 4)
1674FIELD(ID_AA64ISAR1, API, 8, 4)
1675FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1676FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1677FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1678FIELD(ID_AA64ISAR1, GPA, 24, 4)
1679FIELD(ID_AA64ISAR1, GPI, 28, 4)
1680FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1681FIELD(ID_AA64ISAR1, SB, 36, 4)
1682FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1683
cd208a1c
RH
1684FIELD(ID_AA64PFR0, EL0, 0, 4)
1685FIELD(ID_AA64PFR0, EL1, 4, 4)
1686FIELD(ID_AA64PFR0, EL2, 8, 4)
1687FIELD(ID_AA64PFR0, EL3, 12, 4)
1688FIELD(ID_AA64PFR0, FP, 16, 4)
1689FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1690FIELD(ID_AA64PFR0, GIC, 24, 4)
1691FIELD(ID_AA64PFR0, RAS, 28, 4)
1692FIELD(ID_AA64PFR0, SVE, 32, 4)
1693
be53b6f4
RH
1694FIELD(ID_AA64PFR1, BT, 0, 4)
1695FIELD(ID_AA64PFR1, SBSS, 4, 4)
1696FIELD(ID_AA64PFR1, MTE, 8, 4)
1697FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1698
3dc91ddb
PM
1699FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1700FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1701FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1702FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1703FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1704FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1705FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1706FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1707FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1708FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1709FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1710FIELD(ID_AA64MMFR0, EXS, 44, 4)
1711
1712FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1713FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1714FIELD(ID_AA64MMFR1, VH, 8, 4)
1715FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1716FIELD(ID_AA64MMFR1, LO, 16, 4)
1717FIELD(ID_AA64MMFR1, PAN, 20, 4)
1718FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1719FIELD(ID_AA64MMFR1, XNX, 28, 4)
1720
beceb99c
AL
1721FIELD(ID_DFR0, COPDBG, 0, 4)
1722FIELD(ID_DFR0, COPSDBG, 4, 4)
1723FIELD(ID_DFR0, MMAPDBG, 8, 4)
1724FIELD(ID_DFR0, COPTRC, 12, 4)
1725FIELD(ID_DFR0, MMAPTRC, 16, 4)
1726FIELD(ID_DFR0, MPROFDBG, 20, 4)
1727FIELD(ID_DFR0, PERFMON, 24, 4)
1728FIELD(ID_DFR0, TRACEFILT, 28, 4)
1729
43bbce7f
PM
1730QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1731
ce854d7c
BC
1732/* If adding a feature bit which corresponds to a Linux ELF
1733 * HWCAP bit, remember to update the feature-bit-to-hwcap
1734 * mapping in linux-user/elfload.c:get_elf_hwcap().
1735 */
40f137e1
PB
1736enum arm_features {
1737 ARM_FEATURE_VFP,
c1713132
AZ
1738 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1739 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1740 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1741 ARM_FEATURE_V6,
1742 ARM_FEATURE_V6K,
1743 ARM_FEATURE_V7,
1744 ARM_FEATURE_THUMB2,
452a0955 1745 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1746 ARM_FEATURE_VFP3,
60011498 1747 ARM_FEATURE_VFP_FP16,
9ee6e8bb 1748 ARM_FEATURE_NEON,
9ee6e8bb 1749 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1750 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1751 ARM_FEATURE_THUMB2EE,
be5e7a76 1752 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1753 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1754 ARM_FEATURE_V4T,
1755 ARM_FEATURE_V5,
5bc95aa2 1756 ARM_FEATURE_STRONGARM,
906879a9 1757 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
da97f52c 1758 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1759 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1760 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1761 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1762 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1763 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1764 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1765 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1766 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1767 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1768 ARM_FEATURE_V8,
3926cc84 1769 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1770 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1771 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1772 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1773 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1774 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1775 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1776 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1777 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1778 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1779 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1780};
1781
1782static inline int arm_feature(CPUARMState *env, int feature)
1783{
918f5dca 1784 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1785}
1786
19e0fefa
FA
1787#if !defined(CONFIG_USER_ONLY)
1788/* Return true if exception levels below EL3 are in secure state,
1789 * or would be following an exception return to that level.
1790 * Unlike arm_is_secure() (which is always a question about the
1791 * _current_ state of the CPU) this doesn't care about the current
1792 * EL or mode.
1793 */
1794static inline bool arm_is_secure_below_el3(CPUARMState *env)
1795{
1796 if (arm_feature(env, ARM_FEATURE_EL3)) {
1797 return !(env->cp15.scr_el3 & SCR_NS);
1798 } else {
6b7f0b61 1799 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1800 * defined, in which case QEMU defaults to non-secure.
1801 */
1802 return false;
1803 }
1804}
1805
71205876
PM
1806/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1807static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1808{
1809 if (arm_feature(env, ARM_FEATURE_EL3)) {
1810 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1811 /* CPU currently in AArch64 state and EL3 */
1812 return true;
1813 } else if (!is_a64(env) &&
1814 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1815 /* CPU currently in AArch32 state and monitor mode */
1816 return true;
1817 }
1818 }
71205876
PM
1819 return false;
1820}
1821
1822/* Return true if the processor is in secure state */
1823static inline bool arm_is_secure(CPUARMState *env)
1824{
1825 if (arm_is_el3_or_mon(env)) {
1826 return true;
1827 }
19e0fefa
FA
1828 return arm_is_secure_below_el3(env);
1829}
1830
1831#else
1832static inline bool arm_is_secure_below_el3(CPUARMState *env)
1833{
1834 return false;
1835}
1836
1837static inline bool arm_is_secure(CPUARMState *env)
1838{
1839 return false;
1840}
1841#endif
1842
f7778444
RH
1843/**
1844 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1845 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1846 * "for all purposes other than a direct read or write access of HCR_EL2."
1847 * Not included here is HCR_RW.
1848 */
1849uint64_t arm_hcr_el2_eff(CPUARMState *env);
1850
1f79ee32
PM
1851/* Return true if the specified exception level is running in AArch64 state. */
1852static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1853{
446c81ab
PM
1854 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1855 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1856 */
446c81ab
PM
1857 assert(el >= 1 && el <= 3);
1858 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1859
446c81ab
PM
1860 /* The highest exception level is always at the maximum supported
1861 * register width, and then lower levels have a register width controlled
1862 * by bits in the SCR or HCR registers.
1f79ee32 1863 */
446c81ab
PM
1864 if (el == 3) {
1865 return aa64;
1866 }
1867
1868 if (arm_feature(env, ARM_FEATURE_EL3)) {
1869 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1870 }
1871
1872 if (el == 2) {
1873 return aa64;
1874 }
1875
1876 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1877 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1878 }
1879
1880 return aa64;
1f79ee32
PM
1881}
1882
3f342b9e
SF
1883/* Function for determing whether guest cp register reads and writes should
1884 * access the secure or non-secure bank of a cp register. When EL3 is
1885 * operating in AArch32 state, the NS-bit determines whether the secure
1886 * instance of a cp register should be used. When EL3 is AArch64 (or if
1887 * it doesn't exist at all) then there is no register banking, and all
1888 * accesses are to the non-secure version.
1889 */
1890static inline bool access_secure_reg(CPUARMState *env)
1891{
1892 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1893 !arm_el_is_aa64(env, 3) &&
1894 !(env->cp15.scr_el3 & SCR_NS));
1895
1896 return ret;
1897}
1898
ea30a4b8
FA
1899/* Macros for accessing a specified CP register bank */
1900#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1901 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1902
1903#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1904 do { \
1905 if (_secure) { \
1906 (_env)->cp15._regname##_s = (_val); \
1907 } else { \
1908 (_env)->cp15._regname##_ns = (_val); \
1909 } \
1910 } while (0)
1911
1912/* Macros for automatically accessing a specific CP register bank depending on
1913 * the current secure state of the system. These macros are not intended for
1914 * supporting instruction translation reads/writes as these are dependent
1915 * solely on the SCR.NS bit and not the mode.
1916 */
1917#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1918 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1919 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1920
1921#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1922 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1923 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1924 (_val))
1925
9a78eead 1926void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
012a906b
GB
1927uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1928 uint32_t cur_el, bool secure);
40f137e1 1929
9ee6e8bb 1930/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1931#ifndef CONFIG_USER_ONLY
1932bool armv7m_nvic_can_take_pending_exception(void *opaque);
1933#else
1934static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1935{
1936 return true;
1937}
1938#endif
2fb50a33
PM
1939/**
1940 * armv7m_nvic_set_pending: mark the specified exception as pending
1941 * @opaque: the NVIC
1942 * @irq: the exception number to mark pending
1943 * @secure: false for non-banked exceptions or for the nonsecure
1944 * version of a banked exception, true for the secure version of a banked
1945 * exception.
1946 *
1947 * Marks the specified exception as pending. Note that we will assert()
1948 * if @secure is true and @irq does not specify one of the fixed set
1949 * of architecturally banked exceptions.
1950 */
1951void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
1952/**
1953 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1954 * @opaque: the NVIC
1955 * @irq: the exception number to mark pending
1956 * @secure: false for non-banked exceptions or for the nonsecure
1957 * version of a banked exception, true for the secure version of a banked
1958 * exception.
1959 *
1960 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1961 * exceptions (exceptions generated in the course of trying to take
1962 * a different exception).
1963 */
1964void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
6c948518
PM
1965/**
1966 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1967 * exception, and whether it targets Secure state
1968 * @opaque: the NVIC
1969 * @pirq: set to pending exception number
1970 * @ptargets_secure: set to whether pending exception targets Secure
1971 *
1972 * This function writes the number of the highest priority pending
1973 * exception (the one which would be made active by
1974 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1975 * to true if the current highest priority pending exception should
1976 * be taken to Secure state, false for NS.
1977 */
1978void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1979 bool *ptargets_secure);
5cb18069
PM
1980/**
1981 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1982 * @opaque: the NVIC
1983 *
1984 * Move the current highest priority pending exception from the pending
1985 * state to the active state, and update v7m.exception to indicate that
1986 * it is the exception currently being handled.
5cb18069 1987 */
6c948518 1988void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
1989/**
1990 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1991 * @opaque: the NVIC
1992 * @irq: the exception number to complete
5cb18069 1993 * @secure: true if this exception was secure
aa488fe3
PM
1994 *
1995 * Returns: -1 if the irq was not active
1996 * 1 if completing this irq brought us back to base (no active irqs)
1997 * 0 if there is still an irq active after this one was completed
1998 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1999 */
5cb18069 2000int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
42a6686b
PM
2001/**
2002 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2003 * @opaque: the NVIC
2004 *
2005 * Returns: the raw execution priority as defined by the v8M architecture.
2006 * This is the execution priority minus the effects of AIRCR.PRIS,
2007 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2008 * (v8M ARM ARM I_PKLD.)
2009 */
2010int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2011/**
2012 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2013 * priority is negative for the specified security state.
2014 * @opaque: the NVIC
2015 * @secure: the security state to test
2016 * This corresponds to the pseudocode IsReqExecPriNeg().
2017 */
2018#ifndef CONFIG_USER_ONLY
2019bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2020#else
2021static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2022{
2023 return false;
2024}
2025#endif
9ee6e8bb 2026
4b6a83fb
PM
2027/* Interface for defining coprocessor registers.
2028 * Registers are defined in tables of arm_cp_reginfo structs
2029 * which are passed to define_arm_cp_regs().
2030 */
2031
2032/* When looking up a coprocessor register we look for it
2033 * via an integer which encodes all of:
2034 * coprocessor number
2035 * Crn, Crm, opc1, opc2 fields
2036 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2037 * or via MRRC/MCRR?)
51a79b03 2038 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2039 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2040 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2041 * For AArch64, there is no 32/64 bit size distinction;
2042 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2043 * and 4 bit CRn and CRm. The encoding patterns are chosen
2044 * to be easy to convert to and from the KVM encodings, and also
2045 * so that the hashtable can contain both AArch32 and AArch64
2046 * registers (to allow for interprocessing where we might run
2047 * 32 bit code on a 64 bit core).
4b6a83fb 2048 */
f5a0a5a5
PM
2049/* This bit is private to our hashtable cpreg; in KVM register
2050 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2051 * in the upper bits of the 64 bit ID.
2052 */
2053#define CP_REG_AA64_SHIFT 28
2054#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2055
51a79b03
PM
2056/* To enable banking of coprocessor registers depending on ns-bit we
2057 * add a bit to distinguish between secure and non-secure cpregs in the
2058 * hashtable.
2059 */
2060#define CP_REG_NS_SHIFT 29
2061#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2062
2063#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2064 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2065 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2066
f5a0a5a5
PM
2067#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2068 (CP_REG_AA64_MASK | \
2069 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2070 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2071 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2072 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2073 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2074 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2075
721fae12
PM
2076/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2077 * version used as a key for the coprocessor register hashtable
2078 */
2079static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2080{
2081 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2082 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2083 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2084 } else {
2085 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2086 cpregid |= (1 << 15);
2087 }
2088
2089 /* KVM is always non-secure so add the NS flag on AArch32 register
2090 * entries.
2091 */
2092 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2093 }
2094 return cpregid;
2095}
2096
2097/* Convert a truncated 32 bit hashtable key into the full
2098 * 64 bit KVM register ID.
2099 */
2100static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2101{
f5a0a5a5
PM
2102 uint64_t kvmid;
2103
2104 if (cpregid & CP_REG_AA64_MASK) {
2105 kvmid = cpregid & ~CP_REG_AA64_MASK;
2106 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2107 } else {
f5a0a5a5
PM
2108 kvmid = cpregid & ~(1 << 15);
2109 if (cpregid & (1 << 15)) {
2110 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2111 } else {
2112 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2113 }
721fae12
PM
2114 }
2115 return kvmid;
2116}
2117
4b6a83fb 2118/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2119 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2120 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2121 * TCG can assume the value to be constant (ie load at translate time)
2122 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2123 * indicates that the TB should not be ended after a write to this register
2124 * (the default is that the TB ends after cp writes). OVERRIDE permits
2125 * a register definition to override a previous definition for the
2126 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2127 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2128 * ALIAS indicates that this register is an alias view of some underlying
2129 * state which is also visible via another register, and that the other
b061a82b
SF
2130 * register is handling migration and reset; registers marked ALIAS will not be
2131 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2132 * NO_RAW indicates that this register has no underlying state and does not
2133 * support raw access for state saving/loading; it will not be used for either
2134 * migration or KVM state synchronization. (Typically this is for "registers"
2135 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
2136 * IO indicates that this register does I/O and therefore its accesses
2137 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2138 * registers which implement clocks or timers require this.
4b6a83fb 2139 */
fe03d45f
RH
2140#define ARM_CP_SPECIAL 0x0001
2141#define ARM_CP_CONST 0x0002
2142#define ARM_CP_64BIT 0x0004
2143#define ARM_CP_SUPPRESS_TB_END 0x0008
2144#define ARM_CP_OVERRIDE 0x0010
2145#define ARM_CP_ALIAS 0x0020
2146#define ARM_CP_IO 0x0040
2147#define ARM_CP_NO_RAW 0x0080
2148#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2149#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2150#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2151#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2152#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2153#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2154#define ARM_CP_FPU 0x1000
490aa7f1 2155#define ARM_CP_SVE 0x2000
1f163787 2156#define ARM_CP_NO_GDB 0x4000
4b6a83fb 2157/* Used only as a terminator for ARMCPRegInfo lists */
fe03d45f 2158#define ARM_CP_SENTINEL 0xffff
4b6a83fb 2159/* Mask of only the flag bits in a type field */
1f163787 2160#define ARM_CP_FLAG_MASK 0x70ff
4b6a83fb 2161
f5a0a5a5
PM
2162/* Valid values for ARMCPRegInfo state field, indicating which of
2163 * the AArch32 and AArch64 execution states this register is visible in.
2164 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2165 * If the reginfo is declared to be visible in both states then a second
2166 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2167 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2168 * Note that we rely on the values of these enums as we iterate through
2169 * the various states in some places.
2170 */
2171enum {
2172 ARM_CP_STATE_AA32 = 0,
2173 ARM_CP_STATE_AA64 = 1,
2174 ARM_CP_STATE_BOTH = 2,
2175};
2176
c3e30260
FA
2177/* ARM CP register secure state flags. These flags identify security state
2178 * attributes for a given CP register entry.
2179 * The existence of both or neither secure and non-secure flags indicates that
2180 * the register has both a secure and non-secure hash entry. A single one of
2181 * these flags causes the register to only be hashed for the specified
2182 * security state.
2183 * Although definitions may have any combination of the S/NS bits, each
2184 * registered entry will only have one to identify whether the entry is secure
2185 * or non-secure.
2186 */
2187enum {
2188 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2189 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2190};
2191
4b6a83fb
PM
2192/* Return true if cptype is a valid type field. This is used to try to
2193 * catch errors where the sentinel has been accidentally left off the end
2194 * of a list of registers.
2195 */
2196static inline bool cptype_valid(int cptype)
2197{
2198 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2199 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2200 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2201}
2202
2203/* Access rights:
2204 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2205 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2206 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2207 * (ie any of the privileged modes in Secure state, or Monitor mode).
2208 * If a register is accessible in one privilege level it's always accessible
2209 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2210 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2211 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2212 * terminology a little and call this PL3.
f5a0a5a5
PM
2213 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2214 * with the ELx exception levels.
4b6a83fb
PM
2215 *
2216 * If access permissions for a register are more complex than can be
2217 * described with these bits, then use a laxer set of restrictions, and
2218 * do the more restrictive/complex check inside a helper function.
2219 */
2220#define PL3_R 0x80
2221#define PL3_W 0x40
2222#define PL2_R (0x20 | PL3_R)
2223#define PL2_W (0x10 | PL3_W)
2224#define PL1_R (0x08 | PL2_R)
2225#define PL1_W (0x04 | PL2_W)
2226#define PL0_R (0x02 | PL1_R)
2227#define PL0_W (0x01 | PL1_W)
2228
2229#define PL3_RW (PL3_R | PL3_W)
2230#define PL2_RW (PL2_R | PL2_W)
2231#define PL1_RW (PL1_R | PL1_W)
2232#define PL0_RW (PL0_R | PL0_W)
2233
75502672
PM
2234/* Return the highest implemented Exception Level */
2235static inline int arm_highest_el(CPUARMState *env)
2236{
2237 if (arm_feature(env, ARM_FEATURE_EL3)) {
2238 return 3;
2239 }
2240 if (arm_feature(env, ARM_FEATURE_EL2)) {
2241 return 2;
2242 }
2243 return 1;
2244}
2245
15b3f556
PM
2246/* Return true if a v7M CPU is in Handler mode */
2247static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2248{
2249 return env->v7m.exception != 0;
2250}
2251
dcbff19b
GB
2252/* Return the current Exception Level (as per ARMv8; note that this differs
2253 * from the ARMv7 Privilege Level).
2254 */
2255static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2256{
6d54ed3c 2257 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2258 return arm_v7m_is_handler_mode(env) ||
2259 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2260 }
2261
592125f8 2262 if (is_a64(env)) {
f5a0a5a5
PM
2263 return extract32(env->pstate, 2, 2);
2264 }
2265
592125f8
FA
2266 switch (env->uncached_cpsr & 0x1f) {
2267 case ARM_CPU_MODE_USR:
4b6a83fb 2268 return 0;
592125f8
FA
2269 case ARM_CPU_MODE_HYP:
2270 return 2;
2271 case ARM_CPU_MODE_MON:
2272 return 3;
2273 default:
2274 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2275 /* If EL3 is 32-bit then all secure privileged modes run in
2276 * EL3
2277 */
2278 return 3;
2279 }
2280
2281 return 1;
4b6a83fb 2282 }
4b6a83fb
PM
2283}
2284
2285typedef struct ARMCPRegInfo ARMCPRegInfo;
2286
f59df3f2
PM
2287typedef enum CPAccessResult {
2288 /* Access is permitted */
2289 CP_ACCESS_OK = 0,
2290 /* Access fails due to a configurable trap or enable which would
2291 * result in a categorized exception syndrome giving information about
2292 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2293 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2294 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2295 */
2296 CP_ACCESS_TRAP = 1,
2297 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2298 * Note that this is not a catch-all case -- the set of cases which may
2299 * result in this failure is specifically defined by the architecture.
2300 */
2301 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2302 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2303 CP_ACCESS_TRAP_EL2 = 3,
2304 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2305 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2306 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2307 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2308 /* Access fails and results in an exception syndrome for an FP access,
2309 * trapped directly to EL2 or EL3
2310 */
2311 CP_ACCESS_TRAP_FP_EL2 = 7,
2312 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2313} CPAccessResult;
2314
c4241c7d
PM
2315/* Access functions for coprocessor registers. These cannot fail and
2316 * may not raise exceptions.
2317 */
2318typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2319typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2320 uint64_t value);
f59df3f2 2321/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2322typedef CPAccessResult CPAccessFn(CPUARMState *env,
2323 const ARMCPRegInfo *opaque,
2324 bool isread);
4b6a83fb
PM
2325/* Hook function for register reset */
2326typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2327
2328#define CP_ANY 0xff
2329
2330/* Definition of an ARM coprocessor register */
2331struct ARMCPRegInfo {
2332 /* Name of register (useful mainly for debugging, need not be unique) */
2333 const char *name;
2334 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2335 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2336 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2337 * will be decoded to this register. The register read and write
2338 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2339 * used by the program, so it is possible to register a wildcard and
2340 * then behave differently on read/write if necessary.
2341 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2342 * must both be zero.
f5a0a5a5
PM
2343 * For AArch64-visible registers, opc0 is also used.
2344 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2345 * way to distinguish (for KVM's benefit) guest-visible system registers
2346 * from demuxed ones provided to preserve the "no side effects on
2347 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2348 * visible (to match KVM's encoding); cp==0 will be converted to
2349 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2350 */
2351 uint8_t cp;
2352 uint8_t crn;
2353 uint8_t crm;
f5a0a5a5 2354 uint8_t opc0;
4b6a83fb
PM
2355 uint8_t opc1;
2356 uint8_t opc2;
f5a0a5a5
PM
2357 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2358 int state;
4b6a83fb
PM
2359 /* Register type: ARM_CP_* bits/values */
2360 int type;
2361 /* Access rights: PL*_[RW] */
2362 int access;
c3e30260
FA
2363 /* Security state: ARM_CP_SECSTATE_* bits/values */
2364 int secure;
4b6a83fb
PM
2365 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2366 * this register was defined: can be used to hand data through to the
2367 * register read/write functions, since they are passed the ARMCPRegInfo*.
2368 */
2369 void *opaque;
2370 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2371 * fieldoffset is non-zero, the reset value of the register.
2372 */
2373 uint64_t resetvalue;
c3e30260
FA
2374 /* Offset of the field in CPUARMState for this register.
2375 *
2376 * This is not needed if either:
4b6a83fb
PM
2377 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2378 * 2. both readfn and writefn are specified
2379 */
2380 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2381
2382 /* Offsets of the secure and non-secure fields in CPUARMState for the
2383 * register if it is banked. These fields are only used during the static
2384 * registration of a register. During hashing the bank associated
2385 * with a given security state is copied to fieldoffset which is used from
2386 * there on out.
2387 *
2388 * It is expected that register definitions use either fieldoffset or
2389 * bank_fieldoffsets in the definition but not both. It is also expected
2390 * that both bank offsets are set when defining a banked register. This
2391 * use indicates that a register is banked.
2392 */
2393 ptrdiff_t bank_fieldoffsets[2];
2394
f59df3f2
PM
2395 /* Function for making any access checks for this register in addition to
2396 * those specified by the 'access' permissions bits. If NULL, no extra
2397 * checks required. The access check is performed at runtime, not at
2398 * translate time.
2399 */
2400 CPAccessFn *accessfn;
4b6a83fb
PM
2401 /* Function for handling reads of this register. If NULL, then reads
2402 * will be done by loading from the offset into CPUARMState specified
2403 * by fieldoffset.
2404 */
2405 CPReadFn *readfn;
2406 /* Function for handling writes of this register. If NULL, then writes
2407 * will be done by writing to the offset into CPUARMState specified
2408 * by fieldoffset.
2409 */
2410 CPWriteFn *writefn;
7023ec7e
PM
2411 /* Function for doing a "raw" read; used when we need to copy
2412 * coprocessor state to the kernel for KVM or out for
2413 * migration. This only needs to be provided if there is also a
c4241c7d 2414 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2415 */
2416 CPReadFn *raw_readfn;
2417 /* Function for doing a "raw" write; used when we need to copy KVM
2418 * kernel coprocessor state into userspace, or for inbound
2419 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2420 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2421 * or similar behaviour.
7023ec7e
PM
2422 */
2423 CPWriteFn *raw_writefn;
4b6a83fb
PM
2424 /* Function for resetting the register. If NULL, then reset will be done
2425 * by writing resetvalue to the field specified in fieldoffset. If
2426 * fieldoffset is 0 then no reset will be done.
2427 */
2428 CPResetFn *resetfn;
2429};
2430
2431/* Macros which are lvalues for the field in CPUARMState for the
2432 * ARMCPRegInfo *ri.
2433 */
2434#define CPREG_FIELD32(env, ri) \
2435 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2436#define CPREG_FIELD64(env, ri) \
2437 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2438
2439#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2440
2441void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2442 const ARMCPRegInfo *regs, void *opaque);
2443void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2444 const ARMCPRegInfo *regs, void *opaque);
2445static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2446{
2447 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2448}
2449static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2450{
2451 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2452}
60322b39 2453const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
2454
2455/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2456void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2457 uint64_t value);
4b6a83fb 2458/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2459uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2460
f5a0a5a5
PM
2461/* CPResetFn that does nothing, for use if no reset is required even
2462 * if fieldoffset is non zero.
2463 */
2464void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2465
67ed771d
PM
2466/* Return true if this reginfo struct's field in the cpu state struct
2467 * is 64 bits wide.
2468 */
2469static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2470{
2471 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2472}
2473
dcbff19b 2474static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2475 const ARMCPRegInfo *ri, int isread)
2476{
dcbff19b 2477 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2478}
2479
49a66191
PM
2480/* Raw read of a coprocessor register (as needed for migration, etc) */
2481uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2482
721fae12
PM
2483/**
2484 * write_list_to_cpustate
2485 * @cpu: ARMCPU
2486 *
2487 * For each register listed in the ARMCPU cpreg_indexes list, write
2488 * its value from the cpreg_values list into the ARMCPUState structure.
2489 * This updates TCG's working data structures from KVM data or
2490 * from incoming migration state.
2491 *
2492 * Returns: true if all register values were updated correctly,
2493 * false if some register was unknown or could not be written.
2494 * Note that we do not stop early on failure -- we will attempt
2495 * writing all registers in the list.
2496 */
2497bool write_list_to_cpustate(ARMCPU *cpu);
2498
2499/**
2500 * write_cpustate_to_list:
2501 * @cpu: ARMCPU
2502 *
2503 * For each register listed in the ARMCPU cpreg_indexes list, write
2504 * its value from the ARMCPUState structure into the cpreg_values list.
2505 * This is used to copy info from TCG's working data structures into
2506 * KVM or for outbound migration.
2507 *
2508 * Returns: true if all register values were read correctly,
2509 * false if some register was unknown or could not be read.
2510 * Note that we do not stop early on failure -- we will attempt
2511 * reading all registers in the list.
2512 */
2513bool write_cpustate_to_list(ARMCPU *cpu);
2514
9ee6e8bb
PB
2515#define ARM_CPUID_TI915T 0x54029152
2516#define ARM_CPUID_TI925T 0x54029252
40f137e1 2517
b5ff1b31 2518#if defined(CONFIG_USER_ONLY)
2c0262af 2519#define TARGET_PAGE_BITS 12
b5ff1b31 2520#else
e97da98f
PM
2521/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2522 * have to support 1K tiny pages.
2523 */
2524#define TARGET_PAGE_BITS_VARY
2525#define TARGET_PAGE_BITS_MIN 10
b5ff1b31 2526#endif
9467d44c 2527
3926cc84
AG
2528#if defined(TARGET_AARCH64)
2529# define TARGET_PHYS_ADDR_SPACE_BITS 48
f6768aa1 2530# define TARGET_VIRT_ADDR_SPACE_BITS 48
3926cc84
AG
2531#else
2532# define TARGET_PHYS_ADDR_SPACE_BITS 40
2533# define TARGET_VIRT_ADDR_SPACE_BITS 32
2534#endif
52705890 2535
012a906b
GB
2536static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2537 unsigned int target_el)
043b7f8d
EI
2538{
2539 CPUARMState *env = cs->env_ptr;
dcbff19b 2540 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2541 bool secure = arm_is_secure(env);
57e3a0c7
GB
2542 bool pstate_unmasked;
2543 int8_t unmasked = 0;
f7778444 2544 uint64_t hcr_el2;
57e3a0c7
GB
2545
2546 /* Don't take exceptions if they target a lower EL.
2547 * This check should catch any exceptions that would not be taken but left
2548 * pending.
2549 */
dfafd090
EI
2550 if (cur_el > target_el) {
2551 return false;
2552 }
043b7f8d 2553
f7778444
RH
2554 hcr_el2 = arm_hcr_el2_eff(env);
2555
043b7f8d
EI
2556 switch (excp_idx) {
2557 case EXCP_FIQ:
57e3a0c7
GB
2558 pstate_unmasked = !(env->daif & PSTATE_F);
2559 break;
2560
043b7f8d 2561 case EXCP_IRQ:
57e3a0c7
GB
2562 pstate_unmasked = !(env->daif & PSTATE_I);
2563 break;
2564
136e67e9 2565 case EXCP_VFIQ:
f7778444 2566 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2567 /* VFIQs are only taken when hypervized and non-secure. */
2568 return false;
2569 }
2570 return !(env->daif & PSTATE_F);
2571 case EXCP_VIRQ:
f7778444 2572 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2573 /* VIRQs are only taken when hypervized and non-secure. */
2574 return false;
2575 }
b5c633c5 2576 return !(env->daif & PSTATE_I);
043b7f8d
EI
2577 default:
2578 g_assert_not_reached();
2579 }
57e3a0c7
GB
2580
2581 /* Use the target EL, current execution state and SCR/HCR settings to
2582 * determine whether the corresponding CPSR bit is used to mask the
2583 * interrupt.
2584 */
2585 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2586 /* Exceptions targeting a higher EL may not be maskable */
2587 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2588 /* 64-bit masking rules are simple: exceptions to EL3
2589 * can't be masked, and exceptions to EL2 can only be
2590 * masked from Secure state. The HCR and SCR settings
2591 * don't affect the masking logic, only the interrupt routing.
2592 */
2593 if (target_el == 3 || !secure) {
2594 unmasked = 1;
2595 }
2596 } else {
2597 /* The old 32-bit-only environment has a more complicated
2598 * masking setup. HCR and SCR bits not only affect interrupt
2599 * routing but also change the behaviour of masking.
2600 */
2601 bool hcr, scr;
2602
2603 switch (excp_idx) {
2604 case EXCP_FIQ:
2605 /* If FIQs are routed to EL3 or EL2 then there are cases where
2606 * we override the CPSR.F in determining if the exception is
2607 * masked or not. If neither of these are set then we fall back
2608 * to the CPSR.F setting otherwise we further assess the state
2609 * below.
2610 */
f7778444 2611 hcr = hcr_el2 & HCR_FMO;
7cd6de3b
PM
2612 scr = (env->cp15.scr_el3 & SCR_FIQ);
2613
2614 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2615 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2616 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2617 * when non-secure but only when FIQs are only routed to EL3.
2618 */
2619 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2620 break;
2621 case EXCP_IRQ:
2622 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2623 * we may override the CPSR.I masking when in non-secure state.
2624 * The SCR.IRQ setting has already been taken into consideration
2625 * when setting the target EL, so it does not have a further
2626 * affect here.
2627 */
f7778444 2628 hcr = hcr_el2 & HCR_IMO;
7cd6de3b
PM
2629 scr = false;
2630 break;
2631 default:
2632 g_assert_not_reached();
2633 }
2634
2635 if ((scr || hcr) && !secure) {
2636 unmasked = 1;
2637 }
57e3a0c7
GB
2638 }
2639 }
2640
2641 /* The PSTATE bits only mask the interrupt if we have not overriden the
2642 * ability above.
2643 */
2644 return unmasked || pstate_unmasked;
043b7f8d
EI
2645}
2646
ba1ba5cc
IM
2647#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2648#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2649#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2650
9467d44c 2651#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2652#define cpu_list arm_cpu_list
9467d44c 2653
c1e37810
PM
2654/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2655 *
2656 * If EL3 is 64-bit:
2657 * + NonSecure EL1 & 0 stage 1
2658 * + NonSecure EL1 & 0 stage 2
2659 * + NonSecure EL2
2660 * + Secure EL1 & EL0
2661 * + Secure EL3
2662 * If EL3 is 32-bit:
2663 * + NonSecure PL1 & 0 stage 1
2664 * + NonSecure PL1 & 0 stage 2
2665 * + NonSecure PL2
2666 * + Secure PL0 & PL1
2667 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2668 *
2669 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2670 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2671 * may differ in access permissions even if the VA->PA map is the same
2672 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2673 * translation, which means that we have one mmu_idx that deals with two
2674 * concatenated translation regimes [this sort of combined s1+2 TLB is
2675 * architecturally permitted]
2676 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2677 * handling via the TLB. The only way to do a stage 1 translation without
2678 * the immediate stage 2 translation is via the ATS or AT system insns,
2679 * which can be slow-pathed and always do a page table walk.
2680 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2681 * translation regimes, because they map reasonably well to each other
2682 * and they can't both be active at the same time.
2683 * This gives us the following list of mmu_idx values:
2684 *
2685 * NS EL0 (aka NS PL0) stage 1+2
2686 * NS EL1 (aka NS PL1) stage 1+2
2687 * NS EL2 (aka NS PL2)
2688 * S EL3 (aka S PL1)
2689 * S EL0 (aka S PL0)
2690 * S EL1 (not used if EL3 is 32 bit)
2691 * NS EL0+1 stage 2
2692 *
2693 * (The last of these is an mmu_idx because we want to be able to use the TLB
2694 * for the accesses done as part of a stage 1 page table walk, rather than
2695 * having to walk the stage 2 page table over and over.)
2696 *
3bef7012
PM
2697 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2698 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2699 * NS EL2 if we ever model a Cortex-R52).
2700 *
2701 * M profile CPUs are rather different as they do not have a true MMU.
2702 * They have the following different MMU indexes:
2703 * User
2704 * Privileged
62593718
PM
2705 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2706 * Privileged, execution priority negative (ditto)
66787c78
PM
2707 * If the CPU supports the v8M Security Extension then there are also:
2708 * Secure User
2709 * Secure Privileged
62593718
PM
2710 * Secure User, execution priority negative
2711 * Secure Privileged, execution priority negative
3bef7012 2712 *
8bd5c820
PM
2713 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2714 * are not quite the same -- different CPU types (most notably M profile
2715 * vs A/R profile) would like to use MMU indexes with different semantics,
2716 * but since we don't ever need to use all of those in a single CPU we
2717 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2718 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2719 * the same for any particular CPU.
2720 * Variables of type ARMMUIdx are always full values, and the core
2721 * index values are in variables of type 'int'.
2722 *
c1e37810
PM
2723 * Our enumeration includes at the end some entries which are not "true"
2724 * mmu_idx values in that they don't have corresponding TLBs and are only
2725 * valid for doing slow path page table walks.
2726 *
2727 * The constant names here are patterned after the general style of the names
2728 * of the AT/ATS operations.
2729 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2730 * For M profile we arrange them to have a bit for priv, a bit for negpri
2731 * and a bit for secure.
c1e37810 2732 */
e7b921c2 2733#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2734#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2735#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2736
62593718
PM
2737/* meanings of the bits for M profile mmu idx values */
2738#define ARM_MMU_IDX_M_PRIV 0x1
2739#define ARM_MMU_IDX_M_NEGPRI 0x2
2740#define ARM_MMU_IDX_M_S 0x4
2741
8bd5c820
PM
2742#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2743#define ARM_MMU_IDX_COREIDX_MASK 0x7
2744
c1e37810 2745typedef enum ARMMMUIdx {
8bd5c820
PM
2746 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2747 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2748 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2749 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2750 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2751 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2752 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2753 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2754 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
62593718
PM
2755 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2756 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2757 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2758 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2759 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2760 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
c1e37810
PM
2761 /* Indexes below here don't have TLBs and are used only for AT system
2762 * instructions or for the first stage of an S12 page table walk.
2763 */
8bd5c820
PM
2764 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2765 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2766} ARMMMUIdx;
2767
8bd5c820
PM
2768/* Bit macros for the core-mmu-index values for each index,
2769 * for use when calling tlb_flush_by_mmuidx() and friends.
2770 */
2771typedef enum ARMMMUIdxBit {
2772 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2773 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2774 ARMMMUIdxBit_S1E2 = 1 << 2,
2775 ARMMMUIdxBit_S1E3 = 1 << 3,
2776 ARMMMUIdxBit_S1SE0 = 1 << 4,
2777 ARMMMUIdxBit_S1SE1 = 1 << 5,
2778 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2779 ARMMMUIdxBit_MUser = 1 << 0,
2780 ARMMMUIdxBit_MPriv = 1 << 1,
62593718
PM
2781 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2782 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2783 ARMMMUIdxBit_MSUser = 1 << 4,
2784 ARMMMUIdxBit_MSPriv = 1 << 5,
2785 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2786 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
8bd5c820
PM
2787} ARMMMUIdxBit;
2788
f79fbf39 2789#define MMU_USER_IDX 0
c1e37810 2790
8bd5c820
PM
2791static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2792{
2793 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2794}
2795
2796static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2797{
e7b921c2
PM
2798 if (arm_feature(env, ARM_FEATURE_M)) {
2799 return mmu_idx | ARM_MMU_IDX_M;
2800 } else {
2801 return mmu_idx | ARM_MMU_IDX_A;
2802 }
8bd5c820
PM
2803}
2804
c1e37810
PM
2805/* Return the exception level we're running at if this is our mmu_idx */
2806static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2807{
8bd5c820
PM
2808 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2809 case ARM_MMU_IDX_A:
2810 return mmu_idx & 3;
e7b921c2 2811 case ARM_MMU_IDX_M:
62593718 2812 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2813 default:
2814 g_assert_not_reached();
2815 }
c1e37810
PM
2816}
2817
ec8e3340 2818/* Return the MMU index for a v7M CPU in the specified security and
65e4655c 2819 * privilege state.
ec8e3340 2820 */
65e4655c
RH
2821ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2822 bool secstate, bool priv);
b81ac0eb 2823
ec8e3340 2824/* Return the MMU index for a v7M CPU in the specified security state */
65e4655c 2825ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
ec8e3340 2826
50494a27
RH
2827/**
2828 * cpu_mmu_index:
2829 * @env: The cpu environment
2830 * @ifetch: True for code access, false for data access.
2831 *
2832 * Return the core mmu index for the current translation regime.
2833 * This function is used by generic TCG code paths.
2834 */
65e4655c 2835int cpu_mmu_index(CPUARMState *env, bool ifetch);
6ebbf390 2836
9e273ef2
PM
2837/* Indexes used when registering address spaces with cpu_address_space_init */
2838typedef enum ARMASIdx {
2839 ARMASIdx_NS = 0,
2840 ARMASIdx_S = 1,
2841} ARMASIdx;
2842
533e93f1 2843/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2844static inline int arm_debug_target_el(CPUARMState *env)
2845{
81669b8b
SF
2846 bool secure = arm_is_secure(env);
2847 bool route_to_el2 = false;
2848
2849 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2850 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2851 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2852 }
2853
2854 if (route_to_el2) {
2855 return 2;
2856 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2857 !arm_el_is_aa64(env, 3) && secure) {
2858 return 3;
2859 } else {
2860 return 1;
2861 }
3a298203
PM
2862}
2863
43bbce7f
PM
2864static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2865{
2866 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2867 * CSSELR is RAZ/WI.
2868 */
2869 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2870}
2871
22af9025 2872/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
2873static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2874{
22af9025
AB
2875 int cur_el = arm_current_el(env);
2876 int debug_el;
2877
2878 if (cur_el == 3) {
2879 return false;
533e93f1
PM
2880 }
2881
22af9025
AB
2882 /* MDCR_EL3.SDD disables debug events from Secure state */
2883 if (arm_is_secure_below_el3(env)
2884 && extract32(env->cp15.mdcr_el3, 16, 1)) {
2885 return false;
3a298203 2886 }
22af9025
AB
2887
2888 /*
2889 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2890 * while not masking the (D)ebug bit in DAIF.
2891 */
2892 debug_el = arm_debug_target_el(env);
2893
2894 if (cur_el == debug_el) {
2895 return extract32(env->cp15.mdscr_el1, 13, 1)
2896 && !(env->daif & PSTATE_D);
2897 }
2898
2899 /* Otherwise the debug target needs to be a higher EL */
2900 return debug_el > cur_el;
3a298203
PM
2901}
2902
2903static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2904{
533e93f1
PM
2905 int el = arm_current_el(env);
2906
2907 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
2908 return aa64_generate_debug_exceptions(env);
2909 }
533e93f1
PM
2910
2911 if (arm_is_secure(env)) {
2912 int spd;
2913
2914 if (el == 0 && (env->cp15.sder & 1)) {
2915 /* SDER.SUIDEN means debug exceptions from Secure EL0
2916 * are always enabled. Otherwise they are controlled by
2917 * SDCR.SPD like those from other Secure ELs.
2918 */
2919 return true;
2920 }
2921
2922 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2923 switch (spd) {
2924 case 1:
2925 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2926 case 0:
2927 /* For 0b00 we return true if external secure invasive debug
2928 * is enabled. On real hardware this is controlled by external
2929 * signals to the core. QEMU always permits debug, and behaves
2930 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2931 */
2932 return true;
2933 case 2:
2934 return false;
2935 case 3:
2936 return true;
2937 }
2938 }
2939
2940 return el != 2;
3a298203
PM
2941}
2942
2943/* Return true if debugging exceptions are currently enabled.
2944 * This corresponds to what in ARM ARM pseudocode would be
2945 * if UsingAArch32() then
2946 * return AArch32.GenerateDebugExceptions()
2947 * else
2948 * return AArch64.GenerateDebugExceptions()
2949 * We choose to push the if() down into this function for clarity,
2950 * since the pseudocode has it at all callsites except for the one in
2951 * CheckSoftwareStep(), where it is elided because both branches would
2952 * always return the same value.
3a298203
PM
2953 */
2954static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2955{
2956 if (env->aarch64) {
2957 return aa64_generate_debug_exceptions(env);
2958 } else {
2959 return aa32_generate_debug_exceptions(env);
2960 }
2961}
2962
2963/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2964 * implicitly means this always returns false in pre-v8 CPUs.)
2965 */
2966static inline bool arm_singlestep_active(CPUARMState *env)
2967{
2968 return extract32(env->cp15.mdscr_el1, 0, 1)
2969 && arm_el_is_aa64(env, arm_debug_target_el(env))
2970 && arm_generate_debug_exceptions(env);
2971}
2972
f9fd40eb
PB
2973static inline bool arm_sctlr_b(CPUARMState *env)
2974{
2975 return
2976 /* We need not implement SCTLR.ITD in user-mode emulation, so
2977 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2978 * This lets people run BE32 binaries with "-cpu any".
2979 */
2980#ifndef CONFIG_USER_ONLY
2981 !arm_feature(env, ARM_FEATURE_V7) &&
2982#endif
2983 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2984}
2985
ed50ff78
PC
2986/* Return true if the processor is in big-endian mode. */
2987static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2988{
2989 int cur_el;
2990
2991 /* In 32bit endianness is determined by looking at CPSR's E bit */
2992 if (!is_a64(env)) {
b2e62d9a
PC
2993 return
2994#ifdef CONFIG_USER_ONLY
2995 /* In system mode, BE32 is modelled in line with the
2996 * architecture (as word-invariant big-endianness), where loads
2997 * and stores are done little endian but from addresses which
2998 * are adjusted by XORing with the appropriate constant. So the
2999 * endianness to use for the raw data access is not affected by
3000 * SCTLR.B.
3001 * In user mode, however, we model BE32 as byte-invariant
3002 * big-endianness (because user-only code cannot tell the
3003 * difference), and so we need to use a data access endianness
3004 * that depends on SCTLR.B.
3005 */
3006 arm_sctlr_b(env) ||
3007#endif
3008 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
ed50ff78
PC
3009 }
3010
3011 cur_el = arm_current_el(env);
3012
3013 if (cur_el == 0) {
3014 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
3015 }
3016
3017 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
3018}
3019
022c62cb 3020#include "exec/cpu-all.h"
622ed360 3021
3926cc84
AG
3022/* Bit usage in the TB flags field: bit 31 indicates whether we are
3023 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3024 * We put flags which are shared between 32 and 64 bit mode at the top
3025 * of the word, and flags which apply to only one mode at the bottom.
3926cc84 3026 */
aad821ac
RH
3027FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3028FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3029FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3030FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
9dbbc748 3031/* Target EL if we take a floating-point-disabled exception */
aad821ac
RH
3032FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3033FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3926cc84
AG
3034
3035/* Bit usage when in AArch32 state: */
aad821ac
RH
3036FIELD(TBFLAG_A32, THUMB, 0, 1)
3037FIELD(TBFLAG_A32, VECLEN, 1, 3)
3038FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3039FIELD(TBFLAG_A32, VFPEN, 7, 1)
3040FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3041FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
c0f4af17
PM
3042/* We store the bottom two bits of the CPAR as TB flags and handle
3043 * checks on the other bits at runtime
3044 */
aad821ac 3045FIELD(TBFLAG_A32, XSCALE_CPAR, 17, 2)
3f342b9e
SF
3046/* Indicates whether cp register reads and writes by guest code should access
3047 * the secure or nonsecure bank of banked registers; note that this is not
3048 * the same thing as the current security state of the processor!
3049 */
aad821ac 3050FIELD(TBFLAG_A32, NS, 19, 1)
064c379c 3051/* For M profile only, Handler (ie not Thread) mode */
aad821ac 3052FIELD(TBFLAG_A32, HANDLER, 21, 1)
4730fb85 3053/* For M profile only, whether we should generate stack-limit checks */
aad821ac 3054FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3926cc84 3055
86fb3fa4 3056/* Bit usage when in AArch64 state */
476a4692 3057FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3058FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3059FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3060FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a
RH
3061FIELD(TBFLAG_A64, BT, 9, 1)
3062FIELD(TBFLAG_A64, BTYPE, 10, 2)
4a9ee99d 3063FIELD(TBFLAG_A64, TBID, 12, 2)
a1705768 3064
f9fd40eb
PB
3065static inline bool bswap_code(bool sctlr_b)
3066{
3067#ifdef CONFIG_USER_ONLY
3068 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3069 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3070 * would also end up as a mixed-endian mode with BE code, LE data.
3071 */
3072 return
3073#ifdef TARGET_WORDS_BIGENDIAN
3074 1 ^
3075#endif
3076 sctlr_b;
3077#else
e334bd31
PB
3078 /* All code access in ARM is little endian, and there are no loaders
3079 * doing swaps that need to be reversed
f9fd40eb
PB
3080 */
3081 return 0;
3082#endif
3083}
3084
c3ae85fc
PB
3085#ifdef CONFIG_USER_ONLY
3086static inline bool arm_cpu_bswap_data(CPUARMState *env)
3087{
3088 return
3089#ifdef TARGET_WORDS_BIGENDIAN
3090 1 ^
3091#endif
3092 arm_cpu_data_is_big_endian(env);
3093}
3094#endif
3095
a9e01311
RH
3096void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3097 target_ulong *cs_base, uint32_t *flags);
6b917547 3098
98128601
RH
3099enum {
3100 QEMU_PSCI_CONDUIT_DISABLED = 0,
3101 QEMU_PSCI_CONDUIT_SMC = 1,
3102 QEMU_PSCI_CONDUIT_HVC = 2,
3103};
3104
017518c1
PM
3105#ifndef CONFIG_USER_ONLY
3106/* Return the address space index to use for a memory access */
3107static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3108{
3109 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3110}
5ce4ff65
PM
3111
3112/* Return the AddressSpace to use for a memory access
3113 * (which depends on whether the access is S or NS, and whether
3114 * the board gave us a separate AddressSpace for S accesses).
3115 */
3116static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3117{
3118 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3119}
017518c1
PM
3120#endif
3121
bd7d00fc 3122/**
b5c53d1b
AL
3123 * arm_register_pre_el_change_hook:
3124 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3125 * CPU changes exception level or mode. The hook function will be
3126 * passed a pointer to the ARMCPU and the opaque data pointer passed
3127 * to this function when the hook was registered.
b5c53d1b
AL
3128 *
3129 * Note that if a pre-change hook is called, any registered post-change hooks
3130 * are guaranteed to subsequently be called.
bd7d00fc 3131 */
b5c53d1b 3132void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3133 void *opaque);
b5c53d1b
AL
3134/**
3135 * arm_register_el_change_hook:
3136 * Register a hook function which will be called immediately after this
3137 * CPU changes exception level or mode. The hook function will be
3138 * passed a pointer to the ARMCPU and the opaque data pointer passed
3139 * to this function when the hook was registered.
3140 *
3141 * Note that any registered hooks registered here are guaranteed to be called
3142 * if pre-change hooks have been.
3143 */
3144void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3145 *opaque);
bd7d00fc 3146
9a2b5256
RH
3147/**
3148 * aa32_vfp_dreg:
3149 * Return a pointer to the Dn register within env in 32-bit mode.
3150 */
3151static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3152{
c39c2b90 3153 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3154}
3155
3156/**
3157 * aa32_vfp_qreg:
3158 * Return a pointer to the Qn register within env in 32-bit mode.
3159 */
3160static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3161{
c39c2b90 3162 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3163}
3164
3165/**
3166 * aa64_vfp_qreg:
3167 * Return a pointer to the Qn register within env in 64-bit mode.
3168 */
3169static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3170{
c39c2b90 3171 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3172}
3173
028e2a7b
RH
3174/* Shared between translate-sve.c and sve_helper.c. */
3175extern const uint64_t pred_esz_masks[4];
3176
962fcbf2
RH
3177/*
3178 * 32-bit feature tests via id registers.
3179 */
7e0cf8b4
RH
3180static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3181{
3182 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3183}
3184
3185static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3186{
3187 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3188}
3189
09cbd501
RH
3190static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3191{
3192 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3193}
3194
962fcbf2
RH
3195static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3196{
3197 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3198}
3199
3200static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3201{
3202 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3203}
3204
3205static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3206{
3207 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3208}
3209
3210static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3211{
3212 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3213}
3214
3215static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3216{
3217 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3218}
3219
3220static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3221{
3222 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3223}
3224
3225static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3226{
3227 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3228}
3229
3230static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3231{
3232 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3233}
3234
5763190f
RH
3235static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3236{
3237 /*
3238 * This is a placeholder for use by VCMA until the rest of
3239 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3240 * At which point we can properly set and check MVFR1.FPHP.
3241 */
3242 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3243}
3244
962fcbf2
RH
3245/*
3246 * 64-bit feature tests via id registers.
3247 */
3248static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3249{
3250 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3251}
3252
3253static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3254{
3255 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3256}
3257
3258static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3259{
3260 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3261}
3262
3263static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3264{
3265 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3266}
3267
3268static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3269{
3270 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3271}
3272
3273static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3274{
3275 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3276}
3277
3278static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3279{
3280 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3281}
3282
3283static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3284{
3285 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3286}
3287
3288static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3289{
3290 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3291}
3292
3293static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3294{
3295 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3296}
3297
3298static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3299{
3300 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3301}
3302
3303static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3304{
3305 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3306}
3307
3308static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3309{
3310 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3311}
3312
991ad91b
RH
3313static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3314{
3315 /*
3316 * Note that while QEMU will only implement the architected algorithm
3317 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3318 * defined algorithms, and thus API+GPI, and this predicate controls
3319 * migration of the 128-bit keys.
3320 */
3321 return (id->id_aa64isar1 &
3322 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3323 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3324 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3325 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3326}
3327
5763190f
RH
3328static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3329{
3330 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3331 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3332}
3333
0f8d06f1
RH
3334static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3335{
3336 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3337}
3338
cd208a1c
RH
3339static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3340{
3341 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3342}
3343
2d7137c1
RH
3344static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3345{
3346 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3347}
3348
be53b6f4
RH
3349static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3350{
3351 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3352}
3353
962fcbf2
RH
3354/*
3355 * Forward to the above feature tests given an ARMCPU pointer.
3356 */
3357#define cpu_isar_feature(name, cpu) \
3358 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3359
2c0262af 3360#endif