]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Fix big-endian host handling of VTCR
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
68970d1e 28#include "qapi/qapi-types-common.h"
9042c0e2 29
ca759f9e
AB
30/* ARM processors have a weak memory model */
31#define TCG_GUEST_DEFAULT_MO (0)
32
e24fd076
DG
33#ifdef TARGET_AARCH64
34#define KVM_HAVE_MCE_INJECTION 1
35#endif
36
b8a9e8f1
FB
37#define EXCP_UDEF 1 /* undefined instruction */
38#define EXCP_SWI 2 /* software interrupt */
39#define EXCP_PREFETCH_ABORT 3
40#define EXCP_DATA_ABORT 4
b5ff1b31
FB
41#define EXCP_IRQ 5
42#define EXCP_FIQ 6
06c949e6 43#define EXCP_BKPT 7
9ee6e8bb 44#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 45#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 46#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 47#define EXCP_HYP_TRAP 12
e0d6e6a5 48#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
49#define EXCP_VIRQ 14
50#define EXCP_VFIQ 15
19a6e31c 51#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 52#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 53#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 54#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 55#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
56#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 58#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
3c29632f 59#define EXCP_VSERR 24
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
3c29632f 93#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
403946c0 94
e4fe830b
PM
95/* The usual mapping for an AArch64 system register to its AArch32
96 * counterpart is for the 32 bit world to have access to the lower
97 * half only (with writes leaving the upper half untouched). It's
98 * therefore useful to be able to pass TCG the offset of the least
99 * significant half of a uint64_t struct member.
100 */
e03b5686 101#if HOST_BIG_ENDIAN
5cd8a118 102#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 103#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
104#else
105#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 106#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
107#endif
108
136e67e9 109/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
110#define ARM_CPU_IRQ 0
111#define ARM_CPU_FIQ 1
136e67e9
EI
112#define ARM_CPU_VIRQ 2
113#define ARM_CPU_VFIQ 3
403946c0 114
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
448d4d14
AB
140 * @num: Number of the registers in this XML seen by GDB.
141 * @data: A union with data specific to the set of registers
142 * @cpregs_keys: Array that contains the corresponding Key of
143 * a given cpreg with the same order of the cpreg
144 * in the XML description.
200bf5b7
AB
145 */
146typedef struct DynamicGDBXMLInfo {
147 char *desc;
448d4d14
AB
148 int num;
149 union {
150 struct {
151 uint32_t *keys;
152 } cpregs;
153 } data;
200bf5b7
AB
154} DynamicGDBXMLInfo;
155
55d284af
PM
156/* CPU state for each instance of a generic timer (in cp15 c14) */
157typedef struct ARMGenericTimer {
158 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 159 uint64_t ctl; /* Timer Control register */
55d284af
PM
160} ARMGenericTimer;
161
8c94b071
RH
162#define GTIMER_PHYS 0
163#define GTIMER_VIRT 1
164#define GTIMER_HYP 2
165#define GTIMER_SEC 3
166#define GTIMER_HYPVIRT 4
167#define NUM_GTIMERS 5
55d284af 168
11f136ee
FA
169typedef struct {
170 uint64_t raw_tcr;
171 uint32_t mask;
172 uint32_t base_mask;
173} TCR;
174
e9152ee9
RDC
175#define VTCR_NSW (1u << 29)
176#define VTCR_NSA (1u << 30)
177#define VSTCR_SW VTCR_NSW
178#define VSTCR_SA VTCR_NSA
179
c39c2b90
RH
180/* Define a maximum sized vector register.
181 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
182 * For 64-bit, this is a 2048-bit SVE register.
183 *
184 * Note that the mapping between S, D, and Q views of the register bank
185 * differs between AArch64 and AArch32.
186 * In AArch32:
187 * Qn = regs[n].d[1]:regs[n].d[0]
188 * Dn = regs[n / 2].d[n & 1]
189 * Sn = regs[n / 4].d[n % 4 / 2],
190 * bits 31..0 for even n, and bits 63..32 for odd n
191 * (and regs[16] to regs[31] are inaccessible)
192 * In AArch64:
193 * Zn = regs[n].d[*]
194 * Qn = regs[n].d[1]:regs[n].d[0]
195 * Dn = regs[n].d[0]
196 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 197 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
198 *
199 * This corresponds to the architecturally defined mapping between
200 * the two execution states, and means we do not need to explicitly
201 * map these registers when changing states.
202 *
203 * Align the data for use with TCG host vector operations.
204 */
205
206#ifdef TARGET_AARCH64
207# define ARM_MAX_VQ 16
208#else
209# define ARM_MAX_VQ 1
210#endif
211
212typedef struct ARMVectorReg {
213 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
214} ARMVectorReg;
215
3c7d3086 216#ifdef TARGET_AARCH64
991ad91b 217/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 218typedef struct ARMPredicateReg {
46417784 219 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 220} ARMPredicateReg;
991ad91b
RH
221
222/* In AArch32 mode, PAC keys do not exist at all. */
223typedef struct ARMPACKey {
224 uint64_t lo, hi;
225} ARMPACKey;
3c7d3086
RH
226#endif
227
3902bfc6
RH
228/* See the commentary above the TBFLAG field definitions. */
229typedef struct CPUARMTBFlags {
230 uint32_t flags;
a378206a 231 target_ulong flags2;
3902bfc6 232} CPUARMTBFlags;
c39c2b90 233
1ea4a06a 234typedef struct CPUArchState {
b5ff1b31 235 /* Regs for current mode. */
2c0262af 236 uint32_t regs[16];
3926cc84
AG
237
238 /* 32/64 switch only happens when taking and returning from
239 * exceptions so the overlap semantics are taken care of then
240 * instead of having a complicated union.
241 */
242 /* Regs for A64 mode. */
243 uint64_t xregs[32];
244 uint64_t pc;
d356312f
PM
245 /* PSTATE isn't an architectural register for ARMv8. However, it is
246 * convenient for us to assemble the underlying state into a 32 bit format
247 * identical to the architectural format used for the SPSR. (This is also
248 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
249 * 'pstate' register are.) Of the PSTATE bits:
250 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
251 * semantics as for AArch32, as described in the comments on each field)
252 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 253 * DAIF (exception masks) are kept in env->daif
f6e52eaa 254 * BTYPE is kept in env->btype
c37e6ac9 255 * SM and ZA are kept in env->svcr
d356312f 256 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
257 */
258 uint32_t pstate;
53221552 259 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
063bbd80 260 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
3926cc84 261
fdd1b228 262 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 263 CPUARMTBFlags hflags;
fdd1b228 264
b90372ad 265 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 266 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
267 the whole CPSR. */
268 uint32_t uncached_cpsr;
269 uint32_t spsr;
270
271 /* Banked registers. */
28c9457d 272 uint64_t banked_spsr[8];
0b7d409d
FA
273 uint32_t banked_r13[8];
274 uint32_t banked_r14[8];
3b46e624 275
b5ff1b31
FB
276 /* These hold r8-r12. */
277 uint32_t usr_regs[5];
278 uint32_t fiq_regs[5];
3b46e624 279
2c0262af
FB
280 /* cpsr flag cache for faster execution */
281 uint32_t CF; /* 0 or 1 */
282 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
283 uint32_t NF; /* N is bit 31. All other bits are undefined. */
284 uint32_t ZF; /* Z set if zero. */
99c475ab 285 uint32_t QF; /* 0 or 1 */
9ee6e8bb 286 uint32_t GE; /* cpsr[19:16] */
9ee6e8bb 287 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 288 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 289 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
c37e6ac9 290 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
2c0262af 291
1b174238 292 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 293 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 294
b5ff1b31
FB
295 /* System control coprocessor (cp15) */
296 struct {
40f137e1 297 uint32_t c0_cpuid;
b85a1fd6
FA
298 union { /* Cache size selection */
299 struct {
300 uint64_t _unused_csselr0;
301 uint64_t csselr_ns;
302 uint64_t _unused_csselr1;
303 uint64_t csselr_s;
304 };
305 uint64_t csselr_el[4];
306 };
137feaa9
FA
307 union { /* System control register. */
308 struct {
309 uint64_t _unused_sctlr;
310 uint64_t sctlr_ns;
311 uint64_t hsctlr;
312 uint64_t sctlr_s;
313 };
314 uint64_t sctlr_el[4];
315 };
7ebd5f2e 316 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 317 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 318 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 319 uint64_t sder; /* Secure debug enable register. */
77022576 320 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
321 union { /* MMU translation table base 0. */
322 struct {
323 uint64_t _unused_ttbr0_0;
324 uint64_t ttbr0_ns;
325 uint64_t _unused_ttbr0_1;
326 uint64_t ttbr0_s;
327 };
328 uint64_t ttbr0_el[4];
329 };
330 union { /* MMU translation table base 1. */
331 struct {
332 uint64_t _unused_ttbr1_0;
333 uint64_t ttbr1_ns;
334 uint64_t _unused_ttbr1_1;
335 uint64_t ttbr1_s;
336 };
337 uint64_t ttbr1_el[4];
338 };
b698e9cf 339 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 340 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee
FA
341 /* MMU translation table base control. */
342 TCR tcr_el[4];
68e9c2fe 343 TCR vtcr_el2; /* Virtualization Translation Control. */
e9152ee9 344 TCR vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
345 uint32_t c2_data; /* MPU data cacheable bits. */
346 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
347 union { /* MMU domain access control register
348 * MPU write buffer control.
349 */
350 struct {
351 uint64_t dacr_ns;
352 uint64_t dacr_s;
353 };
354 struct {
355 uint64_t dacr32_el2;
356 };
357 };
7e09797c
PM
358 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
359 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 360 uint64_t hcr_el2; /* Hypervisor configuration register */
5814d587 361 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
64e0e2de 362 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
363 union { /* Fault status registers. */
364 struct {
365 uint64_t ifsr_ns;
366 uint64_t ifsr_s;
367 };
368 struct {
369 uint64_t ifsr32_el2;
370 };
371 };
4a7e2d73
FA
372 union {
373 struct {
374 uint64_t _unused_dfsr;
375 uint64_t dfsr_ns;
376 uint64_t hsr;
377 uint64_t dfsr_s;
378 };
379 uint64_t esr_el[4];
380 };
ce819861 381 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
382 union { /* Fault address registers. */
383 struct {
384 uint64_t _unused_far0;
e03b5686 385#if HOST_BIG_ENDIAN
b848ce2b
FA
386 uint32_t ifar_ns;
387 uint32_t dfar_ns;
388 uint32_t ifar_s;
389 uint32_t dfar_s;
390#else
391 uint32_t dfar_ns;
392 uint32_t ifar_ns;
393 uint32_t dfar_s;
394 uint32_t ifar_s;
395#endif
396 uint64_t _unused_far3;
397 };
398 uint64_t far_el[4];
399 };
59e05530 400 uint64_t hpfar_el2;
2a5a9abd 401 uint64_t hstr_el2;
01c097f7
FA
402 union { /* Translation result. */
403 struct {
404 uint64_t _unused_par_0;
405 uint64_t par_ns;
406 uint64_t _unused_par_1;
407 uint64_t par_s;
408 };
409 uint64_t par_el[4];
410 };
6cb0b013 411
b5ff1b31
FB
412 uint32_t c9_insn; /* Cache lockdown registers. */
413 uint32_t c9_data;
8521466b
AF
414 uint64_t c9_pmcr; /* performance monitor control register */
415 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
416 uint64_t c9_pmovsr; /* perf monitor overflow status */
417 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 418 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 419 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
420 union { /* Memory attribute redirection */
421 struct {
e03b5686 422#if HOST_BIG_ENDIAN
be693c87
GB
423 uint64_t _unused_mair_0;
424 uint32_t mair1_ns;
425 uint32_t mair0_ns;
426 uint64_t _unused_mair_1;
427 uint32_t mair1_s;
428 uint32_t mair0_s;
429#else
430 uint64_t _unused_mair_0;
431 uint32_t mair0_ns;
432 uint32_t mair1_ns;
433 uint64_t _unused_mair_1;
434 uint32_t mair0_s;
435 uint32_t mair1_s;
436#endif
437 };
438 uint64_t mair_el[4];
439 };
fb6c91ba
GB
440 union { /* vector base address register */
441 struct {
442 uint64_t _unused_vbar;
443 uint64_t vbar_ns;
444 uint64_t hvbar;
445 uint64_t vbar_s;
446 };
447 uint64_t vbar_el[4];
448 };
e89e51a1 449 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 450 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
451 struct { /* FCSE PID. */
452 uint32_t fcseidr_ns;
453 uint32_t fcseidr_s;
454 };
455 union { /* Context ID. */
456 struct {
457 uint64_t _unused_contextidr_0;
458 uint64_t contextidr_ns;
459 uint64_t _unused_contextidr_1;
460 uint64_t contextidr_s;
461 };
462 uint64_t contextidr_el[4];
463 };
464 union { /* User RW Thread register. */
465 struct {
466 uint64_t tpidrurw_ns;
467 uint64_t tpidrprw_ns;
468 uint64_t htpidr;
469 uint64_t _tpidr_el3;
470 };
471 uint64_t tpidr_el[4];
472 };
9e5ec745 473 uint64_t tpidr2_el0;
54bf36ed
FA
474 /* The secure banks of these registers don't map anywhere */
475 uint64_t tpidrurw_s;
476 uint64_t tpidrprw_s;
477 uint64_t tpidruro_s;
478
479 union { /* User RO Thread register. */
480 uint64_t tpidruro_ns;
481 uint64_t tpidrro_el[1];
482 };
a7adc4b7
PM
483 uint64_t c14_cntfrq; /* Counter Frequency register */
484 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 485 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 486 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 487 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 488 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
489 uint32_t c15_ticonfig; /* TI925T configuration byte. */
490 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
491 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
492 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
493 uint32_t c15_config_base_address; /* SCU base address. */
494 uint32_t c15_diagnostic; /* diagnostic register */
495 uint32_t c15_power_diagnostic;
496 uint32_t c15_power_control; /* power control */
0b45451e
PM
497 uint64_t dbgbvr[16]; /* breakpoint value registers */
498 uint64_t dbgbcr[16]; /* breakpoint control registers */
499 uint64_t dbgwvr[16]; /* watchpoint value registers */
500 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 501 uint64_t mdscr_el1;
1424ca8d 502 uint64_t oslsr_el1; /* OS Lock Status */
f94a6df5 503 uint64_t osdlr_el1; /* OS DoubleLock status */
14cc7b54 504 uint64_t mdcr_el2;
5513c3ab 505 uint64_t mdcr_el3;
5d05b9d4
AL
506 /* Stores the architectural value of the counter *the last time it was
507 * updated* by pmccntr_op_start. Accesses should always be surrounded
508 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
509 * architecturally-correct value is being read/set.
7c2cb42b 510 */
c92c0687 511 uint64_t c15_ccnt;
5d05b9d4
AL
512 /* Stores the delta between the architectural value and the underlying
513 * cycle count during normal operation. It is used to update c15_ccnt
514 * to be the correct architectural value before accesses. During
515 * accesses, c15_ccnt_delta contains the underlying count being used
516 * for the access, after which it reverts to the delta value in
517 * pmccntr_op_finish.
518 */
519 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
520 uint64_t c14_pmevcntr[31];
521 uint64_t c14_pmevcntr_delta[31];
522 uint64_t c14_pmevtyper[31];
8521466b 523 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 524 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 525 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
526 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
527 uint64_t gcr_el1;
528 uint64_t rgsr_el1;
58e93b48
RH
529
530 /* Minimal RAS registers */
531 uint64_t disr_el1;
532 uint64_t vdisr_el2;
533 uint64_t vsesr_el2;
b5ff1b31 534 } cp15;
40f137e1 535
9ee6e8bb 536 struct {
fb602cb7
PM
537 /* M profile has up to 4 stack pointers:
538 * a Main Stack Pointer and a Process Stack Pointer for each
539 * of the Secure and Non-Secure states. (If the CPU doesn't support
540 * the security extension then it has only two SPs.)
541 * In QEMU we always store the currently active SP in regs[13],
542 * and the non-active SP for the current security state in
543 * v7m.other_sp. The stack pointers for the inactive security state
544 * are stored in other_ss_msp and other_ss_psp.
545 * switch_v7m_security_state() is responsible for rearranging them
546 * when we change security state.
547 */
9ee6e8bb 548 uint32_t other_sp;
fb602cb7
PM
549 uint32_t other_ss_msp;
550 uint32_t other_ss_psp;
4a16724f
PM
551 uint32_t vecbase[M_REG_NUM_BANKS];
552 uint32_t basepri[M_REG_NUM_BANKS];
553 uint32_t control[M_REG_NUM_BANKS];
554 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
555 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
556 uint32_t hfsr; /* HardFault Status */
557 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 558 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 559 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 560 uint32_t bfar; /* BusFault Address */
bed079da 561 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 562 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 563 int exception;
4a16724f
PM
564 uint32_t primask[M_REG_NUM_BANKS];
565 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 566 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 567 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 568 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 569 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
570 uint32_t msplim[M_REG_NUM_BANKS];
571 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
572 uint32_t fpcar[M_REG_NUM_BANKS];
573 uint32_t fpccr[M_REG_NUM_BANKS];
574 uint32_t fpdscr[M_REG_NUM_BANKS];
575 uint32_t cpacr[M_REG_NUM_BANKS];
576 uint32_t nsacr;
b26b5629 577 uint32_t ltpsize;
7c3d47da 578 uint32_t vpr;
9ee6e8bb
PB
579 } v7m;
580
abf1172f
PM
581 /* Information associated with an exception about to be taken:
582 * code which raises an exception must set cs->exception_index and
583 * the relevant parts of this structure; the cpu_do_interrupt function
584 * will then set the guest-visible registers as part of the exception
585 * entry process.
586 */
587 struct {
588 uint32_t syndrome; /* AArch64 format syndrome register */
589 uint32_t fsr; /* AArch32 format fault status register info */
590 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 591 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
592 /* If we implement EL2 we will also need to store information
593 * about the intermediate physical address for stage 2 faults.
594 */
595 } exception;
596
202ccb6b
DG
597 /* Information associated with an SError */
598 struct {
599 uint8_t pending;
600 uint8_t has_esr;
601 uint64_t esr;
602 } serror;
603
1711bfa5
BM
604 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
605
ed89f078
PM
606 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
607 uint32_t irq_line_state;
608
fe1479c3
PB
609 /* Thumb-2 EE state. */
610 uint32_t teecr;
611 uint32_t teehbr;
612
b7bcbe95
FB
613 /* VFP coprocessor state. */
614 struct {
c39c2b90 615 ARMVectorReg zregs[32];
b7bcbe95 616
3c7d3086
RH
617#ifdef TARGET_AARCH64
618 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 619#define FFR_PRED_NUM 16
3c7d3086 620 ARMPredicateReg pregs[17];
516e246a
RH
621 /* Scratch space for aa64 sve predicate temporary. */
622 ARMPredicateReg preg_tmp;
3c7d3086
RH
623#endif
624
b7bcbe95 625 /* We store these fpcsr fields separately for convenience. */
a4d58462 626 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
627 int vec_len;
628 int vec_stride;
629
a4d58462
RH
630 uint32_t xregs[16];
631
516e246a 632 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 633 uint32_t scratch[8];
3b46e624 634
d81ce0ef
AB
635 /* There are a number of distinct float control structures:
636 *
637 * fp_status: is the "normal" fp status.
638 * fp_status_fp16: used for half-precision calculations
639 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
640 * standard_fp_status_fp16 : used for half-precision
641 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
642 *
643 * Half-precision operations are governed by a separate
644 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
645 * status structure to control this.
646 *
647 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
648 * round-to-nearest and is used by any operations (generally
649 * Neon) which the architecture defines as controlled by the
650 * standard FPSCR value rather than the FPSCR.
3a492f3a 651 *
aaae563b
PM
652 * The "standard FPSCR but for fp16 ops" is needed because
653 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
654 * using a fixed value for it.
655 *
3a492f3a
PM
656 * To avoid having to transfer exception bits around, we simply
657 * say that the FPSCR cumulative exception flags are the logical
aaae563b 658 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
659 * only thing which needs to read the exception flags being
660 * an explicit FPSCR read.
661 */
53cd6637 662 float_status fp_status;
d81ce0ef 663 float_status fp_status_f16;
3a492f3a 664 float_status standard_fp_status;
aaae563b 665 float_status standard_fp_status_f16;
5be5e8ed 666
de561988
RH
667 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
668 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
b7bcbe95 669 } vfp;
03d05e2d
PM
670 uint64_t exclusive_addr;
671 uint64_t exclusive_val;
672 uint64_t exclusive_high;
b7bcbe95 673
18c9b560
AZ
674 /* iwMMXt coprocessor state. */
675 struct {
676 uint64_t regs[16];
677 uint64_t val;
678
679 uint32_t cregs[16];
680 } iwmmxt;
681
991ad91b 682#ifdef TARGET_AARCH64
108b3ba8
RH
683 struct {
684 ARMPACKey apia;
685 ARMPACKey apib;
686 ARMPACKey apda;
687 ARMPACKey apdb;
688 ARMPACKey apga;
689 } keys;
7cb1e618
RH
690
691 uint64_t scxtnum_el[4];
dc993a01
RH
692
693 /*
694 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
695 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
696 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
697 * When SVL is less than the architectural maximum, the accessible
698 * storage is restricted, such that if the SVL is X bytes the guest can
699 * see only the bottom X elements of zarray[], and only the least
700 * significant X bytes of each element of the array. (In other words,
701 * the observable part is always square.)
702 *
703 * The ZA storage can also be considered as a set of square tiles of
704 * elements of different sizes. The mapping from tiles to the ZA array
705 * is architecturally defined, such that for tiles of elements of esz
706 * bytes, the Nth row (or "horizontal slice") of tile T is in
707 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
708 * in the ZA storage, because its rows are striped through the ZA array.
709 *
710 * Because this is so large, keep this toward the end of the reset area,
711 * to keep the offsets into the rest of the structure smaller.
712 */
713 ARMVectorReg zarray[ARM_MAX_VQ * 16];
991ad91b
RH
714#endif
715
ce4defa0
PB
716#if defined(CONFIG_USER_ONLY)
717 /* For usermode syscall translation. */
718 int eabi;
719#endif
720
46747d15 721 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
722 struct CPUWatchpoint *cpu_watchpoint[16];
723
1f5c00cf
AB
724 /* Fields up to this point are cleared by a CPU reset */
725 struct {} end_reset_fields;
726
e8b5fae5 727 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 728
581be094 729 /* Internal CPU feature flags. */
918f5dca 730 uint64_t features;
581be094 731
6cb0b013
PC
732 /* PMSAv7 MPU */
733 struct {
734 uint32_t *drbar;
735 uint32_t *drsr;
736 uint32_t *dracr;
4a16724f 737 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
738 } pmsav7;
739
0e1a46bb
PM
740 /* PMSAv8 MPU */
741 struct {
742 /* The PMSAv8 implementation also shares some PMSAv7 config
743 * and state:
744 * pmsav7.rnr (region number register)
745 * pmsav7_dregion (number of configured regions)
746 */
4a16724f
PM
747 uint32_t *rbar[M_REG_NUM_BANKS];
748 uint32_t *rlar[M_REG_NUM_BANKS];
749 uint32_t mair0[M_REG_NUM_BANKS];
750 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
751 } pmsav8;
752
9901c576
PM
753 /* v8M SAU */
754 struct {
755 uint32_t *rbar;
756 uint32_t *rlar;
757 uint32_t rnr;
758 uint32_t ctrl;
759 } sau;
760
983fe826 761 void *nvic;
462a8bc6 762 const struct arm_boot_info *boot_info;
d3a3e529
VK
763 /* Store GICv3CPUState to access from this struct */
764 void *gicv3state;
0e0c030c
RH
765
766#ifdef TARGET_TAGGED_ADDRESSES
767 /* Linux syscall tagged address support */
768 bool tagged_addr_enable;
769#endif
2c0262af
FB
770} CPUARMState;
771
5fda9504
TH
772static inline void set_feature(CPUARMState *env, int feature)
773{
774 env->features |= 1ULL << feature;
775}
776
777static inline void unset_feature(CPUARMState *env, int feature)
778{
779 env->features &= ~(1ULL << feature);
780}
781
bd7d00fc 782/**
08267487 783 * ARMELChangeHookFn:
bd7d00fc
PM
784 * type of a function which can be registered via arm_register_el_change_hook()
785 * to get callbacks when the CPU changes its exception level or mode.
786 */
08267487
AL
787typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
788typedef struct ARMELChangeHook ARMELChangeHook;
789struct ARMELChangeHook {
790 ARMELChangeHookFn *hook;
791 void *opaque;
792 QLIST_ENTRY(ARMELChangeHook) node;
793};
062ba099
AB
794
795/* These values map onto the return values for
796 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
797typedef enum ARMPSCIState {
d5affb0d
AJ
798 PSCI_ON = 0,
799 PSCI_OFF = 1,
062ba099
AB
800 PSCI_ON_PENDING = 2
801} ARMPSCIState;
802
962fcbf2
RH
803typedef struct ARMISARegisters ARMISARegisters;
804
7f9e25a6
RH
805/*
806 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
807 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
808 *
809 * While processing properties during initialization, corresponding init bits
810 * are set for bits in sve_vq_map that have been set by properties.
811 *
812 * Bits set in supported represent valid vector lengths for the CPU type.
813 */
814typedef struct {
815 uint32_t map, init, supported;
816} ARMVQMap;
817
74e75564
PB
818/**
819 * ARMCPU:
820 * @env: #CPUARMState
821 *
822 * An ARM CPU core.
823 */
b36e239e 824struct ArchCPU {
74e75564
PB
825 /*< private >*/
826 CPUState parent_obj;
827 /*< public >*/
828
5b146dc7 829 CPUNegativeOffsetState neg;
74e75564
PB
830 CPUARMState env;
831
832 /* Coprocessor information */
833 GHashTable *cp_regs;
834 /* For marshalling (mostly coprocessor) register state between the
835 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
836 * we use these arrays.
837 */
838 /* List of register indexes managed via these arrays; (full KVM style
839 * 64 bit indexes, not CPRegInfo 32 bit indexes)
840 */
841 uint64_t *cpreg_indexes;
842 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
843 uint64_t *cpreg_values;
844 /* Length of the indexes, values, reset_values arrays */
845 int32_t cpreg_array_len;
846 /* These are used only for migration: incoming data arrives in
847 * these fields and is sanity checked in post_load before copying
848 * to the working data structures above.
849 */
850 uint64_t *cpreg_vmstate_indexes;
851 uint64_t *cpreg_vmstate_values;
852 int32_t cpreg_vmstate_array_len;
853
448d4d14 854 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 855 DynamicGDBXMLInfo dyn_svereg_xml;
200bf5b7 856
74e75564
PB
857 /* Timers used by the generic (architected) timer */
858 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
859 /*
860 * Timer used by the PMU. Its state is restored after migration by
861 * pmu_op_finish() - it does not need other handling during migration
862 */
863 QEMUTimer *pmu_timer;
74e75564
PB
864 /* GPIO outputs for generic timer */
865 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
866 /* GPIO output for GICv3 maintenance interrupt signal */
867 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
868 /* GPIO output for the PMU interrupt */
869 qemu_irq pmu_interrupt;
74e75564
PB
870
871 /* MemoryRegion to use for secure physical accesses */
872 MemoryRegion *secure_memory;
873
8bce44a2
RH
874 /* MemoryRegion to use for allocation tag accesses */
875 MemoryRegion *tag_memory;
876 MemoryRegion *secure_tag_memory;
877
181962fd
PM
878 /* For v8M, pointer to the IDAU interface provided by board/SoC */
879 Object *idau;
880
74e75564
PB
881 /* 'compatible' string for this CPU for Linux device trees */
882 const char *dtb_compatible;
883
884 /* PSCI version for this CPU
885 * Bits[31:16] = Major Version
886 * Bits[15:0] = Minor Version
887 */
888 uint32_t psci_version;
889
062ba099
AB
890 /* Current power state, access guarded by BQL */
891 ARMPSCIState power_state;
892
c25bd18a
PM
893 /* CPU has virtualization extension */
894 bool has_el2;
74e75564
PB
895 /* CPU has security extension */
896 bool has_el3;
5c0a3819
SZ
897 /* CPU has PMU (Performance Monitor Unit) */
898 bool has_pmu;
97a28b0e
PM
899 /* CPU has VFP */
900 bool has_vfp;
901 /* CPU has Neon */
902 bool has_neon;
ea90db0a
PM
903 /* CPU has M-profile DSP extension */
904 bool has_dsp;
74e75564
PB
905
906 /* CPU has memory protection unit */
907 bool has_mpu;
908 /* PMSAv7 MPU number of supported regions */
909 uint32_t pmsav7_dregion;
9901c576
PM
910 /* v8M SAU number of supported regions */
911 uint32_t sau_sregion;
74e75564
PB
912
913 /* PSCI conduit used to invoke PSCI methods
914 * 0 - disabled, 1 - smc, 2 - hvc
915 */
916 uint32_t psci_conduit;
917
38e2a77c
PM
918 /* For v8M, initial value of the Secure VTOR */
919 uint32_t init_svtor;
7cda2149
PM
920 /* For v8M, initial value of the Non-secure VTOR */
921 uint32_t init_nsvtor;
38e2a77c 922
74e75564
PB
923 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
924 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
925 */
926 uint32_t kvm_target;
927
928 /* KVM init features for this CPU */
929 uint32_t kvm_init_features[7];
930
e5ac4200
AJ
931 /* KVM CPU state */
932
933 /* KVM virtual time adjustment */
934 bool kvm_adjvtime;
935 bool kvm_vtime_dirty;
936 uint64_t kvm_vtime;
937
68970d1e
AJ
938 /* KVM steal time */
939 OnOffAuto kvm_steal_time;
940
74e75564
PB
941 /* Uniprocessor system with MP extensions */
942 bool mp_is_up;
943
c4487d76
PM
944 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
945 * and the probe failed (so we need to report the error in realize)
946 */
947 bool host_cpu_probe_failed;
948
f9a69711
AF
949 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
950 * register.
951 */
952 int32_t core_count;
953
74e75564
PB
954 /* The instance init functions for implementation-specific subclasses
955 * set these fields to specify the implementation-dependent values of
956 * various constant registers and reset values of non-constant
957 * registers.
958 * Some of these might become QOM properties eventually.
959 * Field names match the official register names as defined in the
960 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
961 * is used for reset values of non-constant registers; no reset_
962 * prefix means a constant register.
47576b94
RH
963 * Some of these registers are split out into a substructure that
964 * is shared with the translators to control the ISA.
1548a7b2
PM
965 *
966 * Note that if you add an ID register to the ARMISARegisters struct
967 * you need to also update the 32-bit and 64-bit versions of the
968 * kvm_arm_get_host_cpu_features() function to correctly populate the
969 * field by reading the value from the KVM vCPU.
74e75564 970 */
47576b94
RH
971 struct ARMISARegisters {
972 uint32_t id_isar0;
973 uint32_t id_isar1;
974 uint32_t id_isar2;
975 uint32_t id_isar3;
976 uint32_t id_isar4;
977 uint32_t id_isar5;
978 uint32_t id_isar6;
10054016
PM
979 uint32_t id_mmfr0;
980 uint32_t id_mmfr1;
981 uint32_t id_mmfr2;
982 uint32_t id_mmfr3;
983 uint32_t id_mmfr4;
8a130a7b
PM
984 uint32_t id_pfr0;
985 uint32_t id_pfr1;
1d51bc96 986 uint32_t id_pfr2;
47576b94
RH
987 uint32_t mvfr0;
988 uint32_t mvfr1;
989 uint32_t mvfr2;
a6179538 990 uint32_t id_dfr0;
4426d361 991 uint32_t dbgdidr;
09754ca8
PM
992 uint32_t dbgdevid;
993 uint32_t dbgdevid1;
47576b94
RH
994 uint64_t id_aa64isar0;
995 uint64_t id_aa64isar1;
996 uint64_t id_aa64pfr0;
997 uint64_t id_aa64pfr1;
3dc91ddb
PM
998 uint64_t id_aa64mmfr0;
999 uint64_t id_aa64mmfr1;
64761e10 1000 uint64_t id_aa64mmfr2;
2a609df8
PM
1001 uint64_t id_aa64dfr0;
1002 uint64_t id_aa64dfr1;
2dc10fa2 1003 uint64_t id_aa64zfr0;
414c54d5 1004 uint64_t id_aa64smfr0;
24526bb9 1005 uint64_t reset_pmcr_el0;
47576b94 1006 } isar;
e544f800 1007 uint64_t midr;
74e75564
PB
1008 uint32_t revidr;
1009 uint32_t reset_fpsid;
a5fd319a 1010 uint64_t ctr;
74e75564 1011 uint32_t reset_sctlr;
cad86737
AL
1012 uint64_t pmceid0;
1013 uint64_t pmceid1;
74e75564 1014 uint32_t id_afr0;
74e75564
PB
1015 uint64_t id_aa64afr0;
1016 uint64_t id_aa64afr1;
f6450bcb 1017 uint64_t clidr;
74e75564
PB
1018 uint64_t mp_affinity; /* MP ID without feature bits */
1019 /* The elements of this array are the CCSIDR values for each cache,
1020 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1021 */
957e6155 1022 uint64_t ccsidr[16];
74e75564
PB
1023 uint64_t reset_cbar;
1024 uint32_t reset_auxcr;
1025 bool reset_hivecs;
eb94284d
RH
1026
1027 /*
1028 * Intermediate values used during property parsing.
69b2265d 1029 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
1030 */
1031 bool prop_pauth;
1032 bool prop_pauth_impdef;
69b2265d 1033 bool prop_lpa2;
eb94284d 1034
74e75564
PB
1035 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1036 uint32_t dcz_blocksize;
4a7319b7 1037 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 1038
e45868a3
PM
1039 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1040 int gic_num_lrs; /* number of list registers */
1041 int gic_vpribits; /* number of virtual priority bits */
1042 int gic_vprebits; /* number of virtual preemption bits */
39f29e59 1043 int gic_pribits; /* number of physical priority bits */
e45868a3 1044
3a062d57
JB
1045 /* Whether the cfgend input is high (i.e. this CPU should reset into
1046 * big-endian mode). This setting isn't used directly: instead it modifies
1047 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1048 * architecture version.
1049 */
1050 bool cfgend;
1051
b5c53d1b 1052 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1053 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1054
1055 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1056
1057 /* Used to synchronize KVM and QEMU in-kernel device levels */
1058 uint8_t device_irq_level;
adf92eab
RH
1059
1060 /* Used to set the maximum vector length the cpu will support. */
1061 uint32_t sve_max_vq;
0df9142d 1062
b3d52804
RH
1063#ifdef CONFIG_USER_ONLY
1064 /* Used to set the default vector length at process start. */
1065 uint32_t sve_default_vq;
e74c0976 1066 uint32_t sme_default_vq;
b3d52804
RH
1067#endif
1068
7f9e25a6 1069 ARMVQMap sve_vq;
e74c0976 1070 ARMVQMap sme_vq;
7def8754
AJ
1071
1072 /* Generic timer counter frequency, in Hz */
1073 uint64_t gt_cntfrq_hz;
74e75564
PB
1074};
1075
7def8754
AJ
1076unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1077
51e5ef45
MAL
1078void arm_cpu_post_init(Object *obj);
1079
46de5913
IM
1080uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1081
74e75564 1082#ifndef CONFIG_USER_ONLY
8a9358cc 1083extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1084
1085void arm_cpu_do_interrupt(CPUState *cpu);
1086void arm_v7m_cpu_do_interrupt(CPUState *cpu);
083afd18 1087#endif /* !CONFIG_USER_ONLY */
74e75564 1088
74e75564
PB
1089hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1090 MemTxAttrs *attrs);
1091
a010bdbe 1092int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1093int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1094
d12379c5
AB
1095/*
1096 * Helpers to dynamically generates XML descriptions of the sysregs
1097 * and SVE registers. Returns the number of registers in each set.
200bf5b7 1098 */
32d6e32a 1099int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
d12379c5 1100int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
200bf5b7
AB
1101
1102/* Returns the dynamically generated XML for the gdb stub.
1103 * Returns a pointer to the XML contents for the specified XML file or NULL
1104 * if the XML name doesn't match the predefined one.
1105 */
1106const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1107
74e75564
PB
1108int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1109 int cpuid, void *opaque);
1110int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1111 int cpuid, void *opaque);
1112
1113#ifdef TARGET_AARCH64
a010bdbe 1114int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1115int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1116void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1117void aarch64_sve_change_el(CPUARMState *env, int old_el,
1118 int new_el, bool el0_a64);
f84734b8 1119void arm_reset_sve_state(CPUARMState *env);
538baab2
AJ
1120
1121/*
1122 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1123 * The byte at offset i from the start of the in-memory representation contains
1124 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1125 * lowest offsets are stored in the lowest memory addresses, then that nearly
1126 * matches QEMU's representation, which is to use an array of host-endian
1127 * uint64_t's, where the lower offsets are at the lower indices. To complete
1128 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1129 */
1130static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1131{
e03b5686 1132#if HOST_BIG_ENDIAN
538baab2
AJ
1133 int i;
1134
1135 for (i = 0; i < nr; ++i) {
1136 dst[i] = bswap64(src[i]);
1137 }
1138
1139 return dst;
1140#else
1141 return src;
1142#endif
1143}
1144
0ab5953b
RH
1145#else
1146static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1147static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1148 int n, bool a)
1149{ }
74e75564 1150#endif
778c3a06 1151
ce02049d
GB
1152void aarch64_sync_32_to_64(CPUARMState *env);
1153void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1154
ced31551
RH
1155int fp_exception_el(CPUARMState *env, int cur_el);
1156int sve_exception_el(CPUARMState *env, int cur_el);
6b2ca83e 1157int sme_exception_el(CPUARMState *env, int cur_el);
5ef3cc56
RH
1158
1159/**
6ca54aa9 1160 * sve_vqm1_for_el_sm:
5ef3cc56
RH
1161 * @env: CPUARMState
1162 * @el: exception level
6ca54aa9 1163 * @sm: streaming mode
5ef3cc56 1164 *
6ca54aa9 1165 * Compute the current vector length for @el & @sm, in units of
5ef3cc56 1166 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
6ca54aa9 1167 * If @sm, compute for SVL, otherwise NVL.
5ef3cc56 1168 */
6ca54aa9
RH
1169uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1170
1171/* Likewise, but using @sm = PSTATE.SM. */
5ef3cc56 1172uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
ced31551 1173
3926cc84
AG
1174static inline bool is_a64(CPUARMState *env)
1175{
1176 return env->aarch64;
1177}
1178
5d05b9d4
AL
1179/**
1180 * pmu_op_start/finish
ec7b4ce4
AF
1181 * @env: CPUARMState
1182 *
5d05b9d4
AL
1183 * Convert all PMU counters between their delta form (the typical mode when
1184 * they are enabled) and the guest-visible values. These two calls must
1185 * surround any action which might affect the counters.
ec7b4ce4 1186 */
5d05b9d4
AL
1187void pmu_op_start(CPUARMState *env);
1188void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1189
4e7beb0c
AL
1190/*
1191 * Called when a PMU counter is due to overflow
1192 */
1193void arm_pmu_timer_cb(void *opaque);
1194
033614c4
AL
1195/**
1196 * Functions to register as EL change hooks for PMU mode filtering
1197 */
1198void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1199void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1200
57a4a11b 1201/*
bf8d0969
AL
1202 * pmu_init
1203 * @cpu: ARMCPU
57a4a11b 1204 *
bf8d0969
AL
1205 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1206 * for the current configuration
57a4a11b 1207 */
bf8d0969 1208void pmu_init(ARMCPU *cpu);
57a4a11b 1209
76e3e1bc
PM
1210/* SCTLR bit meanings. Several bits have been reused in newer
1211 * versions of the architecture; in that case we define constants
1212 * for both old and new bit meanings. Code which tests against those
1213 * bits should probably check or otherwise arrange that the CPU
1214 * is the architectural version it expects.
1215 */
1216#define SCTLR_M (1U << 0)
1217#define SCTLR_A (1U << 1)
1218#define SCTLR_C (1U << 2)
1219#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1220#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1221#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1222#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1223#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1224#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1225#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1226#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1227#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1228#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1229#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1230#define SCTLR_ITD (1U << 7) /* v8 onward */
1231#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1232#define SCTLR_SED (1U << 8) /* v8 onward */
1233#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1234#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1235#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1236#define SCTLR_SW (1U << 10) /* v7 */
1237#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1238#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1239#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1240#define SCTLR_I (1U << 12)
b2af69d0
RH
1241#define SCTLR_V (1U << 13) /* AArch32 only */
1242#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1243#define SCTLR_RR (1U << 14) /* up to v7 */
1244#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1245#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1246#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1247#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1248#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1249#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1250#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1251#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1252#define SCTLR_nTWE (1U << 18) /* v8 onward */
1253#define SCTLR_WXN (1U << 19)
1254#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0 1255#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
7cb1e618 1256#define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
b2af69d0
RH
1257#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1258#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1259#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1260#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1261#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1262#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1263#define SCTLR_VE (1U << 24) /* up to v7 */
1264#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1265#define SCTLR_EE (1U << 25)
1266#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1267#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1268#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1269#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1270#define SCTLR_TRE (1U << 28) /* AArch32 only */
1271#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1272#define SCTLR_AFE (1U << 29) /* AArch32 only */
1273#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1274#define SCTLR_TE (1U << 30) /* AArch32 only */
1275#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1276#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1277#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
b2af69d0
RH
1278#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1279#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1280#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1281#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1282#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1283#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1284#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1285#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
ad1e6018
RH
1286#define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1287#define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1288#define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1289#define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1290#define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1291#define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1292#define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1293#define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1294#define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1295#define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1296#define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1297#define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1298#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1299#define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
76e3e1bc 1300
fab8ad39
RH
1301/* Bit definitions for CPACR (AArch32 only) */
1302FIELD(CPACR, CP10, 20, 2)
1303FIELD(CPACR, CP11, 22, 2)
1304FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1305FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1306FIELD(CPACR, ASEDIS, 31, 1)
1307
1308/* Bit definitions for CPACR_EL1 (AArch64 only) */
1309FIELD(CPACR_EL1, ZEN, 16, 2)
1310FIELD(CPACR_EL1, FPEN, 20, 2)
1311FIELD(CPACR_EL1, SMEN, 24, 2)
1312FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1313
1314/* Bit definitions for HCPTR (AArch32 only) */
1315FIELD(HCPTR, TCP10, 10, 1)
1316FIELD(HCPTR, TCP11, 11, 1)
1317FIELD(HCPTR, TASE, 15, 1)
1318FIELD(HCPTR, TTA, 20, 1)
1319FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1320FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1321
1322/* Bit definitions for CPTR_EL2 (AArch64 only) */
1323FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1324FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1325FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1326FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1327FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1328FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1329FIELD(CPTR_EL2, TTA, 28, 1)
1330FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1331FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1332
1333/* Bit definitions for CPTR_EL3 (AArch64 only) */
1334FIELD(CPTR_EL3, EZ, 8, 1)
1335FIELD(CPTR_EL3, TFP, 10, 1)
1336FIELD(CPTR_EL3, ESM, 12, 1)
1337FIELD(CPTR_EL3, TTA, 20, 1)
1338FIELD(CPTR_EL3, TAM, 30, 1)
1339FIELD(CPTR_EL3, TCPAC, 31, 1)
c6f19164 1340
187f678d
PM
1341#define MDCR_EPMAD (1U << 21)
1342#define MDCR_EDAD (1U << 20)
033614c4
AL
1343#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1344#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1345#define MDCR_SDD (1U << 16)
a8d64e73 1346#define MDCR_SPD (3U << 14)
187f678d
PM
1347#define MDCR_TDRA (1U << 11)
1348#define MDCR_TDOSA (1U << 10)
1349#define MDCR_TDA (1U << 9)
1350#define MDCR_TDE (1U << 8)
1351#define MDCR_HPME (1U << 7)
1352#define MDCR_TPM (1U << 6)
1353#define MDCR_TPMCR (1U << 5)
033614c4 1354#define MDCR_HPMN (0x1fU)
187f678d 1355
a8d64e73
PM
1356/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1357#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1358
78dbbbe4
PM
1359#define CPSR_M (0x1fU)
1360#define CPSR_T (1U << 5)
1361#define CPSR_F (1U << 6)
1362#define CPSR_I (1U << 7)
1363#define CPSR_A (1U << 8)
1364#define CPSR_E (1U << 9)
1365#define CPSR_IT_2_7 (0xfc00U)
1366#define CPSR_GE (0xfU << 16)
4051e12c 1367#define CPSR_IL (1U << 20)
dc8b1853 1368#define CPSR_DIT (1U << 21)
220f508f 1369#define CPSR_PAN (1U << 22)
f2f68a78 1370#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1371#define CPSR_J (1U << 24)
1372#define CPSR_IT_0_1 (3U << 25)
1373#define CPSR_Q (1U << 27)
1374#define CPSR_V (1U << 28)
1375#define CPSR_C (1U << 29)
1376#define CPSR_Z (1U << 30)
1377#define CPSR_N (1U << 31)
9ee6e8bb 1378#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1379#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1380
1381#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1382#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1383 | CPSR_NZCV)
9ee6e8bb 1384/* Bits writable in user mode. */
268b1b3d 1385#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1386/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1387#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1388
987ab45e
PM
1389/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1390#define XPSR_EXCP 0x1ffU
1391#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1392#define XPSR_IT_2_7 CPSR_IT_2_7
1393#define XPSR_GE CPSR_GE
1394#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1395#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1396#define XPSR_IT_0_1 CPSR_IT_0_1
1397#define XPSR_Q CPSR_Q
1398#define XPSR_V CPSR_V
1399#define XPSR_C CPSR_C
1400#define XPSR_Z CPSR_Z
1401#define XPSR_N CPSR_N
1402#define XPSR_NZCV CPSR_NZCV
1403#define XPSR_IT CPSR_IT
1404
e389be16
FA
1405#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1406#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1407#define TTBCR_PD0 (1U << 4)
1408#define TTBCR_PD1 (1U << 5)
1409#define TTBCR_EPD0 (1U << 7)
1410#define TTBCR_IRGN0 (3U << 8)
1411#define TTBCR_ORGN0 (3U << 10)
1412#define TTBCR_SH0 (3U << 12)
1413#define TTBCR_T1SZ (3U << 16)
1414#define TTBCR_A1 (1U << 22)
1415#define TTBCR_EPD1 (1U << 23)
1416#define TTBCR_IRGN1 (3U << 24)
1417#define TTBCR_ORGN1 (3U << 26)
1418#define TTBCR_SH1 (1U << 28)
1419#define TTBCR_EAE (1U << 31)
1420
d356312f
PM
1421/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1422 * Only these are valid when in AArch64 mode; in
1423 * AArch32 mode SPSRs are basically CPSR-format.
1424 */
f502cfc2 1425#define PSTATE_SP (1U)
d356312f
PM
1426#define PSTATE_M (0xFU)
1427#define PSTATE_nRW (1U << 4)
1428#define PSTATE_F (1U << 6)
1429#define PSTATE_I (1U << 7)
1430#define PSTATE_A (1U << 8)
1431#define PSTATE_D (1U << 9)
f6e52eaa 1432#define PSTATE_BTYPE (3U << 10)
f2f68a78 1433#define PSTATE_SSBS (1U << 12)
d356312f
PM
1434#define PSTATE_IL (1U << 20)
1435#define PSTATE_SS (1U << 21)
220f508f 1436#define PSTATE_PAN (1U << 22)
9eeb7a1c 1437#define PSTATE_UAO (1U << 23)
dc8b1853 1438#define PSTATE_DIT (1U << 24)
4b779ceb 1439#define PSTATE_TCO (1U << 25)
d356312f
PM
1440#define PSTATE_V (1U << 28)
1441#define PSTATE_C (1U << 29)
1442#define PSTATE_Z (1U << 30)
1443#define PSTATE_N (1U << 31)
1444#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1445#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1446#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1447/* Mode values for AArch64 */
1448#define PSTATE_MODE_EL3h 13
1449#define PSTATE_MODE_EL3t 12
1450#define PSTATE_MODE_EL2h 9
1451#define PSTATE_MODE_EL2t 8
1452#define PSTATE_MODE_EL1h 5
1453#define PSTATE_MODE_EL1t 4
1454#define PSTATE_MODE_EL0t 0
1455
c37e6ac9
RH
1456/* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1457FIELD(SVCR, SM, 0, 1)
1458FIELD(SVCR, ZA, 1, 1)
1459
de561988
RH
1460/* Fields for SMCR_ELx. */
1461FIELD(SMCR, LEN, 0, 4)
1462FIELD(SMCR, FA64, 31, 1)
1463
de2db7ec
PM
1464/* Write a new value to v7m.exception, thus transitioning into or out
1465 * of Handler mode; this may result in a change of active stack pointer.
1466 */
1467void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1468
9e729b57
EI
1469/* Map EL and handler into a PSTATE_MODE. */
1470static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1471{
1472 return (el << 2) | handler;
1473}
1474
d356312f
PM
1475/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1476 * interprocessing, so we don't attempt to sync with the cpsr state used by
1477 * the 32 bit decoder.
1478 */
1479static inline uint32_t pstate_read(CPUARMState *env)
1480{
1481 int ZF;
1482
1483 ZF = (env->ZF == 0);
1484 return (env->NF & 0x80000000) | (ZF << 30)
1485 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1486 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1487}
1488
1489static inline void pstate_write(CPUARMState *env, uint32_t val)
1490{
1491 env->ZF = (~val) & PSTATE_Z;
1492 env->NF = val;
1493 env->CF = (val >> 29) & 1;
1494 env->VF = (val << 3) & 0x80000000;
4cc35614 1495 env->daif = val & PSTATE_DAIF;
f6e52eaa 1496 env->btype = (val >> 10) & 3;
d356312f
PM
1497 env->pstate = val & ~CACHED_PSTATE_BITS;
1498}
1499
b5ff1b31 1500/* Return the current CPSR value. */
2f4a40e5 1501uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1502
1503typedef enum CPSRWriteType {
1504 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1505 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1506 CPSRWriteRaw = 2,
1507 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1508 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1509} CPSRWriteType;
1510
e784807c
PM
1511/*
1512 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1513 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1514 * correspond to TB flags bits cached in the hflags, unless @write_type
1515 * is CPSRWriteRaw.
1516 */
50866ba5
PM
1517void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1518 CPSRWriteType write_type);
9ee6e8bb
PB
1519
1520/* Return the current xPSR value. */
1521static inline uint32_t xpsr_read(CPUARMState *env)
1522{
1523 int ZF;
6fbe23d5
PB
1524 ZF = (env->ZF == 0);
1525 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1526 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1527 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1528 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1529 | (env->GE << 16)
9ee6e8bb 1530 | env->v7m.exception;
b5ff1b31
FB
1531}
1532
9ee6e8bb
PB
1533/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1534static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1535{
987ab45e
PM
1536 if (mask & XPSR_NZCV) {
1537 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1538 env->NF = val;
9ee6e8bb
PB
1539 env->CF = (val >> 29) & 1;
1540 env->VF = (val << 3) & 0x80000000;
1541 }
987ab45e
PM
1542 if (mask & XPSR_Q) {
1543 env->QF = ((val & XPSR_Q) != 0);
1544 }
f1e2598c
PM
1545 if (mask & XPSR_GE) {
1546 env->GE = (val & XPSR_GE) >> 16;
1547 }
04c9c81b 1548#ifndef CONFIG_USER_ONLY
987ab45e
PM
1549 if (mask & XPSR_T) {
1550 env->thumb = ((val & XPSR_T) != 0);
1551 }
1552 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1553 env->condexec_bits &= ~3;
1554 env->condexec_bits |= (val >> 25) & 3;
1555 }
987ab45e 1556 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1557 env->condexec_bits &= 3;
1558 env->condexec_bits |= (val >> 8) & 0xfc;
1559 }
987ab45e 1560 if (mask & XPSR_EXCP) {
de2db7ec
PM
1561 /* Note that this only happens on exception exit */
1562 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1563 }
04c9c81b 1564#endif
9ee6e8bb
PB
1565}
1566
f149e3e8
EI
1567#define HCR_VM (1ULL << 0)
1568#define HCR_SWIO (1ULL << 1)
1569#define HCR_PTW (1ULL << 2)
1570#define HCR_FMO (1ULL << 3)
1571#define HCR_IMO (1ULL << 4)
1572#define HCR_AMO (1ULL << 5)
1573#define HCR_VF (1ULL << 6)
1574#define HCR_VI (1ULL << 7)
1575#define HCR_VSE (1ULL << 8)
1576#define HCR_FB (1ULL << 9)
1577#define HCR_BSU_MASK (3ULL << 10)
1578#define HCR_DC (1ULL << 12)
1579#define HCR_TWI (1ULL << 13)
1580#define HCR_TWE (1ULL << 14)
1581#define HCR_TID0 (1ULL << 15)
1582#define HCR_TID1 (1ULL << 16)
1583#define HCR_TID2 (1ULL << 17)
1584#define HCR_TID3 (1ULL << 18)
1585#define HCR_TSC (1ULL << 19)
1586#define HCR_TIDCP (1ULL << 20)
1587#define HCR_TACR (1ULL << 21)
1588#define HCR_TSW (1ULL << 22)
099bf53b 1589#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1590#define HCR_TPU (1ULL << 24)
1591#define HCR_TTLB (1ULL << 25)
1592#define HCR_TVM (1ULL << 26)
1593#define HCR_TGE (1ULL << 27)
1594#define HCR_TDZ (1ULL << 28)
1595#define HCR_HCD (1ULL << 29)
1596#define HCR_TRVM (1ULL << 30)
1597#define HCR_RW (1ULL << 31)
1598#define HCR_CD (1ULL << 32)
1599#define HCR_ID (1ULL << 33)
ac656b16 1600#define HCR_E2H (1ULL << 34)
099bf53b
RH
1601#define HCR_TLOR (1ULL << 35)
1602#define HCR_TERR (1ULL << 36)
1603#define HCR_TEA (1ULL << 37)
1604#define HCR_MIOCNCE (1ULL << 38)
e0a38bb3 1605/* RES0 bit 39 */
099bf53b
RH
1606#define HCR_APK (1ULL << 40)
1607#define HCR_API (1ULL << 41)
1608#define HCR_NV (1ULL << 42)
1609#define HCR_NV1 (1ULL << 43)
1610#define HCR_AT (1ULL << 44)
1611#define HCR_NV2 (1ULL << 45)
1612#define HCR_FWB (1ULL << 46)
1613#define HCR_FIEN (1ULL << 47)
e0a38bb3 1614/* RES0 bit 48 */
099bf53b
RH
1615#define HCR_TID4 (1ULL << 49)
1616#define HCR_TICAB (1ULL << 50)
e0a38bb3 1617#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1618#define HCR_TOCU (1ULL << 52)
e0a38bb3 1619#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1620#define HCR_TTLBIS (1ULL << 54)
1621#define HCR_TTLBOS (1ULL << 55)
1622#define HCR_ATA (1ULL << 56)
1623#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1624#define HCR_TID5 (1ULL << 58)
1625#define HCR_TWEDEN (1ULL << 59)
1626#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1627
5814d587
RH
1628#define HCRX_ENAS0 (1ULL << 0)
1629#define HCRX_ENALS (1ULL << 1)
1630#define HCRX_ENASR (1ULL << 2)
1631#define HCRX_FNXS (1ULL << 3)
1632#define HCRX_FGTNXS (1ULL << 4)
1633#define HCRX_SMPME (1ULL << 5)
1634#define HCRX_TALLINT (1ULL << 6)
1635#define HCRX_VINMI (1ULL << 7)
1636#define HCRX_VFNMI (1ULL << 8)
1637#define HCRX_CMOW (1ULL << 9)
1638#define HCRX_MCE2 (1ULL << 10)
1639#define HCRX_MSCEN (1ULL << 11)
1640
9861248f
RDC
1641#define HPFAR_NS (1ULL << 63)
1642
64e0e2de
EI
1643#define SCR_NS (1U << 0)
1644#define SCR_IRQ (1U << 1)
1645#define SCR_FIQ (1U << 2)
1646#define SCR_EA (1U << 3)
1647#define SCR_FW (1U << 4)
1648#define SCR_AW (1U << 5)
1649#define SCR_NET (1U << 6)
1650#define SCR_SMD (1U << 7)
1651#define SCR_HCE (1U << 8)
1652#define SCR_SIF (1U << 9)
1653#define SCR_RW (1U << 10)
1654#define SCR_ST (1U << 11)
1655#define SCR_TWI (1U << 12)
1656#define SCR_TWE (1U << 13)
99f8f86d
RH
1657#define SCR_TLOR (1U << 14)
1658#define SCR_TERR (1U << 15)
1659#define SCR_APK (1U << 16)
1660#define SCR_API (1U << 17)
1661#define SCR_EEL2 (1U << 18)
1662#define SCR_EASE (1U << 19)
1663#define SCR_NMEA (1U << 20)
1664#define SCR_FIEN (1U << 21)
1665#define SCR_ENSCXT (1U << 25)
1666#define SCR_ATA (1U << 26)
f527d661
RH
1667#define SCR_FGTEN (1U << 27)
1668#define SCR_ECVEN (1U << 28)
1669#define SCR_TWEDEN (1U << 29)
1670#define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1671#define SCR_TME (1ULL << 34)
1672#define SCR_AMVOFFEN (1ULL << 35)
1673#define SCR_ENAS0 (1ULL << 36)
1674#define SCR_ADEN (1ULL << 37)
1675#define SCR_HXEN (1ULL << 38)
1676#define SCR_TRNDR (1ULL << 40)
1677#define SCR_ENTP2 (1ULL << 41)
1678#define SCR_GPF (1ULL << 48)
64e0e2de 1679
cc7613bf 1680#define HSTR_TTEE (1 << 16)
8e228c9e 1681#define HSTR_TJDBX (1 << 17)
cc7613bf 1682
01653295
PM
1683/* Return the current FPSCR value. */
1684uint32_t vfp_get_fpscr(CPUARMState *env);
1685void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1686
d81ce0ef
AB
1687/* FPCR, Floating Point Control Register
1688 * FPSR, Floating Poiht Status Register
1689 *
1690 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1691 * FPCR and FPSR. However since they still use non-overlapping bits
1692 * we store the underlying state in fpscr and just mask on read/write.
1693 */
1694#define FPSR_MASK 0xf800009f
0b62159b 1695#define FPCR_MASK 0x07ff9f00
d81ce0ef 1696
a15945d9
PM
1697#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1698#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1699#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1700#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1701#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1702#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1703#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1704#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1705#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1706#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1707#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1708#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1709#define FPCR_V (1 << 28) /* FP overflow flag */
1710#define FPCR_C (1 << 29) /* FP carry flag */
1711#define FPCR_Z (1 << 30) /* FP zero flag */
1712#define FPCR_N (1 << 31) /* FP negative flag */
1713
99c7834f
PM
1714#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1715#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1716#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1717
9542c30b
PM
1718#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1719#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1720
f903fa22
PM
1721static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1722{
1723 return vfp_get_fpscr(env) & FPSR_MASK;
1724}
1725
1726static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1727{
1728 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1729 vfp_set_fpscr(env, new_fpscr);
1730}
1731
1732static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1733{
1734 return vfp_get_fpscr(env) & FPCR_MASK;
1735}
1736
1737static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1738{
1739 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1740 vfp_set_fpscr(env, new_fpscr);
1741}
1742
b5ff1b31
FB
1743enum arm_cpu_mode {
1744 ARM_CPU_MODE_USR = 0x10,
1745 ARM_CPU_MODE_FIQ = 0x11,
1746 ARM_CPU_MODE_IRQ = 0x12,
1747 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1748 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1749 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1750 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1751 ARM_CPU_MODE_UND = 0x1b,
1752 ARM_CPU_MODE_SYS = 0x1f
1753};
1754
40f137e1
PB
1755/* VFP system registers. */
1756#define ARM_VFP_FPSID 0
1757#define ARM_VFP_FPSCR 1
a50c0f51 1758#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1759#define ARM_VFP_MVFR1 6
1760#define ARM_VFP_MVFR0 7
40f137e1
PB
1761#define ARM_VFP_FPEXC 8
1762#define ARM_VFP_FPINST 9
1763#define ARM_VFP_FPINST2 10
9542c30b
PM
1764/* These ones are M-profile only */
1765#define ARM_VFP_FPSCR_NZCVQC 2
1766#define ARM_VFP_VPR 12
1767#define ARM_VFP_P0 13
1768#define ARM_VFP_FPCXT_NS 14
1769#define ARM_VFP_FPCXT_S 15
40f137e1 1770
32a290b8
PM
1771/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1772#define QEMU_VFP_FPSCR_NZCV 0xffff
1773
18c9b560 1774/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1775#define ARM_IWMMXT_wCID 0
1776#define ARM_IWMMXT_wCon 1
1777#define ARM_IWMMXT_wCSSF 2
1778#define ARM_IWMMXT_wCASF 3
1779#define ARM_IWMMXT_wCGR0 8
1780#define ARM_IWMMXT_wCGR1 9
1781#define ARM_IWMMXT_wCGR2 10
1782#define ARM_IWMMXT_wCGR3 11
18c9b560 1783
2c4da50d
PM
1784/* V7M CCR bits */
1785FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1786FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1787FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1788FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1789FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1790FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1791FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1792FIELD(V7M_CCR, DC, 16, 1)
1793FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1794FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1795FIELD(V7M_CCR, LOB, 19, 1)
1796FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1797
24ac0fb1
PM
1798/* V7M SCR bits */
1799FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1800FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1801FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1802FIELD(V7M_SCR, SEVONPEND, 4, 1)
1803
3b2e9344
PM
1804/* V7M AIRCR bits */
1805FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1806FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1807FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1808FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1809FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1810FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1811FIELD(V7M_AIRCR, PRIS, 14, 1)
1812FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1813FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1814
2c4da50d
PM
1815/* V7M CFSR bits for MMFSR */
1816FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1817FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1818FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1819FIELD(V7M_CFSR, MSTKERR, 4, 1)
1820FIELD(V7M_CFSR, MLSPERR, 5, 1)
1821FIELD(V7M_CFSR, MMARVALID, 7, 1)
1822
1823/* V7M CFSR bits for BFSR */
1824FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1825FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1826FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1827FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1828FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1829FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1830FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1831
1832/* V7M CFSR bits for UFSR */
1833FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1834FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1835FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1836FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1837FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1838FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1839FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1840
334e8dad
PM
1841/* V7M CFSR bit masks covering all of the subregister bits */
1842FIELD(V7M_CFSR, MMFSR, 0, 8)
1843FIELD(V7M_CFSR, BFSR, 8, 8)
1844FIELD(V7M_CFSR, UFSR, 16, 16)
1845
2c4da50d
PM
1846/* V7M HFSR bits */
1847FIELD(V7M_HFSR, VECTTBL, 1, 1)
1848FIELD(V7M_HFSR, FORCED, 30, 1)
1849FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1850
1851/* V7M DFSR bits */
1852FIELD(V7M_DFSR, HALTED, 0, 1)
1853FIELD(V7M_DFSR, BKPT, 1, 1)
1854FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1855FIELD(V7M_DFSR, VCATCH, 3, 1)
1856FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1857
bed079da
PM
1858/* V7M SFSR bits */
1859FIELD(V7M_SFSR, INVEP, 0, 1)
1860FIELD(V7M_SFSR, INVIS, 1, 1)
1861FIELD(V7M_SFSR, INVER, 2, 1)
1862FIELD(V7M_SFSR, AUVIOL, 3, 1)
1863FIELD(V7M_SFSR, INVTRAN, 4, 1)
1864FIELD(V7M_SFSR, LSPERR, 5, 1)
1865FIELD(V7M_SFSR, SFARVALID, 6, 1)
1866FIELD(V7M_SFSR, LSERR, 7, 1)
1867
29c483a5
MD
1868/* v7M MPU_CTRL bits */
1869FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1870FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1871FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1872
43bbce7f
PM
1873/* v7M CLIDR bits */
1874FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1875FIELD(V7M_CLIDR, LOUIS, 21, 3)
1876FIELD(V7M_CLIDR, LOC, 24, 3)
1877FIELD(V7M_CLIDR, LOUU, 27, 3)
1878FIELD(V7M_CLIDR, ICB, 30, 2)
1879
1880FIELD(V7M_CSSELR, IND, 0, 1)
1881FIELD(V7M_CSSELR, LEVEL, 1, 3)
1882/* We use the combination of InD and Level to index into cpu->ccsidr[];
1883 * define a mask for this and check that it doesn't permit running off
1884 * the end of the array.
1885 */
1886FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1887
1888/* v7M FPCCR bits */
1889FIELD(V7M_FPCCR, LSPACT, 0, 1)
1890FIELD(V7M_FPCCR, USER, 1, 1)
1891FIELD(V7M_FPCCR, S, 2, 1)
1892FIELD(V7M_FPCCR, THREAD, 3, 1)
1893FIELD(V7M_FPCCR, HFRDY, 4, 1)
1894FIELD(V7M_FPCCR, MMRDY, 5, 1)
1895FIELD(V7M_FPCCR, BFRDY, 6, 1)
1896FIELD(V7M_FPCCR, SFRDY, 7, 1)
1897FIELD(V7M_FPCCR, MONRDY, 8, 1)
1898FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1899FIELD(V7M_FPCCR, UFRDY, 10, 1)
1900FIELD(V7M_FPCCR, RES0, 11, 15)
1901FIELD(V7M_FPCCR, TS, 26, 1)
1902FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1903FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1904FIELD(V7M_FPCCR, LSPENS, 29, 1)
1905FIELD(V7M_FPCCR, LSPEN, 30, 1)
1906FIELD(V7M_FPCCR, ASPEN, 31, 1)
1907/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1908#define R_V7M_FPCCR_BANKED_MASK \
1909 (R_V7M_FPCCR_LSPACT_MASK | \
1910 R_V7M_FPCCR_USER_MASK | \
1911 R_V7M_FPCCR_THREAD_MASK | \
1912 R_V7M_FPCCR_MMRDY_MASK | \
1913 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1914 R_V7M_FPCCR_UFRDY_MASK | \
1915 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1916
7c3d47da
PM
1917/* v7M VPR bits */
1918FIELD(V7M_VPR, P0, 0, 16)
1919FIELD(V7M_VPR, MASK01, 16, 4)
1920FIELD(V7M_VPR, MASK23, 20, 4)
1921
a62e62af
RH
1922/*
1923 * System register ID fields.
1924 */
2a14526a
LL
1925FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1926FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1927FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1928FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1929FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1930FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1931FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1932FIELD(CLIDR_EL1, LOUIS, 21, 3)
1933FIELD(CLIDR_EL1, LOC, 24, 3)
1934FIELD(CLIDR_EL1, LOUU, 27, 3)
1935FIELD(CLIDR_EL1, ICB, 30, 3)
1936
1937/* When FEAT_CCIDX is implemented */
1938FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1939FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1940FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1941
1942/* When FEAT_CCIDX is not implemented */
1943FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1944FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1945FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1946
1947FIELD(CTR_EL0, IMINLINE, 0, 4)
1948FIELD(CTR_EL0, L1IP, 14, 2)
1949FIELD(CTR_EL0, DMINLINE, 16, 4)
1950FIELD(CTR_EL0, ERG, 20, 4)
1951FIELD(CTR_EL0, CWG, 24, 4)
1952FIELD(CTR_EL0, IDC, 28, 1)
1953FIELD(CTR_EL0, DIC, 29, 1)
1954FIELD(CTR_EL0, TMINLINE, 32, 6)
1955
2bd5f41c
AB
1956FIELD(MIDR_EL1, REVISION, 0, 4)
1957FIELD(MIDR_EL1, PARTNUM, 4, 12)
1958FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1959FIELD(MIDR_EL1, VARIANT, 20, 4)
1960FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1961
a62e62af
RH
1962FIELD(ID_ISAR0, SWAP, 0, 4)
1963FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1964FIELD(ID_ISAR0, BITFIELD, 8, 4)
1965FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1966FIELD(ID_ISAR0, COPROC, 16, 4)
1967FIELD(ID_ISAR0, DEBUG, 20, 4)
1968FIELD(ID_ISAR0, DIVIDE, 24, 4)
1969
1970FIELD(ID_ISAR1, ENDIAN, 0, 4)
1971FIELD(ID_ISAR1, EXCEPT, 4, 4)
1972FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1973FIELD(ID_ISAR1, EXTEND, 12, 4)
1974FIELD(ID_ISAR1, IFTHEN, 16, 4)
1975FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1976FIELD(ID_ISAR1, INTERWORK, 24, 4)
1977FIELD(ID_ISAR1, JAZELLE, 28, 4)
1978
1979FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1980FIELD(ID_ISAR2, MEMHINT, 4, 4)
1981FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1982FIELD(ID_ISAR2, MULT, 12, 4)
1983FIELD(ID_ISAR2, MULTS, 16, 4)
1984FIELD(ID_ISAR2, MULTU, 20, 4)
1985FIELD(ID_ISAR2, PSR_AR, 24, 4)
1986FIELD(ID_ISAR2, REVERSAL, 28, 4)
1987
1988FIELD(ID_ISAR3, SATURATE, 0, 4)
1989FIELD(ID_ISAR3, SIMD, 4, 4)
1990FIELD(ID_ISAR3, SVC, 8, 4)
1991FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1992FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1993FIELD(ID_ISAR3, T32COPY, 20, 4)
1994FIELD(ID_ISAR3, TRUENOP, 24, 4)
1995FIELD(ID_ISAR3, T32EE, 28, 4)
1996
1997FIELD(ID_ISAR4, UNPRIV, 0, 4)
1998FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1999FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2000FIELD(ID_ISAR4, SMC, 12, 4)
2001FIELD(ID_ISAR4, BARRIER, 16, 4)
2002FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2003FIELD(ID_ISAR4, PSR_M, 24, 4)
2004FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2005
2006FIELD(ID_ISAR5, SEVL, 0, 4)
2007FIELD(ID_ISAR5, AES, 4, 4)
2008FIELD(ID_ISAR5, SHA1, 8, 4)
2009FIELD(ID_ISAR5, SHA2, 12, 4)
2010FIELD(ID_ISAR5, CRC32, 16, 4)
2011FIELD(ID_ISAR5, RDM, 24, 4)
2012FIELD(ID_ISAR5, VCMA, 28, 4)
2013
2014FIELD(ID_ISAR6, JSCVT, 0, 4)
2015FIELD(ID_ISAR6, DP, 4, 4)
2016FIELD(ID_ISAR6, FHM, 8, 4)
2017FIELD(ID_ISAR6, SB, 12, 4)
2018FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
2019FIELD(ID_ISAR6, BF16, 20, 4)
2020FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 2021
0ae0326b
PM
2022FIELD(ID_MMFR0, VMSA, 0, 4)
2023FIELD(ID_MMFR0, PMSA, 4, 4)
2024FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2025FIELD(ID_MMFR0, SHARELVL, 12, 4)
2026FIELD(ID_MMFR0, TCM, 16, 4)
2027FIELD(ID_MMFR0, AUXREG, 20, 4)
2028FIELD(ID_MMFR0, FCSE, 24, 4)
2029FIELD(ID_MMFR0, INNERSHR, 28, 4)
2030
bd78b6be
LL
2031FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2032FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2033FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2034FIELD(ID_MMFR1, L1UNISW, 12, 4)
2035FIELD(ID_MMFR1, L1HVD, 16, 4)
2036FIELD(ID_MMFR1, L1UNI, 20, 4)
2037FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2038FIELD(ID_MMFR1, BPRED, 28, 4)
2039
2040FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2041FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2042FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2043FIELD(ID_MMFR2, HVDTLB, 12, 4)
2044FIELD(ID_MMFR2, UNITLB, 16, 4)
2045FIELD(ID_MMFR2, MEMBARR, 20, 4)
2046FIELD(ID_MMFR2, WFISTALL, 24, 4)
2047FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2048
3d6ad6bb
RH
2049FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2050FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2051FIELD(ID_MMFR3, BPMAINT, 8, 4)
2052FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2053FIELD(ID_MMFR3, PAN, 16, 4)
2054FIELD(ID_MMFR3, COHWALK, 20, 4)
2055FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2056FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2057
ab638a32
RH
2058FIELD(ID_MMFR4, SPECSEI, 0, 4)
2059FIELD(ID_MMFR4, AC2, 4, 4)
2060FIELD(ID_MMFR4, XNX, 8, 4)
2061FIELD(ID_MMFR4, CNP, 12, 4)
2062FIELD(ID_MMFR4, HPDS, 16, 4)
2063FIELD(ID_MMFR4, LSM, 20, 4)
2064FIELD(ID_MMFR4, CCIDX, 24, 4)
2065FIELD(ID_MMFR4, EVT, 28, 4)
2066
bd78b6be 2067FIELD(ID_MMFR5, ETS, 0, 4)
c42fb26b 2068FIELD(ID_MMFR5, NTLBPA, 4, 4)
bd78b6be 2069
46f4976f
PM
2070FIELD(ID_PFR0, STATE0, 0, 4)
2071FIELD(ID_PFR0, STATE1, 4, 4)
2072FIELD(ID_PFR0, STATE2, 8, 4)
2073FIELD(ID_PFR0, STATE3, 12, 4)
2074FIELD(ID_PFR0, CSV2, 16, 4)
2075FIELD(ID_PFR0, AMU, 20, 4)
2076FIELD(ID_PFR0, DIT, 24, 4)
2077FIELD(ID_PFR0, RAS, 28, 4)
2078
dfc523a8
PM
2079FIELD(ID_PFR1, PROGMOD, 0, 4)
2080FIELD(ID_PFR1, SECURITY, 4, 4)
2081FIELD(ID_PFR1, MPROGMOD, 8, 4)
2082FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2083FIELD(ID_PFR1, GENTIMER, 16, 4)
2084FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2085FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2086FIELD(ID_PFR1, GIC, 28, 4)
2087
bd78b6be
LL
2088FIELD(ID_PFR2, CSV3, 0, 4)
2089FIELD(ID_PFR2, SSBS, 4, 4)
2090FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2091
a62e62af
RH
2092FIELD(ID_AA64ISAR0, AES, 4, 4)
2093FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2094FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2095FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2096FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2097FIELD(ID_AA64ISAR0, RDM, 28, 4)
2098FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2099FIELD(ID_AA64ISAR0, SM3, 36, 4)
2100FIELD(ID_AA64ISAR0, SM4, 40, 4)
2101FIELD(ID_AA64ISAR0, DP, 44, 4)
2102FIELD(ID_AA64ISAR0, FHM, 48, 4)
2103FIELD(ID_AA64ISAR0, TS, 52, 4)
2104FIELD(ID_AA64ISAR0, TLB, 56, 4)
2105FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2106
2107FIELD(ID_AA64ISAR1, DPB, 0, 4)
2108FIELD(ID_AA64ISAR1, APA, 4, 4)
2109FIELD(ID_AA64ISAR1, API, 8, 4)
2110FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2111FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2112FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2113FIELD(ID_AA64ISAR1, GPA, 24, 4)
2114FIELD(ID_AA64ISAR1, GPI, 28, 4)
2115FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2116FIELD(ID_AA64ISAR1, SB, 36, 4)
2117FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
2118FIELD(ID_AA64ISAR1, BF16, 44, 4)
2119FIELD(ID_AA64ISAR1, DGH, 48, 4)
2120FIELD(ID_AA64ISAR1, I8MM, 52, 4)
c42fb26b
RH
2121FIELD(ID_AA64ISAR1, XS, 56, 4)
2122FIELD(ID_AA64ISAR1, LS64, 60, 4)
2123
2124FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2125FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2126FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2127FIELD(ID_AA64ISAR2, APA3, 12, 4)
2128FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2129FIELD(ID_AA64ISAR2, BC, 20, 4)
2130FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
a62e62af 2131
cd208a1c
RH
2132FIELD(ID_AA64PFR0, EL0, 0, 4)
2133FIELD(ID_AA64PFR0, EL1, 4, 4)
2134FIELD(ID_AA64PFR0, EL2, 8, 4)
2135FIELD(ID_AA64PFR0, EL3, 12, 4)
2136FIELD(ID_AA64PFR0, FP, 16, 4)
2137FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2138FIELD(ID_AA64PFR0, GIC, 24, 4)
2139FIELD(ID_AA64PFR0, RAS, 28, 4)
2140FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
2141FIELD(ID_AA64PFR0, SEL2, 36, 4)
2142FIELD(ID_AA64PFR0, MPAM, 40, 4)
2143FIELD(ID_AA64PFR0, AMU, 44, 4)
2144FIELD(ID_AA64PFR0, DIT, 48, 4)
2145FIELD(ID_AA64PFR0, CSV2, 56, 4)
2146FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2147
be53b6f4 2148FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2149FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2150FIELD(ID_AA64PFR1, MTE, 8, 4)
2151FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2152FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
c42fb26b
RH
2153FIELD(ID_AA64PFR1, SME, 24, 4)
2154FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2155FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2156FIELD(ID_AA64PFR1, NMI, 36, 4)
be53b6f4 2157
3dc91ddb
PM
2158FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2159FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2160FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2161FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2162FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2163FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2164FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2165FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2166FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2167FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2168FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2169FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2170FIELD(ID_AA64MMFR0, FGT, 56, 4)
2171FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2172
2173FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2174FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2175FIELD(ID_AA64MMFR1, VH, 8, 4)
2176FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2177FIELD(ID_AA64MMFR1, LO, 16, 4)
2178FIELD(ID_AA64MMFR1, PAN, 20, 4)
2179FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2180FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2181FIELD(ID_AA64MMFR1, TWED, 32, 4)
2182FIELD(ID_AA64MMFR1, ETS, 36, 4)
c42fb26b
RH
2183FIELD(ID_AA64MMFR1, HCX, 40, 4)
2184FIELD(ID_AA64MMFR1, AFP, 44, 4)
2185FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2186FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2187FIELD(ID_AA64MMFR1, CMOW, 56, 4)
3dc91ddb 2188
64761e10
RH
2189FIELD(ID_AA64MMFR2, CNP, 0, 4)
2190FIELD(ID_AA64MMFR2, UAO, 4, 4)
2191FIELD(ID_AA64MMFR2, LSM, 8, 4)
2192FIELD(ID_AA64MMFR2, IESB, 12, 4)
2193FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2194FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2195FIELD(ID_AA64MMFR2, NV, 24, 4)
2196FIELD(ID_AA64MMFR2, ST, 28, 4)
2197FIELD(ID_AA64MMFR2, AT, 32, 4)
2198FIELD(ID_AA64MMFR2, IDS, 36, 4)
2199FIELD(ID_AA64MMFR2, FWB, 40, 4)
2200FIELD(ID_AA64MMFR2, TTL, 48, 4)
2201FIELD(ID_AA64MMFR2, BBM, 52, 4)
2202FIELD(ID_AA64MMFR2, EVT, 56, 4)
2203FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2204
ceb2744b
PM
2205FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2206FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2207FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2208FIELD(ID_AA64DFR0, BRPS, 12, 4)
2209FIELD(ID_AA64DFR0, WRPS, 20, 4)
2210FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2211FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2212FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2213FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
c42fb26b 2214FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
00a92832 2215FIELD(ID_AA64DFR0, MTPMU, 48, 4)
c42fb26b
RH
2216FIELD(ID_AA64DFR0, BRBE, 52, 4)
2217FIELD(ID_AA64DFR0, HPMN0, 60, 4)
ceb2744b 2218
2dc10fa2
RH
2219FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2220FIELD(ID_AA64ZFR0, AES, 4, 4)
2221FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2222FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2223FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2224FIELD(ID_AA64ZFR0, SM4, 40, 4)
2225FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2226FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2227FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2228
414c54d5
RH
2229FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2230FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2231FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2232FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2233FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2234FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2235FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2236FIELD(ID_AA64SMFR0, FA64, 63, 1)
2237
beceb99c
AL
2238FIELD(ID_DFR0, COPDBG, 0, 4)
2239FIELD(ID_DFR0, COPSDBG, 4, 4)
2240FIELD(ID_DFR0, MMAPDBG, 8, 4)
2241FIELD(ID_DFR0, COPTRC, 12, 4)
2242FIELD(ID_DFR0, MMAPTRC, 16, 4)
2243FIELD(ID_DFR0, MPROFDBG, 20, 4)
2244FIELD(ID_DFR0, PERFMON, 24, 4)
2245FIELD(ID_DFR0, TRACEFILT, 28, 4)
2246
bd78b6be 2247FIELD(ID_DFR1, MTPMU, 0, 4)
c42fb26b 2248FIELD(ID_DFR1, HPMN0, 4, 4)
bd78b6be 2249
88ce6c6e
PM
2250FIELD(DBGDIDR, SE_IMP, 12, 1)
2251FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2252FIELD(DBGDIDR, VERSION, 16, 4)
2253FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2254FIELD(DBGDIDR, BRPS, 24, 4)
2255FIELD(DBGDIDR, WRPS, 28, 4)
2256
f94a6df5
PM
2257FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2258FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2259FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2260FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2261FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2262FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2263FIELD(DBGDEVID, AUXREGS, 24, 4)
2264FIELD(DBGDEVID, CIDMASK, 28, 4)
2265
602f6e42
PM
2266FIELD(MVFR0, SIMDREG, 0, 4)
2267FIELD(MVFR0, FPSP, 4, 4)
2268FIELD(MVFR0, FPDP, 8, 4)
2269FIELD(MVFR0, FPTRAP, 12, 4)
2270FIELD(MVFR0, FPDIVIDE, 16, 4)
2271FIELD(MVFR0, FPSQRT, 20, 4)
2272FIELD(MVFR0, FPSHVEC, 24, 4)
2273FIELD(MVFR0, FPROUND, 28, 4)
2274
2275FIELD(MVFR1, FPFTZ, 0, 4)
2276FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2277FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2278FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2279FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2280FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2281FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2282FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2283FIELD(MVFR1, FPHP, 24, 4)
2284FIELD(MVFR1, SIMDFMAC, 28, 4)
2285
2286FIELD(MVFR2, SIMDMISC, 0, 4)
2287FIELD(MVFR2, FPMISC, 4, 4)
2288
43bbce7f
PM
2289QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2290
ce854d7c
BC
2291/* If adding a feature bit which corresponds to a Linux ELF
2292 * HWCAP bit, remember to update the feature-bit-to-hwcap
2293 * mapping in linux-user/elfload.c:get_elf_hwcap().
2294 */
40f137e1 2295enum arm_features {
c1713132
AZ
2296 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2297 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2298 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2299 ARM_FEATURE_V6,
2300 ARM_FEATURE_V6K,
2301 ARM_FEATURE_V7,
2302 ARM_FEATURE_THUMB2,
452a0955 2303 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2304 ARM_FEATURE_NEON,
9ee6e8bb 2305 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2306 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2307 ARM_FEATURE_THUMB2EE,
be5e7a76 2308 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2309 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2310 ARM_FEATURE_V4T,
2311 ARM_FEATURE_V5,
5bc95aa2 2312 ARM_FEATURE_STRONGARM,
906879a9 2313 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2314 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2315 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2316 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2317 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2318 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2319 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2320 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2321 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2322 ARM_FEATURE_V8,
3926cc84 2323 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2324 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2325 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2326 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2327 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2328 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2329 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2330 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2331 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2332 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2333 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2334};
2335
2336static inline int arm_feature(CPUARMState *env, int feature)
2337{
918f5dca 2338 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2339}
2340
0df9142d
AJ
2341void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2342
19e0fefa
FA
2343#if !defined(CONFIG_USER_ONLY)
2344/* Return true if exception levels below EL3 are in secure state,
2345 * or would be following an exception return to that level.
2346 * Unlike arm_is_secure() (which is always a question about the
2347 * _current_ state of the CPU) this doesn't care about the current
2348 * EL or mode.
2349 */
2350static inline bool arm_is_secure_below_el3(CPUARMState *env)
2351{
2352 if (arm_feature(env, ARM_FEATURE_EL3)) {
2353 return !(env->cp15.scr_el3 & SCR_NS);
2354 } else {
6b7f0b61 2355 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
2356 * defined, in which case QEMU defaults to non-secure.
2357 */
2358 return false;
2359 }
2360}
2361
71205876
PM
2362/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2363static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
2364{
2365 if (arm_feature(env, ARM_FEATURE_EL3)) {
2366 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2367 /* CPU currently in AArch64 state and EL3 */
2368 return true;
2369 } else if (!is_a64(env) &&
2370 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2371 /* CPU currently in AArch32 state and monitor mode */
2372 return true;
2373 }
2374 }
71205876
PM
2375 return false;
2376}
2377
2378/* Return true if the processor is in secure state */
2379static inline bool arm_is_secure(CPUARMState *env)
2380{
2381 if (arm_is_el3_or_mon(env)) {
2382 return true;
2383 }
19e0fefa
FA
2384 return arm_is_secure_below_el3(env);
2385}
2386
f3ee5160
RDC
2387/*
2388 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2389 * This corresponds to the pseudocode EL2Enabled()
2390 */
2391static inline bool arm_is_el2_enabled(CPUARMState *env)
2392{
2393 if (arm_feature(env, ARM_FEATURE_EL2)) {
926c1b97
RDC
2394 if (arm_is_secure_below_el3(env)) {
2395 return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2396 }
2397 return true;
f3ee5160
RDC
2398 }
2399 return false;
2400}
2401
19e0fefa
FA
2402#else
2403static inline bool arm_is_secure_below_el3(CPUARMState *env)
2404{
2405 return false;
2406}
2407
2408static inline bool arm_is_secure(CPUARMState *env)
2409{
2410 return false;
2411}
f3ee5160
RDC
2412
2413static inline bool arm_is_el2_enabled(CPUARMState *env)
2414{
2415 return false;
2416}
19e0fefa
FA
2417#endif
2418
f7778444
RH
2419/**
2420 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2421 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2422 * "for all purposes other than a direct read or write access of HCR_EL2."
2423 * Not included here is HCR_RW.
2424 */
2425uint64_t arm_hcr_el2_eff(CPUARMState *env);
5814d587 2426uint64_t arm_hcrx_el2_eff(CPUARMState *env);
f7778444 2427
1f79ee32
PM
2428/* Return true if the specified exception level is running in AArch64 state. */
2429static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2430{
446c81ab
PM
2431 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2432 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2433 */
446c81ab
PM
2434 assert(el >= 1 && el <= 3);
2435 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2436
446c81ab
PM
2437 /* The highest exception level is always at the maximum supported
2438 * register width, and then lower levels have a register width controlled
2439 * by bits in the SCR or HCR registers.
1f79ee32 2440 */
446c81ab
PM
2441 if (el == 3) {
2442 return aa64;
2443 }
2444
926c1b97
RDC
2445 if (arm_feature(env, ARM_FEATURE_EL3) &&
2446 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2447 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2448 }
2449
2450 if (el == 2) {
2451 return aa64;
2452 }
2453
e6ef0169 2454 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2455 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2456 }
2457
2458 return aa64;
1f79ee32
PM
2459}
2460
3f342b9e
SF
2461/* Function for determing whether guest cp register reads and writes should
2462 * access the secure or non-secure bank of a cp register. When EL3 is
2463 * operating in AArch32 state, the NS-bit determines whether the secure
2464 * instance of a cp register should be used. When EL3 is AArch64 (or if
2465 * it doesn't exist at all) then there is no register banking, and all
2466 * accesses are to the non-secure version.
2467 */
2468static inline bool access_secure_reg(CPUARMState *env)
2469{
2470 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2471 !arm_el_is_aa64(env, 3) &&
2472 !(env->cp15.scr_el3 & SCR_NS));
2473
2474 return ret;
2475}
2476
ea30a4b8
FA
2477/* Macros for accessing a specified CP register bank */
2478#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2479 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2480
2481#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2482 do { \
2483 if (_secure) { \
2484 (_env)->cp15._regname##_s = (_val); \
2485 } else { \
2486 (_env)->cp15._regname##_ns = (_val); \
2487 } \
2488 } while (0)
2489
2490/* Macros for automatically accessing a specific CP register bank depending on
2491 * the current secure state of the system. These macros are not intended for
2492 * supporting instruction translation reads/writes as these are dependent
2493 * solely on the SCR.NS bit and not the mode.
2494 */
2495#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2496 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2497 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2498
2499#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2500 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2501 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2502 (_val))
2503
0442428a 2504void arm_cpu_list(void);
012a906b
GB
2505uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2506 uint32_t cur_el, bool secure);
40f137e1 2507
9ee6e8bb 2508/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
2509#ifndef CONFIG_USER_ONLY
2510bool armv7m_nvic_can_take_pending_exception(void *opaque);
2511#else
2512static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2513{
2514 return true;
2515}
2516#endif
2fb50a33
PM
2517/**
2518 * armv7m_nvic_set_pending: mark the specified exception as pending
2519 * @opaque: the NVIC
2520 * @irq: the exception number to mark pending
2521 * @secure: false for non-banked exceptions or for the nonsecure
2522 * version of a banked exception, true for the secure version of a banked
2523 * exception.
2524 *
2525 * Marks the specified exception as pending. Note that we will assert()
2526 * if @secure is true and @irq does not specify one of the fixed set
2527 * of architecturally banked exceptions.
2528 */
2529void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2530/**
2531 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2532 * @opaque: the NVIC
2533 * @irq: the exception number to mark pending
2534 * @secure: false for non-banked exceptions or for the nonsecure
2535 * version of a banked exception, true for the secure version of a banked
2536 * exception.
2537 *
2538 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2539 * exceptions (exceptions generated in the course of trying to take
2540 * a different exception).
2541 */
2542void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2543/**
2544 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2545 * @opaque: the NVIC
2546 * @irq: the exception number to mark pending
2547 * @secure: false for non-banked exceptions or for the nonsecure
2548 * version of a banked exception, true for the secure version of a banked
2549 * exception.
2550 *
2551 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2552 * generated in the course of lazy stacking of FP registers.
2553 */
2554void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2555/**
2556 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2557 * exception, and whether it targets Secure state
2558 * @opaque: the NVIC
2559 * @pirq: set to pending exception number
2560 * @ptargets_secure: set to whether pending exception targets Secure
2561 *
2562 * This function writes the number of the highest priority pending
2563 * exception (the one which would be made active by
2564 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2565 * to true if the current highest priority pending exception should
2566 * be taken to Secure state, false for NS.
2567 */
2568void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2569 bool *ptargets_secure);
5cb18069
PM
2570/**
2571 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2572 * @opaque: the NVIC
2573 *
2574 * Move the current highest priority pending exception from the pending
2575 * state to the active state, and update v7m.exception to indicate that
2576 * it is the exception currently being handled.
5cb18069 2577 */
6c948518 2578void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2579/**
2580 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2581 * @opaque: the NVIC
2582 * @irq: the exception number to complete
5cb18069 2583 * @secure: true if this exception was secure
aa488fe3
PM
2584 *
2585 * Returns: -1 if the irq was not active
2586 * 1 if completing this irq brought us back to base (no active irqs)
2587 * 0 if there is still an irq active after this one was completed
2588 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2589 */
5cb18069 2590int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2591/**
2592 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2593 * @opaque: the NVIC
2594 * @irq: the exception number to mark pending
2595 * @secure: false for non-banked exceptions or for the nonsecure
2596 * version of a banked exception, true for the secure version of a banked
2597 * exception.
2598 *
2599 * Return whether an exception is "ready", i.e. whether the exception is
2600 * enabled and is configured at a priority which would allow it to
2601 * interrupt the current execution priority. This controls whether the
2602 * RDY bit for it in the FPCCR is set.
2603 */
2604bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2605/**
2606 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2607 * @opaque: the NVIC
2608 *
2609 * Returns: the raw execution priority as defined by the v8M architecture.
2610 * This is the execution priority minus the effects of AIRCR.PRIS,
2611 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2612 * (v8M ARM ARM I_PKLD.)
2613 */
2614int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2615/**
2616 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2617 * priority is negative for the specified security state.
2618 * @opaque: the NVIC
2619 * @secure: the security state to test
2620 * This corresponds to the pseudocode IsReqExecPriNeg().
2621 */
2622#ifndef CONFIG_USER_ONLY
2623bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2624#else
2625static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2626{
2627 return false;
2628}
2629#endif
9ee6e8bb 2630
4b6a83fb
PM
2631/* Interface for defining coprocessor registers.
2632 * Registers are defined in tables of arm_cp_reginfo structs
2633 * which are passed to define_arm_cp_regs().
2634 */
2635
2636/* When looking up a coprocessor register we look for it
2637 * via an integer which encodes all of:
2638 * coprocessor number
2639 * Crn, Crm, opc1, opc2 fields
2640 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2641 * or via MRRC/MCRR?)
51a79b03 2642 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2643 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2644 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2645 * For AArch64, there is no 32/64 bit size distinction;
2646 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2647 * and 4 bit CRn and CRm. The encoding patterns are chosen
2648 * to be easy to convert to and from the KVM encodings, and also
2649 * so that the hashtable can contain both AArch32 and AArch64
2650 * registers (to allow for interprocessing where we might run
2651 * 32 bit code on a 64 bit core).
4b6a83fb 2652 */
f5a0a5a5
PM
2653/* This bit is private to our hashtable cpreg; in KVM register
2654 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2655 * in the upper bits of the 64 bit ID.
2656 */
2657#define CP_REG_AA64_SHIFT 28
2658#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2659
51a79b03
PM
2660/* To enable banking of coprocessor registers depending on ns-bit we
2661 * add a bit to distinguish between secure and non-secure cpregs in the
2662 * hashtable.
2663 */
2664#define CP_REG_NS_SHIFT 29
2665#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2666
2667#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2668 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2669 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2670
f5a0a5a5
PM
2671#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2672 (CP_REG_AA64_MASK | \
2673 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2674 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2675 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2676 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2677 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2678 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2679
721fae12
PM
2680/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2681 * version used as a key for the coprocessor register hashtable
2682 */
2683static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2684{
2685 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2686 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2687 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2688 } else {
2689 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2690 cpregid |= (1 << 15);
2691 }
2692
2693 /* KVM is always non-secure so add the NS flag on AArch32 register
2694 * entries.
2695 */
2696 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2697 }
2698 return cpregid;
2699}
2700
2701/* Convert a truncated 32 bit hashtable key into the full
2702 * 64 bit KVM register ID.
2703 */
2704static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2705{
f5a0a5a5
PM
2706 uint64_t kvmid;
2707
2708 if (cpregid & CP_REG_AA64_MASK) {
2709 kvmid = cpregid & ~CP_REG_AA64_MASK;
2710 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2711 } else {
f5a0a5a5
PM
2712 kvmid = cpregid & ~(1 << 15);
2713 if (cpregid & (1 << 15)) {
2714 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2715 } else {
2716 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2717 }
721fae12
PM
2718 }
2719 return kvmid;
2720}
2721
75502672
PM
2722/* Return the highest implemented Exception Level */
2723static inline int arm_highest_el(CPUARMState *env)
2724{
2725 if (arm_feature(env, ARM_FEATURE_EL3)) {
2726 return 3;
2727 }
2728 if (arm_feature(env, ARM_FEATURE_EL2)) {
2729 return 2;
2730 }
2731 return 1;
2732}
2733
15b3f556
PM
2734/* Return true if a v7M CPU is in Handler mode */
2735static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2736{
2737 return env->v7m.exception != 0;
2738}
2739
dcbff19b
GB
2740/* Return the current Exception Level (as per ARMv8; note that this differs
2741 * from the ARMv7 Privilege Level).
2742 */
2743static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2744{
6d54ed3c 2745 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2746 return arm_v7m_is_handler_mode(env) ||
2747 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2748 }
2749
592125f8 2750 if (is_a64(env)) {
f5a0a5a5
PM
2751 return extract32(env->pstate, 2, 2);
2752 }
2753
592125f8
FA
2754 switch (env->uncached_cpsr & 0x1f) {
2755 case ARM_CPU_MODE_USR:
4b6a83fb 2756 return 0;
592125f8
FA
2757 case ARM_CPU_MODE_HYP:
2758 return 2;
2759 case ARM_CPU_MODE_MON:
2760 return 3;
2761 default:
2762 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2763 /* If EL3 is 32-bit then all secure privileged modes run in
2764 * EL3
2765 */
2766 return 3;
2767 }
2768
2769 return 1;
4b6a83fb 2770 }
4b6a83fb
PM
2771}
2772
721fae12
PM
2773/**
2774 * write_list_to_cpustate
2775 * @cpu: ARMCPU
2776 *
2777 * For each register listed in the ARMCPU cpreg_indexes list, write
2778 * its value from the cpreg_values list into the ARMCPUState structure.
2779 * This updates TCG's working data structures from KVM data or
2780 * from incoming migration state.
2781 *
2782 * Returns: true if all register values were updated correctly,
2783 * false if some register was unknown or could not be written.
2784 * Note that we do not stop early on failure -- we will attempt
2785 * writing all registers in the list.
2786 */
2787bool write_list_to_cpustate(ARMCPU *cpu);
2788
2789/**
2790 * write_cpustate_to_list:
2791 * @cpu: ARMCPU
b698e4ee 2792 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2793 *
2794 * For each register listed in the ARMCPU cpreg_indexes list, write
2795 * its value from the ARMCPUState structure into the cpreg_values list.
2796 * This is used to copy info from TCG's working data structures into
2797 * KVM or for outbound migration.
2798 *
b698e4ee
PM
2799 * @kvm_sync is true if we are doing this in order to sync the
2800 * register state back to KVM. In this case we will only update
2801 * values in the list if the previous list->cpustate sync actually
2802 * successfully wrote the CPU state. Otherwise we will keep the value
2803 * that is in the list.
2804 *
721fae12
PM
2805 * Returns: true if all register values were read correctly,
2806 * false if some register was unknown or could not be read.
2807 * Note that we do not stop early on failure -- we will attempt
2808 * reading all registers in the list.
2809 */
b698e4ee 2810bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2811
9ee6e8bb
PB
2812#define ARM_CPUID_TI915T 0x54029152
2813#define ARM_CPUID_TI925T 0x54029252
40f137e1 2814
ba1ba5cc
IM
2815#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2816#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2817#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2818
585df85e
PM
2819#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2820
c732abe2 2821#define cpu_list arm_cpu_list
9467d44c 2822
c1e37810
PM
2823/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2824 *
2825 * If EL3 is 64-bit:
2826 * + NonSecure EL1 & 0 stage 1
2827 * + NonSecure EL1 & 0 stage 2
2828 * + NonSecure EL2
b9f6033c
RH
2829 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2830 * + Secure EL1 & 0
c1e37810
PM
2831 * + Secure EL3
2832 * If EL3 is 32-bit:
2833 * + NonSecure PL1 & 0 stage 1
2834 * + NonSecure PL1 & 0 stage 2
2835 * + NonSecure PL2
b9f6033c
RH
2836 * + Secure PL0
2837 * + Secure PL1
c1e37810
PM
2838 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2839 *
2840 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2841 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2842 * because they may differ in access permissions even if the VA->PA map is
2843 * the same
c1e37810
PM
2844 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2845 * translation, which means that we have one mmu_idx that deals with two
2846 * concatenated translation regimes [this sort of combined s1+2 TLB is
2847 * architecturally permitted]
2848 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2849 * handling via the TLB. The only way to do a stage 1 translation without
2850 * the immediate stage 2 translation is via the ATS or AT system insns,
2851 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2852 * The only use of stage 2 translations is either as part of an s1+2
2853 * lookup or when loading the descriptors during a stage 1 page table walk,
2854 * and in both those cases we don't use the TLB.
c1e37810
PM
2855 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2856 * translation regimes, because they map reasonably well to each other
2857 * and they can't both be active at the same time.
b9f6033c
RH
2858 * 5. we want to be able to use the TLB for accesses done as part of a
2859 * stage1 page table walk, rather than having to walk the stage2 page
2860 * table over and over.
452ef8cb
RH
2861 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2862 * Never (PAN) bit within PSTATE.
c1e37810 2863 *
b9f6033c
RH
2864 * This gives us the following list of cases:
2865 *
2866 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2867 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
452ef8cb 2868 * NS EL1 EL1&0 stage 1+2 +PAN
b9f6033c 2869 * NS EL0 EL2&0
bf05340c 2870 * NS EL2 EL2&0
452ef8cb 2871 * NS EL2 EL2&0 +PAN
c1e37810 2872 * NS EL2 (aka NS PL2)
b9f6033c
RH
2873 * S EL0 EL1&0 (aka S PL0)
2874 * S EL1 EL1&0 (not used if EL3 is 32 bit)
452ef8cb 2875 * S EL1 EL1&0 +PAN
c1e37810 2876 * S EL3 (aka S PL1)
c1e37810 2877 *
bf05340c 2878 * for a total of 11 different mmu_idx.
c1e37810 2879 *
3bef7012
PM
2880 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2881 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2882 * NS EL2 if we ever model a Cortex-R52).
2883 *
2884 * M profile CPUs are rather different as they do not have a true MMU.
2885 * They have the following different MMU indexes:
2886 * User
2887 * Privileged
62593718
PM
2888 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2889 * Privileged, execution priority negative (ditto)
66787c78
PM
2890 * If the CPU supports the v8M Security Extension then there are also:
2891 * Secure User
2892 * Secure Privileged
62593718
PM
2893 * Secure User, execution priority negative
2894 * Secure Privileged, execution priority negative
3bef7012 2895 *
8bd5c820
PM
2896 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2897 * are not quite the same -- different CPU types (most notably M profile
2898 * vs A/R profile) would like to use MMU indexes with different semantics,
2899 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2900 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2901 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2902 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2903 * the same for any particular CPU.
2904 * Variables of type ARMMUIdx are always full values, and the core
2905 * index values are in variables of type 'int'.
2906 *
c1e37810
PM
2907 * Our enumeration includes at the end some entries which are not "true"
2908 * mmu_idx values in that they don't have corresponding TLBs and are only
2909 * valid for doing slow path page table walks.
2910 *
2911 * The constant names here are patterned after the general style of the names
2912 * of the AT/ATS operations.
2913 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2914 * For M profile we arrange them to have a bit for priv, a bit for negpri
2915 * and a bit for secure.
c1e37810 2916 */
b9f6033c
RH
2917#define ARM_MMU_IDX_A 0x10 /* A profile */
2918#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2919#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2920
b6ad6062
RDC
2921/* Meanings of the bits for A profile mmu idx values */
2922#define ARM_MMU_IDX_A_NS 0x8
2923
b9f6033c
RH
2924/* Meanings of the bits for M profile mmu idx values */
2925#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2926#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2927#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2928
b9f6033c
RH
2929#define ARM_MMU_IDX_TYPE_MASK \
2930 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2931#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2932
c1e37810 2933typedef enum ARMMMUIdx {
b9f6033c
RH
2934 /*
2935 * A-profile.
2936 */
b6ad6062
RDC
2937 ARMMMUIdx_SE10_0 = 0 | ARM_MMU_IDX_A,
2938 ARMMMUIdx_SE20_0 = 1 | ARM_MMU_IDX_A,
2939 ARMMMUIdx_SE10_1 = 2 | ARM_MMU_IDX_A,
2940 ARMMMUIdx_SE20_2 = 3 | ARM_MMU_IDX_A,
2941 ARMMMUIdx_SE10_1_PAN = 4 | ARM_MMU_IDX_A,
2942 ARMMMUIdx_SE20_2_PAN = 5 | ARM_MMU_IDX_A,
2943 ARMMMUIdx_SE2 = 6 | ARM_MMU_IDX_A,
2944 ARMMMUIdx_SE3 = 7 | ARM_MMU_IDX_A,
2945
2946 ARMMMUIdx_E10_0 = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
2947 ARMMMUIdx_E20_0 = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
2948 ARMMMUIdx_E10_1 = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
2949 ARMMMUIdx_E20_2 = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
2950 ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
2951 ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
2952 ARMMMUIdx_E2 = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
b9f6033c 2953
b9f6033c
RH
2954 /*
2955 * These are not allocated TLBs and are used only for AT system
2956 * instructions or for the first stage of an S12 page table walk.
2957 */
2958 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2959 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2960 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b1a10c86
RDC
2961 ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
2962 ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
2963 ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
bf05340c
PM
2964 /*
2965 * Not allocated a TLB: used only for second stage of an S12 page
2966 * table walk, or for descriptor loads during first stage of an S1
2967 * page table walk. Note that if we ever want to have a TLB for this
2968 * then various TLB flush insns which currently are no-ops or flush
2969 * only stage 1 MMU indexes will need to change to flush stage 2.
2970 */
b1a10c86
RDC
2971 ARMMMUIdx_Stage2 = 6 | ARM_MMU_IDX_NOTLB,
2972 ARMMMUIdx_Stage2_S = 7 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2973
2974 /*
2975 * M-profile.
2976 */
25568316
RH
2977 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2978 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2979 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2980 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2981 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2982 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2983 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2984 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2985} ARMMMUIdx;
2986
5f09a6df
RH
2987/*
2988 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2989 * for use when calling tlb_flush_by_mmuidx() and friends.
2990 */
5f09a6df
RH
2991#define TO_CORE_BIT(NAME) \
2992 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2993
8bd5c820 2994typedef enum ARMMMUIdxBit {
5f09a6df 2995 TO_CORE_BIT(E10_0),
b9f6033c 2996 TO_CORE_BIT(E20_0),
5f09a6df 2997 TO_CORE_BIT(E10_1),
452ef8cb 2998 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2999 TO_CORE_BIT(E2),
b9f6033c 3000 TO_CORE_BIT(E20_2),
452ef8cb 3001 TO_CORE_BIT(E20_2_PAN),
5f09a6df 3002 TO_CORE_BIT(SE10_0),
b6ad6062 3003 TO_CORE_BIT(SE20_0),
5f09a6df 3004 TO_CORE_BIT(SE10_1),
b6ad6062 3005 TO_CORE_BIT(SE20_2),
452ef8cb 3006 TO_CORE_BIT(SE10_1_PAN),
b6ad6062
RDC
3007 TO_CORE_BIT(SE20_2_PAN),
3008 TO_CORE_BIT(SE2),
5f09a6df 3009 TO_CORE_BIT(SE3),
5f09a6df
RH
3010
3011 TO_CORE_BIT(MUser),
3012 TO_CORE_BIT(MPriv),
3013 TO_CORE_BIT(MUserNegPri),
3014 TO_CORE_BIT(MPrivNegPri),
3015 TO_CORE_BIT(MSUser),
3016 TO_CORE_BIT(MSPriv),
3017 TO_CORE_BIT(MSUserNegPri),
3018 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
3019} ARMMMUIdxBit;
3020
5f09a6df
RH
3021#undef TO_CORE_BIT
3022
f79fbf39 3023#define MMU_USER_IDX 0
c1e37810 3024
9e273ef2
PM
3025/* Indexes used when registering address spaces with cpu_address_space_init */
3026typedef enum ARMASIdx {
3027 ARMASIdx_NS = 0,
3028 ARMASIdx_S = 1,
8bce44a2
RH
3029 ARMASIdx_TagNS = 2,
3030 ARMASIdx_TagS = 3,
9e273ef2
PM
3031} ARMASIdx;
3032
43bbce7f
PM
3033static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3034{
3035 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3036 * CSSELR is RAZ/WI.
3037 */
3038 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3039}
3040
f9fd40eb
PB
3041static inline bool arm_sctlr_b(CPUARMState *env)
3042{
3043 return
3044 /* We need not implement SCTLR.ITD in user-mode emulation, so
3045 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3046 * This lets people run BE32 binaries with "-cpu any".
3047 */
3048#ifndef CONFIG_USER_ONLY
3049 !arm_feature(env, ARM_FEATURE_V7) &&
3050#endif
3051 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3052}
3053
aaec1432 3054uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3055
8061a649
RH
3056static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3057 bool sctlr_b)
3058{
3059#ifdef CONFIG_USER_ONLY
3060 /*
3061 * In system mode, BE32 is modelled in line with the
3062 * architecture (as word-invariant big-endianness), where loads
3063 * and stores are done little endian but from addresses which
3064 * are adjusted by XORing with the appropriate constant. So the
3065 * endianness to use for the raw data access is not affected by
3066 * SCTLR.B.
3067 * In user mode, however, we model BE32 as byte-invariant
3068 * big-endianness (because user-only code cannot tell the
3069 * difference), and so we need to use a data access endianness
3070 * that depends on SCTLR.B.
3071 */
3072 if (sctlr_b) {
3073 return true;
3074 }
3075#endif
3076 /* In 32bit endianness is determined by looking at CPSR's E bit */
3077 return env->uncached_cpsr & CPSR_E;
3078}
3079
3080static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3081{
3082 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3083}
64e40755 3084
ed50ff78
PC
3085/* Return true if the processor is in big-endian mode. */
3086static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3087{
ed50ff78 3088 if (!is_a64(env)) {
8061a649 3089 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3090 } else {
3091 int cur_el = arm_current_el(env);
3092 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3093 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3094 }
ed50ff78
PC
3095}
3096
022c62cb 3097#include "exec/cpu-all.h"
622ed360 3098
fdd1b228 3099/*
a378206a
RH
3100 * We have more than 32-bits worth of state per TB, so we split the data
3101 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3102 * We collect these two parts in CPUARMTBFlags where they are named
3103 * flags and flags2 respectively.
fdd1b228 3104 *
a378206a
RH
3105 * The flags that are shared between all execution modes, TBFLAG_ANY,
3106 * are stored in flags. The flags that are specific to a given mode
3107 * are stores in flags2. Since cs_base is sized on the configured
3108 * address size, flags2 always has 64-bits for A64, and a minimum of
3109 * 32-bits for A32 and M32.
3110 *
3111 * The bits for 32-bit A-profile and M-profile partially overlap:
3112 *
5896f392
RH
3113 * 31 23 11 10 0
3114 * +-------------+----------+----------------+
3115 * | | | TBFLAG_A32 |
3116 * | TBFLAG_AM32 | +-----+----------+
3117 * | | |TBFLAG_M32|
3118 * +-------------+----------------+----------+
26702213 3119 * 31 23 6 5 0
79cabf1f 3120 *
fdd1b228 3121 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3122 */
eee81d41
RH
3123FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3124FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3125FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3126FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3127FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 3128/* Target EL if we take a floating-point-disabled exception */
eee81d41 3129FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
4479ec30 3130/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
8480e933
RH
3131FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3132FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
79cabf1f 3133
8bd587c1 3134/*
79cabf1f 3135 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3136 */
5896f392
RH
3137FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3138FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 3139
79cabf1f
RH
3140/*
3141 * Bit usage when in AArch32 state, for A-profile only.
3142 */
5896f392
RH
3143FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3144FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
3145/*
3146 * We store the bottom two bits of the CPAR as TB flags and handle
3147 * checks on the other bits at runtime. This shares the same bits as
3148 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3149 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3150 */
5896f392
RH
3151FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3152FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3153FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3154FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
3155/*
3156 * Indicates whether cp register reads and writes by guest code should access
3157 * the secure or nonsecure bank of banked registers; note that this is not
3158 * the same thing as the current security state of the processor!
3159 */
5896f392 3160FIELD(TBFLAG_A32, NS, 10, 1)
75fe8356
RH
3161/*
3162 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3163 * This requires an SME trap from AArch32 mode when using NEON.
3164 */
3165FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
79cabf1f
RH
3166
3167/*
3168 * Bit usage when in AArch32 state, for M-profile only.
3169 */
3170/* Handler (ie not Thread) mode */
5896f392 3171FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3172/* Whether we should generate stack-limit checks */
5896f392 3173FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3174/* Set if FPCCR.LSPACT is set */
5896f392 3175FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3176/* Set if we must create a new FP context */
5896f392 3177FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3178/* Set if FPCCR.S does not match current security state */
5896f392 3179FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3180/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3181FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
79cabf1f
RH
3182
3183/*
3184 * Bit usage when in AArch64 state
3185 */
476a4692 3186FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac 3187FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
f45ce4c3
RH
3188/* The current vector length, either NVL or SVL. */
3189FIELD(TBFLAG_A64, VL, 4, 4)
0816ef1b 3190FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3191FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3192FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3193FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3194FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3195FIELD(TBFLAG_A64, ATA, 15, 1)
3196FIELD(TBFLAG_A64, TCMA, 16, 2)
3197FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3198FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
6b2ca83e 3199FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
a3637e88
RH
3200FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3201FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
5d7953ad 3202FIELD(TBFLAG_A64, SVL, 24, 4)
75fe8356
RH
3203/* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3204FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
a1705768 3205
a729a46b
RH
3206/*
3207 * Helpers for using the above.
3208 */
3209#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3210 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3211#define DP_TBFLAG_A64(DST, WHICH, VAL) \
a378206a 3212 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3213#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3214 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3215#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3216 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3217#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3218 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3219
3902bfc6 3220#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
a378206a
RH
3221#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3222#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3223#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3224#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3225
fb901c90
RH
3226/**
3227 * cpu_mmu_index:
3228 * @env: The cpu environment
3229 * @ifetch: True for code access, false for data access.
3230 *
3231 * Return the core mmu index for the current translation regime.
3232 * This function is used by generic TCG code paths.
3233 */
3234static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3235{
a729a46b 3236 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3237}
3238
8b599e5c
RH
3239/**
3240 * sve_vq
3241 * @env: the cpu context
3242 *
3243 * Return the VL cached within env->hflags, in units of quadwords.
3244 */
3245static inline int sve_vq(CPUARMState *env)
3246{
3247 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3248}
3249
5d7953ad
RH
3250/**
3251 * sme_vq
3252 * @env: the cpu context
3253 *
3254 * Return the SVL cached within env->hflags, in units of quadwords.
3255 */
3256static inline int sme_vq(CPUARMState *env)
3257{
3258 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3259}
3260
f9fd40eb
PB
3261static inline bool bswap_code(bool sctlr_b)
3262{
3263#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3264 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3265 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3266 * would also end up as a mixed-endian mode with BE code, LE data.
3267 */
3268 return
ee3eb3a7 3269#if TARGET_BIG_ENDIAN
f9fd40eb
PB
3270 1 ^
3271#endif
3272 sctlr_b;
3273#else
e334bd31
PB
3274 /* All code access in ARM is little endian, and there are no loaders
3275 * doing swaps that need to be reversed
f9fd40eb
PB
3276 */
3277 return 0;
3278#endif
3279}
3280
c3ae85fc
PB
3281#ifdef CONFIG_USER_ONLY
3282static inline bool arm_cpu_bswap_data(CPUARMState *env)
3283{
3284 return
ee3eb3a7 3285#if TARGET_BIG_ENDIAN
c3ae85fc
PB
3286 1 ^
3287#endif
3288 arm_cpu_data_is_big_endian(env);
3289}
3290#endif
3291
a9e01311
RH
3292void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3293 target_ulong *cs_base, uint32_t *flags);
6b917547 3294
98128601
RH
3295enum {
3296 QEMU_PSCI_CONDUIT_DISABLED = 0,
3297 QEMU_PSCI_CONDUIT_SMC = 1,
3298 QEMU_PSCI_CONDUIT_HVC = 2,
3299};
3300
017518c1
PM
3301#ifndef CONFIG_USER_ONLY
3302/* Return the address space index to use for a memory access */
3303static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3304{
3305 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3306}
5ce4ff65
PM
3307
3308/* Return the AddressSpace to use for a memory access
3309 * (which depends on whether the access is S or NS, and whether
3310 * the board gave us a separate AddressSpace for S accesses).
3311 */
3312static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3313{
3314 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3315}
017518c1
PM
3316#endif
3317
bd7d00fc 3318/**
b5c53d1b
AL
3319 * arm_register_pre_el_change_hook:
3320 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3321 * CPU changes exception level or mode. The hook function will be
3322 * passed a pointer to the ARMCPU and the opaque data pointer passed
3323 * to this function when the hook was registered.
b5c53d1b
AL
3324 *
3325 * Note that if a pre-change hook is called, any registered post-change hooks
3326 * are guaranteed to subsequently be called.
bd7d00fc 3327 */
b5c53d1b 3328void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3329 void *opaque);
b5c53d1b
AL
3330/**
3331 * arm_register_el_change_hook:
3332 * Register a hook function which will be called immediately after this
3333 * CPU changes exception level or mode. The hook function will be
3334 * passed a pointer to the ARMCPU and the opaque data pointer passed
3335 * to this function when the hook was registered.
3336 *
3337 * Note that any registered hooks registered here are guaranteed to be called
3338 * if pre-change hooks have been.
3339 */
3340void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3341 *opaque);
bd7d00fc 3342
3d74e2e9
RH
3343/**
3344 * arm_rebuild_hflags:
3345 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3346 */
3347void arm_rebuild_hflags(CPUARMState *env);
3348
9a2b5256
RH
3349/**
3350 * aa32_vfp_dreg:
3351 * Return a pointer to the Dn register within env in 32-bit mode.
3352 */
3353static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3354{
c39c2b90 3355 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3356}
3357
3358/**
3359 * aa32_vfp_qreg:
3360 * Return a pointer to the Qn register within env in 32-bit mode.
3361 */
3362static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3363{
c39c2b90 3364 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3365}
3366
3367/**
3368 * aa64_vfp_qreg:
3369 * Return a pointer to the Qn register within env in 64-bit mode.
3370 */
3371static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3372{
c39c2b90 3373 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3374}
3375
028e2a7b
RH
3376/* Shared between translate-sve.c and sve_helper.c. */
3377extern const uint64_t pred_esz_masks[4];
3378
149d3b31
RH
3379/* Helper for the macros below, validating the argument type. */
3380static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3381{
3382 return x;
3383}
3384
3385/*
3386 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3387 * Using these should be a bit more self-documenting than using the
3388 * generic target bits directly.
3389 */
3390#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
206adacf 3391#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
149d3b31 3392
be5d6f48
RH
3393/*
3394 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
7f2cf760
RH
3395 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3396 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
be5d6f48 3397 */
7f2cf760
RH
3398#define PAGE_BTI PAGE_TARGET_1
3399#define PAGE_MTE PAGE_TARGET_2
3400#define PAGE_TARGET_STICKY PAGE_MTE
be5d6f48 3401
0e0c030c
RH
3402#ifdef TARGET_TAGGED_ADDRESSES
3403/**
3404 * cpu_untagged_addr:
3405 * @cs: CPU context
3406 * @x: tagged address
3407 *
3408 * Remove any address tag from @x. This is explicitly related to the
3409 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3410 *
3411 * There should be a better place to put this, but we need this in
3412 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3413 */
3414static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3415{
3416 ARMCPU *cpu = ARM_CPU(cs);
3417 if (cpu->env.tagged_addr_enable) {
3418 /*
3419 * TBI is enabled for userspace but not kernelspace addresses.
3420 * Only clear the tag if bit 55 is clear.
3421 */
3422 x &= sextract64(x, 0, 56);
3423 }
3424 return x;
3425}
3426#endif
3427
873b73c0
PM
3428/*
3429 * Naming convention for isar_feature functions:
3430 * Functions which test 32-bit ID registers should have _aa32_ in
3431 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3432 * _aa64_ in their name. These must only be used in code where we
3433 * know for certain that the CPU has AArch32 or AArch64 respectively
3434 * or where the correct answer for a CPU which doesn't implement that
3435 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3436 * system registers that are specific to that CPU state, for "should
3437 * we let this system register bit be set" tests where the 32-bit
3438 * flavour of the register doesn't have the bit, and so on).
3439 * Functions which simply ask "does this feature exist at all" have
3440 * _any_ in their name, and always return the logical OR of the _aa64_
3441 * and the _aa32_ function.
873b73c0
PM
3442 */
3443
962fcbf2
RH
3444/*
3445 * 32-bit feature tests via id registers.
3446 */
873b73c0 3447static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3448{
3449 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3450}
3451
873b73c0 3452static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3453{
3454 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3455}
05903f03
PM
3456
3457static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3458{
3459 /* (M-profile) low-overhead loops and branch future */
3460 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3461}
7e0cf8b4 3462
873b73c0 3463static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3464{
3465 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3466}
3467
962fcbf2
RH
3468static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3469{
3470 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3471}
3472
3473static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3474{
3475 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3476}
3477
3478static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3479{
3480 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3481}
3482
3483static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3484{
3485 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3486}
3487
3488static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3489{
3490 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3491}
3492
3493static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3494{
3495 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3496}
3497
3498static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3499{
3500 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3501}
3502
6c1f6f27
RH
3503static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3504{
3505 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3506}
3507
962fcbf2
RH
3508static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3509{
3510 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3511}
3512
87732318
RH
3513static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3514{
3515 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3516}
3517
9888bd1e
RH
3518static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3519{
3520 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3521}
3522
cb570bd3
RH
3523static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3524{
3525 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3526}
3527
c0b9e8a4
RH
3528static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3529{
3530 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3531}
3532
51879c67
RH
3533static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3534{
3535 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3536}
3537
46f4976f
PM
3538static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3539{
3540 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3541}
3542
dfc523a8
PM
3543static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3544{
3545 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3546}
3547
83ff3d6a
PM
3548static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3549{
3550 /*
3551 * Return true if M-profile state handling insns
3552 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3553 */
3554 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3555}
3556
5763190f
RH
3557static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3558{
dfc523a8
PM
3559 /* Sadly this is encoded differently for A-profile and M-profile */
3560 if (isar_feature_aa32_mprofile(id)) {
3561 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3562 } else {
3563 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3564 }
5763190f
RH
3565}
3566
7df6a1ff
PM
3567static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3568{
3569 /*
3570 * Return true if MVE is supported (either integer or floating point).
3571 * We must check for M-profile as the MVFR1 field means something
3572 * else for A-profile.
3573 */
3574 return isar_feature_aa32_mprofile(id) &&
3575 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3576}
3577
3578static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3579{
3580 /*
3581 * Return true if MVE is supported (either integer or floating point).
3582 * We must check for M-profile as the MVFR1 field means something
3583 * else for A-profile.
3584 */
3585 return isar_feature_aa32_mprofile(id) &&
3586 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3587}
3588
7fbc6a40
RH
3589static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3590{
3591 /*
3592 * Return true if either VFP or SIMD is implemented.
3593 * In this case, a minimum of VFP w/ D0-D15.
3594 */
3595 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3596}
3597
0e13ba78 3598static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3599{
3600 /* Return true if D16-D31 are implemented */
b3a816f6 3601 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3602}
3603
266bd25c
PM
3604static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3605{
b3a816f6 3606 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3607}
3608
f67957e1
RH
3609static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3610{
3611 /* Return true if CPU supports single precision floating point, VFPv2 */
3612 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3613}
3614
3615static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3616{
3617 /* Return true if CPU supports single precision floating point, VFPv3 */
3618 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3619}
3620
c4ff8735 3621static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3622{
c4ff8735 3623 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3624 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3625}
3626
f67957e1
RH
3627static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3628{
3629 /* Return true if CPU supports double precision floating point, VFPv3 */
3630 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3631}
3632
7d63183f
RH
3633static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3634{
3635 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3636}
3637
602f6e42
PM
3638/*
3639 * We always set the FP and SIMD FP16 fields to indicate identical
3640 * levels of support (assuming SIMD is implemented at all), so
3641 * we only need one set of accessors.
3642 */
3643static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3644{
b3a816f6 3645 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3646}
3647
3648static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3649{
b3a816f6 3650 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3651}
3652
c52881bb
RH
3653/*
3654 * Note that this ID register field covers both VFP and Neon FMAC,
3655 * so should usually be tested in combination with some other
3656 * check that confirms the presence of whichever of VFP or Neon is
3657 * relevant, to avoid accidentally enabling a Neon feature on
3658 * a VFP-no-Neon core or vice-versa.
3659 */
3660static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3661{
3662 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3663}
3664
c0c760af
PM
3665static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3666{
b3a816f6 3667 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3668}
3669
3670static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3671{
b3a816f6 3672 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3673}
3674
3675static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3676{
b3a816f6 3677 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3678}
3679
3680static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3681{
b3a816f6 3682 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3683}
3684
0ae0326b
PM
3685static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3686{
3687 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3688}
3689
3d6ad6bb
RH
3690static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3691{
10054016 3692 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3693}
3694
3695static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3696{
10054016 3697 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3698}
3699
a6179538
PM
3700static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3701{
3702 /* 0xf means "non-standard IMPDEF PMU" */
3703 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3704 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3705}
3706
15dd1ebd
PM
3707static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3708{
3709 /* 0xf means "non-standard IMPDEF PMU" */
3710 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3711 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3712}
3713
4036b7d1
PM
3714static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3715{
3716 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3717}
3718
f6287c24
PM
3719static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3720{
3721 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3722}
3723
957e6155
PM
3724static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3725{
3726 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3727}
3728
ce3125be
PM
3729static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3730{
3731 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3732}
3733
dc8b1853
RC
3734static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3735{
3736 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3737}
3738
f2f68a78
RC
3739static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3740{
3741 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3742}
3743
09754ca8
PM
3744static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3745{
3746 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3747}
3748
ca56aac5
RH
3749static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3750{
3751 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3752}
3753
f94a6df5
PM
3754static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3755{
3756 return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3757}
3758
962fcbf2
RH
3759/*
3760 * 64-bit feature tests via id registers.
3761 */
3762static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3763{
3764 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3765}
3766
3767static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3768{
3769 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3770}
3771
3772static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3773{
3774 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3775}
3776
3777static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3778{
3779 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3780}
3781
3782static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3783{
3784 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3785}
3786
3787static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3788{
3789 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3790}
3791
3792static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3793{
3794 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3795}
3796
3797static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3798{
3799 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3800}
3801
3802static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3803{
3804 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3805}
3806
3807static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3808{
3809 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3810}
3811
3812static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3813{
3814 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3815}
3816
3817static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3818{
3819 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3820}
3821
0caa5af8
RH
3822static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3823{
3824 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3825}
3826
b89d9c98
RH
3827static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3828{
3829 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3830}
3831
5ef84f11
RH
3832static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3833{
3834 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3835}
3836
de390645
RH
3837static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3838{
3839 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3840}
3841
6c1f6f27
RH
3842static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3843{
3844 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3845}
3846
962fcbf2
RH
3847static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3848{
3849 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3850}
3851
991ad91b
RH
3852static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3853{
3854 /*
283fc52a
RH
3855 * Return true if any form of pauth is enabled, as this
3856 * predicate controls migration of the 128-bit keys.
991ad91b
RH
3857 */
3858 return (id->id_aa64isar1 &
3859 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3860 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3861 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3862 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3863}
3864
283fc52a
RH
3865static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3866{
3867 /*
3868 * Return true if pauth is enabled with the architected QARMA algorithm.
3869 * QEMU will always set APA+GPA to the same value.
3870 */
3871 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3872}
3873
84940ed8
RC
3874static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3875{
3876 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3877}
3878
7113d618
RC
3879static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3880{
3881 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3882}
3883
9888bd1e
RH
3884static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3885{
3886 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3887}
3888
cb570bd3
RH
3889static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3890{
3891 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3892}
3893
6bea2563
RH
3894static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3895{
3896 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3897}
3898
0d57b499
BM
3899static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3900{
3901 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3902}
3903
3904static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3905{
3906 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3907}
3908
c0b9e8a4
RH
3909static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3910{
3911 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3912}
3913
7d63183f
RH
3914static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3915{
3916 /* We always set the AdvSIMD and FP fields identically. */
3917 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3918}
3919
5763190f
RH
3920static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3921{
3922 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3923 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3924}
3925
0f8d06f1
RH
3926static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3927{
3928 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3929}
3930
10d0ef3e
MN
3931static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3932{
3933 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3934}
3935
6bcbb07a
RH
3936static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3937{
3938 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3939}
3940
25e168ab
RH
3941static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3942{
3943 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3944}
3945
7ac61020
PM
3946static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3947{
3948 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3949}
3950
cd208a1c
RH
3951static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3952{
3953 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3954}
3955
5ca192df
RDC
3956static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3957{
3958 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3959}
3960
8fc2ea21
RH
3961static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3962{
3963 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3964}
3965
2d7137c1
RH
3966static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3967{
3968 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3969}
3970
3d6ad6bb
RH
3971static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3972{
3973 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3974}
3975
3976static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3977{
3978 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3979}
3980
5814d587
RH
3981static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3982{
3983 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3984}
3985
9eeb7a1c
RH
3986static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3987{
3988 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3989}
3990
c36c65ea
RDC
3991static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3992{
3993 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3994}
3995
8c7e17ef
PM
3996static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
3997{
3998 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
3999}
4000
75662f36
PM
4001static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
4002{
4003 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
4004}
4005
be53b6f4
RH
4006static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4007{
4008 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4009}
4010
c7fd0baa
RH
4011static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4012{
4013 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4014}
4015
4016static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4017{
4018 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4019}
4020
f305bf94
RH
4021static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
4022{
4023 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
4024}
4025
2a609df8
PM
4026static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4027{
4028 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4029 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4030}
4031
15dd1ebd
PM
4032static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4033{
54117b90
PM
4034 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4035 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
4036}
4037
2677cf9f
PM
4038static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4039{
4040 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4041}
4042
a1229109
PM
4043static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4044{
4045 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4046}
4047
f7da051f
RH
4048static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4049{
4050 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4051}
4052
ef56c242
RH
4053static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4054{
4055 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4056}
4057
4058static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4059{
4060 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4061 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4062}
4063
4064static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4065{
4066 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4067}
4068
4069static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4070{
4071 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4072 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4073}
4074
957e6155
PM
4075static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4076{
4077 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4078}
4079
0af312b6
RH
4080static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4081{
4082 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4083}
4084
ce3125be
PM
4085static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4086{
4087 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4088}
4089
dc8b1853
RC
4090static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4091{
4092 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4093}
4094
7cb1e618
RH
4095static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4096{
4097 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4098 if (key >= 2) {
4099 return true; /* FEAT_CSV2_2 */
4100 }
4101 if (key == 1) {
4102 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4103 return key >= 2; /* FEAT_CSV2_1p2 */
4104 }
4105 return false;
4106}
4107
f2f68a78
RC
4108static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4109{
4110 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4111}
4112
ca56aac5
RH
4113static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4114{
4115 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4116}
4117
2dc10fa2
RH
4118static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4119{
4120 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4121}
4122
e3a56131
RH
4123static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4124{
4125 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4126}
4127
4128static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4129{
4130 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4131}
4132
cb9c33b8
RH
4133static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4134{
4135 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4136}
4137
c0b9e8a4
RH
4138static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4139{
4140 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4141}
4142
3358eb3f
RH
4143static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4144{
4145 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4146}
4147
3cc7a88e
RH
4148static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4149{
4150 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4151}
4152
2867039a
RH
4153static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4154{
4155 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4156}
4157
4f26756b
SL
4158static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4159{
4160 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4161}
4162
4163static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4164{
4165 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4166}
4167
414c54d5
RH
4168static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4169{
4170 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4171}
4172
4173static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4174{
4175 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4176}
4177
4178static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4179{
4180 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4181}
4182
f94a6df5
PM
4183static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4184{
4185 return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4186}
4187
6e61f839
PM
4188/*
4189 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4190 */
4191static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4192{
4193 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4194}
4195
22e57073
PM
4196static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4197{
4198 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4199}
4200
2a609df8
PM
4201static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4202{
4203 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4204}
4205
15dd1ebd
PM
4206static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4207{
4208 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4209}
4210
957e6155
PM
4211static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4212{
4213 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4214}
4215
ce3125be
PM
4216static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4217{
4218 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4219}
4220
ca56aac5
RH
4221static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4222{
4223 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4224}
4225
25e168ab
RH
4226static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4227{
4228 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4229}
4230
962fcbf2
RH
4231/*
4232 * Forward to the above feature tests given an ARMCPU pointer.
4233 */
4234#define cpu_isar_feature(name, cpu) \
4235 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4236
2c0262af 4237#endif