]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
memory: fix flatview_access_valid RCU read lock/unlock imbalance
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
72b0cd35 25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
3926cc84
AG
29#else
30# define TARGET_LONG_BITS 32
3926cc84 31#endif
9042c0e2 32
ca759f9e
AB
33/* ARM processors have a weak memory model */
34#define TCG_GUEST_DEFAULT_MO (0)
35
9349b4f9 36#define CPUArchState struct CPUARMState
c2764719 37
9a78eead 38#include "qemu-common.h"
74e75564 39#include "cpu-qom.h"
022c62cb 40#include "exec/cpu-defs.h"
2c0262af 41
b8a9e8f1
FB
42#define EXCP_UDEF 1 /* undefined instruction */
43#define EXCP_SWI 2 /* software interrupt */
44#define EXCP_PREFETCH_ABORT 3
45#define EXCP_DATA_ABORT 4
b5ff1b31
FB
46#define EXCP_IRQ 5
47#define EXCP_FIQ 6
06c949e6 48#define EXCP_BKPT 7
9ee6e8bb 49#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 50#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 51#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 52#define EXCP_HYP_TRAP 12
e0d6e6a5 53#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
54#define EXCP_VIRQ 14
55#define EXCP_VFIQ 15
19a6e31c 56#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 57#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 58#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
2c4a7cc5 59/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
60
61#define ARMV7M_EXCP_RESET 1
62#define ARMV7M_EXCP_NMI 2
63#define ARMV7M_EXCP_HARD 3
64#define ARMV7M_EXCP_MEM 4
65#define ARMV7M_EXCP_BUS 5
66#define ARMV7M_EXCP_USAGE 6
1e577cc7 67#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
68#define ARMV7M_EXCP_SVC 11
69#define ARMV7M_EXCP_DEBUG 12
70#define ARMV7M_EXCP_PENDSV 14
71#define ARMV7M_EXCP_SYSTICK 15
2c0262af 72
acf94941
PM
73/* For M profile, some registers are banked secure vs non-secure;
74 * these are represented as a 2-element array where the first element
75 * is the non-secure copy and the second is the secure copy.
76 * When the CPU does not have implement the security extension then
77 * only the first element is used.
78 * This means that the copy for the current security state can be
79 * accessed via env->registerfield[env->v7m.secure] (whether the security
80 * extension is implemented or not).
81 */
4a16724f
PM
82enum {
83 M_REG_NS = 0,
84 M_REG_S = 1,
85 M_REG_NUM_BANKS = 2,
86};
acf94941 87
403946c0
RH
88/* ARM-specific interrupt pending bits. */
89#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
90#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
91#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 92
e4fe830b
PM
93/* The usual mapping for an AArch64 system register to its AArch32
94 * counterpart is for the 32 bit world to have access to the lower
95 * half only (with writes leaving the upper half untouched). It's
96 * therefore useful to be able to pass TCG the offset of the least
97 * significant half of a uint64_t struct member.
98 */
99#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 100#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 101#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
102#else
103#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 104#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
105#endif
106
136e67e9 107/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
108#define ARM_CPU_IRQ 0
109#define ARM_CPU_FIQ 1
136e67e9
EI
110#define ARM_CPU_VIRQ 2
111#define ARM_CPU_VFIQ 3
403946c0 112
62593718 113#define NB_MMU_MODES 8
aaa1f954
EI
114/* ARM-specific extra insn start words:
115 * 1: Conditional execution bits
116 * 2: Partial exception syndrome for data aborts
117 */
118#define TARGET_INSN_START_EXTRA_WORDS 2
119
120/* The 2nd extra word holding syndrome info for data aborts does not use
121 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
122 * help the sleb128 encoder do a better job.
123 * When restoring the CPU state, we shift it back up.
124 */
125#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
126#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 127
b7bcbe95
FB
128/* We currently assume float and double are IEEE single and double
129 precision respectively.
130 Doing runtime conversions is tricky because VFP registers may contain
131 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
132 s<2n> maps to the least significant half of d<n>
133 s<2n+1> maps to the most significant half of d<n>
134 */
b7bcbe95 135
55d284af
PM
136/* CPU state for each instance of a generic timer (in cp15 c14) */
137typedef struct ARMGenericTimer {
138 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 139 uint64_t ctl; /* Timer Control register */
55d284af
PM
140} ARMGenericTimer;
141
142#define GTIMER_PHYS 0
143#define GTIMER_VIRT 1
b0e66d95 144#define GTIMER_HYP 2
b4d3978c
PM
145#define GTIMER_SEC 3
146#define NUM_GTIMERS 4
55d284af 147
11f136ee
FA
148typedef struct {
149 uint64_t raw_tcr;
150 uint32_t mask;
151 uint32_t base_mask;
152} TCR;
153
c39c2b90
RH
154/* Define a maximum sized vector register.
155 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
156 * For 64-bit, this is a 2048-bit SVE register.
157 *
158 * Note that the mapping between S, D, and Q views of the register bank
159 * differs between AArch64 and AArch32.
160 * In AArch32:
161 * Qn = regs[n].d[1]:regs[n].d[0]
162 * Dn = regs[n / 2].d[n & 1]
163 * Sn = regs[n / 4].d[n % 4 / 2],
164 * bits 31..0 for even n, and bits 63..32 for odd n
165 * (and regs[16] to regs[31] are inaccessible)
166 * In AArch64:
167 * Zn = regs[n].d[*]
168 * Qn = regs[n].d[1]:regs[n].d[0]
169 * Dn = regs[n].d[0]
170 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 171 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
172 *
173 * This corresponds to the architecturally defined mapping between
174 * the two execution states, and means we do not need to explicitly
175 * map these registers when changing states.
176 *
177 * Align the data for use with TCG host vector operations.
178 */
179
180#ifdef TARGET_AARCH64
181# define ARM_MAX_VQ 16
182#else
183# define ARM_MAX_VQ 1
184#endif
185
186typedef struct ARMVectorReg {
187 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
188} ARMVectorReg;
189
3c7d3086
RH
190/* In AArch32 mode, predicate registers do not exist at all. */
191#ifdef TARGET_AARCH64
192typedef struct ARMPredicateReg {
193 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
194} ARMPredicateReg;
195#endif
196
c39c2b90 197
2c0262af 198typedef struct CPUARMState {
b5ff1b31 199 /* Regs for current mode. */
2c0262af 200 uint32_t regs[16];
3926cc84
AG
201
202 /* 32/64 switch only happens when taking and returning from
203 * exceptions so the overlap semantics are taken care of then
204 * instead of having a complicated union.
205 */
206 /* Regs for A64 mode. */
207 uint64_t xregs[32];
208 uint64_t pc;
d356312f
PM
209 /* PSTATE isn't an architectural register for ARMv8. However, it is
210 * convenient for us to assemble the underlying state into a 32 bit format
211 * identical to the architectural format used for the SPSR. (This is also
212 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
213 * 'pstate' register are.) Of the PSTATE bits:
214 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
215 * semantics as for AArch32, as described in the comments on each field)
216 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 217 * DAIF (exception masks) are kept in env->daif
d356312f 218 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
219 */
220 uint32_t pstate;
221 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
222
b90372ad 223 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 224 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
225 the whole CPSR. */
226 uint32_t uncached_cpsr;
227 uint32_t spsr;
228
229 /* Banked registers. */
28c9457d 230 uint64_t banked_spsr[8];
0b7d409d
FA
231 uint32_t banked_r13[8];
232 uint32_t banked_r14[8];
3b46e624 233
b5ff1b31
FB
234 /* These hold r8-r12. */
235 uint32_t usr_regs[5];
236 uint32_t fiq_regs[5];
3b46e624 237
2c0262af
FB
238 /* cpsr flag cache for faster execution */
239 uint32_t CF; /* 0 or 1 */
240 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
241 uint32_t NF; /* N is bit 31. All other bits are undefined. */
242 uint32_t ZF; /* Z set if zero. */
99c475ab 243 uint32_t QF; /* 0 or 1 */
9ee6e8bb 244 uint32_t GE; /* cpsr[19:16] */
b26eefb6 245 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 246 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
b6af0975 247 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 248
1b174238 249 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 250 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 251
b5ff1b31
FB
252 /* System control coprocessor (cp15) */
253 struct {
40f137e1 254 uint32_t c0_cpuid;
b85a1fd6
FA
255 union { /* Cache size selection */
256 struct {
257 uint64_t _unused_csselr0;
258 uint64_t csselr_ns;
259 uint64_t _unused_csselr1;
260 uint64_t csselr_s;
261 };
262 uint64_t csselr_el[4];
263 };
137feaa9
FA
264 union { /* System control register. */
265 struct {
266 uint64_t _unused_sctlr;
267 uint64_t sctlr_ns;
268 uint64_t hsctlr;
269 uint64_t sctlr_s;
270 };
271 uint64_t sctlr_el[4];
272 };
7ebd5f2e 273 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 274 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 275 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 276 uint64_t sder; /* Secure debug enable register. */
77022576 277 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
278 union { /* MMU translation table base 0. */
279 struct {
280 uint64_t _unused_ttbr0_0;
281 uint64_t ttbr0_ns;
282 uint64_t _unused_ttbr0_1;
283 uint64_t ttbr0_s;
284 };
285 uint64_t ttbr0_el[4];
286 };
287 union { /* MMU translation table base 1. */
288 struct {
289 uint64_t _unused_ttbr1_0;
290 uint64_t ttbr1_ns;
291 uint64_t _unused_ttbr1_1;
292 uint64_t ttbr1_s;
293 };
294 uint64_t ttbr1_el[4];
295 };
b698e9cf 296 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
297 /* MMU translation table base control. */
298 TCR tcr_el[4];
68e9c2fe 299 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
300 uint32_t c2_data; /* MPU data cacheable bits. */
301 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
302 union { /* MMU domain access control register
303 * MPU write buffer control.
304 */
305 struct {
306 uint64_t dacr_ns;
307 uint64_t dacr_s;
308 };
309 struct {
310 uint64_t dacr32_el2;
311 };
312 };
7e09797c
PM
313 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
314 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 315 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 316 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
317 union { /* Fault status registers. */
318 struct {
319 uint64_t ifsr_ns;
320 uint64_t ifsr_s;
321 };
322 struct {
323 uint64_t ifsr32_el2;
324 };
325 };
4a7e2d73
FA
326 union {
327 struct {
328 uint64_t _unused_dfsr;
329 uint64_t dfsr_ns;
330 uint64_t hsr;
331 uint64_t dfsr_s;
332 };
333 uint64_t esr_el[4];
334 };
ce819861 335 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
336 union { /* Fault address registers. */
337 struct {
338 uint64_t _unused_far0;
339#ifdef HOST_WORDS_BIGENDIAN
340 uint32_t ifar_ns;
341 uint32_t dfar_ns;
342 uint32_t ifar_s;
343 uint32_t dfar_s;
344#else
345 uint32_t dfar_ns;
346 uint32_t ifar_ns;
347 uint32_t dfar_s;
348 uint32_t ifar_s;
349#endif
350 uint64_t _unused_far3;
351 };
352 uint64_t far_el[4];
353 };
59e05530 354 uint64_t hpfar_el2;
2a5a9abd 355 uint64_t hstr_el2;
01c097f7
FA
356 union { /* Translation result. */
357 struct {
358 uint64_t _unused_par_0;
359 uint64_t par_ns;
360 uint64_t _unused_par_1;
361 uint64_t par_s;
362 };
363 uint64_t par_el[4];
364 };
6cb0b013 365
b5ff1b31
FB
366 uint32_t c9_insn; /* Cache lockdown registers. */
367 uint32_t c9_data;
8521466b
AF
368 uint64_t c9_pmcr; /* performance monitor control register */
369 uint64_t c9_pmcnten; /* perf monitor counter enables */
74594c9d 370 uint32_t c9_pmovsr; /* perf monitor overflow status */
74594c9d 371 uint32_t c9_pmuserenr; /* perf monitor user enable */
6b040780 372 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 373 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
374 union { /* Memory attribute redirection */
375 struct {
376#ifdef HOST_WORDS_BIGENDIAN
377 uint64_t _unused_mair_0;
378 uint32_t mair1_ns;
379 uint32_t mair0_ns;
380 uint64_t _unused_mair_1;
381 uint32_t mair1_s;
382 uint32_t mair0_s;
383#else
384 uint64_t _unused_mair_0;
385 uint32_t mair0_ns;
386 uint32_t mair1_ns;
387 uint64_t _unused_mair_1;
388 uint32_t mair0_s;
389 uint32_t mair1_s;
390#endif
391 };
392 uint64_t mair_el[4];
393 };
fb6c91ba
GB
394 union { /* vector base address register */
395 struct {
396 uint64_t _unused_vbar;
397 uint64_t vbar_ns;
398 uint64_t hvbar;
399 uint64_t vbar_s;
400 };
401 uint64_t vbar_el[4];
402 };
e89e51a1 403 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
404 struct { /* FCSE PID. */
405 uint32_t fcseidr_ns;
406 uint32_t fcseidr_s;
407 };
408 union { /* Context ID. */
409 struct {
410 uint64_t _unused_contextidr_0;
411 uint64_t contextidr_ns;
412 uint64_t _unused_contextidr_1;
413 uint64_t contextidr_s;
414 };
415 uint64_t contextidr_el[4];
416 };
417 union { /* User RW Thread register. */
418 struct {
419 uint64_t tpidrurw_ns;
420 uint64_t tpidrprw_ns;
421 uint64_t htpidr;
422 uint64_t _tpidr_el3;
423 };
424 uint64_t tpidr_el[4];
425 };
426 /* The secure banks of these registers don't map anywhere */
427 uint64_t tpidrurw_s;
428 uint64_t tpidrprw_s;
429 uint64_t tpidruro_s;
430
431 union { /* User RO Thread register. */
432 uint64_t tpidruro_ns;
433 uint64_t tpidrro_el[1];
434 };
a7adc4b7
PM
435 uint64_t c14_cntfrq; /* Counter Frequency register */
436 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 437 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 438 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 439 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 440 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
441 uint32_t c15_ticonfig; /* TI925T configuration byte. */
442 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
443 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
444 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
445 uint32_t c15_config_base_address; /* SCU base address. */
446 uint32_t c15_diagnostic; /* diagnostic register */
447 uint32_t c15_power_diagnostic;
448 uint32_t c15_power_control; /* power control */
0b45451e
PM
449 uint64_t dbgbvr[16]; /* breakpoint value registers */
450 uint64_t dbgbcr[16]; /* breakpoint control registers */
451 uint64_t dbgwvr[16]; /* watchpoint value registers */
452 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 453 uint64_t mdscr_el1;
1424ca8d 454 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 455 uint64_t mdcr_el2;
5513c3ab 456 uint64_t mdcr_el3;
7c2cb42b
AF
457 /* If the counter is enabled, this stores the last time the counter
458 * was reset. Otherwise it stores the counter value
459 */
c92c0687 460 uint64_t c15_ccnt;
8521466b 461 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 462 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 463 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 464 } cp15;
40f137e1 465
9ee6e8bb 466 struct {
fb602cb7
PM
467 /* M profile has up to 4 stack pointers:
468 * a Main Stack Pointer and a Process Stack Pointer for each
469 * of the Secure and Non-Secure states. (If the CPU doesn't support
470 * the security extension then it has only two SPs.)
471 * In QEMU we always store the currently active SP in regs[13],
472 * and the non-active SP for the current security state in
473 * v7m.other_sp. The stack pointers for the inactive security state
474 * are stored in other_ss_msp and other_ss_psp.
475 * switch_v7m_security_state() is responsible for rearranging them
476 * when we change security state.
477 */
9ee6e8bb 478 uint32_t other_sp;
fb602cb7
PM
479 uint32_t other_ss_msp;
480 uint32_t other_ss_psp;
4a16724f
PM
481 uint32_t vecbase[M_REG_NUM_BANKS];
482 uint32_t basepri[M_REG_NUM_BANKS];
483 uint32_t control[M_REG_NUM_BANKS];
484 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
485 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
486 uint32_t hfsr; /* HardFault Status */
487 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 488 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 489 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 490 uint32_t bfar; /* BusFault Address */
bed079da 491 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 492 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 493 int exception;
4a16724f
PM
494 uint32_t primask[M_REG_NUM_BANKS];
495 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 496 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 497 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 498 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 499 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
500 uint32_t msplim[M_REG_NUM_BANKS];
501 uint32_t psplim[M_REG_NUM_BANKS];
9ee6e8bb
PB
502 } v7m;
503
abf1172f
PM
504 /* Information associated with an exception about to be taken:
505 * code which raises an exception must set cs->exception_index and
506 * the relevant parts of this structure; the cpu_do_interrupt function
507 * will then set the guest-visible registers as part of the exception
508 * entry process.
509 */
510 struct {
511 uint32_t syndrome; /* AArch64 format syndrome register */
512 uint32_t fsr; /* AArch32 format fault status register info */
513 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 514 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
515 /* If we implement EL2 we will also need to store information
516 * about the intermediate physical address for stage 2 faults.
517 */
518 } exception;
519
fe1479c3
PB
520 /* Thumb-2 EE state. */
521 uint32_t teecr;
522 uint32_t teehbr;
523
b7bcbe95
FB
524 /* VFP coprocessor state. */
525 struct {
c39c2b90 526 ARMVectorReg zregs[32];
b7bcbe95 527
3c7d3086
RH
528#ifdef TARGET_AARCH64
529 /* Store FFR as pregs[16] to make it easier to treat as any other. */
530 ARMPredicateReg pregs[17];
531#endif
532
40f137e1 533 uint32_t xregs[16];
b7bcbe95
FB
534 /* We store these fpcsr fields separately for convenience. */
535 int vec_len;
536 int vec_stride;
537
9ee6e8bb
PB
538 /* scratch space when Tn are not sufficient. */
539 uint32_t scratch[8];
3b46e624 540
d81ce0ef
AB
541 /* There are a number of distinct float control structures:
542 *
543 * fp_status: is the "normal" fp status.
544 * fp_status_fp16: used for half-precision calculations
545 * standard_fp_status : the ARM "Standard FPSCR Value"
546 *
547 * Half-precision operations are governed by a separate
548 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
549 * status structure to control this.
550 *
551 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
552 * round-to-nearest and is used by any operations (generally
553 * Neon) which the architecture defines as controlled by the
554 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
555 *
556 * To avoid having to transfer exception bits around, we simply
557 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 558 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
559 * only thing which needs to read the exception flags being
560 * an explicit FPSCR read.
561 */
53cd6637 562 float_status fp_status;
d81ce0ef 563 float_status fp_status_f16;
3a492f3a 564 float_status standard_fp_status;
5be5e8ed
RH
565
566 /* ZCR_EL[1-3] */
567 uint64_t zcr_el[4];
b7bcbe95 568 } vfp;
03d05e2d
PM
569 uint64_t exclusive_addr;
570 uint64_t exclusive_val;
571 uint64_t exclusive_high;
b7bcbe95 572
18c9b560
AZ
573 /* iwMMXt coprocessor state. */
574 struct {
575 uint64_t regs[16];
576 uint64_t val;
577
578 uint32_t cregs[16];
579 } iwmmxt;
580
ce4defa0
PB
581#if defined(CONFIG_USER_ONLY)
582 /* For usermode syscall translation. */
583 int eabi;
584#endif
585
46747d15 586 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
587 struct CPUWatchpoint *cpu_watchpoint[16];
588
1f5c00cf
AB
589 /* Fields up to this point are cleared by a CPU reset */
590 struct {} end_reset_fields;
591
a316d335
FB
592 CPU_COMMON
593
1f5c00cf 594 /* Fields after CPU_COMMON are preserved across CPU reset. */
9ba8c3f4 595
581be094 596 /* Internal CPU feature flags. */
918f5dca 597 uint64_t features;
581be094 598
6cb0b013
PC
599 /* PMSAv7 MPU */
600 struct {
601 uint32_t *drbar;
602 uint32_t *drsr;
603 uint32_t *dracr;
4a16724f 604 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
605 } pmsav7;
606
0e1a46bb
PM
607 /* PMSAv8 MPU */
608 struct {
609 /* The PMSAv8 implementation also shares some PMSAv7 config
610 * and state:
611 * pmsav7.rnr (region number register)
612 * pmsav7_dregion (number of configured regions)
613 */
4a16724f
PM
614 uint32_t *rbar[M_REG_NUM_BANKS];
615 uint32_t *rlar[M_REG_NUM_BANKS];
616 uint32_t mair0[M_REG_NUM_BANKS];
617 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
618 } pmsav8;
619
9901c576
PM
620 /* v8M SAU */
621 struct {
622 uint32_t *rbar;
623 uint32_t *rlar;
624 uint32_t rnr;
625 uint32_t ctrl;
626 } sau;
627
983fe826 628 void *nvic;
462a8bc6 629 const struct arm_boot_info *boot_info;
d3a3e529
VK
630 /* Store GICv3CPUState to access from this struct */
631 void *gicv3state;
2c0262af
FB
632} CPUARMState;
633
bd7d00fc
PM
634/**
635 * ARMELChangeHook:
636 * type of a function which can be registered via arm_register_el_change_hook()
637 * to get callbacks when the CPU changes its exception level or mode.
638 */
639typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
640
062ba099
AB
641
642/* These values map onto the return values for
643 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
644typedef enum ARMPSCIState {
d5affb0d
AJ
645 PSCI_ON = 0,
646 PSCI_OFF = 1,
062ba099
AB
647 PSCI_ON_PENDING = 2
648} ARMPSCIState;
649
74e75564
PB
650/**
651 * ARMCPU:
652 * @env: #CPUARMState
653 *
654 * An ARM CPU core.
655 */
656struct ARMCPU {
657 /*< private >*/
658 CPUState parent_obj;
659 /*< public >*/
660
661 CPUARMState env;
662
663 /* Coprocessor information */
664 GHashTable *cp_regs;
665 /* For marshalling (mostly coprocessor) register state between the
666 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
667 * we use these arrays.
668 */
669 /* List of register indexes managed via these arrays; (full KVM style
670 * 64 bit indexes, not CPRegInfo 32 bit indexes)
671 */
672 uint64_t *cpreg_indexes;
673 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
674 uint64_t *cpreg_values;
675 /* Length of the indexes, values, reset_values arrays */
676 int32_t cpreg_array_len;
677 /* These are used only for migration: incoming data arrives in
678 * these fields and is sanity checked in post_load before copying
679 * to the working data structures above.
680 */
681 uint64_t *cpreg_vmstate_indexes;
682 uint64_t *cpreg_vmstate_values;
683 int32_t cpreg_vmstate_array_len;
684
685 /* Timers used by the generic (architected) timer */
686 QEMUTimer *gt_timer[NUM_GTIMERS];
687 /* GPIO outputs for generic timer */
688 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
689 /* GPIO output for GICv3 maintenance interrupt signal */
690 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
691 /* GPIO output for the PMU interrupt */
692 qemu_irq pmu_interrupt;
74e75564
PB
693
694 /* MemoryRegion to use for secure physical accesses */
695 MemoryRegion *secure_memory;
696
181962fd
PM
697 /* For v8M, pointer to the IDAU interface provided by board/SoC */
698 Object *idau;
699
74e75564
PB
700 /* 'compatible' string for this CPU for Linux device trees */
701 const char *dtb_compatible;
702
703 /* PSCI version for this CPU
704 * Bits[31:16] = Major Version
705 * Bits[15:0] = Minor Version
706 */
707 uint32_t psci_version;
708
709 /* Should CPU start in PSCI powered-off state? */
710 bool start_powered_off;
062ba099
AB
711
712 /* Current power state, access guarded by BQL */
713 ARMPSCIState power_state;
714
c25bd18a
PM
715 /* CPU has virtualization extension */
716 bool has_el2;
74e75564
PB
717 /* CPU has security extension */
718 bool has_el3;
5c0a3819
SZ
719 /* CPU has PMU (Performance Monitor Unit) */
720 bool has_pmu;
74e75564
PB
721
722 /* CPU has memory protection unit */
723 bool has_mpu;
724 /* PMSAv7 MPU number of supported regions */
725 uint32_t pmsav7_dregion;
9901c576
PM
726 /* v8M SAU number of supported regions */
727 uint32_t sau_sregion;
74e75564
PB
728
729 /* PSCI conduit used to invoke PSCI methods
730 * 0 - disabled, 1 - smc, 2 - hvc
731 */
732 uint32_t psci_conduit;
733
38e2a77c
PM
734 /* For v8M, initial value of the Secure VTOR */
735 uint32_t init_svtor;
736
74e75564
PB
737 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
738 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
739 */
740 uint32_t kvm_target;
741
742 /* KVM init features for this CPU */
743 uint32_t kvm_init_features[7];
744
745 /* Uniprocessor system with MP extensions */
746 bool mp_is_up;
747
748 /* The instance init functions for implementation-specific subclasses
749 * set these fields to specify the implementation-dependent values of
750 * various constant registers and reset values of non-constant
751 * registers.
752 * Some of these might become QOM properties eventually.
753 * Field names match the official register names as defined in the
754 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
755 * is used for reset values of non-constant registers; no reset_
756 * prefix means a constant register.
757 */
758 uint32_t midr;
759 uint32_t revidr;
760 uint32_t reset_fpsid;
761 uint32_t mvfr0;
762 uint32_t mvfr1;
763 uint32_t mvfr2;
764 uint32_t ctr;
765 uint32_t reset_sctlr;
766 uint32_t id_pfr0;
767 uint32_t id_pfr1;
768 uint32_t id_dfr0;
769 uint32_t pmceid0;
770 uint32_t pmceid1;
771 uint32_t id_afr0;
772 uint32_t id_mmfr0;
773 uint32_t id_mmfr1;
774 uint32_t id_mmfr2;
775 uint32_t id_mmfr3;
776 uint32_t id_mmfr4;
777 uint32_t id_isar0;
778 uint32_t id_isar1;
779 uint32_t id_isar2;
780 uint32_t id_isar3;
781 uint32_t id_isar4;
782 uint32_t id_isar5;
783 uint64_t id_aa64pfr0;
784 uint64_t id_aa64pfr1;
785 uint64_t id_aa64dfr0;
786 uint64_t id_aa64dfr1;
787 uint64_t id_aa64afr0;
788 uint64_t id_aa64afr1;
789 uint64_t id_aa64isar0;
790 uint64_t id_aa64isar1;
791 uint64_t id_aa64mmfr0;
792 uint64_t id_aa64mmfr1;
793 uint32_t dbgdidr;
794 uint32_t clidr;
795 uint64_t mp_affinity; /* MP ID without feature bits */
796 /* The elements of this array are the CCSIDR values for each cache,
797 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
798 */
799 uint32_t ccsidr[16];
800 uint64_t reset_cbar;
801 uint32_t reset_auxcr;
802 bool reset_hivecs;
803 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
804 uint32_t dcz_blocksize;
805 uint64_t rvbar;
bd7d00fc 806
e45868a3
PM
807 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
808 int gic_num_lrs; /* number of list registers */
809 int gic_vpribits; /* number of virtual priority bits */
810 int gic_vprebits; /* number of virtual preemption bits */
811
3a062d57
JB
812 /* Whether the cfgend input is high (i.e. this CPU should reset into
813 * big-endian mode). This setting isn't used directly: instead it modifies
814 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
815 * architecture version.
816 */
817 bool cfgend;
818
bd7d00fc
PM
819 ARMELChangeHook *el_change_hook;
820 void *el_change_hook_opaque;
15f8b142
IM
821
822 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
823
824 /* Used to synchronize KVM and QEMU in-kernel device levels */
825 uint8_t device_irq_level;
74e75564
PB
826};
827
828static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
829{
830 return container_of(env, ARMCPU, env);
831}
832
46de5913
IM
833uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
834
74e75564
PB
835#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
836
837#define ENV_OFFSET offsetof(ARMCPU, env)
838
839#ifndef CONFIG_USER_ONLY
840extern const struct VMStateDescription vmstate_arm_cpu;
841#endif
842
843void arm_cpu_do_interrupt(CPUState *cpu);
844void arm_v7m_cpu_do_interrupt(CPUState *cpu);
845bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
846
847void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
848 int flags);
849
850hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
851 MemTxAttrs *attrs);
852
853int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
854int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
855
856int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
857 int cpuid, void *opaque);
858int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
859 int cpuid, void *opaque);
860
861#ifdef TARGET_AARCH64
862int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
863int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
864#endif
778c3a06 865
faacc041 866target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
867void aarch64_sync_32_to_64(CPUARMState *env);
868void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 869
3926cc84
AG
870static inline bool is_a64(CPUARMState *env)
871{
872 return env->aarch64;
873}
874
2c0262af
FB
875/* you can call this signal handler from your SIGBUS and SIGSEGV
876 signal handlers to inform the virtual CPU of exceptions. non zero
877 is returned if the signal was handled by the virtual CPU. */
5fafdf24 878int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
879 void *puc);
880
ec7b4ce4
AF
881/**
882 * pmccntr_sync
883 * @env: CPUARMState
884 *
885 * Synchronises the counter in the PMCCNTR. This must always be called twice,
886 * once before any action that might affect the timer and again afterwards.
887 * The function is used to swap the state of the register if required.
888 * This only happens when not in user mode (!CONFIG_USER_ONLY)
889 */
890void pmccntr_sync(CPUARMState *env);
891
76e3e1bc
PM
892/* SCTLR bit meanings. Several bits have been reused in newer
893 * versions of the architecture; in that case we define constants
894 * for both old and new bit meanings. Code which tests against those
895 * bits should probably check or otherwise arrange that the CPU
896 * is the architectural version it expects.
897 */
898#define SCTLR_M (1U << 0)
899#define SCTLR_A (1U << 1)
900#define SCTLR_C (1U << 2)
901#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
902#define SCTLR_SA (1U << 3)
903#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
904#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
905#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
906#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
907#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
908#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
909#define SCTLR_ITD (1U << 7) /* v8 onward */
910#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
911#define SCTLR_SED (1U << 8) /* v8 onward */
912#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
913#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
914#define SCTLR_F (1U << 10) /* up to v6 */
915#define SCTLR_SW (1U << 10) /* v7 onward */
916#define SCTLR_Z (1U << 11)
917#define SCTLR_I (1U << 12)
918#define SCTLR_V (1U << 13)
919#define SCTLR_RR (1U << 14) /* up to v7 */
920#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
921#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
922#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
923#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
924#define SCTLR_nTWI (1U << 16) /* v8 onward */
925#define SCTLR_HA (1U << 17)
f6bda88f 926#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
927#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
928#define SCTLR_nTWE (1U << 18) /* v8 onward */
929#define SCTLR_WXN (1U << 19)
930#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
931#define SCTLR_UWXN (1U << 20) /* v7 onward */
932#define SCTLR_FI (1U << 21)
933#define SCTLR_U (1U << 22)
934#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
935#define SCTLR_VE (1U << 24) /* up to v7 */
936#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
937#define SCTLR_EE (1U << 25)
938#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
939#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
940#define SCTLR_NMFI (1U << 27)
941#define SCTLR_TRE (1U << 28)
942#define SCTLR_AFE (1U << 29)
943#define SCTLR_TE (1U << 30)
944
c6f19164
GB
945#define CPTR_TCPAC (1U << 31)
946#define CPTR_TTA (1U << 20)
947#define CPTR_TFP (1U << 10)
5be5e8ed
RH
948#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
949#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 950
187f678d
PM
951#define MDCR_EPMAD (1U << 21)
952#define MDCR_EDAD (1U << 20)
953#define MDCR_SPME (1U << 17)
954#define MDCR_SDD (1U << 16)
a8d64e73 955#define MDCR_SPD (3U << 14)
187f678d
PM
956#define MDCR_TDRA (1U << 11)
957#define MDCR_TDOSA (1U << 10)
958#define MDCR_TDA (1U << 9)
959#define MDCR_TDE (1U << 8)
960#define MDCR_HPME (1U << 7)
961#define MDCR_TPM (1U << 6)
962#define MDCR_TPMCR (1U << 5)
963
a8d64e73
PM
964/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
965#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
966
78dbbbe4
PM
967#define CPSR_M (0x1fU)
968#define CPSR_T (1U << 5)
969#define CPSR_F (1U << 6)
970#define CPSR_I (1U << 7)
971#define CPSR_A (1U << 8)
972#define CPSR_E (1U << 9)
973#define CPSR_IT_2_7 (0xfc00U)
974#define CPSR_GE (0xfU << 16)
4051e12c
PM
975#define CPSR_IL (1U << 20)
976/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
977 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
978 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
979 * where it is live state but not accessible to the AArch32 code.
980 */
981#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
982#define CPSR_J (1U << 24)
983#define CPSR_IT_0_1 (3U << 25)
984#define CPSR_Q (1U << 27)
985#define CPSR_V (1U << 28)
986#define CPSR_C (1U << 29)
987#define CPSR_Z (1U << 30)
988#define CPSR_N (1U << 31)
9ee6e8bb 989#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 990#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
991
992#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
993#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
994 | CPSR_NZCV)
9ee6e8bb
PB
995/* Bits writable in user mode. */
996#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
997/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
998#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
999/* Mask of bits which may be set by exception return copying them from SPSR */
1000#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1001
987ab45e
PM
1002/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1003#define XPSR_EXCP 0x1ffU
1004#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1005#define XPSR_IT_2_7 CPSR_IT_2_7
1006#define XPSR_GE CPSR_GE
1007#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1008#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1009#define XPSR_IT_0_1 CPSR_IT_0_1
1010#define XPSR_Q CPSR_Q
1011#define XPSR_V CPSR_V
1012#define XPSR_C CPSR_C
1013#define XPSR_Z CPSR_Z
1014#define XPSR_N CPSR_N
1015#define XPSR_NZCV CPSR_NZCV
1016#define XPSR_IT CPSR_IT
1017
e389be16
FA
1018#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1019#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1020#define TTBCR_PD0 (1U << 4)
1021#define TTBCR_PD1 (1U << 5)
1022#define TTBCR_EPD0 (1U << 7)
1023#define TTBCR_IRGN0 (3U << 8)
1024#define TTBCR_ORGN0 (3U << 10)
1025#define TTBCR_SH0 (3U << 12)
1026#define TTBCR_T1SZ (3U << 16)
1027#define TTBCR_A1 (1U << 22)
1028#define TTBCR_EPD1 (1U << 23)
1029#define TTBCR_IRGN1 (3U << 24)
1030#define TTBCR_ORGN1 (3U << 26)
1031#define TTBCR_SH1 (1U << 28)
1032#define TTBCR_EAE (1U << 31)
1033
d356312f
PM
1034/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1035 * Only these are valid when in AArch64 mode; in
1036 * AArch32 mode SPSRs are basically CPSR-format.
1037 */
f502cfc2 1038#define PSTATE_SP (1U)
d356312f
PM
1039#define PSTATE_M (0xFU)
1040#define PSTATE_nRW (1U << 4)
1041#define PSTATE_F (1U << 6)
1042#define PSTATE_I (1U << 7)
1043#define PSTATE_A (1U << 8)
1044#define PSTATE_D (1U << 9)
1045#define PSTATE_IL (1U << 20)
1046#define PSTATE_SS (1U << 21)
1047#define PSTATE_V (1U << 28)
1048#define PSTATE_C (1U << 29)
1049#define PSTATE_Z (1U << 30)
1050#define PSTATE_N (1U << 31)
1051#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614
PM
1052#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1053#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
d356312f
PM
1054/* Mode values for AArch64 */
1055#define PSTATE_MODE_EL3h 13
1056#define PSTATE_MODE_EL3t 12
1057#define PSTATE_MODE_EL2h 9
1058#define PSTATE_MODE_EL2t 8
1059#define PSTATE_MODE_EL1h 5
1060#define PSTATE_MODE_EL1t 4
1061#define PSTATE_MODE_EL0t 0
1062
de2db7ec
PM
1063/* Write a new value to v7m.exception, thus transitioning into or out
1064 * of Handler mode; this may result in a change of active stack pointer.
1065 */
1066void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1067
9e729b57
EI
1068/* Map EL and handler into a PSTATE_MODE. */
1069static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1070{
1071 return (el << 2) | handler;
1072}
1073
d356312f
PM
1074/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1075 * interprocessing, so we don't attempt to sync with the cpsr state used by
1076 * the 32 bit decoder.
1077 */
1078static inline uint32_t pstate_read(CPUARMState *env)
1079{
1080 int ZF;
1081
1082 ZF = (env->ZF == 0);
1083 return (env->NF & 0x80000000) | (ZF << 30)
1084 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
4cc35614 1085 | env->pstate | env->daif;
d356312f
PM
1086}
1087
1088static inline void pstate_write(CPUARMState *env, uint32_t val)
1089{
1090 env->ZF = (~val) & PSTATE_Z;
1091 env->NF = val;
1092 env->CF = (val >> 29) & 1;
1093 env->VF = (val << 3) & 0x80000000;
4cc35614 1094 env->daif = val & PSTATE_DAIF;
d356312f
PM
1095 env->pstate = val & ~CACHED_PSTATE_BITS;
1096}
1097
b5ff1b31 1098/* Return the current CPSR value. */
2f4a40e5 1099uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1100
1101typedef enum CPSRWriteType {
1102 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1103 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1104 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1105 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1106} CPSRWriteType;
1107
1108/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1109void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1110 CPSRWriteType write_type);
9ee6e8bb
PB
1111
1112/* Return the current xPSR value. */
1113static inline uint32_t xpsr_read(CPUARMState *env)
1114{
1115 int ZF;
6fbe23d5
PB
1116 ZF = (env->ZF == 0);
1117 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1118 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1119 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1120 | ((env->condexec_bits & 0xfc) << 8)
1121 | env->v7m.exception;
b5ff1b31
FB
1122}
1123
9ee6e8bb
PB
1124/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1125static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1126{
987ab45e
PM
1127 if (mask & XPSR_NZCV) {
1128 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1129 env->NF = val;
9ee6e8bb
PB
1130 env->CF = (val >> 29) & 1;
1131 env->VF = (val << 3) & 0x80000000;
1132 }
987ab45e
PM
1133 if (mask & XPSR_Q) {
1134 env->QF = ((val & XPSR_Q) != 0);
1135 }
1136 if (mask & XPSR_T) {
1137 env->thumb = ((val & XPSR_T) != 0);
1138 }
1139 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1140 env->condexec_bits &= ~3;
1141 env->condexec_bits |= (val >> 25) & 3;
1142 }
987ab45e 1143 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1144 env->condexec_bits &= 3;
1145 env->condexec_bits |= (val >> 8) & 0xfc;
1146 }
987ab45e 1147 if (mask & XPSR_EXCP) {
de2db7ec
PM
1148 /* Note that this only happens on exception exit */
1149 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1150 }
1151}
1152
f149e3e8
EI
1153#define HCR_VM (1ULL << 0)
1154#define HCR_SWIO (1ULL << 1)
1155#define HCR_PTW (1ULL << 2)
1156#define HCR_FMO (1ULL << 3)
1157#define HCR_IMO (1ULL << 4)
1158#define HCR_AMO (1ULL << 5)
1159#define HCR_VF (1ULL << 6)
1160#define HCR_VI (1ULL << 7)
1161#define HCR_VSE (1ULL << 8)
1162#define HCR_FB (1ULL << 9)
1163#define HCR_BSU_MASK (3ULL << 10)
1164#define HCR_DC (1ULL << 12)
1165#define HCR_TWI (1ULL << 13)
1166#define HCR_TWE (1ULL << 14)
1167#define HCR_TID0 (1ULL << 15)
1168#define HCR_TID1 (1ULL << 16)
1169#define HCR_TID2 (1ULL << 17)
1170#define HCR_TID3 (1ULL << 18)
1171#define HCR_TSC (1ULL << 19)
1172#define HCR_TIDCP (1ULL << 20)
1173#define HCR_TACR (1ULL << 21)
1174#define HCR_TSW (1ULL << 22)
1175#define HCR_TPC (1ULL << 23)
1176#define HCR_TPU (1ULL << 24)
1177#define HCR_TTLB (1ULL << 25)
1178#define HCR_TVM (1ULL << 26)
1179#define HCR_TGE (1ULL << 27)
1180#define HCR_TDZ (1ULL << 28)
1181#define HCR_HCD (1ULL << 29)
1182#define HCR_TRVM (1ULL << 30)
1183#define HCR_RW (1ULL << 31)
1184#define HCR_CD (1ULL << 32)
1185#define HCR_ID (1ULL << 33)
1186#define HCR_MASK ((1ULL << 34) - 1)
1187
64e0e2de
EI
1188#define SCR_NS (1U << 0)
1189#define SCR_IRQ (1U << 1)
1190#define SCR_FIQ (1U << 2)
1191#define SCR_EA (1U << 3)
1192#define SCR_FW (1U << 4)
1193#define SCR_AW (1U << 5)
1194#define SCR_NET (1U << 6)
1195#define SCR_SMD (1U << 7)
1196#define SCR_HCE (1U << 8)
1197#define SCR_SIF (1U << 9)
1198#define SCR_RW (1U << 10)
1199#define SCR_ST (1U << 11)
1200#define SCR_TWI (1U << 12)
1201#define SCR_TWE (1U << 13)
1202#define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1203#define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1204
01653295
PM
1205/* Return the current FPSCR value. */
1206uint32_t vfp_get_fpscr(CPUARMState *env);
1207void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1208
d81ce0ef
AB
1209/* FPCR, Floating Point Control Register
1210 * FPSR, Floating Poiht Status Register
1211 *
1212 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1213 * FPCR and FPSR. However since they still use non-overlapping bits
1214 * we store the underlying state in fpscr and just mask on read/write.
1215 */
1216#define FPSR_MASK 0xf800009f
1217#define FPCR_MASK 0x07f79f00
d81ce0ef
AB
1218
1219#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1220#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1221#define FPCR_DN (1 << 25) /* Default NaN enable bit */
1222
f903fa22
PM
1223static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1224{
1225 return vfp_get_fpscr(env) & FPSR_MASK;
1226}
1227
1228static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1229{
1230 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1231 vfp_set_fpscr(env, new_fpscr);
1232}
1233
1234static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1235{
1236 return vfp_get_fpscr(env) & FPCR_MASK;
1237}
1238
1239static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1240{
1241 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1242 vfp_set_fpscr(env, new_fpscr);
1243}
1244
b5ff1b31
FB
1245enum arm_cpu_mode {
1246 ARM_CPU_MODE_USR = 0x10,
1247 ARM_CPU_MODE_FIQ = 0x11,
1248 ARM_CPU_MODE_IRQ = 0x12,
1249 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1250 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1251 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1252 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1253 ARM_CPU_MODE_UND = 0x1b,
1254 ARM_CPU_MODE_SYS = 0x1f
1255};
1256
40f137e1
PB
1257/* VFP system registers. */
1258#define ARM_VFP_FPSID 0
1259#define ARM_VFP_FPSCR 1
a50c0f51 1260#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1261#define ARM_VFP_MVFR1 6
1262#define ARM_VFP_MVFR0 7
40f137e1
PB
1263#define ARM_VFP_FPEXC 8
1264#define ARM_VFP_FPINST 9
1265#define ARM_VFP_FPINST2 10
1266
18c9b560
AZ
1267/* iwMMXt coprocessor control registers. */
1268#define ARM_IWMMXT_wCID 0
1269#define ARM_IWMMXT_wCon 1
1270#define ARM_IWMMXT_wCSSF 2
1271#define ARM_IWMMXT_wCASF 3
1272#define ARM_IWMMXT_wCGR0 8
1273#define ARM_IWMMXT_wCGR1 9
1274#define ARM_IWMMXT_wCGR2 10
1275#define ARM_IWMMXT_wCGR3 11
1276
2c4da50d
PM
1277/* V7M CCR bits */
1278FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1279FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1280FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1281FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1282FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1283FIELD(V7M_CCR, STKALIGN, 9, 1)
1284FIELD(V7M_CCR, DC, 16, 1)
1285FIELD(V7M_CCR, IC, 17, 1)
1286
24ac0fb1
PM
1287/* V7M SCR bits */
1288FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1289FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1290FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1291FIELD(V7M_SCR, SEVONPEND, 4, 1)
1292
3b2e9344
PM
1293/* V7M AIRCR bits */
1294FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1295FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1296FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1297FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1298FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1299FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1300FIELD(V7M_AIRCR, PRIS, 14, 1)
1301FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1302FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1303
2c4da50d
PM
1304/* V7M CFSR bits for MMFSR */
1305FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1306FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1307FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1308FIELD(V7M_CFSR, MSTKERR, 4, 1)
1309FIELD(V7M_CFSR, MLSPERR, 5, 1)
1310FIELD(V7M_CFSR, MMARVALID, 7, 1)
1311
1312/* V7M CFSR bits for BFSR */
1313FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1314FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1315FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1316FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1317FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1318FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1319FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1320
1321/* V7M CFSR bits for UFSR */
1322FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1323FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1324FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1325FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1326FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1327FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1328
334e8dad
PM
1329/* V7M CFSR bit masks covering all of the subregister bits */
1330FIELD(V7M_CFSR, MMFSR, 0, 8)
1331FIELD(V7M_CFSR, BFSR, 8, 8)
1332FIELD(V7M_CFSR, UFSR, 16, 16)
1333
2c4da50d
PM
1334/* V7M HFSR bits */
1335FIELD(V7M_HFSR, VECTTBL, 1, 1)
1336FIELD(V7M_HFSR, FORCED, 30, 1)
1337FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1338
1339/* V7M DFSR bits */
1340FIELD(V7M_DFSR, HALTED, 0, 1)
1341FIELD(V7M_DFSR, BKPT, 1, 1)
1342FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1343FIELD(V7M_DFSR, VCATCH, 3, 1)
1344FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1345
bed079da
PM
1346/* V7M SFSR bits */
1347FIELD(V7M_SFSR, INVEP, 0, 1)
1348FIELD(V7M_SFSR, INVIS, 1, 1)
1349FIELD(V7M_SFSR, INVER, 2, 1)
1350FIELD(V7M_SFSR, AUVIOL, 3, 1)
1351FIELD(V7M_SFSR, INVTRAN, 4, 1)
1352FIELD(V7M_SFSR, LSPERR, 5, 1)
1353FIELD(V7M_SFSR, SFARVALID, 6, 1)
1354FIELD(V7M_SFSR, LSERR, 7, 1)
1355
29c483a5
MD
1356/* v7M MPU_CTRL bits */
1357FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1358FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1359FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1360
43bbce7f
PM
1361/* v7M CLIDR bits */
1362FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1363FIELD(V7M_CLIDR, LOUIS, 21, 3)
1364FIELD(V7M_CLIDR, LOC, 24, 3)
1365FIELD(V7M_CLIDR, LOUU, 27, 3)
1366FIELD(V7M_CLIDR, ICB, 30, 2)
1367
1368FIELD(V7M_CSSELR, IND, 0, 1)
1369FIELD(V7M_CSSELR, LEVEL, 1, 3)
1370/* We use the combination of InD and Level to index into cpu->ccsidr[];
1371 * define a mask for this and check that it doesn't permit running off
1372 * the end of the array.
1373 */
1374FIELD(V7M_CSSELR, INDEX, 0, 4)
1375
1376QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1377
ce854d7c
BC
1378/* If adding a feature bit which corresponds to a Linux ELF
1379 * HWCAP bit, remember to update the feature-bit-to-hwcap
1380 * mapping in linux-user/elfload.c:get_elf_hwcap().
1381 */
40f137e1
PB
1382enum arm_features {
1383 ARM_FEATURE_VFP,
c1713132
AZ
1384 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1385 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1386 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1387 ARM_FEATURE_V6,
1388 ARM_FEATURE_V6K,
1389 ARM_FEATURE_V7,
1390 ARM_FEATURE_THUMB2,
452a0955 1391 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1392 ARM_FEATURE_VFP3,
60011498 1393 ARM_FEATURE_VFP_FP16,
9ee6e8bb 1394 ARM_FEATURE_NEON,
47789990 1395 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 1396 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1397 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1398 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
1399 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1400 ARM_FEATURE_V4T,
1401 ARM_FEATURE_V5,
5bc95aa2 1402 ARM_FEATURE_STRONGARM,
906879a9 1403 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 1404 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 1405 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1406 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1407 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1408 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1409 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1410 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1411 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1412 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1413 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1414 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1415 ARM_FEATURE_V8,
3926cc84 1416 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 1417 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 1418 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1419 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1420 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1421 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1422 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
f1ecb913
AB
1423 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1424 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
4e624eda 1425 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
62b44f05 1426 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1427 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1428 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1429 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
c99a55d3 1430 ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
0d0a16c6 1431 ARM_FEATURE_SVE, /* has Scalable Vector Extension */
90b827d1 1432 ARM_FEATURE_V8_SHA512, /* implements SHA512 part of v8 Crypto Extensions */
cd270ade 1433 ARM_FEATURE_V8_SHA3, /* implements SHA3 part of v8 Crypto Extensions */
80d6f4c6 1434 ARM_FEATURE_V8_SM3, /* implements SM3 part of v8 Crypto Extensions */
b6577bcd 1435 ARM_FEATURE_V8_SM4, /* implements SM4 part of v8 Crypto Extensions */
1dc81c15 1436 ARM_FEATURE_V8_RDM, /* implements v8.1 simd round multiply */
6ad4d618 1437 ARM_FEATURE_V8_FP16, /* implements v8.2 half-precision float */
0438f037 1438 ARM_FEATURE_V8_FCMA, /* has complex number part of v8.3 extensions. */
40f137e1
PB
1439};
1440
1441static inline int arm_feature(CPUARMState *env, int feature)
1442{
918f5dca 1443 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1444}
1445
19e0fefa
FA
1446#if !defined(CONFIG_USER_ONLY)
1447/* Return true if exception levels below EL3 are in secure state,
1448 * or would be following an exception return to that level.
1449 * Unlike arm_is_secure() (which is always a question about the
1450 * _current_ state of the CPU) this doesn't care about the current
1451 * EL or mode.
1452 */
1453static inline bool arm_is_secure_below_el3(CPUARMState *env)
1454{
1455 if (arm_feature(env, ARM_FEATURE_EL3)) {
1456 return !(env->cp15.scr_el3 & SCR_NS);
1457 } else {
6b7f0b61 1458 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1459 * defined, in which case QEMU defaults to non-secure.
1460 */
1461 return false;
1462 }
1463}
1464
71205876
PM
1465/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1466static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1467{
1468 if (arm_feature(env, ARM_FEATURE_EL3)) {
1469 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1470 /* CPU currently in AArch64 state and EL3 */
1471 return true;
1472 } else if (!is_a64(env) &&
1473 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1474 /* CPU currently in AArch32 state and monitor mode */
1475 return true;
1476 }
1477 }
71205876
PM
1478 return false;
1479}
1480
1481/* Return true if the processor is in secure state */
1482static inline bool arm_is_secure(CPUARMState *env)
1483{
1484 if (arm_is_el3_or_mon(env)) {
1485 return true;
1486 }
19e0fefa
FA
1487 return arm_is_secure_below_el3(env);
1488}
1489
1490#else
1491static inline bool arm_is_secure_below_el3(CPUARMState *env)
1492{
1493 return false;
1494}
1495
1496static inline bool arm_is_secure(CPUARMState *env)
1497{
1498 return false;
1499}
1500#endif
1501
1f79ee32
PM
1502/* Return true if the specified exception level is running in AArch64 state. */
1503static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1504{
446c81ab
PM
1505 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1506 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1507 */
446c81ab
PM
1508 assert(el >= 1 && el <= 3);
1509 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1510
446c81ab
PM
1511 /* The highest exception level is always at the maximum supported
1512 * register width, and then lower levels have a register width controlled
1513 * by bits in the SCR or HCR registers.
1f79ee32 1514 */
446c81ab
PM
1515 if (el == 3) {
1516 return aa64;
1517 }
1518
1519 if (arm_feature(env, ARM_FEATURE_EL3)) {
1520 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1521 }
1522
1523 if (el == 2) {
1524 return aa64;
1525 }
1526
1527 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1528 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1529 }
1530
1531 return aa64;
1f79ee32
PM
1532}
1533
3f342b9e
SF
1534/* Function for determing whether guest cp register reads and writes should
1535 * access the secure or non-secure bank of a cp register. When EL3 is
1536 * operating in AArch32 state, the NS-bit determines whether the secure
1537 * instance of a cp register should be used. When EL3 is AArch64 (or if
1538 * it doesn't exist at all) then there is no register banking, and all
1539 * accesses are to the non-secure version.
1540 */
1541static inline bool access_secure_reg(CPUARMState *env)
1542{
1543 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1544 !arm_el_is_aa64(env, 3) &&
1545 !(env->cp15.scr_el3 & SCR_NS));
1546
1547 return ret;
1548}
1549
ea30a4b8
FA
1550/* Macros for accessing a specified CP register bank */
1551#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1552 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1553
1554#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1555 do { \
1556 if (_secure) { \
1557 (_env)->cp15._regname##_s = (_val); \
1558 } else { \
1559 (_env)->cp15._regname##_ns = (_val); \
1560 } \
1561 } while (0)
1562
1563/* Macros for automatically accessing a specific CP register bank depending on
1564 * the current secure state of the system. These macros are not intended for
1565 * supporting instruction translation reads/writes as these are dependent
1566 * solely on the SCR.NS bit and not the mode.
1567 */
1568#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1569 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1570 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1571
1572#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1573 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1574 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1575 (_val))
1576
9a78eead 1577void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
012a906b
GB
1578uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1579 uint32_t cur_el, bool secure);
40f137e1 1580
9ee6e8bb 1581/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1582#ifndef CONFIG_USER_ONLY
1583bool armv7m_nvic_can_take_pending_exception(void *opaque);
1584#else
1585static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1586{
1587 return true;
1588}
1589#endif
2fb50a33
PM
1590/**
1591 * armv7m_nvic_set_pending: mark the specified exception as pending
1592 * @opaque: the NVIC
1593 * @irq: the exception number to mark pending
1594 * @secure: false for non-banked exceptions or for the nonsecure
1595 * version of a banked exception, true for the secure version of a banked
1596 * exception.
1597 *
1598 * Marks the specified exception as pending. Note that we will assert()
1599 * if @secure is true and @irq does not specify one of the fixed set
1600 * of architecturally banked exceptions.
1601 */
1602void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
1603/**
1604 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1605 * @opaque: the NVIC
1606 * @irq: the exception number to mark pending
1607 * @secure: false for non-banked exceptions or for the nonsecure
1608 * version of a banked exception, true for the secure version of a banked
1609 * exception.
1610 *
1611 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1612 * exceptions (exceptions generated in the course of trying to take
1613 * a different exception).
1614 */
1615void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
6c948518
PM
1616/**
1617 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1618 * exception, and whether it targets Secure state
1619 * @opaque: the NVIC
1620 * @pirq: set to pending exception number
1621 * @ptargets_secure: set to whether pending exception targets Secure
1622 *
1623 * This function writes the number of the highest priority pending
1624 * exception (the one which would be made active by
1625 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1626 * to true if the current highest priority pending exception should
1627 * be taken to Secure state, false for NS.
1628 */
1629void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1630 bool *ptargets_secure);
5cb18069
PM
1631/**
1632 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1633 * @opaque: the NVIC
1634 *
1635 * Move the current highest priority pending exception from the pending
1636 * state to the active state, and update v7m.exception to indicate that
1637 * it is the exception currently being handled.
5cb18069 1638 */
6c948518 1639void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
1640/**
1641 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1642 * @opaque: the NVIC
1643 * @irq: the exception number to complete
5cb18069 1644 * @secure: true if this exception was secure
aa488fe3
PM
1645 *
1646 * Returns: -1 if the irq was not active
1647 * 1 if completing this irq brought us back to base (no active irqs)
1648 * 0 if there is still an irq active after this one was completed
1649 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1650 */
5cb18069 1651int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
42a6686b
PM
1652/**
1653 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1654 * @opaque: the NVIC
1655 *
1656 * Returns: the raw execution priority as defined by the v8M architecture.
1657 * This is the execution priority minus the effects of AIRCR.PRIS,
1658 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1659 * (v8M ARM ARM I_PKLD.)
1660 */
1661int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
1662/**
1663 * armv7m_nvic_neg_prio_requested: return true if the requested execution
1664 * priority is negative for the specified security state.
1665 * @opaque: the NVIC
1666 * @secure: the security state to test
1667 * This corresponds to the pseudocode IsReqExecPriNeg().
1668 */
1669#ifndef CONFIG_USER_ONLY
1670bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1671#else
1672static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1673{
1674 return false;
1675}
1676#endif
9ee6e8bb 1677
4b6a83fb
PM
1678/* Interface for defining coprocessor registers.
1679 * Registers are defined in tables of arm_cp_reginfo structs
1680 * which are passed to define_arm_cp_regs().
1681 */
1682
1683/* When looking up a coprocessor register we look for it
1684 * via an integer which encodes all of:
1685 * coprocessor number
1686 * Crn, Crm, opc1, opc2 fields
1687 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1688 * or via MRRC/MCRR?)
51a79b03 1689 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
1690 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1691 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
1692 * For AArch64, there is no 32/64 bit size distinction;
1693 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1694 * and 4 bit CRn and CRm. The encoding patterns are chosen
1695 * to be easy to convert to and from the KVM encodings, and also
1696 * so that the hashtable can contain both AArch32 and AArch64
1697 * registers (to allow for interprocessing where we might run
1698 * 32 bit code on a 64 bit core).
4b6a83fb 1699 */
f5a0a5a5
PM
1700/* This bit is private to our hashtable cpreg; in KVM register
1701 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1702 * in the upper bits of the 64 bit ID.
1703 */
1704#define CP_REG_AA64_SHIFT 28
1705#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1706
51a79b03
PM
1707/* To enable banking of coprocessor registers depending on ns-bit we
1708 * add a bit to distinguish between secure and non-secure cpregs in the
1709 * hashtable.
1710 */
1711#define CP_REG_NS_SHIFT 29
1712#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1713
1714#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1715 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1716 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 1717
f5a0a5a5
PM
1718#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1719 (CP_REG_AA64_MASK | \
1720 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1721 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1722 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1723 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1724 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1725 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1726
721fae12
PM
1727/* Convert a full 64 bit KVM register ID to the truncated 32 bit
1728 * version used as a key for the coprocessor register hashtable
1729 */
1730static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1731{
1732 uint32_t cpregid = kvmid;
f5a0a5a5
PM
1733 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1734 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
1735 } else {
1736 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1737 cpregid |= (1 << 15);
1738 }
1739
1740 /* KVM is always non-secure so add the NS flag on AArch32 register
1741 * entries.
1742 */
1743 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
1744 }
1745 return cpregid;
1746}
1747
1748/* Convert a truncated 32 bit hashtable key into the full
1749 * 64 bit KVM register ID.
1750 */
1751static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1752{
f5a0a5a5
PM
1753 uint64_t kvmid;
1754
1755 if (cpregid & CP_REG_AA64_MASK) {
1756 kvmid = cpregid & ~CP_REG_AA64_MASK;
1757 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 1758 } else {
f5a0a5a5
PM
1759 kvmid = cpregid & ~(1 << 15);
1760 if (cpregid & (1 << 15)) {
1761 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1762 } else {
1763 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1764 }
721fae12
PM
1765 }
1766 return kvmid;
1767}
1768
4b6a83fb 1769/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 1770 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
1771 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1772 * TCG can assume the value to be constant (ie load at translate time)
1773 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1774 * indicates that the TB should not be ended after a write to this register
1775 * (the default is that the TB ends after cp writes). OVERRIDE permits
1776 * a register definition to override a previous definition for the
1777 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1778 * old must have the OVERRIDE bit set.
7a0e58fa
PM
1779 * ALIAS indicates that this register is an alias view of some underlying
1780 * state which is also visible via another register, and that the other
b061a82b
SF
1781 * register is handling migration and reset; registers marked ALIAS will not be
1782 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
1783 * NO_RAW indicates that this register has no underlying state and does not
1784 * support raw access for state saving/loading; it will not be used for either
1785 * migration or KVM state synchronization. (Typically this is for "registers"
1786 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
1787 * IO indicates that this register does I/O and therefore its accesses
1788 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1789 * registers which implement clocks or timers require this.
4b6a83fb 1790 */
fe03d45f
RH
1791#define ARM_CP_SPECIAL 0x0001
1792#define ARM_CP_CONST 0x0002
1793#define ARM_CP_64BIT 0x0004
1794#define ARM_CP_SUPPRESS_TB_END 0x0008
1795#define ARM_CP_OVERRIDE 0x0010
1796#define ARM_CP_ALIAS 0x0020
1797#define ARM_CP_IO 0x0040
1798#define ARM_CP_NO_RAW 0x0080
1799#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
1800#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
1801#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
1802#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
1803#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
1804#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1805#define ARM_CP_FPU 0x1000
490aa7f1 1806#define ARM_CP_SVE 0x2000
4b6a83fb 1807/* Used only as a terminator for ARMCPRegInfo lists */
fe03d45f 1808#define ARM_CP_SENTINEL 0xffff
4b6a83fb 1809/* Mask of only the flag bits in a type field */
490aa7f1 1810#define ARM_CP_FLAG_MASK 0x30ff
4b6a83fb 1811
f5a0a5a5
PM
1812/* Valid values for ARMCPRegInfo state field, indicating which of
1813 * the AArch32 and AArch64 execution states this register is visible in.
1814 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1815 * If the reginfo is declared to be visible in both states then a second
1816 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1817 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1818 * Note that we rely on the values of these enums as we iterate through
1819 * the various states in some places.
1820 */
1821enum {
1822 ARM_CP_STATE_AA32 = 0,
1823 ARM_CP_STATE_AA64 = 1,
1824 ARM_CP_STATE_BOTH = 2,
1825};
1826
c3e30260
FA
1827/* ARM CP register secure state flags. These flags identify security state
1828 * attributes for a given CP register entry.
1829 * The existence of both or neither secure and non-secure flags indicates that
1830 * the register has both a secure and non-secure hash entry. A single one of
1831 * these flags causes the register to only be hashed for the specified
1832 * security state.
1833 * Although definitions may have any combination of the S/NS bits, each
1834 * registered entry will only have one to identify whether the entry is secure
1835 * or non-secure.
1836 */
1837enum {
1838 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1839 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1840};
1841
4b6a83fb
PM
1842/* Return true if cptype is a valid type field. This is used to try to
1843 * catch errors where the sentinel has been accidentally left off the end
1844 * of a list of registers.
1845 */
1846static inline bool cptype_valid(int cptype)
1847{
1848 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1849 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 1850 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
1851}
1852
1853/* Access rights:
1854 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1855 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1856 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1857 * (ie any of the privileged modes in Secure state, or Monitor mode).
1858 * If a register is accessible in one privilege level it's always accessible
1859 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1860 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1861 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1862 * terminology a little and call this PL3.
f5a0a5a5
PM
1863 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1864 * with the ELx exception levels.
4b6a83fb
PM
1865 *
1866 * If access permissions for a register are more complex than can be
1867 * described with these bits, then use a laxer set of restrictions, and
1868 * do the more restrictive/complex check inside a helper function.
1869 */
1870#define PL3_R 0x80
1871#define PL3_W 0x40
1872#define PL2_R (0x20 | PL3_R)
1873#define PL2_W (0x10 | PL3_W)
1874#define PL1_R (0x08 | PL2_R)
1875#define PL1_W (0x04 | PL2_W)
1876#define PL0_R (0x02 | PL1_R)
1877#define PL0_W (0x01 | PL1_W)
1878
1879#define PL3_RW (PL3_R | PL3_W)
1880#define PL2_RW (PL2_R | PL2_W)
1881#define PL1_RW (PL1_R | PL1_W)
1882#define PL0_RW (PL0_R | PL0_W)
1883
75502672
PM
1884/* Return the highest implemented Exception Level */
1885static inline int arm_highest_el(CPUARMState *env)
1886{
1887 if (arm_feature(env, ARM_FEATURE_EL3)) {
1888 return 3;
1889 }
1890 if (arm_feature(env, ARM_FEATURE_EL2)) {
1891 return 2;
1892 }
1893 return 1;
1894}
1895
15b3f556
PM
1896/* Return true if a v7M CPU is in Handler mode */
1897static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1898{
1899 return env->v7m.exception != 0;
1900}
1901
dcbff19b
GB
1902/* Return the current Exception Level (as per ARMv8; note that this differs
1903 * from the ARMv7 Privilege Level).
1904 */
1905static inline int arm_current_el(CPUARMState *env)
4b6a83fb 1906{
6d54ed3c 1907 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
1908 return arm_v7m_is_handler_mode(env) ||
1909 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
1910 }
1911
592125f8 1912 if (is_a64(env)) {
f5a0a5a5
PM
1913 return extract32(env->pstate, 2, 2);
1914 }
1915
592125f8
FA
1916 switch (env->uncached_cpsr & 0x1f) {
1917 case ARM_CPU_MODE_USR:
4b6a83fb 1918 return 0;
592125f8
FA
1919 case ARM_CPU_MODE_HYP:
1920 return 2;
1921 case ARM_CPU_MODE_MON:
1922 return 3;
1923 default:
1924 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1925 /* If EL3 is 32-bit then all secure privileged modes run in
1926 * EL3
1927 */
1928 return 3;
1929 }
1930
1931 return 1;
4b6a83fb 1932 }
4b6a83fb
PM
1933}
1934
1935typedef struct ARMCPRegInfo ARMCPRegInfo;
1936
f59df3f2
PM
1937typedef enum CPAccessResult {
1938 /* Access is permitted */
1939 CP_ACCESS_OK = 0,
1940 /* Access fails due to a configurable trap or enable which would
1941 * result in a categorized exception syndrome giving information about
1942 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
1943 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1944 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
1945 */
1946 CP_ACCESS_TRAP = 1,
1947 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1948 * Note that this is not a catch-all case -- the set of cases which may
1949 * result in this failure is specifically defined by the architecture.
1950 */
1951 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
1952 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1953 CP_ACCESS_TRAP_EL2 = 3,
1954 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
1955 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1956 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1957 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
1958 /* Access fails and results in an exception syndrome for an FP access,
1959 * trapped directly to EL2 or EL3
1960 */
1961 CP_ACCESS_TRAP_FP_EL2 = 7,
1962 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
1963} CPAccessResult;
1964
c4241c7d
PM
1965/* Access functions for coprocessor registers. These cannot fail and
1966 * may not raise exceptions.
1967 */
1968typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1969typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1970 uint64_t value);
f59df3f2 1971/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
1972typedef CPAccessResult CPAccessFn(CPUARMState *env,
1973 const ARMCPRegInfo *opaque,
1974 bool isread);
4b6a83fb
PM
1975/* Hook function for register reset */
1976typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1977
1978#define CP_ANY 0xff
1979
1980/* Definition of an ARM coprocessor register */
1981struct ARMCPRegInfo {
1982 /* Name of register (useful mainly for debugging, need not be unique) */
1983 const char *name;
1984 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1985 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1986 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1987 * will be decoded to this register. The register read and write
1988 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1989 * used by the program, so it is possible to register a wildcard and
1990 * then behave differently on read/write if necessary.
1991 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1992 * must both be zero.
f5a0a5a5
PM
1993 * For AArch64-visible registers, opc0 is also used.
1994 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1995 * way to distinguish (for KVM's benefit) guest-visible system registers
1996 * from demuxed ones provided to preserve the "no side effects on
1997 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1998 * visible (to match KVM's encoding); cp==0 will be converted to
1999 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2000 */
2001 uint8_t cp;
2002 uint8_t crn;
2003 uint8_t crm;
f5a0a5a5 2004 uint8_t opc0;
4b6a83fb
PM
2005 uint8_t opc1;
2006 uint8_t opc2;
f5a0a5a5
PM
2007 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2008 int state;
4b6a83fb
PM
2009 /* Register type: ARM_CP_* bits/values */
2010 int type;
2011 /* Access rights: PL*_[RW] */
2012 int access;
c3e30260
FA
2013 /* Security state: ARM_CP_SECSTATE_* bits/values */
2014 int secure;
4b6a83fb
PM
2015 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2016 * this register was defined: can be used to hand data through to the
2017 * register read/write functions, since they are passed the ARMCPRegInfo*.
2018 */
2019 void *opaque;
2020 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2021 * fieldoffset is non-zero, the reset value of the register.
2022 */
2023 uint64_t resetvalue;
c3e30260
FA
2024 /* Offset of the field in CPUARMState for this register.
2025 *
2026 * This is not needed if either:
4b6a83fb
PM
2027 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2028 * 2. both readfn and writefn are specified
2029 */
2030 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2031
2032 /* Offsets of the secure and non-secure fields in CPUARMState for the
2033 * register if it is banked. These fields are only used during the static
2034 * registration of a register. During hashing the bank associated
2035 * with a given security state is copied to fieldoffset which is used from
2036 * there on out.
2037 *
2038 * It is expected that register definitions use either fieldoffset or
2039 * bank_fieldoffsets in the definition but not both. It is also expected
2040 * that both bank offsets are set when defining a banked register. This
2041 * use indicates that a register is banked.
2042 */
2043 ptrdiff_t bank_fieldoffsets[2];
2044
f59df3f2
PM
2045 /* Function for making any access checks for this register in addition to
2046 * those specified by the 'access' permissions bits. If NULL, no extra
2047 * checks required. The access check is performed at runtime, not at
2048 * translate time.
2049 */
2050 CPAccessFn *accessfn;
4b6a83fb
PM
2051 /* Function for handling reads of this register. If NULL, then reads
2052 * will be done by loading from the offset into CPUARMState specified
2053 * by fieldoffset.
2054 */
2055 CPReadFn *readfn;
2056 /* Function for handling writes of this register. If NULL, then writes
2057 * will be done by writing to the offset into CPUARMState specified
2058 * by fieldoffset.
2059 */
2060 CPWriteFn *writefn;
7023ec7e
PM
2061 /* Function for doing a "raw" read; used when we need to copy
2062 * coprocessor state to the kernel for KVM or out for
2063 * migration. This only needs to be provided if there is also a
c4241c7d 2064 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2065 */
2066 CPReadFn *raw_readfn;
2067 /* Function for doing a "raw" write; used when we need to copy KVM
2068 * kernel coprocessor state into userspace, or for inbound
2069 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2070 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2071 * or similar behaviour.
7023ec7e
PM
2072 */
2073 CPWriteFn *raw_writefn;
4b6a83fb
PM
2074 /* Function for resetting the register. If NULL, then reset will be done
2075 * by writing resetvalue to the field specified in fieldoffset. If
2076 * fieldoffset is 0 then no reset will be done.
2077 */
2078 CPResetFn *resetfn;
2079};
2080
2081/* Macros which are lvalues for the field in CPUARMState for the
2082 * ARMCPRegInfo *ri.
2083 */
2084#define CPREG_FIELD32(env, ri) \
2085 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2086#define CPREG_FIELD64(env, ri) \
2087 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2088
2089#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2090
2091void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2092 const ARMCPRegInfo *regs, void *opaque);
2093void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2094 const ARMCPRegInfo *regs, void *opaque);
2095static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2096{
2097 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2098}
2099static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2100{
2101 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2102}
60322b39 2103const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
2104
2105/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2106void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2107 uint64_t value);
4b6a83fb 2108/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2109uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2110
f5a0a5a5
PM
2111/* CPResetFn that does nothing, for use if no reset is required even
2112 * if fieldoffset is non zero.
2113 */
2114void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2115
67ed771d
PM
2116/* Return true if this reginfo struct's field in the cpu state struct
2117 * is 64 bits wide.
2118 */
2119static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2120{
2121 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2122}
2123
dcbff19b 2124static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2125 const ARMCPRegInfo *ri, int isread)
2126{
dcbff19b 2127 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2128}
2129
49a66191
PM
2130/* Raw read of a coprocessor register (as needed for migration, etc) */
2131uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2132
721fae12
PM
2133/**
2134 * write_list_to_cpustate
2135 * @cpu: ARMCPU
2136 *
2137 * For each register listed in the ARMCPU cpreg_indexes list, write
2138 * its value from the cpreg_values list into the ARMCPUState structure.
2139 * This updates TCG's working data structures from KVM data or
2140 * from incoming migration state.
2141 *
2142 * Returns: true if all register values were updated correctly,
2143 * false if some register was unknown or could not be written.
2144 * Note that we do not stop early on failure -- we will attempt
2145 * writing all registers in the list.
2146 */
2147bool write_list_to_cpustate(ARMCPU *cpu);
2148
2149/**
2150 * write_cpustate_to_list:
2151 * @cpu: ARMCPU
2152 *
2153 * For each register listed in the ARMCPU cpreg_indexes list, write
2154 * its value from the ARMCPUState structure into the cpreg_values list.
2155 * This is used to copy info from TCG's working data structures into
2156 * KVM or for outbound migration.
2157 *
2158 * Returns: true if all register values were read correctly,
2159 * false if some register was unknown or could not be read.
2160 * Note that we do not stop early on failure -- we will attempt
2161 * reading all registers in the list.
2162 */
2163bool write_cpustate_to_list(ARMCPU *cpu);
2164
9ee6e8bb
PB
2165#define ARM_CPUID_TI915T 0x54029152
2166#define ARM_CPUID_TI925T 0x54029252
40f137e1 2167
b5ff1b31 2168#if defined(CONFIG_USER_ONLY)
2c0262af 2169#define TARGET_PAGE_BITS 12
b5ff1b31 2170#else
e97da98f
PM
2171/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2172 * have to support 1K tiny pages.
2173 */
2174#define TARGET_PAGE_BITS_VARY
2175#define TARGET_PAGE_BITS_MIN 10
b5ff1b31 2176#endif
9467d44c 2177
3926cc84
AG
2178#if defined(TARGET_AARCH64)
2179# define TARGET_PHYS_ADDR_SPACE_BITS 48
2180# define TARGET_VIRT_ADDR_SPACE_BITS 64
2181#else
2182# define TARGET_PHYS_ADDR_SPACE_BITS 40
2183# define TARGET_VIRT_ADDR_SPACE_BITS 32
2184#endif
52705890 2185
012a906b
GB
2186static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2187 unsigned int target_el)
043b7f8d
EI
2188{
2189 CPUARMState *env = cs->env_ptr;
dcbff19b 2190 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2191 bool secure = arm_is_secure(env);
57e3a0c7
GB
2192 bool pstate_unmasked;
2193 int8_t unmasked = 0;
2194
2195 /* Don't take exceptions if they target a lower EL.
2196 * This check should catch any exceptions that would not be taken but left
2197 * pending.
2198 */
dfafd090
EI
2199 if (cur_el > target_el) {
2200 return false;
2201 }
043b7f8d
EI
2202
2203 switch (excp_idx) {
2204 case EXCP_FIQ:
57e3a0c7
GB
2205 pstate_unmasked = !(env->daif & PSTATE_F);
2206 break;
2207
043b7f8d 2208 case EXCP_IRQ:
57e3a0c7
GB
2209 pstate_unmasked = !(env->daif & PSTATE_I);
2210 break;
2211
136e67e9 2212 case EXCP_VFIQ:
9fae24f5 2213 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
136e67e9
EI
2214 /* VFIQs are only taken when hypervized and non-secure. */
2215 return false;
2216 }
2217 return !(env->daif & PSTATE_F);
2218 case EXCP_VIRQ:
9fae24f5 2219 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
136e67e9
EI
2220 /* VIRQs are only taken when hypervized and non-secure. */
2221 return false;
2222 }
b5c633c5 2223 return !(env->daif & PSTATE_I);
043b7f8d
EI
2224 default:
2225 g_assert_not_reached();
2226 }
57e3a0c7
GB
2227
2228 /* Use the target EL, current execution state and SCR/HCR settings to
2229 * determine whether the corresponding CPSR bit is used to mask the
2230 * interrupt.
2231 */
2232 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2233 /* Exceptions targeting a higher EL may not be maskable */
2234 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2235 /* 64-bit masking rules are simple: exceptions to EL3
2236 * can't be masked, and exceptions to EL2 can only be
2237 * masked from Secure state. The HCR and SCR settings
2238 * don't affect the masking logic, only the interrupt routing.
2239 */
2240 if (target_el == 3 || !secure) {
2241 unmasked = 1;
2242 }
2243 } else {
2244 /* The old 32-bit-only environment has a more complicated
2245 * masking setup. HCR and SCR bits not only affect interrupt
2246 * routing but also change the behaviour of masking.
2247 */
2248 bool hcr, scr;
2249
2250 switch (excp_idx) {
2251 case EXCP_FIQ:
2252 /* If FIQs are routed to EL3 or EL2 then there are cases where
2253 * we override the CPSR.F in determining if the exception is
2254 * masked or not. If neither of these are set then we fall back
2255 * to the CPSR.F setting otherwise we further assess the state
2256 * below.
2257 */
2258 hcr = (env->cp15.hcr_el2 & HCR_FMO);
2259 scr = (env->cp15.scr_el3 & SCR_FIQ);
2260
2261 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2262 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2263 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2264 * when non-secure but only when FIQs are only routed to EL3.
2265 */
2266 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2267 break;
2268 case EXCP_IRQ:
2269 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2270 * we may override the CPSR.I masking when in non-secure state.
2271 * The SCR.IRQ setting has already been taken into consideration
2272 * when setting the target EL, so it does not have a further
2273 * affect here.
2274 */
2275 hcr = (env->cp15.hcr_el2 & HCR_IMO);
2276 scr = false;
2277 break;
2278 default:
2279 g_assert_not_reached();
2280 }
2281
2282 if ((scr || hcr) && !secure) {
2283 unmasked = 1;
2284 }
57e3a0c7
GB
2285 }
2286 }
2287
2288 /* The PSTATE bits only mask the interrupt if we have not overriden the
2289 * ability above.
2290 */
2291 return unmasked || pstate_unmasked;
043b7f8d
EI
2292}
2293
701e3c78 2294#define cpu_init(cpu_model) cpu_generic_init(TYPE_ARM_CPU, cpu_model)
ad37ad5b 2295
ba1ba5cc
IM
2296#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2297#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2298
9467d44c 2299#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2300#define cpu_list arm_cpu_list
9467d44c 2301
c1e37810
PM
2302/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2303 *
2304 * If EL3 is 64-bit:
2305 * + NonSecure EL1 & 0 stage 1
2306 * + NonSecure EL1 & 0 stage 2
2307 * + NonSecure EL2
2308 * + Secure EL1 & EL0
2309 * + Secure EL3
2310 * If EL3 is 32-bit:
2311 * + NonSecure PL1 & 0 stage 1
2312 * + NonSecure PL1 & 0 stage 2
2313 * + NonSecure PL2
2314 * + Secure PL0 & PL1
2315 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2316 *
2317 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2318 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2319 * may differ in access permissions even if the VA->PA map is the same
2320 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2321 * translation, which means that we have one mmu_idx that deals with two
2322 * concatenated translation regimes [this sort of combined s1+2 TLB is
2323 * architecturally permitted]
2324 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2325 * handling via the TLB. The only way to do a stage 1 translation without
2326 * the immediate stage 2 translation is via the ATS or AT system insns,
2327 * which can be slow-pathed and always do a page table walk.
2328 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2329 * translation regimes, because they map reasonably well to each other
2330 * and they can't both be active at the same time.
2331 * This gives us the following list of mmu_idx values:
2332 *
2333 * NS EL0 (aka NS PL0) stage 1+2
2334 * NS EL1 (aka NS PL1) stage 1+2
2335 * NS EL2 (aka NS PL2)
2336 * S EL3 (aka S PL1)
2337 * S EL0 (aka S PL0)
2338 * S EL1 (not used if EL3 is 32 bit)
2339 * NS EL0+1 stage 2
2340 *
2341 * (The last of these is an mmu_idx because we want to be able to use the TLB
2342 * for the accesses done as part of a stage 1 page table walk, rather than
2343 * having to walk the stage 2 page table over and over.)
2344 *
3bef7012
PM
2345 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2346 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2347 * NS EL2 if we ever model a Cortex-R52).
2348 *
2349 * M profile CPUs are rather different as they do not have a true MMU.
2350 * They have the following different MMU indexes:
2351 * User
2352 * Privileged
62593718
PM
2353 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2354 * Privileged, execution priority negative (ditto)
66787c78
PM
2355 * If the CPU supports the v8M Security Extension then there are also:
2356 * Secure User
2357 * Secure Privileged
62593718
PM
2358 * Secure User, execution priority negative
2359 * Secure Privileged, execution priority negative
3bef7012 2360 *
8bd5c820
PM
2361 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2362 * are not quite the same -- different CPU types (most notably M profile
2363 * vs A/R profile) would like to use MMU indexes with different semantics,
2364 * but since we don't ever need to use all of those in a single CPU we
2365 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2366 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2367 * the same for any particular CPU.
2368 * Variables of type ARMMUIdx are always full values, and the core
2369 * index values are in variables of type 'int'.
2370 *
c1e37810
PM
2371 * Our enumeration includes at the end some entries which are not "true"
2372 * mmu_idx values in that they don't have corresponding TLBs and are only
2373 * valid for doing slow path page table walks.
2374 *
2375 * The constant names here are patterned after the general style of the names
2376 * of the AT/ATS operations.
2377 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2378 * For M profile we arrange them to have a bit for priv, a bit for negpri
2379 * and a bit for secure.
c1e37810 2380 */
e7b921c2 2381#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2382#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2383#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2384
62593718
PM
2385/* meanings of the bits for M profile mmu idx values */
2386#define ARM_MMU_IDX_M_PRIV 0x1
2387#define ARM_MMU_IDX_M_NEGPRI 0x2
2388#define ARM_MMU_IDX_M_S 0x4
2389
8bd5c820
PM
2390#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2391#define ARM_MMU_IDX_COREIDX_MASK 0x7
2392
c1e37810 2393typedef enum ARMMMUIdx {
8bd5c820
PM
2394 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2395 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2396 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2397 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2398 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2399 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2400 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2401 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2402 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
62593718
PM
2403 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2404 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2405 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2406 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2407 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2408 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
c1e37810
PM
2409 /* Indexes below here don't have TLBs and are used only for AT system
2410 * instructions or for the first stage of an S12 page table walk.
2411 */
8bd5c820
PM
2412 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2413 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2414} ARMMMUIdx;
2415
8bd5c820
PM
2416/* Bit macros for the core-mmu-index values for each index,
2417 * for use when calling tlb_flush_by_mmuidx() and friends.
2418 */
2419typedef enum ARMMMUIdxBit {
2420 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2421 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2422 ARMMMUIdxBit_S1E2 = 1 << 2,
2423 ARMMMUIdxBit_S1E3 = 1 << 3,
2424 ARMMMUIdxBit_S1SE0 = 1 << 4,
2425 ARMMMUIdxBit_S1SE1 = 1 << 5,
2426 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2427 ARMMMUIdxBit_MUser = 1 << 0,
2428 ARMMMUIdxBit_MPriv = 1 << 1,
62593718
PM
2429 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2430 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2431 ARMMMUIdxBit_MSUser = 1 << 4,
2432 ARMMMUIdxBit_MSPriv = 1 << 5,
2433 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2434 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
8bd5c820
PM
2435} ARMMMUIdxBit;
2436
f79fbf39 2437#define MMU_USER_IDX 0
c1e37810 2438
8bd5c820
PM
2439static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2440{
2441 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2442}
2443
2444static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2445{
e7b921c2
PM
2446 if (arm_feature(env, ARM_FEATURE_M)) {
2447 return mmu_idx | ARM_MMU_IDX_M;
2448 } else {
2449 return mmu_idx | ARM_MMU_IDX_A;
2450 }
8bd5c820
PM
2451}
2452
c1e37810
PM
2453/* Return the exception level we're running at if this is our mmu_idx */
2454static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2455{
8bd5c820
PM
2456 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2457 case ARM_MMU_IDX_A:
2458 return mmu_idx & 3;
e7b921c2 2459 case ARM_MMU_IDX_M:
62593718 2460 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2461 default:
2462 g_assert_not_reached();
2463 }
c1e37810
PM
2464}
2465
ec8e3340
PM
2466/* Return the MMU index for a v7M CPU in the specified security and
2467 * privilege state
2468 */
2469static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2470 bool secstate,
2471 bool priv)
b81ac0eb 2472{
62593718 2473 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
b81ac0eb 2474
ec8e3340 2475 if (priv) {
62593718 2476 mmu_idx |= ARM_MMU_IDX_M_PRIV;
b81ac0eb
PM
2477 }
2478
2479 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
62593718
PM
2480 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2481 }
2482
2483 if (secstate) {
2484 mmu_idx |= ARM_MMU_IDX_M_S;
b81ac0eb
PM
2485 }
2486
2487 return mmu_idx;
2488}
2489
ec8e3340
PM
2490/* Return the MMU index for a v7M CPU in the specified security state */
2491static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2492 bool secstate)
2493{
2494 bool priv = arm_current_el(env) != 0;
2495
2496 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2497}
2498
c1e37810 2499/* Determine the current mmu_idx to use for normal loads/stores */
97ed5ccd 2500static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
c1e37810
PM
2501{
2502 int el = arm_current_el(env);
2503
e7b921c2 2504 if (arm_feature(env, ARM_FEATURE_M)) {
b81ac0eb 2505 ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
3bef7012 2506
e7b921c2
PM
2507 return arm_to_core_mmu_idx(mmu_idx);
2508 }
2509
c1e37810 2510 if (el < 2 && arm_is_secure_below_el3(env)) {
8bd5c820 2511 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
c1e37810
PM
2512 }
2513 return el;
6ebbf390
JM
2514}
2515
9e273ef2
PM
2516/* Indexes used when registering address spaces with cpu_address_space_init */
2517typedef enum ARMASIdx {
2518 ARMASIdx_NS = 0,
2519 ARMASIdx_S = 1,
2520} ARMASIdx;
2521
533e93f1 2522/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2523static inline int arm_debug_target_el(CPUARMState *env)
2524{
81669b8b
SF
2525 bool secure = arm_is_secure(env);
2526 bool route_to_el2 = false;
2527
2528 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2529 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2530 env->cp15.mdcr_el2 & (1 << 8);
2531 }
2532
2533 if (route_to_el2) {
2534 return 2;
2535 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2536 !arm_el_is_aa64(env, 3) && secure) {
2537 return 3;
2538 } else {
2539 return 1;
2540 }
3a298203
PM
2541}
2542
43bbce7f
PM
2543static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2544{
2545 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2546 * CSSELR is RAZ/WI.
2547 */
2548 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2549}
2550
3a298203
PM
2551static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2552{
533e93f1
PM
2553 if (arm_is_secure(env)) {
2554 /* MDCR_EL3.SDD disables debug events from Secure state */
2555 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2556 || arm_current_el(env) == 3) {
2557 return false;
2558 }
2559 }
2560
dcbff19b 2561 if (arm_current_el(env) == arm_debug_target_el(env)) {
3a298203
PM
2562 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2563 || (env->daif & PSTATE_D)) {
2564 return false;
2565 }
2566 }
2567 return true;
2568}
2569
2570static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2571{
533e93f1
PM
2572 int el = arm_current_el(env);
2573
2574 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
2575 return aa64_generate_debug_exceptions(env);
2576 }
533e93f1
PM
2577
2578 if (arm_is_secure(env)) {
2579 int spd;
2580
2581 if (el == 0 && (env->cp15.sder & 1)) {
2582 /* SDER.SUIDEN means debug exceptions from Secure EL0
2583 * are always enabled. Otherwise they are controlled by
2584 * SDCR.SPD like those from other Secure ELs.
2585 */
2586 return true;
2587 }
2588
2589 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2590 switch (spd) {
2591 case 1:
2592 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2593 case 0:
2594 /* For 0b00 we return true if external secure invasive debug
2595 * is enabled. On real hardware this is controlled by external
2596 * signals to the core. QEMU always permits debug, and behaves
2597 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2598 */
2599 return true;
2600 case 2:
2601 return false;
2602 case 3:
2603 return true;
2604 }
2605 }
2606
2607 return el != 2;
3a298203
PM
2608}
2609
2610/* Return true if debugging exceptions are currently enabled.
2611 * This corresponds to what in ARM ARM pseudocode would be
2612 * if UsingAArch32() then
2613 * return AArch32.GenerateDebugExceptions()
2614 * else
2615 * return AArch64.GenerateDebugExceptions()
2616 * We choose to push the if() down into this function for clarity,
2617 * since the pseudocode has it at all callsites except for the one in
2618 * CheckSoftwareStep(), where it is elided because both branches would
2619 * always return the same value.
2620 *
2621 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2622 * don't yet implement those exception levels or their associated trap bits.
2623 */
2624static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2625{
2626 if (env->aarch64) {
2627 return aa64_generate_debug_exceptions(env);
2628 } else {
2629 return aa32_generate_debug_exceptions(env);
2630 }
2631}
2632
2633/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2634 * implicitly means this always returns false in pre-v8 CPUs.)
2635 */
2636static inline bool arm_singlestep_active(CPUARMState *env)
2637{
2638 return extract32(env->cp15.mdscr_el1, 0, 1)
2639 && arm_el_is_aa64(env, arm_debug_target_el(env))
2640 && arm_generate_debug_exceptions(env);
2641}
2642
f9fd40eb
PB
2643static inline bool arm_sctlr_b(CPUARMState *env)
2644{
2645 return
2646 /* We need not implement SCTLR.ITD in user-mode emulation, so
2647 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2648 * This lets people run BE32 binaries with "-cpu any".
2649 */
2650#ifndef CONFIG_USER_ONLY
2651 !arm_feature(env, ARM_FEATURE_V7) &&
2652#endif
2653 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2654}
2655
ed50ff78
PC
2656/* Return true if the processor is in big-endian mode. */
2657static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2658{
2659 int cur_el;
2660
2661 /* In 32bit endianness is determined by looking at CPSR's E bit */
2662 if (!is_a64(env)) {
b2e62d9a
PC
2663 return
2664#ifdef CONFIG_USER_ONLY
2665 /* In system mode, BE32 is modelled in line with the
2666 * architecture (as word-invariant big-endianness), where loads
2667 * and stores are done little endian but from addresses which
2668 * are adjusted by XORing with the appropriate constant. So the
2669 * endianness to use for the raw data access is not affected by
2670 * SCTLR.B.
2671 * In user mode, however, we model BE32 as byte-invariant
2672 * big-endianness (because user-only code cannot tell the
2673 * difference), and so we need to use a data access endianness
2674 * that depends on SCTLR.B.
2675 */
2676 arm_sctlr_b(env) ||
2677#endif
2678 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
ed50ff78
PC
2679 }
2680
2681 cur_el = arm_current_el(env);
2682
2683 if (cur_el == 0) {
2684 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2685 }
2686
2687 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2688}
2689
022c62cb 2690#include "exec/cpu-all.h"
622ed360 2691
3926cc84
AG
2692/* Bit usage in the TB flags field: bit 31 indicates whether we are
2693 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
2694 * We put flags which are shared between 32 and 64 bit mode at the top
2695 * of the word, and flags which apply to only one mode at the bottom.
3926cc84
AG
2696 */
2697#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2698#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
2699#define ARM_TBFLAG_MMUIDX_SHIFT 28
2700#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
2701#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2702#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2703#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2704#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
2705/* Target EL if we take a floating-point-disabled exception */
2706#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2707#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
3926cc84
AG
2708
2709/* Bit usage when in AArch32 state: */
a1705768
PM
2710#define ARM_TBFLAG_THUMB_SHIFT 0
2711#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2712#define ARM_TBFLAG_VECLEN_SHIFT 1
2713#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2714#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2715#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
2716#define ARM_TBFLAG_VFPEN_SHIFT 7
2717#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2718#define ARM_TBFLAG_CONDEXEC_SHIFT 8
2719#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb
PB
2720#define ARM_TBFLAG_SCTLR_B_SHIFT 16
2721#define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
c0f4af17
PM
2722/* We store the bottom two bits of the CPAR as TB flags and handle
2723 * checks on the other bits at runtime
2724 */
647f767b 2725#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
c0f4af17 2726#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
2727/* Indicates whether cp register reads and writes by guest code should access
2728 * the secure or nonsecure bank of banked registers; note that this is not
2729 * the same thing as the current security state of the processor!
2730 */
647f767b 2731#define ARM_TBFLAG_NS_SHIFT 19
3f342b9e 2732#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
91cca2cd
PC
2733#define ARM_TBFLAG_BE_DATA_SHIFT 20
2734#define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
064c379c
PM
2735/* For M profile only, Handler (ie not Thread) mode */
2736#define ARM_TBFLAG_HANDLER_SHIFT 21
2737#define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
3926cc84 2738
86fb3fa4
TH
2739/* Bit usage when in AArch64 state */
2740#define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2741#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2742#define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2743#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
1db5e96c
RH
2744#define ARM_TBFLAG_SVEEXC_EL_SHIFT 2
2745#define ARM_TBFLAG_SVEEXC_EL_MASK (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
2746#define ARM_TBFLAG_ZCR_LEN_SHIFT 4
2747#define ARM_TBFLAG_ZCR_LEN_MASK (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
a1705768
PM
2748
2749/* some convenience accessor macros */
3926cc84
AG
2750#define ARM_TBFLAG_AARCH64_STATE(F) \
2751 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
2752#define ARM_TBFLAG_MMUIDX(F) \
2753 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
2754#define ARM_TBFLAG_SS_ACTIVE(F) \
2755 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2756#define ARM_TBFLAG_PSTATE_SS(F) \
2757 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
2758#define ARM_TBFLAG_FPEXC_EL(F) \
2759 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
a1705768
PM
2760#define ARM_TBFLAG_THUMB(F) \
2761 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2762#define ARM_TBFLAG_VECLEN(F) \
2763 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2764#define ARM_TBFLAG_VECSTRIDE(F) \
2765 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
2766#define ARM_TBFLAG_VFPEN(F) \
2767 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2768#define ARM_TBFLAG_CONDEXEC(F) \
2769 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb
PB
2770#define ARM_TBFLAG_SCTLR_B(F) \
2771 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
c0f4af17
PM
2772#define ARM_TBFLAG_XSCALE_CPAR(F) \
2773 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
2774#define ARM_TBFLAG_NS(F) \
2775 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
91cca2cd
PC
2776#define ARM_TBFLAG_BE_DATA(F) \
2777 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
064c379c
PM
2778#define ARM_TBFLAG_HANDLER(F) \
2779 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
86fb3fa4
TH
2780#define ARM_TBFLAG_TBI0(F) \
2781 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2782#define ARM_TBFLAG_TBI1(F) \
2783 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
1db5e96c
RH
2784#define ARM_TBFLAG_SVEEXC_EL(F) \
2785 (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
2786#define ARM_TBFLAG_ZCR_LEN(F) \
2787 (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
a1705768 2788
f9fd40eb
PB
2789static inline bool bswap_code(bool sctlr_b)
2790{
2791#ifdef CONFIG_USER_ONLY
2792 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2793 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2794 * would also end up as a mixed-endian mode with BE code, LE data.
2795 */
2796 return
2797#ifdef TARGET_WORDS_BIGENDIAN
2798 1 ^
2799#endif
2800 sctlr_b;
2801#else
e334bd31
PB
2802 /* All code access in ARM is little endian, and there are no loaders
2803 * doing swaps that need to be reversed
f9fd40eb
PB
2804 */
2805 return 0;
2806#endif
2807}
2808
c3ae85fc
PB
2809#ifdef CONFIG_USER_ONLY
2810static inline bool arm_cpu_bswap_data(CPUARMState *env)
2811{
2812 return
2813#ifdef TARGET_WORDS_BIGENDIAN
2814 1 ^
2815#endif
2816 arm_cpu_data_is_big_endian(env);
2817}
2818#endif
2819
86fb3fa4
TH
2820#ifndef CONFIG_USER_ONLY
2821/**
2822 * arm_regime_tbi0:
2823 * @env: CPUARMState
2824 * @mmu_idx: MMU index indicating required translation regime
2825 *
2826 * Extracts the TBI0 value from the appropriate TCR for the current EL
2827 *
2828 * Returns: the TBI0 value.
2829 */
2830uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2831
2832/**
2833 * arm_regime_tbi1:
2834 * @env: CPUARMState
2835 * @mmu_idx: MMU index indicating required translation regime
2836 *
2837 * Extracts the TBI1 value from the appropriate TCR for the current EL
2838 *
2839 * Returns: the TBI1 value.
2840 */
2841uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2842#else
2843/* We can't handle tagged addresses properly in user-only mode */
2844static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2845{
2846 return 0;
2847}
2848
2849static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2850{
2851 return 0;
2852}
2853#endif
2854
a9e01311
RH
2855void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2856 target_ulong *cs_base, uint32_t *flags);
6b917547 2857
98128601
RH
2858enum {
2859 QEMU_PSCI_CONDUIT_DISABLED = 0,
2860 QEMU_PSCI_CONDUIT_SMC = 1,
2861 QEMU_PSCI_CONDUIT_HVC = 2,
2862};
2863
017518c1
PM
2864#ifndef CONFIG_USER_ONLY
2865/* Return the address space index to use for a memory access */
2866static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2867{
2868 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2869}
5ce4ff65
PM
2870
2871/* Return the AddressSpace to use for a memory access
2872 * (which depends on whether the access is S or NS, and whether
2873 * the board gave us a separate AddressSpace for S accesses).
2874 */
2875static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2876{
2877 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2878}
017518c1
PM
2879#endif
2880
bd7d00fc
PM
2881/**
2882 * arm_register_el_change_hook:
2883 * Register a hook function which will be called back whenever this
2884 * CPU changes exception level or mode. The hook function will be
2885 * passed a pointer to the ARMCPU and the opaque data pointer passed
2886 * to this function when the hook was registered.
2887 *
2888 * Note that we currently only support registering a single hook function,
2889 * and will assert if this function is called twice.
2890 * This facility is intended for the use of the GICv3 emulation.
2891 */
2892void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2893 void *opaque);
2894
2895/**
2896 * arm_get_el_change_hook_opaque:
2897 * Return the opaque data that will be used by the el_change_hook
2898 * for this CPU.
2899 */
2900static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2901{
2902 return cpu->el_change_hook_opaque;
2903}
2904
9a2b5256
RH
2905/**
2906 * aa32_vfp_dreg:
2907 * Return a pointer to the Dn register within env in 32-bit mode.
2908 */
2909static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
2910{
c39c2b90 2911 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
2912}
2913
2914/**
2915 * aa32_vfp_qreg:
2916 * Return a pointer to the Qn register within env in 32-bit mode.
2917 */
2918static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
2919{
c39c2b90 2920 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
2921}
2922
2923/**
2924 * aa64_vfp_qreg:
2925 * Return a pointer to the Qn register within env in 64-bit mode.
2926 */
2927static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
2928{
c39c2b90 2929 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
2930}
2931
2c0262af 2932#endif