]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Introduce isar_feature_aa64_bti
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
72b0cd35 25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
3926cc84
AG
29#else
30# define TARGET_LONG_BITS 32
3926cc84 31#endif
9042c0e2 32
ca759f9e
AB
33/* ARM processors have a weak memory model */
34#define TCG_GUEST_DEFAULT_MO (0)
35
9349b4f9 36#define CPUArchState struct CPUARMState
c2764719 37
9a78eead 38#include "qemu-common.h"
74e75564 39#include "cpu-qom.h"
022c62cb 40#include "exec/cpu-defs.h"
2c0262af 41
b8a9e8f1
FB
42#define EXCP_UDEF 1 /* undefined instruction */
43#define EXCP_SWI 2 /* software interrupt */
44#define EXCP_PREFETCH_ABORT 3
45#define EXCP_DATA_ABORT 4
b5ff1b31
FB
46#define EXCP_IRQ 5
47#define EXCP_FIQ 6
06c949e6 48#define EXCP_BKPT 7
9ee6e8bb 49#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 50#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 51#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 52#define EXCP_HYP_TRAP 12
e0d6e6a5 53#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
54#define EXCP_VIRQ 14
55#define EXCP_VFIQ 15
19a6e31c 56#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 57#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 58#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 59#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 93
e4fe830b
PM
94/* The usual mapping for an AArch64 system register to its AArch32
95 * counterpart is for the 32 bit world to have access to the lower
96 * half only (with writes leaving the upper half untouched). It's
97 * therefore useful to be able to pass TCG the offset of the least
98 * significant half of a uint64_t struct member.
99 */
100#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 101#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 102#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
103#else
104#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 105#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
106#endif
107
136e67e9 108/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
109#define ARM_CPU_IRQ 0
110#define ARM_CPU_FIQ 1
136e67e9
EI
111#define ARM_CPU_VIRQ 2
112#define ARM_CPU_VFIQ 3
403946c0 113
62593718 114#define NB_MMU_MODES 8
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
140 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141 * @cpregs_keys: Array that contains the corresponding Key of
142 * a given cpreg with the same order of the cpreg in the XML description.
143 */
144typedef struct DynamicGDBXMLInfo {
145 char *desc;
146 int num_cpregs;
147 uint32_t *cpregs_keys;
148} DynamicGDBXMLInfo;
149
55d284af
PM
150/* CPU state for each instance of a generic timer (in cp15 c14) */
151typedef struct ARMGenericTimer {
152 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 153 uint64_t ctl; /* Timer Control register */
55d284af
PM
154} ARMGenericTimer;
155
156#define GTIMER_PHYS 0
157#define GTIMER_VIRT 1
b0e66d95 158#define GTIMER_HYP 2
b4d3978c
PM
159#define GTIMER_SEC 3
160#define NUM_GTIMERS 4
55d284af 161
11f136ee
FA
162typedef struct {
163 uint64_t raw_tcr;
164 uint32_t mask;
165 uint32_t base_mask;
166} TCR;
167
c39c2b90
RH
168/* Define a maximum sized vector register.
169 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170 * For 64-bit, this is a 2048-bit SVE register.
171 *
172 * Note that the mapping between S, D, and Q views of the register bank
173 * differs between AArch64 and AArch32.
174 * In AArch32:
175 * Qn = regs[n].d[1]:regs[n].d[0]
176 * Dn = regs[n / 2].d[n & 1]
177 * Sn = regs[n / 4].d[n % 4 / 2],
178 * bits 31..0 for even n, and bits 63..32 for odd n
179 * (and regs[16] to regs[31] are inaccessible)
180 * In AArch64:
181 * Zn = regs[n].d[*]
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n].d[0]
184 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 185 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
186 *
187 * This corresponds to the architecturally defined mapping between
188 * the two execution states, and means we do not need to explicitly
189 * map these registers when changing states.
190 *
191 * Align the data for use with TCG host vector operations.
192 */
193
194#ifdef TARGET_AARCH64
195# define ARM_MAX_VQ 16
196#else
197# define ARM_MAX_VQ 1
198#endif
199
200typedef struct ARMVectorReg {
201 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202} ARMVectorReg;
203
3c7d3086 204#ifdef TARGET_AARCH64
991ad91b 205/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086
RH
206typedef struct ARMPredicateReg {
207 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208} ARMPredicateReg;
991ad91b
RH
209
210/* In AArch32 mode, PAC keys do not exist at all. */
211typedef struct ARMPACKey {
212 uint64_t lo, hi;
213} ARMPACKey;
3c7d3086
RH
214#endif
215
c39c2b90 216
2c0262af 217typedef struct CPUARMState {
b5ff1b31 218 /* Regs for current mode. */
2c0262af 219 uint32_t regs[16];
3926cc84
AG
220
221 /* 32/64 switch only happens when taking and returning from
222 * exceptions so the overlap semantics are taken care of then
223 * instead of having a complicated union.
224 */
225 /* Regs for A64 mode. */
226 uint64_t xregs[32];
227 uint64_t pc;
d356312f
PM
228 /* PSTATE isn't an architectural register for ARMv8. However, it is
229 * convenient for us to assemble the underlying state into a 32 bit format
230 * identical to the architectural format used for the SPSR. (This is also
231 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
232 * 'pstate' register are.) Of the PSTATE bits:
233 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
234 * semantics as for AArch32, as described in the comments on each field)
235 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 236 * DAIF (exception masks) are kept in env->daif
d356312f 237 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
238 */
239 uint32_t pstate;
240 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
241
b90372ad 242 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 243 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
244 the whole CPSR. */
245 uint32_t uncached_cpsr;
246 uint32_t spsr;
247
248 /* Banked registers. */
28c9457d 249 uint64_t banked_spsr[8];
0b7d409d
FA
250 uint32_t banked_r13[8];
251 uint32_t banked_r14[8];
3b46e624 252
b5ff1b31
FB
253 /* These hold r8-r12. */
254 uint32_t usr_regs[5];
255 uint32_t fiq_regs[5];
3b46e624 256
2c0262af
FB
257 /* cpsr flag cache for faster execution */
258 uint32_t CF; /* 0 or 1 */
259 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
260 uint32_t NF; /* N is bit 31. All other bits are undefined. */
261 uint32_t ZF; /* Z set if zero. */
99c475ab 262 uint32_t QF; /* 0 or 1 */
9ee6e8bb 263 uint32_t GE; /* cpsr[19:16] */
b26eefb6 264 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 265 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
b6af0975 266 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 267
1b174238 268 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 269 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 270
b5ff1b31
FB
271 /* System control coprocessor (cp15) */
272 struct {
40f137e1 273 uint32_t c0_cpuid;
b85a1fd6
FA
274 union { /* Cache size selection */
275 struct {
276 uint64_t _unused_csselr0;
277 uint64_t csselr_ns;
278 uint64_t _unused_csselr1;
279 uint64_t csselr_s;
280 };
281 uint64_t csselr_el[4];
282 };
137feaa9
FA
283 union { /* System control register. */
284 struct {
285 uint64_t _unused_sctlr;
286 uint64_t sctlr_ns;
287 uint64_t hsctlr;
288 uint64_t sctlr_s;
289 };
290 uint64_t sctlr_el[4];
291 };
7ebd5f2e 292 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 293 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 294 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 295 uint64_t sder; /* Secure debug enable register. */
77022576 296 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
297 union { /* MMU translation table base 0. */
298 struct {
299 uint64_t _unused_ttbr0_0;
300 uint64_t ttbr0_ns;
301 uint64_t _unused_ttbr0_1;
302 uint64_t ttbr0_s;
303 };
304 uint64_t ttbr0_el[4];
305 };
306 union { /* MMU translation table base 1. */
307 struct {
308 uint64_t _unused_ttbr1_0;
309 uint64_t ttbr1_ns;
310 uint64_t _unused_ttbr1_1;
311 uint64_t ttbr1_s;
312 };
313 uint64_t ttbr1_el[4];
314 };
b698e9cf 315 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
316 /* MMU translation table base control. */
317 TCR tcr_el[4];
68e9c2fe 318 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
319 uint32_t c2_data; /* MPU data cacheable bits. */
320 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
321 union { /* MMU domain access control register
322 * MPU write buffer control.
323 */
324 struct {
325 uint64_t dacr_ns;
326 uint64_t dacr_s;
327 };
328 struct {
329 uint64_t dacr32_el2;
330 };
331 };
7e09797c
PM
332 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
333 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 334 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 335 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
336 union { /* Fault status registers. */
337 struct {
338 uint64_t ifsr_ns;
339 uint64_t ifsr_s;
340 };
341 struct {
342 uint64_t ifsr32_el2;
343 };
344 };
4a7e2d73
FA
345 union {
346 struct {
347 uint64_t _unused_dfsr;
348 uint64_t dfsr_ns;
349 uint64_t hsr;
350 uint64_t dfsr_s;
351 };
352 uint64_t esr_el[4];
353 };
ce819861 354 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
355 union { /* Fault address registers. */
356 struct {
357 uint64_t _unused_far0;
358#ifdef HOST_WORDS_BIGENDIAN
359 uint32_t ifar_ns;
360 uint32_t dfar_ns;
361 uint32_t ifar_s;
362 uint32_t dfar_s;
363#else
364 uint32_t dfar_ns;
365 uint32_t ifar_ns;
366 uint32_t dfar_s;
367 uint32_t ifar_s;
368#endif
369 uint64_t _unused_far3;
370 };
371 uint64_t far_el[4];
372 };
59e05530 373 uint64_t hpfar_el2;
2a5a9abd 374 uint64_t hstr_el2;
01c097f7
FA
375 union { /* Translation result. */
376 struct {
377 uint64_t _unused_par_0;
378 uint64_t par_ns;
379 uint64_t _unused_par_1;
380 uint64_t par_s;
381 };
382 uint64_t par_el[4];
383 };
6cb0b013 384
b5ff1b31
FB
385 uint32_t c9_insn; /* Cache lockdown registers. */
386 uint32_t c9_data;
8521466b
AF
387 uint64_t c9_pmcr; /* performance monitor control register */
388 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
389 uint64_t c9_pmovsr; /* perf monitor overflow status */
390 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 391 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 392 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
393 union { /* Memory attribute redirection */
394 struct {
395#ifdef HOST_WORDS_BIGENDIAN
396 uint64_t _unused_mair_0;
397 uint32_t mair1_ns;
398 uint32_t mair0_ns;
399 uint64_t _unused_mair_1;
400 uint32_t mair1_s;
401 uint32_t mair0_s;
402#else
403 uint64_t _unused_mair_0;
404 uint32_t mair0_ns;
405 uint32_t mair1_ns;
406 uint64_t _unused_mair_1;
407 uint32_t mair0_s;
408 uint32_t mair1_s;
409#endif
410 };
411 uint64_t mair_el[4];
412 };
fb6c91ba
GB
413 union { /* vector base address register */
414 struct {
415 uint64_t _unused_vbar;
416 uint64_t vbar_ns;
417 uint64_t hvbar;
418 uint64_t vbar_s;
419 };
420 uint64_t vbar_el[4];
421 };
e89e51a1 422 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
423 struct { /* FCSE PID. */
424 uint32_t fcseidr_ns;
425 uint32_t fcseidr_s;
426 };
427 union { /* Context ID. */
428 struct {
429 uint64_t _unused_contextidr_0;
430 uint64_t contextidr_ns;
431 uint64_t _unused_contextidr_1;
432 uint64_t contextidr_s;
433 };
434 uint64_t contextidr_el[4];
435 };
436 union { /* User RW Thread register. */
437 struct {
438 uint64_t tpidrurw_ns;
439 uint64_t tpidrprw_ns;
440 uint64_t htpidr;
441 uint64_t _tpidr_el3;
442 };
443 uint64_t tpidr_el[4];
444 };
445 /* The secure banks of these registers don't map anywhere */
446 uint64_t tpidrurw_s;
447 uint64_t tpidrprw_s;
448 uint64_t tpidruro_s;
449
450 union { /* User RO Thread register. */
451 uint64_t tpidruro_ns;
452 uint64_t tpidrro_el[1];
453 };
a7adc4b7
PM
454 uint64_t c14_cntfrq; /* Counter Frequency register */
455 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 456 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 457 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 458 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 459 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
460 uint32_t c15_ticonfig; /* TI925T configuration byte. */
461 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
462 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
463 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
464 uint32_t c15_config_base_address; /* SCU base address. */
465 uint32_t c15_diagnostic; /* diagnostic register */
466 uint32_t c15_power_diagnostic;
467 uint32_t c15_power_control; /* power control */
0b45451e
PM
468 uint64_t dbgbvr[16]; /* breakpoint value registers */
469 uint64_t dbgbcr[16]; /* breakpoint control registers */
470 uint64_t dbgwvr[16]; /* watchpoint value registers */
471 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 472 uint64_t mdscr_el1;
1424ca8d 473 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 474 uint64_t mdcr_el2;
5513c3ab 475 uint64_t mdcr_el3;
5d05b9d4
AL
476 /* Stores the architectural value of the counter *the last time it was
477 * updated* by pmccntr_op_start. Accesses should always be surrounded
478 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
479 * architecturally-correct value is being read/set.
7c2cb42b 480 */
c92c0687 481 uint64_t c15_ccnt;
5d05b9d4
AL
482 /* Stores the delta between the architectural value and the underlying
483 * cycle count during normal operation. It is used to update c15_ccnt
484 * to be the correct architectural value before accesses. During
485 * accesses, c15_ccnt_delta contains the underlying count being used
486 * for the access, after which it reverts to the delta value in
487 * pmccntr_op_finish.
488 */
489 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
490 uint64_t c14_pmevcntr[31];
491 uint64_t c14_pmevcntr_delta[31];
492 uint64_t c14_pmevtyper[31];
8521466b 493 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 494 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 495 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 496 } cp15;
40f137e1 497
9ee6e8bb 498 struct {
fb602cb7
PM
499 /* M profile has up to 4 stack pointers:
500 * a Main Stack Pointer and a Process Stack Pointer for each
501 * of the Secure and Non-Secure states. (If the CPU doesn't support
502 * the security extension then it has only two SPs.)
503 * In QEMU we always store the currently active SP in regs[13],
504 * and the non-active SP for the current security state in
505 * v7m.other_sp. The stack pointers for the inactive security state
506 * are stored in other_ss_msp and other_ss_psp.
507 * switch_v7m_security_state() is responsible for rearranging them
508 * when we change security state.
509 */
9ee6e8bb 510 uint32_t other_sp;
fb602cb7
PM
511 uint32_t other_ss_msp;
512 uint32_t other_ss_psp;
4a16724f
PM
513 uint32_t vecbase[M_REG_NUM_BANKS];
514 uint32_t basepri[M_REG_NUM_BANKS];
515 uint32_t control[M_REG_NUM_BANKS];
516 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
517 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
518 uint32_t hfsr; /* HardFault Status */
519 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 520 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 521 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 522 uint32_t bfar; /* BusFault Address */
bed079da 523 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 524 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 525 int exception;
4a16724f
PM
526 uint32_t primask[M_REG_NUM_BANKS];
527 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 528 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 529 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 530 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 531 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
532 uint32_t msplim[M_REG_NUM_BANKS];
533 uint32_t psplim[M_REG_NUM_BANKS];
9ee6e8bb
PB
534 } v7m;
535
abf1172f
PM
536 /* Information associated with an exception about to be taken:
537 * code which raises an exception must set cs->exception_index and
538 * the relevant parts of this structure; the cpu_do_interrupt function
539 * will then set the guest-visible registers as part of the exception
540 * entry process.
541 */
542 struct {
543 uint32_t syndrome; /* AArch64 format syndrome register */
544 uint32_t fsr; /* AArch32 format fault status register info */
545 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 546 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
547 /* If we implement EL2 we will also need to store information
548 * about the intermediate physical address for stage 2 faults.
549 */
550 } exception;
551
202ccb6b
DG
552 /* Information associated with an SError */
553 struct {
554 uint8_t pending;
555 uint8_t has_esr;
556 uint64_t esr;
557 } serror;
558
ed89f078
PM
559 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
560 uint32_t irq_line_state;
561
fe1479c3
PB
562 /* Thumb-2 EE state. */
563 uint32_t teecr;
564 uint32_t teehbr;
565
b7bcbe95
FB
566 /* VFP coprocessor state. */
567 struct {
c39c2b90 568 ARMVectorReg zregs[32];
b7bcbe95 569
3c7d3086
RH
570#ifdef TARGET_AARCH64
571 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 572#define FFR_PRED_NUM 16
3c7d3086 573 ARMPredicateReg pregs[17];
516e246a
RH
574 /* Scratch space for aa64 sve predicate temporary. */
575 ARMPredicateReg preg_tmp;
3c7d3086
RH
576#endif
577
40f137e1 578 uint32_t xregs[16];
b7bcbe95
FB
579 /* We store these fpcsr fields separately for convenience. */
580 int vec_len;
581 int vec_stride;
582
516e246a 583 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 584 uint32_t scratch[8];
3b46e624 585
d81ce0ef
AB
586 /* There are a number of distinct float control structures:
587 *
588 * fp_status: is the "normal" fp status.
589 * fp_status_fp16: used for half-precision calculations
590 * standard_fp_status : the ARM "Standard FPSCR Value"
591 *
592 * Half-precision operations are governed by a separate
593 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
594 * status structure to control this.
595 *
596 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
597 * round-to-nearest and is used by any operations (generally
598 * Neon) which the architecture defines as controlled by the
599 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
600 *
601 * To avoid having to transfer exception bits around, we simply
602 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 603 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
604 * only thing which needs to read the exception flags being
605 * an explicit FPSCR read.
606 */
53cd6637 607 float_status fp_status;
d81ce0ef 608 float_status fp_status_f16;
3a492f3a 609 float_status standard_fp_status;
5be5e8ed
RH
610
611 /* ZCR_EL[1-3] */
612 uint64_t zcr_el[4];
b7bcbe95 613 } vfp;
03d05e2d
PM
614 uint64_t exclusive_addr;
615 uint64_t exclusive_val;
616 uint64_t exclusive_high;
b7bcbe95 617
18c9b560
AZ
618 /* iwMMXt coprocessor state. */
619 struct {
620 uint64_t regs[16];
621 uint64_t val;
622
623 uint32_t cregs[16];
624 } iwmmxt;
625
991ad91b
RH
626#ifdef TARGET_AARCH64
627 ARMPACKey apia_key;
628 ARMPACKey apib_key;
629 ARMPACKey apda_key;
630 ARMPACKey apdb_key;
631 ARMPACKey apga_key;
632#endif
633
ce4defa0
PB
634#if defined(CONFIG_USER_ONLY)
635 /* For usermode syscall translation. */
636 int eabi;
637#endif
638
46747d15 639 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
640 struct CPUWatchpoint *cpu_watchpoint[16];
641
1f5c00cf
AB
642 /* Fields up to this point are cleared by a CPU reset */
643 struct {} end_reset_fields;
644
a316d335
FB
645 CPU_COMMON
646
1f5c00cf 647 /* Fields after CPU_COMMON are preserved across CPU reset. */
9ba8c3f4 648
581be094 649 /* Internal CPU feature flags. */
918f5dca 650 uint64_t features;
581be094 651
6cb0b013
PC
652 /* PMSAv7 MPU */
653 struct {
654 uint32_t *drbar;
655 uint32_t *drsr;
656 uint32_t *dracr;
4a16724f 657 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
658 } pmsav7;
659
0e1a46bb
PM
660 /* PMSAv8 MPU */
661 struct {
662 /* The PMSAv8 implementation also shares some PMSAv7 config
663 * and state:
664 * pmsav7.rnr (region number register)
665 * pmsav7_dregion (number of configured regions)
666 */
4a16724f
PM
667 uint32_t *rbar[M_REG_NUM_BANKS];
668 uint32_t *rlar[M_REG_NUM_BANKS];
669 uint32_t mair0[M_REG_NUM_BANKS];
670 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
671 } pmsav8;
672
9901c576
PM
673 /* v8M SAU */
674 struct {
675 uint32_t *rbar;
676 uint32_t *rlar;
677 uint32_t rnr;
678 uint32_t ctrl;
679 } sau;
680
983fe826 681 void *nvic;
462a8bc6 682 const struct arm_boot_info *boot_info;
d3a3e529
VK
683 /* Store GICv3CPUState to access from this struct */
684 void *gicv3state;
2c0262af
FB
685} CPUARMState;
686
bd7d00fc 687/**
08267487 688 * ARMELChangeHookFn:
bd7d00fc
PM
689 * type of a function which can be registered via arm_register_el_change_hook()
690 * to get callbacks when the CPU changes its exception level or mode.
691 */
08267487
AL
692typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
693typedef struct ARMELChangeHook ARMELChangeHook;
694struct ARMELChangeHook {
695 ARMELChangeHookFn *hook;
696 void *opaque;
697 QLIST_ENTRY(ARMELChangeHook) node;
698};
062ba099
AB
699
700/* These values map onto the return values for
701 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
702typedef enum ARMPSCIState {
d5affb0d
AJ
703 PSCI_ON = 0,
704 PSCI_OFF = 1,
062ba099
AB
705 PSCI_ON_PENDING = 2
706} ARMPSCIState;
707
962fcbf2
RH
708typedef struct ARMISARegisters ARMISARegisters;
709
74e75564
PB
710/**
711 * ARMCPU:
712 * @env: #CPUARMState
713 *
714 * An ARM CPU core.
715 */
716struct ARMCPU {
717 /*< private >*/
718 CPUState parent_obj;
719 /*< public >*/
720
721 CPUARMState env;
722
723 /* Coprocessor information */
724 GHashTable *cp_regs;
725 /* For marshalling (mostly coprocessor) register state between the
726 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
727 * we use these arrays.
728 */
729 /* List of register indexes managed via these arrays; (full KVM style
730 * 64 bit indexes, not CPRegInfo 32 bit indexes)
731 */
732 uint64_t *cpreg_indexes;
733 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
734 uint64_t *cpreg_values;
735 /* Length of the indexes, values, reset_values arrays */
736 int32_t cpreg_array_len;
737 /* These are used only for migration: incoming data arrives in
738 * these fields and is sanity checked in post_load before copying
739 * to the working data structures above.
740 */
741 uint64_t *cpreg_vmstate_indexes;
742 uint64_t *cpreg_vmstate_values;
743 int32_t cpreg_vmstate_array_len;
744
200bf5b7
AB
745 DynamicGDBXMLInfo dyn_xml;
746
74e75564
PB
747 /* Timers used by the generic (architected) timer */
748 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
749 /*
750 * Timer used by the PMU. Its state is restored after migration by
751 * pmu_op_finish() - it does not need other handling during migration
752 */
753 QEMUTimer *pmu_timer;
74e75564
PB
754 /* GPIO outputs for generic timer */
755 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
756 /* GPIO output for GICv3 maintenance interrupt signal */
757 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
758 /* GPIO output for the PMU interrupt */
759 qemu_irq pmu_interrupt;
74e75564
PB
760
761 /* MemoryRegion to use for secure physical accesses */
762 MemoryRegion *secure_memory;
763
181962fd
PM
764 /* For v8M, pointer to the IDAU interface provided by board/SoC */
765 Object *idau;
766
74e75564
PB
767 /* 'compatible' string for this CPU for Linux device trees */
768 const char *dtb_compatible;
769
770 /* PSCI version for this CPU
771 * Bits[31:16] = Major Version
772 * Bits[15:0] = Minor Version
773 */
774 uint32_t psci_version;
775
776 /* Should CPU start in PSCI powered-off state? */
777 bool start_powered_off;
062ba099
AB
778
779 /* Current power state, access guarded by BQL */
780 ARMPSCIState power_state;
781
c25bd18a
PM
782 /* CPU has virtualization extension */
783 bool has_el2;
74e75564
PB
784 /* CPU has security extension */
785 bool has_el3;
5c0a3819
SZ
786 /* CPU has PMU (Performance Monitor Unit) */
787 bool has_pmu;
74e75564
PB
788
789 /* CPU has memory protection unit */
790 bool has_mpu;
791 /* PMSAv7 MPU number of supported regions */
792 uint32_t pmsav7_dregion;
9901c576
PM
793 /* v8M SAU number of supported regions */
794 uint32_t sau_sregion;
74e75564
PB
795
796 /* PSCI conduit used to invoke PSCI methods
797 * 0 - disabled, 1 - smc, 2 - hvc
798 */
799 uint32_t psci_conduit;
800
38e2a77c
PM
801 /* For v8M, initial value of the Secure VTOR */
802 uint32_t init_svtor;
803
74e75564
PB
804 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
805 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
806 */
807 uint32_t kvm_target;
808
809 /* KVM init features for this CPU */
810 uint32_t kvm_init_features[7];
811
812 /* Uniprocessor system with MP extensions */
813 bool mp_is_up;
814
c4487d76
PM
815 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
816 * and the probe failed (so we need to report the error in realize)
817 */
818 bool host_cpu_probe_failed;
819
f9a69711
AF
820 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
821 * register.
822 */
823 int32_t core_count;
824
74e75564
PB
825 /* The instance init functions for implementation-specific subclasses
826 * set these fields to specify the implementation-dependent values of
827 * various constant registers and reset values of non-constant
828 * registers.
829 * Some of these might become QOM properties eventually.
830 * Field names match the official register names as defined in the
831 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
832 * is used for reset values of non-constant registers; no reset_
833 * prefix means a constant register.
47576b94
RH
834 * Some of these registers are split out into a substructure that
835 * is shared with the translators to control the ISA.
74e75564 836 */
47576b94
RH
837 struct ARMISARegisters {
838 uint32_t id_isar0;
839 uint32_t id_isar1;
840 uint32_t id_isar2;
841 uint32_t id_isar3;
842 uint32_t id_isar4;
843 uint32_t id_isar5;
844 uint32_t id_isar6;
845 uint32_t mvfr0;
846 uint32_t mvfr1;
847 uint32_t mvfr2;
848 uint64_t id_aa64isar0;
849 uint64_t id_aa64isar1;
850 uint64_t id_aa64pfr0;
851 uint64_t id_aa64pfr1;
3dc91ddb
PM
852 uint64_t id_aa64mmfr0;
853 uint64_t id_aa64mmfr1;
47576b94 854 } isar;
74e75564
PB
855 uint32_t midr;
856 uint32_t revidr;
857 uint32_t reset_fpsid;
74e75564
PB
858 uint32_t ctr;
859 uint32_t reset_sctlr;
860 uint32_t id_pfr0;
861 uint32_t id_pfr1;
862 uint32_t id_dfr0;
cad86737
AL
863 uint64_t pmceid0;
864 uint64_t pmceid1;
74e75564
PB
865 uint32_t id_afr0;
866 uint32_t id_mmfr0;
867 uint32_t id_mmfr1;
868 uint32_t id_mmfr2;
869 uint32_t id_mmfr3;
870 uint32_t id_mmfr4;
74e75564
PB
871 uint64_t id_aa64dfr0;
872 uint64_t id_aa64dfr1;
873 uint64_t id_aa64afr0;
874 uint64_t id_aa64afr1;
74e75564
PB
875 uint32_t dbgdidr;
876 uint32_t clidr;
877 uint64_t mp_affinity; /* MP ID without feature bits */
878 /* The elements of this array are the CCSIDR values for each cache,
879 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
880 */
881 uint32_t ccsidr[16];
882 uint64_t reset_cbar;
883 uint32_t reset_auxcr;
884 bool reset_hivecs;
885 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
886 uint32_t dcz_blocksize;
887 uint64_t rvbar;
bd7d00fc 888
e45868a3
PM
889 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
890 int gic_num_lrs; /* number of list registers */
891 int gic_vpribits; /* number of virtual priority bits */
892 int gic_vprebits; /* number of virtual preemption bits */
893
3a062d57
JB
894 /* Whether the cfgend input is high (i.e. this CPU should reset into
895 * big-endian mode). This setting isn't used directly: instead it modifies
896 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
897 * architecture version.
898 */
899 bool cfgend;
900
b5c53d1b 901 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 902 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
903
904 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
905
906 /* Used to synchronize KVM and QEMU in-kernel device levels */
907 uint8_t device_irq_level;
adf92eab
RH
908
909 /* Used to set the maximum vector length the cpu will support. */
910 uint32_t sve_max_vq;
74e75564
PB
911};
912
913static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
914{
915 return container_of(env, ARMCPU, env);
916}
917
51e5ef45
MAL
918void arm_cpu_post_init(Object *obj);
919
46de5913
IM
920uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
921
74e75564
PB
922#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
923
924#define ENV_OFFSET offsetof(ARMCPU, env)
925
926#ifndef CONFIG_USER_ONLY
927extern const struct VMStateDescription vmstate_arm_cpu;
928#endif
929
930void arm_cpu_do_interrupt(CPUState *cpu);
931void arm_v7m_cpu_do_interrupt(CPUState *cpu);
932bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
933
934void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
935 int flags);
936
937hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
938 MemTxAttrs *attrs);
939
940int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
941int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
942
200bf5b7
AB
943/* Dynamically generates for gdb stub an XML description of the sysregs from
944 * the cp_regs hashtable. Returns the registered sysregs number.
945 */
946int arm_gen_dynamic_xml(CPUState *cpu);
947
948/* Returns the dynamically generated XML for the gdb stub.
949 * Returns a pointer to the XML contents for the specified XML file or NULL
950 * if the XML name doesn't match the predefined one.
951 */
952const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
953
74e75564
PB
954int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
955 int cpuid, void *opaque);
956int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
957 int cpuid, void *opaque);
958
959#ifdef TARGET_AARCH64
960int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
961int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 962void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
963void aarch64_sve_change_el(CPUARMState *env, int old_el,
964 int new_el, bool el0_a64);
0ab5953b
RH
965#else
966static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
967static inline void aarch64_sve_change_el(CPUARMState *env, int o,
968 int n, bool a)
969{ }
74e75564 970#endif
778c3a06 971
faacc041 972target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
973void aarch64_sync_32_to_64(CPUARMState *env);
974void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 975
ced31551
RH
976int fp_exception_el(CPUARMState *env, int cur_el);
977int sve_exception_el(CPUARMState *env, int cur_el);
978uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
979
3926cc84
AG
980static inline bool is_a64(CPUARMState *env)
981{
982 return env->aarch64;
983}
984
2c0262af
FB
985/* you can call this signal handler from your SIGBUS and SIGSEGV
986 signal handlers to inform the virtual CPU of exceptions. non zero
987 is returned if the signal was handled by the virtual CPU. */
5fafdf24 988int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
989 void *puc);
990
ec7b4ce4 991/**
5d05b9d4
AL
992 * pmccntr_op_start/finish
993 * @env: CPUARMState
994 *
995 * Convert the counter in the PMCCNTR between its delta form (the typical mode
996 * when it's enabled) and the guest-visible value. These two calls must always
997 * surround any action which might affect the counter.
998 */
999void pmccntr_op_start(CPUARMState *env);
1000void pmccntr_op_finish(CPUARMState *env);
1001
1002/**
1003 * pmu_op_start/finish
ec7b4ce4
AF
1004 * @env: CPUARMState
1005 *
5d05b9d4
AL
1006 * Convert all PMU counters between their delta form (the typical mode when
1007 * they are enabled) and the guest-visible values. These two calls must
1008 * surround any action which might affect the counters.
ec7b4ce4 1009 */
5d05b9d4
AL
1010void pmu_op_start(CPUARMState *env);
1011void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1012
4e7beb0c
AL
1013/*
1014 * Called when a PMU counter is due to overflow
1015 */
1016void arm_pmu_timer_cb(void *opaque);
1017
033614c4
AL
1018/**
1019 * Functions to register as EL change hooks for PMU mode filtering
1020 */
1021void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1022void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1023
57a4a11b 1024/*
bf8d0969
AL
1025 * pmu_init
1026 * @cpu: ARMCPU
57a4a11b 1027 *
bf8d0969
AL
1028 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1029 * for the current configuration
57a4a11b 1030 */
bf8d0969 1031void pmu_init(ARMCPU *cpu);
57a4a11b 1032
76e3e1bc
PM
1033/* SCTLR bit meanings. Several bits have been reused in newer
1034 * versions of the architecture; in that case we define constants
1035 * for both old and new bit meanings. Code which tests against those
1036 * bits should probably check or otherwise arrange that the CPU
1037 * is the architectural version it expects.
1038 */
1039#define SCTLR_M (1U << 0)
1040#define SCTLR_A (1U << 1)
1041#define SCTLR_C (1U << 2)
1042#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1043#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1044#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1045#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1046#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1047#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1048#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1049#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1050#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1051#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1052#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1053#define SCTLR_ITD (1U << 7) /* v8 onward */
1054#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1055#define SCTLR_SED (1U << 8) /* v8 onward */
1056#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1057#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1058#define SCTLR_F (1U << 10) /* up to v6 */
b2af69d0
RH
1059#define SCTLR_SW (1U << 10) /* v7, RES0 in v8 */
1060#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1061#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1062#define SCTLR_I (1U << 12)
b2af69d0
RH
1063#define SCTLR_V (1U << 13) /* AArch32 only */
1064#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1065#define SCTLR_RR (1U << 14) /* up to v7 */
1066#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1067#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1068#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1069#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1070#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1071#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1072#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1073#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1074#define SCTLR_nTWE (1U << 18) /* v8 onward */
1075#define SCTLR_WXN (1U << 19)
1076#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1077#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1078#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1079#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1080#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1081#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1082#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1083#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1084#define SCTLR_VE (1U << 24) /* up to v7 */
1085#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1086#define SCTLR_EE (1U << 25)
1087#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1088#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1089#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1090#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1091#define SCTLR_TRE (1U << 28) /* AArch32 only */
1092#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1093#define SCTLR_AFE (1U << 29) /* AArch32 only */
1094#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1095#define SCTLR_TE (1U << 30) /* AArch32 only */
1096#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1097#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1098#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1099#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1100#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1101#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1102#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1103#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1104#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1105#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1106
c6f19164
GB
1107#define CPTR_TCPAC (1U << 31)
1108#define CPTR_TTA (1U << 20)
1109#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1110#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1111#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1112
187f678d
PM
1113#define MDCR_EPMAD (1U << 21)
1114#define MDCR_EDAD (1U << 20)
033614c4
AL
1115#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1116#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1117#define MDCR_SDD (1U << 16)
a8d64e73 1118#define MDCR_SPD (3U << 14)
187f678d
PM
1119#define MDCR_TDRA (1U << 11)
1120#define MDCR_TDOSA (1U << 10)
1121#define MDCR_TDA (1U << 9)
1122#define MDCR_TDE (1U << 8)
1123#define MDCR_HPME (1U << 7)
1124#define MDCR_TPM (1U << 6)
1125#define MDCR_TPMCR (1U << 5)
033614c4 1126#define MDCR_HPMN (0x1fU)
187f678d 1127
a8d64e73
PM
1128/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1129#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1130
78dbbbe4
PM
1131#define CPSR_M (0x1fU)
1132#define CPSR_T (1U << 5)
1133#define CPSR_F (1U << 6)
1134#define CPSR_I (1U << 7)
1135#define CPSR_A (1U << 8)
1136#define CPSR_E (1U << 9)
1137#define CPSR_IT_2_7 (0xfc00U)
1138#define CPSR_GE (0xfU << 16)
4051e12c
PM
1139#define CPSR_IL (1U << 20)
1140/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1141 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1142 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1143 * where it is live state but not accessible to the AArch32 code.
1144 */
1145#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
1146#define CPSR_J (1U << 24)
1147#define CPSR_IT_0_1 (3U << 25)
1148#define CPSR_Q (1U << 27)
1149#define CPSR_V (1U << 28)
1150#define CPSR_C (1U << 29)
1151#define CPSR_Z (1U << 30)
1152#define CPSR_N (1U << 31)
9ee6e8bb 1153#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1154#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1155
1156#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1157#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1158 | CPSR_NZCV)
9ee6e8bb
PB
1159/* Bits writable in user mode. */
1160#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1161/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
1162#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1163/* Mask of bits which may be set by exception return copying them from SPSR */
1164#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1165
987ab45e
PM
1166/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1167#define XPSR_EXCP 0x1ffU
1168#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1169#define XPSR_IT_2_7 CPSR_IT_2_7
1170#define XPSR_GE CPSR_GE
1171#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1172#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1173#define XPSR_IT_0_1 CPSR_IT_0_1
1174#define XPSR_Q CPSR_Q
1175#define XPSR_V CPSR_V
1176#define XPSR_C CPSR_C
1177#define XPSR_Z CPSR_Z
1178#define XPSR_N CPSR_N
1179#define XPSR_NZCV CPSR_NZCV
1180#define XPSR_IT CPSR_IT
1181
e389be16
FA
1182#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1183#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1184#define TTBCR_PD0 (1U << 4)
1185#define TTBCR_PD1 (1U << 5)
1186#define TTBCR_EPD0 (1U << 7)
1187#define TTBCR_IRGN0 (3U << 8)
1188#define TTBCR_ORGN0 (3U << 10)
1189#define TTBCR_SH0 (3U << 12)
1190#define TTBCR_T1SZ (3U << 16)
1191#define TTBCR_A1 (1U << 22)
1192#define TTBCR_EPD1 (1U << 23)
1193#define TTBCR_IRGN1 (3U << 24)
1194#define TTBCR_ORGN1 (3U << 26)
1195#define TTBCR_SH1 (1U << 28)
1196#define TTBCR_EAE (1U << 31)
1197
d356312f
PM
1198/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1199 * Only these are valid when in AArch64 mode; in
1200 * AArch32 mode SPSRs are basically CPSR-format.
1201 */
f502cfc2 1202#define PSTATE_SP (1U)
d356312f
PM
1203#define PSTATE_M (0xFU)
1204#define PSTATE_nRW (1U << 4)
1205#define PSTATE_F (1U << 6)
1206#define PSTATE_I (1U << 7)
1207#define PSTATE_A (1U << 8)
1208#define PSTATE_D (1U << 9)
1209#define PSTATE_IL (1U << 20)
1210#define PSTATE_SS (1U << 21)
1211#define PSTATE_V (1U << 28)
1212#define PSTATE_C (1U << 29)
1213#define PSTATE_Z (1U << 30)
1214#define PSTATE_N (1U << 31)
1215#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614
PM
1216#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1217#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
d356312f
PM
1218/* Mode values for AArch64 */
1219#define PSTATE_MODE_EL3h 13
1220#define PSTATE_MODE_EL3t 12
1221#define PSTATE_MODE_EL2h 9
1222#define PSTATE_MODE_EL2t 8
1223#define PSTATE_MODE_EL1h 5
1224#define PSTATE_MODE_EL1t 4
1225#define PSTATE_MODE_EL0t 0
1226
de2db7ec
PM
1227/* Write a new value to v7m.exception, thus transitioning into or out
1228 * of Handler mode; this may result in a change of active stack pointer.
1229 */
1230void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1231
9e729b57
EI
1232/* Map EL and handler into a PSTATE_MODE. */
1233static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1234{
1235 return (el << 2) | handler;
1236}
1237
d356312f
PM
1238/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1239 * interprocessing, so we don't attempt to sync with the cpsr state used by
1240 * the 32 bit decoder.
1241 */
1242static inline uint32_t pstate_read(CPUARMState *env)
1243{
1244 int ZF;
1245
1246 ZF = (env->ZF == 0);
1247 return (env->NF & 0x80000000) | (ZF << 30)
1248 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
4cc35614 1249 | env->pstate | env->daif;
d356312f
PM
1250}
1251
1252static inline void pstate_write(CPUARMState *env, uint32_t val)
1253{
1254 env->ZF = (~val) & PSTATE_Z;
1255 env->NF = val;
1256 env->CF = (val >> 29) & 1;
1257 env->VF = (val << 3) & 0x80000000;
4cc35614 1258 env->daif = val & PSTATE_DAIF;
d356312f
PM
1259 env->pstate = val & ~CACHED_PSTATE_BITS;
1260}
1261
b5ff1b31 1262/* Return the current CPSR value. */
2f4a40e5 1263uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1264
1265typedef enum CPSRWriteType {
1266 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1267 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1268 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1269 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1270} CPSRWriteType;
1271
1272/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1273void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1274 CPSRWriteType write_type);
9ee6e8bb
PB
1275
1276/* Return the current xPSR value. */
1277static inline uint32_t xpsr_read(CPUARMState *env)
1278{
1279 int ZF;
6fbe23d5
PB
1280 ZF = (env->ZF == 0);
1281 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1282 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1283 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1284 | ((env->condexec_bits & 0xfc) << 8)
1285 | env->v7m.exception;
b5ff1b31
FB
1286}
1287
9ee6e8bb
PB
1288/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1289static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1290{
987ab45e
PM
1291 if (mask & XPSR_NZCV) {
1292 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1293 env->NF = val;
9ee6e8bb
PB
1294 env->CF = (val >> 29) & 1;
1295 env->VF = (val << 3) & 0x80000000;
1296 }
987ab45e
PM
1297 if (mask & XPSR_Q) {
1298 env->QF = ((val & XPSR_Q) != 0);
1299 }
1300 if (mask & XPSR_T) {
1301 env->thumb = ((val & XPSR_T) != 0);
1302 }
1303 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1304 env->condexec_bits &= ~3;
1305 env->condexec_bits |= (val >> 25) & 3;
1306 }
987ab45e 1307 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1308 env->condexec_bits &= 3;
1309 env->condexec_bits |= (val >> 8) & 0xfc;
1310 }
987ab45e 1311 if (mask & XPSR_EXCP) {
de2db7ec
PM
1312 /* Note that this only happens on exception exit */
1313 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1314 }
1315}
1316
f149e3e8
EI
1317#define HCR_VM (1ULL << 0)
1318#define HCR_SWIO (1ULL << 1)
1319#define HCR_PTW (1ULL << 2)
1320#define HCR_FMO (1ULL << 3)
1321#define HCR_IMO (1ULL << 4)
1322#define HCR_AMO (1ULL << 5)
1323#define HCR_VF (1ULL << 6)
1324#define HCR_VI (1ULL << 7)
1325#define HCR_VSE (1ULL << 8)
1326#define HCR_FB (1ULL << 9)
1327#define HCR_BSU_MASK (3ULL << 10)
1328#define HCR_DC (1ULL << 12)
1329#define HCR_TWI (1ULL << 13)
1330#define HCR_TWE (1ULL << 14)
1331#define HCR_TID0 (1ULL << 15)
1332#define HCR_TID1 (1ULL << 16)
1333#define HCR_TID2 (1ULL << 17)
1334#define HCR_TID3 (1ULL << 18)
1335#define HCR_TSC (1ULL << 19)
1336#define HCR_TIDCP (1ULL << 20)
1337#define HCR_TACR (1ULL << 21)
1338#define HCR_TSW (1ULL << 22)
099bf53b 1339#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1340#define HCR_TPU (1ULL << 24)
1341#define HCR_TTLB (1ULL << 25)
1342#define HCR_TVM (1ULL << 26)
1343#define HCR_TGE (1ULL << 27)
1344#define HCR_TDZ (1ULL << 28)
1345#define HCR_HCD (1ULL << 29)
1346#define HCR_TRVM (1ULL << 30)
1347#define HCR_RW (1ULL << 31)
1348#define HCR_CD (1ULL << 32)
1349#define HCR_ID (1ULL << 33)
ac656b16 1350#define HCR_E2H (1ULL << 34)
099bf53b
RH
1351#define HCR_TLOR (1ULL << 35)
1352#define HCR_TERR (1ULL << 36)
1353#define HCR_TEA (1ULL << 37)
1354#define HCR_MIOCNCE (1ULL << 38)
1355#define HCR_APK (1ULL << 40)
1356#define HCR_API (1ULL << 41)
1357#define HCR_NV (1ULL << 42)
1358#define HCR_NV1 (1ULL << 43)
1359#define HCR_AT (1ULL << 44)
1360#define HCR_NV2 (1ULL << 45)
1361#define HCR_FWB (1ULL << 46)
1362#define HCR_FIEN (1ULL << 47)
1363#define HCR_TID4 (1ULL << 49)
1364#define HCR_TICAB (1ULL << 50)
1365#define HCR_TOCU (1ULL << 52)
1366#define HCR_TTLBIS (1ULL << 54)
1367#define HCR_TTLBOS (1ULL << 55)
1368#define HCR_ATA (1ULL << 56)
1369#define HCR_DCT (1ULL << 57)
1370
ac656b16
PM
1371/*
1372 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1373 * HCR_MASK and then clear it again if the feature bit is not set in
1374 * hcr_write().
1375 */
f149e3e8
EI
1376#define HCR_MASK ((1ULL << 34) - 1)
1377
64e0e2de
EI
1378#define SCR_NS (1U << 0)
1379#define SCR_IRQ (1U << 1)
1380#define SCR_FIQ (1U << 2)
1381#define SCR_EA (1U << 3)
1382#define SCR_FW (1U << 4)
1383#define SCR_AW (1U << 5)
1384#define SCR_NET (1U << 6)
1385#define SCR_SMD (1U << 7)
1386#define SCR_HCE (1U << 8)
1387#define SCR_SIF (1U << 9)
1388#define SCR_RW (1U << 10)
1389#define SCR_ST (1U << 11)
1390#define SCR_TWI (1U << 12)
1391#define SCR_TWE (1U << 13)
99f8f86d
RH
1392#define SCR_TLOR (1U << 14)
1393#define SCR_TERR (1U << 15)
1394#define SCR_APK (1U << 16)
1395#define SCR_API (1U << 17)
1396#define SCR_EEL2 (1U << 18)
1397#define SCR_EASE (1U << 19)
1398#define SCR_NMEA (1U << 20)
1399#define SCR_FIEN (1U << 21)
1400#define SCR_ENSCXT (1U << 25)
1401#define SCR_ATA (1U << 26)
64e0e2de 1402
01653295
PM
1403/* Return the current FPSCR value. */
1404uint32_t vfp_get_fpscr(CPUARMState *env);
1405void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1406
d81ce0ef
AB
1407/* FPCR, Floating Point Control Register
1408 * FPSR, Floating Poiht Status Register
1409 *
1410 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1411 * FPCR and FPSR. However since they still use non-overlapping bits
1412 * we store the underlying state in fpscr and just mask on read/write.
1413 */
1414#define FPSR_MASK 0xf800009f
0b62159b 1415#define FPCR_MASK 0x07ff9f00
d81ce0ef
AB
1416
1417#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1418#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1419#define FPCR_DN (1 << 25) /* Default NaN enable bit */
1420
f903fa22
PM
1421static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1422{
1423 return vfp_get_fpscr(env) & FPSR_MASK;
1424}
1425
1426static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1427{
1428 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1429 vfp_set_fpscr(env, new_fpscr);
1430}
1431
1432static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1433{
1434 return vfp_get_fpscr(env) & FPCR_MASK;
1435}
1436
1437static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1438{
1439 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1440 vfp_set_fpscr(env, new_fpscr);
1441}
1442
b5ff1b31
FB
1443enum arm_cpu_mode {
1444 ARM_CPU_MODE_USR = 0x10,
1445 ARM_CPU_MODE_FIQ = 0x11,
1446 ARM_CPU_MODE_IRQ = 0x12,
1447 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1448 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1449 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1450 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1451 ARM_CPU_MODE_UND = 0x1b,
1452 ARM_CPU_MODE_SYS = 0x1f
1453};
1454
40f137e1
PB
1455/* VFP system registers. */
1456#define ARM_VFP_FPSID 0
1457#define ARM_VFP_FPSCR 1
a50c0f51 1458#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1459#define ARM_VFP_MVFR1 6
1460#define ARM_VFP_MVFR0 7
40f137e1
PB
1461#define ARM_VFP_FPEXC 8
1462#define ARM_VFP_FPINST 9
1463#define ARM_VFP_FPINST2 10
1464
18c9b560 1465/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1466#define ARM_IWMMXT_wCID 0
1467#define ARM_IWMMXT_wCon 1
1468#define ARM_IWMMXT_wCSSF 2
1469#define ARM_IWMMXT_wCASF 3
1470#define ARM_IWMMXT_wCGR0 8
1471#define ARM_IWMMXT_wCGR1 9
1472#define ARM_IWMMXT_wCGR2 10
1473#define ARM_IWMMXT_wCGR3 11
18c9b560 1474
2c4da50d
PM
1475/* V7M CCR bits */
1476FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1477FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1478FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1479FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1480FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1481FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1482FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1483FIELD(V7M_CCR, DC, 16, 1)
1484FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1485FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1486
24ac0fb1
PM
1487/* V7M SCR bits */
1488FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1489FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1490FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1491FIELD(V7M_SCR, SEVONPEND, 4, 1)
1492
3b2e9344
PM
1493/* V7M AIRCR bits */
1494FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1495FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1496FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1497FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1498FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1499FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1500FIELD(V7M_AIRCR, PRIS, 14, 1)
1501FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1502FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1503
2c4da50d
PM
1504/* V7M CFSR bits for MMFSR */
1505FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1506FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1507FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1508FIELD(V7M_CFSR, MSTKERR, 4, 1)
1509FIELD(V7M_CFSR, MLSPERR, 5, 1)
1510FIELD(V7M_CFSR, MMARVALID, 7, 1)
1511
1512/* V7M CFSR bits for BFSR */
1513FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1514FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1515FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1516FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1517FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1518FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1519FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1520
1521/* V7M CFSR bits for UFSR */
1522FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1523FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1524FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1525FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1526FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1527FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1528FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1529
334e8dad
PM
1530/* V7M CFSR bit masks covering all of the subregister bits */
1531FIELD(V7M_CFSR, MMFSR, 0, 8)
1532FIELD(V7M_CFSR, BFSR, 8, 8)
1533FIELD(V7M_CFSR, UFSR, 16, 16)
1534
2c4da50d
PM
1535/* V7M HFSR bits */
1536FIELD(V7M_HFSR, VECTTBL, 1, 1)
1537FIELD(V7M_HFSR, FORCED, 30, 1)
1538FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1539
1540/* V7M DFSR bits */
1541FIELD(V7M_DFSR, HALTED, 0, 1)
1542FIELD(V7M_DFSR, BKPT, 1, 1)
1543FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1544FIELD(V7M_DFSR, VCATCH, 3, 1)
1545FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1546
bed079da
PM
1547/* V7M SFSR bits */
1548FIELD(V7M_SFSR, INVEP, 0, 1)
1549FIELD(V7M_SFSR, INVIS, 1, 1)
1550FIELD(V7M_SFSR, INVER, 2, 1)
1551FIELD(V7M_SFSR, AUVIOL, 3, 1)
1552FIELD(V7M_SFSR, INVTRAN, 4, 1)
1553FIELD(V7M_SFSR, LSPERR, 5, 1)
1554FIELD(V7M_SFSR, SFARVALID, 6, 1)
1555FIELD(V7M_SFSR, LSERR, 7, 1)
1556
29c483a5
MD
1557/* v7M MPU_CTRL bits */
1558FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1559FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1560FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1561
43bbce7f
PM
1562/* v7M CLIDR bits */
1563FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1564FIELD(V7M_CLIDR, LOUIS, 21, 3)
1565FIELD(V7M_CLIDR, LOC, 24, 3)
1566FIELD(V7M_CLIDR, LOUU, 27, 3)
1567FIELD(V7M_CLIDR, ICB, 30, 2)
1568
1569FIELD(V7M_CSSELR, IND, 0, 1)
1570FIELD(V7M_CSSELR, LEVEL, 1, 3)
1571/* We use the combination of InD and Level to index into cpu->ccsidr[];
1572 * define a mask for this and check that it doesn't permit running off
1573 * the end of the array.
1574 */
1575FIELD(V7M_CSSELR, INDEX, 0, 4)
1576
a62e62af
RH
1577/*
1578 * System register ID fields.
1579 */
1580FIELD(ID_ISAR0, SWAP, 0, 4)
1581FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1582FIELD(ID_ISAR0, BITFIELD, 8, 4)
1583FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1584FIELD(ID_ISAR0, COPROC, 16, 4)
1585FIELD(ID_ISAR0, DEBUG, 20, 4)
1586FIELD(ID_ISAR0, DIVIDE, 24, 4)
1587
1588FIELD(ID_ISAR1, ENDIAN, 0, 4)
1589FIELD(ID_ISAR1, EXCEPT, 4, 4)
1590FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1591FIELD(ID_ISAR1, EXTEND, 12, 4)
1592FIELD(ID_ISAR1, IFTHEN, 16, 4)
1593FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1594FIELD(ID_ISAR1, INTERWORK, 24, 4)
1595FIELD(ID_ISAR1, JAZELLE, 28, 4)
1596
1597FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1598FIELD(ID_ISAR2, MEMHINT, 4, 4)
1599FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1600FIELD(ID_ISAR2, MULT, 12, 4)
1601FIELD(ID_ISAR2, MULTS, 16, 4)
1602FIELD(ID_ISAR2, MULTU, 20, 4)
1603FIELD(ID_ISAR2, PSR_AR, 24, 4)
1604FIELD(ID_ISAR2, REVERSAL, 28, 4)
1605
1606FIELD(ID_ISAR3, SATURATE, 0, 4)
1607FIELD(ID_ISAR3, SIMD, 4, 4)
1608FIELD(ID_ISAR3, SVC, 8, 4)
1609FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1610FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1611FIELD(ID_ISAR3, T32COPY, 20, 4)
1612FIELD(ID_ISAR3, TRUENOP, 24, 4)
1613FIELD(ID_ISAR3, T32EE, 28, 4)
1614
1615FIELD(ID_ISAR4, UNPRIV, 0, 4)
1616FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1617FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1618FIELD(ID_ISAR4, SMC, 12, 4)
1619FIELD(ID_ISAR4, BARRIER, 16, 4)
1620FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1621FIELD(ID_ISAR4, PSR_M, 24, 4)
1622FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1623
1624FIELD(ID_ISAR5, SEVL, 0, 4)
1625FIELD(ID_ISAR5, AES, 4, 4)
1626FIELD(ID_ISAR5, SHA1, 8, 4)
1627FIELD(ID_ISAR5, SHA2, 12, 4)
1628FIELD(ID_ISAR5, CRC32, 16, 4)
1629FIELD(ID_ISAR5, RDM, 24, 4)
1630FIELD(ID_ISAR5, VCMA, 28, 4)
1631
1632FIELD(ID_ISAR6, JSCVT, 0, 4)
1633FIELD(ID_ISAR6, DP, 4, 4)
1634FIELD(ID_ISAR6, FHM, 8, 4)
1635FIELD(ID_ISAR6, SB, 12, 4)
1636FIELD(ID_ISAR6, SPECRES, 16, 4)
1637
ab638a32
RH
1638FIELD(ID_MMFR4, SPECSEI, 0, 4)
1639FIELD(ID_MMFR4, AC2, 4, 4)
1640FIELD(ID_MMFR4, XNX, 8, 4)
1641FIELD(ID_MMFR4, CNP, 12, 4)
1642FIELD(ID_MMFR4, HPDS, 16, 4)
1643FIELD(ID_MMFR4, LSM, 20, 4)
1644FIELD(ID_MMFR4, CCIDX, 24, 4)
1645FIELD(ID_MMFR4, EVT, 28, 4)
1646
a62e62af
RH
1647FIELD(ID_AA64ISAR0, AES, 4, 4)
1648FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1649FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1650FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1651FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1652FIELD(ID_AA64ISAR0, RDM, 28, 4)
1653FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1654FIELD(ID_AA64ISAR0, SM3, 36, 4)
1655FIELD(ID_AA64ISAR0, SM4, 40, 4)
1656FIELD(ID_AA64ISAR0, DP, 44, 4)
1657FIELD(ID_AA64ISAR0, FHM, 48, 4)
1658FIELD(ID_AA64ISAR0, TS, 52, 4)
1659FIELD(ID_AA64ISAR0, TLB, 56, 4)
1660FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1661
1662FIELD(ID_AA64ISAR1, DPB, 0, 4)
1663FIELD(ID_AA64ISAR1, APA, 4, 4)
1664FIELD(ID_AA64ISAR1, API, 8, 4)
1665FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1666FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1667FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1668FIELD(ID_AA64ISAR1, GPA, 24, 4)
1669FIELD(ID_AA64ISAR1, GPI, 28, 4)
1670FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1671FIELD(ID_AA64ISAR1, SB, 36, 4)
1672FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1673
cd208a1c
RH
1674FIELD(ID_AA64PFR0, EL0, 0, 4)
1675FIELD(ID_AA64PFR0, EL1, 4, 4)
1676FIELD(ID_AA64PFR0, EL2, 8, 4)
1677FIELD(ID_AA64PFR0, EL3, 12, 4)
1678FIELD(ID_AA64PFR0, FP, 16, 4)
1679FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1680FIELD(ID_AA64PFR0, GIC, 24, 4)
1681FIELD(ID_AA64PFR0, RAS, 28, 4)
1682FIELD(ID_AA64PFR0, SVE, 32, 4)
1683
be53b6f4
RH
1684FIELD(ID_AA64PFR1, BT, 0, 4)
1685FIELD(ID_AA64PFR1, SBSS, 4, 4)
1686FIELD(ID_AA64PFR1, MTE, 8, 4)
1687FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1688
3dc91ddb
PM
1689FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1690FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1691FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1692FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1693FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1694FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1695FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1696FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1697FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1698FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1699FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1700FIELD(ID_AA64MMFR0, EXS, 44, 4)
1701
1702FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1703FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1704FIELD(ID_AA64MMFR1, VH, 8, 4)
1705FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1706FIELD(ID_AA64MMFR1, LO, 16, 4)
1707FIELD(ID_AA64MMFR1, PAN, 20, 4)
1708FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1709FIELD(ID_AA64MMFR1, XNX, 28, 4)
1710
beceb99c
AL
1711FIELD(ID_DFR0, COPDBG, 0, 4)
1712FIELD(ID_DFR0, COPSDBG, 4, 4)
1713FIELD(ID_DFR0, MMAPDBG, 8, 4)
1714FIELD(ID_DFR0, COPTRC, 12, 4)
1715FIELD(ID_DFR0, MMAPTRC, 16, 4)
1716FIELD(ID_DFR0, MPROFDBG, 20, 4)
1717FIELD(ID_DFR0, PERFMON, 24, 4)
1718FIELD(ID_DFR0, TRACEFILT, 28, 4)
1719
43bbce7f
PM
1720QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1721
ce854d7c
BC
1722/* If adding a feature bit which corresponds to a Linux ELF
1723 * HWCAP bit, remember to update the feature-bit-to-hwcap
1724 * mapping in linux-user/elfload.c:get_elf_hwcap().
1725 */
40f137e1
PB
1726enum arm_features {
1727 ARM_FEATURE_VFP,
c1713132
AZ
1728 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1729 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1730 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1731 ARM_FEATURE_V6,
1732 ARM_FEATURE_V6K,
1733 ARM_FEATURE_V7,
1734 ARM_FEATURE_THUMB2,
452a0955 1735 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1736 ARM_FEATURE_VFP3,
60011498 1737 ARM_FEATURE_VFP_FP16,
9ee6e8bb 1738 ARM_FEATURE_NEON,
9ee6e8bb 1739 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1740 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1741 ARM_FEATURE_THUMB2EE,
be5e7a76 1742 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1743 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1744 ARM_FEATURE_V4T,
1745 ARM_FEATURE_V5,
5bc95aa2 1746 ARM_FEATURE_STRONGARM,
906879a9 1747 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
da97f52c 1748 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1749 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1750 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1751 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1752 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1753 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1754 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1755 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1756 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1757 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1758 ARM_FEATURE_V8,
3926cc84 1759 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1760 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1761 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1762 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1763 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1764 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1765 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1766 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1767 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1768 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1769 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1770};
1771
1772static inline int arm_feature(CPUARMState *env, int feature)
1773{
918f5dca 1774 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1775}
1776
19e0fefa
FA
1777#if !defined(CONFIG_USER_ONLY)
1778/* Return true if exception levels below EL3 are in secure state,
1779 * or would be following an exception return to that level.
1780 * Unlike arm_is_secure() (which is always a question about the
1781 * _current_ state of the CPU) this doesn't care about the current
1782 * EL or mode.
1783 */
1784static inline bool arm_is_secure_below_el3(CPUARMState *env)
1785{
1786 if (arm_feature(env, ARM_FEATURE_EL3)) {
1787 return !(env->cp15.scr_el3 & SCR_NS);
1788 } else {
6b7f0b61 1789 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1790 * defined, in which case QEMU defaults to non-secure.
1791 */
1792 return false;
1793 }
1794}
1795
71205876
PM
1796/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1797static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1798{
1799 if (arm_feature(env, ARM_FEATURE_EL3)) {
1800 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1801 /* CPU currently in AArch64 state and EL3 */
1802 return true;
1803 } else if (!is_a64(env) &&
1804 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1805 /* CPU currently in AArch32 state and monitor mode */
1806 return true;
1807 }
1808 }
71205876
PM
1809 return false;
1810}
1811
1812/* Return true if the processor is in secure state */
1813static inline bool arm_is_secure(CPUARMState *env)
1814{
1815 if (arm_is_el3_or_mon(env)) {
1816 return true;
1817 }
19e0fefa
FA
1818 return arm_is_secure_below_el3(env);
1819}
1820
1821#else
1822static inline bool arm_is_secure_below_el3(CPUARMState *env)
1823{
1824 return false;
1825}
1826
1827static inline bool arm_is_secure(CPUARMState *env)
1828{
1829 return false;
1830}
1831#endif
1832
f7778444
RH
1833/**
1834 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1835 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1836 * "for all purposes other than a direct read or write access of HCR_EL2."
1837 * Not included here is HCR_RW.
1838 */
1839uint64_t arm_hcr_el2_eff(CPUARMState *env);
1840
1f79ee32
PM
1841/* Return true if the specified exception level is running in AArch64 state. */
1842static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1843{
446c81ab
PM
1844 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1845 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1846 */
446c81ab
PM
1847 assert(el >= 1 && el <= 3);
1848 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1849
446c81ab
PM
1850 /* The highest exception level is always at the maximum supported
1851 * register width, and then lower levels have a register width controlled
1852 * by bits in the SCR or HCR registers.
1f79ee32 1853 */
446c81ab
PM
1854 if (el == 3) {
1855 return aa64;
1856 }
1857
1858 if (arm_feature(env, ARM_FEATURE_EL3)) {
1859 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1860 }
1861
1862 if (el == 2) {
1863 return aa64;
1864 }
1865
1866 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1867 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1868 }
1869
1870 return aa64;
1f79ee32
PM
1871}
1872
3f342b9e
SF
1873/* Function for determing whether guest cp register reads and writes should
1874 * access the secure or non-secure bank of a cp register. When EL3 is
1875 * operating in AArch32 state, the NS-bit determines whether the secure
1876 * instance of a cp register should be used. When EL3 is AArch64 (or if
1877 * it doesn't exist at all) then there is no register banking, and all
1878 * accesses are to the non-secure version.
1879 */
1880static inline bool access_secure_reg(CPUARMState *env)
1881{
1882 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1883 !arm_el_is_aa64(env, 3) &&
1884 !(env->cp15.scr_el3 & SCR_NS));
1885
1886 return ret;
1887}
1888
ea30a4b8
FA
1889/* Macros for accessing a specified CP register bank */
1890#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1891 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1892
1893#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1894 do { \
1895 if (_secure) { \
1896 (_env)->cp15._regname##_s = (_val); \
1897 } else { \
1898 (_env)->cp15._regname##_ns = (_val); \
1899 } \
1900 } while (0)
1901
1902/* Macros for automatically accessing a specific CP register bank depending on
1903 * the current secure state of the system. These macros are not intended for
1904 * supporting instruction translation reads/writes as these are dependent
1905 * solely on the SCR.NS bit and not the mode.
1906 */
1907#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1908 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1909 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1910
1911#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1912 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1913 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1914 (_val))
1915
9a78eead 1916void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
012a906b
GB
1917uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1918 uint32_t cur_el, bool secure);
40f137e1 1919
9ee6e8bb 1920/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1921#ifndef CONFIG_USER_ONLY
1922bool armv7m_nvic_can_take_pending_exception(void *opaque);
1923#else
1924static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1925{
1926 return true;
1927}
1928#endif
2fb50a33
PM
1929/**
1930 * armv7m_nvic_set_pending: mark the specified exception as pending
1931 * @opaque: the NVIC
1932 * @irq: the exception number to mark pending
1933 * @secure: false for non-banked exceptions or for the nonsecure
1934 * version of a banked exception, true for the secure version of a banked
1935 * exception.
1936 *
1937 * Marks the specified exception as pending. Note that we will assert()
1938 * if @secure is true and @irq does not specify one of the fixed set
1939 * of architecturally banked exceptions.
1940 */
1941void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
1942/**
1943 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1944 * @opaque: the NVIC
1945 * @irq: the exception number to mark pending
1946 * @secure: false for non-banked exceptions or for the nonsecure
1947 * version of a banked exception, true for the secure version of a banked
1948 * exception.
1949 *
1950 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1951 * exceptions (exceptions generated in the course of trying to take
1952 * a different exception).
1953 */
1954void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
6c948518
PM
1955/**
1956 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1957 * exception, and whether it targets Secure state
1958 * @opaque: the NVIC
1959 * @pirq: set to pending exception number
1960 * @ptargets_secure: set to whether pending exception targets Secure
1961 *
1962 * This function writes the number of the highest priority pending
1963 * exception (the one which would be made active by
1964 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1965 * to true if the current highest priority pending exception should
1966 * be taken to Secure state, false for NS.
1967 */
1968void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1969 bool *ptargets_secure);
5cb18069
PM
1970/**
1971 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1972 * @opaque: the NVIC
1973 *
1974 * Move the current highest priority pending exception from the pending
1975 * state to the active state, and update v7m.exception to indicate that
1976 * it is the exception currently being handled.
5cb18069 1977 */
6c948518 1978void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
1979/**
1980 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1981 * @opaque: the NVIC
1982 * @irq: the exception number to complete
5cb18069 1983 * @secure: true if this exception was secure
aa488fe3
PM
1984 *
1985 * Returns: -1 if the irq was not active
1986 * 1 if completing this irq brought us back to base (no active irqs)
1987 * 0 if there is still an irq active after this one was completed
1988 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1989 */
5cb18069 1990int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
42a6686b
PM
1991/**
1992 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1993 * @opaque: the NVIC
1994 *
1995 * Returns: the raw execution priority as defined by the v8M architecture.
1996 * This is the execution priority minus the effects of AIRCR.PRIS,
1997 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1998 * (v8M ARM ARM I_PKLD.)
1999 */
2000int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2001/**
2002 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2003 * priority is negative for the specified security state.
2004 * @opaque: the NVIC
2005 * @secure: the security state to test
2006 * This corresponds to the pseudocode IsReqExecPriNeg().
2007 */
2008#ifndef CONFIG_USER_ONLY
2009bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2010#else
2011static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2012{
2013 return false;
2014}
2015#endif
9ee6e8bb 2016
4b6a83fb
PM
2017/* Interface for defining coprocessor registers.
2018 * Registers are defined in tables of arm_cp_reginfo structs
2019 * which are passed to define_arm_cp_regs().
2020 */
2021
2022/* When looking up a coprocessor register we look for it
2023 * via an integer which encodes all of:
2024 * coprocessor number
2025 * Crn, Crm, opc1, opc2 fields
2026 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2027 * or via MRRC/MCRR?)
51a79b03 2028 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2029 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2030 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2031 * For AArch64, there is no 32/64 bit size distinction;
2032 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2033 * and 4 bit CRn and CRm. The encoding patterns are chosen
2034 * to be easy to convert to and from the KVM encodings, and also
2035 * so that the hashtable can contain both AArch32 and AArch64
2036 * registers (to allow for interprocessing where we might run
2037 * 32 bit code on a 64 bit core).
4b6a83fb 2038 */
f5a0a5a5
PM
2039/* This bit is private to our hashtable cpreg; in KVM register
2040 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2041 * in the upper bits of the 64 bit ID.
2042 */
2043#define CP_REG_AA64_SHIFT 28
2044#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2045
51a79b03
PM
2046/* To enable banking of coprocessor registers depending on ns-bit we
2047 * add a bit to distinguish between secure and non-secure cpregs in the
2048 * hashtable.
2049 */
2050#define CP_REG_NS_SHIFT 29
2051#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2052
2053#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2054 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2055 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2056
f5a0a5a5
PM
2057#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2058 (CP_REG_AA64_MASK | \
2059 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2060 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2061 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2062 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2063 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2064 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2065
721fae12
PM
2066/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2067 * version used as a key for the coprocessor register hashtable
2068 */
2069static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2070{
2071 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2072 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2073 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2074 } else {
2075 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2076 cpregid |= (1 << 15);
2077 }
2078
2079 /* KVM is always non-secure so add the NS flag on AArch32 register
2080 * entries.
2081 */
2082 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2083 }
2084 return cpregid;
2085}
2086
2087/* Convert a truncated 32 bit hashtable key into the full
2088 * 64 bit KVM register ID.
2089 */
2090static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2091{
f5a0a5a5
PM
2092 uint64_t kvmid;
2093
2094 if (cpregid & CP_REG_AA64_MASK) {
2095 kvmid = cpregid & ~CP_REG_AA64_MASK;
2096 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2097 } else {
f5a0a5a5
PM
2098 kvmid = cpregid & ~(1 << 15);
2099 if (cpregid & (1 << 15)) {
2100 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2101 } else {
2102 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2103 }
721fae12
PM
2104 }
2105 return kvmid;
2106}
2107
4b6a83fb 2108/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2109 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2110 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2111 * TCG can assume the value to be constant (ie load at translate time)
2112 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2113 * indicates that the TB should not be ended after a write to this register
2114 * (the default is that the TB ends after cp writes). OVERRIDE permits
2115 * a register definition to override a previous definition for the
2116 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2117 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2118 * ALIAS indicates that this register is an alias view of some underlying
2119 * state which is also visible via another register, and that the other
b061a82b
SF
2120 * register is handling migration and reset; registers marked ALIAS will not be
2121 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2122 * NO_RAW indicates that this register has no underlying state and does not
2123 * support raw access for state saving/loading; it will not be used for either
2124 * migration or KVM state synchronization. (Typically this is for "registers"
2125 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
2126 * IO indicates that this register does I/O and therefore its accesses
2127 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2128 * registers which implement clocks or timers require this.
4b6a83fb 2129 */
fe03d45f
RH
2130#define ARM_CP_SPECIAL 0x0001
2131#define ARM_CP_CONST 0x0002
2132#define ARM_CP_64BIT 0x0004
2133#define ARM_CP_SUPPRESS_TB_END 0x0008
2134#define ARM_CP_OVERRIDE 0x0010
2135#define ARM_CP_ALIAS 0x0020
2136#define ARM_CP_IO 0x0040
2137#define ARM_CP_NO_RAW 0x0080
2138#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2139#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2140#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2141#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2142#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2143#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2144#define ARM_CP_FPU 0x1000
490aa7f1 2145#define ARM_CP_SVE 0x2000
1f163787 2146#define ARM_CP_NO_GDB 0x4000
4b6a83fb 2147/* Used only as a terminator for ARMCPRegInfo lists */
fe03d45f 2148#define ARM_CP_SENTINEL 0xffff
4b6a83fb 2149/* Mask of only the flag bits in a type field */
1f163787 2150#define ARM_CP_FLAG_MASK 0x70ff
4b6a83fb 2151
f5a0a5a5
PM
2152/* Valid values for ARMCPRegInfo state field, indicating which of
2153 * the AArch32 and AArch64 execution states this register is visible in.
2154 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2155 * If the reginfo is declared to be visible in both states then a second
2156 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2157 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2158 * Note that we rely on the values of these enums as we iterate through
2159 * the various states in some places.
2160 */
2161enum {
2162 ARM_CP_STATE_AA32 = 0,
2163 ARM_CP_STATE_AA64 = 1,
2164 ARM_CP_STATE_BOTH = 2,
2165};
2166
c3e30260
FA
2167/* ARM CP register secure state flags. These flags identify security state
2168 * attributes for a given CP register entry.
2169 * The existence of both or neither secure and non-secure flags indicates that
2170 * the register has both a secure and non-secure hash entry. A single one of
2171 * these flags causes the register to only be hashed for the specified
2172 * security state.
2173 * Although definitions may have any combination of the S/NS bits, each
2174 * registered entry will only have one to identify whether the entry is secure
2175 * or non-secure.
2176 */
2177enum {
2178 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2179 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2180};
2181
4b6a83fb
PM
2182/* Return true if cptype is a valid type field. This is used to try to
2183 * catch errors where the sentinel has been accidentally left off the end
2184 * of a list of registers.
2185 */
2186static inline bool cptype_valid(int cptype)
2187{
2188 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2189 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2190 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2191}
2192
2193/* Access rights:
2194 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2195 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2196 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2197 * (ie any of the privileged modes in Secure state, or Monitor mode).
2198 * If a register is accessible in one privilege level it's always accessible
2199 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2200 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2201 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2202 * terminology a little and call this PL3.
f5a0a5a5
PM
2203 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2204 * with the ELx exception levels.
4b6a83fb
PM
2205 *
2206 * If access permissions for a register are more complex than can be
2207 * described with these bits, then use a laxer set of restrictions, and
2208 * do the more restrictive/complex check inside a helper function.
2209 */
2210#define PL3_R 0x80
2211#define PL3_W 0x40
2212#define PL2_R (0x20 | PL3_R)
2213#define PL2_W (0x10 | PL3_W)
2214#define PL1_R (0x08 | PL2_R)
2215#define PL1_W (0x04 | PL2_W)
2216#define PL0_R (0x02 | PL1_R)
2217#define PL0_W (0x01 | PL1_W)
2218
2219#define PL3_RW (PL3_R | PL3_W)
2220#define PL2_RW (PL2_R | PL2_W)
2221#define PL1_RW (PL1_R | PL1_W)
2222#define PL0_RW (PL0_R | PL0_W)
2223
75502672
PM
2224/* Return the highest implemented Exception Level */
2225static inline int arm_highest_el(CPUARMState *env)
2226{
2227 if (arm_feature(env, ARM_FEATURE_EL3)) {
2228 return 3;
2229 }
2230 if (arm_feature(env, ARM_FEATURE_EL2)) {
2231 return 2;
2232 }
2233 return 1;
2234}
2235
15b3f556
PM
2236/* Return true if a v7M CPU is in Handler mode */
2237static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2238{
2239 return env->v7m.exception != 0;
2240}
2241
dcbff19b
GB
2242/* Return the current Exception Level (as per ARMv8; note that this differs
2243 * from the ARMv7 Privilege Level).
2244 */
2245static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2246{
6d54ed3c 2247 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2248 return arm_v7m_is_handler_mode(env) ||
2249 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2250 }
2251
592125f8 2252 if (is_a64(env)) {
f5a0a5a5
PM
2253 return extract32(env->pstate, 2, 2);
2254 }
2255
592125f8
FA
2256 switch (env->uncached_cpsr & 0x1f) {
2257 case ARM_CPU_MODE_USR:
4b6a83fb 2258 return 0;
592125f8
FA
2259 case ARM_CPU_MODE_HYP:
2260 return 2;
2261 case ARM_CPU_MODE_MON:
2262 return 3;
2263 default:
2264 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2265 /* If EL3 is 32-bit then all secure privileged modes run in
2266 * EL3
2267 */
2268 return 3;
2269 }
2270
2271 return 1;
4b6a83fb 2272 }
4b6a83fb
PM
2273}
2274
2275typedef struct ARMCPRegInfo ARMCPRegInfo;
2276
f59df3f2
PM
2277typedef enum CPAccessResult {
2278 /* Access is permitted */
2279 CP_ACCESS_OK = 0,
2280 /* Access fails due to a configurable trap or enable which would
2281 * result in a categorized exception syndrome giving information about
2282 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2283 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2284 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2285 */
2286 CP_ACCESS_TRAP = 1,
2287 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2288 * Note that this is not a catch-all case -- the set of cases which may
2289 * result in this failure is specifically defined by the architecture.
2290 */
2291 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2292 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2293 CP_ACCESS_TRAP_EL2 = 3,
2294 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2295 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2296 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2297 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2298 /* Access fails and results in an exception syndrome for an FP access,
2299 * trapped directly to EL2 or EL3
2300 */
2301 CP_ACCESS_TRAP_FP_EL2 = 7,
2302 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2303} CPAccessResult;
2304
c4241c7d
PM
2305/* Access functions for coprocessor registers. These cannot fail and
2306 * may not raise exceptions.
2307 */
2308typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2309typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2310 uint64_t value);
f59df3f2 2311/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2312typedef CPAccessResult CPAccessFn(CPUARMState *env,
2313 const ARMCPRegInfo *opaque,
2314 bool isread);
4b6a83fb
PM
2315/* Hook function for register reset */
2316typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2317
2318#define CP_ANY 0xff
2319
2320/* Definition of an ARM coprocessor register */
2321struct ARMCPRegInfo {
2322 /* Name of register (useful mainly for debugging, need not be unique) */
2323 const char *name;
2324 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2325 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2326 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2327 * will be decoded to this register. The register read and write
2328 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2329 * used by the program, so it is possible to register a wildcard and
2330 * then behave differently on read/write if necessary.
2331 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2332 * must both be zero.
f5a0a5a5
PM
2333 * For AArch64-visible registers, opc0 is also used.
2334 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2335 * way to distinguish (for KVM's benefit) guest-visible system registers
2336 * from demuxed ones provided to preserve the "no side effects on
2337 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2338 * visible (to match KVM's encoding); cp==0 will be converted to
2339 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2340 */
2341 uint8_t cp;
2342 uint8_t crn;
2343 uint8_t crm;
f5a0a5a5 2344 uint8_t opc0;
4b6a83fb
PM
2345 uint8_t opc1;
2346 uint8_t opc2;
f5a0a5a5
PM
2347 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2348 int state;
4b6a83fb
PM
2349 /* Register type: ARM_CP_* bits/values */
2350 int type;
2351 /* Access rights: PL*_[RW] */
2352 int access;
c3e30260
FA
2353 /* Security state: ARM_CP_SECSTATE_* bits/values */
2354 int secure;
4b6a83fb
PM
2355 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2356 * this register was defined: can be used to hand data through to the
2357 * register read/write functions, since they are passed the ARMCPRegInfo*.
2358 */
2359 void *opaque;
2360 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2361 * fieldoffset is non-zero, the reset value of the register.
2362 */
2363 uint64_t resetvalue;
c3e30260
FA
2364 /* Offset of the field in CPUARMState for this register.
2365 *
2366 * This is not needed if either:
4b6a83fb
PM
2367 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2368 * 2. both readfn and writefn are specified
2369 */
2370 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2371
2372 /* Offsets of the secure and non-secure fields in CPUARMState for the
2373 * register if it is banked. These fields are only used during the static
2374 * registration of a register. During hashing the bank associated
2375 * with a given security state is copied to fieldoffset which is used from
2376 * there on out.
2377 *
2378 * It is expected that register definitions use either fieldoffset or
2379 * bank_fieldoffsets in the definition but not both. It is also expected
2380 * that both bank offsets are set when defining a banked register. This
2381 * use indicates that a register is banked.
2382 */
2383 ptrdiff_t bank_fieldoffsets[2];
2384
f59df3f2
PM
2385 /* Function for making any access checks for this register in addition to
2386 * those specified by the 'access' permissions bits. If NULL, no extra
2387 * checks required. The access check is performed at runtime, not at
2388 * translate time.
2389 */
2390 CPAccessFn *accessfn;
4b6a83fb
PM
2391 /* Function for handling reads of this register. If NULL, then reads
2392 * will be done by loading from the offset into CPUARMState specified
2393 * by fieldoffset.
2394 */
2395 CPReadFn *readfn;
2396 /* Function for handling writes of this register. If NULL, then writes
2397 * will be done by writing to the offset into CPUARMState specified
2398 * by fieldoffset.
2399 */
2400 CPWriteFn *writefn;
7023ec7e
PM
2401 /* Function for doing a "raw" read; used when we need to copy
2402 * coprocessor state to the kernel for KVM or out for
2403 * migration. This only needs to be provided if there is also a
c4241c7d 2404 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2405 */
2406 CPReadFn *raw_readfn;
2407 /* Function for doing a "raw" write; used when we need to copy KVM
2408 * kernel coprocessor state into userspace, or for inbound
2409 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2410 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2411 * or similar behaviour.
7023ec7e
PM
2412 */
2413 CPWriteFn *raw_writefn;
4b6a83fb
PM
2414 /* Function for resetting the register. If NULL, then reset will be done
2415 * by writing resetvalue to the field specified in fieldoffset. If
2416 * fieldoffset is 0 then no reset will be done.
2417 */
2418 CPResetFn *resetfn;
2419};
2420
2421/* Macros which are lvalues for the field in CPUARMState for the
2422 * ARMCPRegInfo *ri.
2423 */
2424#define CPREG_FIELD32(env, ri) \
2425 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2426#define CPREG_FIELD64(env, ri) \
2427 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2428
2429#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2430
2431void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2432 const ARMCPRegInfo *regs, void *opaque);
2433void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2434 const ARMCPRegInfo *regs, void *opaque);
2435static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2436{
2437 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2438}
2439static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2440{
2441 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2442}
60322b39 2443const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
2444
2445/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2446void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2447 uint64_t value);
4b6a83fb 2448/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2449uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2450
f5a0a5a5
PM
2451/* CPResetFn that does nothing, for use if no reset is required even
2452 * if fieldoffset is non zero.
2453 */
2454void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2455
67ed771d
PM
2456/* Return true if this reginfo struct's field in the cpu state struct
2457 * is 64 bits wide.
2458 */
2459static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2460{
2461 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2462}
2463
dcbff19b 2464static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2465 const ARMCPRegInfo *ri, int isread)
2466{
dcbff19b 2467 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2468}
2469
49a66191
PM
2470/* Raw read of a coprocessor register (as needed for migration, etc) */
2471uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2472
721fae12
PM
2473/**
2474 * write_list_to_cpustate
2475 * @cpu: ARMCPU
2476 *
2477 * For each register listed in the ARMCPU cpreg_indexes list, write
2478 * its value from the cpreg_values list into the ARMCPUState structure.
2479 * This updates TCG's working data structures from KVM data or
2480 * from incoming migration state.
2481 *
2482 * Returns: true if all register values were updated correctly,
2483 * false if some register was unknown or could not be written.
2484 * Note that we do not stop early on failure -- we will attempt
2485 * writing all registers in the list.
2486 */
2487bool write_list_to_cpustate(ARMCPU *cpu);
2488
2489/**
2490 * write_cpustate_to_list:
2491 * @cpu: ARMCPU
2492 *
2493 * For each register listed in the ARMCPU cpreg_indexes list, write
2494 * its value from the ARMCPUState structure into the cpreg_values list.
2495 * This is used to copy info from TCG's working data structures into
2496 * KVM or for outbound migration.
2497 *
2498 * Returns: true if all register values were read correctly,
2499 * false if some register was unknown or could not be read.
2500 * Note that we do not stop early on failure -- we will attempt
2501 * reading all registers in the list.
2502 */
2503bool write_cpustate_to_list(ARMCPU *cpu);
2504
9ee6e8bb
PB
2505#define ARM_CPUID_TI915T 0x54029152
2506#define ARM_CPUID_TI925T 0x54029252
40f137e1 2507
b5ff1b31 2508#if defined(CONFIG_USER_ONLY)
2c0262af 2509#define TARGET_PAGE_BITS 12
b5ff1b31 2510#else
e97da98f
PM
2511/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2512 * have to support 1K tiny pages.
2513 */
2514#define TARGET_PAGE_BITS_VARY
2515#define TARGET_PAGE_BITS_MIN 10
b5ff1b31 2516#endif
9467d44c 2517
3926cc84
AG
2518#if defined(TARGET_AARCH64)
2519# define TARGET_PHYS_ADDR_SPACE_BITS 48
f6768aa1 2520# define TARGET_VIRT_ADDR_SPACE_BITS 48
3926cc84
AG
2521#else
2522# define TARGET_PHYS_ADDR_SPACE_BITS 40
2523# define TARGET_VIRT_ADDR_SPACE_BITS 32
2524#endif
52705890 2525
012a906b
GB
2526static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2527 unsigned int target_el)
043b7f8d
EI
2528{
2529 CPUARMState *env = cs->env_ptr;
dcbff19b 2530 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2531 bool secure = arm_is_secure(env);
57e3a0c7
GB
2532 bool pstate_unmasked;
2533 int8_t unmasked = 0;
f7778444 2534 uint64_t hcr_el2;
57e3a0c7
GB
2535
2536 /* Don't take exceptions if they target a lower EL.
2537 * This check should catch any exceptions that would not be taken but left
2538 * pending.
2539 */
dfafd090
EI
2540 if (cur_el > target_el) {
2541 return false;
2542 }
043b7f8d 2543
f7778444
RH
2544 hcr_el2 = arm_hcr_el2_eff(env);
2545
043b7f8d
EI
2546 switch (excp_idx) {
2547 case EXCP_FIQ:
57e3a0c7
GB
2548 pstate_unmasked = !(env->daif & PSTATE_F);
2549 break;
2550
043b7f8d 2551 case EXCP_IRQ:
57e3a0c7
GB
2552 pstate_unmasked = !(env->daif & PSTATE_I);
2553 break;
2554
136e67e9 2555 case EXCP_VFIQ:
f7778444 2556 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2557 /* VFIQs are only taken when hypervized and non-secure. */
2558 return false;
2559 }
2560 return !(env->daif & PSTATE_F);
2561 case EXCP_VIRQ:
f7778444 2562 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2563 /* VIRQs are only taken when hypervized and non-secure. */
2564 return false;
2565 }
b5c633c5 2566 return !(env->daif & PSTATE_I);
043b7f8d
EI
2567 default:
2568 g_assert_not_reached();
2569 }
57e3a0c7
GB
2570
2571 /* Use the target EL, current execution state and SCR/HCR settings to
2572 * determine whether the corresponding CPSR bit is used to mask the
2573 * interrupt.
2574 */
2575 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2576 /* Exceptions targeting a higher EL may not be maskable */
2577 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2578 /* 64-bit masking rules are simple: exceptions to EL3
2579 * can't be masked, and exceptions to EL2 can only be
2580 * masked from Secure state. The HCR and SCR settings
2581 * don't affect the masking logic, only the interrupt routing.
2582 */
2583 if (target_el == 3 || !secure) {
2584 unmasked = 1;
2585 }
2586 } else {
2587 /* The old 32-bit-only environment has a more complicated
2588 * masking setup. HCR and SCR bits not only affect interrupt
2589 * routing but also change the behaviour of masking.
2590 */
2591 bool hcr, scr;
2592
2593 switch (excp_idx) {
2594 case EXCP_FIQ:
2595 /* If FIQs are routed to EL3 or EL2 then there are cases where
2596 * we override the CPSR.F in determining if the exception is
2597 * masked or not. If neither of these are set then we fall back
2598 * to the CPSR.F setting otherwise we further assess the state
2599 * below.
2600 */
f7778444 2601 hcr = hcr_el2 & HCR_FMO;
7cd6de3b
PM
2602 scr = (env->cp15.scr_el3 & SCR_FIQ);
2603
2604 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2605 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2606 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2607 * when non-secure but only when FIQs are only routed to EL3.
2608 */
2609 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2610 break;
2611 case EXCP_IRQ:
2612 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2613 * we may override the CPSR.I masking when in non-secure state.
2614 * The SCR.IRQ setting has already been taken into consideration
2615 * when setting the target EL, so it does not have a further
2616 * affect here.
2617 */
f7778444 2618 hcr = hcr_el2 & HCR_IMO;
7cd6de3b
PM
2619 scr = false;
2620 break;
2621 default:
2622 g_assert_not_reached();
2623 }
2624
2625 if ((scr || hcr) && !secure) {
2626 unmasked = 1;
2627 }
57e3a0c7
GB
2628 }
2629 }
2630
2631 /* The PSTATE bits only mask the interrupt if we have not overriden the
2632 * ability above.
2633 */
2634 return unmasked || pstate_unmasked;
043b7f8d
EI
2635}
2636
ba1ba5cc
IM
2637#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2638#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2639#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2640
9467d44c 2641#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2642#define cpu_list arm_cpu_list
9467d44c 2643
c1e37810
PM
2644/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2645 *
2646 * If EL3 is 64-bit:
2647 * + NonSecure EL1 & 0 stage 1
2648 * + NonSecure EL1 & 0 stage 2
2649 * + NonSecure EL2
2650 * + Secure EL1 & EL0
2651 * + Secure EL3
2652 * If EL3 is 32-bit:
2653 * + NonSecure PL1 & 0 stage 1
2654 * + NonSecure PL1 & 0 stage 2
2655 * + NonSecure PL2
2656 * + Secure PL0 & PL1
2657 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2658 *
2659 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2660 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2661 * may differ in access permissions even if the VA->PA map is the same
2662 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2663 * translation, which means that we have one mmu_idx that deals with two
2664 * concatenated translation regimes [this sort of combined s1+2 TLB is
2665 * architecturally permitted]
2666 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2667 * handling via the TLB. The only way to do a stage 1 translation without
2668 * the immediate stage 2 translation is via the ATS or AT system insns,
2669 * which can be slow-pathed and always do a page table walk.
2670 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2671 * translation regimes, because they map reasonably well to each other
2672 * and they can't both be active at the same time.
2673 * This gives us the following list of mmu_idx values:
2674 *
2675 * NS EL0 (aka NS PL0) stage 1+2
2676 * NS EL1 (aka NS PL1) stage 1+2
2677 * NS EL2 (aka NS PL2)
2678 * S EL3 (aka S PL1)
2679 * S EL0 (aka S PL0)
2680 * S EL1 (not used if EL3 is 32 bit)
2681 * NS EL0+1 stage 2
2682 *
2683 * (The last of these is an mmu_idx because we want to be able to use the TLB
2684 * for the accesses done as part of a stage 1 page table walk, rather than
2685 * having to walk the stage 2 page table over and over.)
2686 *
3bef7012
PM
2687 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2688 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2689 * NS EL2 if we ever model a Cortex-R52).
2690 *
2691 * M profile CPUs are rather different as they do not have a true MMU.
2692 * They have the following different MMU indexes:
2693 * User
2694 * Privileged
62593718
PM
2695 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2696 * Privileged, execution priority negative (ditto)
66787c78
PM
2697 * If the CPU supports the v8M Security Extension then there are also:
2698 * Secure User
2699 * Secure Privileged
62593718
PM
2700 * Secure User, execution priority negative
2701 * Secure Privileged, execution priority negative
3bef7012 2702 *
8bd5c820
PM
2703 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2704 * are not quite the same -- different CPU types (most notably M profile
2705 * vs A/R profile) would like to use MMU indexes with different semantics,
2706 * but since we don't ever need to use all of those in a single CPU we
2707 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2708 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2709 * the same for any particular CPU.
2710 * Variables of type ARMMUIdx are always full values, and the core
2711 * index values are in variables of type 'int'.
2712 *
c1e37810
PM
2713 * Our enumeration includes at the end some entries which are not "true"
2714 * mmu_idx values in that they don't have corresponding TLBs and are only
2715 * valid for doing slow path page table walks.
2716 *
2717 * The constant names here are patterned after the general style of the names
2718 * of the AT/ATS operations.
2719 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2720 * For M profile we arrange them to have a bit for priv, a bit for negpri
2721 * and a bit for secure.
c1e37810 2722 */
e7b921c2 2723#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2724#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2725#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2726
62593718
PM
2727/* meanings of the bits for M profile mmu idx values */
2728#define ARM_MMU_IDX_M_PRIV 0x1
2729#define ARM_MMU_IDX_M_NEGPRI 0x2
2730#define ARM_MMU_IDX_M_S 0x4
2731
8bd5c820
PM
2732#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2733#define ARM_MMU_IDX_COREIDX_MASK 0x7
2734
c1e37810 2735typedef enum ARMMMUIdx {
8bd5c820
PM
2736 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2737 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2738 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2739 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2740 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2741 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2742 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2743 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2744 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
62593718
PM
2745 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2746 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2747 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2748 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2749 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2750 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
c1e37810
PM
2751 /* Indexes below here don't have TLBs and are used only for AT system
2752 * instructions or for the first stage of an S12 page table walk.
2753 */
8bd5c820
PM
2754 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2755 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2756} ARMMMUIdx;
2757
8bd5c820
PM
2758/* Bit macros for the core-mmu-index values for each index,
2759 * for use when calling tlb_flush_by_mmuidx() and friends.
2760 */
2761typedef enum ARMMMUIdxBit {
2762 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2763 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2764 ARMMMUIdxBit_S1E2 = 1 << 2,
2765 ARMMMUIdxBit_S1E3 = 1 << 3,
2766 ARMMMUIdxBit_S1SE0 = 1 << 4,
2767 ARMMMUIdxBit_S1SE1 = 1 << 5,
2768 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2769 ARMMMUIdxBit_MUser = 1 << 0,
2770 ARMMMUIdxBit_MPriv = 1 << 1,
62593718
PM
2771 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2772 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2773 ARMMMUIdxBit_MSUser = 1 << 4,
2774 ARMMMUIdxBit_MSPriv = 1 << 5,
2775 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2776 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
8bd5c820
PM
2777} ARMMMUIdxBit;
2778
f79fbf39 2779#define MMU_USER_IDX 0
c1e37810 2780
8bd5c820
PM
2781static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2782{
2783 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2784}
2785
2786static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2787{
e7b921c2
PM
2788 if (arm_feature(env, ARM_FEATURE_M)) {
2789 return mmu_idx | ARM_MMU_IDX_M;
2790 } else {
2791 return mmu_idx | ARM_MMU_IDX_A;
2792 }
8bd5c820
PM
2793}
2794
c1e37810
PM
2795/* Return the exception level we're running at if this is our mmu_idx */
2796static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2797{
8bd5c820
PM
2798 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2799 case ARM_MMU_IDX_A:
2800 return mmu_idx & 3;
e7b921c2 2801 case ARM_MMU_IDX_M:
62593718 2802 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2803 default:
2804 g_assert_not_reached();
2805 }
c1e37810
PM
2806}
2807
ec8e3340 2808/* Return the MMU index for a v7M CPU in the specified security and
65e4655c 2809 * privilege state.
ec8e3340 2810 */
65e4655c
RH
2811ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2812 bool secstate, bool priv);
b81ac0eb 2813
ec8e3340 2814/* Return the MMU index for a v7M CPU in the specified security state */
65e4655c 2815ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
ec8e3340 2816
50494a27
RH
2817/**
2818 * cpu_mmu_index:
2819 * @env: The cpu environment
2820 * @ifetch: True for code access, false for data access.
2821 *
2822 * Return the core mmu index for the current translation regime.
2823 * This function is used by generic TCG code paths.
2824 */
65e4655c 2825int cpu_mmu_index(CPUARMState *env, bool ifetch);
6ebbf390 2826
9e273ef2
PM
2827/* Indexes used when registering address spaces with cpu_address_space_init */
2828typedef enum ARMASIdx {
2829 ARMASIdx_NS = 0,
2830 ARMASIdx_S = 1,
2831} ARMASIdx;
2832
533e93f1 2833/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2834static inline int arm_debug_target_el(CPUARMState *env)
2835{
81669b8b
SF
2836 bool secure = arm_is_secure(env);
2837 bool route_to_el2 = false;
2838
2839 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2840 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2841 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2842 }
2843
2844 if (route_to_el2) {
2845 return 2;
2846 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2847 !arm_el_is_aa64(env, 3) && secure) {
2848 return 3;
2849 } else {
2850 return 1;
2851 }
3a298203
PM
2852}
2853
43bbce7f
PM
2854static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2855{
2856 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2857 * CSSELR is RAZ/WI.
2858 */
2859 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2860}
2861
22af9025 2862/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
2863static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2864{
22af9025
AB
2865 int cur_el = arm_current_el(env);
2866 int debug_el;
2867
2868 if (cur_el == 3) {
2869 return false;
533e93f1
PM
2870 }
2871
22af9025
AB
2872 /* MDCR_EL3.SDD disables debug events from Secure state */
2873 if (arm_is_secure_below_el3(env)
2874 && extract32(env->cp15.mdcr_el3, 16, 1)) {
2875 return false;
3a298203 2876 }
22af9025
AB
2877
2878 /*
2879 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2880 * while not masking the (D)ebug bit in DAIF.
2881 */
2882 debug_el = arm_debug_target_el(env);
2883
2884 if (cur_el == debug_el) {
2885 return extract32(env->cp15.mdscr_el1, 13, 1)
2886 && !(env->daif & PSTATE_D);
2887 }
2888
2889 /* Otherwise the debug target needs to be a higher EL */
2890 return debug_el > cur_el;
3a298203
PM
2891}
2892
2893static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2894{
533e93f1
PM
2895 int el = arm_current_el(env);
2896
2897 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
2898 return aa64_generate_debug_exceptions(env);
2899 }
533e93f1
PM
2900
2901 if (arm_is_secure(env)) {
2902 int spd;
2903
2904 if (el == 0 && (env->cp15.sder & 1)) {
2905 /* SDER.SUIDEN means debug exceptions from Secure EL0
2906 * are always enabled. Otherwise they are controlled by
2907 * SDCR.SPD like those from other Secure ELs.
2908 */
2909 return true;
2910 }
2911
2912 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2913 switch (spd) {
2914 case 1:
2915 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2916 case 0:
2917 /* For 0b00 we return true if external secure invasive debug
2918 * is enabled. On real hardware this is controlled by external
2919 * signals to the core. QEMU always permits debug, and behaves
2920 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2921 */
2922 return true;
2923 case 2:
2924 return false;
2925 case 3:
2926 return true;
2927 }
2928 }
2929
2930 return el != 2;
3a298203
PM
2931}
2932
2933/* Return true if debugging exceptions are currently enabled.
2934 * This corresponds to what in ARM ARM pseudocode would be
2935 * if UsingAArch32() then
2936 * return AArch32.GenerateDebugExceptions()
2937 * else
2938 * return AArch64.GenerateDebugExceptions()
2939 * We choose to push the if() down into this function for clarity,
2940 * since the pseudocode has it at all callsites except for the one in
2941 * CheckSoftwareStep(), where it is elided because both branches would
2942 * always return the same value.
3a298203
PM
2943 */
2944static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2945{
2946 if (env->aarch64) {
2947 return aa64_generate_debug_exceptions(env);
2948 } else {
2949 return aa32_generate_debug_exceptions(env);
2950 }
2951}
2952
2953/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2954 * implicitly means this always returns false in pre-v8 CPUs.)
2955 */
2956static inline bool arm_singlestep_active(CPUARMState *env)
2957{
2958 return extract32(env->cp15.mdscr_el1, 0, 1)
2959 && arm_el_is_aa64(env, arm_debug_target_el(env))
2960 && arm_generate_debug_exceptions(env);
2961}
2962
f9fd40eb
PB
2963static inline bool arm_sctlr_b(CPUARMState *env)
2964{
2965 return
2966 /* We need not implement SCTLR.ITD in user-mode emulation, so
2967 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2968 * This lets people run BE32 binaries with "-cpu any".
2969 */
2970#ifndef CONFIG_USER_ONLY
2971 !arm_feature(env, ARM_FEATURE_V7) &&
2972#endif
2973 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2974}
2975
ed50ff78
PC
2976/* Return true if the processor is in big-endian mode. */
2977static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2978{
2979 int cur_el;
2980
2981 /* In 32bit endianness is determined by looking at CPSR's E bit */
2982 if (!is_a64(env)) {
b2e62d9a
PC
2983 return
2984#ifdef CONFIG_USER_ONLY
2985 /* In system mode, BE32 is modelled in line with the
2986 * architecture (as word-invariant big-endianness), where loads
2987 * and stores are done little endian but from addresses which
2988 * are adjusted by XORing with the appropriate constant. So the
2989 * endianness to use for the raw data access is not affected by
2990 * SCTLR.B.
2991 * In user mode, however, we model BE32 as byte-invariant
2992 * big-endianness (because user-only code cannot tell the
2993 * difference), and so we need to use a data access endianness
2994 * that depends on SCTLR.B.
2995 */
2996 arm_sctlr_b(env) ||
2997#endif
2998 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
ed50ff78
PC
2999 }
3000
3001 cur_el = arm_current_el(env);
3002
3003 if (cur_el == 0) {
3004 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
3005 }
3006
3007 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
3008}
3009
022c62cb 3010#include "exec/cpu-all.h"
622ed360 3011
3926cc84
AG
3012/* Bit usage in the TB flags field: bit 31 indicates whether we are
3013 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3014 * We put flags which are shared between 32 and 64 bit mode at the top
3015 * of the word, and flags which apply to only one mode at the bottom.
3926cc84 3016 */
aad821ac
RH
3017FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3018FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3019FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3020FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
9dbbc748 3021/* Target EL if we take a floating-point-disabled exception */
aad821ac
RH
3022FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3023FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3926cc84
AG
3024
3025/* Bit usage when in AArch32 state: */
aad821ac
RH
3026FIELD(TBFLAG_A32, THUMB, 0, 1)
3027FIELD(TBFLAG_A32, VECLEN, 1, 3)
3028FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3029FIELD(TBFLAG_A32, VFPEN, 7, 1)
3030FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3031FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
c0f4af17
PM
3032/* We store the bottom two bits of the CPAR as TB flags and handle
3033 * checks on the other bits at runtime
3034 */
aad821ac 3035FIELD(TBFLAG_A32, XSCALE_CPAR, 17, 2)
3f342b9e
SF
3036/* Indicates whether cp register reads and writes by guest code should access
3037 * the secure or nonsecure bank of banked registers; note that this is not
3038 * the same thing as the current security state of the processor!
3039 */
aad821ac 3040FIELD(TBFLAG_A32, NS, 19, 1)
064c379c 3041/* For M profile only, Handler (ie not Thread) mode */
aad821ac 3042FIELD(TBFLAG_A32, HANDLER, 21, 1)
4730fb85 3043/* For M profile only, whether we should generate stack-limit checks */
aad821ac 3044FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3926cc84 3045
86fb3fa4 3046/* Bit usage when in AArch64 state */
476a4692 3047FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3048FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3049FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3050FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
a1705768 3051
f9fd40eb
PB
3052static inline bool bswap_code(bool sctlr_b)
3053{
3054#ifdef CONFIG_USER_ONLY
3055 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3056 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3057 * would also end up as a mixed-endian mode with BE code, LE data.
3058 */
3059 return
3060#ifdef TARGET_WORDS_BIGENDIAN
3061 1 ^
3062#endif
3063 sctlr_b;
3064#else
e334bd31
PB
3065 /* All code access in ARM is little endian, and there are no loaders
3066 * doing swaps that need to be reversed
f9fd40eb
PB
3067 */
3068 return 0;
3069#endif
3070}
3071
c3ae85fc
PB
3072#ifdef CONFIG_USER_ONLY
3073static inline bool arm_cpu_bswap_data(CPUARMState *env)
3074{
3075 return
3076#ifdef TARGET_WORDS_BIGENDIAN
3077 1 ^
3078#endif
3079 arm_cpu_data_is_big_endian(env);
3080}
3081#endif
3082
a9e01311
RH
3083void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3084 target_ulong *cs_base, uint32_t *flags);
6b917547 3085
98128601
RH
3086enum {
3087 QEMU_PSCI_CONDUIT_DISABLED = 0,
3088 QEMU_PSCI_CONDUIT_SMC = 1,
3089 QEMU_PSCI_CONDUIT_HVC = 2,
3090};
3091
017518c1
PM
3092#ifndef CONFIG_USER_ONLY
3093/* Return the address space index to use for a memory access */
3094static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3095{
3096 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3097}
5ce4ff65
PM
3098
3099/* Return the AddressSpace to use for a memory access
3100 * (which depends on whether the access is S or NS, and whether
3101 * the board gave us a separate AddressSpace for S accesses).
3102 */
3103static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3104{
3105 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3106}
017518c1
PM
3107#endif
3108
bd7d00fc 3109/**
b5c53d1b
AL
3110 * arm_register_pre_el_change_hook:
3111 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3112 * CPU changes exception level or mode. The hook function will be
3113 * passed a pointer to the ARMCPU and the opaque data pointer passed
3114 * to this function when the hook was registered.
b5c53d1b
AL
3115 *
3116 * Note that if a pre-change hook is called, any registered post-change hooks
3117 * are guaranteed to subsequently be called.
bd7d00fc 3118 */
b5c53d1b 3119void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3120 void *opaque);
b5c53d1b
AL
3121/**
3122 * arm_register_el_change_hook:
3123 * Register a hook function which will be called immediately after this
3124 * CPU changes exception level or mode. The hook function will be
3125 * passed a pointer to the ARMCPU and the opaque data pointer passed
3126 * to this function when the hook was registered.
3127 *
3128 * Note that any registered hooks registered here are guaranteed to be called
3129 * if pre-change hooks have been.
3130 */
3131void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3132 *opaque);
bd7d00fc 3133
9a2b5256
RH
3134/**
3135 * aa32_vfp_dreg:
3136 * Return a pointer to the Dn register within env in 32-bit mode.
3137 */
3138static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3139{
c39c2b90 3140 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3141}
3142
3143/**
3144 * aa32_vfp_qreg:
3145 * Return a pointer to the Qn register within env in 32-bit mode.
3146 */
3147static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3148{
c39c2b90 3149 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3150}
3151
3152/**
3153 * aa64_vfp_qreg:
3154 * Return a pointer to the Qn register within env in 64-bit mode.
3155 */
3156static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3157{
c39c2b90 3158 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3159}
3160
028e2a7b
RH
3161/* Shared between translate-sve.c and sve_helper.c. */
3162extern const uint64_t pred_esz_masks[4];
3163
962fcbf2
RH
3164/*
3165 * 32-bit feature tests via id registers.
3166 */
7e0cf8b4
RH
3167static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3168{
3169 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3170}
3171
3172static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3173{
3174 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3175}
3176
09cbd501
RH
3177static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3178{
3179 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3180}
3181
962fcbf2
RH
3182static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3183{
3184 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3185}
3186
3187static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3188{
3189 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3190}
3191
3192static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3193{
3194 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3195}
3196
3197static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3198{
3199 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3200}
3201
3202static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3203{
3204 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3205}
3206
3207static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3208{
3209 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3210}
3211
3212static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3213{
3214 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3215}
3216
3217static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3218{
3219 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3220}
3221
5763190f
RH
3222static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3223{
3224 /*
3225 * This is a placeholder for use by VCMA until the rest of
3226 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3227 * At which point we can properly set and check MVFR1.FPHP.
3228 */
3229 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3230}
3231
962fcbf2
RH
3232/*
3233 * 64-bit feature tests via id registers.
3234 */
3235static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3236{
3237 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3238}
3239
3240static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3241{
3242 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3243}
3244
3245static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3246{
3247 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3248}
3249
3250static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3251{
3252 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3253}
3254
3255static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3256{
3257 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3258}
3259
3260static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3261{
3262 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3263}
3264
3265static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3266{
3267 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3268}
3269
3270static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3271{
3272 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3273}
3274
3275static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3276{
3277 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3278}
3279
3280static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3281{
3282 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3283}
3284
3285static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3286{
3287 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3288}
3289
3290static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3291{
3292 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3293}
3294
3295static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3296{
3297 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3298}
3299
991ad91b
RH
3300static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3301{
3302 /*
3303 * Note that while QEMU will only implement the architected algorithm
3304 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3305 * defined algorithms, and thus API+GPI, and this predicate controls
3306 * migration of the 128-bit keys.
3307 */
3308 return (id->id_aa64isar1 &
3309 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3310 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3311 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3312 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3313}
3314
5763190f
RH
3315static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3316{
3317 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3318 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3319}
3320
0f8d06f1
RH
3321static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3322{
3323 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3324}
3325
cd208a1c
RH
3326static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3327{
3328 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3329}
3330
2d7137c1
RH
3331static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3332{
3333 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3334}
3335
be53b6f4
RH
3336static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3337{
3338 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3339}
3340
962fcbf2
RH
3341/*
3342 * Forward to the above feature tests given an ARMCPU pointer.
3343 */
3344#define cpu_isar_feature(name, cpu) \
3345 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3346
2c0262af 3347#endif