]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Handle FEAT_NV2 redirection of SPSR_EL2, ELR_EL2, ESR_EL2, FAR_EL2
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
68970d1e 28#include "qapi/qapi-types-common.h"
9042c0e2 29
ca759f9e
AB
30/* ARM processors have a weak memory model */
31#define TCG_GUEST_DEFAULT_MO (0)
32
e24fd076
DG
33#ifdef TARGET_AARCH64
34#define KVM_HAVE_MCE_INJECTION 1
35#endif
36
b8a9e8f1
FB
37#define EXCP_UDEF 1 /* undefined instruction */
38#define EXCP_SWI 2 /* software interrupt */
39#define EXCP_PREFETCH_ABORT 3
40#define EXCP_DATA_ABORT 4
b5ff1b31
FB
41#define EXCP_IRQ 5
42#define EXCP_FIQ 6
06c949e6 43#define EXCP_BKPT 7
9ee6e8bb 44#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 45#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 46#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 47#define EXCP_HYP_TRAP 12
e0d6e6a5 48#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
49#define EXCP_VIRQ 14
50#define EXCP_VFIQ 15
19a6e31c 51#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 52#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 53#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 54#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 55#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
56#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 58#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
3c29632f 59#define EXCP_VSERR 24
11b76fda 60#define EXCP_GPC 25 /* v9 Granule Protection Check Fault */
2c4a7cc5 61/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
62
63#define ARMV7M_EXCP_RESET 1
64#define ARMV7M_EXCP_NMI 2
65#define ARMV7M_EXCP_HARD 3
66#define ARMV7M_EXCP_MEM 4
67#define ARMV7M_EXCP_BUS 5
68#define ARMV7M_EXCP_USAGE 6
1e577cc7 69#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
70#define ARMV7M_EXCP_SVC 11
71#define ARMV7M_EXCP_DEBUG 12
72#define ARMV7M_EXCP_PENDSV 14
73#define ARMV7M_EXCP_SYSTICK 15
2c0262af 74
acf94941
PM
75/* For M profile, some registers are banked secure vs non-secure;
76 * these are represented as a 2-element array where the first element
77 * is the non-secure copy and the second is the secure copy.
78 * When the CPU does not have implement the security extension then
79 * only the first element is used.
80 * This means that the copy for the current security state can be
81 * accessed via env->registerfield[env->v7m.secure] (whether the security
82 * extension is implemented or not).
83 */
4a16724f
PM
84enum {
85 M_REG_NS = 0,
86 M_REG_S = 1,
87 M_REG_NUM_BANKS = 2,
88};
acf94941 89
403946c0
RH
90/* ARM-specific interrupt pending bits. */
91#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
92#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
93#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
3c29632f 94#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
403946c0 95
e4fe830b
PM
96/* The usual mapping for an AArch64 system register to its AArch32
97 * counterpart is for the 32 bit world to have access to the lower
98 * half only (with writes leaving the upper half untouched). It's
99 * therefore useful to be able to pass TCG the offset of the least
100 * significant half of a uint64_t struct member.
101 */
e03b5686 102#if HOST_BIG_ENDIAN
5cd8a118 103#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 104#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
105#else
106#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 107#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
108#endif
109
136e67e9 110/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
111#define ARM_CPU_IRQ 0
112#define ARM_CPU_FIQ 1
136e67e9
EI
113#define ARM_CPU_VIRQ 2
114#define ARM_CPU_VFIQ 3
403946c0 115
aaa1f954
EI
116/* ARM-specific extra insn start words:
117 * 1: Conditional execution bits
118 * 2: Partial exception syndrome for data aborts
119 */
120#define TARGET_INSN_START_EXTRA_WORDS 2
121
122/* The 2nd extra word holding syndrome info for data aborts does not use
123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
124 * help the sleb128 encoder do a better job.
125 * When restoring the CPU state, we shift it back up.
126 */
127#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
128#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 129
b7bcbe95
FB
130/* We currently assume float and double are IEEE single and double
131 precision respectively.
132 Doing runtime conversions is tricky because VFP registers may contain
133 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
134 s<2n> maps to the least significant half of d<n>
135 s<2n+1> maps to the most significant half of d<n>
136 */
b7bcbe95 137
200bf5b7
AB
138/**
139 * DynamicGDBXMLInfo:
140 * @desc: Contains the XML descriptions.
448d4d14
AB
141 * @num: Number of the registers in this XML seen by GDB.
142 * @data: A union with data specific to the set of registers
143 * @cpregs_keys: Array that contains the corresponding Key of
144 * a given cpreg with the same order of the cpreg
145 * in the XML description.
200bf5b7
AB
146 */
147typedef struct DynamicGDBXMLInfo {
148 char *desc;
448d4d14
AB
149 int num;
150 union {
151 struct {
152 uint32_t *keys;
153 } cpregs;
154 } data;
200bf5b7
AB
155} DynamicGDBXMLInfo;
156
55d284af
PM
157/* CPU state for each instance of a generic timer (in cp15 c14) */
158typedef struct ARMGenericTimer {
159 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 160 uint64_t ctl; /* Timer Control register */
55d284af
PM
161} ARMGenericTimer;
162
8c94b071
RH
163#define GTIMER_PHYS 0
164#define GTIMER_VIRT 1
165#define GTIMER_HYP 2
166#define GTIMER_SEC 3
167#define GTIMER_HYPVIRT 4
168#define NUM_GTIMERS 5
55d284af 169
e9152ee9
RDC
170#define VTCR_NSW (1u << 29)
171#define VTCR_NSA (1u << 30)
172#define VSTCR_SW VTCR_NSW
173#define VSTCR_SA VTCR_NSA
174
c39c2b90
RH
175/* Define a maximum sized vector register.
176 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
177 * For 64-bit, this is a 2048-bit SVE register.
178 *
179 * Note that the mapping between S, D, and Q views of the register bank
180 * differs between AArch64 and AArch32.
181 * In AArch32:
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n / 2].d[n & 1]
184 * Sn = regs[n / 4].d[n % 4 / 2],
185 * bits 31..0 for even n, and bits 63..32 for odd n
186 * (and regs[16] to regs[31] are inaccessible)
187 * In AArch64:
188 * Zn = regs[n].d[*]
189 * Qn = regs[n].d[1]:regs[n].d[0]
190 * Dn = regs[n].d[0]
191 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 192 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
193 *
194 * This corresponds to the architecturally defined mapping between
195 * the two execution states, and means we do not need to explicitly
196 * map these registers when changing states.
197 *
198 * Align the data for use with TCG host vector operations.
199 */
200
201#ifdef TARGET_AARCH64
202# define ARM_MAX_VQ 16
203#else
204# define ARM_MAX_VQ 1
205#endif
206
207typedef struct ARMVectorReg {
208 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
209} ARMVectorReg;
210
3c7d3086 211#ifdef TARGET_AARCH64
991ad91b 212/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 213typedef struct ARMPredicateReg {
46417784 214 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 215} ARMPredicateReg;
991ad91b
RH
216
217/* In AArch32 mode, PAC keys do not exist at all. */
218typedef struct ARMPACKey {
219 uint64_t lo, hi;
220} ARMPACKey;
3c7d3086
RH
221#endif
222
3902bfc6
RH
223/* See the commentary above the TBFLAG field definitions. */
224typedef struct CPUARMTBFlags {
225 uint32_t flags;
a378206a 226 target_ulong flags2;
3902bfc6 227} CPUARMTBFlags;
c39c2b90 228
f3639a64
RH
229typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
230
8f4e07c9
PMD
231typedef struct NVICState NVICState;
232
1ea4a06a 233typedef struct CPUArchState {
b5ff1b31 234 /* Regs for current mode. */
2c0262af 235 uint32_t regs[16];
3926cc84
AG
236
237 /* 32/64 switch only happens when taking and returning from
238 * exceptions so the overlap semantics are taken care of then
239 * instead of having a complicated union.
240 */
241 /* Regs for A64 mode. */
242 uint64_t xregs[32];
243 uint64_t pc;
d356312f
PM
244 /* PSTATE isn't an architectural register for ARMv8. However, it is
245 * convenient for us to assemble the underlying state into a 32 bit format
246 * identical to the architectural format used for the SPSR. (This is also
247 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
248 * 'pstate' register are.) Of the PSTATE bits:
249 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
250 * semantics as for AArch32, as described in the comments on each field)
251 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 252 * DAIF (exception masks) are kept in env->daif
f6e52eaa 253 * BTYPE is kept in env->btype
c37e6ac9 254 * SM and ZA are kept in env->svcr
d356312f 255 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
256 */
257 uint32_t pstate;
53221552 258 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
063bbd80 259 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
3926cc84 260
fdd1b228 261 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 262 CPUARMTBFlags hflags;
fdd1b228 263
b90372ad 264 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 265 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
266 the whole CPSR. */
267 uint32_t uncached_cpsr;
268 uint32_t spsr;
269
270 /* Banked registers. */
28c9457d 271 uint64_t banked_spsr[8];
0b7d409d
FA
272 uint32_t banked_r13[8];
273 uint32_t banked_r14[8];
3b46e624 274
b5ff1b31
FB
275 /* These hold r8-r12. */
276 uint32_t usr_regs[5];
277 uint32_t fiq_regs[5];
3b46e624 278
2c0262af
FB
279 /* cpsr flag cache for faster execution */
280 uint32_t CF; /* 0 or 1 */
281 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
282 uint32_t NF; /* N is bit 31. All other bits are undefined. */
283 uint32_t ZF; /* Z set if zero. */
99c475ab 284 uint32_t QF; /* 0 or 1 */
9ee6e8bb 285 uint32_t GE; /* cpsr[19:16] */
9ee6e8bb 286 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 287 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 288 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
c37e6ac9 289 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
2c0262af 290
1b174238 291 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 292 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 293
b5ff1b31
FB
294 /* System control coprocessor (cp15) */
295 struct {
40f137e1 296 uint32_t c0_cpuid;
b85a1fd6
FA
297 union { /* Cache size selection */
298 struct {
299 uint64_t _unused_csselr0;
300 uint64_t csselr_ns;
301 uint64_t _unused_csselr1;
302 uint64_t csselr_s;
303 };
304 uint64_t csselr_el[4];
305 };
137feaa9
FA
306 union { /* System control register. */
307 struct {
308 uint64_t _unused_sctlr;
309 uint64_t sctlr_ns;
310 uint64_t hsctlr;
311 uint64_t sctlr_s;
312 };
313 uint64_t sctlr_el[4];
314 };
761c4642 315 uint64_t vsctlr; /* Virtualization System control register. */
7ebd5f2e 316 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 317 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 318 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 319 uint64_t sder; /* Secure debug enable register. */
77022576 320 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
321 union { /* MMU translation table base 0. */
322 struct {
323 uint64_t _unused_ttbr0_0;
324 uint64_t ttbr0_ns;
325 uint64_t _unused_ttbr0_1;
326 uint64_t ttbr0_s;
327 };
328 uint64_t ttbr0_el[4];
329 };
330 union { /* MMU translation table base 1. */
331 struct {
332 uint64_t _unused_ttbr1_0;
333 uint64_t ttbr1_ns;
334 uint64_t _unused_ttbr1_1;
335 uint64_t ttbr1_s;
336 };
337 uint64_t ttbr1_el[4];
338 };
b698e9cf 339 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 340 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee 341 /* MMU translation table base control. */
cb4a0a34 342 uint64_t tcr_el[4];
988cc190
PM
343 uint64_t vtcr_el2; /* Virtualization Translation Control. */
344 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
345 uint32_t c2_data; /* MPU data cacheable bits. */
346 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
347 union { /* MMU domain access control register
348 * MPU write buffer control.
349 */
350 struct {
351 uint64_t dacr_ns;
352 uint64_t dacr_s;
353 };
354 struct {
355 uint64_t dacr32_el2;
356 };
357 };
7e09797c
PM
358 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
359 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 360 uint64_t hcr_el2; /* Hypervisor configuration register */
5814d587 361 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
64e0e2de 362 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
363 union { /* Fault status registers. */
364 struct {
365 uint64_t ifsr_ns;
366 uint64_t ifsr_s;
367 };
368 struct {
369 uint64_t ifsr32_el2;
370 };
371 };
4a7e2d73
FA
372 union {
373 struct {
374 uint64_t _unused_dfsr;
375 uint64_t dfsr_ns;
376 uint64_t hsr;
377 uint64_t dfsr_s;
378 };
379 uint64_t esr_el[4];
380 };
ce819861 381 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
382 union { /* Fault address registers. */
383 struct {
384 uint64_t _unused_far0;
e03b5686 385#if HOST_BIG_ENDIAN
b848ce2b
FA
386 uint32_t ifar_ns;
387 uint32_t dfar_ns;
388 uint32_t ifar_s;
389 uint32_t dfar_s;
390#else
391 uint32_t dfar_ns;
392 uint32_t ifar_ns;
393 uint32_t dfar_s;
394 uint32_t ifar_s;
395#endif
396 uint64_t _unused_far3;
397 };
398 uint64_t far_el[4];
399 };
59e05530 400 uint64_t hpfar_el2;
2a5a9abd 401 uint64_t hstr_el2;
01c097f7
FA
402 union { /* Translation result. */
403 struct {
404 uint64_t _unused_par_0;
405 uint64_t par_ns;
406 uint64_t _unused_par_1;
407 uint64_t par_s;
408 };
409 uint64_t par_el[4];
410 };
6cb0b013 411
b5ff1b31
FB
412 uint32_t c9_insn; /* Cache lockdown registers. */
413 uint32_t c9_data;
8521466b
AF
414 uint64_t c9_pmcr; /* performance monitor control register */
415 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
416 uint64_t c9_pmovsr; /* perf monitor overflow status */
417 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 418 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 419 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
420 union { /* Memory attribute redirection */
421 struct {
e03b5686 422#if HOST_BIG_ENDIAN
be693c87
GB
423 uint64_t _unused_mair_0;
424 uint32_t mair1_ns;
425 uint32_t mair0_ns;
426 uint64_t _unused_mair_1;
427 uint32_t mair1_s;
428 uint32_t mair0_s;
429#else
430 uint64_t _unused_mair_0;
431 uint32_t mair0_ns;
432 uint32_t mair1_ns;
433 uint64_t _unused_mair_1;
434 uint32_t mair0_s;
435 uint32_t mair1_s;
436#endif
437 };
438 uint64_t mair_el[4];
439 };
fb6c91ba
GB
440 union { /* vector base address register */
441 struct {
442 uint64_t _unused_vbar;
443 uint64_t vbar_ns;
444 uint64_t hvbar;
445 uint64_t vbar_s;
446 };
447 uint64_t vbar_el[4];
448 };
e89e51a1 449 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 450 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
451 struct { /* FCSE PID. */
452 uint32_t fcseidr_ns;
453 uint32_t fcseidr_s;
454 };
455 union { /* Context ID. */
456 struct {
457 uint64_t _unused_contextidr_0;
458 uint64_t contextidr_ns;
459 uint64_t _unused_contextidr_1;
460 uint64_t contextidr_s;
461 };
462 uint64_t contextidr_el[4];
463 };
464 union { /* User RW Thread register. */
465 struct {
466 uint64_t tpidrurw_ns;
467 uint64_t tpidrprw_ns;
468 uint64_t htpidr;
469 uint64_t _tpidr_el3;
470 };
471 uint64_t tpidr_el[4];
472 };
9e5ec745 473 uint64_t tpidr2_el0;
54bf36ed
FA
474 /* The secure banks of these registers don't map anywhere */
475 uint64_t tpidrurw_s;
476 uint64_t tpidrprw_s;
477 uint64_t tpidruro_s;
478
479 union { /* User RO Thread register. */
480 uint64_t tpidruro_ns;
481 uint64_t tpidrro_el[1];
482 };
a7adc4b7
PM
483 uint64_t c14_cntfrq; /* Counter Frequency register */
484 uint64_t c14_cntkctl; /* Timer Control register */
bb461330 485 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 486 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 487 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 488 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
489 uint32_t c15_ticonfig; /* TI925T configuration byte. */
490 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
491 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
492 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
493 uint32_t c15_config_base_address; /* SCU base address. */
494 uint32_t c15_diagnostic; /* diagnostic register */
495 uint32_t c15_power_diagnostic;
496 uint32_t c15_power_control; /* power control */
0b45451e
PM
497 uint64_t dbgbvr[16]; /* breakpoint value registers */
498 uint64_t dbgbcr[16]; /* breakpoint control registers */
499 uint64_t dbgwvr[16]; /* watchpoint value registers */
500 uint64_t dbgwcr[16]; /* watchpoint control registers */
5fc83f11 501 uint64_t dbgclaim; /* DBGCLAIM bits */
3a298203 502 uint64_t mdscr_el1;
1424ca8d 503 uint64_t oslsr_el1; /* OS Lock Status */
f94a6df5 504 uint64_t osdlr_el1; /* OS DoubleLock status */
14cc7b54 505 uint64_t mdcr_el2;
5513c3ab 506 uint64_t mdcr_el3;
5d05b9d4
AL
507 /* Stores the architectural value of the counter *the last time it was
508 * updated* by pmccntr_op_start. Accesses should always be surrounded
509 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
510 * architecturally-correct value is being read/set.
7c2cb42b 511 */
c92c0687 512 uint64_t c15_ccnt;
5d05b9d4
AL
513 /* Stores the delta between the architectural value and the underlying
514 * cycle count during normal operation. It is used to update c15_ccnt
515 * to be the correct architectural value before accesses. During
516 * accesses, c15_ccnt_delta contains the underlying count being used
517 * for the access, after which it reverts to the delta value in
518 * pmccntr_op_finish.
519 */
520 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
521 uint64_t c14_pmevcntr[31];
522 uint64_t c14_pmevcntr_delta[31];
523 uint64_t c14_pmevtyper[31];
8521466b 524 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 525 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 526 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
527 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
528 uint64_t gcr_el1;
529 uint64_t rgsr_el1;
58e93b48
RH
530
531 /* Minimal RAS registers */
532 uint64_t disr_el1;
533 uint64_t vdisr_el2;
534 uint64_t vsesr_el2;
15126d9c
PM
535
536 /*
537 * Fine-Grained Trap registers. We store these as arrays so the
538 * access checking code doesn't have to manually select
539 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
540 * FEAT_FGT2 will add more elements to these arrays.
541 */
542 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
543 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
544 uint64_t fgt_exec[1]; /* HFGITR */
ef1febe7
RH
545
546 /* RME registers */
547 uint64_t gpccr_el3;
548 uint64_t gptbr_el3;
549 uint64_t mfar_el3;
b5ba6c99
PM
550
551 /* NV2 register */
552 uint64_t vncr_el2;
b5ff1b31 553 } cp15;
40f137e1 554
9ee6e8bb 555 struct {
fb602cb7
PM
556 /* M profile has up to 4 stack pointers:
557 * a Main Stack Pointer and a Process Stack Pointer for each
558 * of the Secure and Non-Secure states. (If the CPU doesn't support
559 * the security extension then it has only two SPs.)
560 * In QEMU we always store the currently active SP in regs[13],
561 * and the non-active SP for the current security state in
562 * v7m.other_sp. The stack pointers for the inactive security state
563 * are stored in other_ss_msp and other_ss_psp.
564 * switch_v7m_security_state() is responsible for rearranging them
565 * when we change security state.
566 */
9ee6e8bb 567 uint32_t other_sp;
fb602cb7
PM
568 uint32_t other_ss_msp;
569 uint32_t other_ss_psp;
4a16724f
PM
570 uint32_t vecbase[M_REG_NUM_BANKS];
571 uint32_t basepri[M_REG_NUM_BANKS];
572 uint32_t control[M_REG_NUM_BANKS];
573 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
574 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
575 uint32_t hfsr; /* HardFault Status */
576 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 577 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 578 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 579 uint32_t bfar; /* BusFault Address */
bed079da 580 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 581 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 582 int exception;
4a16724f
PM
583 uint32_t primask[M_REG_NUM_BANKS];
584 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 585 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 586 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 587 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 588 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
589 uint32_t msplim[M_REG_NUM_BANKS];
590 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
591 uint32_t fpcar[M_REG_NUM_BANKS];
592 uint32_t fpccr[M_REG_NUM_BANKS];
593 uint32_t fpdscr[M_REG_NUM_BANKS];
594 uint32_t cpacr[M_REG_NUM_BANKS];
595 uint32_t nsacr;
b26b5629 596 uint32_t ltpsize;
7c3d47da 597 uint32_t vpr;
9ee6e8bb
PB
598 } v7m;
599
abf1172f
PM
600 /* Information associated with an exception about to be taken:
601 * code which raises an exception must set cs->exception_index and
602 * the relevant parts of this structure; the cpu_do_interrupt function
603 * will then set the guest-visible registers as part of the exception
604 * entry process.
605 */
606 struct {
607 uint32_t syndrome; /* AArch64 format syndrome register */
608 uint32_t fsr; /* AArch32 format fault status register info */
609 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 610 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
611 /* If we implement EL2 we will also need to store information
612 * about the intermediate physical address for stage 2 faults.
613 */
614 } exception;
615
202ccb6b
DG
616 /* Information associated with an SError */
617 struct {
618 uint8_t pending;
619 uint8_t has_esr;
620 uint64_t esr;
621 } serror;
622
1711bfa5
BM
623 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
624
ed89f078
PM
625 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
626 uint32_t irq_line_state;
627
fe1479c3
PB
628 /* Thumb-2 EE state. */
629 uint32_t teecr;
630 uint32_t teehbr;
631
b7bcbe95
FB
632 /* VFP coprocessor state. */
633 struct {
c39c2b90 634 ARMVectorReg zregs[32];
b7bcbe95 635
3c7d3086
RH
636#ifdef TARGET_AARCH64
637 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 638#define FFR_PRED_NUM 16
3c7d3086 639 ARMPredicateReg pregs[17];
516e246a
RH
640 /* Scratch space for aa64 sve predicate temporary. */
641 ARMPredicateReg preg_tmp;
3c7d3086
RH
642#endif
643
b7bcbe95 644 /* We store these fpcsr fields separately for convenience. */
a4d58462 645 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
646 int vec_len;
647 int vec_stride;
648
a4d58462
RH
649 uint32_t xregs[16];
650
516e246a 651 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 652 uint32_t scratch[8];
3b46e624 653
d81ce0ef
AB
654 /* There are a number of distinct float control structures:
655 *
656 * fp_status: is the "normal" fp status.
657 * fp_status_fp16: used for half-precision calculations
658 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
659 * standard_fp_status_fp16 : used for half-precision
660 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
661 *
662 * Half-precision operations are governed by a separate
663 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
664 * status structure to control this.
665 *
666 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
667 * round-to-nearest and is used by any operations (generally
668 * Neon) which the architecture defines as controlled by the
669 * standard FPSCR value rather than the FPSCR.
3a492f3a 670 *
aaae563b
PM
671 * The "standard FPSCR but for fp16 ops" is needed because
672 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
673 * using a fixed value for it.
674 *
3a492f3a
PM
675 * To avoid having to transfer exception bits around, we simply
676 * say that the FPSCR cumulative exception flags are the logical
aaae563b 677 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
678 * only thing which needs to read the exception flags being
679 * an explicit FPSCR read.
680 */
53cd6637 681 float_status fp_status;
d81ce0ef 682 float_status fp_status_f16;
3a492f3a 683 float_status standard_fp_status;
aaae563b 684 float_status standard_fp_status_f16;
5be5e8ed 685
de561988
RH
686 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
687 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
b7bcbe95 688 } vfp;
0f08429c 689
03d05e2d
PM
690 uint64_t exclusive_addr;
691 uint64_t exclusive_val;
0f08429c
RH
692 /*
693 * Contains the 'val' for the second 64-bit register of LDXP, which comes
694 * from the higher address, not the high part of a complete 128-bit value.
695 * In some ways it might be more convenient to record the exclusive value
696 * as the low and high halves of a 128 bit data value, but the current
697 * semantics of these fields are baked into the migration format.
698 */
03d05e2d 699 uint64_t exclusive_high;
b7bcbe95 700
18c9b560
AZ
701 /* iwMMXt coprocessor state. */
702 struct {
703 uint64_t regs[16];
704 uint64_t val;
705
706 uint32_t cregs[16];
707 } iwmmxt;
708
991ad91b 709#ifdef TARGET_AARCH64
108b3ba8
RH
710 struct {
711 ARMPACKey apia;
712 ARMPACKey apib;
713 ARMPACKey apda;
714 ARMPACKey apdb;
715 ARMPACKey apga;
716 } keys;
7cb1e618
RH
717
718 uint64_t scxtnum_el[4];
dc993a01
RH
719
720 /*
721 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
722 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
723 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
724 * When SVL is less than the architectural maximum, the accessible
725 * storage is restricted, such that if the SVL is X bytes the guest can
726 * see only the bottom X elements of zarray[], and only the least
727 * significant X bytes of each element of the array. (In other words,
728 * the observable part is always square.)
729 *
730 * The ZA storage can also be considered as a set of square tiles of
731 * elements of different sizes. The mapping from tiles to the ZA array
732 * is architecturally defined, such that for tiles of elements of esz
733 * bytes, the Nth row (or "horizontal slice") of tile T is in
734 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
735 * in the ZA storage, because its rows are striped through the ZA array.
736 *
737 * Because this is so large, keep this toward the end of the reset area,
738 * to keep the offsets into the rest of the structure smaller.
739 */
740 ARMVectorReg zarray[ARM_MAX_VQ * 16];
991ad91b
RH
741#endif
742
46747d15 743 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
744 struct CPUWatchpoint *cpu_watchpoint[16];
745
f3639a64
RH
746 /* Optional fault info across tlb lookup. */
747 ARMMMUFaultInfo *tlb_fi;
748
1f5c00cf
AB
749 /* Fields up to this point are cleared by a CPU reset */
750 struct {} end_reset_fields;
751
e8b5fae5 752 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 753
581be094 754 /* Internal CPU feature flags. */
918f5dca 755 uint64_t features;
581be094 756
6cb0b013
PC
757 /* PMSAv7 MPU */
758 struct {
759 uint32_t *drbar;
760 uint32_t *drsr;
761 uint32_t *dracr;
4a16724f 762 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
763 } pmsav7;
764
0e1a46bb
PM
765 /* PMSAv8 MPU */
766 struct {
767 /* The PMSAv8 implementation also shares some PMSAv7 config
768 * and state:
769 * pmsav7.rnr (region number register)
770 * pmsav7_dregion (number of configured regions)
771 */
4a16724f
PM
772 uint32_t *rbar[M_REG_NUM_BANKS];
773 uint32_t *rlar[M_REG_NUM_BANKS];
761c4642
TR
774 uint32_t *hprbar;
775 uint32_t *hprlar;
4a16724f
PM
776 uint32_t mair0[M_REG_NUM_BANKS];
777 uint32_t mair1[M_REG_NUM_BANKS];
761c4642 778 uint32_t hprselr;
0e1a46bb
PM
779 } pmsav8;
780
9901c576
PM
781 /* v8M SAU */
782 struct {
783 uint32_t *rbar;
784 uint32_t *rlar;
785 uint32_t rnr;
786 uint32_t ctrl;
787 } sau;
788
1701d70e 789#if !defined(CONFIG_USER_ONLY)
8f4e07c9 790 NVICState *nvic;
2a94a507 791 const struct arm_boot_info *boot_info;
d3a3e529
VK
792 /* Store GICv3CPUState to access from this struct */
793 void *gicv3state;
1701d70e 794#else /* CONFIG_USER_ONLY */
26f08561
PMD
795 /* For usermode syscall translation. */
796 bool eabi;
797#endif /* CONFIG_USER_ONLY */
0e0c030c
RH
798
799#ifdef TARGET_TAGGED_ADDRESSES
800 /* Linux syscall tagged address support */
801 bool tagged_addr_enable;
802#endif
2c0262af
FB
803} CPUARMState;
804
5fda9504
TH
805static inline void set_feature(CPUARMState *env, int feature)
806{
807 env->features |= 1ULL << feature;
808}
809
810static inline void unset_feature(CPUARMState *env, int feature)
811{
812 env->features &= ~(1ULL << feature);
813}
814
bd7d00fc 815/**
08267487 816 * ARMELChangeHookFn:
bd7d00fc
PM
817 * type of a function which can be registered via arm_register_el_change_hook()
818 * to get callbacks when the CPU changes its exception level or mode.
819 */
08267487
AL
820typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
821typedef struct ARMELChangeHook ARMELChangeHook;
822struct ARMELChangeHook {
823 ARMELChangeHookFn *hook;
824 void *opaque;
825 QLIST_ENTRY(ARMELChangeHook) node;
826};
062ba099
AB
827
828/* These values map onto the return values for
829 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
830typedef enum ARMPSCIState {
d5affb0d
AJ
831 PSCI_ON = 0,
832 PSCI_OFF = 1,
062ba099
AB
833 PSCI_ON_PENDING = 2
834} ARMPSCIState;
835
962fcbf2
RH
836typedef struct ARMISARegisters ARMISARegisters;
837
7f9e25a6
RH
838/*
839 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
840 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
841 *
842 * While processing properties during initialization, corresponding init bits
843 * are set for bits in sve_vq_map that have been set by properties.
844 *
845 * Bits set in supported represent valid vector lengths for the CPU type.
846 */
847typedef struct {
848 uint32_t map, init, supported;
849} ARMVQMap;
850
74e75564
PB
851/**
852 * ARMCPU:
853 * @env: #CPUARMState
854 *
855 * An ARM CPU core.
856 */
b36e239e 857struct ArchCPU {
74e75564 858 CPUState parent_obj;
74e75564
PB
859
860 CPUARMState env;
861
862 /* Coprocessor information */
863 GHashTable *cp_regs;
864 /* For marshalling (mostly coprocessor) register state between the
865 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
866 * we use these arrays.
867 */
868 /* List of register indexes managed via these arrays; (full KVM style
869 * 64 bit indexes, not CPRegInfo 32 bit indexes)
870 */
871 uint64_t *cpreg_indexes;
872 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
873 uint64_t *cpreg_values;
874 /* Length of the indexes, values, reset_values arrays */
875 int32_t cpreg_array_len;
876 /* These are used only for migration: incoming data arrives in
877 * these fields and is sanity checked in post_load before copying
878 * to the working data structures above.
879 */
880 uint64_t *cpreg_vmstate_indexes;
881 uint64_t *cpreg_vmstate_values;
882 int32_t cpreg_vmstate_array_len;
883
448d4d14 884 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 885 DynamicGDBXMLInfo dyn_svereg_xml;
7d8b28b8
RH
886 DynamicGDBXMLInfo dyn_m_systemreg_xml;
887 DynamicGDBXMLInfo dyn_m_secextreg_xml;
200bf5b7 888
74e75564
PB
889 /* Timers used by the generic (architected) timer */
890 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
891 /*
892 * Timer used by the PMU. Its state is restored after migration by
893 * pmu_op_finish() - it does not need other handling during migration
894 */
895 QEMUTimer *pmu_timer;
74e75564
PB
896 /* GPIO outputs for generic timer */
897 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
898 /* GPIO output for GICv3 maintenance interrupt signal */
899 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
900 /* GPIO output for the PMU interrupt */
901 qemu_irq pmu_interrupt;
74e75564
PB
902
903 /* MemoryRegion to use for secure physical accesses */
904 MemoryRegion *secure_memory;
905
8bce44a2
RH
906 /* MemoryRegion to use for allocation tag accesses */
907 MemoryRegion *tag_memory;
908 MemoryRegion *secure_tag_memory;
909
181962fd
PM
910 /* For v8M, pointer to the IDAU interface provided by board/SoC */
911 Object *idau;
912
74e75564
PB
913 /* 'compatible' string for this CPU for Linux device trees */
914 const char *dtb_compatible;
915
916 /* PSCI version for this CPU
917 * Bits[31:16] = Major Version
918 * Bits[15:0] = Minor Version
919 */
920 uint32_t psci_version;
921
062ba099
AB
922 /* Current power state, access guarded by BQL */
923 ARMPSCIState power_state;
924
c25bd18a
PM
925 /* CPU has virtualization extension */
926 bool has_el2;
74e75564
PB
927 /* CPU has security extension */
928 bool has_el3;
5c0a3819
SZ
929 /* CPU has PMU (Performance Monitor Unit) */
930 bool has_pmu;
97a28b0e
PM
931 /* CPU has VFP */
932 bool has_vfp;
42bea956
CLG
933 /* CPU has 32 VFP registers */
934 bool has_vfp_d32;
97a28b0e
PM
935 /* CPU has Neon */
936 bool has_neon;
ea90db0a
PM
937 /* CPU has M-profile DSP extension */
938 bool has_dsp;
74e75564
PB
939
940 /* CPU has memory protection unit */
941 bool has_mpu;
942 /* PMSAv7 MPU number of supported regions */
943 uint32_t pmsav7_dregion;
761c4642
TR
944 /* PMSAv8 MPU number of supported hyp regions */
945 uint32_t pmsav8r_hdregion;
9901c576
PM
946 /* v8M SAU number of supported regions */
947 uint32_t sau_sregion;
74e75564
PB
948
949 /* PSCI conduit used to invoke PSCI methods
950 * 0 - disabled, 1 - smc, 2 - hvc
951 */
952 uint32_t psci_conduit;
953
38e2a77c
PM
954 /* For v8M, initial value of the Secure VTOR */
955 uint32_t init_svtor;
7cda2149
PM
956 /* For v8M, initial value of the Non-secure VTOR */
957 uint32_t init_nsvtor;
38e2a77c 958
74e75564
PB
959 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
960 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
961 */
962 uint32_t kvm_target;
963
cf43b5b6 964#ifdef CONFIG_KVM
74e75564
PB
965 /* KVM init features for this CPU */
966 uint32_t kvm_init_features[7];
967
e5ac4200
AJ
968 /* KVM CPU state */
969
970 /* KVM virtual time adjustment */
971 bool kvm_adjvtime;
972 bool kvm_vtime_dirty;
973 uint64_t kvm_vtime;
974
68970d1e
AJ
975 /* KVM steal time */
976 OnOffAuto kvm_steal_time;
cf43b5b6 977#endif /* CONFIG_KVM */
68970d1e 978
74e75564
PB
979 /* Uniprocessor system with MP extensions */
980 bool mp_is_up;
981
c4487d76
PM
982 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
983 * and the probe failed (so we need to report the error in realize)
984 */
985 bool host_cpu_probe_failed;
986
f9a69711
AF
987 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
988 * register.
989 */
990 int32_t core_count;
991
74e75564
PB
992 /* The instance init functions for implementation-specific subclasses
993 * set these fields to specify the implementation-dependent values of
994 * various constant registers and reset values of non-constant
995 * registers.
996 * Some of these might become QOM properties eventually.
997 * Field names match the official register names as defined in the
998 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
999 * is used for reset values of non-constant registers; no reset_
1000 * prefix means a constant register.
47576b94
RH
1001 * Some of these registers are split out into a substructure that
1002 * is shared with the translators to control the ISA.
1548a7b2
PM
1003 *
1004 * Note that if you add an ID register to the ARMISARegisters struct
1005 * you need to also update the 32-bit and 64-bit versions of the
1006 * kvm_arm_get_host_cpu_features() function to correctly populate the
1007 * field by reading the value from the KVM vCPU.
74e75564 1008 */
47576b94
RH
1009 struct ARMISARegisters {
1010 uint32_t id_isar0;
1011 uint32_t id_isar1;
1012 uint32_t id_isar2;
1013 uint32_t id_isar3;
1014 uint32_t id_isar4;
1015 uint32_t id_isar5;
1016 uint32_t id_isar6;
10054016
PM
1017 uint32_t id_mmfr0;
1018 uint32_t id_mmfr1;
1019 uint32_t id_mmfr2;
1020 uint32_t id_mmfr3;
1021 uint32_t id_mmfr4;
32957aad 1022 uint32_t id_mmfr5;
8a130a7b
PM
1023 uint32_t id_pfr0;
1024 uint32_t id_pfr1;
1d51bc96 1025 uint32_t id_pfr2;
47576b94
RH
1026 uint32_t mvfr0;
1027 uint32_t mvfr1;
1028 uint32_t mvfr2;
a6179538 1029 uint32_t id_dfr0;
d22c5649 1030 uint32_t id_dfr1;
4426d361 1031 uint32_t dbgdidr;
09754ca8
PM
1032 uint32_t dbgdevid;
1033 uint32_t dbgdevid1;
47576b94
RH
1034 uint64_t id_aa64isar0;
1035 uint64_t id_aa64isar1;
a969fe97 1036 uint64_t id_aa64isar2;
47576b94
RH
1037 uint64_t id_aa64pfr0;
1038 uint64_t id_aa64pfr1;
3dc91ddb
PM
1039 uint64_t id_aa64mmfr0;
1040 uint64_t id_aa64mmfr1;
64761e10 1041 uint64_t id_aa64mmfr2;
2a609df8
PM
1042 uint64_t id_aa64dfr0;
1043 uint64_t id_aa64dfr1;
2dc10fa2 1044 uint64_t id_aa64zfr0;
414c54d5 1045 uint64_t id_aa64smfr0;
24526bb9 1046 uint64_t reset_pmcr_el0;
47576b94 1047 } isar;
e544f800 1048 uint64_t midr;
74e75564
PB
1049 uint32_t revidr;
1050 uint32_t reset_fpsid;
a5fd319a 1051 uint64_t ctr;
74e75564 1052 uint32_t reset_sctlr;
cad86737
AL
1053 uint64_t pmceid0;
1054 uint64_t pmceid1;
74e75564 1055 uint32_t id_afr0;
74e75564
PB
1056 uint64_t id_aa64afr0;
1057 uint64_t id_aa64afr1;
f6450bcb 1058 uint64_t clidr;
74e75564
PB
1059 uint64_t mp_affinity; /* MP ID without feature bits */
1060 /* The elements of this array are the CCSIDR values for each cache,
1061 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1062 */
957e6155 1063 uint64_t ccsidr[16];
74e75564
PB
1064 uint64_t reset_cbar;
1065 uint32_t reset_auxcr;
1066 bool reset_hivecs;
ef1febe7 1067 uint8_t reset_l0gptsz;
eb94284d
RH
1068
1069 /*
1070 * Intermediate values used during property parsing.
69b2265d 1071 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
1072 */
1073 bool prop_pauth;
1074 bool prop_pauth_impdef;
399e5e71 1075 bool prop_pauth_qarma3;
69b2265d 1076 bool prop_lpa2;
eb94284d 1077
74e75564 1078 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
ae4acc69 1079 uint8_t dcz_blocksize;
851ec6eb
RH
1080 /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1081 uint8_t gm_blocksize;
ae4acc69 1082
4a7319b7 1083 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 1084
e45868a3
PM
1085 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1086 int gic_num_lrs; /* number of list registers */
1087 int gic_vpribits; /* number of virtual priority bits */
1088 int gic_vprebits; /* number of virtual preemption bits */
39f29e59 1089 int gic_pribits; /* number of physical priority bits */
e45868a3 1090
3a062d57
JB
1091 /* Whether the cfgend input is high (i.e. this CPU should reset into
1092 * big-endian mode). This setting isn't used directly: instead it modifies
1093 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1094 * architecture version.
1095 */
1096 bool cfgend;
1097
b5c53d1b 1098 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1099 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1100
1101 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1102
1103 /* Used to synchronize KVM and QEMU in-kernel device levels */
1104 uint8_t device_irq_level;
adf92eab
RH
1105
1106 /* Used to set the maximum vector length the cpu will support. */
1107 uint32_t sve_max_vq;
0df9142d 1108
b3d52804
RH
1109#ifdef CONFIG_USER_ONLY
1110 /* Used to set the default vector length at process start. */
1111 uint32_t sve_default_vq;
e74c0976 1112 uint32_t sme_default_vq;
b3d52804
RH
1113#endif
1114
7f9e25a6 1115 ARMVQMap sve_vq;
e74c0976 1116 ARMVQMap sme_vq;
7def8754
AJ
1117
1118 /* Generic timer counter frequency, in Hz */
1119 uint64_t gt_cntfrq_hz;
74e75564
PB
1120};
1121
9348028e
PMD
1122typedef struct ARMCPUInfo {
1123 const char *name;
1124 void (*initfn)(Object *obj);
1125 void (*class_init)(ObjectClass *oc, void *data);
1126} ARMCPUInfo;
1127
1128/**
1129 * ARMCPUClass:
1130 * @parent_realize: The parent class' realize handler.
1131 * @parent_phases: The parent class' reset phase handlers.
1132 *
1133 * An ARM CPU model.
1134 */
1135struct ARMCPUClass {
1136 CPUClass parent_class;
1137
1138 const ARMCPUInfo *info;
1139 DeviceRealize parent_realize;
1140 ResettablePhases parent_phases;
1141};
1142
1143struct AArch64CPUClass {
1144 ARMCPUClass parent_class;
1145};
1146
f6524ddf
PMD
1147/* Callback functions for the generic timer's timers. */
1148void arm_gt_ptimer_cb(void *opaque);
1149void arm_gt_vtimer_cb(void *opaque);
1150void arm_gt_htimer_cb(void *opaque);
1151void arm_gt_stimer_cb(void *opaque);
1152void arm_gt_hvtimer_cb(void *opaque);
1153
7def8754 1154unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
f6fc36de 1155void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
7def8754 1156
51e5ef45
MAL
1157void arm_cpu_post_init(Object *obj);
1158
f6524ddf
PMD
1159#define ARM_AFF0_SHIFT 0
1160#define ARM_AFF0_MASK (0xFFULL << ARM_AFF0_SHIFT)
1161#define ARM_AFF1_SHIFT 8
1162#define ARM_AFF1_MASK (0xFFULL << ARM_AFF1_SHIFT)
1163#define ARM_AFF2_SHIFT 16
1164#define ARM_AFF2_MASK (0xFFULL << ARM_AFF2_SHIFT)
1165#define ARM_AFF3_SHIFT 32
1166#define ARM_AFF3_MASK (0xFFULL << ARM_AFF3_SHIFT)
1167#define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1168
1169#define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1170#define ARM64_AFFINITY_MASK \
1171 (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1172#define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1173
46de5913
IM
1174uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1175
74e75564 1176#ifndef CONFIG_USER_ONLY
8a9358cc 1177extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1178
1179void arm_cpu_do_interrupt(CPUState *cpu);
1180void arm_v7m_cpu_do_interrupt(CPUState *cpu);
74e75564 1181
74e75564
PB
1182hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1183 MemTxAttrs *attrs);
6d2d454a 1184#endif /* !CONFIG_USER_ONLY */
74e75564 1185
a010bdbe 1186int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1187int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1188
200bf5b7
AB
1189/* Returns the dynamically generated XML for the gdb stub.
1190 * Returns a pointer to the XML contents for the specified XML file or NULL
1191 * if the XML name doesn't match the predefined one.
1192 */
1193const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1194
74e75564 1195int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1196 int cpuid, DumpState *s);
74e75564 1197int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1198 int cpuid, DumpState *s);
74e75564 1199
3a45f4f5
PM
1200/**
1201 * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1202 * @cpu: CPU (which must have been freshly reset)
1203 * @target_el: exception level to put the CPU into
1204 * @secure: whether to put the CPU in secure state
1205 *
1206 * When QEMU is directly running a guest kernel at a lower level than
1207 * EL3 it implicitly emulates some aspects of the guest firmware.
1208 * This includes that on reset we need to configure the parts of the
1209 * CPU corresponding to EL3 so that the real guest code can run at its
1210 * lower exception level. This function does that post-reset CPU setup,
1211 * for when we do direct boot of a guest kernel, and for when we
1212 * emulate PSCI and similar firmware interfaces starting a CPU at a
1213 * lower exception level.
1214 *
1215 * @target_el must be an EL implemented by the CPU between 1 and 3.
1216 * We do not support dropping into a Secure EL other than 3.
1217 *
1218 * It is the responsibility of the caller to call arm_rebuild_hflags().
1219 */
1220void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1221
74e75564 1222#ifdef TARGET_AARCH64
a010bdbe 1223int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1224int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1225void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1226void aarch64_sve_change_el(CPUARMState *env, int old_el,
1227 int new_el, bool el0_a64);
2a8af382 1228void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
538baab2
AJ
1229
1230/*
1231 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1232 * The byte at offset i from the start of the in-memory representation contains
1233 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1234 * lowest offsets are stored in the lowest memory addresses, then that nearly
1235 * matches QEMU's representation, which is to use an array of host-endian
1236 * uint64_t's, where the lower offsets are at the lower indices. To complete
1237 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1238 */
1239static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1240{
e03b5686 1241#if HOST_BIG_ENDIAN
538baab2
AJ
1242 int i;
1243
1244 for (i = 0; i < nr; ++i) {
1245 dst[i] = bswap64(src[i]);
1246 }
1247
1248 return dst;
1249#else
1250 return src;
1251#endif
1252}
1253
0ab5953b
RH
1254#else
1255static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1256static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1257 int n, bool a)
1258{ }
74e75564 1259#endif
778c3a06 1260
ce02049d
GB
1261void aarch64_sync_32_to_64(CPUARMState *env);
1262void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1263
ced31551
RH
1264int fp_exception_el(CPUARMState *env, int cur_el);
1265int sve_exception_el(CPUARMState *env, int cur_el);
6b2ca83e 1266int sme_exception_el(CPUARMState *env, int cur_el);
5ef3cc56
RH
1267
1268/**
6ca54aa9 1269 * sve_vqm1_for_el_sm:
5ef3cc56
RH
1270 * @env: CPUARMState
1271 * @el: exception level
6ca54aa9 1272 * @sm: streaming mode
5ef3cc56 1273 *
6ca54aa9 1274 * Compute the current vector length for @el & @sm, in units of
5ef3cc56 1275 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
6ca54aa9 1276 * If @sm, compute for SVL, otherwise NVL.
5ef3cc56 1277 */
6ca54aa9
RH
1278uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1279
1280/* Likewise, but using @sm = PSTATE.SM. */
5ef3cc56 1281uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
ced31551 1282
3926cc84
AG
1283static inline bool is_a64(CPUARMState *env)
1284{
1285 return env->aarch64;
1286}
1287
5d05b9d4
AL
1288/**
1289 * pmu_op_start/finish
ec7b4ce4
AF
1290 * @env: CPUARMState
1291 *
5d05b9d4
AL
1292 * Convert all PMU counters between their delta form (the typical mode when
1293 * they are enabled) and the guest-visible values. These two calls must
1294 * surround any action which might affect the counters.
ec7b4ce4 1295 */
5d05b9d4
AL
1296void pmu_op_start(CPUARMState *env);
1297void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1298
4e7beb0c
AL
1299/*
1300 * Called when a PMU counter is due to overflow
1301 */
1302void arm_pmu_timer_cb(void *opaque);
1303
033614c4
AL
1304/**
1305 * Functions to register as EL change hooks for PMU mode filtering
1306 */
1307void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1308void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1309
57a4a11b 1310/*
bf8d0969
AL
1311 * pmu_init
1312 * @cpu: ARMCPU
57a4a11b 1313 *
bf8d0969
AL
1314 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1315 * for the current configuration
57a4a11b 1316 */
bf8d0969 1317void pmu_init(ARMCPU *cpu);
57a4a11b 1318
76e3e1bc
PM
1319/* SCTLR bit meanings. Several bits have been reused in newer
1320 * versions of the architecture; in that case we define constants
1321 * for both old and new bit meanings. Code which tests against those
1322 * bits should probably check or otherwise arrange that the CPU
1323 * is the architectural version it expects.
1324 */
1325#define SCTLR_M (1U << 0)
1326#define SCTLR_A (1U << 1)
1327#define SCTLR_C (1U << 2)
1328#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1329#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1330#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1331#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1332#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1333#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1334#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1335#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1336#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
83f624d9 1337#define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */
76e3e1bc
PM
1338#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1339#define SCTLR_ITD (1U << 7) /* v8 onward */
1340#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1341#define SCTLR_SED (1U << 8) /* v8 onward */
1342#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1343#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1344#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1345#define SCTLR_SW (1U << 10) /* v7 */
1346#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1347#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1348#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1349#define SCTLR_I (1U << 12)
b2af69d0
RH
1350#define SCTLR_V (1U << 13) /* AArch32 only */
1351#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1352#define SCTLR_RR (1U << 14) /* up to v7 */
1353#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1354#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1355#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1356#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1357#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1358#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1359#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1360#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1361#define SCTLR_nTWE (1U << 18) /* v8 onward */
1362#define SCTLR_WXN (1U << 19)
1363#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0 1364#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
7cb1e618 1365#define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
b2af69d0
RH
1366#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1367#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1368#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1369#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1370#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1371#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1372#define SCTLR_VE (1U << 24) /* up to v7 */
1373#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1374#define SCTLR_EE (1U << 25)
1375#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1376#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1377#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1378#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1379#define SCTLR_TRE (1U << 28) /* AArch32 only */
1380#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1381#define SCTLR_AFE (1U << 29) /* AArch32 only */
1382#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1383#define SCTLR_TE (1U << 30) /* AArch32 only */
1384#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1385#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1386#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
dbc678f9 1387#define SCTLR_MSCEN (1ULL << 33) /* FEAT_MOPS */
b2af69d0
RH
1388#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1389#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1390#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1391#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1392#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1393#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1394#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1395#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
ad1e6018
RH
1396#define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1397#define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1398#define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1399#define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1400#define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1401#define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1402#define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1403#define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1404#define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1405#define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1406#define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1407#define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1408#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1409#define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
76e3e1bc 1410
fab8ad39
RH
1411/* Bit definitions for CPACR (AArch32 only) */
1412FIELD(CPACR, CP10, 20, 2)
1413FIELD(CPACR, CP11, 22, 2)
1414FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1415FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1416FIELD(CPACR, ASEDIS, 31, 1)
1417
1418/* Bit definitions for CPACR_EL1 (AArch64 only) */
1419FIELD(CPACR_EL1, ZEN, 16, 2)
1420FIELD(CPACR_EL1, FPEN, 20, 2)
1421FIELD(CPACR_EL1, SMEN, 24, 2)
1422FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1423
1424/* Bit definitions for HCPTR (AArch32 only) */
1425FIELD(HCPTR, TCP10, 10, 1)
1426FIELD(HCPTR, TCP11, 11, 1)
1427FIELD(HCPTR, TASE, 15, 1)
1428FIELD(HCPTR, TTA, 20, 1)
1429FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1430FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1431
1432/* Bit definitions for CPTR_EL2 (AArch64 only) */
1433FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1434FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1435FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1436FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1437FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1438FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1439FIELD(CPTR_EL2, TTA, 28, 1)
1440FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1441FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1442
1443/* Bit definitions for CPTR_EL3 (AArch64 only) */
1444FIELD(CPTR_EL3, EZ, 8, 1)
1445FIELD(CPTR_EL3, TFP, 10, 1)
1446FIELD(CPTR_EL3, ESM, 12, 1)
1447FIELD(CPTR_EL3, TTA, 20, 1)
1448FIELD(CPTR_EL3, TAM, 30, 1)
1449FIELD(CPTR_EL3, TCPAC, 31, 1)
c6f19164 1450
f190bd1d
PM
1451#define MDCR_MTPME (1U << 28)
1452#define MDCR_TDCC (1U << 27)
47b385da 1453#define MDCR_HLP (1U << 26) /* MDCR_EL2 */
0b42f4fa
PM
1454#define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
1455#define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
187f678d
PM
1456#define MDCR_EPMAD (1U << 21)
1457#define MDCR_EDAD (1U << 20)
f190bd1d
PM
1458#define MDCR_TTRF (1U << 19)
1459#define MDCR_STE (1U << 18) /* MDCR_EL3 */
033614c4
AL
1460#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1461#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1462#define MDCR_SDD (1U << 16)
a8d64e73 1463#define MDCR_SPD (3U << 14)
187f678d
PM
1464#define MDCR_TDRA (1U << 11)
1465#define MDCR_TDOSA (1U << 10)
1466#define MDCR_TDA (1U << 9)
1467#define MDCR_TDE (1U << 8)
1468#define MDCR_HPME (1U << 7)
1469#define MDCR_TPM (1U << 6)
1470#define MDCR_TPMCR (1U << 5)
033614c4 1471#define MDCR_HPMN (0x1fU)
187f678d 1472
a8d64e73 1473/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
f190bd1d
PM
1474#define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1475 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1476 MDCR_STE | MDCR_SPME | MDCR_SPD)
a8d64e73 1477
78dbbbe4
PM
1478#define CPSR_M (0x1fU)
1479#define CPSR_T (1U << 5)
1480#define CPSR_F (1U << 6)
1481#define CPSR_I (1U << 7)
1482#define CPSR_A (1U << 8)
1483#define CPSR_E (1U << 9)
1484#define CPSR_IT_2_7 (0xfc00U)
1485#define CPSR_GE (0xfU << 16)
4051e12c 1486#define CPSR_IL (1U << 20)
dc8b1853 1487#define CPSR_DIT (1U << 21)
220f508f 1488#define CPSR_PAN (1U << 22)
f2f68a78 1489#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1490#define CPSR_J (1U << 24)
1491#define CPSR_IT_0_1 (3U << 25)
1492#define CPSR_Q (1U << 27)
1493#define CPSR_V (1U << 28)
1494#define CPSR_C (1U << 29)
1495#define CPSR_Z (1U << 30)
1496#define CPSR_N (1U << 31)
9ee6e8bb 1497#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1498#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1499
1500#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1501#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1502 | CPSR_NZCV)
9ee6e8bb 1503/* Bits writable in user mode. */
268b1b3d 1504#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1505/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1506#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1507
987ab45e
PM
1508/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1509#define XPSR_EXCP 0x1ffU
1510#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1511#define XPSR_IT_2_7 CPSR_IT_2_7
1512#define XPSR_GE CPSR_GE
1513#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1514#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1515#define XPSR_IT_0_1 CPSR_IT_0_1
1516#define XPSR_Q CPSR_Q
1517#define XPSR_V CPSR_V
1518#define XPSR_C CPSR_C
1519#define XPSR_Z CPSR_Z
1520#define XPSR_N CPSR_N
1521#define XPSR_NZCV CPSR_NZCV
1522#define XPSR_IT CPSR_IT
1523
e389be16
FA
1524#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1525#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1526#define TTBCR_PD0 (1U << 4)
1527#define TTBCR_PD1 (1U << 5)
1528#define TTBCR_EPD0 (1U << 7)
1529#define TTBCR_IRGN0 (3U << 8)
1530#define TTBCR_ORGN0 (3U << 10)
1531#define TTBCR_SH0 (3U << 12)
1532#define TTBCR_T1SZ (3U << 16)
1533#define TTBCR_A1 (1U << 22)
1534#define TTBCR_EPD1 (1U << 23)
1535#define TTBCR_IRGN1 (3U << 24)
1536#define TTBCR_ORGN1 (3U << 26)
1537#define TTBCR_SH1 (1U << 28)
1538#define TTBCR_EAE (1U << 31)
1539
f04383e7
PM
1540FIELD(VTCR, T0SZ, 0, 6)
1541FIELD(VTCR, SL0, 6, 2)
1542FIELD(VTCR, IRGN0, 8, 2)
1543FIELD(VTCR, ORGN0, 10, 2)
1544FIELD(VTCR, SH0, 12, 2)
1545FIELD(VTCR, TG0, 14, 2)
1546FIELD(VTCR, PS, 16, 3)
1547FIELD(VTCR, VS, 19, 1)
1548FIELD(VTCR, HA, 21, 1)
1549FIELD(VTCR, HD, 22, 1)
1550FIELD(VTCR, HWU59, 25, 1)
1551FIELD(VTCR, HWU60, 26, 1)
1552FIELD(VTCR, HWU61, 27, 1)
1553FIELD(VTCR, HWU62, 28, 1)
1554FIELD(VTCR, NSW, 29, 1)
1555FIELD(VTCR, NSA, 30, 1)
1556FIELD(VTCR, DS, 32, 1)
1557FIELD(VTCR, SL2, 33, 1)
1558
d356312f
PM
1559/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1560 * Only these are valid when in AArch64 mode; in
1561 * AArch32 mode SPSRs are basically CPSR-format.
1562 */
f502cfc2 1563#define PSTATE_SP (1U)
d356312f
PM
1564#define PSTATE_M (0xFU)
1565#define PSTATE_nRW (1U << 4)
1566#define PSTATE_F (1U << 6)
1567#define PSTATE_I (1U << 7)
1568#define PSTATE_A (1U << 8)
1569#define PSTATE_D (1U << 9)
f6e52eaa 1570#define PSTATE_BTYPE (3U << 10)
f2f68a78 1571#define PSTATE_SSBS (1U << 12)
d356312f
PM
1572#define PSTATE_IL (1U << 20)
1573#define PSTATE_SS (1U << 21)
220f508f 1574#define PSTATE_PAN (1U << 22)
9eeb7a1c 1575#define PSTATE_UAO (1U << 23)
dc8b1853 1576#define PSTATE_DIT (1U << 24)
4b779ceb 1577#define PSTATE_TCO (1U << 25)
d356312f
PM
1578#define PSTATE_V (1U << 28)
1579#define PSTATE_C (1U << 29)
1580#define PSTATE_Z (1U << 30)
1581#define PSTATE_N (1U << 31)
1582#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1583#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1584#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1585/* Mode values for AArch64 */
1586#define PSTATE_MODE_EL3h 13
1587#define PSTATE_MODE_EL3t 12
1588#define PSTATE_MODE_EL2h 9
1589#define PSTATE_MODE_EL2t 8
1590#define PSTATE_MODE_EL1h 5
1591#define PSTATE_MODE_EL1t 4
1592#define PSTATE_MODE_EL0t 0
1593
c37e6ac9
RH
1594/* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1595FIELD(SVCR, SM, 0, 1)
1596FIELD(SVCR, ZA, 1, 1)
1597
de561988
RH
1598/* Fields for SMCR_ELx. */
1599FIELD(SMCR, LEN, 0, 4)
1600FIELD(SMCR, FA64, 31, 1)
1601
de2db7ec
PM
1602/* Write a new value to v7m.exception, thus transitioning into or out
1603 * of Handler mode; this may result in a change of active stack pointer.
1604 */
1605void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1606
9e729b57
EI
1607/* Map EL and handler into a PSTATE_MODE. */
1608static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1609{
1610 return (el << 2) | handler;
1611}
1612
d356312f
PM
1613/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1614 * interprocessing, so we don't attempt to sync with the cpsr state used by
1615 * the 32 bit decoder.
1616 */
1617static inline uint32_t pstate_read(CPUARMState *env)
1618{
1619 int ZF;
1620
1621 ZF = (env->ZF == 0);
1622 return (env->NF & 0x80000000) | (ZF << 30)
1623 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1624 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1625}
1626
1627static inline void pstate_write(CPUARMState *env, uint32_t val)
1628{
1629 env->ZF = (~val) & PSTATE_Z;
1630 env->NF = val;
1631 env->CF = (val >> 29) & 1;
1632 env->VF = (val << 3) & 0x80000000;
4cc35614 1633 env->daif = val & PSTATE_DAIF;
f6e52eaa 1634 env->btype = (val >> 10) & 3;
d356312f
PM
1635 env->pstate = val & ~CACHED_PSTATE_BITS;
1636}
1637
b5ff1b31 1638/* Return the current CPSR value. */
2f4a40e5 1639uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1640
1641typedef enum CPSRWriteType {
1642 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1643 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1644 CPSRWriteRaw = 2,
1645 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1646 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1647} CPSRWriteType;
1648
e784807c
PM
1649/*
1650 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1651 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1652 * correspond to TB flags bits cached in the hflags, unless @write_type
1653 * is CPSRWriteRaw.
1654 */
50866ba5
PM
1655void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1656 CPSRWriteType write_type);
9ee6e8bb
PB
1657
1658/* Return the current xPSR value. */
1659static inline uint32_t xpsr_read(CPUARMState *env)
1660{
1661 int ZF;
6fbe23d5
PB
1662 ZF = (env->ZF == 0);
1663 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1664 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1665 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1666 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1667 | (env->GE << 16)
9ee6e8bb 1668 | env->v7m.exception;
b5ff1b31
FB
1669}
1670
9ee6e8bb
PB
1671/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1672static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1673{
987ab45e
PM
1674 if (mask & XPSR_NZCV) {
1675 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1676 env->NF = val;
9ee6e8bb
PB
1677 env->CF = (val >> 29) & 1;
1678 env->VF = (val << 3) & 0x80000000;
1679 }
987ab45e
PM
1680 if (mask & XPSR_Q) {
1681 env->QF = ((val & XPSR_Q) != 0);
1682 }
f1e2598c
PM
1683 if (mask & XPSR_GE) {
1684 env->GE = (val & XPSR_GE) >> 16;
1685 }
04c9c81b 1686#ifndef CONFIG_USER_ONLY
987ab45e
PM
1687 if (mask & XPSR_T) {
1688 env->thumb = ((val & XPSR_T) != 0);
1689 }
1690 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1691 env->condexec_bits &= ~3;
1692 env->condexec_bits |= (val >> 25) & 3;
1693 }
987ab45e 1694 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1695 env->condexec_bits &= 3;
1696 env->condexec_bits |= (val >> 8) & 0xfc;
1697 }
987ab45e 1698 if (mask & XPSR_EXCP) {
de2db7ec
PM
1699 /* Note that this only happens on exception exit */
1700 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1701 }
04c9c81b 1702#endif
9ee6e8bb
PB
1703}
1704
f149e3e8
EI
1705#define HCR_VM (1ULL << 0)
1706#define HCR_SWIO (1ULL << 1)
1707#define HCR_PTW (1ULL << 2)
1708#define HCR_FMO (1ULL << 3)
1709#define HCR_IMO (1ULL << 4)
1710#define HCR_AMO (1ULL << 5)
1711#define HCR_VF (1ULL << 6)
1712#define HCR_VI (1ULL << 7)
1713#define HCR_VSE (1ULL << 8)
1714#define HCR_FB (1ULL << 9)
1715#define HCR_BSU_MASK (3ULL << 10)
1716#define HCR_DC (1ULL << 12)
1717#define HCR_TWI (1ULL << 13)
1718#define HCR_TWE (1ULL << 14)
1719#define HCR_TID0 (1ULL << 15)
1720#define HCR_TID1 (1ULL << 16)
1721#define HCR_TID2 (1ULL << 17)
1722#define HCR_TID3 (1ULL << 18)
1723#define HCR_TSC (1ULL << 19)
1724#define HCR_TIDCP (1ULL << 20)
1725#define HCR_TACR (1ULL << 21)
1726#define HCR_TSW (1ULL << 22)
099bf53b 1727#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1728#define HCR_TPU (1ULL << 24)
1729#define HCR_TTLB (1ULL << 25)
1730#define HCR_TVM (1ULL << 26)
1731#define HCR_TGE (1ULL << 27)
1732#define HCR_TDZ (1ULL << 28)
1733#define HCR_HCD (1ULL << 29)
1734#define HCR_TRVM (1ULL << 30)
1735#define HCR_RW (1ULL << 31)
1736#define HCR_CD (1ULL << 32)
1737#define HCR_ID (1ULL << 33)
ac656b16 1738#define HCR_E2H (1ULL << 34)
099bf53b
RH
1739#define HCR_TLOR (1ULL << 35)
1740#define HCR_TERR (1ULL << 36)
1741#define HCR_TEA (1ULL << 37)
1742#define HCR_MIOCNCE (1ULL << 38)
aa3cc42c 1743#define HCR_TME (1ULL << 39)
099bf53b
RH
1744#define HCR_APK (1ULL << 40)
1745#define HCR_API (1ULL << 41)
1746#define HCR_NV (1ULL << 42)
1747#define HCR_NV1 (1ULL << 43)
1748#define HCR_AT (1ULL << 44)
1749#define HCR_NV2 (1ULL << 45)
1750#define HCR_FWB (1ULL << 46)
1751#define HCR_FIEN (1ULL << 47)
aa3cc42c 1752#define HCR_GPF (1ULL << 48)
099bf53b
RH
1753#define HCR_TID4 (1ULL << 49)
1754#define HCR_TICAB (1ULL << 50)
e0a38bb3 1755#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1756#define HCR_TOCU (1ULL << 52)
e0a38bb3 1757#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1758#define HCR_TTLBIS (1ULL << 54)
1759#define HCR_TTLBOS (1ULL << 55)
1760#define HCR_ATA (1ULL << 56)
1761#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1762#define HCR_TID5 (1ULL << 58)
1763#define HCR_TWEDEN (1ULL << 59)
1764#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1765
5814d587
RH
1766#define HCRX_ENAS0 (1ULL << 0)
1767#define HCRX_ENALS (1ULL << 1)
1768#define HCRX_ENASR (1ULL << 2)
1769#define HCRX_FNXS (1ULL << 3)
1770#define HCRX_FGTNXS (1ULL << 4)
1771#define HCRX_SMPME (1ULL << 5)
1772#define HCRX_TALLINT (1ULL << 6)
1773#define HCRX_VINMI (1ULL << 7)
1774#define HCRX_VFNMI (1ULL << 8)
1775#define HCRX_CMOW (1ULL << 9)
1776#define HCRX_MCE2 (1ULL << 10)
1777#define HCRX_MSCEN (1ULL << 11)
1778
9861248f
RDC
1779#define HPFAR_NS (1ULL << 63)
1780
06f2adcc
JF
1781#define SCR_NS (1ULL << 0)
1782#define SCR_IRQ (1ULL << 1)
1783#define SCR_FIQ (1ULL << 2)
1784#define SCR_EA (1ULL << 3)
1785#define SCR_FW (1ULL << 4)
1786#define SCR_AW (1ULL << 5)
1787#define SCR_NET (1ULL << 6)
1788#define SCR_SMD (1ULL << 7)
1789#define SCR_HCE (1ULL << 8)
1790#define SCR_SIF (1ULL << 9)
1791#define SCR_RW (1ULL << 10)
1792#define SCR_ST (1ULL << 11)
1793#define SCR_TWI (1ULL << 12)
1794#define SCR_TWE (1ULL << 13)
1795#define SCR_TLOR (1ULL << 14)
1796#define SCR_TERR (1ULL << 15)
1797#define SCR_APK (1ULL << 16)
1798#define SCR_API (1ULL << 17)
1799#define SCR_EEL2 (1ULL << 18)
1800#define SCR_EASE (1ULL << 19)
1801#define SCR_NMEA (1ULL << 20)
1802#define SCR_FIEN (1ULL << 21)
1803#define SCR_ENSCXT (1ULL << 25)
1804#define SCR_ATA (1ULL << 26)
1805#define SCR_FGTEN (1ULL << 27)
1806#define SCR_ECVEN (1ULL << 28)
1807#define SCR_TWEDEN (1ULL << 29)
f527d661
RH
1808#define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1809#define SCR_TME (1ULL << 34)
1810#define SCR_AMVOFFEN (1ULL << 35)
1811#define SCR_ENAS0 (1ULL << 36)
1812#define SCR_ADEN (1ULL << 37)
1813#define SCR_HXEN (1ULL << 38)
1814#define SCR_TRNDR (1ULL << 40)
1815#define SCR_ENTP2 (1ULL << 41)
1816#define SCR_GPF (1ULL << 48)
aa3cc42c 1817#define SCR_NSE (1ULL << 62)
64e0e2de 1818
cc7613bf 1819#define HSTR_TTEE (1 << 16)
8e228c9e 1820#define HSTR_TJDBX (1 << 17)
cc7613bf 1821
f6fc36de
JPB
1822#define CNTHCTL_CNTVMASK (1 << 18)
1823#define CNTHCTL_CNTPMASK (1 << 19)
1824
01653295
PM
1825/* Return the current FPSCR value. */
1826uint32_t vfp_get_fpscr(CPUARMState *env);
1827void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1828
d81ce0ef
AB
1829/* FPCR, Floating Point Control Register
1830 * FPSR, Floating Poiht Status Register
1831 *
1832 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1833 * FPCR and FPSR. However since they still use non-overlapping bits
1834 * we store the underlying state in fpscr and just mask on read/write.
1835 */
1836#define FPSR_MASK 0xf800009f
0b62159b 1837#define FPCR_MASK 0x07ff9f00
d81ce0ef 1838
a15945d9
PM
1839#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1840#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1841#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1842#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1843#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1844#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1845#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1846#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1847#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1848#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1849#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1850#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1851#define FPCR_V (1 << 28) /* FP overflow flag */
1852#define FPCR_C (1 << 29) /* FP carry flag */
1853#define FPCR_Z (1 << 30) /* FP zero flag */
1854#define FPCR_N (1 << 31) /* FP negative flag */
1855
99c7834f
PM
1856#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1857#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1858#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1859
9542c30b
PM
1860#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1861#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1862
f903fa22
PM
1863static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1864{
1865 return vfp_get_fpscr(env) & FPSR_MASK;
1866}
1867
1868static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1869{
1870 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1871 vfp_set_fpscr(env, new_fpscr);
1872}
1873
1874static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1875{
1876 return vfp_get_fpscr(env) & FPCR_MASK;
1877}
1878
1879static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1880{
1881 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1882 vfp_set_fpscr(env, new_fpscr);
1883}
1884
b5ff1b31
FB
1885enum arm_cpu_mode {
1886 ARM_CPU_MODE_USR = 0x10,
1887 ARM_CPU_MODE_FIQ = 0x11,
1888 ARM_CPU_MODE_IRQ = 0x12,
1889 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1890 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1891 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1892 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1893 ARM_CPU_MODE_UND = 0x1b,
1894 ARM_CPU_MODE_SYS = 0x1f
1895};
1896
40f137e1
PB
1897/* VFP system registers. */
1898#define ARM_VFP_FPSID 0
1899#define ARM_VFP_FPSCR 1
a50c0f51 1900#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1901#define ARM_VFP_MVFR1 6
1902#define ARM_VFP_MVFR0 7
40f137e1
PB
1903#define ARM_VFP_FPEXC 8
1904#define ARM_VFP_FPINST 9
1905#define ARM_VFP_FPINST2 10
9542c30b
PM
1906/* These ones are M-profile only */
1907#define ARM_VFP_FPSCR_NZCVQC 2
1908#define ARM_VFP_VPR 12
1909#define ARM_VFP_P0 13
1910#define ARM_VFP_FPCXT_NS 14
1911#define ARM_VFP_FPCXT_S 15
40f137e1 1912
32a290b8
PM
1913/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1914#define QEMU_VFP_FPSCR_NZCV 0xffff
1915
18c9b560 1916/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1917#define ARM_IWMMXT_wCID 0
1918#define ARM_IWMMXT_wCon 1
1919#define ARM_IWMMXT_wCSSF 2
1920#define ARM_IWMMXT_wCASF 3
1921#define ARM_IWMMXT_wCGR0 8
1922#define ARM_IWMMXT_wCGR1 9
1923#define ARM_IWMMXT_wCGR2 10
1924#define ARM_IWMMXT_wCGR3 11
18c9b560 1925
2c4da50d
PM
1926/* V7M CCR bits */
1927FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1928FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1929FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1930FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1931FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1932FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1933FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1934FIELD(V7M_CCR, DC, 16, 1)
1935FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1936FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1937FIELD(V7M_CCR, LOB, 19, 1)
1938FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1939
24ac0fb1
PM
1940/* V7M SCR bits */
1941FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1942FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1943FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1944FIELD(V7M_SCR, SEVONPEND, 4, 1)
1945
3b2e9344
PM
1946/* V7M AIRCR bits */
1947FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1948FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1949FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1950FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1951FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1952FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1953FIELD(V7M_AIRCR, PRIS, 14, 1)
1954FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1955FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1956
2c4da50d
PM
1957/* V7M CFSR bits for MMFSR */
1958FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1959FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1960FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1961FIELD(V7M_CFSR, MSTKERR, 4, 1)
1962FIELD(V7M_CFSR, MLSPERR, 5, 1)
1963FIELD(V7M_CFSR, MMARVALID, 7, 1)
1964
1965/* V7M CFSR bits for BFSR */
1966FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1967FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1968FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1969FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1970FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1971FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1972FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1973
1974/* V7M CFSR bits for UFSR */
1975FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1976FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1977FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1978FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1979FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1980FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1981FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1982
334e8dad
PM
1983/* V7M CFSR bit masks covering all of the subregister bits */
1984FIELD(V7M_CFSR, MMFSR, 0, 8)
1985FIELD(V7M_CFSR, BFSR, 8, 8)
1986FIELD(V7M_CFSR, UFSR, 16, 16)
1987
2c4da50d
PM
1988/* V7M HFSR bits */
1989FIELD(V7M_HFSR, VECTTBL, 1, 1)
1990FIELD(V7M_HFSR, FORCED, 30, 1)
1991FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1992
1993/* V7M DFSR bits */
1994FIELD(V7M_DFSR, HALTED, 0, 1)
1995FIELD(V7M_DFSR, BKPT, 1, 1)
1996FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1997FIELD(V7M_DFSR, VCATCH, 3, 1)
1998FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1999
bed079da
PM
2000/* V7M SFSR bits */
2001FIELD(V7M_SFSR, INVEP, 0, 1)
2002FIELD(V7M_SFSR, INVIS, 1, 1)
2003FIELD(V7M_SFSR, INVER, 2, 1)
2004FIELD(V7M_SFSR, AUVIOL, 3, 1)
2005FIELD(V7M_SFSR, INVTRAN, 4, 1)
2006FIELD(V7M_SFSR, LSPERR, 5, 1)
2007FIELD(V7M_SFSR, SFARVALID, 6, 1)
2008FIELD(V7M_SFSR, LSERR, 7, 1)
2009
29c483a5
MD
2010/* v7M MPU_CTRL bits */
2011FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
2012FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
2013FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
2014
43bbce7f
PM
2015/* v7M CLIDR bits */
2016FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
2017FIELD(V7M_CLIDR, LOUIS, 21, 3)
2018FIELD(V7M_CLIDR, LOC, 24, 3)
2019FIELD(V7M_CLIDR, LOUU, 27, 3)
2020FIELD(V7M_CLIDR, ICB, 30, 2)
2021
2022FIELD(V7M_CSSELR, IND, 0, 1)
2023FIELD(V7M_CSSELR, LEVEL, 1, 3)
2024/* We use the combination of InD and Level to index into cpu->ccsidr[];
2025 * define a mask for this and check that it doesn't permit running off
2026 * the end of the array.
2027 */
2028FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
2029
2030/* v7M FPCCR bits */
2031FIELD(V7M_FPCCR, LSPACT, 0, 1)
2032FIELD(V7M_FPCCR, USER, 1, 1)
2033FIELD(V7M_FPCCR, S, 2, 1)
2034FIELD(V7M_FPCCR, THREAD, 3, 1)
2035FIELD(V7M_FPCCR, HFRDY, 4, 1)
2036FIELD(V7M_FPCCR, MMRDY, 5, 1)
2037FIELD(V7M_FPCCR, BFRDY, 6, 1)
2038FIELD(V7M_FPCCR, SFRDY, 7, 1)
2039FIELD(V7M_FPCCR, MONRDY, 8, 1)
2040FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
2041FIELD(V7M_FPCCR, UFRDY, 10, 1)
2042FIELD(V7M_FPCCR, RES0, 11, 15)
2043FIELD(V7M_FPCCR, TS, 26, 1)
2044FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
2045FIELD(V7M_FPCCR, CLRONRET, 28, 1)
2046FIELD(V7M_FPCCR, LSPENS, 29, 1)
2047FIELD(V7M_FPCCR, LSPEN, 30, 1)
2048FIELD(V7M_FPCCR, ASPEN, 31, 1)
2049/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
2050#define R_V7M_FPCCR_BANKED_MASK \
2051 (R_V7M_FPCCR_LSPACT_MASK | \
2052 R_V7M_FPCCR_USER_MASK | \
2053 R_V7M_FPCCR_THREAD_MASK | \
2054 R_V7M_FPCCR_MMRDY_MASK | \
2055 R_V7M_FPCCR_SPLIMVIOL_MASK | \
2056 R_V7M_FPCCR_UFRDY_MASK | \
2057 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 2058
7c3d47da
PM
2059/* v7M VPR bits */
2060FIELD(V7M_VPR, P0, 0, 16)
2061FIELD(V7M_VPR, MASK01, 16, 4)
2062FIELD(V7M_VPR, MASK23, 20, 4)
2063
a62e62af
RH
2064/*
2065 * System register ID fields.
2066 */
2a14526a
LL
2067FIELD(CLIDR_EL1, CTYPE1, 0, 3)
2068FIELD(CLIDR_EL1, CTYPE2, 3, 3)
2069FIELD(CLIDR_EL1, CTYPE3, 6, 3)
2070FIELD(CLIDR_EL1, CTYPE4, 9, 3)
2071FIELD(CLIDR_EL1, CTYPE5, 12, 3)
2072FIELD(CLIDR_EL1, CTYPE6, 15, 3)
2073FIELD(CLIDR_EL1, CTYPE7, 18, 3)
2074FIELD(CLIDR_EL1, LOUIS, 21, 3)
2075FIELD(CLIDR_EL1, LOC, 24, 3)
2076FIELD(CLIDR_EL1, LOUU, 27, 3)
2077FIELD(CLIDR_EL1, ICB, 30, 3)
2078
2079/* When FEAT_CCIDX is implemented */
2080FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2081FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2082FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2083
2084/* When FEAT_CCIDX is not implemented */
2085FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2086FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2087FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2088
2089FIELD(CTR_EL0, IMINLINE, 0, 4)
2090FIELD(CTR_EL0, L1IP, 14, 2)
2091FIELD(CTR_EL0, DMINLINE, 16, 4)
2092FIELD(CTR_EL0, ERG, 20, 4)
2093FIELD(CTR_EL0, CWG, 24, 4)
2094FIELD(CTR_EL0, IDC, 28, 1)
2095FIELD(CTR_EL0, DIC, 29, 1)
2096FIELD(CTR_EL0, TMINLINE, 32, 6)
2097
2bd5f41c
AB
2098FIELD(MIDR_EL1, REVISION, 0, 4)
2099FIELD(MIDR_EL1, PARTNUM, 4, 12)
2100FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2101FIELD(MIDR_EL1, VARIANT, 20, 4)
2102FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2103
a62e62af
RH
2104FIELD(ID_ISAR0, SWAP, 0, 4)
2105FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2106FIELD(ID_ISAR0, BITFIELD, 8, 4)
2107FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2108FIELD(ID_ISAR0, COPROC, 16, 4)
2109FIELD(ID_ISAR0, DEBUG, 20, 4)
2110FIELD(ID_ISAR0, DIVIDE, 24, 4)
2111
2112FIELD(ID_ISAR1, ENDIAN, 0, 4)
2113FIELD(ID_ISAR1, EXCEPT, 4, 4)
2114FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2115FIELD(ID_ISAR1, EXTEND, 12, 4)
2116FIELD(ID_ISAR1, IFTHEN, 16, 4)
2117FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2118FIELD(ID_ISAR1, INTERWORK, 24, 4)
2119FIELD(ID_ISAR1, JAZELLE, 28, 4)
2120
2121FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2122FIELD(ID_ISAR2, MEMHINT, 4, 4)
2123FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2124FIELD(ID_ISAR2, MULT, 12, 4)
2125FIELD(ID_ISAR2, MULTS, 16, 4)
2126FIELD(ID_ISAR2, MULTU, 20, 4)
2127FIELD(ID_ISAR2, PSR_AR, 24, 4)
2128FIELD(ID_ISAR2, REVERSAL, 28, 4)
2129
2130FIELD(ID_ISAR3, SATURATE, 0, 4)
2131FIELD(ID_ISAR3, SIMD, 4, 4)
2132FIELD(ID_ISAR3, SVC, 8, 4)
2133FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2134FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2135FIELD(ID_ISAR3, T32COPY, 20, 4)
2136FIELD(ID_ISAR3, TRUENOP, 24, 4)
2137FIELD(ID_ISAR3, T32EE, 28, 4)
2138
2139FIELD(ID_ISAR4, UNPRIV, 0, 4)
2140FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2141FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2142FIELD(ID_ISAR4, SMC, 12, 4)
2143FIELD(ID_ISAR4, BARRIER, 16, 4)
2144FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2145FIELD(ID_ISAR4, PSR_M, 24, 4)
2146FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2147
2148FIELD(ID_ISAR5, SEVL, 0, 4)
2149FIELD(ID_ISAR5, AES, 4, 4)
2150FIELD(ID_ISAR5, SHA1, 8, 4)
2151FIELD(ID_ISAR5, SHA2, 12, 4)
2152FIELD(ID_ISAR5, CRC32, 16, 4)
2153FIELD(ID_ISAR5, RDM, 24, 4)
2154FIELD(ID_ISAR5, VCMA, 28, 4)
2155
2156FIELD(ID_ISAR6, JSCVT, 0, 4)
2157FIELD(ID_ISAR6, DP, 4, 4)
2158FIELD(ID_ISAR6, FHM, 8, 4)
2159FIELD(ID_ISAR6, SB, 12, 4)
2160FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
2161FIELD(ID_ISAR6, BF16, 20, 4)
2162FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 2163
0ae0326b
PM
2164FIELD(ID_MMFR0, VMSA, 0, 4)
2165FIELD(ID_MMFR0, PMSA, 4, 4)
2166FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2167FIELD(ID_MMFR0, SHARELVL, 12, 4)
2168FIELD(ID_MMFR0, TCM, 16, 4)
2169FIELD(ID_MMFR0, AUXREG, 20, 4)
2170FIELD(ID_MMFR0, FCSE, 24, 4)
2171FIELD(ID_MMFR0, INNERSHR, 28, 4)
2172
bd78b6be
LL
2173FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2174FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2175FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2176FIELD(ID_MMFR1, L1UNISW, 12, 4)
2177FIELD(ID_MMFR1, L1HVD, 16, 4)
2178FIELD(ID_MMFR1, L1UNI, 20, 4)
2179FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2180FIELD(ID_MMFR1, BPRED, 28, 4)
2181
2182FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2183FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2184FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2185FIELD(ID_MMFR2, HVDTLB, 12, 4)
2186FIELD(ID_MMFR2, UNITLB, 16, 4)
2187FIELD(ID_MMFR2, MEMBARR, 20, 4)
2188FIELD(ID_MMFR2, WFISTALL, 24, 4)
2189FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2190
3d6ad6bb
RH
2191FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2192FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2193FIELD(ID_MMFR3, BPMAINT, 8, 4)
2194FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2195FIELD(ID_MMFR3, PAN, 16, 4)
2196FIELD(ID_MMFR3, COHWALK, 20, 4)
2197FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2198FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2199
ab638a32
RH
2200FIELD(ID_MMFR4, SPECSEI, 0, 4)
2201FIELD(ID_MMFR4, AC2, 4, 4)
2202FIELD(ID_MMFR4, XNX, 8, 4)
2203FIELD(ID_MMFR4, CNP, 12, 4)
2204FIELD(ID_MMFR4, HPDS, 16, 4)
2205FIELD(ID_MMFR4, LSM, 20, 4)
2206FIELD(ID_MMFR4, CCIDX, 24, 4)
2207FIELD(ID_MMFR4, EVT, 28, 4)
2208
bd78b6be 2209FIELD(ID_MMFR5, ETS, 0, 4)
c42fb26b 2210FIELD(ID_MMFR5, NTLBPA, 4, 4)
bd78b6be 2211
46f4976f
PM
2212FIELD(ID_PFR0, STATE0, 0, 4)
2213FIELD(ID_PFR0, STATE1, 4, 4)
2214FIELD(ID_PFR0, STATE2, 8, 4)
2215FIELD(ID_PFR0, STATE3, 12, 4)
2216FIELD(ID_PFR0, CSV2, 16, 4)
2217FIELD(ID_PFR0, AMU, 20, 4)
2218FIELD(ID_PFR0, DIT, 24, 4)
2219FIELD(ID_PFR0, RAS, 28, 4)
2220
dfc523a8
PM
2221FIELD(ID_PFR1, PROGMOD, 0, 4)
2222FIELD(ID_PFR1, SECURITY, 4, 4)
2223FIELD(ID_PFR1, MPROGMOD, 8, 4)
2224FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2225FIELD(ID_PFR1, GENTIMER, 16, 4)
2226FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2227FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2228FIELD(ID_PFR1, GIC, 28, 4)
2229
bd78b6be
LL
2230FIELD(ID_PFR2, CSV3, 0, 4)
2231FIELD(ID_PFR2, SSBS, 4, 4)
2232FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2233
a62e62af
RH
2234FIELD(ID_AA64ISAR0, AES, 4, 4)
2235FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2236FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2237FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2238FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
4d9eb296 2239FIELD(ID_AA64ISAR0, TME, 24, 4)
a62e62af
RH
2240FIELD(ID_AA64ISAR0, RDM, 28, 4)
2241FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2242FIELD(ID_AA64ISAR0, SM3, 36, 4)
2243FIELD(ID_AA64ISAR0, SM4, 40, 4)
2244FIELD(ID_AA64ISAR0, DP, 44, 4)
2245FIELD(ID_AA64ISAR0, FHM, 48, 4)
2246FIELD(ID_AA64ISAR0, TS, 52, 4)
2247FIELD(ID_AA64ISAR0, TLB, 56, 4)
2248FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2249
2250FIELD(ID_AA64ISAR1, DPB, 0, 4)
2251FIELD(ID_AA64ISAR1, APA, 4, 4)
2252FIELD(ID_AA64ISAR1, API, 8, 4)
2253FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2254FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2255FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2256FIELD(ID_AA64ISAR1, GPA, 24, 4)
2257FIELD(ID_AA64ISAR1, GPI, 28, 4)
2258FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2259FIELD(ID_AA64ISAR1, SB, 36, 4)
2260FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
2261FIELD(ID_AA64ISAR1, BF16, 44, 4)
2262FIELD(ID_AA64ISAR1, DGH, 48, 4)
2263FIELD(ID_AA64ISAR1, I8MM, 52, 4)
c42fb26b
RH
2264FIELD(ID_AA64ISAR1, XS, 56, 4)
2265FIELD(ID_AA64ISAR1, LS64, 60, 4)
2266
2267FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2268FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2269FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2270FIELD(ID_AA64ISAR2, APA3, 12, 4)
2271FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2272FIELD(ID_AA64ISAR2, BC, 20, 4)
2273FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
4d9eb296
PM
2274FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2275FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2276FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2277FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2278FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2279FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2280FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
a62e62af 2281
cd208a1c
RH
2282FIELD(ID_AA64PFR0, EL0, 0, 4)
2283FIELD(ID_AA64PFR0, EL1, 4, 4)
2284FIELD(ID_AA64PFR0, EL2, 8, 4)
2285FIELD(ID_AA64PFR0, EL3, 12, 4)
2286FIELD(ID_AA64PFR0, FP, 16, 4)
2287FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2288FIELD(ID_AA64PFR0, GIC, 24, 4)
2289FIELD(ID_AA64PFR0, RAS, 28, 4)
2290FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
2291FIELD(ID_AA64PFR0, SEL2, 36, 4)
2292FIELD(ID_AA64PFR0, MPAM, 40, 4)
2293FIELD(ID_AA64PFR0, AMU, 44, 4)
2294FIELD(ID_AA64PFR0, DIT, 48, 4)
b9f335c2 2295FIELD(ID_AA64PFR0, RME, 52, 4)
00a92832
LL
2296FIELD(ID_AA64PFR0, CSV2, 56, 4)
2297FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2298
be53b6f4 2299FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2300FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2301FIELD(ID_AA64PFR1, MTE, 8, 4)
2302FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2303FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
c42fb26b
RH
2304FIELD(ID_AA64PFR1, SME, 24, 4)
2305FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2306FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2307FIELD(ID_AA64PFR1, NMI, 36, 4)
4d9eb296
PM
2308FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2309FIELD(ID_AA64PFR1, GCS, 44, 4)
2310FIELD(ID_AA64PFR1, THE, 48, 4)
2311FIELD(ID_AA64PFR1, MTEX, 52, 4)
2312FIELD(ID_AA64PFR1, DF2, 56, 4)
2313FIELD(ID_AA64PFR1, PFAR, 60, 4)
be53b6f4 2314
3dc91ddb
PM
2315FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2316FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2317FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2318FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2319FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2320FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2321FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2322FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2323FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2324FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2325FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2326FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2327FIELD(ID_AA64MMFR0, FGT, 56, 4)
2328FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2329
2330FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2331FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2332FIELD(ID_AA64MMFR1, VH, 8, 4)
2333FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2334FIELD(ID_AA64MMFR1, LO, 16, 4)
2335FIELD(ID_AA64MMFR1, PAN, 20, 4)
2336FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2337FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2338FIELD(ID_AA64MMFR1, TWED, 32, 4)
2339FIELD(ID_AA64MMFR1, ETS, 36, 4)
c42fb26b
RH
2340FIELD(ID_AA64MMFR1, HCX, 40, 4)
2341FIELD(ID_AA64MMFR1, AFP, 44, 4)
2342FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2343FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2344FIELD(ID_AA64MMFR1, CMOW, 56, 4)
4d9eb296 2345FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
3dc91ddb 2346
64761e10
RH
2347FIELD(ID_AA64MMFR2, CNP, 0, 4)
2348FIELD(ID_AA64MMFR2, UAO, 4, 4)
2349FIELD(ID_AA64MMFR2, LSM, 8, 4)
2350FIELD(ID_AA64MMFR2, IESB, 12, 4)
2351FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2352FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2353FIELD(ID_AA64MMFR2, NV, 24, 4)
2354FIELD(ID_AA64MMFR2, ST, 28, 4)
2355FIELD(ID_AA64MMFR2, AT, 32, 4)
2356FIELD(ID_AA64MMFR2, IDS, 36, 4)
2357FIELD(ID_AA64MMFR2, FWB, 40, 4)
2358FIELD(ID_AA64MMFR2, TTL, 48, 4)
2359FIELD(ID_AA64MMFR2, BBM, 52, 4)
2360FIELD(ID_AA64MMFR2, EVT, 56, 4)
2361FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2362
ceb2744b
PM
2363FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2364FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2365FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2366FIELD(ID_AA64DFR0, BRPS, 12, 4)
4d9eb296 2367FIELD(ID_AA64DFR0, PMSS, 16, 4)
ceb2744b 2368FIELD(ID_AA64DFR0, WRPS, 20, 4)
4d9eb296 2369FIELD(ID_AA64DFR0, SEBEP, 24, 4)
ceb2744b
PM
2370FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2371FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2372FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2373FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
c42fb26b 2374FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
00a92832 2375FIELD(ID_AA64DFR0, MTPMU, 48, 4)
c42fb26b 2376FIELD(ID_AA64DFR0, BRBE, 52, 4)
4d9eb296 2377FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
c42fb26b 2378FIELD(ID_AA64DFR0, HPMN0, 60, 4)
ceb2744b 2379
2dc10fa2
RH
2380FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2381FIELD(ID_AA64ZFR0, AES, 4, 4)
2382FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2383FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
4d9eb296 2384FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2dc10fa2
RH
2385FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2386FIELD(ID_AA64ZFR0, SM4, 40, 4)
2387FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2388FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2389FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2390
414c54d5 2391FIELD(ID_AA64SMFR0, F32F32, 32, 1)
4d9eb296 2392FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
414c54d5
RH
2393FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2394FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2395FIELD(ID_AA64SMFR0, I8I32, 36, 4)
4d9eb296
PM
2396FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2397FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2398FIELD(ID_AA64SMFR0, I16I32, 44, 4)
414c54d5
RH
2399FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2400FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2401FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2402FIELD(ID_AA64SMFR0, FA64, 63, 1)
2403
beceb99c
AL
2404FIELD(ID_DFR0, COPDBG, 0, 4)
2405FIELD(ID_DFR0, COPSDBG, 4, 4)
2406FIELD(ID_DFR0, MMAPDBG, 8, 4)
2407FIELD(ID_DFR0, COPTRC, 12, 4)
2408FIELD(ID_DFR0, MMAPTRC, 16, 4)
2409FIELD(ID_DFR0, MPROFDBG, 20, 4)
2410FIELD(ID_DFR0, PERFMON, 24, 4)
2411FIELD(ID_DFR0, TRACEFILT, 28, 4)
2412
bd78b6be 2413FIELD(ID_DFR1, MTPMU, 0, 4)
c42fb26b 2414FIELD(ID_DFR1, HPMN0, 4, 4)
bd78b6be 2415
88ce6c6e
PM
2416FIELD(DBGDIDR, SE_IMP, 12, 1)
2417FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2418FIELD(DBGDIDR, VERSION, 16, 4)
2419FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2420FIELD(DBGDIDR, BRPS, 24, 4)
2421FIELD(DBGDIDR, WRPS, 28, 4)
2422
f94a6df5
PM
2423FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2424FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2425FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2426FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2427FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2428FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2429FIELD(DBGDEVID, AUXREGS, 24, 4)
2430FIELD(DBGDEVID, CIDMASK, 28, 4)
2431
602f6e42
PM
2432FIELD(MVFR0, SIMDREG, 0, 4)
2433FIELD(MVFR0, FPSP, 4, 4)
2434FIELD(MVFR0, FPDP, 8, 4)
2435FIELD(MVFR0, FPTRAP, 12, 4)
2436FIELD(MVFR0, FPDIVIDE, 16, 4)
2437FIELD(MVFR0, FPSQRT, 20, 4)
2438FIELD(MVFR0, FPSHVEC, 24, 4)
2439FIELD(MVFR0, FPROUND, 28, 4)
2440
2441FIELD(MVFR1, FPFTZ, 0, 4)
2442FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2443FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2444FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2445FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2446FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2447FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2448FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2449FIELD(MVFR1, FPHP, 24, 4)
2450FIELD(MVFR1, SIMDFMAC, 28, 4)
2451
2452FIELD(MVFR2, SIMDMISC, 0, 4)
2453FIELD(MVFR2, FPMISC, 4, 4)
2454
ef1febe7
RH
2455FIELD(GPCCR, PPS, 0, 3)
2456FIELD(GPCCR, IRGN, 8, 2)
2457FIELD(GPCCR, ORGN, 10, 2)
2458FIELD(GPCCR, SH, 12, 2)
2459FIELD(GPCCR, PGS, 14, 2)
2460FIELD(GPCCR, GPC, 16, 1)
2461FIELD(GPCCR, GPCP, 17, 1)
2462FIELD(GPCCR, L0GPTSZ, 20, 4)
2463
2464FIELD(MFAR, FPA, 12, 40)
2465FIELD(MFAR, NSE, 62, 1)
2466FIELD(MFAR, NS, 63, 1)
2467
43bbce7f
PM
2468QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2469
ce854d7c
BC
2470/* If adding a feature bit which corresponds to a Linux ELF
2471 * HWCAP bit, remember to update the feature-bit-to-hwcap
2472 * mapping in linux-user/elfload.c:get_elf_hwcap().
2473 */
40f137e1 2474enum arm_features {
c1713132
AZ
2475 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2476 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2477 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2478 ARM_FEATURE_V6,
2479 ARM_FEATURE_V6K,
2480 ARM_FEATURE_V7,
2481 ARM_FEATURE_THUMB2,
452a0955 2482 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2483 ARM_FEATURE_NEON,
9ee6e8bb 2484 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2485 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2486 ARM_FEATURE_THUMB2EE,
be5e7a76 2487 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2488 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2489 ARM_FEATURE_V4T,
2490 ARM_FEATURE_V5,
5bc95aa2 2491 ARM_FEATURE_STRONGARM,
906879a9 2492 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2493 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2494 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2495 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2496 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2497 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2498 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2499 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2500 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2501 ARM_FEATURE_V8,
3926cc84 2502 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2503 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2504 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2505 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2506 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2507 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2508 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2509 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2510 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2511 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2512 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2513};
2514
2515static inline int arm_feature(CPUARMState *env, int feature)
2516{
918f5dca 2517 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2518}
2519
0df9142d
AJ
2520void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2521
fcc7404e 2522/*
5d28ac0c
RH
2523 * ARM v9 security states.
2524 * The ordering of the enumeration corresponds to the low 2 bits
2525 * of the GPI value, and (except for Root) the concat of NSE:NS.
2526 */
2527
2528typedef enum ARMSecuritySpace {
2529 ARMSS_Secure = 0,
2530 ARMSS_NonSecure = 1,
2531 ARMSS_Root = 2,
2532 ARMSS_Realm = 3,
2533} ARMSecuritySpace;
2534
2535/* Return true if @space is secure, in the pre-v9 sense. */
2536static inline bool arm_space_is_secure(ARMSecuritySpace space)
2537{
2538 return space == ARMSS_Secure || space == ARMSS_Root;
2539}
2540
2541/* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2542static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2543{
2544 return secure ? ARMSS_Secure : ARMSS_NonSecure;
2545}
2546
2547#if !defined(CONFIG_USER_ONLY)
2548/**
2549 * arm_security_space_below_el3:
2550 * @env: cpu context
2551 *
2552 * Return the security space of exception levels below EL3, following
2553 * an exception return to those levels. Unlike arm_security_space,
2554 * this doesn't care about the current EL.
2555 */
2556ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2557
2558/**
2559 * arm_is_secure_below_el3:
2560 * @env: cpu context
2561 *
fcc7404e 2562 * Return true if exception levels below EL3 are in secure state,
5d28ac0c 2563 * or would be following an exception return to those levels.
19e0fefa
FA
2564 */
2565static inline bool arm_is_secure_below_el3(CPUARMState *env)
2566{
5d28ac0c
RH
2567 ARMSecuritySpace ss = arm_security_space_below_el3(env);
2568 return ss == ARMSS_Secure;
19e0fefa
FA
2569}
2570
71205876
PM
2571/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2572static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa 2573{
fcc7404e 2574 assert(!arm_feature(env, ARM_FEATURE_M));
19e0fefa
FA
2575 if (arm_feature(env, ARM_FEATURE_EL3)) {
2576 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2577 /* CPU currently in AArch64 state and EL3 */
2578 return true;
2579 } else if (!is_a64(env) &&
2580 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2581 /* CPU currently in AArch32 state and monitor mode */
2582 return true;
2583 }
2584 }
71205876
PM
2585 return false;
2586}
2587
5d28ac0c
RH
2588/**
2589 * arm_security_space:
2590 * @env: cpu context
2591 *
2592 * Return the current security space of the cpu.
2593 */
2594ARMSecuritySpace arm_security_space(CPUARMState *env);
2595
2596/**
2597 * arm_is_secure:
2598 * @env: cpu context
2599 *
2600 * Return true if the processor is in secure state.
2601 */
71205876
PM
2602static inline bool arm_is_secure(CPUARMState *env)
2603{
5d28ac0c 2604 return arm_space_is_secure(arm_security_space(env));
19e0fefa
FA
2605}
2606
f3ee5160
RDC
2607/*
2608 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
4477020d 2609 * This corresponds to the pseudocode EL2Enabled().
f3ee5160 2610 */
4477020d
PM
2611static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2612 ARMSecuritySpace space)
b74c0443 2613{
4477020d 2614 assert(space != ARMSS_Root);
b74c0443 2615 return arm_feature(env, ARM_FEATURE_EL2)
4477020d 2616 && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
b74c0443
RH
2617}
2618
f3ee5160
RDC
2619static inline bool arm_is_el2_enabled(CPUARMState *env)
2620{
4477020d 2621 return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
f3ee5160
RDC
2622}
2623
19e0fefa 2624#else
5d28ac0c
RH
2625static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2626{
2627 return ARMSS_NonSecure;
2628}
2629
19e0fefa
FA
2630static inline bool arm_is_secure_below_el3(CPUARMState *env)
2631{
2632 return false;
2633}
2634
5d28ac0c
RH
2635static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2636{
2637 return ARMSS_NonSecure;
2638}
2639
19e0fefa
FA
2640static inline bool arm_is_secure(CPUARMState *env)
2641{
2642 return false;
2643}
f3ee5160 2644
4477020d
PM
2645static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2646 ARMSecuritySpace space)
b74c0443
RH
2647{
2648 return false;
2649}
2650
f3ee5160
RDC
2651static inline bool arm_is_el2_enabled(CPUARMState *env)
2652{
2653 return false;
2654}
19e0fefa
FA
2655#endif
2656
f7778444
RH
2657/**
2658 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2659 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2660 * "for all purposes other than a direct read or write access of HCR_EL2."
2661 * Not included here is HCR_RW.
2662 */
2d12bb96 2663uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
f7778444 2664uint64_t arm_hcr_el2_eff(CPUARMState *env);
5814d587 2665uint64_t arm_hcrx_el2_eff(CPUARMState *env);
f7778444 2666
1f79ee32
PM
2667/* Return true if the specified exception level is running in AArch64 state. */
2668static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2669{
446c81ab
PM
2670 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2671 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2672 */
446c81ab
PM
2673 assert(el >= 1 && el <= 3);
2674 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2675
446c81ab
PM
2676 /* The highest exception level is always at the maximum supported
2677 * register width, and then lower levels have a register width controlled
2678 * by bits in the SCR or HCR registers.
1f79ee32 2679 */
446c81ab
PM
2680 if (el == 3) {
2681 return aa64;
2682 }
2683
926c1b97
RDC
2684 if (arm_feature(env, ARM_FEATURE_EL3) &&
2685 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2686 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2687 }
2688
2689 if (el == 2) {
2690 return aa64;
2691 }
2692
e6ef0169 2693 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2694 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2695 }
2696
2697 return aa64;
1f79ee32
PM
2698}
2699
673d8215 2700/* Function for determining whether guest cp register reads and writes should
3f342b9e
SF
2701 * access the secure or non-secure bank of a cp register. When EL3 is
2702 * operating in AArch32 state, the NS-bit determines whether the secure
2703 * instance of a cp register should be used. When EL3 is AArch64 (or if
2704 * it doesn't exist at all) then there is no register banking, and all
2705 * accesses are to the non-secure version.
2706 */
2707static inline bool access_secure_reg(CPUARMState *env)
2708{
2709 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2710 !arm_el_is_aa64(env, 3) &&
2711 !(env->cp15.scr_el3 & SCR_NS));
2712
2713 return ret;
2714}
2715
ea30a4b8
FA
2716/* Macros for accessing a specified CP register bank */
2717#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2718 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2719
2720#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2721 do { \
2722 if (_secure) { \
2723 (_env)->cp15._regname##_s = (_val); \
2724 } else { \
2725 (_env)->cp15._regname##_ns = (_val); \
2726 } \
2727 } while (0)
2728
2729/* Macros for automatically accessing a specific CP register bank depending on
2730 * the current secure state of the system. These macros are not intended for
2731 * supporting instruction translation reads/writes as these are dependent
2732 * solely on the SCR.NS bit and not the mode.
2733 */
2734#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2735 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2736 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2737
2738#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2739 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2740 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2741 (_val))
2742
012a906b
GB
2743uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2744 uint32_t cur_el, bool secure);
40f137e1 2745
75502672
PM
2746/* Return the highest implemented Exception Level */
2747static inline int arm_highest_el(CPUARMState *env)
2748{
2749 if (arm_feature(env, ARM_FEATURE_EL3)) {
2750 return 3;
2751 }
2752 if (arm_feature(env, ARM_FEATURE_EL2)) {
2753 return 2;
2754 }
2755 return 1;
2756}
2757
15b3f556
PM
2758/* Return true if a v7M CPU is in Handler mode */
2759static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2760{
2761 return env->v7m.exception != 0;
2762}
2763
dcbff19b
GB
2764/* Return the current Exception Level (as per ARMv8; note that this differs
2765 * from the ARMv7 Privilege Level).
2766 */
2767static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2768{
6d54ed3c 2769 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2770 return arm_v7m_is_handler_mode(env) ||
2771 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2772 }
2773
592125f8 2774 if (is_a64(env)) {
f5a0a5a5
PM
2775 return extract32(env->pstate, 2, 2);
2776 }
2777
592125f8
FA
2778 switch (env->uncached_cpsr & 0x1f) {
2779 case ARM_CPU_MODE_USR:
4b6a83fb 2780 return 0;
592125f8
FA
2781 case ARM_CPU_MODE_HYP:
2782 return 2;
2783 case ARM_CPU_MODE_MON:
2784 return 3;
2785 default:
2786 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2787 /* If EL3 is 32-bit then all secure privileged modes run in
2788 * EL3
2789 */
2790 return 3;
2791 }
2792
2793 return 1;
4b6a83fb 2794 }
4b6a83fb
PM
2795}
2796
721fae12
PM
2797/**
2798 * write_list_to_cpustate
2799 * @cpu: ARMCPU
2800 *
2801 * For each register listed in the ARMCPU cpreg_indexes list, write
2802 * its value from the cpreg_values list into the ARMCPUState structure.
2803 * This updates TCG's working data structures from KVM data or
2804 * from incoming migration state.
2805 *
2806 * Returns: true if all register values were updated correctly,
2807 * false if some register was unknown or could not be written.
2808 * Note that we do not stop early on failure -- we will attempt
2809 * writing all registers in the list.
2810 */
2811bool write_list_to_cpustate(ARMCPU *cpu);
2812
2813/**
2814 * write_cpustate_to_list:
2815 * @cpu: ARMCPU
b698e4ee 2816 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2817 *
2818 * For each register listed in the ARMCPU cpreg_indexes list, write
2819 * its value from the ARMCPUState structure into the cpreg_values list.
2820 * This is used to copy info from TCG's working data structures into
2821 * KVM or for outbound migration.
2822 *
b698e4ee
PM
2823 * @kvm_sync is true if we are doing this in order to sync the
2824 * register state back to KVM. In this case we will only update
2825 * values in the list if the previous list->cpustate sync actually
2826 * successfully wrote the CPU state. Otherwise we will keep the value
2827 * that is in the list.
2828 *
721fae12
PM
2829 * Returns: true if all register values were read correctly,
2830 * false if some register was unknown or could not be read.
2831 * Note that we do not stop early on failure -- we will attempt
2832 * reading all registers in the list.
2833 */
b698e4ee 2834bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2835
9ee6e8bb
PB
2836#define ARM_CPUID_TI915T 0x54029152
2837#define ARM_CPUID_TI925T 0x54029252
40f137e1 2838
ba1ba5cc
IM
2839#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2840#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2841#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2842
585df85e
PM
2843#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2844
c1e37810
PM
2845/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2846 *
2847 * If EL3 is 64-bit:
2848 * + NonSecure EL1 & 0 stage 1
2849 * + NonSecure EL1 & 0 stage 2
2850 * + NonSecure EL2
b9f6033c
RH
2851 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2852 * + Secure EL1 & 0
c1e37810
PM
2853 * + Secure EL3
2854 * If EL3 is 32-bit:
2855 * + NonSecure PL1 & 0 stage 1
2856 * + NonSecure PL1 & 0 stage 2
2857 * + NonSecure PL2
b9f6033c
RH
2858 * + Secure PL0
2859 * + Secure PL1
c1e37810
PM
2860 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2861 *
2862 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2863 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2864 * because they may differ in access permissions even if the VA->PA map is
2865 * the same
c1e37810
PM
2866 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2867 * translation, which means that we have one mmu_idx that deals with two
2868 * concatenated translation regimes [this sort of combined s1+2 TLB is
2869 * architecturally permitted]
2870 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2871 * handling via the TLB. The only way to do a stage 1 translation without
2872 * the immediate stage 2 translation is via the ATS or AT system insns,
2873 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2874 * The only use of stage 2 translations is either as part of an s1+2
2875 * lookup or when loading the descriptors during a stage 1 page table walk,
2876 * and in both those cases we don't use the TLB.
c1e37810
PM
2877 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2878 * translation regimes, because they map reasonably well to each other
2879 * and they can't both be active at the same time.
b9f6033c
RH
2880 * 5. we want to be able to use the TLB for accesses done as part of a
2881 * stage1 page table walk, rather than having to walk the stage2 page
2882 * table over and over.
452ef8cb
RH
2883 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2884 * Never (PAN) bit within PSTATE.
d902ae75
RH
2885 * 7. we fold together the secure and non-secure regimes for A-profile,
2886 * because there are no banked system registers for aarch64, so the
2887 * process of switching between secure and non-secure is
2888 * already heavyweight.
c1e37810 2889 *
b9f6033c
RH
2890 * This gives us the following list of cases:
2891 *
d902ae75
RH
2892 * EL0 EL1&0 stage 1+2 (aka NS PL0)
2893 * EL1 EL1&0 stage 1+2 (aka NS PL1)
2894 * EL1 EL1&0 stage 1+2 +PAN
2895 * EL0 EL2&0
2896 * EL2 EL2&0
2897 * EL2 EL2&0 +PAN
2898 * EL2 (aka NS PL2)
2899 * EL3 (aka S PL1)
a1ce3084 2900 * Physical (NS & S)
575a94af 2901 * Stage2 (NS & S)
c1e37810 2902 *
575a94af 2903 * for a total of 12 different mmu_idx.
c1e37810 2904 *
3bef7012 2905 * R profile CPUs have an MPU, but can use the same set of MMU indexes
d902ae75
RH
2906 * as A profile. They only need to distinguish EL0 and EL1 (and
2907 * EL2 if we ever model a Cortex-R52).
3bef7012
PM
2908 *
2909 * M profile CPUs are rather different as they do not have a true MMU.
2910 * They have the following different MMU indexes:
2911 * User
2912 * Privileged
62593718
PM
2913 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2914 * Privileged, execution priority negative (ditto)
66787c78
PM
2915 * If the CPU supports the v8M Security Extension then there are also:
2916 * Secure User
2917 * Secure Privileged
62593718
PM
2918 * Secure User, execution priority negative
2919 * Secure Privileged, execution priority negative
3bef7012 2920 *
8bd5c820
PM
2921 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2922 * are not quite the same -- different CPU types (most notably M profile
2923 * vs A/R profile) would like to use MMU indexes with different semantics,
2924 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2925 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2926 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2927 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2928 * the same for any particular CPU.
2929 * Variables of type ARMMUIdx are always full values, and the core
2930 * index values are in variables of type 'int'.
2931 *
c1e37810
PM
2932 * Our enumeration includes at the end some entries which are not "true"
2933 * mmu_idx values in that they don't have corresponding TLBs and are only
2934 * valid for doing slow path page table walks.
2935 *
2936 * The constant names here are patterned after the general style of the names
2937 * of the AT/ATS operations.
2938 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2939 * For M profile we arrange them to have a bit for priv, a bit for negpri
2940 * and a bit for secure.
c1e37810 2941 */
b9f6033c
RH
2942#define ARM_MMU_IDX_A 0x10 /* A profile */
2943#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2944#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2945
b9f6033c
RH
2946/* Meanings of the bits for M profile mmu idx values */
2947#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2948#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2949#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2950
b9f6033c
RH
2951#define ARM_MMU_IDX_TYPE_MASK \
2952 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2953#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2954
c1e37810 2955typedef enum ARMMMUIdx {
b9f6033c
RH
2956 /*
2957 * A-profile.
2958 */
d902ae75
RH
2959 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2960 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
2961 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2962 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A,
2963 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2964 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2965 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
2966 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
b9f6033c 2967
575a94af
RH
2968 /*
2969 * Used for second stage of an S12 page table walk, or for descriptor
2970 * loads during first stage of an S1 page table walk. Note that both
2971 * are in use simultaneously for SecureEL2: the security state for
2972 * the S2 ptw is selected by the NS bit from the S1 ptw.
2973 */
d38fa967
RH
2974 ARMMMUIdx_Stage2_S = 8 | ARM_MMU_IDX_A,
2975 ARMMMUIdx_Stage2 = 9 | ARM_MMU_IDX_A,
2976
2977 /* TLBs with 1-1 mapping to the physical address spaces. */
bb5cc2c8
RH
2978 ARMMMUIdx_Phys_S = 10 | ARM_MMU_IDX_A,
2979 ARMMMUIdx_Phys_NS = 11 | ARM_MMU_IDX_A,
2980 ARMMMUIdx_Phys_Root = 12 | ARM_MMU_IDX_A,
2981 ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
575a94af 2982
b9f6033c
RH
2983 /*
2984 * These are not allocated TLBs and are used only for AT system
2985 * instructions or for the first stage of an S12 page table walk.
2986 */
2987 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2988 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2989 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2990
2991 /*
2992 * M-profile.
2993 */
25568316
RH
2994 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2995 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2996 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2997 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2998 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2999 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3000 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3001 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
3002} ARMMMUIdx;
3003
5f09a6df
RH
3004/*
3005 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
3006 * for use when calling tlb_flush_by_mmuidx() and friends.
3007 */
5f09a6df
RH
3008#define TO_CORE_BIT(NAME) \
3009 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3010
8bd5c820 3011typedef enum ARMMMUIdxBit {
5f09a6df 3012 TO_CORE_BIT(E10_0),
b9f6033c 3013 TO_CORE_BIT(E20_0),
5f09a6df 3014 TO_CORE_BIT(E10_1),
452ef8cb 3015 TO_CORE_BIT(E10_1_PAN),
5f09a6df 3016 TO_CORE_BIT(E2),
b9f6033c 3017 TO_CORE_BIT(E20_2),
452ef8cb 3018 TO_CORE_BIT(E20_2_PAN),
d902ae75 3019 TO_CORE_BIT(E3),
575a94af
RH
3020 TO_CORE_BIT(Stage2),
3021 TO_CORE_BIT(Stage2_S),
5f09a6df
RH
3022
3023 TO_CORE_BIT(MUser),
3024 TO_CORE_BIT(MPriv),
3025 TO_CORE_BIT(MUserNegPri),
3026 TO_CORE_BIT(MPrivNegPri),
3027 TO_CORE_BIT(MSUser),
3028 TO_CORE_BIT(MSPriv),
3029 TO_CORE_BIT(MSUserNegPri),
3030 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
3031} ARMMMUIdxBit;
3032
5f09a6df
RH
3033#undef TO_CORE_BIT
3034
f79fbf39 3035#define MMU_USER_IDX 0
c1e37810 3036
9e273ef2
PM
3037/* Indexes used when registering address spaces with cpu_address_space_init */
3038typedef enum ARMASIdx {
3039 ARMASIdx_NS = 0,
3040 ARMASIdx_S = 1,
8bce44a2
RH
3041 ARMASIdx_TagNS = 2,
3042 ARMASIdx_TagS = 3,
9e273ef2
PM
3043} ARMASIdx;
3044
bb5cc2c8
RH
3045static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
3046{
3047 /* Assert the relative order of the physical mmu indexes. */
3048 QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
3049 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
3050 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
3051 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
3052
3053 return ARMMMUIdx_Phys_S + space;
3054}
3055
3056static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
3057{
3058 assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
3059 return idx - ARMMMUIdx_Phys_S;
3060}
3061
43bbce7f
PM
3062static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3063{
3064 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3065 * CSSELR is RAZ/WI.
3066 */
3067 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3068}
3069
f9fd40eb
PB
3070static inline bool arm_sctlr_b(CPUARMState *env)
3071{
3072 return
3073 /* We need not implement SCTLR.ITD in user-mode emulation, so
3074 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3075 * This lets people run BE32 binaries with "-cpu any".
3076 */
3077#ifndef CONFIG_USER_ONLY
3078 !arm_feature(env, ARM_FEATURE_V7) &&
3079#endif
3080 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3081}
3082
aaec1432 3083uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3084
8061a649
RH
3085static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3086 bool sctlr_b)
3087{
3088#ifdef CONFIG_USER_ONLY
3089 /*
3090 * In system mode, BE32 is modelled in line with the
3091 * architecture (as word-invariant big-endianness), where loads
3092 * and stores are done little endian but from addresses which
3093 * are adjusted by XORing with the appropriate constant. So the
3094 * endianness to use for the raw data access is not affected by
3095 * SCTLR.B.
3096 * In user mode, however, we model BE32 as byte-invariant
3097 * big-endianness (because user-only code cannot tell the
3098 * difference), and so we need to use a data access endianness
3099 * that depends on SCTLR.B.
3100 */
3101 if (sctlr_b) {
3102 return true;
3103 }
3104#endif
3105 /* In 32bit endianness is determined by looking at CPSR's E bit */
3106 return env->uncached_cpsr & CPSR_E;
3107}
3108
3109static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3110{
3111 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3112}
64e40755 3113
ed50ff78
PC
3114/* Return true if the processor is in big-endian mode. */
3115static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3116{
ed50ff78 3117 if (!is_a64(env)) {
8061a649 3118 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3119 } else {
3120 int cur_el = arm_current_el(env);
3121 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3122 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3123 }
ed50ff78
PC
3124}
3125
022c62cb 3126#include "exec/cpu-all.h"
622ed360 3127
fdd1b228 3128/*
a378206a
RH
3129 * We have more than 32-bits worth of state per TB, so we split the data
3130 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3131 * We collect these two parts in CPUARMTBFlags where they are named
3132 * flags and flags2 respectively.
fdd1b228 3133 *
a378206a
RH
3134 * The flags that are shared between all execution modes, TBFLAG_ANY,
3135 * are stored in flags. The flags that are specific to a given mode
3136 * are stores in flags2. Since cs_base is sized on the configured
3137 * address size, flags2 always has 64-bits for A64, and a minimum of
3138 * 32-bits for A32 and M32.
3139 *
3140 * The bits for 32-bit A-profile and M-profile partially overlap:
3141 *
5896f392
RH
3142 * 31 23 11 10 0
3143 * +-------------+----------+----------------+
3144 * | | | TBFLAG_A32 |
3145 * | TBFLAG_AM32 | +-----+----------+
3146 * | | |TBFLAG_M32|
3147 * +-------------+----------------+----------+
26702213 3148 * 31 23 6 5 0
79cabf1f 3149 *
fdd1b228 3150 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3151 */
eee81d41
RH
3152FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3153FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3154FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3155FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3156FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 3157/* Target EL if we take a floating-point-disabled exception */
eee81d41 3158FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
4479ec30 3159/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
8480e933
RH
3160FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3161FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
361c33f6 3162FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
34a8a07e 3163FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
79cabf1f 3164
8bd587c1 3165/*
79cabf1f 3166 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3167 */
5896f392
RH
3168FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3169FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 3170
79cabf1f
RH
3171/*
3172 * Bit usage when in AArch32 state, for A-profile only.
3173 */
5896f392
RH
3174FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3175FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
3176/*
3177 * We store the bottom two bits of the CPAR as TB flags and handle
3178 * checks on the other bits at runtime. This shares the same bits as
3179 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3180 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3181 */
5896f392
RH
3182FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3183FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3184FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3185FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
3186/*
3187 * Indicates whether cp register reads and writes by guest code should access
3188 * the secure or nonsecure bank of banked registers; note that this is not
3189 * the same thing as the current security state of the processor!
3190 */
5896f392 3191FIELD(TBFLAG_A32, NS, 10, 1)
75fe8356
RH
3192/*
3193 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3194 * This requires an SME trap from AArch32 mode when using NEON.
3195 */
3196FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
79cabf1f
RH
3197
3198/*
3199 * Bit usage when in AArch32 state, for M-profile only.
3200 */
3201/* Handler (ie not Thread) mode */
5896f392 3202FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3203/* Whether we should generate stack-limit checks */
5896f392 3204FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3205/* Set if FPCCR.LSPACT is set */
5896f392 3206FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3207/* Set if we must create a new FP context */
5896f392 3208FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3209/* Set if FPCCR.S does not match current security state */
5896f392 3210FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3211/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3212FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
a393dee0
RH
3213/* Set if in secure mode */
3214FIELD(TBFLAG_M32, SECURE, 6, 1)
79cabf1f
RH
3215
3216/*
3217 * Bit usage when in AArch64 state
3218 */
476a4692 3219FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac 3220FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
f45ce4c3
RH
3221/* The current vector length, either NVL or SVL. */
3222FIELD(TBFLAG_A64, VL, 4, 4)
0816ef1b 3223FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3224FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3225FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3226FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3227FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3228FIELD(TBFLAG_A64, ATA, 15, 1)
3229FIELD(TBFLAG_A64, TCMA, 16, 2)
3230FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3231FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
6b2ca83e 3232FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
a3637e88
RH
3233FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3234FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
5d7953ad 3235FIELD(TBFLAG_A64, SVL, 24, 4)
75fe8356
RH
3236/* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3237FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
e37e98b7 3238FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
83f624d9 3239FIELD(TBFLAG_A64, NAA, 30, 1)
179e9a3b 3240FIELD(TBFLAG_A64, ATA0, 31, 1)
67d10fc4 3241FIELD(TBFLAG_A64, NV, 32, 1)
c35da11d
PM
3242FIELD(TBFLAG_A64, NV1, 33, 1)
3243FIELD(TBFLAG_A64, NV2, 34, 1)
a1705768 3244
a729a46b 3245/*
29a15a61
PM
3246 * Helpers for using the above. Note that only the A64 accessors use
3247 * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3248 * word either is or might be 32 bits only.
a729a46b
RH
3249 */
3250#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3251 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3252#define DP_TBFLAG_A64(DST, WHICH, VAL) \
29a15a61 3253 (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3254#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3255 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3256#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3257 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3258#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3259 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3260
3902bfc6 3261#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
29a15a61 3262#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
a378206a
RH
3263#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3264#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3265#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3266
fb901c90
RH
3267/**
3268 * cpu_mmu_index:
3269 * @env: The cpu environment
3270 * @ifetch: True for code access, false for data access.
3271 *
3272 * Return the core mmu index for the current translation regime.
3273 * This function is used by generic TCG code paths.
3274 */
3275static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3276{
a729a46b 3277 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3278}
3279
8b599e5c
RH
3280/**
3281 * sve_vq
3282 * @env: the cpu context
3283 *
3284 * Return the VL cached within env->hflags, in units of quadwords.
3285 */
3286static inline int sve_vq(CPUARMState *env)
3287{
3288 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3289}
3290
5d7953ad
RH
3291/**
3292 * sme_vq
3293 * @env: the cpu context
3294 *
3295 * Return the SVL cached within env->hflags, in units of quadwords.
3296 */
3297static inline int sme_vq(CPUARMState *env)
3298{
3299 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3300}
3301
f9fd40eb
PB
3302static inline bool bswap_code(bool sctlr_b)
3303{
3304#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3305 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3306 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3307 * would also end up as a mixed-endian mode with BE code, LE data.
3308 */
ded625e7 3309 return TARGET_BIG_ENDIAN ^ sctlr_b;
f9fd40eb 3310#else
e334bd31
PB
3311 /* All code access in ARM is little endian, and there are no loaders
3312 * doing swaps that need to be reversed
f9fd40eb
PB
3313 */
3314 return 0;
3315#endif
3316}
3317
c3ae85fc
PB
3318#ifdef CONFIG_USER_ONLY
3319static inline bool arm_cpu_bswap_data(CPUARMState *env)
3320{
ded625e7 3321 return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
c3ae85fc
PB
3322}
3323#endif
3324
bb5de525
AJ
3325void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3326 uint64_t *cs_base, uint32_t *flags);
6b917547 3327
98128601
RH
3328enum {
3329 QEMU_PSCI_CONDUIT_DISABLED = 0,
3330 QEMU_PSCI_CONDUIT_SMC = 1,
3331 QEMU_PSCI_CONDUIT_HVC = 2,
3332};
3333
017518c1
PM
3334#ifndef CONFIG_USER_ONLY
3335/* Return the address space index to use for a memory access */
3336static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3337{
3338 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3339}
5ce4ff65
PM
3340
3341/* Return the AddressSpace to use for a memory access
3342 * (which depends on whether the access is S or NS, and whether
3343 * the board gave us a separate AddressSpace for S accesses).
3344 */
3345static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3346{
3347 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3348}
017518c1
PM
3349#endif
3350
bd7d00fc 3351/**
b5c53d1b
AL
3352 * arm_register_pre_el_change_hook:
3353 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3354 * CPU changes exception level or mode. The hook function will be
3355 * passed a pointer to the ARMCPU and the opaque data pointer passed
3356 * to this function when the hook was registered.
b5c53d1b
AL
3357 *
3358 * Note that if a pre-change hook is called, any registered post-change hooks
3359 * are guaranteed to subsequently be called.
bd7d00fc 3360 */
b5c53d1b 3361void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3362 void *opaque);
b5c53d1b
AL
3363/**
3364 * arm_register_el_change_hook:
3365 * Register a hook function which will be called immediately after this
3366 * CPU changes exception level or mode. The hook function will be
3367 * passed a pointer to the ARMCPU and the opaque data pointer passed
3368 * to this function when the hook was registered.
3369 *
3370 * Note that any registered hooks registered here are guaranteed to be called
3371 * if pre-change hooks have been.
3372 */
3373void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3374 *opaque);
bd7d00fc 3375
3d74e2e9
RH
3376/**
3377 * arm_rebuild_hflags:
3378 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3379 */
3380void arm_rebuild_hflags(CPUARMState *env);
3381
9a2b5256
RH
3382/**
3383 * aa32_vfp_dreg:
3384 * Return a pointer to the Dn register within env in 32-bit mode.
3385 */
3386static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3387{
c39c2b90 3388 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3389}
3390
3391/**
3392 * aa32_vfp_qreg:
3393 * Return a pointer to the Qn register within env in 32-bit mode.
3394 */
3395static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3396{
c39c2b90 3397 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3398}
3399
3400/**
3401 * aa64_vfp_qreg:
3402 * Return a pointer to the Qn register within env in 64-bit mode.
3403 */
3404static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3405{
c39c2b90 3406 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3407}
3408
028e2a7b 3409/* Shared between translate-sve.c and sve_helper.c. */
fca75f60 3410extern const uint64_t pred_esz_masks[5];
028e2a7b 3411
be5d6f48
RH
3412/*
3413 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
7f2cf760
RH
3414 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3415 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
be5d6f48 3416 */
7f2cf760
RH
3417#define PAGE_BTI PAGE_TARGET_1
3418#define PAGE_MTE PAGE_TARGET_2
3419#define PAGE_TARGET_STICKY PAGE_MTE
be5d6f48 3420
50d4c8c1
RH
3421/* We associate one allocation tag per 16 bytes, the minimum. */
3422#define LOG2_TAG_GRANULE 4
3423#define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
3424
3425#ifdef CONFIG_USER_ONLY
3426#define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3427#endif
3428
0e0c030c
RH
3429#ifdef TARGET_TAGGED_ADDRESSES
3430/**
3431 * cpu_untagged_addr:
3432 * @cs: CPU context
3433 * @x: tagged address
3434 *
3435 * Remove any address tag from @x. This is explicitly related to the
3436 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3437 *
3438 * There should be a better place to put this, but we need this in
3439 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3440 */
3441static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3442{
3443 ARMCPU *cpu = ARM_CPU(cs);
3444 if (cpu->env.tagged_addr_enable) {
3445 /*
3446 * TBI is enabled for userspace but not kernelspace addresses.
3447 * Only clear the tag if bit 55 is clear.
3448 */
3449 x &= sextract64(x, 0, 56);
3450 }
3451 return x;
3452}
3453#endif
3454
2c0262af 3455#endif