]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/nios2: Create IRQs *after* accelerator vCPU is realized
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
68970d1e 28#include "qapi/qapi-types-common.h"
9042c0e2 29
ca759f9e
AB
30/* ARM processors have a weak memory model */
31#define TCG_GUEST_DEFAULT_MO (0)
32
e24fd076
DG
33#ifdef TARGET_AARCH64
34#define KVM_HAVE_MCE_INJECTION 1
35#endif
36
b8a9e8f1
FB
37#define EXCP_UDEF 1 /* undefined instruction */
38#define EXCP_SWI 2 /* software interrupt */
39#define EXCP_PREFETCH_ABORT 3
40#define EXCP_DATA_ABORT 4
b5ff1b31
FB
41#define EXCP_IRQ 5
42#define EXCP_FIQ 6
06c949e6 43#define EXCP_BKPT 7
9ee6e8bb 44#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 45#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 46#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 47#define EXCP_HYP_TRAP 12
e0d6e6a5 48#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
49#define EXCP_VIRQ 14
50#define EXCP_VFIQ 15
19a6e31c 51#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 52#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 53#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 54#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 55#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
56#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 58#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
3c29632f 59#define EXCP_VSERR 24
11b76fda 60#define EXCP_GPC 25 /* v9 Granule Protection Check Fault */
2c4a7cc5 61/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
62
63#define ARMV7M_EXCP_RESET 1
64#define ARMV7M_EXCP_NMI 2
65#define ARMV7M_EXCP_HARD 3
66#define ARMV7M_EXCP_MEM 4
67#define ARMV7M_EXCP_BUS 5
68#define ARMV7M_EXCP_USAGE 6
1e577cc7 69#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
70#define ARMV7M_EXCP_SVC 11
71#define ARMV7M_EXCP_DEBUG 12
72#define ARMV7M_EXCP_PENDSV 14
73#define ARMV7M_EXCP_SYSTICK 15
2c0262af 74
acf94941
PM
75/* For M profile, some registers are banked secure vs non-secure;
76 * these are represented as a 2-element array where the first element
77 * is the non-secure copy and the second is the secure copy.
78 * When the CPU does not have implement the security extension then
79 * only the first element is used.
80 * This means that the copy for the current security state can be
81 * accessed via env->registerfield[env->v7m.secure] (whether the security
82 * extension is implemented or not).
83 */
4a16724f
PM
84enum {
85 M_REG_NS = 0,
86 M_REG_S = 1,
87 M_REG_NUM_BANKS = 2,
88};
acf94941 89
403946c0
RH
90/* ARM-specific interrupt pending bits. */
91#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
92#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
93#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
3c29632f 94#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
403946c0 95
e4fe830b
PM
96/* The usual mapping for an AArch64 system register to its AArch32
97 * counterpart is for the 32 bit world to have access to the lower
98 * half only (with writes leaving the upper half untouched). It's
99 * therefore useful to be able to pass TCG the offset of the least
100 * significant half of a uint64_t struct member.
101 */
e03b5686 102#if HOST_BIG_ENDIAN
5cd8a118 103#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 104#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
105#else
106#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 107#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
108#endif
109
136e67e9 110/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
111#define ARM_CPU_IRQ 0
112#define ARM_CPU_FIQ 1
136e67e9
EI
113#define ARM_CPU_VIRQ 2
114#define ARM_CPU_VFIQ 3
403946c0 115
aaa1f954
EI
116/* ARM-specific extra insn start words:
117 * 1: Conditional execution bits
118 * 2: Partial exception syndrome for data aborts
119 */
120#define TARGET_INSN_START_EXTRA_WORDS 2
121
122/* The 2nd extra word holding syndrome info for data aborts does not use
123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
124 * help the sleb128 encoder do a better job.
125 * When restoring the CPU state, we shift it back up.
126 */
127#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
128#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 129
b7bcbe95
FB
130/* We currently assume float and double are IEEE single and double
131 precision respectively.
132 Doing runtime conversions is tricky because VFP registers may contain
133 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
134 s<2n> maps to the least significant half of d<n>
135 s<2n+1> maps to the most significant half of d<n>
136 */
b7bcbe95 137
200bf5b7
AB
138/**
139 * DynamicGDBXMLInfo:
140 * @desc: Contains the XML descriptions.
448d4d14
AB
141 * @num: Number of the registers in this XML seen by GDB.
142 * @data: A union with data specific to the set of registers
143 * @cpregs_keys: Array that contains the corresponding Key of
144 * a given cpreg with the same order of the cpreg
145 * in the XML description.
200bf5b7
AB
146 */
147typedef struct DynamicGDBXMLInfo {
148 char *desc;
448d4d14
AB
149 int num;
150 union {
151 struct {
152 uint32_t *keys;
153 } cpregs;
154 } data;
200bf5b7
AB
155} DynamicGDBXMLInfo;
156
55d284af
PM
157/* CPU state for each instance of a generic timer (in cp15 c14) */
158typedef struct ARMGenericTimer {
159 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 160 uint64_t ctl; /* Timer Control register */
55d284af
PM
161} ARMGenericTimer;
162
8c94b071
RH
163#define GTIMER_PHYS 0
164#define GTIMER_VIRT 1
165#define GTIMER_HYP 2
166#define GTIMER_SEC 3
167#define GTIMER_HYPVIRT 4
168#define NUM_GTIMERS 5
55d284af 169
e9152ee9
RDC
170#define VTCR_NSW (1u << 29)
171#define VTCR_NSA (1u << 30)
172#define VSTCR_SW VTCR_NSW
173#define VSTCR_SA VTCR_NSA
174
c39c2b90
RH
175/* Define a maximum sized vector register.
176 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
177 * For 64-bit, this is a 2048-bit SVE register.
178 *
179 * Note that the mapping between S, D, and Q views of the register bank
180 * differs between AArch64 and AArch32.
181 * In AArch32:
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n / 2].d[n & 1]
184 * Sn = regs[n / 4].d[n % 4 / 2],
185 * bits 31..0 for even n, and bits 63..32 for odd n
186 * (and regs[16] to regs[31] are inaccessible)
187 * In AArch64:
188 * Zn = regs[n].d[*]
189 * Qn = regs[n].d[1]:regs[n].d[0]
190 * Dn = regs[n].d[0]
191 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 192 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
193 *
194 * This corresponds to the architecturally defined mapping between
195 * the two execution states, and means we do not need to explicitly
196 * map these registers when changing states.
197 *
198 * Align the data for use with TCG host vector operations.
199 */
200
201#ifdef TARGET_AARCH64
202# define ARM_MAX_VQ 16
203#else
204# define ARM_MAX_VQ 1
205#endif
206
207typedef struct ARMVectorReg {
208 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
209} ARMVectorReg;
210
3c7d3086 211#ifdef TARGET_AARCH64
991ad91b 212/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 213typedef struct ARMPredicateReg {
46417784 214 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 215} ARMPredicateReg;
991ad91b
RH
216
217/* In AArch32 mode, PAC keys do not exist at all. */
218typedef struct ARMPACKey {
219 uint64_t lo, hi;
220} ARMPACKey;
3c7d3086
RH
221#endif
222
3902bfc6
RH
223/* See the commentary above the TBFLAG field definitions. */
224typedef struct CPUARMTBFlags {
225 uint32_t flags;
a378206a 226 target_ulong flags2;
3902bfc6 227} CPUARMTBFlags;
c39c2b90 228
f3639a64
RH
229typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
230
8f4e07c9
PMD
231typedef struct NVICState NVICState;
232
1ea4a06a 233typedef struct CPUArchState {
b5ff1b31 234 /* Regs for current mode. */
2c0262af 235 uint32_t regs[16];
3926cc84
AG
236
237 /* 32/64 switch only happens when taking and returning from
238 * exceptions so the overlap semantics are taken care of then
239 * instead of having a complicated union.
240 */
241 /* Regs for A64 mode. */
242 uint64_t xregs[32];
243 uint64_t pc;
d356312f
PM
244 /* PSTATE isn't an architectural register for ARMv8. However, it is
245 * convenient for us to assemble the underlying state into a 32 bit format
246 * identical to the architectural format used for the SPSR. (This is also
247 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
248 * 'pstate' register are.) Of the PSTATE bits:
249 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
250 * semantics as for AArch32, as described in the comments on each field)
251 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 252 * DAIF (exception masks) are kept in env->daif
f6e52eaa 253 * BTYPE is kept in env->btype
c37e6ac9 254 * SM and ZA are kept in env->svcr
d356312f 255 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
256 */
257 uint32_t pstate;
53221552 258 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
063bbd80 259 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
3926cc84 260
fdd1b228 261 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 262 CPUARMTBFlags hflags;
fdd1b228 263
b90372ad 264 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 265 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
266 the whole CPSR. */
267 uint32_t uncached_cpsr;
268 uint32_t spsr;
269
270 /* Banked registers. */
28c9457d 271 uint64_t banked_spsr[8];
0b7d409d
FA
272 uint32_t banked_r13[8];
273 uint32_t banked_r14[8];
3b46e624 274
b5ff1b31
FB
275 /* These hold r8-r12. */
276 uint32_t usr_regs[5];
277 uint32_t fiq_regs[5];
3b46e624 278
2c0262af
FB
279 /* cpsr flag cache for faster execution */
280 uint32_t CF; /* 0 or 1 */
281 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
282 uint32_t NF; /* N is bit 31. All other bits are undefined. */
283 uint32_t ZF; /* Z set if zero. */
99c475ab 284 uint32_t QF; /* 0 or 1 */
9ee6e8bb 285 uint32_t GE; /* cpsr[19:16] */
9ee6e8bb 286 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 287 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 288 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
c37e6ac9 289 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
2c0262af 290
1b174238 291 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 292 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 293
b5ff1b31
FB
294 /* System control coprocessor (cp15) */
295 struct {
40f137e1 296 uint32_t c0_cpuid;
b85a1fd6
FA
297 union { /* Cache size selection */
298 struct {
299 uint64_t _unused_csselr0;
300 uint64_t csselr_ns;
301 uint64_t _unused_csselr1;
302 uint64_t csselr_s;
303 };
304 uint64_t csselr_el[4];
305 };
137feaa9
FA
306 union { /* System control register. */
307 struct {
308 uint64_t _unused_sctlr;
309 uint64_t sctlr_ns;
310 uint64_t hsctlr;
311 uint64_t sctlr_s;
312 };
313 uint64_t sctlr_el[4];
314 };
761c4642 315 uint64_t vsctlr; /* Virtualization System control register. */
7ebd5f2e 316 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 317 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 318 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 319 uint64_t sder; /* Secure debug enable register. */
77022576 320 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
321 union { /* MMU translation table base 0. */
322 struct {
323 uint64_t _unused_ttbr0_0;
324 uint64_t ttbr0_ns;
325 uint64_t _unused_ttbr0_1;
326 uint64_t ttbr0_s;
327 };
328 uint64_t ttbr0_el[4];
329 };
330 union { /* MMU translation table base 1. */
331 struct {
332 uint64_t _unused_ttbr1_0;
333 uint64_t ttbr1_ns;
334 uint64_t _unused_ttbr1_1;
335 uint64_t ttbr1_s;
336 };
337 uint64_t ttbr1_el[4];
338 };
b698e9cf 339 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 340 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee 341 /* MMU translation table base control. */
cb4a0a34 342 uint64_t tcr_el[4];
988cc190
PM
343 uint64_t vtcr_el2; /* Virtualization Translation Control. */
344 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
345 uint32_t c2_data; /* MPU data cacheable bits. */
346 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
347 union { /* MMU domain access control register
348 * MPU write buffer control.
349 */
350 struct {
351 uint64_t dacr_ns;
352 uint64_t dacr_s;
353 };
354 struct {
355 uint64_t dacr32_el2;
356 };
357 };
7e09797c
PM
358 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
359 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 360 uint64_t hcr_el2; /* Hypervisor configuration register */
5814d587 361 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
64e0e2de 362 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
363 union { /* Fault status registers. */
364 struct {
365 uint64_t ifsr_ns;
366 uint64_t ifsr_s;
367 };
368 struct {
369 uint64_t ifsr32_el2;
370 };
371 };
4a7e2d73
FA
372 union {
373 struct {
374 uint64_t _unused_dfsr;
375 uint64_t dfsr_ns;
376 uint64_t hsr;
377 uint64_t dfsr_s;
378 };
379 uint64_t esr_el[4];
380 };
ce819861 381 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
382 union { /* Fault address registers. */
383 struct {
384 uint64_t _unused_far0;
e03b5686 385#if HOST_BIG_ENDIAN
b848ce2b
FA
386 uint32_t ifar_ns;
387 uint32_t dfar_ns;
388 uint32_t ifar_s;
389 uint32_t dfar_s;
390#else
391 uint32_t dfar_ns;
392 uint32_t ifar_ns;
393 uint32_t dfar_s;
394 uint32_t ifar_s;
395#endif
396 uint64_t _unused_far3;
397 };
398 uint64_t far_el[4];
399 };
59e05530 400 uint64_t hpfar_el2;
2a5a9abd 401 uint64_t hstr_el2;
01c097f7
FA
402 union { /* Translation result. */
403 struct {
404 uint64_t _unused_par_0;
405 uint64_t par_ns;
406 uint64_t _unused_par_1;
407 uint64_t par_s;
408 };
409 uint64_t par_el[4];
410 };
6cb0b013 411
b5ff1b31
FB
412 uint32_t c9_insn; /* Cache lockdown registers. */
413 uint32_t c9_data;
8521466b
AF
414 uint64_t c9_pmcr; /* performance monitor control register */
415 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
416 uint64_t c9_pmovsr; /* perf monitor overflow status */
417 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 418 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 419 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
420 union { /* Memory attribute redirection */
421 struct {
e03b5686 422#if HOST_BIG_ENDIAN
be693c87
GB
423 uint64_t _unused_mair_0;
424 uint32_t mair1_ns;
425 uint32_t mair0_ns;
426 uint64_t _unused_mair_1;
427 uint32_t mair1_s;
428 uint32_t mair0_s;
429#else
430 uint64_t _unused_mair_0;
431 uint32_t mair0_ns;
432 uint32_t mair1_ns;
433 uint64_t _unused_mair_1;
434 uint32_t mair0_s;
435 uint32_t mair1_s;
436#endif
437 };
438 uint64_t mair_el[4];
439 };
fb6c91ba
GB
440 union { /* vector base address register */
441 struct {
442 uint64_t _unused_vbar;
443 uint64_t vbar_ns;
444 uint64_t hvbar;
445 uint64_t vbar_s;
446 };
447 uint64_t vbar_el[4];
448 };
e89e51a1 449 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 450 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
451 struct { /* FCSE PID. */
452 uint32_t fcseidr_ns;
453 uint32_t fcseidr_s;
454 };
455 union { /* Context ID. */
456 struct {
457 uint64_t _unused_contextidr_0;
458 uint64_t contextidr_ns;
459 uint64_t _unused_contextidr_1;
460 uint64_t contextidr_s;
461 };
462 uint64_t contextidr_el[4];
463 };
464 union { /* User RW Thread register. */
465 struct {
466 uint64_t tpidrurw_ns;
467 uint64_t tpidrprw_ns;
468 uint64_t htpidr;
469 uint64_t _tpidr_el3;
470 };
471 uint64_t tpidr_el[4];
472 };
9e5ec745 473 uint64_t tpidr2_el0;
54bf36ed
FA
474 /* The secure banks of these registers don't map anywhere */
475 uint64_t tpidrurw_s;
476 uint64_t tpidrprw_s;
477 uint64_t tpidruro_s;
478
479 union { /* User RO Thread register. */
480 uint64_t tpidruro_ns;
481 uint64_t tpidrro_el[1];
482 };
a7adc4b7
PM
483 uint64_t c14_cntfrq; /* Counter Frequency register */
484 uint64_t c14_cntkctl; /* Timer Control register */
bb461330 485 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 486 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 487 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 488 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
489 uint32_t c15_ticonfig; /* TI925T configuration byte. */
490 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
491 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
492 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
493 uint32_t c15_config_base_address; /* SCU base address. */
494 uint32_t c15_diagnostic; /* diagnostic register */
495 uint32_t c15_power_diagnostic;
496 uint32_t c15_power_control; /* power control */
0b45451e
PM
497 uint64_t dbgbvr[16]; /* breakpoint value registers */
498 uint64_t dbgbcr[16]; /* breakpoint control registers */
499 uint64_t dbgwvr[16]; /* watchpoint value registers */
500 uint64_t dbgwcr[16]; /* watchpoint control registers */
5fc83f11 501 uint64_t dbgclaim; /* DBGCLAIM bits */
3a298203 502 uint64_t mdscr_el1;
1424ca8d 503 uint64_t oslsr_el1; /* OS Lock Status */
f94a6df5 504 uint64_t osdlr_el1; /* OS DoubleLock status */
14cc7b54 505 uint64_t mdcr_el2;
5513c3ab 506 uint64_t mdcr_el3;
5d05b9d4
AL
507 /* Stores the architectural value of the counter *the last time it was
508 * updated* by pmccntr_op_start. Accesses should always be surrounded
509 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
510 * architecturally-correct value is being read/set.
7c2cb42b 511 */
c92c0687 512 uint64_t c15_ccnt;
5d05b9d4
AL
513 /* Stores the delta between the architectural value and the underlying
514 * cycle count during normal operation. It is used to update c15_ccnt
515 * to be the correct architectural value before accesses. During
516 * accesses, c15_ccnt_delta contains the underlying count being used
517 * for the access, after which it reverts to the delta value in
518 * pmccntr_op_finish.
519 */
520 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
521 uint64_t c14_pmevcntr[31];
522 uint64_t c14_pmevcntr_delta[31];
523 uint64_t c14_pmevtyper[31];
8521466b 524 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 525 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 526 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
527 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
528 uint64_t gcr_el1;
529 uint64_t rgsr_el1;
58e93b48
RH
530
531 /* Minimal RAS registers */
532 uint64_t disr_el1;
533 uint64_t vdisr_el2;
534 uint64_t vsesr_el2;
15126d9c
PM
535
536 /*
537 * Fine-Grained Trap registers. We store these as arrays so the
538 * access checking code doesn't have to manually select
539 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
540 * FEAT_FGT2 will add more elements to these arrays.
541 */
542 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
543 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
544 uint64_t fgt_exec[1]; /* HFGITR */
ef1febe7
RH
545
546 /* RME registers */
547 uint64_t gpccr_el3;
548 uint64_t gptbr_el3;
549 uint64_t mfar_el3;
b5ff1b31 550 } cp15;
40f137e1 551
9ee6e8bb 552 struct {
fb602cb7
PM
553 /* M profile has up to 4 stack pointers:
554 * a Main Stack Pointer and a Process Stack Pointer for each
555 * of the Secure and Non-Secure states. (If the CPU doesn't support
556 * the security extension then it has only two SPs.)
557 * In QEMU we always store the currently active SP in regs[13],
558 * and the non-active SP for the current security state in
559 * v7m.other_sp. The stack pointers for the inactive security state
560 * are stored in other_ss_msp and other_ss_psp.
561 * switch_v7m_security_state() is responsible for rearranging them
562 * when we change security state.
563 */
9ee6e8bb 564 uint32_t other_sp;
fb602cb7
PM
565 uint32_t other_ss_msp;
566 uint32_t other_ss_psp;
4a16724f
PM
567 uint32_t vecbase[M_REG_NUM_BANKS];
568 uint32_t basepri[M_REG_NUM_BANKS];
569 uint32_t control[M_REG_NUM_BANKS];
570 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
571 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
572 uint32_t hfsr; /* HardFault Status */
573 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 574 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 575 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 576 uint32_t bfar; /* BusFault Address */
bed079da 577 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 578 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 579 int exception;
4a16724f
PM
580 uint32_t primask[M_REG_NUM_BANKS];
581 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 582 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 583 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 584 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 585 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
586 uint32_t msplim[M_REG_NUM_BANKS];
587 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
588 uint32_t fpcar[M_REG_NUM_BANKS];
589 uint32_t fpccr[M_REG_NUM_BANKS];
590 uint32_t fpdscr[M_REG_NUM_BANKS];
591 uint32_t cpacr[M_REG_NUM_BANKS];
592 uint32_t nsacr;
b26b5629 593 uint32_t ltpsize;
7c3d47da 594 uint32_t vpr;
9ee6e8bb
PB
595 } v7m;
596
abf1172f
PM
597 /* Information associated with an exception about to be taken:
598 * code which raises an exception must set cs->exception_index and
599 * the relevant parts of this structure; the cpu_do_interrupt function
600 * will then set the guest-visible registers as part of the exception
601 * entry process.
602 */
603 struct {
604 uint32_t syndrome; /* AArch64 format syndrome register */
605 uint32_t fsr; /* AArch32 format fault status register info */
606 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 607 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
608 /* If we implement EL2 we will also need to store information
609 * about the intermediate physical address for stage 2 faults.
610 */
611 } exception;
612
202ccb6b
DG
613 /* Information associated with an SError */
614 struct {
615 uint8_t pending;
616 uint8_t has_esr;
617 uint64_t esr;
618 } serror;
619
1711bfa5
BM
620 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
621
ed89f078
PM
622 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
623 uint32_t irq_line_state;
624
fe1479c3
PB
625 /* Thumb-2 EE state. */
626 uint32_t teecr;
627 uint32_t teehbr;
628
b7bcbe95
FB
629 /* VFP coprocessor state. */
630 struct {
c39c2b90 631 ARMVectorReg zregs[32];
b7bcbe95 632
3c7d3086
RH
633#ifdef TARGET_AARCH64
634 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 635#define FFR_PRED_NUM 16
3c7d3086 636 ARMPredicateReg pregs[17];
516e246a
RH
637 /* Scratch space for aa64 sve predicate temporary. */
638 ARMPredicateReg preg_tmp;
3c7d3086
RH
639#endif
640
b7bcbe95 641 /* We store these fpcsr fields separately for convenience. */
a4d58462 642 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
643 int vec_len;
644 int vec_stride;
645
a4d58462
RH
646 uint32_t xregs[16];
647
516e246a 648 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 649 uint32_t scratch[8];
3b46e624 650
d81ce0ef
AB
651 /* There are a number of distinct float control structures:
652 *
653 * fp_status: is the "normal" fp status.
654 * fp_status_fp16: used for half-precision calculations
655 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
656 * standard_fp_status_fp16 : used for half-precision
657 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
658 *
659 * Half-precision operations are governed by a separate
660 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
661 * status structure to control this.
662 *
663 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
664 * round-to-nearest and is used by any operations (generally
665 * Neon) which the architecture defines as controlled by the
666 * standard FPSCR value rather than the FPSCR.
3a492f3a 667 *
aaae563b
PM
668 * The "standard FPSCR but for fp16 ops" is needed because
669 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
670 * using a fixed value for it.
671 *
3a492f3a
PM
672 * To avoid having to transfer exception bits around, we simply
673 * say that the FPSCR cumulative exception flags are the logical
aaae563b 674 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
675 * only thing which needs to read the exception flags being
676 * an explicit FPSCR read.
677 */
53cd6637 678 float_status fp_status;
d81ce0ef 679 float_status fp_status_f16;
3a492f3a 680 float_status standard_fp_status;
aaae563b 681 float_status standard_fp_status_f16;
5be5e8ed 682
de561988
RH
683 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
684 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
b7bcbe95 685 } vfp;
0f08429c 686
03d05e2d
PM
687 uint64_t exclusive_addr;
688 uint64_t exclusive_val;
0f08429c
RH
689 /*
690 * Contains the 'val' for the second 64-bit register of LDXP, which comes
691 * from the higher address, not the high part of a complete 128-bit value.
692 * In some ways it might be more convenient to record the exclusive value
693 * as the low and high halves of a 128 bit data value, but the current
694 * semantics of these fields are baked into the migration format.
695 */
03d05e2d 696 uint64_t exclusive_high;
b7bcbe95 697
18c9b560
AZ
698 /* iwMMXt coprocessor state. */
699 struct {
700 uint64_t regs[16];
701 uint64_t val;
702
703 uint32_t cregs[16];
704 } iwmmxt;
705
991ad91b 706#ifdef TARGET_AARCH64
108b3ba8
RH
707 struct {
708 ARMPACKey apia;
709 ARMPACKey apib;
710 ARMPACKey apda;
711 ARMPACKey apdb;
712 ARMPACKey apga;
713 } keys;
7cb1e618
RH
714
715 uint64_t scxtnum_el[4];
dc993a01
RH
716
717 /*
718 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
719 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
720 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
721 * When SVL is less than the architectural maximum, the accessible
722 * storage is restricted, such that if the SVL is X bytes the guest can
723 * see only the bottom X elements of zarray[], and only the least
724 * significant X bytes of each element of the array. (In other words,
725 * the observable part is always square.)
726 *
727 * The ZA storage can also be considered as a set of square tiles of
728 * elements of different sizes. The mapping from tiles to the ZA array
729 * is architecturally defined, such that for tiles of elements of esz
730 * bytes, the Nth row (or "horizontal slice") of tile T is in
731 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
732 * in the ZA storage, because its rows are striped through the ZA array.
733 *
734 * Because this is so large, keep this toward the end of the reset area,
735 * to keep the offsets into the rest of the structure smaller.
736 */
737 ARMVectorReg zarray[ARM_MAX_VQ * 16];
991ad91b
RH
738#endif
739
46747d15 740 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
741 struct CPUWatchpoint *cpu_watchpoint[16];
742
f3639a64
RH
743 /* Optional fault info across tlb lookup. */
744 ARMMMUFaultInfo *tlb_fi;
745
1f5c00cf
AB
746 /* Fields up to this point are cleared by a CPU reset */
747 struct {} end_reset_fields;
748
e8b5fae5 749 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 750
581be094 751 /* Internal CPU feature flags. */
918f5dca 752 uint64_t features;
581be094 753
6cb0b013
PC
754 /* PMSAv7 MPU */
755 struct {
756 uint32_t *drbar;
757 uint32_t *drsr;
758 uint32_t *dracr;
4a16724f 759 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
760 } pmsav7;
761
0e1a46bb
PM
762 /* PMSAv8 MPU */
763 struct {
764 /* The PMSAv8 implementation also shares some PMSAv7 config
765 * and state:
766 * pmsav7.rnr (region number register)
767 * pmsav7_dregion (number of configured regions)
768 */
4a16724f
PM
769 uint32_t *rbar[M_REG_NUM_BANKS];
770 uint32_t *rlar[M_REG_NUM_BANKS];
761c4642
TR
771 uint32_t *hprbar;
772 uint32_t *hprlar;
4a16724f
PM
773 uint32_t mair0[M_REG_NUM_BANKS];
774 uint32_t mair1[M_REG_NUM_BANKS];
761c4642 775 uint32_t hprselr;
0e1a46bb
PM
776 } pmsav8;
777
9901c576
PM
778 /* v8M SAU */
779 struct {
780 uint32_t *rbar;
781 uint32_t *rlar;
782 uint32_t rnr;
783 uint32_t ctrl;
784 } sau;
785
1701d70e 786#if !defined(CONFIG_USER_ONLY)
8f4e07c9 787 NVICState *nvic;
2a94a507 788 const struct arm_boot_info *boot_info;
d3a3e529
VK
789 /* Store GICv3CPUState to access from this struct */
790 void *gicv3state;
1701d70e 791#else /* CONFIG_USER_ONLY */
26f08561
PMD
792 /* For usermode syscall translation. */
793 bool eabi;
794#endif /* CONFIG_USER_ONLY */
0e0c030c
RH
795
796#ifdef TARGET_TAGGED_ADDRESSES
797 /* Linux syscall tagged address support */
798 bool tagged_addr_enable;
799#endif
2c0262af
FB
800} CPUARMState;
801
5fda9504
TH
802static inline void set_feature(CPUARMState *env, int feature)
803{
804 env->features |= 1ULL << feature;
805}
806
807static inline void unset_feature(CPUARMState *env, int feature)
808{
809 env->features &= ~(1ULL << feature);
810}
811
bd7d00fc 812/**
08267487 813 * ARMELChangeHookFn:
bd7d00fc
PM
814 * type of a function which can be registered via arm_register_el_change_hook()
815 * to get callbacks when the CPU changes its exception level or mode.
816 */
08267487
AL
817typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
818typedef struct ARMELChangeHook ARMELChangeHook;
819struct ARMELChangeHook {
820 ARMELChangeHookFn *hook;
821 void *opaque;
822 QLIST_ENTRY(ARMELChangeHook) node;
823};
062ba099
AB
824
825/* These values map onto the return values for
826 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
827typedef enum ARMPSCIState {
d5affb0d
AJ
828 PSCI_ON = 0,
829 PSCI_OFF = 1,
062ba099
AB
830 PSCI_ON_PENDING = 2
831} ARMPSCIState;
832
962fcbf2
RH
833typedef struct ARMISARegisters ARMISARegisters;
834
7f9e25a6
RH
835/*
836 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
837 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
838 *
839 * While processing properties during initialization, corresponding init bits
840 * are set for bits in sve_vq_map that have been set by properties.
841 *
842 * Bits set in supported represent valid vector lengths for the CPU type.
843 */
844typedef struct {
845 uint32_t map, init, supported;
846} ARMVQMap;
847
74e75564
PB
848/**
849 * ARMCPU:
850 * @env: #CPUARMState
851 *
852 * An ARM CPU core.
853 */
b36e239e 854struct ArchCPU {
74e75564 855 CPUState parent_obj;
74e75564
PB
856
857 CPUARMState env;
858
859 /* Coprocessor information */
860 GHashTable *cp_regs;
861 /* For marshalling (mostly coprocessor) register state between the
862 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
863 * we use these arrays.
864 */
865 /* List of register indexes managed via these arrays; (full KVM style
866 * 64 bit indexes, not CPRegInfo 32 bit indexes)
867 */
868 uint64_t *cpreg_indexes;
869 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
870 uint64_t *cpreg_values;
871 /* Length of the indexes, values, reset_values arrays */
872 int32_t cpreg_array_len;
873 /* These are used only for migration: incoming data arrives in
874 * these fields and is sanity checked in post_load before copying
875 * to the working data structures above.
876 */
877 uint64_t *cpreg_vmstate_indexes;
878 uint64_t *cpreg_vmstate_values;
879 int32_t cpreg_vmstate_array_len;
880
448d4d14 881 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 882 DynamicGDBXMLInfo dyn_svereg_xml;
7d8b28b8
RH
883 DynamicGDBXMLInfo dyn_m_systemreg_xml;
884 DynamicGDBXMLInfo dyn_m_secextreg_xml;
200bf5b7 885
74e75564
PB
886 /* Timers used by the generic (architected) timer */
887 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
888 /*
889 * Timer used by the PMU. Its state is restored after migration by
890 * pmu_op_finish() - it does not need other handling during migration
891 */
892 QEMUTimer *pmu_timer;
74e75564
PB
893 /* GPIO outputs for generic timer */
894 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
895 /* GPIO output for GICv3 maintenance interrupt signal */
896 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
897 /* GPIO output for the PMU interrupt */
898 qemu_irq pmu_interrupt;
74e75564
PB
899
900 /* MemoryRegion to use for secure physical accesses */
901 MemoryRegion *secure_memory;
902
8bce44a2
RH
903 /* MemoryRegion to use for allocation tag accesses */
904 MemoryRegion *tag_memory;
905 MemoryRegion *secure_tag_memory;
906
181962fd
PM
907 /* For v8M, pointer to the IDAU interface provided by board/SoC */
908 Object *idau;
909
74e75564
PB
910 /* 'compatible' string for this CPU for Linux device trees */
911 const char *dtb_compatible;
912
913 /* PSCI version for this CPU
914 * Bits[31:16] = Major Version
915 * Bits[15:0] = Minor Version
916 */
917 uint32_t psci_version;
918
062ba099
AB
919 /* Current power state, access guarded by BQL */
920 ARMPSCIState power_state;
921
c25bd18a
PM
922 /* CPU has virtualization extension */
923 bool has_el2;
74e75564
PB
924 /* CPU has security extension */
925 bool has_el3;
5c0a3819
SZ
926 /* CPU has PMU (Performance Monitor Unit) */
927 bool has_pmu;
97a28b0e
PM
928 /* CPU has VFP */
929 bool has_vfp;
42bea956
CLG
930 /* CPU has 32 VFP registers */
931 bool has_vfp_d32;
97a28b0e
PM
932 /* CPU has Neon */
933 bool has_neon;
ea90db0a
PM
934 /* CPU has M-profile DSP extension */
935 bool has_dsp;
74e75564
PB
936
937 /* CPU has memory protection unit */
938 bool has_mpu;
939 /* PMSAv7 MPU number of supported regions */
940 uint32_t pmsav7_dregion;
761c4642
TR
941 /* PMSAv8 MPU number of supported hyp regions */
942 uint32_t pmsav8r_hdregion;
9901c576
PM
943 /* v8M SAU number of supported regions */
944 uint32_t sau_sregion;
74e75564
PB
945
946 /* PSCI conduit used to invoke PSCI methods
947 * 0 - disabled, 1 - smc, 2 - hvc
948 */
949 uint32_t psci_conduit;
950
38e2a77c
PM
951 /* For v8M, initial value of the Secure VTOR */
952 uint32_t init_svtor;
7cda2149
PM
953 /* For v8M, initial value of the Non-secure VTOR */
954 uint32_t init_nsvtor;
38e2a77c 955
74e75564
PB
956 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
957 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
958 */
959 uint32_t kvm_target;
960
cf43b5b6 961#ifdef CONFIG_KVM
74e75564
PB
962 /* KVM init features for this CPU */
963 uint32_t kvm_init_features[7];
964
e5ac4200
AJ
965 /* KVM CPU state */
966
967 /* KVM virtual time adjustment */
968 bool kvm_adjvtime;
969 bool kvm_vtime_dirty;
970 uint64_t kvm_vtime;
971
68970d1e
AJ
972 /* KVM steal time */
973 OnOffAuto kvm_steal_time;
cf43b5b6 974#endif /* CONFIG_KVM */
68970d1e 975
74e75564
PB
976 /* Uniprocessor system with MP extensions */
977 bool mp_is_up;
978
c4487d76
PM
979 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
980 * and the probe failed (so we need to report the error in realize)
981 */
982 bool host_cpu_probe_failed;
983
f9a69711
AF
984 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
985 * register.
986 */
987 int32_t core_count;
988
74e75564
PB
989 /* The instance init functions for implementation-specific subclasses
990 * set these fields to specify the implementation-dependent values of
991 * various constant registers and reset values of non-constant
992 * registers.
993 * Some of these might become QOM properties eventually.
994 * Field names match the official register names as defined in the
995 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
996 * is used for reset values of non-constant registers; no reset_
997 * prefix means a constant register.
47576b94
RH
998 * Some of these registers are split out into a substructure that
999 * is shared with the translators to control the ISA.
1548a7b2
PM
1000 *
1001 * Note that if you add an ID register to the ARMISARegisters struct
1002 * you need to also update the 32-bit and 64-bit versions of the
1003 * kvm_arm_get_host_cpu_features() function to correctly populate the
1004 * field by reading the value from the KVM vCPU.
74e75564 1005 */
47576b94
RH
1006 struct ARMISARegisters {
1007 uint32_t id_isar0;
1008 uint32_t id_isar1;
1009 uint32_t id_isar2;
1010 uint32_t id_isar3;
1011 uint32_t id_isar4;
1012 uint32_t id_isar5;
1013 uint32_t id_isar6;
10054016
PM
1014 uint32_t id_mmfr0;
1015 uint32_t id_mmfr1;
1016 uint32_t id_mmfr2;
1017 uint32_t id_mmfr3;
1018 uint32_t id_mmfr4;
32957aad 1019 uint32_t id_mmfr5;
8a130a7b
PM
1020 uint32_t id_pfr0;
1021 uint32_t id_pfr1;
1d51bc96 1022 uint32_t id_pfr2;
47576b94
RH
1023 uint32_t mvfr0;
1024 uint32_t mvfr1;
1025 uint32_t mvfr2;
a6179538 1026 uint32_t id_dfr0;
d22c5649 1027 uint32_t id_dfr1;
4426d361 1028 uint32_t dbgdidr;
09754ca8
PM
1029 uint32_t dbgdevid;
1030 uint32_t dbgdevid1;
47576b94
RH
1031 uint64_t id_aa64isar0;
1032 uint64_t id_aa64isar1;
a969fe97 1033 uint64_t id_aa64isar2;
47576b94
RH
1034 uint64_t id_aa64pfr0;
1035 uint64_t id_aa64pfr1;
3dc91ddb
PM
1036 uint64_t id_aa64mmfr0;
1037 uint64_t id_aa64mmfr1;
64761e10 1038 uint64_t id_aa64mmfr2;
2a609df8
PM
1039 uint64_t id_aa64dfr0;
1040 uint64_t id_aa64dfr1;
2dc10fa2 1041 uint64_t id_aa64zfr0;
414c54d5 1042 uint64_t id_aa64smfr0;
24526bb9 1043 uint64_t reset_pmcr_el0;
47576b94 1044 } isar;
e544f800 1045 uint64_t midr;
74e75564
PB
1046 uint32_t revidr;
1047 uint32_t reset_fpsid;
a5fd319a 1048 uint64_t ctr;
74e75564 1049 uint32_t reset_sctlr;
cad86737
AL
1050 uint64_t pmceid0;
1051 uint64_t pmceid1;
74e75564 1052 uint32_t id_afr0;
74e75564
PB
1053 uint64_t id_aa64afr0;
1054 uint64_t id_aa64afr1;
f6450bcb 1055 uint64_t clidr;
74e75564
PB
1056 uint64_t mp_affinity; /* MP ID without feature bits */
1057 /* The elements of this array are the CCSIDR values for each cache,
1058 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1059 */
957e6155 1060 uint64_t ccsidr[16];
74e75564
PB
1061 uint64_t reset_cbar;
1062 uint32_t reset_auxcr;
1063 bool reset_hivecs;
ef1febe7 1064 uint8_t reset_l0gptsz;
eb94284d
RH
1065
1066 /*
1067 * Intermediate values used during property parsing.
69b2265d 1068 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
1069 */
1070 bool prop_pauth;
1071 bool prop_pauth_impdef;
399e5e71 1072 bool prop_pauth_qarma3;
69b2265d 1073 bool prop_lpa2;
eb94284d 1074
74e75564 1075 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
ae4acc69 1076 uint8_t dcz_blocksize;
851ec6eb
RH
1077 /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1078 uint8_t gm_blocksize;
ae4acc69 1079
4a7319b7 1080 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 1081
e45868a3
PM
1082 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1083 int gic_num_lrs; /* number of list registers */
1084 int gic_vpribits; /* number of virtual priority bits */
1085 int gic_vprebits; /* number of virtual preemption bits */
39f29e59 1086 int gic_pribits; /* number of physical priority bits */
e45868a3 1087
3a062d57
JB
1088 /* Whether the cfgend input is high (i.e. this CPU should reset into
1089 * big-endian mode). This setting isn't used directly: instead it modifies
1090 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1091 * architecture version.
1092 */
1093 bool cfgend;
1094
b5c53d1b 1095 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1096 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1097
1098 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1099
1100 /* Used to synchronize KVM and QEMU in-kernel device levels */
1101 uint8_t device_irq_level;
adf92eab
RH
1102
1103 /* Used to set the maximum vector length the cpu will support. */
1104 uint32_t sve_max_vq;
0df9142d 1105
b3d52804
RH
1106#ifdef CONFIG_USER_ONLY
1107 /* Used to set the default vector length at process start. */
1108 uint32_t sve_default_vq;
e74c0976 1109 uint32_t sme_default_vq;
b3d52804
RH
1110#endif
1111
7f9e25a6 1112 ARMVQMap sve_vq;
e74c0976 1113 ARMVQMap sme_vq;
7def8754
AJ
1114
1115 /* Generic timer counter frequency, in Hz */
1116 uint64_t gt_cntfrq_hz;
74e75564
PB
1117};
1118
f6524ddf
PMD
1119/* Callback functions for the generic timer's timers. */
1120void arm_gt_ptimer_cb(void *opaque);
1121void arm_gt_vtimer_cb(void *opaque);
1122void arm_gt_htimer_cb(void *opaque);
1123void arm_gt_stimer_cb(void *opaque);
1124void arm_gt_hvtimer_cb(void *opaque);
1125
7def8754 1126unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
f6fc36de 1127void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
7def8754 1128
51e5ef45
MAL
1129void arm_cpu_post_init(Object *obj);
1130
f6524ddf
PMD
1131#define ARM_AFF0_SHIFT 0
1132#define ARM_AFF0_MASK (0xFFULL << ARM_AFF0_SHIFT)
1133#define ARM_AFF1_SHIFT 8
1134#define ARM_AFF1_MASK (0xFFULL << ARM_AFF1_SHIFT)
1135#define ARM_AFF2_SHIFT 16
1136#define ARM_AFF2_MASK (0xFFULL << ARM_AFF2_SHIFT)
1137#define ARM_AFF3_SHIFT 32
1138#define ARM_AFF3_MASK (0xFFULL << ARM_AFF3_SHIFT)
1139#define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1140
1141#define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1142#define ARM64_AFFINITY_MASK \
1143 (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1144#define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1145
46de5913
IM
1146uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1147
74e75564 1148#ifndef CONFIG_USER_ONLY
8a9358cc 1149extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1150
1151void arm_cpu_do_interrupt(CPUState *cpu);
1152void arm_v7m_cpu_do_interrupt(CPUState *cpu);
74e75564 1153
74e75564
PB
1154hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1155 MemTxAttrs *attrs);
6d2d454a 1156#endif /* !CONFIG_USER_ONLY */
74e75564 1157
a010bdbe 1158int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1159int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1160
200bf5b7
AB
1161/* Returns the dynamically generated XML for the gdb stub.
1162 * Returns a pointer to the XML contents for the specified XML file or NULL
1163 * if the XML name doesn't match the predefined one.
1164 */
1165const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1166
74e75564 1167int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1168 int cpuid, DumpState *s);
74e75564 1169int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1170 int cpuid, DumpState *s);
74e75564 1171
3a45f4f5
PM
1172/**
1173 * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1174 * @cpu: CPU (which must have been freshly reset)
1175 * @target_el: exception level to put the CPU into
1176 * @secure: whether to put the CPU in secure state
1177 *
1178 * When QEMU is directly running a guest kernel at a lower level than
1179 * EL3 it implicitly emulates some aspects of the guest firmware.
1180 * This includes that on reset we need to configure the parts of the
1181 * CPU corresponding to EL3 so that the real guest code can run at its
1182 * lower exception level. This function does that post-reset CPU setup,
1183 * for when we do direct boot of a guest kernel, and for when we
1184 * emulate PSCI and similar firmware interfaces starting a CPU at a
1185 * lower exception level.
1186 *
1187 * @target_el must be an EL implemented by the CPU between 1 and 3.
1188 * We do not support dropping into a Secure EL other than 3.
1189 *
1190 * It is the responsibility of the caller to call arm_rebuild_hflags().
1191 */
1192void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1193
74e75564 1194#ifdef TARGET_AARCH64
a010bdbe 1195int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1196int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1197void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1198void aarch64_sve_change_el(CPUARMState *env, int old_el,
1199 int new_el, bool el0_a64);
2a8af382 1200void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
538baab2
AJ
1201
1202/*
1203 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1204 * The byte at offset i from the start of the in-memory representation contains
1205 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1206 * lowest offsets are stored in the lowest memory addresses, then that nearly
1207 * matches QEMU's representation, which is to use an array of host-endian
1208 * uint64_t's, where the lower offsets are at the lower indices. To complete
1209 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1210 */
1211static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1212{
e03b5686 1213#if HOST_BIG_ENDIAN
538baab2
AJ
1214 int i;
1215
1216 for (i = 0; i < nr; ++i) {
1217 dst[i] = bswap64(src[i]);
1218 }
1219
1220 return dst;
1221#else
1222 return src;
1223#endif
1224}
1225
0ab5953b
RH
1226#else
1227static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1228static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1229 int n, bool a)
1230{ }
74e75564 1231#endif
778c3a06 1232
ce02049d
GB
1233void aarch64_sync_32_to_64(CPUARMState *env);
1234void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1235
ced31551
RH
1236int fp_exception_el(CPUARMState *env, int cur_el);
1237int sve_exception_el(CPUARMState *env, int cur_el);
6b2ca83e 1238int sme_exception_el(CPUARMState *env, int cur_el);
5ef3cc56
RH
1239
1240/**
6ca54aa9 1241 * sve_vqm1_for_el_sm:
5ef3cc56
RH
1242 * @env: CPUARMState
1243 * @el: exception level
6ca54aa9 1244 * @sm: streaming mode
5ef3cc56 1245 *
6ca54aa9 1246 * Compute the current vector length for @el & @sm, in units of
5ef3cc56 1247 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
6ca54aa9 1248 * If @sm, compute for SVL, otherwise NVL.
5ef3cc56 1249 */
6ca54aa9
RH
1250uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1251
1252/* Likewise, but using @sm = PSTATE.SM. */
5ef3cc56 1253uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
ced31551 1254
3926cc84
AG
1255static inline bool is_a64(CPUARMState *env)
1256{
1257 return env->aarch64;
1258}
1259
5d05b9d4
AL
1260/**
1261 * pmu_op_start/finish
ec7b4ce4
AF
1262 * @env: CPUARMState
1263 *
5d05b9d4
AL
1264 * Convert all PMU counters between their delta form (the typical mode when
1265 * they are enabled) and the guest-visible values. These two calls must
1266 * surround any action which might affect the counters.
ec7b4ce4 1267 */
5d05b9d4
AL
1268void pmu_op_start(CPUARMState *env);
1269void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1270
4e7beb0c
AL
1271/*
1272 * Called when a PMU counter is due to overflow
1273 */
1274void arm_pmu_timer_cb(void *opaque);
1275
033614c4
AL
1276/**
1277 * Functions to register as EL change hooks for PMU mode filtering
1278 */
1279void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1280void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1281
57a4a11b 1282/*
bf8d0969
AL
1283 * pmu_init
1284 * @cpu: ARMCPU
57a4a11b 1285 *
bf8d0969
AL
1286 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1287 * for the current configuration
57a4a11b 1288 */
bf8d0969 1289void pmu_init(ARMCPU *cpu);
57a4a11b 1290
76e3e1bc
PM
1291/* SCTLR bit meanings. Several bits have been reused in newer
1292 * versions of the architecture; in that case we define constants
1293 * for both old and new bit meanings. Code which tests against those
1294 * bits should probably check or otherwise arrange that the CPU
1295 * is the architectural version it expects.
1296 */
1297#define SCTLR_M (1U << 0)
1298#define SCTLR_A (1U << 1)
1299#define SCTLR_C (1U << 2)
1300#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1301#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1302#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1303#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1304#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1305#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1306#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1307#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1308#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
83f624d9 1309#define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */
76e3e1bc
PM
1310#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1311#define SCTLR_ITD (1U << 7) /* v8 onward */
1312#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1313#define SCTLR_SED (1U << 8) /* v8 onward */
1314#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1315#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1316#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1317#define SCTLR_SW (1U << 10) /* v7 */
1318#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1319#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1320#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1321#define SCTLR_I (1U << 12)
b2af69d0
RH
1322#define SCTLR_V (1U << 13) /* AArch32 only */
1323#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1324#define SCTLR_RR (1U << 14) /* up to v7 */
1325#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1326#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1327#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1328#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1329#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1330#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1331#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1332#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1333#define SCTLR_nTWE (1U << 18) /* v8 onward */
1334#define SCTLR_WXN (1U << 19)
1335#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0 1336#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
7cb1e618 1337#define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
b2af69d0
RH
1338#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1339#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1340#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1341#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1342#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1343#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1344#define SCTLR_VE (1U << 24) /* up to v7 */
1345#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1346#define SCTLR_EE (1U << 25)
1347#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1348#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1349#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1350#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1351#define SCTLR_TRE (1U << 28) /* AArch32 only */
1352#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1353#define SCTLR_AFE (1U << 29) /* AArch32 only */
1354#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1355#define SCTLR_TE (1U << 30) /* AArch32 only */
1356#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1357#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1358#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
dbc678f9 1359#define SCTLR_MSCEN (1ULL << 33) /* FEAT_MOPS */
b2af69d0
RH
1360#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1361#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1362#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1363#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1364#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1365#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1366#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1367#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
ad1e6018
RH
1368#define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1369#define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1370#define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1371#define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1372#define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1373#define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1374#define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1375#define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1376#define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1377#define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1378#define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1379#define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1380#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1381#define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
76e3e1bc 1382
fab8ad39
RH
1383/* Bit definitions for CPACR (AArch32 only) */
1384FIELD(CPACR, CP10, 20, 2)
1385FIELD(CPACR, CP11, 22, 2)
1386FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1387FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1388FIELD(CPACR, ASEDIS, 31, 1)
1389
1390/* Bit definitions for CPACR_EL1 (AArch64 only) */
1391FIELD(CPACR_EL1, ZEN, 16, 2)
1392FIELD(CPACR_EL1, FPEN, 20, 2)
1393FIELD(CPACR_EL1, SMEN, 24, 2)
1394FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1395
1396/* Bit definitions for HCPTR (AArch32 only) */
1397FIELD(HCPTR, TCP10, 10, 1)
1398FIELD(HCPTR, TCP11, 11, 1)
1399FIELD(HCPTR, TASE, 15, 1)
1400FIELD(HCPTR, TTA, 20, 1)
1401FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1402FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1403
1404/* Bit definitions for CPTR_EL2 (AArch64 only) */
1405FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1406FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1407FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1408FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1409FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1410FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1411FIELD(CPTR_EL2, TTA, 28, 1)
1412FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1413FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1414
1415/* Bit definitions for CPTR_EL3 (AArch64 only) */
1416FIELD(CPTR_EL3, EZ, 8, 1)
1417FIELD(CPTR_EL3, TFP, 10, 1)
1418FIELD(CPTR_EL3, ESM, 12, 1)
1419FIELD(CPTR_EL3, TTA, 20, 1)
1420FIELD(CPTR_EL3, TAM, 30, 1)
1421FIELD(CPTR_EL3, TCPAC, 31, 1)
c6f19164 1422
f190bd1d
PM
1423#define MDCR_MTPME (1U << 28)
1424#define MDCR_TDCC (1U << 27)
47b385da 1425#define MDCR_HLP (1U << 26) /* MDCR_EL2 */
0b42f4fa
PM
1426#define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
1427#define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
187f678d
PM
1428#define MDCR_EPMAD (1U << 21)
1429#define MDCR_EDAD (1U << 20)
f190bd1d
PM
1430#define MDCR_TTRF (1U << 19)
1431#define MDCR_STE (1U << 18) /* MDCR_EL3 */
033614c4
AL
1432#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1433#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1434#define MDCR_SDD (1U << 16)
a8d64e73 1435#define MDCR_SPD (3U << 14)
187f678d
PM
1436#define MDCR_TDRA (1U << 11)
1437#define MDCR_TDOSA (1U << 10)
1438#define MDCR_TDA (1U << 9)
1439#define MDCR_TDE (1U << 8)
1440#define MDCR_HPME (1U << 7)
1441#define MDCR_TPM (1U << 6)
1442#define MDCR_TPMCR (1U << 5)
033614c4 1443#define MDCR_HPMN (0x1fU)
187f678d 1444
a8d64e73 1445/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
f190bd1d
PM
1446#define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1447 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1448 MDCR_STE | MDCR_SPME | MDCR_SPD)
a8d64e73 1449
78dbbbe4
PM
1450#define CPSR_M (0x1fU)
1451#define CPSR_T (1U << 5)
1452#define CPSR_F (1U << 6)
1453#define CPSR_I (1U << 7)
1454#define CPSR_A (1U << 8)
1455#define CPSR_E (1U << 9)
1456#define CPSR_IT_2_7 (0xfc00U)
1457#define CPSR_GE (0xfU << 16)
4051e12c 1458#define CPSR_IL (1U << 20)
dc8b1853 1459#define CPSR_DIT (1U << 21)
220f508f 1460#define CPSR_PAN (1U << 22)
f2f68a78 1461#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1462#define CPSR_J (1U << 24)
1463#define CPSR_IT_0_1 (3U << 25)
1464#define CPSR_Q (1U << 27)
1465#define CPSR_V (1U << 28)
1466#define CPSR_C (1U << 29)
1467#define CPSR_Z (1U << 30)
1468#define CPSR_N (1U << 31)
9ee6e8bb 1469#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1470#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1471
1472#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1473#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1474 | CPSR_NZCV)
9ee6e8bb 1475/* Bits writable in user mode. */
268b1b3d 1476#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1477/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1478#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1479
987ab45e
PM
1480/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1481#define XPSR_EXCP 0x1ffU
1482#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1483#define XPSR_IT_2_7 CPSR_IT_2_7
1484#define XPSR_GE CPSR_GE
1485#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1486#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1487#define XPSR_IT_0_1 CPSR_IT_0_1
1488#define XPSR_Q CPSR_Q
1489#define XPSR_V CPSR_V
1490#define XPSR_C CPSR_C
1491#define XPSR_Z CPSR_Z
1492#define XPSR_N CPSR_N
1493#define XPSR_NZCV CPSR_NZCV
1494#define XPSR_IT CPSR_IT
1495
e389be16
FA
1496#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1497#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1498#define TTBCR_PD0 (1U << 4)
1499#define TTBCR_PD1 (1U << 5)
1500#define TTBCR_EPD0 (1U << 7)
1501#define TTBCR_IRGN0 (3U << 8)
1502#define TTBCR_ORGN0 (3U << 10)
1503#define TTBCR_SH0 (3U << 12)
1504#define TTBCR_T1SZ (3U << 16)
1505#define TTBCR_A1 (1U << 22)
1506#define TTBCR_EPD1 (1U << 23)
1507#define TTBCR_IRGN1 (3U << 24)
1508#define TTBCR_ORGN1 (3U << 26)
1509#define TTBCR_SH1 (1U << 28)
1510#define TTBCR_EAE (1U << 31)
1511
f04383e7
PM
1512FIELD(VTCR, T0SZ, 0, 6)
1513FIELD(VTCR, SL0, 6, 2)
1514FIELD(VTCR, IRGN0, 8, 2)
1515FIELD(VTCR, ORGN0, 10, 2)
1516FIELD(VTCR, SH0, 12, 2)
1517FIELD(VTCR, TG0, 14, 2)
1518FIELD(VTCR, PS, 16, 3)
1519FIELD(VTCR, VS, 19, 1)
1520FIELD(VTCR, HA, 21, 1)
1521FIELD(VTCR, HD, 22, 1)
1522FIELD(VTCR, HWU59, 25, 1)
1523FIELD(VTCR, HWU60, 26, 1)
1524FIELD(VTCR, HWU61, 27, 1)
1525FIELD(VTCR, HWU62, 28, 1)
1526FIELD(VTCR, NSW, 29, 1)
1527FIELD(VTCR, NSA, 30, 1)
1528FIELD(VTCR, DS, 32, 1)
1529FIELD(VTCR, SL2, 33, 1)
1530
d356312f
PM
1531/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1532 * Only these are valid when in AArch64 mode; in
1533 * AArch32 mode SPSRs are basically CPSR-format.
1534 */
f502cfc2 1535#define PSTATE_SP (1U)
d356312f
PM
1536#define PSTATE_M (0xFU)
1537#define PSTATE_nRW (1U << 4)
1538#define PSTATE_F (1U << 6)
1539#define PSTATE_I (1U << 7)
1540#define PSTATE_A (1U << 8)
1541#define PSTATE_D (1U << 9)
f6e52eaa 1542#define PSTATE_BTYPE (3U << 10)
f2f68a78 1543#define PSTATE_SSBS (1U << 12)
d356312f
PM
1544#define PSTATE_IL (1U << 20)
1545#define PSTATE_SS (1U << 21)
220f508f 1546#define PSTATE_PAN (1U << 22)
9eeb7a1c 1547#define PSTATE_UAO (1U << 23)
dc8b1853 1548#define PSTATE_DIT (1U << 24)
4b779ceb 1549#define PSTATE_TCO (1U << 25)
d356312f
PM
1550#define PSTATE_V (1U << 28)
1551#define PSTATE_C (1U << 29)
1552#define PSTATE_Z (1U << 30)
1553#define PSTATE_N (1U << 31)
1554#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1555#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1556#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1557/* Mode values for AArch64 */
1558#define PSTATE_MODE_EL3h 13
1559#define PSTATE_MODE_EL3t 12
1560#define PSTATE_MODE_EL2h 9
1561#define PSTATE_MODE_EL2t 8
1562#define PSTATE_MODE_EL1h 5
1563#define PSTATE_MODE_EL1t 4
1564#define PSTATE_MODE_EL0t 0
1565
c37e6ac9
RH
1566/* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1567FIELD(SVCR, SM, 0, 1)
1568FIELD(SVCR, ZA, 1, 1)
1569
de561988
RH
1570/* Fields for SMCR_ELx. */
1571FIELD(SMCR, LEN, 0, 4)
1572FIELD(SMCR, FA64, 31, 1)
1573
de2db7ec
PM
1574/* Write a new value to v7m.exception, thus transitioning into or out
1575 * of Handler mode; this may result in a change of active stack pointer.
1576 */
1577void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1578
9e729b57
EI
1579/* Map EL and handler into a PSTATE_MODE. */
1580static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1581{
1582 return (el << 2) | handler;
1583}
1584
d356312f
PM
1585/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1586 * interprocessing, so we don't attempt to sync with the cpsr state used by
1587 * the 32 bit decoder.
1588 */
1589static inline uint32_t pstate_read(CPUARMState *env)
1590{
1591 int ZF;
1592
1593 ZF = (env->ZF == 0);
1594 return (env->NF & 0x80000000) | (ZF << 30)
1595 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1596 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1597}
1598
1599static inline void pstate_write(CPUARMState *env, uint32_t val)
1600{
1601 env->ZF = (~val) & PSTATE_Z;
1602 env->NF = val;
1603 env->CF = (val >> 29) & 1;
1604 env->VF = (val << 3) & 0x80000000;
4cc35614 1605 env->daif = val & PSTATE_DAIF;
f6e52eaa 1606 env->btype = (val >> 10) & 3;
d356312f
PM
1607 env->pstate = val & ~CACHED_PSTATE_BITS;
1608}
1609
b5ff1b31 1610/* Return the current CPSR value. */
2f4a40e5 1611uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1612
1613typedef enum CPSRWriteType {
1614 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1615 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1616 CPSRWriteRaw = 2,
1617 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1618 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1619} CPSRWriteType;
1620
e784807c
PM
1621/*
1622 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1623 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1624 * correspond to TB flags bits cached in the hflags, unless @write_type
1625 * is CPSRWriteRaw.
1626 */
50866ba5
PM
1627void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1628 CPSRWriteType write_type);
9ee6e8bb
PB
1629
1630/* Return the current xPSR value. */
1631static inline uint32_t xpsr_read(CPUARMState *env)
1632{
1633 int ZF;
6fbe23d5
PB
1634 ZF = (env->ZF == 0);
1635 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1636 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1637 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1638 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1639 | (env->GE << 16)
9ee6e8bb 1640 | env->v7m.exception;
b5ff1b31
FB
1641}
1642
9ee6e8bb
PB
1643/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1644static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1645{
987ab45e
PM
1646 if (mask & XPSR_NZCV) {
1647 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1648 env->NF = val;
9ee6e8bb
PB
1649 env->CF = (val >> 29) & 1;
1650 env->VF = (val << 3) & 0x80000000;
1651 }
987ab45e
PM
1652 if (mask & XPSR_Q) {
1653 env->QF = ((val & XPSR_Q) != 0);
1654 }
f1e2598c
PM
1655 if (mask & XPSR_GE) {
1656 env->GE = (val & XPSR_GE) >> 16;
1657 }
04c9c81b 1658#ifndef CONFIG_USER_ONLY
987ab45e
PM
1659 if (mask & XPSR_T) {
1660 env->thumb = ((val & XPSR_T) != 0);
1661 }
1662 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1663 env->condexec_bits &= ~3;
1664 env->condexec_bits |= (val >> 25) & 3;
1665 }
987ab45e 1666 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1667 env->condexec_bits &= 3;
1668 env->condexec_bits |= (val >> 8) & 0xfc;
1669 }
987ab45e 1670 if (mask & XPSR_EXCP) {
de2db7ec
PM
1671 /* Note that this only happens on exception exit */
1672 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1673 }
04c9c81b 1674#endif
9ee6e8bb
PB
1675}
1676
f149e3e8
EI
1677#define HCR_VM (1ULL << 0)
1678#define HCR_SWIO (1ULL << 1)
1679#define HCR_PTW (1ULL << 2)
1680#define HCR_FMO (1ULL << 3)
1681#define HCR_IMO (1ULL << 4)
1682#define HCR_AMO (1ULL << 5)
1683#define HCR_VF (1ULL << 6)
1684#define HCR_VI (1ULL << 7)
1685#define HCR_VSE (1ULL << 8)
1686#define HCR_FB (1ULL << 9)
1687#define HCR_BSU_MASK (3ULL << 10)
1688#define HCR_DC (1ULL << 12)
1689#define HCR_TWI (1ULL << 13)
1690#define HCR_TWE (1ULL << 14)
1691#define HCR_TID0 (1ULL << 15)
1692#define HCR_TID1 (1ULL << 16)
1693#define HCR_TID2 (1ULL << 17)
1694#define HCR_TID3 (1ULL << 18)
1695#define HCR_TSC (1ULL << 19)
1696#define HCR_TIDCP (1ULL << 20)
1697#define HCR_TACR (1ULL << 21)
1698#define HCR_TSW (1ULL << 22)
099bf53b 1699#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1700#define HCR_TPU (1ULL << 24)
1701#define HCR_TTLB (1ULL << 25)
1702#define HCR_TVM (1ULL << 26)
1703#define HCR_TGE (1ULL << 27)
1704#define HCR_TDZ (1ULL << 28)
1705#define HCR_HCD (1ULL << 29)
1706#define HCR_TRVM (1ULL << 30)
1707#define HCR_RW (1ULL << 31)
1708#define HCR_CD (1ULL << 32)
1709#define HCR_ID (1ULL << 33)
ac656b16 1710#define HCR_E2H (1ULL << 34)
099bf53b
RH
1711#define HCR_TLOR (1ULL << 35)
1712#define HCR_TERR (1ULL << 36)
1713#define HCR_TEA (1ULL << 37)
1714#define HCR_MIOCNCE (1ULL << 38)
aa3cc42c 1715#define HCR_TME (1ULL << 39)
099bf53b
RH
1716#define HCR_APK (1ULL << 40)
1717#define HCR_API (1ULL << 41)
1718#define HCR_NV (1ULL << 42)
1719#define HCR_NV1 (1ULL << 43)
1720#define HCR_AT (1ULL << 44)
1721#define HCR_NV2 (1ULL << 45)
1722#define HCR_FWB (1ULL << 46)
1723#define HCR_FIEN (1ULL << 47)
aa3cc42c 1724#define HCR_GPF (1ULL << 48)
099bf53b
RH
1725#define HCR_TID4 (1ULL << 49)
1726#define HCR_TICAB (1ULL << 50)
e0a38bb3 1727#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1728#define HCR_TOCU (1ULL << 52)
e0a38bb3 1729#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1730#define HCR_TTLBIS (1ULL << 54)
1731#define HCR_TTLBOS (1ULL << 55)
1732#define HCR_ATA (1ULL << 56)
1733#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1734#define HCR_TID5 (1ULL << 58)
1735#define HCR_TWEDEN (1ULL << 59)
1736#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1737
5814d587
RH
1738#define HCRX_ENAS0 (1ULL << 0)
1739#define HCRX_ENALS (1ULL << 1)
1740#define HCRX_ENASR (1ULL << 2)
1741#define HCRX_FNXS (1ULL << 3)
1742#define HCRX_FGTNXS (1ULL << 4)
1743#define HCRX_SMPME (1ULL << 5)
1744#define HCRX_TALLINT (1ULL << 6)
1745#define HCRX_VINMI (1ULL << 7)
1746#define HCRX_VFNMI (1ULL << 8)
1747#define HCRX_CMOW (1ULL << 9)
1748#define HCRX_MCE2 (1ULL << 10)
1749#define HCRX_MSCEN (1ULL << 11)
1750
9861248f
RDC
1751#define HPFAR_NS (1ULL << 63)
1752
06f2adcc
JF
1753#define SCR_NS (1ULL << 0)
1754#define SCR_IRQ (1ULL << 1)
1755#define SCR_FIQ (1ULL << 2)
1756#define SCR_EA (1ULL << 3)
1757#define SCR_FW (1ULL << 4)
1758#define SCR_AW (1ULL << 5)
1759#define SCR_NET (1ULL << 6)
1760#define SCR_SMD (1ULL << 7)
1761#define SCR_HCE (1ULL << 8)
1762#define SCR_SIF (1ULL << 9)
1763#define SCR_RW (1ULL << 10)
1764#define SCR_ST (1ULL << 11)
1765#define SCR_TWI (1ULL << 12)
1766#define SCR_TWE (1ULL << 13)
1767#define SCR_TLOR (1ULL << 14)
1768#define SCR_TERR (1ULL << 15)
1769#define SCR_APK (1ULL << 16)
1770#define SCR_API (1ULL << 17)
1771#define SCR_EEL2 (1ULL << 18)
1772#define SCR_EASE (1ULL << 19)
1773#define SCR_NMEA (1ULL << 20)
1774#define SCR_FIEN (1ULL << 21)
1775#define SCR_ENSCXT (1ULL << 25)
1776#define SCR_ATA (1ULL << 26)
1777#define SCR_FGTEN (1ULL << 27)
1778#define SCR_ECVEN (1ULL << 28)
1779#define SCR_TWEDEN (1ULL << 29)
f527d661
RH
1780#define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1781#define SCR_TME (1ULL << 34)
1782#define SCR_AMVOFFEN (1ULL << 35)
1783#define SCR_ENAS0 (1ULL << 36)
1784#define SCR_ADEN (1ULL << 37)
1785#define SCR_HXEN (1ULL << 38)
1786#define SCR_TRNDR (1ULL << 40)
1787#define SCR_ENTP2 (1ULL << 41)
1788#define SCR_GPF (1ULL << 48)
aa3cc42c 1789#define SCR_NSE (1ULL << 62)
64e0e2de 1790
cc7613bf 1791#define HSTR_TTEE (1 << 16)
8e228c9e 1792#define HSTR_TJDBX (1 << 17)
cc7613bf 1793
f6fc36de
JPB
1794#define CNTHCTL_CNTVMASK (1 << 18)
1795#define CNTHCTL_CNTPMASK (1 << 19)
1796
01653295
PM
1797/* Return the current FPSCR value. */
1798uint32_t vfp_get_fpscr(CPUARMState *env);
1799void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1800
d81ce0ef
AB
1801/* FPCR, Floating Point Control Register
1802 * FPSR, Floating Poiht Status Register
1803 *
1804 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1805 * FPCR and FPSR. However since they still use non-overlapping bits
1806 * we store the underlying state in fpscr and just mask on read/write.
1807 */
1808#define FPSR_MASK 0xf800009f
0b62159b 1809#define FPCR_MASK 0x07ff9f00
d81ce0ef 1810
a15945d9
PM
1811#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1812#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1813#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1814#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1815#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1816#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1817#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1818#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1819#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1820#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1821#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1822#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1823#define FPCR_V (1 << 28) /* FP overflow flag */
1824#define FPCR_C (1 << 29) /* FP carry flag */
1825#define FPCR_Z (1 << 30) /* FP zero flag */
1826#define FPCR_N (1 << 31) /* FP negative flag */
1827
99c7834f
PM
1828#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1829#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1830#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1831
9542c30b
PM
1832#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1833#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1834
f903fa22
PM
1835static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1836{
1837 return vfp_get_fpscr(env) & FPSR_MASK;
1838}
1839
1840static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1841{
1842 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1843 vfp_set_fpscr(env, new_fpscr);
1844}
1845
1846static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1847{
1848 return vfp_get_fpscr(env) & FPCR_MASK;
1849}
1850
1851static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1852{
1853 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1854 vfp_set_fpscr(env, new_fpscr);
1855}
1856
b5ff1b31
FB
1857enum arm_cpu_mode {
1858 ARM_CPU_MODE_USR = 0x10,
1859 ARM_CPU_MODE_FIQ = 0x11,
1860 ARM_CPU_MODE_IRQ = 0x12,
1861 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1862 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1863 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1864 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1865 ARM_CPU_MODE_UND = 0x1b,
1866 ARM_CPU_MODE_SYS = 0x1f
1867};
1868
40f137e1
PB
1869/* VFP system registers. */
1870#define ARM_VFP_FPSID 0
1871#define ARM_VFP_FPSCR 1
a50c0f51 1872#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1873#define ARM_VFP_MVFR1 6
1874#define ARM_VFP_MVFR0 7
40f137e1
PB
1875#define ARM_VFP_FPEXC 8
1876#define ARM_VFP_FPINST 9
1877#define ARM_VFP_FPINST2 10
9542c30b
PM
1878/* These ones are M-profile only */
1879#define ARM_VFP_FPSCR_NZCVQC 2
1880#define ARM_VFP_VPR 12
1881#define ARM_VFP_P0 13
1882#define ARM_VFP_FPCXT_NS 14
1883#define ARM_VFP_FPCXT_S 15
40f137e1 1884
32a290b8
PM
1885/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1886#define QEMU_VFP_FPSCR_NZCV 0xffff
1887
18c9b560 1888/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1889#define ARM_IWMMXT_wCID 0
1890#define ARM_IWMMXT_wCon 1
1891#define ARM_IWMMXT_wCSSF 2
1892#define ARM_IWMMXT_wCASF 3
1893#define ARM_IWMMXT_wCGR0 8
1894#define ARM_IWMMXT_wCGR1 9
1895#define ARM_IWMMXT_wCGR2 10
1896#define ARM_IWMMXT_wCGR3 11
18c9b560 1897
2c4da50d
PM
1898/* V7M CCR bits */
1899FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1900FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1901FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1902FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1903FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1904FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1905FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1906FIELD(V7M_CCR, DC, 16, 1)
1907FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1908FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1909FIELD(V7M_CCR, LOB, 19, 1)
1910FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1911
24ac0fb1
PM
1912/* V7M SCR bits */
1913FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1914FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1915FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1916FIELD(V7M_SCR, SEVONPEND, 4, 1)
1917
3b2e9344
PM
1918/* V7M AIRCR bits */
1919FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1920FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1921FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1922FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1923FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1924FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1925FIELD(V7M_AIRCR, PRIS, 14, 1)
1926FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1927FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1928
2c4da50d
PM
1929/* V7M CFSR bits for MMFSR */
1930FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1931FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1932FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1933FIELD(V7M_CFSR, MSTKERR, 4, 1)
1934FIELD(V7M_CFSR, MLSPERR, 5, 1)
1935FIELD(V7M_CFSR, MMARVALID, 7, 1)
1936
1937/* V7M CFSR bits for BFSR */
1938FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1939FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1940FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1941FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1942FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1943FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1944FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1945
1946/* V7M CFSR bits for UFSR */
1947FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1948FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1949FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1950FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1951FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1952FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1953FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1954
334e8dad
PM
1955/* V7M CFSR bit masks covering all of the subregister bits */
1956FIELD(V7M_CFSR, MMFSR, 0, 8)
1957FIELD(V7M_CFSR, BFSR, 8, 8)
1958FIELD(V7M_CFSR, UFSR, 16, 16)
1959
2c4da50d
PM
1960/* V7M HFSR bits */
1961FIELD(V7M_HFSR, VECTTBL, 1, 1)
1962FIELD(V7M_HFSR, FORCED, 30, 1)
1963FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1964
1965/* V7M DFSR bits */
1966FIELD(V7M_DFSR, HALTED, 0, 1)
1967FIELD(V7M_DFSR, BKPT, 1, 1)
1968FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1969FIELD(V7M_DFSR, VCATCH, 3, 1)
1970FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1971
bed079da
PM
1972/* V7M SFSR bits */
1973FIELD(V7M_SFSR, INVEP, 0, 1)
1974FIELD(V7M_SFSR, INVIS, 1, 1)
1975FIELD(V7M_SFSR, INVER, 2, 1)
1976FIELD(V7M_SFSR, AUVIOL, 3, 1)
1977FIELD(V7M_SFSR, INVTRAN, 4, 1)
1978FIELD(V7M_SFSR, LSPERR, 5, 1)
1979FIELD(V7M_SFSR, SFARVALID, 6, 1)
1980FIELD(V7M_SFSR, LSERR, 7, 1)
1981
29c483a5
MD
1982/* v7M MPU_CTRL bits */
1983FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1984FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1985FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1986
43bbce7f
PM
1987/* v7M CLIDR bits */
1988FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1989FIELD(V7M_CLIDR, LOUIS, 21, 3)
1990FIELD(V7M_CLIDR, LOC, 24, 3)
1991FIELD(V7M_CLIDR, LOUU, 27, 3)
1992FIELD(V7M_CLIDR, ICB, 30, 2)
1993
1994FIELD(V7M_CSSELR, IND, 0, 1)
1995FIELD(V7M_CSSELR, LEVEL, 1, 3)
1996/* We use the combination of InD and Level to index into cpu->ccsidr[];
1997 * define a mask for this and check that it doesn't permit running off
1998 * the end of the array.
1999 */
2000FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
2001
2002/* v7M FPCCR bits */
2003FIELD(V7M_FPCCR, LSPACT, 0, 1)
2004FIELD(V7M_FPCCR, USER, 1, 1)
2005FIELD(V7M_FPCCR, S, 2, 1)
2006FIELD(V7M_FPCCR, THREAD, 3, 1)
2007FIELD(V7M_FPCCR, HFRDY, 4, 1)
2008FIELD(V7M_FPCCR, MMRDY, 5, 1)
2009FIELD(V7M_FPCCR, BFRDY, 6, 1)
2010FIELD(V7M_FPCCR, SFRDY, 7, 1)
2011FIELD(V7M_FPCCR, MONRDY, 8, 1)
2012FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
2013FIELD(V7M_FPCCR, UFRDY, 10, 1)
2014FIELD(V7M_FPCCR, RES0, 11, 15)
2015FIELD(V7M_FPCCR, TS, 26, 1)
2016FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
2017FIELD(V7M_FPCCR, CLRONRET, 28, 1)
2018FIELD(V7M_FPCCR, LSPENS, 29, 1)
2019FIELD(V7M_FPCCR, LSPEN, 30, 1)
2020FIELD(V7M_FPCCR, ASPEN, 31, 1)
2021/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
2022#define R_V7M_FPCCR_BANKED_MASK \
2023 (R_V7M_FPCCR_LSPACT_MASK | \
2024 R_V7M_FPCCR_USER_MASK | \
2025 R_V7M_FPCCR_THREAD_MASK | \
2026 R_V7M_FPCCR_MMRDY_MASK | \
2027 R_V7M_FPCCR_SPLIMVIOL_MASK | \
2028 R_V7M_FPCCR_UFRDY_MASK | \
2029 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 2030
7c3d47da
PM
2031/* v7M VPR bits */
2032FIELD(V7M_VPR, P0, 0, 16)
2033FIELD(V7M_VPR, MASK01, 16, 4)
2034FIELD(V7M_VPR, MASK23, 20, 4)
2035
a62e62af
RH
2036/*
2037 * System register ID fields.
2038 */
2a14526a
LL
2039FIELD(CLIDR_EL1, CTYPE1, 0, 3)
2040FIELD(CLIDR_EL1, CTYPE2, 3, 3)
2041FIELD(CLIDR_EL1, CTYPE3, 6, 3)
2042FIELD(CLIDR_EL1, CTYPE4, 9, 3)
2043FIELD(CLIDR_EL1, CTYPE5, 12, 3)
2044FIELD(CLIDR_EL1, CTYPE6, 15, 3)
2045FIELD(CLIDR_EL1, CTYPE7, 18, 3)
2046FIELD(CLIDR_EL1, LOUIS, 21, 3)
2047FIELD(CLIDR_EL1, LOC, 24, 3)
2048FIELD(CLIDR_EL1, LOUU, 27, 3)
2049FIELD(CLIDR_EL1, ICB, 30, 3)
2050
2051/* When FEAT_CCIDX is implemented */
2052FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2053FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2054FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2055
2056/* When FEAT_CCIDX is not implemented */
2057FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2058FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2059FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2060
2061FIELD(CTR_EL0, IMINLINE, 0, 4)
2062FIELD(CTR_EL0, L1IP, 14, 2)
2063FIELD(CTR_EL0, DMINLINE, 16, 4)
2064FIELD(CTR_EL0, ERG, 20, 4)
2065FIELD(CTR_EL0, CWG, 24, 4)
2066FIELD(CTR_EL0, IDC, 28, 1)
2067FIELD(CTR_EL0, DIC, 29, 1)
2068FIELD(CTR_EL0, TMINLINE, 32, 6)
2069
2bd5f41c
AB
2070FIELD(MIDR_EL1, REVISION, 0, 4)
2071FIELD(MIDR_EL1, PARTNUM, 4, 12)
2072FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2073FIELD(MIDR_EL1, VARIANT, 20, 4)
2074FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2075
a62e62af
RH
2076FIELD(ID_ISAR0, SWAP, 0, 4)
2077FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2078FIELD(ID_ISAR0, BITFIELD, 8, 4)
2079FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2080FIELD(ID_ISAR0, COPROC, 16, 4)
2081FIELD(ID_ISAR0, DEBUG, 20, 4)
2082FIELD(ID_ISAR0, DIVIDE, 24, 4)
2083
2084FIELD(ID_ISAR1, ENDIAN, 0, 4)
2085FIELD(ID_ISAR1, EXCEPT, 4, 4)
2086FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2087FIELD(ID_ISAR1, EXTEND, 12, 4)
2088FIELD(ID_ISAR1, IFTHEN, 16, 4)
2089FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2090FIELD(ID_ISAR1, INTERWORK, 24, 4)
2091FIELD(ID_ISAR1, JAZELLE, 28, 4)
2092
2093FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2094FIELD(ID_ISAR2, MEMHINT, 4, 4)
2095FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2096FIELD(ID_ISAR2, MULT, 12, 4)
2097FIELD(ID_ISAR2, MULTS, 16, 4)
2098FIELD(ID_ISAR2, MULTU, 20, 4)
2099FIELD(ID_ISAR2, PSR_AR, 24, 4)
2100FIELD(ID_ISAR2, REVERSAL, 28, 4)
2101
2102FIELD(ID_ISAR3, SATURATE, 0, 4)
2103FIELD(ID_ISAR3, SIMD, 4, 4)
2104FIELD(ID_ISAR3, SVC, 8, 4)
2105FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2106FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2107FIELD(ID_ISAR3, T32COPY, 20, 4)
2108FIELD(ID_ISAR3, TRUENOP, 24, 4)
2109FIELD(ID_ISAR3, T32EE, 28, 4)
2110
2111FIELD(ID_ISAR4, UNPRIV, 0, 4)
2112FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2113FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2114FIELD(ID_ISAR4, SMC, 12, 4)
2115FIELD(ID_ISAR4, BARRIER, 16, 4)
2116FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2117FIELD(ID_ISAR4, PSR_M, 24, 4)
2118FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2119
2120FIELD(ID_ISAR5, SEVL, 0, 4)
2121FIELD(ID_ISAR5, AES, 4, 4)
2122FIELD(ID_ISAR5, SHA1, 8, 4)
2123FIELD(ID_ISAR5, SHA2, 12, 4)
2124FIELD(ID_ISAR5, CRC32, 16, 4)
2125FIELD(ID_ISAR5, RDM, 24, 4)
2126FIELD(ID_ISAR5, VCMA, 28, 4)
2127
2128FIELD(ID_ISAR6, JSCVT, 0, 4)
2129FIELD(ID_ISAR6, DP, 4, 4)
2130FIELD(ID_ISAR6, FHM, 8, 4)
2131FIELD(ID_ISAR6, SB, 12, 4)
2132FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
2133FIELD(ID_ISAR6, BF16, 20, 4)
2134FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 2135
0ae0326b
PM
2136FIELD(ID_MMFR0, VMSA, 0, 4)
2137FIELD(ID_MMFR0, PMSA, 4, 4)
2138FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2139FIELD(ID_MMFR0, SHARELVL, 12, 4)
2140FIELD(ID_MMFR0, TCM, 16, 4)
2141FIELD(ID_MMFR0, AUXREG, 20, 4)
2142FIELD(ID_MMFR0, FCSE, 24, 4)
2143FIELD(ID_MMFR0, INNERSHR, 28, 4)
2144
bd78b6be
LL
2145FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2146FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2147FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2148FIELD(ID_MMFR1, L1UNISW, 12, 4)
2149FIELD(ID_MMFR1, L1HVD, 16, 4)
2150FIELD(ID_MMFR1, L1UNI, 20, 4)
2151FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2152FIELD(ID_MMFR1, BPRED, 28, 4)
2153
2154FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2155FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2156FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2157FIELD(ID_MMFR2, HVDTLB, 12, 4)
2158FIELD(ID_MMFR2, UNITLB, 16, 4)
2159FIELD(ID_MMFR2, MEMBARR, 20, 4)
2160FIELD(ID_MMFR2, WFISTALL, 24, 4)
2161FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2162
3d6ad6bb
RH
2163FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2164FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2165FIELD(ID_MMFR3, BPMAINT, 8, 4)
2166FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2167FIELD(ID_MMFR3, PAN, 16, 4)
2168FIELD(ID_MMFR3, COHWALK, 20, 4)
2169FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2170FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2171
ab638a32
RH
2172FIELD(ID_MMFR4, SPECSEI, 0, 4)
2173FIELD(ID_MMFR4, AC2, 4, 4)
2174FIELD(ID_MMFR4, XNX, 8, 4)
2175FIELD(ID_MMFR4, CNP, 12, 4)
2176FIELD(ID_MMFR4, HPDS, 16, 4)
2177FIELD(ID_MMFR4, LSM, 20, 4)
2178FIELD(ID_MMFR4, CCIDX, 24, 4)
2179FIELD(ID_MMFR4, EVT, 28, 4)
2180
bd78b6be 2181FIELD(ID_MMFR5, ETS, 0, 4)
c42fb26b 2182FIELD(ID_MMFR5, NTLBPA, 4, 4)
bd78b6be 2183
46f4976f
PM
2184FIELD(ID_PFR0, STATE0, 0, 4)
2185FIELD(ID_PFR0, STATE1, 4, 4)
2186FIELD(ID_PFR0, STATE2, 8, 4)
2187FIELD(ID_PFR0, STATE3, 12, 4)
2188FIELD(ID_PFR0, CSV2, 16, 4)
2189FIELD(ID_PFR0, AMU, 20, 4)
2190FIELD(ID_PFR0, DIT, 24, 4)
2191FIELD(ID_PFR0, RAS, 28, 4)
2192
dfc523a8
PM
2193FIELD(ID_PFR1, PROGMOD, 0, 4)
2194FIELD(ID_PFR1, SECURITY, 4, 4)
2195FIELD(ID_PFR1, MPROGMOD, 8, 4)
2196FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2197FIELD(ID_PFR1, GENTIMER, 16, 4)
2198FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2199FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2200FIELD(ID_PFR1, GIC, 28, 4)
2201
bd78b6be
LL
2202FIELD(ID_PFR2, CSV3, 0, 4)
2203FIELD(ID_PFR2, SSBS, 4, 4)
2204FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2205
a62e62af
RH
2206FIELD(ID_AA64ISAR0, AES, 4, 4)
2207FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2208FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2209FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2210FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
4d9eb296 2211FIELD(ID_AA64ISAR0, TME, 24, 4)
a62e62af
RH
2212FIELD(ID_AA64ISAR0, RDM, 28, 4)
2213FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2214FIELD(ID_AA64ISAR0, SM3, 36, 4)
2215FIELD(ID_AA64ISAR0, SM4, 40, 4)
2216FIELD(ID_AA64ISAR0, DP, 44, 4)
2217FIELD(ID_AA64ISAR0, FHM, 48, 4)
2218FIELD(ID_AA64ISAR0, TS, 52, 4)
2219FIELD(ID_AA64ISAR0, TLB, 56, 4)
2220FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2221
2222FIELD(ID_AA64ISAR1, DPB, 0, 4)
2223FIELD(ID_AA64ISAR1, APA, 4, 4)
2224FIELD(ID_AA64ISAR1, API, 8, 4)
2225FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2226FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2227FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2228FIELD(ID_AA64ISAR1, GPA, 24, 4)
2229FIELD(ID_AA64ISAR1, GPI, 28, 4)
2230FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2231FIELD(ID_AA64ISAR1, SB, 36, 4)
2232FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
2233FIELD(ID_AA64ISAR1, BF16, 44, 4)
2234FIELD(ID_AA64ISAR1, DGH, 48, 4)
2235FIELD(ID_AA64ISAR1, I8MM, 52, 4)
c42fb26b
RH
2236FIELD(ID_AA64ISAR1, XS, 56, 4)
2237FIELD(ID_AA64ISAR1, LS64, 60, 4)
2238
2239FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2240FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2241FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2242FIELD(ID_AA64ISAR2, APA3, 12, 4)
2243FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2244FIELD(ID_AA64ISAR2, BC, 20, 4)
2245FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
4d9eb296
PM
2246FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2247FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2248FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2249FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2250FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2251FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2252FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
a62e62af 2253
cd208a1c
RH
2254FIELD(ID_AA64PFR0, EL0, 0, 4)
2255FIELD(ID_AA64PFR0, EL1, 4, 4)
2256FIELD(ID_AA64PFR0, EL2, 8, 4)
2257FIELD(ID_AA64PFR0, EL3, 12, 4)
2258FIELD(ID_AA64PFR0, FP, 16, 4)
2259FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2260FIELD(ID_AA64PFR0, GIC, 24, 4)
2261FIELD(ID_AA64PFR0, RAS, 28, 4)
2262FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
2263FIELD(ID_AA64PFR0, SEL2, 36, 4)
2264FIELD(ID_AA64PFR0, MPAM, 40, 4)
2265FIELD(ID_AA64PFR0, AMU, 44, 4)
2266FIELD(ID_AA64PFR0, DIT, 48, 4)
b9f335c2 2267FIELD(ID_AA64PFR0, RME, 52, 4)
00a92832
LL
2268FIELD(ID_AA64PFR0, CSV2, 56, 4)
2269FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2270
be53b6f4 2271FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2272FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2273FIELD(ID_AA64PFR1, MTE, 8, 4)
2274FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2275FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
c42fb26b
RH
2276FIELD(ID_AA64PFR1, SME, 24, 4)
2277FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2278FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2279FIELD(ID_AA64PFR1, NMI, 36, 4)
4d9eb296
PM
2280FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2281FIELD(ID_AA64PFR1, GCS, 44, 4)
2282FIELD(ID_AA64PFR1, THE, 48, 4)
2283FIELD(ID_AA64PFR1, MTEX, 52, 4)
2284FIELD(ID_AA64PFR1, DF2, 56, 4)
2285FIELD(ID_AA64PFR1, PFAR, 60, 4)
be53b6f4 2286
3dc91ddb
PM
2287FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2288FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2289FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2290FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2291FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2292FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2293FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2294FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2295FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2296FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2297FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2298FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2299FIELD(ID_AA64MMFR0, FGT, 56, 4)
2300FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2301
2302FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2303FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2304FIELD(ID_AA64MMFR1, VH, 8, 4)
2305FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2306FIELD(ID_AA64MMFR1, LO, 16, 4)
2307FIELD(ID_AA64MMFR1, PAN, 20, 4)
2308FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2309FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2310FIELD(ID_AA64MMFR1, TWED, 32, 4)
2311FIELD(ID_AA64MMFR1, ETS, 36, 4)
c42fb26b
RH
2312FIELD(ID_AA64MMFR1, HCX, 40, 4)
2313FIELD(ID_AA64MMFR1, AFP, 44, 4)
2314FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2315FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2316FIELD(ID_AA64MMFR1, CMOW, 56, 4)
4d9eb296 2317FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
3dc91ddb 2318
64761e10
RH
2319FIELD(ID_AA64MMFR2, CNP, 0, 4)
2320FIELD(ID_AA64MMFR2, UAO, 4, 4)
2321FIELD(ID_AA64MMFR2, LSM, 8, 4)
2322FIELD(ID_AA64MMFR2, IESB, 12, 4)
2323FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2324FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2325FIELD(ID_AA64MMFR2, NV, 24, 4)
2326FIELD(ID_AA64MMFR2, ST, 28, 4)
2327FIELD(ID_AA64MMFR2, AT, 32, 4)
2328FIELD(ID_AA64MMFR2, IDS, 36, 4)
2329FIELD(ID_AA64MMFR2, FWB, 40, 4)
2330FIELD(ID_AA64MMFR2, TTL, 48, 4)
2331FIELD(ID_AA64MMFR2, BBM, 52, 4)
2332FIELD(ID_AA64MMFR2, EVT, 56, 4)
2333FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2334
ceb2744b
PM
2335FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2336FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2337FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2338FIELD(ID_AA64DFR0, BRPS, 12, 4)
4d9eb296 2339FIELD(ID_AA64DFR0, PMSS, 16, 4)
ceb2744b 2340FIELD(ID_AA64DFR0, WRPS, 20, 4)
4d9eb296 2341FIELD(ID_AA64DFR0, SEBEP, 24, 4)
ceb2744b
PM
2342FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2343FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2344FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2345FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
c42fb26b 2346FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
00a92832 2347FIELD(ID_AA64DFR0, MTPMU, 48, 4)
c42fb26b 2348FIELD(ID_AA64DFR0, BRBE, 52, 4)
4d9eb296 2349FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
c42fb26b 2350FIELD(ID_AA64DFR0, HPMN0, 60, 4)
ceb2744b 2351
2dc10fa2
RH
2352FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2353FIELD(ID_AA64ZFR0, AES, 4, 4)
2354FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2355FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
4d9eb296 2356FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2dc10fa2
RH
2357FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2358FIELD(ID_AA64ZFR0, SM4, 40, 4)
2359FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2360FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2361FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2362
414c54d5 2363FIELD(ID_AA64SMFR0, F32F32, 32, 1)
4d9eb296 2364FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
414c54d5
RH
2365FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2366FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2367FIELD(ID_AA64SMFR0, I8I32, 36, 4)
4d9eb296
PM
2368FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2369FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2370FIELD(ID_AA64SMFR0, I16I32, 44, 4)
414c54d5
RH
2371FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2372FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2373FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2374FIELD(ID_AA64SMFR0, FA64, 63, 1)
2375
beceb99c
AL
2376FIELD(ID_DFR0, COPDBG, 0, 4)
2377FIELD(ID_DFR0, COPSDBG, 4, 4)
2378FIELD(ID_DFR0, MMAPDBG, 8, 4)
2379FIELD(ID_DFR0, COPTRC, 12, 4)
2380FIELD(ID_DFR0, MMAPTRC, 16, 4)
2381FIELD(ID_DFR0, MPROFDBG, 20, 4)
2382FIELD(ID_DFR0, PERFMON, 24, 4)
2383FIELD(ID_DFR0, TRACEFILT, 28, 4)
2384
bd78b6be 2385FIELD(ID_DFR1, MTPMU, 0, 4)
c42fb26b 2386FIELD(ID_DFR1, HPMN0, 4, 4)
bd78b6be 2387
88ce6c6e
PM
2388FIELD(DBGDIDR, SE_IMP, 12, 1)
2389FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2390FIELD(DBGDIDR, VERSION, 16, 4)
2391FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2392FIELD(DBGDIDR, BRPS, 24, 4)
2393FIELD(DBGDIDR, WRPS, 28, 4)
2394
f94a6df5
PM
2395FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2396FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2397FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2398FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2399FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2400FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2401FIELD(DBGDEVID, AUXREGS, 24, 4)
2402FIELD(DBGDEVID, CIDMASK, 28, 4)
2403
602f6e42
PM
2404FIELD(MVFR0, SIMDREG, 0, 4)
2405FIELD(MVFR0, FPSP, 4, 4)
2406FIELD(MVFR0, FPDP, 8, 4)
2407FIELD(MVFR0, FPTRAP, 12, 4)
2408FIELD(MVFR0, FPDIVIDE, 16, 4)
2409FIELD(MVFR0, FPSQRT, 20, 4)
2410FIELD(MVFR0, FPSHVEC, 24, 4)
2411FIELD(MVFR0, FPROUND, 28, 4)
2412
2413FIELD(MVFR1, FPFTZ, 0, 4)
2414FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2415FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2416FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2417FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2418FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2419FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2420FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2421FIELD(MVFR1, FPHP, 24, 4)
2422FIELD(MVFR1, SIMDFMAC, 28, 4)
2423
2424FIELD(MVFR2, SIMDMISC, 0, 4)
2425FIELD(MVFR2, FPMISC, 4, 4)
2426
ef1febe7
RH
2427FIELD(GPCCR, PPS, 0, 3)
2428FIELD(GPCCR, IRGN, 8, 2)
2429FIELD(GPCCR, ORGN, 10, 2)
2430FIELD(GPCCR, SH, 12, 2)
2431FIELD(GPCCR, PGS, 14, 2)
2432FIELD(GPCCR, GPC, 16, 1)
2433FIELD(GPCCR, GPCP, 17, 1)
2434FIELD(GPCCR, L0GPTSZ, 20, 4)
2435
2436FIELD(MFAR, FPA, 12, 40)
2437FIELD(MFAR, NSE, 62, 1)
2438FIELD(MFAR, NS, 63, 1)
2439
43bbce7f
PM
2440QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2441
ce854d7c
BC
2442/* If adding a feature bit which corresponds to a Linux ELF
2443 * HWCAP bit, remember to update the feature-bit-to-hwcap
2444 * mapping in linux-user/elfload.c:get_elf_hwcap().
2445 */
40f137e1 2446enum arm_features {
c1713132
AZ
2447 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2448 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2449 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2450 ARM_FEATURE_V6,
2451 ARM_FEATURE_V6K,
2452 ARM_FEATURE_V7,
2453 ARM_FEATURE_THUMB2,
452a0955 2454 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2455 ARM_FEATURE_NEON,
9ee6e8bb 2456 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2457 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2458 ARM_FEATURE_THUMB2EE,
be5e7a76 2459 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2460 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2461 ARM_FEATURE_V4T,
2462 ARM_FEATURE_V5,
5bc95aa2 2463 ARM_FEATURE_STRONGARM,
906879a9 2464 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2465 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2466 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2467 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2468 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2469 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2470 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2471 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2472 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2473 ARM_FEATURE_V8,
3926cc84 2474 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2475 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2476 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2477 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2478 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2479 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2480 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2481 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2482 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2483 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2484 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2485};
2486
2487static inline int arm_feature(CPUARMState *env, int feature)
2488{
918f5dca 2489 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2490}
2491
0df9142d
AJ
2492void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2493
fcc7404e 2494/*
5d28ac0c
RH
2495 * ARM v9 security states.
2496 * The ordering of the enumeration corresponds to the low 2 bits
2497 * of the GPI value, and (except for Root) the concat of NSE:NS.
2498 */
2499
2500typedef enum ARMSecuritySpace {
2501 ARMSS_Secure = 0,
2502 ARMSS_NonSecure = 1,
2503 ARMSS_Root = 2,
2504 ARMSS_Realm = 3,
2505} ARMSecuritySpace;
2506
2507/* Return true if @space is secure, in the pre-v9 sense. */
2508static inline bool arm_space_is_secure(ARMSecuritySpace space)
2509{
2510 return space == ARMSS_Secure || space == ARMSS_Root;
2511}
2512
2513/* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2514static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2515{
2516 return secure ? ARMSS_Secure : ARMSS_NonSecure;
2517}
2518
2519#if !defined(CONFIG_USER_ONLY)
2520/**
2521 * arm_security_space_below_el3:
2522 * @env: cpu context
2523 *
2524 * Return the security space of exception levels below EL3, following
2525 * an exception return to those levels. Unlike arm_security_space,
2526 * this doesn't care about the current EL.
2527 */
2528ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2529
2530/**
2531 * arm_is_secure_below_el3:
2532 * @env: cpu context
2533 *
fcc7404e 2534 * Return true if exception levels below EL3 are in secure state,
5d28ac0c 2535 * or would be following an exception return to those levels.
19e0fefa
FA
2536 */
2537static inline bool arm_is_secure_below_el3(CPUARMState *env)
2538{
5d28ac0c
RH
2539 ARMSecuritySpace ss = arm_security_space_below_el3(env);
2540 return ss == ARMSS_Secure;
19e0fefa
FA
2541}
2542
71205876
PM
2543/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2544static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa 2545{
fcc7404e 2546 assert(!arm_feature(env, ARM_FEATURE_M));
19e0fefa
FA
2547 if (arm_feature(env, ARM_FEATURE_EL3)) {
2548 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2549 /* CPU currently in AArch64 state and EL3 */
2550 return true;
2551 } else if (!is_a64(env) &&
2552 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2553 /* CPU currently in AArch32 state and monitor mode */
2554 return true;
2555 }
2556 }
71205876
PM
2557 return false;
2558}
2559
5d28ac0c
RH
2560/**
2561 * arm_security_space:
2562 * @env: cpu context
2563 *
2564 * Return the current security space of the cpu.
2565 */
2566ARMSecuritySpace arm_security_space(CPUARMState *env);
2567
2568/**
2569 * arm_is_secure:
2570 * @env: cpu context
2571 *
2572 * Return true if the processor is in secure state.
2573 */
71205876
PM
2574static inline bool arm_is_secure(CPUARMState *env)
2575{
5d28ac0c 2576 return arm_space_is_secure(arm_security_space(env));
19e0fefa
FA
2577}
2578
f3ee5160
RDC
2579/*
2580 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
4477020d 2581 * This corresponds to the pseudocode EL2Enabled().
f3ee5160 2582 */
4477020d
PM
2583static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2584 ARMSecuritySpace space)
b74c0443 2585{
4477020d 2586 assert(space != ARMSS_Root);
b74c0443 2587 return arm_feature(env, ARM_FEATURE_EL2)
4477020d 2588 && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
b74c0443
RH
2589}
2590
f3ee5160
RDC
2591static inline bool arm_is_el2_enabled(CPUARMState *env)
2592{
4477020d 2593 return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
f3ee5160
RDC
2594}
2595
19e0fefa 2596#else
5d28ac0c
RH
2597static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2598{
2599 return ARMSS_NonSecure;
2600}
2601
19e0fefa
FA
2602static inline bool arm_is_secure_below_el3(CPUARMState *env)
2603{
2604 return false;
2605}
2606
5d28ac0c
RH
2607static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2608{
2609 return ARMSS_NonSecure;
2610}
2611
19e0fefa
FA
2612static inline bool arm_is_secure(CPUARMState *env)
2613{
2614 return false;
2615}
f3ee5160 2616
4477020d
PM
2617static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2618 ARMSecuritySpace space)
b74c0443
RH
2619{
2620 return false;
2621}
2622
f3ee5160
RDC
2623static inline bool arm_is_el2_enabled(CPUARMState *env)
2624{
2625 return false;
2626}
19e0fefa
FA
2627#endif
2628
f7778444
RH
2629/**
2630 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2631 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2632 * "for all purposes other than a direct read or write access of HCR_EL2."
2633 * Not included here is HCR_RW.
2634 */
2d12bb96 2635uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
f7778444 2636uint64_t arm_hcr_el2_eff(CPUARMState *env);
5814d587 2637uint64_t arm_hcrx_el2_eff(CPUARMState *env);
f7778444 2638
1f79ee32
PM
2639/* Return true if the specified exception level is running in AArch64 state. */
2640static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2641{
446c81ab
PM
2642 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2643 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2644 */
446c81ab
PM
2645 assert(el >= 1 && el <= 3);
2646 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2647
446c81ab
PM
2648 /* The highest exception level is always at the maximum supported
2649 * register width, and then lower levels have a register width controlled
2650 * by bits in the SCR or HCR registers.
1f79ee32 2651 */
446c81ab
PM
2652 if (el == 3) {
2653 return aa64;
2654 }
2655
926c1b97
RDC
2656 if (arm_feature(env, ARM_FEATURE_EL3) &&
2657 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2658 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2659 }
2660
2661 if (el == 2) {
2662 return aa64;
2663 }
2664
e6ef0169 2665 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2666 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2667 }
2668
2669 return aa64;
1f79ee32
PM
2670}
2671
673d8215 2672/* Function for determining whether guest cp register reads and writes should
3f342b9e
SF
2673 * access the secure or non-secure bank of a cp register. When EL3 is
2674 * operating in AArch32 state, the NS-bit determines whether the secure
2675 * instance of a cp register should be used. When EL3 is AArch64 (or if
2676 * it doesn't exist at all) then there is no register banking, and all
2677 * accesses are to the non-secure version.
2678 */
2679static inline bool access_secure_reg(CPUARMState *env)
2680{
2681 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2682 !arm_el_is_aa64(env, 3) &&
2683 !(env->cp15.scr_el3 & SCR_NS));
2684
2685 return ret;
2686}
2687
ea30a4b8
FA
2688/* Macros for accessing a specified CP register bank */
2689#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2690 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2691
2692#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2693 do { \
2694 if (_secure) { \
2695 (_env)->cp15._regname##_s = (_val); \
2696 } else { \
2697 (_env)->cp15._regname##_ns = (_val); \
2698 } \
2699 } while (0)
2700
2701/* Macros for automatically accessing a specific CP register bank depending on
2702 * the current secure state of the system. These macros are not intended for
2703 * supporting instruction translation reads/writes as these are dependent
2704 * solely on the SCR.NS bit and not the mode.
2705 */
2706#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2707 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2708 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2709
2710#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2711 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2712 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2713 (_val))
2714
0442428a 2715void arm_cpu_list(void);
012a906b
GB
2716uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2717 uint32_t cur_el, bool secure);
40f137e1 2718
75502672
PM
2719/* Return the highest implemented Exception Level */
2720static inline int arm_highest_el(CPUARMState *env)
2721{
2722 if (arm_feature(env, ARM_FEATURE_EL3)) {
2723 return 3;
2724 }
2725 if (arm_feature(env, ARM_FEATURE_EL2)) {
2726 return 2;
2727 }
2728 return 1;
2729}
2730
15b3f556
PM
2731/* Return true if a v7M CPU is in Handler mode */
2732static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2733{
2734 return env->v7m.exception != 0;
2735}
2736
dcbff19b
GB
2737/* Return the current Exception Level (as per ARMv8; note that this differs
2738 * from the ARMv7 Privilege Level).
2739 */
2740static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2741{
6d54ed3c 2742 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2743 return arm_v7m_is_handler_mode(env) ||
2744 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2745 }
2746
592125f8 2747 if (is_a64(env)) {
f5a0a5a5
PM
2748 return extract32(env->pstate, 2, 2);
2749 }
2750
592125f8
FA
2751 switch (env->uncached_cpsr & 0x1f) {
2752 case ARM_CPU_MODE_USR:
4b6a83fb 2753 return 0;
592125f8
FA
2754 case ARM_CPU_MODE_HYP:
2755 return 2;
2756 case ARM_CPU_MODE_MON:
2757 return 3;
2758 default:
2759 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2760 /* If EL3 is 32-bit then all secure privileged modes run in
2761 * EL3
2762 */
2763 return 3;
2764 }
2765
2766 return 1;
4b6a83fb 2767 }
4b6a83fb
PM
2768}
2769
721fae12
PM
2770/**
2771 * write_list_to_cpustate
2772 * @cpu: ARMCPU
2773 *
2774 * For each register listed in the ARMCPU cpreg_indexes list, write
2775 * its value from the cpreg_values list into the ARMCPUState structure.
2776 * This updates TCG's working data structures from KVM data or
2777 * from incoming migration state.
2778 *
2779 * Returns: true if all register values were updated correctly,
2780 * false if some register was unknown or could not be written.
2781 * Note that we do not stop early on failure -- we will attempt
2782 * writing all registers in the list.
2783 */
2784bool write_list_to_cpustate(ARMCPU *cpu);
2785
2786/**
2787 * write_cpustate_to_list:
2788 * @cpu: ARMCPU
b698e4ee 2789 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2790 *
2791 * For each register listed in the ARMCPU cpreg_indexes list, write
2792 * its value from the ARMCPUState structure into the cpreg_values list.
2793 * This is used to copy info from TCG's working data structures into
2794 * KVM or for outbound migration.
2795 *
b698e4ee
PM
2796 * @kvm_sync is true if we are doing this in order to sync the
2797 * register state back to KVM. In this case we will only update
2798 * values in the list if the previous list->cpustate sync actually
2799 * successfully wrote the CPU state. Otherwise we will keep the value
2800 * that is in the list.
2801 *
721fae12
PM
2802 * Returns: true if all register values were read correctly,
2803 * false if some register was unknown or could not be read.
2804 * Note that we do not stop early on failure -- we will attempt
2805 * reading all registers in the list.
2806 */
b698e4ee 2807bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2808
9ee6e8bb
PB
2809#define ARM_CPUID_TI915T 0x54029152
2810#define ARM_CPUID_TI925T 0x54029252
40f137e1 2811
ba1ba5cc
IM
2812#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2813#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2814#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2815
585df85e
PM
2816#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2817
c732abe2 2818#define cpu_list arm_cpu_list
9467d44c 2819
c1e37810
PM
2820/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2821 *
2822 * If EL3 is 64-bit:
2823 * + NonSecure EL1 & 0 stage 1
2824 * + NonSecure EL1 & 0 stage 2
2825 * + NonSecure EL2
b9f6033c
RH
2826 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2827 * + Secure EL1 & 0
c1e37810
PM
2828 * + Secure EL3
2829 * If EL3 is 32-bit:
2830 * + NonSecure PL1 & 0 stage 1
2831 * + NonSecure PL1 & 0 stage 2
2832 * + NonSecure PL2
b9f6033c
RH
2833 * + Secure PL0
2834 * + Secure PL1
c1e37810
PM
2835 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2836 *
2837 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2838 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2839 * because they may differ in access permissions even if the VA->PA map is
2840 * the same
c1e37810
PM
2841 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2842 * translation, which means that we have one mmu_idx that deals with two
2843 * concatenated translation regimes [this sort of combined s1+2 TLB is
2844 * architecturally permitted]
2845 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2846 * handling via the TLB. The only way to do a stage 1 translation without
2847 * the immediate stage 2 translation is via the ATS or AT system insns,
2848 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2849 * The only use of stage 2 translations is either as part of an s1+2
2850 * lookup or when loading the descriptors during a stage 1 page table walk,
2851 * and in both those cases we don't use the TLB.
c1e37810
PM
2852 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2853 * translation regimes, because they map reasonably well to each other
2854 * and they can't both be active at the same time.
b9f6033c
RH
2855 * 5. we want to be able to use the TLB for accesses done as part of a
2856 * stage1 page table walk, rather than having to walk the stage2 page
2857 * table over and over.
452ef8cb
RH
2858 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2859 * Never (PAN) bit within PSTATE.
d902ae75
RH
2860 * 7. we fold together the secure and non-secure regimes for A-profile,
2861 * because there are no banked system registers for aarch64, so the
2862 * process of switching between secure and non-secure is
2863 * already heavyweight.
c1e37810 2864 *
b9f6033c
RH
2865 * This gives us the following list of cases:
2866 *
d902ae75
RH
2867 * EL0 EL1&0 stage 1+2 (aka NS PL0)
2868 * EL1 EL1&0 stage 1+2 (aka NS PL1)
2869 * EL1 EL1&0 stage 1+2 +PAN
2870 * EL0 EL2&0
2871 * EL2 EL2&0
2872 * EL2 EL2&0 +PAN
2873 * EL2 (aka NS PL2)
2874 * EL3 (aka S PL1)
a1ce3084 2875 * Physical (NS & S)
575a94af 2876 * Stage2 (NS & S)
c1e37810 2877 *
575a94af 2878 * for a total of 12 different mmu_idx.
c1e37810 2879 *
3bef7012 2880 * R profile CPUs have an MPU, but can use the same set of MMU indexes
d902ae75
RH
2881 * as A profile. They only need to distinguish EL0 and EL1 (and
2882 * EL2 if we ever model a Cortex-R52).
3bef7012
PM
2883 *
2884 * M profile CPUs are rather different as they do not have a true MMU.
2885 * They have the following different MMU indexes:
2886 * User
2887 * Privileged
62593718
PM
2888 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2889 * Privileged, execution priority negative (ditto)
66787c78
PM
2890 * If the CPU supports the v8M Security Extension then there are also:
2891 * Secure User
2892 * Secure Privileged
62593718
PM
2893 * Secure User, execution priority negative
2894 * Secure Privileged, execution priority negative
3bef7012 2895 *
8bd5c820
PM
2896 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2897 * are not quite the same -- different CPU types (most notably M profile
2898 * vs A/R profile) would like to use MMU indexes with different semantics,
2899 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2900 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2901 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2902 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2903 * the same for any particular CPU.
2904 * Variables of type ARMMUIdx are always full values, and the core
2905 * index values are in variables of type 'int'.
2906 *
c1e37810
PM
2907 * Our enumeration includes at the end some entries which are not "true"
2908 * mmu_idx values in that they don't have corresponding TLBs and are only
2909 * valid for doing slow path page table walks.
2910 *
2911 * The constant names here are patterned after the general style of the names
2912 * of the AT/ATS operations.
2913 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2914 * For M profile we arrange them to have a bit for priv, a bit for negpri
2915 * and a bit for secure.
c1e37810 2916 */
b9f6033c
RH
2917#define ARM_MMU_IDX_A 0x10 /* A profile */
2918#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2919#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2920
b9f6033c
RH
2921/* Meanings of the bits for M profile mmu idx values */
2922#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2923#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2924#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2925
b9f6033c
RH
2926#define ARM_MMU_IDX_TYPE_MASK \
2927 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2928#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2929
c1e37810 2930typedef enum ARMMMUIdx {
b9f6033c
RH
2931 /*
2932 * A-profile.
2933 */
d902ae75
RH
2934 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2935 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
2936 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2937 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A,
2938 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2939 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2940 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
2941 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
b9f6033c 2942
575a94af
RH
2943 /*
2944 * Used for second stage of an S12 page table walk, or for descriptor
2945 * loads during first stage of an S1 page table walk. Note that both
2946 * are in use simultaneously for SecureEL2: the security state for
2947 * the S2 ptw is selected by the NS bit from the S1 ptw.
2948 */
d38fa967
RH
2949 ARMMMUIdx_Stage2_S = 8 | ARM_MMU_IDX_A,
2950 ARMMMUIdx_Stage2 = 9 | ARM_MMU_IDX_A,
2951
2952 /* TLBs with 1-1 mapping to the physical address spaces. */
bb5cc2c8
RH
2953 ARMMMUIdx_Phys_S = 10 | ARM_MMU_IDX_A,
2954 ARMMMUIdx_Phys_NS = 11 | ARM_MMU_IDX_A,
2955 ARMMMUIdx_Phys_Root = 12 | ARM_MMU_IDX_A,
2956 ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
575a94af 2957
b9f6033c
RH
2958 /*
2959 * These are not allocated TLBs and are used only for AT system
2960 * instructions or for the first stage of an S12 page table walk.
2961 */
2962 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2963 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2964 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2965
2966 /*
2967 * M-profile.
2968 */
25568316
RH
2969 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2970 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2971 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2972 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2973 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2974 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2975 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2976 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2977} ARMMMUIdx;
2978
5f09a6df
RH
2979/*
2980 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2981 * for use when calling tlb_flush_by_mmuidx() and friends.
2982 */
5f09a6df
RH
2983#define TO_CORE_BIT(NAME) \
2984 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2985
8bd5c820 2986typedef enum ARMMMUIdxBit {
5f09a6df 2987 TO_CORE_BIT(E10_0),
b9f6033c 2988 TO_CORE_BIT(E20_0),
5f09a6df 2989 TO_CORE_BIT(E10_1),
452ef8cb 2990 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2991 TO_CORE_BIT(E2),
b9f6033c 2992 TO_CORE_BIT(E20_2),
452ef8cb 2993 TO_CORE_BIT(E20_2_PAN),
d902ae75 2994 TO_CORE_BIT(E3),
575a94af
RH
2995 TO_CORE_BIT(Stage2),
2996 TO_CORE_BIT(Stage2_S),
5f09a6df
RH
2997
2998 TO_CORE_BIT(MUser),
2999 TO_CORE_BIT(MPriv),
3000 TO_CORE_BIT(MUserNegPri),
3001 TO_CORE_BIT(MPrivNegPri),
3002 TO_CORE_BIT(MSUser),
3003 TO_CORE_BIT(MSPriv),
3004 TO_CORE_BIT(MSUserNegPri),
3005 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
3006} ARMMMUIdxBit;
3007
5f09a6df
RH
3008#undef TO_CORE_BIT
3009
f79fbf39 3010#define MMU_USER_IDX 0
c1e37810 3011
9e273ef2
PM
3012/* Indexes used when registering address spaces with cpu_address_space_init */
3013typedef enum ARMASIdx {
3014 ARMASIdx_NS = 0,
3015 ARMASIdx_S = 1,
8bce44a2
RH
3016 ARMASIdx_TagNS = 2,
3017 ARMASIdx_TagS = 3,
9e273ef2
PM
3018} ARMASIdx;
3019
bb5cc2c8
RH
3020static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
3021{
3022 /* Assert the relative order of the physical mmu indexes. */
3023 QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
3024 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
3025 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
3026 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
3027
3028 return ARMMMUIdx_Phys_S + space;
3029}
3030
3031static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
3032{
3033 assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
3034 return idx - ARMMMUIdx_Phys_S;
3035}
3036
43bbce7f
PM
3037static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3038{
3039 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3040 * CSSELR is RAZ/WI.
3041 */
3042 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3043}
3044
f9fd40eb
PB
3045static inline bool arm_sctlr_b(CPUARMState *env)
3046{
3047 return
3048 /* We need not implement SCTLR.ITD in user-mode emulation, so
3049 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3050 * This lets people run BE32 binaries with "-cpu any".
3051 */
3052#ifndef CONFIG_USER_ONLY
3053 !arm_feature(env, ARM_FEATURE_V7) &&
3054#endif
3055 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3056}
3057
aaec1432 3058uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3059
8061a649
RH
3060static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3061 bool sctlr_b)
3062{
3063#ifdef CONFIG_USER_ONLY
3064 /*
3065 * In system mode, BE32 is modelled in line with the
3066 * architecture (as word-invariant big-endianness), where loads
3067 * and stores are done little endian but from addresses which
3068 * are adjusted by XORing with the appropriate constant. So the
3069 * endianness to use for the raw data access is not affected by
3070 * SCTLR.B.
3071 * In user mode, however, we model BE32 as byte-invariant
3072 * big-endianness (because user-only code cannot tell the
3073 * difference), and so we need to use a data access endianness
3074 * that depends on SCTLR.B.
3075 */
3076 if (sctlr_b) {
3077 return true;
3078 }
3079#endif
3080 /* In 32bit endianness is determined by looking at CPSR's E bit */
3081 return env->uncached_cpsr & CPSR_E;
3082}
3083
3084static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3085{
3086 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3087}
64e40755 3088
ed50ff78
PC
3089/* Return true if the processor is in big-endian mode. */
3090static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3091{
ed50ff78 3092 if (!is_a64(env)) {
8061a649 3093 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3094 } else {
3095 int cur_el = arm_current_el(env);
3096 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3097 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3098 }
ed50ff78
PC
3099}
3100
022c62cb 3101#include "exec/cpu-all.h"
622ed360 3102
fdd1b228 3103/*
a378206a
RH
3104 * We have more than 32-bits worth of state per TB, so we split the data
3105 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3106 * We collect these two parts in CPUARMTBFlags where they are named
3107 * flags and flags2 respectively.
fdd1b228 3108 *
a378206a
RH
3109 * The flags that are shared between all execution modes, TBFLAG_ANY,
3110 * are stored in flags. The flags that are specific to a given mode
3111 * are stores in flags2. Since cs_base is sized on the configured
3112 * address size, flags2 always has 64-bits for A64, and a minimum of
3113 * 32-bits for A32 and M32.
3114 *
3115 * The bits for 32-bit A-profile and M-profile partially overlap:
3116 *
5896f392
RH
3117 * 31 23 11 10 0
3118 * +-------------+----------+----------------+
3119 * | | | TBFLAG_A32 |
3120 * | TBFLAG_AM32 | +-----+----------+
3121 * | | |TBFLAG_M32|
3122 * +-------------+----------------+----------+
26702213 3123 * 31 23 6 5 0
79cabf1f 3124 *
fdd1b228 3125 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3126 */
eee81d41
RH
3127FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3128FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3129FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3130FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3131FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 3132/* Target EL if we take a floating-point-disabled exception */
eee81d41 3133FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
4479ec30 3134/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
8480e933
RH
3135FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3136FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
361c33f6 3137FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
34a8a07e 3138FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
79cabf1f 3139
8bd587c1 3140/*
79cabf1f 3141 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3142 */
5896f392
RH
3143FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3144FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 3145
79cabf1f
RH
3146/*
3147 * Bit usage when in AArch32 state, for A-profile only.
3148 */
5896f392
RH
3149FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3150FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
3151/*
3152 * We store the bottom two bits of the CPAR as TB flags and handle
3153 * checks on the other bits at runtime. This shares the same bits as
3154 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3155 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3156 */
5896f392
RH
3157FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3158FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3159FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3160FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
3161/*
3162 * Indicates whether cp register reads and writes by guest code should access
3163 * the secure or nonsecure bank of banked registers; note that this is not
3164 * the same thing as the current security state of the processor!
3165 */
5896f392 3166FIELD(TBFLAG_A32, NS, 10, 1)
75fe8356
RH
3167/*
3168 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3169 * This requires an SME trap from AArch32 mode when using NEON.
3170 */
3171FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
79cabf1f
RH
3172
3173/*
3174 * Bit usage when in AArch32 state, for M-profile only.
3175 */
3176/* Handler (ie not Thread) mode */
5896f392 3177FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3178/* Whether we should generate stack-limit checks */
5896f392 3179FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3180/* Set if FPCCR.LSPACT is set */
5896f392 3181FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3182/* Set if we must create a new FP context */
5896f392 3183FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3184/* Set if FPCCR.S does not match current security state */
5896f392 3185FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3186/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3187FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
a393dee0
RH
3188/* Set if in secure mode */
3189FIELD(TBFLAG_M32, SECURE, 6, 1)
79cabf1f
RH
3190
3191/*
3192 * Bit usage when in AArch64 state
3193 */
476a4692 3194FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac 3195FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
f45ce4c3
RH
3196/* The current vector length, either NVL or SVL. */
3197FIELD(TBFLAG_A64, VL, 4, 4)
0816ef1b 3198FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3199FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3200FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3201FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3202FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3203FIELD(TBFLAG_A64, ATA, 15, 1)
3204FIELD(TBFLAG_A64, TCMA, 16, 2)
3205FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3206FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
6b2ca83e 3207FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
a3637e88
RH
3208FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3209FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
5d7953ad 3210FIELD(TBFLAG_A64, SVL, 24, 4)
75fe8356
RH
3211/* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3212FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
5572f755 3213FIELD(TBFLAG_A64, FGT_ERET, 29, 1)
83f624d9 3214FIELD(TBFLAG_A64, NAA, 30, 1)
179e9a3b 3215FIELD(TBFLAG_A64, ATA0, 31, 1)
a1705768 3216
a729a46b
RH
3217/*
3218 * Helpers for using the above.
3219 */
3220#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3221 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3222#define DP_TBFLAG_A64(DST, WHICH, VAL) \
a378206a 3223 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3224#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3225 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3226#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3227 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3228#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3229 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3230
3902bfc6 3231#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
a378206a
RH
3232#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3233#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3234#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3235#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3236
fb901c90
RH
3237/**
3238 * cpu_mmu_index:
3239 * @env: The cpu environment
3240 * @ifetch: True for code access, false for data access.
3241 *
3242 * Return the core mmu index for the current translation regime.
3243 * This function is used by generic TCG code paths.
3244 */
3245static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3246{
a729a46b 3247 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3248}
3249
8b599e5c
RH
3250/**
3251 * sve_vq
3252 * @env: the cpu context
3253 *
3254 * Return the VL cached within env->hflags, in units of quadwords.
3255 */
3256static inline int sve_vq(CPUARMState *env)
3257{
3258 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3259}
3260
5d7953ad
RH
3261/**
3262 * sme_vq
3263 * @env: the cpu context
3264 *
3265 * Return the SVL cached within env->hflags, in units of quadwords.
3266 */
3267static inline int sme_vq(CPUARMState *env)
3268{
3269 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3270}
3271
f9fd40eb
PB
3272static inline bool bswap_code(bool sctlr_b)
3273{
3274#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3275 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3276 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3277 * would also end up as a mixed-endian mode with BE code, LE data.
3278 */
ded625e7 3279 return TARGET_BIG_ENDIAN ^ sctlr_b;
f9fd40eb 3280#else
e334bd31
PB
3281 /* All code access in ARM is little endian, and there are no loaders
3282 * doing swaps that need to be reversed
f9fd40eb
PB
3283 */
3284 return 0;
3285#endif
3286}
3287
c3ae85fc
PB
3288#ifdef CONFIG_USER_ONLY
3289static inline bool arm_cpu_bswap_data(CPUARMState *env)
3290{
ded625e7 3291 return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
c3ae85fc
PB
3292}
3293#endif
3294
bb5de525
AJ
3295void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3296 uint64_t *cs_base, uint32_t *flags);
6b917547 3297
98128601
RH
3298enum {
3299 QEMU_PSCI_CONDUIT_DISABLED = 0,
3300 QEMU_PSCI_CONDUIT_SMC = 1,
3301 QEMU_PSCI_CONDUIT_HVC = 2,
3302};
3303
017518c1
PM
3304#ifndef CONFIG_USER_ONLY
3305/* Return the address space index to use for a memory access */
3306static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3307{
3308 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3309}
5ce4ff65
PM
3310
3311/* Return the AddressSpace to use for a memory access
3312 * (which depends on whether the access is S or NS, and whether
3313 * the board gave us a separate AddressSpace for S accesses).
3314 */
3315static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3316{
3317 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3318}
017518c1
PM
3319#endif
3320
bd7d00fc 3321/**
b5c53d1b
AL
3322 * arm_register_pre_el_change_hook:
3323 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3324 * CPU changes exception level or mode. The hook function will be
3325 * passed a pointer to the ARMCPU and the opaque data pointer passed
3326 * to this function when the hook was registered.
b5c53d1b
AL
3327 *
3328 * Note that if a pre-change hook is called, any registered post-change hooks
3329 * are guaranteed to subsequently be called.
bd7d00fc 3330 */
b5c53d1b 3331void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3332 void *opaque);
b5c53d1b
AL
3333/**
3334 * arm_register_el_change_hook:
3335 * Register a hook function which will be called immediately after this
3336 * CPU changes exception level or mode. The hook function will be
3337 * passed a pointer to the ARMCPU and the opaque data pointer passed
3338 * to this function when the hook was registered.
3339 *
3340 * Note that any registered hooks registered here are guaranteed to be called
3341 * if pre-change hooks have been.
3342 */
3343void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3344 *opaque);
bd7d00fc 3345
3d74e2e9
RH
3346/**
3347 * arm_rebuild_hflags:
3348 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3349 */
3350void arm_rebuild_hflags(CPUARMState *env);
3351
9a2b5256
RH
3352/**
3353 * aa32_vfp_dreg:
3354 * Return a pointer to the Dn register within env in 32-bit mode.
3355 */
3356static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3357{
c39c2b90 3358 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3359}
3360
3361/**
3362 * aa32_vfp_qreg:
3363 * Return a pointer to the Qn register within env in 32-bit mode.
3364 */
3365static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3366{
c39c2b90 3367 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3368}
3369
3370/**
3371 * aa64_vfp_qreg:
3372 * Return a pointer to the Qn register within env in 64-bit mode.
3373 */
3374static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3375{
c39c2b90 3376 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3377}
3378
028e2a7b 3379/* Shared between translate-sve.c and sve_helper.c. */
fca75f60 3380extern const uint64_t pred_esz_masks[5];
028e2a7b 3381
be5d6f48
RH
3382/*
3383 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
7f2cf760
RH
3384 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3385 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
be5d6f48 3386 */
7f2cf760
RH
3387#define PAGE_BTI PAGE_TARGET_1
3388#define PAGE_MTE PAGE_TARGET_2
3389#define PAGE_TARGET_STICKY PAGE_MTE
be5d6f48 3390
50d4c8c1
RH
3391/* We associate one allocation tag per 16 bytes, the minimum. */
3392#define LOG2_TAG_GRANULE 4
3393#define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
3394
3395#ifdef CONFIG_USER_ONLY
3396#define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3397#endif
3398
0e0c030c
RH
3399#ifdef TARGET_TAGGED_ADDRESSES
3400/**
3401 * cpu_untagged_addr:
3402 * @cs: CPU context
3403 * @x: tagged address
3404 *
3405 * Remove any address tag from @x. This is explicitly related to the
3406 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3407 *
3408 * There should be a better place to put this, but we need this in
3409 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3410 */
3411static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3412{
3413 ARMCPU *cpu = ARM_CPU(cs);
3414 if (cpu->env.tagged_addr_enable) {
3415 /*
3416 * TBI is enabled for userspace but not kernelspace addresses.
3417 * Only clear the tag if bit 55 is clear.
3418 */
3419 x &= sextract64(x, 0, 56);
3420 }
3421 return x;
3422}
3423#endif
3424
2c0262af 3425#endif