]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Add feature test for FEAT_LSE2
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
68970d1e 28#include "qapi/qapi-types-common.h"
9042c0e2 29
ca759f9e
AB
30/* ARM processors have a weak memory model */
31#define TCG_GUEST_DEFAULT_MO (0)
32
e24fd076
DG
33#ifdef TARGET_AARCH64
34#define KVM_HAVE_MCE_INJECTION 1
35#endif
36
b8a9e8f1
FB
37#define EXCP_UDEF 1 /* undefined instruction */
38#define EXCP_SWI 2 /* software interrupt */
39#define EXCP_PREFETCH_ABORT 3
40#define EXCP_DATA_ABORT 4
b5ff1b31
FB
41#define EXCP_IRQ 5
42#define EXCP_FIQ 6
06c949e6 43#define EXCP_BKPT 7
9ee6e8bb 44#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 45#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 46#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 47#define EXCP_HYP_TRAP 12
e0d6e6a5 48#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
49#define EXCP_VIRQ 14
50#define EXCP_VFIQ 15
19a6e31c 51#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 52#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 53#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 54#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 55#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
56#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 58#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
3c29632f 59#define EXCP_VSERR 24
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
3c29632f 93#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
403946c0 94
e4fe830b
PM
95/* The usual mapping for an AArch64 system register to its AArch32
96 * counterpart is for the 32 bit world to have access to the lower
97 * half only (with writes leaving the upper half untouched). It's
98 * therefore useful to be able to pass TCG the offset of the least
99 * significant half of a uint64_t struct member.
100 */
e03b5686 101#if HOST_BIG_ENDIAN
5cd8a118 102#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 103#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
104#else
105#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 106#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
107#endif
108
136e67e9 109/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
110#define ARM_CPU_IRQ 0
111#define ARM_CPU_FIQ 1
136e67e9
EI
112#define ARM_CPU_VIRQ 2
113#define ARM_CPU_VFIQ 3
403946c0 114
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
448d4d14
AB
140 * @num: Number of the registers in this XML seen by GDB.
141 * @data: A union with data specific to the set of registers
142 * @cpregs_keys: Array that contains the corresponding Key of
143 * a given cpreg with the same order of the cpreg
144 * in the XML description.
200bf5b7
AB
145 */
146typedef struct DynamicGDBXMLInfo {
147 char *desc;
448d4d14
AB
148 int num;
149 union {
150 struct {
151 uint32_t *keys;
152 } cpregs;
153 } data;
200bf5b7
AB
154} DynamicGDBXMLInfo;
155
55d284af
PM
156/* CPU state for each instance of a generic timer (in cp15 c14) */
157typedef struct ARMGenericTimer {
158 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 159 uint64_t ctl; /* Timer Control register */
55d284af
PM
160} ARMGenericTimer;
161
8c94b071
RH
162#define GTIMER_PHYS 0
163#define GTIMER_VIRT 1
164#define GTIMER_HYP 2
165#define GTIMER_SEC 3
166#define GTIMER_HYPVIRT 4
167#define NUM_GTIMERS 5
55d284af 168
e9152ee9
RDC
169#define VTCR_NSW (1u << 29)
170#define VTCR_NSA (1u << 30)
171#define VSTCR_SW VTCR_NSW
172#define VSTCR_SA VTCR_NSA
173
c39c2b90
RH
174/* Define a maximum sized vector register.
175 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
176 * For 64-bit, this is a 2048-bit SVE register.
177 *
178 * Note that the mapping between S, D, and Q views of the register bank
179 * differs between AArch64 and AArch32.
180 * In AArch32:
181 * Qn = regs[n].d[1]:regs[n].d[0]
182 * Dn = regs[n / 2].d[n & 1]
183 * Sn = regs[n / 4].d[n % 4 / 2],
184 * bits 31..0 for even n, and bits 63..32 for odd n
185 * (and regs[16] to regs[31] are inaccessible)
186 * In AArch64:
187 * Zn = regs[n].d[*]
188 * Qn = regs[n].d[1]:regs[n].d[0]
189 * Dn = regs[n].d[0]
190 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 191 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
192 *
193 * This corresponds to the architecturally defined mapping between
194 * the two execution states, and means we do not need to explicitly
195 * map these registers when changing states.
196 *
197 * Align the data for use with TCG host vector operations.
198 */
199
200#ifdef TARGET_AARCH64
201# define ARM_MAX_VQ 16
202#else
203# define ARM_MAX_VQ 1
204#endif
205
206typedef struct ARMVectorReg {
207 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
208} ARMVectorReg;
209
3c7d3086 210#ifdef TARGET_AARCH64
991ad91b 211/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 212typedef struct ARMPredicateReg {
46417784 213 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 214} ARMPredicateReg;
991ad91b
RH
215
216/* In AArch32 mode, PAC keys do not exist at all. */
217typedef struct ARMPACKey {
218 uint64_t lo, hi;
219} ARMPACKey;
3c7d3086
RH
220#endif
221
3902bfc6
RH
222/* See the commentary above the TBFLAG field definitions. */
223typedef struct CPUARMTBFlags {
224 uint32_t flags;
a378206a 225 target_ulong flags2;
3902bfc6 226} CPUARMTBFlags;
c39c2b90 227
f3639a64
RH
228typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
229
8f4e07c9
PMD
230typedef struct NVICState NVICState;
231
1ea4a06a 232typedef struct CPUArchState {
b5ff1b31 233 /* Regs for current mode. */
2c0262af 234 uint32_t regs[16];
3926cc84
AG
235
236 /* 32/64 switch only happens when taking and returning from
237 * exceptions so the overlap semantics are taken care of then
238 * instead of having a complicated union.
239 */
240 /* Regs for A64 mode. */
241 uint64_t xregs[32];
242 uint64_t pc;
d356312f
PM
243 /* PSTATE isn't an architectural register for ARMv8. However, it is
244 * convenient for us to assemble the underlying state into a 32 bit format
245 * identical to the architectural format used for the SPSR. (This is also
246 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
247 * 'pstate' register are.) Of the PSTATE bits:
248 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
249 * semantics as for AArch32, as described in the comments on each field)
250 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 251 * DAIF (exception masks) are kept in env->daif
f6e52eaa 252 * BTYPE is kept in env->btype
c37e6ac9 253 * SM and ZA are kept in env->svcr
d356312f 254 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
255 */
256 uint32_t pstate;
53221552 257 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
063bbd80 258 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
3926cc84 259
fdd1b228 260 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 261 CPUARMTBFlags hflags;
fdd1b228 262
b90372ad 263 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 264 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
265 the whole CPSR. */
266 uint32_t uncached_cpsr;
267 uint32_t spsr;
268
269 /* Banked registers. */
28c9457d 270 uint64_t banked_spsr[8];
0b7d409d
FA
271 uint32_t banked_r13[8];
272 uint32_t banked_r14[8];
3b46e624 273
b5ff1b31
FB
274 /* These hold r8-r12. */
275 uint32_t usr_regs[5];
276 uint32_t fiq_regs[5];
3b46e624 277
2c0262af
FB
278 /* cpsr flag cache for faster execution */
279 uint32_t CF; /* 0 or 1 */
280 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
281 uint32_t NF; /* N is bit 31. All other bits are undefined. */
282 uint32_t ZF; /* Z set if zero. */
99c475ab 283 uint32_t QF; /* 0 or 1 */
9ee6e8bb 284 uint32_t GE; /* cpsr[19:16] */
9ee6e8bb 285 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 286 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 287 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
c37e6ac9 288 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
2c0262af 289
1b174238 290 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 291 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 292
b5ff1b31
FB
293 /* System control coprocessor (cp15) */
294 struct {
40f137e1 295 uint32_t c0_cpuid;
b85a1fd6
FA
296 union { /* Cache size selection */
297 struct {
298 uint64_t _unused_csselr0;
299 uint64_t csselr_ns;
300 uint64_t _unused_csselr1;
301 uint64_t csselr_s;
302 };
303 uint64_t csselr_el[4];
304 };
137feaa9
FA
305 union { /* System control register. */
306 struct {
307 uint64_t _unused_sctlr;
308 uint64_t sctlr_ns;
309 uint64_t hsctlr;
310 uint64_t sctlr_s;
311 };
312 uint64_t sctlr_el[4];
313 };
761c4642 314 uint64_t vsctlr; /* Virtualization System control register. */
7ebd5f2e 315 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 316 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 317 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 318 uint64_t sder; /* Secure debug enable register. */
77022576 319 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
320 union { /* MMU translation table base 0. */
321 struct {
322 uint64_t _unused_ttbr0_0;
323 uint64_t ttbr0_ns;
324 uint64_t _unused_ttbr0_1;
325 uint64_t ttbr0_s;
326 };
327 uint64_t ttbr0_el[4];
328 };
329 union { /* MMU translation table base 1. */
330 struct {
331 uint64_t _unused_ttbr1_0;
332 uint64_t ttbr1_ns;
333 uint64_t _unused_ttbr1_1;
334 uint64_t ttbr1_s;
335 };
336 uint64_t ttbr1_el[4];
337 };
b698e9cf 338 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 339 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee 340 /* MMU translation table base control. */
cb4a0a34 341 uint64_t tcr_el[4];
988cc190
PM
342 uint64_t vtcr_el2; /* Virtualization Translation Control. */
343 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
344 uint32_t c2_data; /* MPU data cacheable bits. */
345 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
346 union { /* MMU domain access control register
347 * MPU write buffer control.
348 */
349 struct {
350 uint64_t dacr_ns;
351 uint64_t dacr_s;
352 };
353 struct {
354 uint64_t dacr32_el2;
355 };
356 };
7e09797c
PM
357 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
358 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 359 uint64_t hcr_el2; /* Hypervisor configuration register */
5814d587 360 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
64e0e2de 361 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
362 union { /* Fault status registers. */
363 struct {
364 uint64_t ifsr_ns;
365 uint64_t ifsr_s;
366 };
367 struct {
368 uint64_t ifsr32_el2;
369 };
370 };
4a7e2d73
FA
371 union {
372 struct {
373 uint64_t _unused_dfsr;
374 uint64_t dfsr_ns;
375 uint64_t hsr;
376 uint64_t dfsr_s;
377 };
378 uint64_t esr_el[4];
379 };
ce819861 380 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
381 union { /* Fault address registers. */
382 struct {
383 uint64_t _unused_far0;
e03b5686 384#if HOST_BIG_ENDIAN
b848ce2b
FA
385 uint32_t ifar_ns;
386 uint32_t dfar_ns;
387 uint32_t ifar_s;
388 uint32_t dfar_s;
389#else
390 uint32_t dfar_ns;
391 uint32_t ifar_ns;
392 uint32_t dfar_s;
393 uint32_t ifar_s;
394#endif
395 uint64_t _unused_far3;
396 };
397 uint64_t far_el[4];
398 };
59e05530 399 uint64_t hpfar_el2;
2a5a9abd 400 uint64_t hstr_el2;
01c097f7
FA
401 union { /* Translation result. */
402 struct {
403 uint64_t _unused_par_0;
404 uint64_t par_ns;
405 uint64_t _unused_par_1;
406 uint64_t par_s;
407 };
408 uint64_t par_el[4];
409 };
6cb0b013 410
b5ff1b31
FB
411 uint32_t c9_insn; /* Cache lockdown registers. */
412 uint32_t c9_data;
8521466b
AF
413 uint64_t c9_pmcr; /* performance monitor control register */
414 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
415 uint64_t c9_pmovsr; /* perf monitor overflow status */
416 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 417 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 418 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
419 union { /* Memory attribute redirection */
420 struct {
e03b5686 421#if HOST_BIG_ENDIAN
be693c87
GB
422 uint64_t _unused_mair_0;
423 uint32_t mair1_ns;
424 uint32_t mair0_ns;
425 uint64_t _unused_mair_1;
426 uint32_t mair1_s;
427 uint32_t mair0_s;
428#else
429 uint64_t _unused_mair_0;
430 uint32_t mair0_ns;
431 uint32_t mair1_ns;
432 uint64_t _unused_mair_1;
433 uint32_t mair0_s;
434 uint32_t mair1_s;
435#endif
436 };
437 uint64_t mair_el[4];
438 };
fb6c91ba
GB
439 union { /* vector base address register */
440 struct {
441 uint64_t _unused_vbar;
442 uint64_t vbar_ns;
443 uint64_t hvbar;
444 uint64_t vbar_s;
445 };
446 uint64_t vbar_el[4];
447 };
e89e51a1 448 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 449 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
450 struct { /* FCSE PID. */
451 uint32_t fcseidr_ns;
452 uint32_t fcseidr_s;
453 };
454 union { /* Context ID. */
455 struct {
456 uint64_t _unused_contextidr_0;
457 uint64_t contextidr_ns;
458 uint64_t _unused_contextidr_1;
459 uint64_t contextidr_s;
460 };
461 uint64_t contextidr_el[4];
462 };
463 union { /* User RW Thread register. */
464 struct {
465 uint64_t tpidrurw_ns;
466 uint64_t tpidrprw_ns;
467 uint64_t htpidr;
468 uint64_t _tpidr_el3;
469 };
470 uint64_t tpidr_el[4];
471 };
9e5ec745 472 uint64_t tpidr2_el0;
54bf36ed
FA
473 /* The secure banks of these registers don't map anywhere */
474 uint64_t tpidrurw_s;
475 uint64_t tpidrprw_s;
476 uint64_t tpidruro_s;
477
478 union { /* User RO Thread register. */
479 uint64_t tpidruro_ns;
480 uint64_t tpidrro_el[1];
481 };
a7adc4b7
PM
482 uint64_t c14_cntfrq; /* Counter Frequency register */
483 uint64_t c14_cntkctl; /* Timer Control register */
bb461330 484 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 485 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 486 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 487 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
488 uint32_t c15_ticonfig; /* TI925T configuration byte. */
489 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
490 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
491 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
492 uint32_t c15_config_base_address; /* SCU base address. */
493 uint32_t c15_diagnostic; /* diagnostic register */
494 uint32_t c15_power_diagnostic;
495 uint32_t c15_power_control; /* power control */
0b45451e
PM
496 uint64_t dbgbvr[16]; /* breakpoint value registers */
497 uint64_t dbgbcr[16]; /* breakpoint control registers */
498 uint64_t dbgwvr[16]; /* watchpoint value registers */
499 uint64_t dbgwcr[16]; /* watchpoint control registers */
5fc83f11 500 uint64_t dbgclaim; /* DBGCLAIM bits */
3a298203 501 uint64_t mdscr_el1;
1424ca8d 502 uint64_t oslsr_el1; /* OS Lock Status */
f94a6df5 503 uint64_t osdlr_el1; /* OS DoubleLock status */
14cc7b54 504 uint64_t mdcr_el2;
5513c3ab 505 uint64_t mdcr_el3;
5d05b9d4
AL
506 /* Stores the architectural value of the counter *the last time it was
507 * updated* by pmccntr_op_start. Accesses should always be surrounded
508 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
509 * architecturally-correct value is being read/set.
7c2cb42b 510 */
c92c0687 511 uint64_t c15_ccnt;
5d05b9d4
AL
512 /* Stores the delta between the architectural value and the underlying
513 * cycle count during normal operation. It is used to update c15_ccnt
514 * to be the correct architectural value before accesses. During
515 * accesses, c15_ccnt_delta contains the underlying count being used
516 * for the access, after which it reverts to the delta value in
517 * pmccntr_op_finish.
518 */
519 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
520 uint64_t c14_pmevcntr[31];
521 uint64_t c14_pmevcntr_delta[31];
522 uint64_t c14_pmevtyper[31];
8521466b 523 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 524 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 525 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
526 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
527 uint64_t gcr_el1;
528 uint64_t rgsr_el1;
58e93b48
RH
529
530 /* Minimal RAS registers */
531 uint64_t disr_el1;
532 uint64_t vdisr_el2;
533 uint64_t vsesr_el2;
15126d9c
PM
534
535 /*
536 * Fine-Grained Trap registers. We store these as arrays so the
537 * access checking code doesn't have to manually select
538 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
539 * FEAT_FGT2 will add more elements to these arrays.
540 */
541 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
542 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
543 uint64_t fgt_exec[1]; /* HFGITR */
b5ff1b31 544 } cp15;
40f137e1 545
9ee6e8bb 546 struct {
fb602cb7
PM
547 /* M profile has up to 4 stack pointers:
548 * a Main Stack Pointer and a Process Stack Pointer for each
549 * of the Secure and Non-Secure states. (If the CPU doesn't support
550 * the security extension then it has only two SPs.)
551 * In QEMU we always store the currently active SP in regs[13],
552 * and the non-active SP for the current security state in
553 * v7m.other_sp. The stack pointers for the inactive security state
554 * are stored in other_ss_msp and other_ss_psp.
555 * switch_v7m_security_state() is responsible for rearranging them
556 * when we change security state.
557 */
9ee6e8bb 558 uint32_t other_sp;
fb602cb7
PM
559 uint32_t other_ss_msp;
560 uint32_t other_ss_psp;
4a16724f
PM
561 uint32_t vecbase[M_REG_NUM_BANKS];
562 uint32_t basepri[M_REG_NUM_BANKS];
563 uint32_t control[M_REG_NUM_BANKS];
564 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
565 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
566 uint32_t hfsr; /* HardFault Status */
567 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 568 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 569 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 570 uint32_t bfar; /* BusFault Address */
bed079da 571 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 572 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 573 int exception;
4a16724f
PM
574 uint32_t primask[M_REG_NUM_BANKS];
575 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 576 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 577 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 578 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 579 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
580 uint32_t msplim[M_REG_NUM_BANKS];
581 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
582 uint32_t fpcar[M_REG_NUM_BANKS];
583 uint32_t fpccr[M_REG_NUM_BANKS];
584 uint32_t fpdscr[M_REG_NUM_BANKS];
585 uint32_t cpacr[M_REG_NUM_BANKS];
586 uint32_t nsacr;
b26b5629 587 uint32_t ltpsize;
7c3d47da 588 uint32_t vpr;
9ee6e8bb
PB
589 } v7m;
590
abf1172f
PM
591 /* Information associated with an exception about to be taken:
592 * code which raises an exception must set cs->exception_index and
593 * the relevant parts of this structure; the cpu_do_interrupt function
594 * will then set the guest-visible registers as part of the exception
595 * entry process.
596 */
597 struct {
598 uint32_t syndrome; /* AArch64 format syndrome register */
599 uint32_t fsr; /* AArch32 format fault status register info */
600 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 601 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
602 /* If we implement EL2 we will also need to store information
603 * about the intermediate physical address for stage 2 faults.
604 */
605 } exception;
606
202ccb6b
DG
607 /* Information associated with an SError */
608 struct {
609 uint8_t pending;
610 uint8_t has_esr;
611 uint64_t esr;
612 } serror;
613
1711bfa5
BM
614 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
615
ed89f078
PM
616 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
617 uint32_t irq_line_state;
618
fe1479c3
PB
619 /* Thumb-2 EE state. */
620 uint32_t teecr;
621 uint32_t teehbr;
622
b7bcbe95
FB
623 /* VFP coprocessor state. */
624 struct {
c39c2b90 625 ARMVectorReg zregs[32];
b7bcbe95 626
3c7d3086
RH
627#ifdef TARGET_AARCH64
628 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 629#define FFR_PRED_NUM 16
3c7d3086 630 ARMPredicateReg pregs[17];
516e246a
RH
631 /* Scratch space for aa64 sve predicate temporary. */
632 ARMPredicateReg preg_tmp;
3c7d3086
RH
633#endif
634
b7bcbe95 635 /* We store these fpcsr fields separately for convenience. */
a4d58462 636 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
637 int vec_len;
638 int vec_stride;
639
a4d58462
RH
640 uint32_t xregs[16];
641
516e246a 642 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 643 uint32_t scratch[8];
3b46e624 644
d81ce0ef
AB
645 /* There are a number of distinct float control structures:
646 *
647 * fp_status: is the "normal" fp status.
648 * fp_status_fp16: used for half-precision calculations
649 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
650 * standard_fp_status_fp16 : used for half-precision
651 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
652 *
653 * Half-precision operations are governed by a separate
654 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
655 * status structure to control this.
656 *
657 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
658 * round-to-nearest and is used by any operations (generally
659 * Neon) which the architecture defines as controlled by the
660 * standard FPSCR value rather than the FPSCR.
3a492f3a 661 *
aaae563b
PM
662 * The "standard FPSCR but for fp16 ops" is needed because
663 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
664 * using a fixed value for it.
665 *
3a492f3a
PM
666 * To avoid having to transfer exception bits around, we simply
667 * say that the FPSCR cumulative exception flags are the logical
aaae563b 668 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
669 * only thing which needs to read the exception flags being
670 * an explicit FPSCR read.
671 */
53cd6637 672 float_status fp_status;
d81ce0ef 673 float_status fp_status_f16;
3a492f3a 674 float_status standard_fp_status;
aaae563b 675 float_status standard_fp_status_f16;
5be5e8ed 676
de561988
RH
677 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
678 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
b7bcbe95 679 } vfp;
0f08429c 680
03d05e2d
PM
681 uint64_t exclusive_addr;
682 uint64_t exclusive_val;
0f08429c
RH
683 /*
684 * Contains the 'val' for the second 64-bit register of LDXP, which comes
685 * from the higher address, not the high part of a complete 128-bit value.
686 * In some ways it might be more convenient to record the exclusive value
687 * as the low and high halves of a 128 bit data value, but the current
688 * semantics of these fields are baked into the migration format.
689 */
03d05e2d 690 uint64_t exclusive_high;
b7bcbe95 691
18c9b560
AZ
692 /* iwMMXt coprocessor state. */
693 struct {
694 uint64_t regs[16];
695 uint64_t val;
696
697 uint32_t cregs[16];
698 } iwmmxt;
699
991ad91b 700#ifdef TARGET_AARCH64
108b3ba8
RH
701 struct {
702 ARMPACKey apia;
703 ARMPACKey apib;
704 ARMPACKey apda;
705 ARMPACKey apdb;
706 ARMPACKey apga;
707 } keys;
7cb1e618
RH
708
709 uint64_t scxtnum_el[4];
dc993a01
RH
710
711 /*
712 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
713 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
714 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
715 * When SVL is less than the architectural maximum, the accessible
716 * storage is restricted, such that if the SVL is X bytes the guest can
717 * see only the bottom X elements of zarray[], and only the least
718 * significant X bytes of each element of the array. (In other words,
719 * the observable part is always square.)
720 *
721 * The ZA storage can also be considered as a set of square tiles of
722 * elements of different sizes. The mapping from tiles to the ZA array
723 * is architecturally defined, such that for tiles of elements of esz
724 * bytes, the Nth row (or "horizontal slice") of tile T is in
725 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
726 * in the ZA storage, because its rows are striped through the ZA array.
727 *
728 * Because this is so large, keep this toward the end of the reset area,
729 * to keep the offsets into the rest of the structure smaller.
730 */
731 ARMVectorReg zarray[ARM_MAX_VQ * 16];
991ad91b
RH
732#endif
733
46747d15 734 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
735 struct CPUWatchpoint *cpu_watchpoint[16];
736
f3639a64
RH
737 /* Optional fault info across tlb lookup. */
738 ARMMMUFaultInfo *tlb_fi;
739
1f5c00cf
AB
740 /* Fields up to this point are cleared by a CPU reset */
741 struct {} end_reset_fields;
742
e8b5fae5 743 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 744
581be094 745 /* Internal CPU feature flags. */
918f5dca 746 uint64_t features;
581be094 747
6cb0b013
PC
748 /* PMSAv7 MPU */
749 struct {
750 uint32_t *drbar;
751 uint32_t *drsr;
752 uint32_t *dracr;
4a16724f 753 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
754 } pmsav7;
755
0e1a46bb
PM
756 /* PMSAv8 MPU */
757 struct {
758 /* The PMSAv8 implementation also shares some PMSAv7 config
759 * and state:
760 * pmsav7.rnr (region number register)
761 * pmsav7_dregion (number of configured regions)
762 */
4a16724f
PM
763 uint32_t *rbar[M_REG_NUM_BANKS];
764 uint32_t *rlar[M_REG_NUM_BANKS];
761c4642
TR
765 uint32_t *hprbar;
766 uint32_t *hprlar;
4a16724f
PM
767 uint32_t mair0[M_REG_NUM_BANKS];
768 uint32_t mair1[M_REG_NUM_BANKS];
761c4642 769 uint32_t hprselr;
0e1a46bb
PM
770 } pmsav8;
771
9901c576
PM
772 /* v8M SAU */
773 struct {
774 uint32_t *rbar;
775 uint32_t *rlar;
776 uint32_t rnr;
777 uint32_t ctrl;
778 } sau;
779
1701d70e 780#if !defined(CONFIG_USER_ONLY)
8f4e07c9 781 NVICState *nvic;
2a94a507 782 const struct arm_boot_info *boot_info;
d3a3e529
VK
783 /* Store GICv3CPUState to access from this struct */
784 void *gicv3state;
1701d70e 785#else /* CONFIG_USER_ONLY */
26f08561
PMD
786 /* For usermode syscall translation. */
787 bool eabi;
788#endif /* CONFIG_USER_ONLY */
0e0c030c
RH
789
790#ifdef TARGET_TAGGED_ADDRESSES
791 /* Linux syscall tagged address support */
792 bool tagged_addr_enable;
793#endif
2c0262af
FB
794} CPUARMState;
795
5fda9504
TH
796static inline void set_feature(CPUARMState *env, int feature)
797{
798 env->features |= 1ULL << feature;
799}
800
801static inline void unset_feature(CPUARMState *env, int feature)
802{
803 env->features &= ~(1ULL << feature);
804}
805
bd7d00fc 806/**
08267487 807 * ARMELChangeHookFn:
bd7d00fc
PM
808 * type of a function which can be registered via arm_register_el_change_hook()
809 * to get callbacks when the CPU changes its exception level or mode.
810 */
08267487
AL
811typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
812typedef struct ARMELChangeHook ARMELChangeHook;
813struct ARMELChangeHook {
814 ARMELChangeHookFn *hook;
815 void *opaque;
816 QLIST_ENTRY(ARMELChangeHook) node;
817};
062ba099
AB
818
819/* These values map onto the return values for
820 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
821typedef enum ARMPSCIState {
d5affb0d
AJ
822 PSCI_ON = 0,
823 PSCI_OFF = 1,
062ba099
AB
824 PSCI_ON_PENDING = 2
825} ARMPSCIState;
826
962fcbf2
RH
827typedef struct ARMISARegisters ARMISARegisters;
828
7f9e25a6
RH
829/*
830 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
831 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
832 *
833 * While processing properties during initialization, corresponding init bits
834 * are set for bits in sve_vq_map that have been set by properties.
835 *
836 * Bits set in supported represent valid vector lengths for the CPU type.
837 */
838typedef struct {
839 uint32_t map, init, supported;
840} ARMVQMap;
841
74e75564
PB
842/**
843 * ARMCPU:
844 * @env: #CPUARMState
845 *
846 * An ARM CPU core.
847 */
b36e239e 848struct ArchCPU {
74e75564
PB
849 /*< private >*/
850 CPUState parent_obj;
851 /*< public >*/
852
5b146dc7 853 CPUNegativeOffsetState neg;
74e75564
PB
854 CPUARMState env;
855
856 /* Coprocessor information */
857 GHashTable *cp_regs;
858 /* For marshalling (mostly coprocessor) register state between the
859 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
860 * we use these arrays.
861 */
862 /* List of register indexes managed via these arrays; (full KVM style
863 * 64 bit indexes, not CPRegInfo 32 bit indexes)
864 */
865 uint64_t *cpreg_indexes;
866 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
867 uint64_t *cpreg_values;
868 /* Length of the indexes, values, reset_values arrays */
869 int32_t cpreg_array_len;
870 /* These are used only for migration: incoming data arrives in
871 * these fields and is sanity checked in post_load before copying
872 * to the working data structures above.
873 */
874 uint64_t *cpreg_vmstate_indexes;
875 uint64_t *cpreg_vmstate_values;
876 int32_t cpreg_vmstate_array_len;
877
448d4d14 878 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 879 DynamicGDBXMLInfo dyn_svereg_xml;
7d8b28b8
RH
880 DynamicGDBXMLInfo dyn_m_systemreg_xml;
881 DynamicGDBXMLInfo dyn_m_secextreg_xml;
200bf5b7 882
74e75564
PB
883 /* Timers used by the generic (architected) timer */
884 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
885 /*
886 * Timer used by the PMU. Its state is restored after migration by
887 * pmu_op_finish() - it does not need other handling during migration
888 */
889 QEMUTimer *pmu_timer;
74e75564
PB
890 /* GPIO outputs for generic timer */
891 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
892 /* GPIO output for GICv3 maintenance interrupt signal */
893 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
894 /* GPIO output for the PMU interrupt */
895 qemu_irq pmu_interrupt;
74e75564
PB
896
897 /* MemoryRegion to use for secure physical accesses */
898 MemoryRegion *secure_memory;
899
8bce44a2
RH
900 /* MemoryRegion to use for allocation tag accesses */
901 MemoryRegion *tag_memory;
902 MemoryRegion *secure_tag_memory;
903
181962fd
PM
904 /* For v8M, pointer to the IDAU interface provided by board/SoC */
905 Object *idau;
906
74e75564
PB
907 /* 'compatible' string for this CPU for Linux device trees */
908 const char *dtb_compatible;
909
910 /* PSCI version for this CPU
911 * Bits[31:16] = Major Version
912 * Bits[15:0] = Minor Version
913 */
914 uint32_t psci_version;
915
062ba099
AB
916 /* Current power state, access guarded by BQL */
917 ARMPSCIState power_state;
918
c25bd18a
PM
919 /* CPU has virtualization extension */
920 bool has_el2;
74e75564
PB
921 /* CPU has security extension */
922 bool has_el3;
5c0a3819
SZ
923 /* CPU has PMU (Performance Monitor Unit) */
924 bool has_pmu;
97a28b0e
PM
925 /* CPU has VFP */
926 bool has_vfp;
927 /* CPU has Neon */
928 bool has_neon;
ea90db0a
PM
929 /* CPU has M-profile DSP extension */
930 bool has_dsp;
74e75564
PB
931
932 /* CPU has memory protection unit */
933 bool has_mpu;
934 /* PMSAv7 MPU number of supported regions */
935 uint32_t pmsav7_dregion;
761c4642
TR
936 /* PMSAv8 MPU number of supported hyp regions */
937 uint32_t pmsav8r_hdregion;
9901c576
PM
938 /* v8M SAU number of supported regions */
939 uint32_t sau_sregion;
74e75564
PB
940
941 /* PSCI conduit used to invoke PSCI methods
942 * 0 - disabled, 1 - smc, 2 - hvc
943 */
944 uint32_t psci_conduit;
945
38e2a77c
PM
946 /* For v8M, initial value of the Secure VTOR */
947 uint32_t init_svtor;
7cda2149
PM
948 /* For v8M, initial value of the Non-secure VTOR */
949 uint32_t init_nsvtor;
38e2a77c 950
74e75564
PB
951 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
952 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
953 */
954 uint32_t kvm_target;
955
956 /* KVM init features for this CPU */
957 uint32_t kvm_init_features[7];
958
e5ac4200
AJ
959 /* KVM CPU state */
960
961 /* KVM virtual time adjustment */
962 bool kvm_adjvtime;
963 bool kvm_vtime_dirty;
964 uint64_t kvm_vtime;
965
68970d1e
AJ
966 /* KVM steal time */
967 OnOffAuto kvm_steal_time;
968
74e75564
PB
969 /* Uniprocessor system with MP extensions */
970 bool mp_is_up;
971
c4487d76
PM
972 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
973 * and the probe failed (so we need to report the error in realize)
974 */
975 bool host_cpu_probe_failed;
976
f9a69711
AF
977 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
978 * register.
979 */
980 int32_t core_count;
981
74e75564
PB
982 /* The instance init functions for implementation-specific subclasses
983 * set these fields to specify the implementation-dependent values of
984 * various constant registers and reset values of non-constant
985 * registers.
986 * Some of these might become QOM properties eventually.
987 * Field names match the official register names as defined in the
988 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
989 * is used for reset values of non-constant registers; no reset_
990 * prefix means a constant register.
47576b94
RH
991 * Some of these registers are split out into a substructure that
992 * is shared with the translators to control the ISA.
1548a7b2
PM
993 *
994 * Note that if you add an ID register to the ARMISARegisters struct
995 * you need to also update the 32-bit and 64-bit versions of the
996 * kvm_arm_get_host_cpu_features() function to correctly populate the
997 * field by reading the value from the KVM vCPU.
74e75564 998 */
47576b94
RH
999 struct ARMISARegisters {
1000 uint32_t id_isar0;
1001 uint32_t id_isar1;
1002 uint32_t id_isar2;
1003 uint32_t id_isar3;
1004 uint32_t id_isar4;
1005 uint32_t id_isar5;
1006 uint32_t id_isar6;
10054016
PM
1007 uint32_t id_mmfr0;
1008 uint32_t id_mmfr1;
1009 uint32_t id_mmfr2;
1010 uint32_t id_mmfr3;
1011 uint32_t id_mmfr4;
32957aad 1012 uint32_t id_mmfr5;
8a130a7b
PM
1013 uint32_t id_pfr0;
1014 uint32_t id_pfr1;
1d51bc96 1015 uint32_t id_pfr2;
47576b94
RH
1016 uint32_t mvfr0;
1017 uint32_t mvfr1;
1018 uint32_t mvfr2;
a6179538 1019 uint32_t id_dfr0;
d22c5649 1020 uint32_t id_dfr1;
4426d361 1021 uint32_t dbgdidr;
09754ca8
PM
1022 uint32_t dbgdevid;
1023 uint32_t dbgdevid1;
47576b94
RH
1024 uint64_t id_aa64isar0;
1025 uint64_t id_aa64isar1;
1026 uint64_t id_aa64pfr0;
1027 uint64_t id_aa64pfr1;
3dc91ddb
PM
1028 uint64_t id_aa64mmfr0;
1029 uint64_t id_aa64mmfr1;
64761e10 1030 uint64_t id_aa64mmfr2;
2a609df8
PM
1031 uint64_t id_aa64dfr0;
1032 uint64_t id_aa64dfr1;
2dc10fa2 1033 uint64_t id_aa64zfr0;
414c54d5 1034 uint64_t id_aa64smfr0;
24526bb9 1035 uint64_t reset_pmcr_el0;
47576b94 1036 } isar;
e544f800 1037 uint64_t midr;
74e75564
PB
1038 uint32_t revidr;
1039 uint32_t reset_fpsid;
a5fd319a 1040 uint64_t ctr;
74e75564 1041 uint32_t reset_sctlr;
cad86737
AL
1042 uint64_t pmceid0;
1043 uint64_t pmceid1;
74e75564 1044 uint32_t id_afr0;
74e75564
PB
1045 uint64_t id_aa64afr0;
1046 uint64_t id_aa64afr1;
f6450bcb 1047 uint64_t clidr;
74e75564
PB
1048 uint64_t mp_affinity; /* MP ID without feature bits */
1049 /* The elements of this array are the CCSIDR values for each cache,
1050 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1051 */
957e6155 1052 uint64_t ccsidr[16];
74e75564
PB
1053 uint64_t reset_cbar;
1054 uint32_t reset_auxcr;
1055 bool reset_hivecs;
eb94284d
RH
1056
1057 /*
1058 * Intermediate values used during property parsing.
69b2265d 1059 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
1060 */
1061 bool prop_pauth;
1062 bool prop_pauth_impdef;
69b2265d 1063 bool prop_lpa2;
eb94284d 1064
74e75564
PB
1065 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1066 uint32_t dcz_blocksize;
4a7319b7 1067 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 1068
e45868a3
PM
1069 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1070 int gic_num_lrs; /* number of list registers */
1071 int gic_vpribits; /* number of virtual priority bits */
1072 int gic_vprebits; /* number of virtual preemption bits */
39f29e59 1073 int gic_pribits; /* number of physical priority bits */
e45868a3 1074
3a062d57
JB
1075 /* Whether the cfgend input is high (i.e. this CPU should reset into
1076 * big-endian mode). This setting isn't used directly: instead it modifies
1077 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1078 * architecture version.
1079 */
1080 bool cfgend;
1081
b5c53d1b 1082 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1083 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1084
1085 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1086
1087 /* Used to synchronize KVM and QEMU in-kernel device levels */
1088 uint8_t device_irq_level;
adf92eab
RH
1089
1090 /* Used to set the maximum vector length the cpu will support. */
1091 uint32_t sve_max_vq;
0df9142d 1092
b3d52804
RH
1093#ifdef CONFIG_USER_ONLY
1094 /* Used to set the default vector length at process start. */
1095 uint32_t sve_default_vq;
e74c0976 1096 uint32_t sme_default_vq;
b3d52804
RH
1097#endif
1098
7f9e25a6 1099 ARMVQMap sve_vq;
e74c0976 1100 ARMVQMap sme_vq;
7def8754
AJ
1101
1102 /* Generic timer counter frequency, in Hz */
1103 uint64_t gt_cntfrq_hz;
74e75564
PB
1104};
1105
7def8754
AJ
1106unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1107
51e5ef45
MAL
1108void arm_cpu_post_init(Object *obj);
1109
46de5913
IM
1110uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1111
74e75564 1112#ifndef CONFIG_USER_ONLY
8a9358cc 1113extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1114
1115void arm_cpu_do_interrupt(CPUState *cpu);
1116void arm_v7m_cpu_do_interrupt(CPUState *cpu);
74e75564 1117
74e75564
PB
1118hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1119 MemTxAttrs *attrs);
6d2d454a 1120#endif /* !CONFIG_USER_ONLY */
74e75564 1121
a010bdbe 1122int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1123int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1124
200bf5b7
AB
1125/* Returns the dynamically generated XML for the gdb stub.
1126 * Returns a pointer to the XML contents for the specified XML file or NULL
1127 * if the XML name doesn't match the predefined one.
1128 */
1129const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1130
74e75564 1131int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1132 int cpuid, DumpState *s);
74e75564 1133int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1134 int cpuid, DumpState *s);
74e75564
PB
1135
1136#ifdef TARGET_AARCH64
a010bdbe 1137int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1138int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1139void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1140void aarch64_sve_change_el(CPUARMState *env, int old_el,
1141 int new_el, bool el0_a64);
2a8af382 1142void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
538baab2
AJ
1143
1144/*
1145 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1146 * The byte at offset i from the start of the in-memory representation contains
1147 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1148 * lowest offsets are stored in the lowest memory addresses, then that nearly
1149 * matches QEMU's representation, which is to use an array of host-endian
1150 * uint64_t's, where the lower offsets are at the lower indices. To complete
1151 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1152 */
1153static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1154{
e03b5686 1155#if HOST_BIG_ENDIAN
538baab2
AJ
1156 int i;
1157
1158 for (i = 0; i < nr; ++i) {
1159 dst[i] = bswap64(src[i]);
1160 }
1161
1162 return dst;
1163#else
1164 return src;
1165#endif
1166}
1167
0ab5953b
RH
1168#else
1169static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1170static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1171 int n, bool a)
1172{ }
74e75564 1173#endif
778c3a06 1174
ce02049d
GB
1175void aarch64_sync_32_to_64(CPUARMState *env);
1176void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1177
ced31551
RH
1178int fp_exception_el(CPUARMState *env, int cur_el);
1179int sve_exception_el(CPUARMState *env, int cur_el);
6b2ca83e 1180int sme_exception_el(CPUARMState *env, int cur_el);
5ef3cc56
RH
1181
1182/**
6ca54aa9 1183 * sve_vqm1_for_el_sm:
5ef3cc56
RH
1184 * @env: CPUARMState
1185 * @el: exception level
6ca54aa9 1186 * @sm: streaming mode
5ef3cc56 1187 *
6ca54aa9 1188 * Compute the current vector length for @el & @sm, in units of
5ef3cc56 1189 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
6ca54aa9 1190 * If @sm, compute for SVL, otherwise NVL.
5ef3cc56 1191 */
6ca54aa9
RH
1192uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1193
1194/* Likewise, but using @sm = PSTATE.SM. */
5ef3cc56 1195uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
ced31551 1196
3926cc84
AG
1197static inline bool is_a64(CPUARMState *env)
1198{
1199 return env->aarch64;
1200}
1201
5d05b9d4
AL
1202/**
1203 * pmu_op_start/finish
ec7b4ce4
AF
1204 * @env: CPUARMState
1205 *
5d05b9d4
AL
1206 * Convert all PMU counters between their delta form (the typical mode when
1207 * they are enabled) and the guest-visible values. These two calls must
1208 * surround any action which might affect the counters.
ec7b4ce4 1209 */
5d05b9d4
AL
1210void pmu_op_start(CPUARMState *env);
1211void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1212
4e7beb0c
AL
1213/*
1214 * Called when a PMU counter is due to overflow
1215 */
1216void arm_pmu_timer_cb(void *opaque);
1217
033614c4
AL
1218/**
1219 * Functions to register as EL change hooks for PMU mode filtering
1220 */
1221void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1222void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1223
57a4a11b 1224/*
bf8d0969
AL
1225 * pmu_init
1226 * @cpu: ARMCPU
57a4a11b 1227 *
bf8d0969
AL
1228 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1229 * for the current configuration
57a4a11b 1230 */
bf8d0969 1231void pmu_init(ARMCPU *cpu);
57a4a11b 1232
76e3e1bc
PM
1233/* SCTLR bit meanings. Several bits have been reused in newer
1234 * versions of the architecture; in that case we define constants
1235 * for both old and new bit meanings. Code which tests against those
1236 * bits should probably check or otherwise arrange that the CPU
1237 * is the architectural version it expects.
1238 */
1239#define SCTLR_M (1U << 0)
1240#define SCTLR_A (1U << 1)
1241#define SCTLR_C (1U << 2)
1242#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1243#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1244#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1245#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1246#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1247#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1248#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1249#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1250#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1251#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1252#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1253#define SCTLR_ITD (1U << 7) /* v8 onward */
1254#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1255#define SCTLR_SED (1U << 8) /* v8 onward */
1256#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1257#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1258#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1259#define SCTLR_SW (1U << 10) /* v7 */
1260#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1261#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1262#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1263#define SCTLR_I (1U << 12)
b2af69d0
RH
1264#define SCTLR_V (1U << 13) /* AArch32 only */
1265#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1266#define SCTLR_RR (1U << 14) /* up to v7 */
1267#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1268#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1269#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1270#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1271#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1272#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1273#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1274#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1275#define SCTLR_nTWE (1U << 18) /* v8 onward */
1276#define SCTLR_WXN (1U << 19)
1277#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0 1278#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
7cb1e618 1279#define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
b2af69d0
RH
1280#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1281#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1282#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1283#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1284#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1285#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1286#define SCTLR_VE (1U << 24) /* up to v7 */
1287#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1288#define SCTLR_EE (1U << 25)
1289#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1290#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1291#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1292#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1293#define SCTLR_TRE (1U << 28) /* AArch32 only */
1294#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1295#define SCTLR_AFE (1U << 29) /* AArch32 only */
1296#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1297#define SCTLR_TE (1U << 30) /* AArch32 only */
1298#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1299#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1300#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
b2af69d0
RH
1301#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1302#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1303#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1304#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1305#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1306#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1307#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1308#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
ad1e6018
RH
1309#define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1310#define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1311#define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1312#define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1313#define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1314#define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1315#define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1316#define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1317#define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1318#define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1319#define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1320#define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1321#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1322#define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
76e3e1bc 1323
fab8ad39
RH
1324/* Bit definitions for CPACR (AArch32 only) */
1325FIELD(CPACR, CP10, 20, 2)
1326FIELD(CPACR, CP11, 22, 2)
1327FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1328FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1329FIELD(CPACR, ASEDIS, 31, 1)
1330
1331/* Bit definitions for CPACR_EL1 (AArch64 only) */
1332FIELD(CPACR_EL1, ZEN, 16, 2)
1333FIELD(CPACR_EL1, FPEN, 20, 2)
1334FIELD(CPACR_EL1, SMEN, 24, 2)
1335FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1336
1337/* Bit definitions for HCPTR (AArch32 only) */
1338FIELD(HCPTR, TCP10, 10, 1)
1339FIELD(HCPTR, TCP11, 11, 1)
1340FIELD(HCPTR, TASE, 15, 1)
1341FIELD(HCPTR, TTA, 20, 1)
1342FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1343FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1344
1345/* Bit definitions for CPTR_EL2 (AArch64 only) */
1346FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1347FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1348FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1349FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1350FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1351FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1352FIELD(CPTR_EL2, TTA, 28, 1)
1353FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1354FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1355
1356/* Bit definitions for CPTR_EL3 (AArch64 only) */
1357FIELD(CPTR_EL3, EZ, 8, 1)
1358FIELD(CPTR_EL3, TFP, 10, 1)
1359FIELD(CPTR_EL3, ESM, 12, 1)
1360FIELD(CPTR_EL3, TTA, 20, 1)
1361FIELD(CPTR_EL3, TAM, 30, 1)
1362FIELD(CPTR_EL3, TCPAC, 31, 1)
c6f19164 1363
f190bd1d
PM
1364#define MDCR_MTPME (1U << 28)
1365#define MDCR_TDCC (1U << 27)
47b385da 1366#define MDCR_HLP (1U << 26) /* MDCR_EL2 */
0b42f4fa
PM
1367#define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
1368#define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
187f678d
PM
1369#define MDCR_EPMAD (1U << 21)
1370#define MDCR_EDAD (1U << 20)
f190bd1d
PM
1371#define MDCR_TTRF (1U << 19)
1372#define MDCR_STE (1U << 18) /* MDCR_EL3 */
033614c4
AL
1373#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1374#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1375#define MDCR_SDD (1U << 16)
a8d64e73 1376#define MDCR_SPD (3U << 14)
187f678d
PM
1377#define MDCR_TDRA (1U << 11)
1378#define MDCR_TDOSA (1U << 10)
1379#define MDCR_TDA (1U << 9)
1380#define MDCR_TDE (1U << 8)
1381#define MDCR_HPME (1U << 7)
1382#define MDCR_TPM (1U << 6)
1383#define MDCR_TPMCR (1U << 5)
033614c4 1384#define MDCR_HPMN (0x1fU)
187f678d 1385
a8d64e73 1386/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
f190bd1d
PM
1387#define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1388 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1389 MDCR_STE | MDCR_SPME | MDCR_SPD)
a8d64e73 1390
78dbbbe4
PM
1391#define CPSR_M (0x1fU)
1392#define CPSR_T (1U << 5)
1393#define CPSR_F (1U << 6)
1394#define CPSR_I (1U << 7)
1395#define CPSR_A (1U << 8)
1396#define CPSR_E (1U << 9)
1397#define CPSR_IT_2_7 (0xfc00U)
1398#define CPSR_GE (0xfU << 16)
4051e12c 1399#define CPSR_IL (1U << 20)
dc8b1853 1400#define CPSR_DIT (1U << 21)
220f508f 1401#define CPSR_PAN (1U << 22)
f2f68a78 1402#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1403#define CPSR_J (1U << 24)
1404#define CPSR_IT_0_1 (3U << 25)
1405#define CPSR_Q (1U << 27)
1406#define CPSR_V (1U << 28)
1407#define CPSR_C (1U << 29)
1408#define CPSR_Z (1U << 30)
1409#define CPSR_N (1U << 31)
9ee6e8bb 1410#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1411#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1412
1413#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1414#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1415 | CPSR_NZCV)
9ee6e8bb 1416/* Bits writable in user mode. */
268b1b3d 1417#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1418/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1419#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1420
987ab45e
PM
1421/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1422#define XPSR_EXCP 0x1ffU
1423#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1424#define XPSR_IT_2_7 CPSR_IT_2_7
1425#define XPSR_GE CPSR_GE
1426#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1427#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1428#define XPSR_IT_0_1 CPSR_IT_0_1
1429#define XPSR_Q CPSR_Q
1430#define XPSR_V CPSR_V
1431#define XPSR_C CPSR_C
1432#define XPSR_Z CPSR_Z
1433#define XPSR_N CPSR_N
1434#define XPSR_NZCV CPSR_NZCV
1435#define XPSR_IT CPSR_IT
1436
e389be16
FA
1437#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1438#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1439#define TTBCR_PD0 (1U << 4)
1440#define TTBCR_PD1 (1U << 5)
1441#define TTBCR_EPD0 (1U << 7)
1442#define TTBCR_IRGN0 (3U << 8)
1443#define TTBCR_ORGN0 (3U << 10)
1444#define TTBCR_SH0 (3U << 12)
1445#define TTBCR_T1SZ (3U << 16)
1446#define TTBCR_A1 (1U << 22)
1447#define TTBCR_EPD1 (1U << 23)
1448#define TTBCR_IRGN1 (3U << 24)
1449#define TTBCR_ORGN1 (3U << 26)
1450#define TTBCR_SH1 (1U << 28)
1451#define TTBCR_EAE (1U << 31)
1452
f04383e7
PM
1453FIELD(VTCR, T0SZ, 0, 6)
1454FIELD(VTCR, SL0, 6, 2)
1455FIELD(VTCR, IRGN0, 8, 2)
1456FIELD(VTCR, ORGN0, 10, 2)
1457FIELD(VTCR, SH0, 12, 2)
1458FIELD(VTCR, TG0, 14, 2)
1459FIELD(VTCR, PS, 16, 3)
1460FIELD(VTCR, VS, 19, 1)
1461FIELD(VTCR, HA, 21, 1)
1462FIELD(VTCR, HD, 22, 1)
1463FIELD(VTCR, HWU59, 25, 1)
1464FIELD(VTCR, HWU60, 26, 1)
1465FIELD(VTCR, HWU61, 27, 1)
1466FIELD(VTCR, HWU62, 28, 1)
1467FIELD(VTCR, NSW, 29, 1)
1468FIELD(VTCR, NSA, 30, 1)
1469FIELD(VTCR, DS, 32, 1)
1470FIELD(VTCR, SL2, 33, 1)
1471
d356312f
PM
1472/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1473 * Only these are valid when in AArch64 mode; in
1474 * AArch32 mode SPSRs are basically CPSR-format.
1475 */
f502cfc2 1476#define PSTATE_SP (1U)
d356312f
PM
1477#define PSTATE_M (0xFU)
1478#define PSTATE_nRW (1U << 4)
1479#define PSTATE_F (1U << 6)
1480#define PSTATE_I (1U << 7)
1481#define PSTATE_A (1U << 8)
1482#define PSTATE_D (1U << 9)
f6e52eaa 1483#define PSTATE_BTYPE (3U << 10)
f2f68a78 1484#define PSTATE_SSBS (1U << 12)
d356312f
PM
1485#define PSTATE_IL (1U << 20)
1486#define PSTATE_SS (1U << 21)
220f508f 1487#define PSTATE_PAN (1U << 22)
9eeb7a1c 1488#define PSTATE_UAO (1U << 23)
dc8b1853 1489#define PSTATE_DIT (1U << 24)
4b779ceb 1490#define PSTATE_TCO (1U << 25)
d356312f
PM
1491#define PSTATE_V (1U << 28)
1492#define PSTATE_C (1U << 29)
1493#define PSTATE_Z (1U << 30)
1494#define PSTATE_N (1U << 31)
1495#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1496#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1497#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1498/* Mode values for AArch64 */
1499#define PSTATE_MODE_EL3h 13
1500#define PSTATE_MODE_EL3t 12
1501#define PSTATE_MODE_EL2h 9
1502#define PSTATE_MODE_EL2t 8
1503#define PSTATE_MODE_EL1h 5
1504#define PSTATE_MODE_EL1t 4
1505#define PSTATE_MODE_EL0t 0
1506
c37e6ac9
RH
1507/* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1508FIELD(SVCR, SM, 0, 1)
1509FIELD(SVCR, ZA, 1, 1)
1510
de561988
RH
1511/* Fields for SMCR_ELx. */
1512FIELD(SMCR, LEN, 0, 4)
1513FIELD(SMCR, FA64, 31, 1)
1514
de2db7ec
PM
1515/* Write a new value to v7m.exception, thus transitioning into or out
1516 * of Handler mode; this may result in a change of active stack pointer.
1517 */
1518void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1519
9e729b57
EI
1520/* Map EL and handler into a PSTATE_MODE. */
1521static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1522{
1523 return (el << 2) | handler;
1524}
1525
d356312f
PM
1526/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1527 * interprocessing, so we don't attempt to sync with the cpsr state used by
1528 * the 32 bit decoder.
1529 */
1530static inline uint32_t pstate_read(CPUARMState *env)
1531{
1532 int ZF;
1533
1534 ZF = (env->ZF == 0);
1535 return (env->NF & 0x80000000) | (ZF << 30)
1536 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1537 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1538}
1539
1540static inline void pstate_write(CPUARMState *env, uint32_t val)
1541{
1542 env->ZF = (~val) & PSTATE_Z;
1543 env->NF = val;
1544 env->CF = (val >> 29) & 1;
1545 env->VF = (val << 3) & 0x80000000;
4cc35614 1546 env->daif = val & PSTATE_DAIF;
f6e52eaa 1547 env->btype = (val >> 10) & 3;
d356312f
PM
1548 env->pstate = val & ~CACHED_PSTATE_BITS;
1549}
1550
b5ff1b31 1551/* Return the current CPSR value. */
2f4a40e5 1552uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1553
1554typedef enum CPSRWriteType {
1555 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1556 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1557 CPSRWriteRaw = 2,
1558 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1559 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1560} CPSRWriteType;
1561
e784807c
PM
1562/*
1563 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1564 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1565 * correspond to TB flags bits cached in the hflags, unless @write_type
1566 * is CPSRWriteRaw.
1567 */
50866ba5
PM
1568void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1569 CPSRWriteType write_type);
9ee6e8bb
PB
1570
1571/* Return the current xPSR value. */
1572static inline uint32_t xpsr_read(CPUARMState *env)
1573{
1574 int ZF;
6fbe23d5
PB
1575 ZF = (env->ZF == 0);
1576 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1577 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1578 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1579 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1580 | (env->GE << 16)
9ee6e8bb 1581 | env->v7m.exception;
b5ff1b31
FB
1582}
1583
9ee6e8bb
PB
1584/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1585static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1586{
987ab45e
PM
1587 if (mask & XPSR_NZCV) {
1588 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1589 env->NF = val;
9ee6e8bb
PB
1590 env->CF = (val >> 29) & 1;
1591 env->VF = (val << 3) & 0x80000000;
1592 }
987ab45e
PM
1593 if (mask & XPSR_Q) {
1594 env->QF = ((val & XPSR_Q) != 0);
1595 }
f1e2598c
PM
1596 if (mask & XPSR_GE) {
1597 env->GE = (val & XPSR_GE) >> 16;
1598 }
04c9c81b 1599#ifndef CONFIG_USER_ONLY
987ab45e
PM
1600 if (mask & XPSR_T) {
1601 env->thumb = ((val & XPSR_T) != 0);
1602 }
1603 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1604 env->condexec_bits &= ~3;
1605 env->condexec_bits |= (val >> 25) & 3;
1606 }
987ab45e 1607 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1608 env->condexec_bits &= 3;
1609 env->condexec_bits |= (val >> 8) & 0xfc;
1610 }
987ab45e 1611 if (mask & XPSR_EXCP) {
de2db7ec
PM
1612 /* Note that this only happens on exception exit */
1613 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1614 }
04c9c81b 1615#endif
9ee6e8bb
PB
1616}
1617
f149e3e8
EI
1618#define HCR_VM (1ULL << 0)
1619#define HCR_SWIO (1ULL << 1)
1620#define HCR_PTW (1ULL << 2)
1621#define HCR_FMO (1ULL << 3)
1622#define HCR_IMO (1ULL << 4)
1623#define HCR_AMO (1ULL << 5)
1624#define HCR_VF (1ULL << 6)
1625#define HCR_VI (1ULL << 7)
1626#define HCR_VSE (1ULL << 8)
1627#define HCR_FB (1ULL << 9)
1628#define HCR_BSU_MASK (3ULL << 10)
1629#define HCR_DC (1ULL << 12)
1630#define HCR_TWI (1ULL << 13)
1631#define HCR_TWE (1ULL << 14)
1632#define HCR_TID0 (1ULL << 15)
1633#define HCR_TID1 (1ULL << 16)
1634#define HCR_TID2 (1ULL << 17)
1635#define HCR_TID3 (1ULL << 18)
1636#define HCR_TSC (1ULL << 19)
1637#define HCR_TIDCP (1ULL << 20)
1638#define HCR_TACR (1ULL << 21)
1639#define HCR_TSW (1ULL << 22)
099bf53b 1640#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1641#define HCR_TPU (1ULL << 24)
1642#define HCR_TTLB (1ULL << 25)
1643#define HCR_TVM (1ULL << 26)
1644#define HCR_TGE (1ULL << 27)
1645#define HCR_TDZ (1ULL << 28)
1646#define HCR_HCD (1ULL << 29)
1647#define HCR_TRVM (1ULL << 30)
1648#define HCR_RW (1ULL << 31)
1649#define HCR_CD (1ULL << 32)
1650#define HCR_ID (1ULL << 33)
ac656b16 1651#define HCR_E2H (1ULL << 34)
099bf53b
RH
1652#define HCR_TLOR (1ULL << 35)
1653#define HCR_TERR (1ULL << 36)
1654#define HCR_TEA (1ULL << 37)
1655#define HCR_MIOCNCE (1ULL << 38)
e0a38bb3 1656/* RES0 bit 39 */
099bf53b
RH
1657#define HCR_APK (1ULL << 40)
1658#define HCR_API (1ULL << 41)
1659#define HCR_NV (1ULL << 42)
1660#define HCR_NV1 (1ULL << 43)
1661#define HCR_AT (1ULL << 44)
1662#define HCR_NV2 (1ULL << 45)
1663#define HCR_FWB (1ULL << 46)
1664#define HCR_FIEN (1ULL << 47)
e0a38bb3 1665/* RES0 bit 48 */
099bf53b
RH
1666#define HCR_TID4 (1ULL << 49)
1667#define HCR_TICAB (1ULL << 50)
e0a38bb3 1668#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1669#define HCR_TOCU (1ULL << 52)
e0a38bb3 1670#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1671#define HCR_TTLBIS (1ULL << 54)
1672#define HCR_TTLBOS (1ULL << 55)
1673#define HCR_ATA (1ULL << 56)
1674#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1675#define HCR_TID5 (1ULL << 58)
1676#define HCR_TWEDEN (1ULL << 59)
1677#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1678
5814d587
RH
1679#define HCRX_ENAS0 (1ULL << 0)
1680#define HCRX_ENALS (1ULL << 1)
1681#define HCRX_ENASR (1ULL << 2)
1682#define HCRX_FNXS (1ULL << 3)
1683#define HCRX_FGTNXS (1ULL << 4)
1684#define HCRX_SMPME (1ULL << 5)
1685#define HCRX_TALLINT (1ULL << 6)
1686#define HCRX_VINMI (1ULL << 7)
1687#define HCRX_VFNMI (1ULL << 8)
1688#define HCRX_CMOW (1ULL << 9)
1689#define HCRX_MCE2 (1ULL << 10)
1690#define HCRX_MSCEN (1ULL << 11)
1691
9861248f
RDC
1692#define HPFAR_NS (1ULL << 63)
1693
06f2adcc
JF
1694#define SCR_NS (1ULL << 0)
1695#define SCR_IRQ (1ULL << 1)
1696#define SCR_FIQ (1ULL << 2)
1697#define SCR_EA (1ULL << 3)
1698#define SCR_FW (1ULL << 4)
1699#define SCR_AW (1ULL << 5)
1700#define SCR_NET (1ULL << 6)
1701#define SCR_SMD (1ULL << 7)
1702#define SCR_HCE (1ULL << 8)
1703#define SCR_SIF (1ULL << 9)
1704#define SCR_RW (1ULL << 10)
1705#define SCR_ST (1ULL << 11)
1706#define SCR_TWI (1ULL << 12)
1707#define SCR_TWE (1ULL << 13)
1708#define SCR_TLOR (1ULL << 14)
1709#define SCR_TERR (1ULL << 15)
1710#define SCR_APK (1ULL << 16)
1711#define SCR_API (1ULL << 17)
1712#define SCR_EEL2 (1ULL << 18)
1713#define SCR_EASE (1ULL << 19)
1714#define SCR_NMEA (1ULL << 20)
1715#define SCR_FIEN (1ULL << 21)
1716#define SCR_ENSCXT (1ULL << 25)
1717#define SCR_ATA (1ULL << 26)
1718#define SCR_FGTEN (1ULL << 27)
1719#define SCR_ECVEN (1ULL << 28)
1720#define SCR_TWEDEN (1ULL << 29)
f527d661
RH
1721#define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1722#define SCR_TME (1ULL << 34)
1723#define SCR_AMVOFFEN (1ULL << 35)
1724#define SCR_ENAS0 (1ULL << 36)
1725#define SCR_ADEN (1ULL << 37)
1726#define SCR_HXEN (1ULL << 38)
1727#define SCR_TRNDR (1ULL << 40)
1728#define SCR_ENTP2 (1ULL << 41)
1729#define SCR_GPF (1ULL << 48)
64e0e2de 1730
cc7613bf 1731#define HSTR_TTEE (1 << 16)
8e228c9e 1732#define HSTR_TJDBX (1 << 17)
cc7613bf 1733
01653295
PM
1734/* Return the current FPSCR value. */
1735uint32_t vfp_get_fpscr(CPUARMState *env);
1736void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1737
d81ce0ef
AB
1738/* FPCR, Floating Point Control Register
1739 * FPSR, Floating Poiht Status Register
1740 *
1741 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1742 * FPCR and FPSR. However since they still use non-overlapping bits
1743 * we store the underlying state in fpscr and just mask on read/write.
1744 */
1745#define FPSR_MASK 0xf800009f
0b62159b 1746#define FPCR_MASK 0x07ff9f00
d81ce0ef 1747
a15945d9
PM
1748#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1749#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1750#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1751#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1752#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1753#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1754#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1755#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1756#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1757#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1758#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1759#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1760#define FPCR_V (1 << 28) /* FP overflow flag */
1761#define FPCR_C (1 << 29) /* FP carry flag */
1762#define FPCR_Z (1 << 30) /* FP zero flag */
1763#define FPCR_N (1 << 31) /* FP negative flag */
1764
99c7834f
PM
1765#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1766#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1767#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1768
9542c30b
PM
1769#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1770#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1771
f903fa22
PM
1772static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1773{
1774 return vfp_get_fpscr(env) & FPSR_MASK;
1775}
1776
1777static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1778{
1779 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1780 vfp_set_fpscr(env, new_fpscr);
1781}
1782
1783static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1784{
1785 return vfp_get_fpscr(env) & FPCR_MASK;
1786}
1787
1788static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1789{
1790 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1791 vfp_set_fpscr(env, new_fpscr);
1792}
1793
b5ff1b31
FB
1794enum arm_cpu_mode {
1795 ARM_CPU_MODE_USR = 0x10,
1796 ARM_CPU_MODE_FIQ = 0x11,
1797 ARM_CPU_MODE_IRQ = 0x12,
1798 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1799 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1800 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1801 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1802 ARM_CPU_MODE_UND = 0x1b,
1803 ARM_CPU_MODE_SYS = 0x1f
1804};
1805
40f137e1
PB
1806/* VFP system registers. */
1807#define ARM_VFP_FPSID 0
1808#define ARM_VFP_FPSCR 1
a50c0f51 1809#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1810#define ARM_VFP_MVFR1 6
1811#define ARM_VFP_MVFR0 7
40f137e1
PB
1812#define ARM_VFP_FPEXC 8
1813#define ARM_VFP_FPINST 9
1814#define ARM_VFP_FPINST2 10
9542c30b
PM
1815/* These ones are M-profile only */
1816#define ARM_VFP_FPSCR_NZCVQC 2
1817#define ARM_VFP_VPR 12
1818#define ARM_VFP_P0 13
1819#define ARM_VFP_FPCXT_NS 14
1820#define ARM_VFP_FPCXT_S 15
40f137e1 1821
32a290b8
PM
1822/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1823#define QEMU_VFP_FPSCR_NZCV 0xffff
1824
18c9b560 1825/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1826#define ARM_IWMMXT_wCID 0
1827#define ARM_IWMMXT_wCon 1
1828#define ARM_IWMMXT_wCSSF 2
1829#define ARM_IWMMXT_wCASF 3
1830#define ARM_IWMMXT_wCGR0 8
1831#define ARM_IWMMXT_wCGR1 9
1832#define ARM_IWMMXT_wCGR2 10
1833#define ARM_IWMMXT_wCGR3 11
18c9b560 1834
2c4da50d
PM
1835/* V7M CCR bits */
1836FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1837FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1838FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1839FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1840FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1841FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1842FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1843FIELD(V7M_CCR, DC, 16, 1)
1844FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1845FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1846FIELD(V7M_CCR, LOB, 19, 1)
1847FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1848
24ac0fb1
PM
1849/* V7M SCR bits */
1850FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1851FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1852FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1853FIELD(V7M_SCR, SEVONPEND, 4, 1)
1854
3b2e9344
PM
1855/* V7M AIRCR bits */
1856FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1857FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1858FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1859FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1860FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1861FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1862FIELD(V7M_AIRCR, PRIS, 14, 1)
1863FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1864FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1865
2c4da50d
PM
1866/* V7M CFSR bits for MMFSR */
1867FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1868FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1869FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1870FIELD(V7M_CFSR, MSTKERR, 4, 1)
1871FIELD(V7M_CFSR, MLSPERR, 5, 1)
1872FIELD(V7M_CFSR, MMARVALID, 7, 1)
1873
1874/* V7M CFSR bits for BFSR */
1875FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1876FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1877FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1878FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1879FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1880FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1881FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1882
1883/* V7M CFSR bits for UFSR */
1884FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1885FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1886FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1887FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1888FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1889FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1890FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1891
334e8dad
PM
1892/* V7M CFSR bit masks covering all of the subregister bits */
1893FIELD(V7M_CFSR, MMFSR, 0, 8)
1894FIELD(V7M_CFSR, BFSR, 8, 8)
1895FIELD(V7M_CFSR, UFSR, 16, 16)
1896
2c4da50d
PM
1897/* V7M HFSR bits */
1898FIELD(V7M_HFSR, VECTTBL, 1, 1)
1899FIELD(V7M_HFSR, FORCED, 30, 1)
1900FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1901
1902/* V7M DFSR bits */
1903FIELD(V7M_DFSR, HALTED, 0, 1)
1904FIELD(V7M_DFSR, BKPT, 1, 1)
1905FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1906FIELD(V7M_DFSR, VCATCH, 3, 1)
1907FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1908
bed079da
PM
1909/* V7M SFSR bits */
1910FIELD(V7M_SFSR, INVEP, 0, 1)
1911FIELD(V7M_SFSR, INVIS, 1, 1)
1912FIELD(V7M_SFSR, INVER, 2, 1)
1913FIELD(V7M_SFSR, AUVIOL, 3, 1)
1914FIELD(V7M_SFSR, INVTRAN, 4, 1)
1915FIELD(V7M_SFSR, LSPERR, 5, 1)
1916FIELD(V7M_SFSR, SFARVALID, 6, 1)
1917FIELD(V7M_SFSR, LSERR, 7, 1)
1918
29c483a5
MD
1919/* v7M MPU_CTRL bits */
1920FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1921FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1922FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1923
43bbce7f
PM
1924/* v7M CLIDR bits */
1925FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1926FIELD(V7M_CLIDR, LOUIS, 21, 3)
1927FIELD(V7M_CLIDR, LOC, 24, 3)
1928FIELD(V7M_CLIDR, LOUU, 27, 3)
1929FIELD(V7M_CLIDR, ICB, 30, 2)
1930
1931FIELD(V7M_CSSELR, IND, 0, 1)
1932FIELD(V7M_CSSELR, LEVEL, 1, 3)
1933/* We use the combination of InD and Level to index into cpu->ccsidr[];
1934 * define a mask for this and check that it doesn't permit running off
1935 * the end of the array.
1936 */
1937FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1938
1939/* v7M FPCCR bits */
1940FIELD(V7M_FPCCR, LSPACT, 0, 1)
1941FIELD(V7M_FPCCR, USER, 1, 1)
1942FIELD(V7M_FPCCR, S, 2, 1)
1943FIELD(V7M_FPCCR, THREAD, 3, 1)
1944FIELD(V7M_FPCCR, HFRDY, 4, 1)
1945FIELD(V7M_FPCCR, MMRDY, 5, 1)
1946FIELD(V7M_FPCCR, BFRDY, 6, 1)
1947FIELD(V7M_FPCCR, SFRDY, 7, 1)
1948FIELD(V7M_FPCCR, MONRDY, 8, 1)
1949FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1950FIELD(V7M_FPCCR, UFRDY, 10, 1)
1951FIELD(V7M_FPCCR, RES0, 11, 15)
1952FIELD(V7M_FPCCR, TS, 26, 1)
1953FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1954FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1955FIELD(V7M_FPCCR, LSPENS, 29, 1)
1956FIELD(V7M_FPCCR, LSPEN, 30, 1)
1957FIELD(V7M_FPCCR, ASPEN, 31, 1)
1958/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1959#define R_V7M_FPCCR_BANKED_MASK \
1960 (R_V7M_FPCCR_LSPACT_MASK | \
1961 R_V7M_FPCCR_USER_MASK | \
1962 R_V7M_FPCCR_THREAD_MASK | \
1963 R_V7M_FPCCR_MMRDY_MASK | \
1964 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1965 R_V7M_FPCCR_UFRDY_MASK | \
1966 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1967
7c3d47da
PM
1968/* v7M VPR bits */
1969FIELD(V7M_VPR, P0, 0, 16)
1970FIELD(V7M_VPR, MASK01, 16, 4)
1971FIELD(V7M_VPR, MASK23, 20, 4)
1972
a62e62af
RH
1973/*
1974 * System register ID fields.
1975 */
2a14526a
LL
1976FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1977FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1978FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1979FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1980FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1981FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1982FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1983FIELD(CLIDR_EL1, LOUIS, 21, 3)
1984FIELD(CLIDR_EL1, LOC, 24, 3)
1985FIELD(CLIDR_EL1, LOUU, 27, 3)
1986FIELD(CLIDR_EL1, ICB, 30, 3)
1987
1988/* When FEAT_CCIDX is implemented */
1989FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1990FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1991FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1992
1993/* When FEAT_CCIDX is not implemented */
1994FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1995FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1996FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1997
1998FIELD(CTR_EL0, IMINLINE, 0, 4)
1999FIELD(CTR_EL0, L1IP, 14, 2)
2000FIELD(CTR_EL0, DMINLINE, 16, 4)
2001FIELD(CTR_EL0, ERG, 20, 4)
2002FIELD(CTR_EL0, CWG, 24, 4)
2003FIELD(CTR_EL0, IDC, 28, 1)
2004FIELD(CTR_EL0, DIC, 29, 1)
2005FIELD(CTR_EL0, TMINLINE, 32, 6)
2006
2bd5f41c
AB
2007FIELD(MIDR_EL1, REVISION, 0, 4)
2008FIELD(MIDR_EL1, PARTNUM, 4, 12)
2009FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2010FIELD(MIDR_EL1, VARIANT, 20, 4)
2011FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2012
a62e62af
RH
2013FIELD(ID_ISAR0, SWAP, 0, 4)
2014FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2015FIELD(ID_ISAR0, BITFIELD, 8, 4)
2016FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2017FIELD(ID_ISAR0, COPROC, 16, 4)
2018FIELD(ID_ISAR0, DEBUG, 20, 4)
2019FIELD(ID_ISAR0, DIVIDE, 24, 4)
2020
2021FIELD(ID_ISAR1, ENDIAN, 0, 4)
2022FIELD(ID_ISAR1, EXCEPT, 4, 4)
2023FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2024FIELD(ID_ISAR1, EXTEND, 12, 4)
2025FIELD(ID_ISAR1, IFTHEN, 16, 4)
2026FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2027FIELD(ID_ISAR1, INTERWORK, 24, 4)
2028FIELD(ID_ISAR1, JAZELLE, 28, 4)
2029
2030FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2031FIELD(ID_ISAR2, MEMHINT, 4, 4)
2032FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2033FIELD(ID_ISAR2, MULT, 12, 4)
2034FIELD(ID_ISAR2, MULTS, 16, 4)
2035FIELD(ID_ISAR2, MULTU, 20, 4)
2036FIELD(ID_ISAR2, PSR_AR, 24, 4)
2037FIELD(ID_ISAR2, REVERSAL, 28, 4)
2038
2039FIELD(ID_ISAR3, SATURATE, 0, 4)
2040FIELD(ID_ISAR3, SIMD, 4, 4)
2041FIELD(ID_ISAR3, SVC, 8, 4)
2042FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2043FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2044FIELD(ID_ISAR3, T32COPY, 20, 4)
2045FIELD(ID_ISAR3, TRUENOP, 24, 4)
2046FIELD(ID_ISAR3, T32EE, 28, 4)
2047
2048FIELD(ID_ISAR4, UNPRIV, 0, 4)
2049FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2050FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2051FIELD(ID_ISAR4, SMC, 12, 4)
2052FIELD(ID_ISAR4, BARRIER, 16, 4)
2053FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2054FIELD(ID_ISAR4, PSR_M, 24, 4)
2055FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2056
2057FIELD(ID_ISAR5, SEVL, 0, 4)
2058FIELD(ID_ISAR5, AES, 4, 4)
2059FIELD(ID_ISAR5, SHA1, 8, 4)
2060FIELD(ID_ISAR5, SHA2, 12, 4)
2061FIELD(ID_ISAR5, CRC32, 16, 4)
2062FIELD(ID_ISAR5, RDM, 24, 4)
2063FIELD(ID_ISAR5, VCMA, 28, 4)
2064
2065FIELD(ID_ISAR6, JSCVT, 0, 4)
2066FIELD(ID_ISAR6, DP, 4, 4)
2067FIELD(ID_ISAR6, FHM, 8, 4)
2068FIELD(ID_ISAR6, SB, 12, 4)
2069FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
2070FIELD(ID_ISAR6, BF16, 20, 4)
2071FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 2072
0ae0326b
PM
2073FIELD(ID_MMFR0, VMSA, 0, 4)
2074FIELD(ID_MMFR0, PMSA, 4, 4)
2075FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2076FIELD(ID_MMFR0, SHARELVL, 12, 4)
2077FIELD(ID_MMFR0, TCM, 16, 4)
2078FIELD(ID_MMFR0, AUXREG, 20, 4)
2079FIELD(ID_MMFR0, FCSE, 24, 4)
2080FIELD(ID_MMFR0, INNERSHR, 28, 4)
2081
bd78b6be
LL
2082FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2083FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2084FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2085FIELD(ID_MMFR1, L1UNISW, 12, 4)
2086FIELD(ID_MMFR1, L1HVD, 16, 4)
2087FIELD(ID_MMFR1, L1UNI, 20, 4)
2088FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2089FIELD(ID_MMFR1, BPRED, 28, 4)
2090
2091FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2092FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2093FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2094FIELD(ID_MMFR2, HVDTLB, 12, 4)
2095FIELD(ID_MMFR2, UNITLB, 16, 4)
2096FIELD(ID_MMFR2, MEMBARR, 20, 4)
2097FIELD(ID_MMFR2, WFISTALL, 24, 4)
2098FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2099
3d6ad6bb
RH
2100FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2101FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2102FIELD(ID_MMFR3, BPMAINT, 8, 4)
2103FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2104FIELD(ID_MMFR3, PAN, 16, 4)
2105FIELD(ID_MMFR3, COHWALK, 20, 4)
2106FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2107FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2108
ab638a32
RH
2109FIELD(ID_MMFR4, SPECSEI, 0, 4)
2110FIELD(ID_MMFR4, AC2, 4, 4)
2111FIELD(ID_MMFR4, XNX, 8, 4)
2112FIELD(ID_MMFR4, CNP, 12, 4)
2113FIELD(ID_MMFR4, HPDS, 16, 4)
2114FIELD(ID_MMFR4, LSM, 20, 4)
2115FIELD(ID_MMFR4, CCIDX, 24, 4)
2116FIELD(ID_MMFR4, EVT, 28, 4)
2117
bd78b6be 2118FIELD(ID_MMFR5, ETS, 0, 4)
c42fb26b 2119FIELD(ID_MMFR5, NTLBPA, 4, 4)
bd78b6be 2120
46f4976f
PM
2121FIELD(ID_PFR0, STATE0, 0, 4)
2122FIELD(ID_PFR0, STATE1, 4, 4)
2123FIELD(ID_PFR0, STATE2, 8, 4)
2124FIELD(ID_PFR0, STATE3, 12, 4)
2125FIELD(ID_PFR0, CSV2, 16, 4)
2126FIELD(ID_PFR0, AMU, 20, 4)
2127FIELD(ID_PFR0, DIT, 24, 4)
2128FIELD(ID_PFR0, RAS, 28, 4)
2129
dfc523a8
PM
2130FIELD(ID_PFR1, PROGMOD, 0, 4)
2131FIELD(ID_PFR1, SECURITY, 4, 4)
2132FIELD(ID_PFR1, MPROGMOD, 8, 4)
2133FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2134FIELD(ID_PFR1, GENTIMER, 16, 4)
2135FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2136FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2137FIELD(ID_PFR1, GIC, 28, 4)
2138
bd78b6be
LL
2139FIELD(ID_PFR2, CSV3, 0, 4)
2140FIELD(ID_PFR2, SSBS, 4, 4)
2141FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2142
a62e62af
RH
2143FIELD(ID_AA64ISAR0, AES, 4, 4)
2144FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2145FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2146FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2147FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2148FIELD(ID_AA64ISAR0, RDM, 28, 4)
2149FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2150FIELD(ID_AA64ISAR0, SM3, 36, 4)
2151FIELD(ID_AA64ISAR0, SM4, 40, 4)
2152FIELD(ID_AA64ISAR0, DP, 44, 4)
2153FIELD(ID_AA64ISAR0, FHM, 48, 4)
2154FIELD(ID_AA64ISAR0, TS, 52, 4)
2155FIELD(ID_AA64ISAR0, TLB, 56, 4)
2156FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2157
2158FIELD(ID_AA64ISAR1, DPB, 0, 4)
2159FIELD(ID_AA64ISAR1, APA, 4, 4)
2160FIELD(ID_AA64ISAR1, API, 8, 4)
2161FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2162FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2163FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2164FIELD(ID_AA64ISAR1, GPA, 24, 4)
2165FIELD(ID_AA64ISAR1, GPI, 28, 4)
2166FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2167FIELD(ID_AA64ISAR1, SB, 36, 4)
2168FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
2169FIELD(ID_AA64ISAR1, BF16, 44, 4)
2170FIELD(ID_AA64ISAR1, DGH, 48, 4)
2171FIELD(ID_AA64ISAR1, I8MM, 52, 4)
c42fb26b
RH
2172FIELD(ID_AA64ISAR1, XS, 56, 4)
2173FIELD(ID_AA64ISAR1, LS64, 60, 4)
2174
2175FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2176FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2177FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2178FIELD(ID_AA64ISAR2, APA3, 12, 4)
2179FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2180FIELD(ID_AA64ISAR2, BC, 20, 4)
2181FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
a62e62af 2182
cd208a1c
RH
2183FIELD(ID_AA64PFR0, EL0, 0, 4)
2184FIELD(ID_AA64PFR0, EL1, 4, 4)
2185FIELD(ID_AA64PFR0, EL2, 8, 4)
2186FIELD(ID_AA64PFR0, EL3, 12, 4)
2187FIELD(ID_AA64PFR0, FP, 16, 4)
2188FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2189FIELD(ID_AA64PFR0, GIC, 24, 4)
2190FIELD(ID_AA64PFR0, RAS, 28, 4)
2191FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
2192FIELD(ID_AA64PFR0, SEL2, 36, 4)
2193FIELD(ID_AA64PFR0, MPAM, 40, 4)
2194FIELD(ID_AA64PFR0, AMU, 44, 4)
2195FIELD(ID_AA64PFR0, DIT, 48, 4)
2196FIELD(ID_AA64PFR0, CSV2, 56, 4)
2197FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2198
be53b6f4 2199FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2200FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2201FIELD(ID_AA64PFR1, MTE, 8, 4)
2202FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2203FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
c42fb26b
RH
2204FIELD(ID_AA64PFR1, SME, 24, 4)
2205FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2206FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2207FIELD(ID_AA64PFR1, NMI, 36, 4)
be53b6f4 2208
3dc91ddb
PM
2209FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2210FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2211FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2212FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2213FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2214FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2215FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2216FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2217FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2218FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2219FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2220FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2221FIELD(ID_AA64MMFR0, FGT, 56, 4)
2222FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2223
2224FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2225FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2226FIELD(ID_AA64MMFR1, VH, 8, 4)
2227FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2228FIELD(ID_AA64MMFR1, LO, 16, 4)
2229FIELD(ID_AA64MMFR1, PAN, 20, 4)
2230FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2231FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2232FIELD(ID_AA64MMFR1, TWED, 32, 4)
2233FIELD(ID_AA64MMFR1, ETS, 36, 4)
c42fb26b
RH
2234FIELD(ID_AA64MMFR1, HCX, 40, 4)
2235FIELD(ID_AA64MMFR1, AFP, 44, 4)
2236FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2237FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2238FIELD(ID_AA64MMFR1, CMOW, 56, 4)
3dc91ddb 2239
64761e10
RH
2240FIELD(ID_AA64MMFR2, CNP, 0, 4)
2241FIELD(ID_AA64MMFR2, UAO, 4, 4)
2242FIELD(ID_AA64MMFR2, LSM, 8, 4)
2243FIELD(ID_AA64MMFR2, IESB, 12, 4)
2244FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2245FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2246FIELD(ID_AA64MMFR2, NV, 24, 4)
2247FIELD(ID_AA64MMFR2, ST, 28, 4)
2248FIELD(ID_AA64MMFR2, AT, 32, 4)
2249FIELD(ID_AA64MMFR2, IDS, 36, 4)
2250FIELD(ID_AA64MMFR2, FWB, 40, 4)
2251FIELD(ID_AA64MMFR2, TTL, 48, 4)
2252FIELD(ID_AA64MMFR2, BBM, 52, 4)
2253FIELD(ID_AA64MMFR2, EVT, 56, 4)
2254FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2255
ceb2744b
PM
2256FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2257FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2258FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2259FIELD(ID_AA64DFR0, BRPS, 12, 4)
2260FIELD(ID_AA64DFR0, WRPS, 20, 4)
2261FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2262FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2263FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2264FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
c42fb26b 2265FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
00a92832 2266FIELD(ID_AA64DFR0, MTPMU, 48, 4)
c42fb26b
RH
2267FIELD(ID_AA64DFR0, BRBE, 52, 4)
2268FIELD(ID_AA64DFR0, HPMN0, 60, 4)
ceb2744b 2269
2dc10fa2
RH
2270FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2271FIELD(ID_AA64ZFR0, AES, 4, 4)
2272FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2273FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2274FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2275FIELD(ID_AA64ZFR0, SM4, 40, 4)
2276FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2277FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2278FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2279
414c54d5
RH
2280FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2281FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2282FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2283FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2284FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2285FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2286FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2287FIELD(ID_AA64SMFR0, FA64, 63, 1)
2288
beceb99c
AL
2289FIELD(ID_DFR0, COPDBG, 0, 4)
2290FIELD(ID_DFR0, COPSDBG, 4, 4)
2291FIELD(ID_DFR0, MMAPDBG, 8, 4)
2292FIELD(ID_DFR0, COPTRC, 12, 4)
2293FIELD(ID_DFR0, MMAPTRC, 16, 4)
2294FIELD(ID_DFR0, MPROFDBG, 20, 4)
2295FIELD(ID_DFR0, PERFMON, 24, 4)
2296FIELD(ID_DFR0, TRACEFILT, 28, 4)
2297
bd78b6be 2298FIELD(ID_DFR1, MTPMU, 0, 4)
c42fb26b 2299FIELD(ID_DFR1, HPMN0, 4, 4)
bd78b6be 2300
88ce6c6e
PM
2301FIELD(DBGDIDR, SE_IMP, 12, 1)
2302FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2303FIELD(DBGDIDR, VERSION, 16, 4)
2304FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2305FIELD(DBGDIDR, BRPS, 24, 4)
2306FIELD(DBGDIDR, WRPS, 28, 4)
2307
f94a6df5
PM
2308FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2309FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2310FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2311FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2312FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2313FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2314FIELD(DBGDEVID, AUXREGS, 24, 4)
2315FIELD(DBGDEVID, CIDMASK, 28, 4)
2316
602f6e42
PM
2317FIELD(MVFR0, SIMDREG, 0, 4)
2318FIELD(MVFR0, FPSP, 4, 4)
2319FIELD(MVFR0, FPDP, 8, 4)
2320FIELD(MVFR0, FPTRAP, 12, 4)
2321FIELD(MVFR0, FPDIVIDE, 16, 4)
2322FIELD(MVFR0, FPSQRT, 20, 4)
2323FIELD(MVFR0, FPSHVEC, 24, 4)
2324FIELD(MVFR0, FPROUND, 28, 4)
2325
2326FIELD(MVFR1, FPFTZ, 0, 4)
2327FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2328FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2329FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2330FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2331FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2332FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2333FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2334FIELD(MVFR1, FPHP, 24, 4)
2335FIELD(MVFR1, SIMDFMAC, 28, 4)
2336
2337FIELD(MVFR2, SIMDMISC, 0, 4)
2338FIELD(MVFR2, FPMISC, 4, 4)
2339
43bbce7f
PM
2340QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2341
ce854d7c
BC
2342/* If adding a feature bit which corresponds to a Linux ELF
2343 * HWCAP bit, remember to update the feature-bit-to-hwcap
2344 * mapping in linux-user/elfload.c:get_elf_hwcap().
2345 */
40f137e1 2346enum arm_features {
c1713132
AZ
2347 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2348 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2349 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2350 ARM_FEATURE_V6,
2351 ARM_FEATURE_V6K,
2352 ARM_FEATURE_V7,
2353 ARM_FEATURE_THUMB2,
452a0955 2354 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2355 ARM_FEATURE_NEON,
9ee6e8bb 2356 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2357 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2358 ARM_FEATURE_THUMB2EE,
be5e7a76 2359 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2360 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2361 ARM_FEATURE_V4T,
2362 ARM_FEATURE_V5,
5bc95aa2 2363 ARM_FEATURE_STRONGARM,
906879a9 2364 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2365 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2366 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2367 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2368 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2369 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2370 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2371 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2372 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2373 ARM_FEATURE_V8,
3926cc84 2374 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2375 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2376 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2377 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2378 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2379 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2380 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2381 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2382 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2383 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2384 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2385};
2386
2387static inline int arm_feature(CPUARMState *env, int feature)
2388{
918f5dca 2389 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2390}
2391
0df9142d
AJ
2392void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2393
19e0fefa 2394#if !defined(CONFIG_USER_ONLY)
fcc7404e
RH
2395/*
2396 * Return true if exception levels below EL3 are in secure state,
19e0fefa
FA
2397 * or would be following an exception return to that level.
2398 * Unlike arm_is_secure() (which is always a question about the
2399 * _current_ state of the CPU) this doesn't care about the current
2400 * EL or mode.
2401 */
2402static inline bool arm_is_secure_below_el3(CPUARMState *env)
2403{
fcc7404e 2404 assert(!arm_feature(env, ARM_FEATURE_M));
19e0fefa
FA
2405 if (arm_feature(env, ARM_FEATURE_EL3)) {
2406 return !(env->cp15.scr_el3 & SCR_NS);
2407 } else {
6b7f0b61 2408 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
2409 * defined, in which case QEMU defaults to non-secure.
2410 */
2411 return false;
2412 }
2413}
2414
71205876
PM
2415/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2416static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa 2417{
fcc7404e 2418 assert(!arm_feature(env, ARM_FEATURE_M));
19e0fefa
FA
2419 if (arm_feature(env, ARM_FEATURE_EL3)) {
2420 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2421 /* CPU currently in AArch64 state and EL3 */
2422 return true;
2423 } else if (!is_a64(env) &&
2424 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2425 /* CPU currently in AArch32 state and monitor mode */
2426 return true;
2427 }
2428 }
71205876
PM
2429 return false;
2430}
2431
2432/* Return true if the processor is in secure state */
2433static inline bool arm_is_secure(CPUARMState *env)
2434{
9094f955
RH
2435 if (arm_feature(env, ARM_FEATURE_M)) {
2436 return env->v7m.secure;
2437 }
71205876
PM
2438 if (arm_is_el3_or_mon(env)) {
2439 return true;
2440 }
19e0fefa
FA
2441 return arm_is_secure_below_el3(env);
2442}
2443
f3ee5160
RDC
2444/*
2445 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2446 * This corresponds to the pseudocode EL2Enabled()
2447 */
b74c0443
RH
2448static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2449{
2450 return arm_feature(env, ARM_FEATURE_EL2)
2451 && (!secure || (env->cp15.scr_el3 & SCR_EEL2));
2452}
2453
f3ee5160
RDC
2454static inline bool arm_is_el2_enabled(CPUARMState *env)
2455{
b74c0443 2456 return arm_is_el2_enabled_secstate(env, arm_is_secure_below_el3(env));
f3ee5160
RDC
2457}
2458
19e0fefa
FA
2459#else
2460static inline bool arm_is_secure_below_el3(CPUARMState *env)
2461{
2462 return false;
2463}
2464
2465static inline bool arm_is_secure(CPUARMState *env)
2466{
2467 return false;
2468}
f3ee5160 2469
b74c0443
RH
2470static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2471{
2472 return false;
2473}
2474
f3ee5160
RDC
2475static inline bool arm_is_el2_enabled(CPUARMState *env)
2476{
2477 return false;
2478}
19e0fefa
FA
2479#endif
2480
f7778444
RH
2481/**
2482 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2483 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2484 * "for all purposes other than a direct read or write access of HCR_EL2."
2485 * Not included here is HCR_RW.
2486 */
b74c0443 2487uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure);
f7778444 2488uint64_t arm_hcr_el2_eff(CPUARMState *env);
5814d587 2489uint64_t arm_hcrx_el2_eff(CPUARMState *env);
f7778444 2490
1f79ee32
PM
2491/* Return true if the specified exception level is running in AArch64 state. */
2492static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2493{
446c81ab
PM
2494 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2495 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2496 */
446c81ab
PM
2497 assert(el >= 1 && el <= 3);
2498 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2499
446c81ab
PM
2500 /* The highest exception level is always at the maximum supported
2501 * register width, and then lower levels have a register width controlled
2502 * by bits in the SCR or HCR registers.
1f79ee32 2503 */
446c81ab
PM
2504 if (el == 3) {
2505 return aa64;
2506 }
2507
926c1b97
RDC
2508 if (arm_feature(env, ARM_FEATURE_EL3) &&
2509 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2510 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2511 }
2512
2513 if (el == 2) {
2514 return aa64;
2515 }
2516
e6ef0169 2517 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2518 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2519 }
2520
2521 return aa64;
1f79ee32
PM
2522}
2523
3f342b9e
SF
2524/* Function for determing whether guest cp register reads and writes should
2525 * access the secure or non-secure bank of a cp register. When EL3 is
2526 * operating in AArch32 state, the NS-bit determines whether the secure
2527 * instance of a cp register should be used. When EL3 is AArch64 (or if
2528 * it doesn't exist at all) then there is no register banking, and all
2529 * accesses are to the non-secure version.
2530 */
2531static inline bool access_secure_reg(CPUARMState *env)
2532{
2533 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2534 !arm_el_is_aa64(env, 3) &&
2535 !(env->cp15.scr_el3 & SCR_NS));
2536
2537 return ret;
2538}
2539
ea30a4b8
FA
2540/* Macros for accessing a specified CP register bank */
2541#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2542 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2543
2544#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2545 do { \
2546 if (_secure) { \
2547 (_env)->cp15._regname##_s = (_val); \
2548 } else { \
2549 (_env)->cp15._regname##_ns = (_val); \
2550 } \
2551 } while (0)
2552
2553/* Macros for automatically accessing a specific CP register bank depending on
2554 * the current secure state of the system. These macros are not intended for
2555 * supporting instruction translation reads/writes as these are dependent
2556 * solely on the SCR.NS bit and not the mode.
2557 */
2558#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2559 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2560 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2561
2562#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2563 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2564 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2565 (_val))
2566
0442428a 2567void arm_cpu_list(void);
012a906b
GB
2568uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2569 uint32_t cur_el, bool secure);
40f137e1 2570
75502672
PM
2571/* Return the highest implemented Exception Level */
2572static inline int arm_highest_el(CPUARMState *env)
2573{
2574 if (arm_feature(env, ARM_FEATURE_EL3)) {
2575 return 3;
2576 }
2577 if (arm_feature(env, ARM_FEATURE_EL2)) {
2578 return 2;
2579 }
2580 return 1;
2581}
2582
15b3f556
PM
2583/* Return true if a v7M CPU is in Handler mode */
2584static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2585{
2586 return env->v7m.exception != 0;
2587}
2588
dcbff19b
GB
2589/* Return the current Exception Level (as per ARMv8; note that this differs
2590 * from the ARMv7 Privilege Level).
2591 */
2592static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2593{
6d54ed3c 2594 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2595 return arm_v7m_is_handler_mode(env) ||
2596 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2597 }
2598
592125f8 2599 if (is_a64(env)) {
f5a0a5a5
PM
2600 return extract32(env->pstate, 2, 2);
2601 }
2602
592125f8
FA
2603 switch (env->uncached_cpsr & 0x1f) {
2604 case ARM_CPU_MODE_USR:
4b6a83fb 2605 return 0;
592125f8
FA
2606 case ARM_CPU_MODE_HYP:
2607 return 2;
2608 case ARM_CPU_MODE_MON:
2609 return 3;
2610 default:
2611 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2612 /* If EL3 is 32-bit then all secure privileged modes run in
2613 * EL3
2614 */
2615 return 3;
2616 }
2617
2618 return 1;
4b6a83fb 2619 }
4b6a83fb
PM
2620}
2621
721fae12
PM
2622/**
2623 * write_list_to_cpustate
2624 * @cpu: ARMCPU
2625 *
2626 * For each register listed in the ARMCPU cpreg_indexes list, write
2627 * its value from the cpreg_values list into the ARMCPUState structure.
2628 * This updates TCG's working data structures from KVM data or
2629 * from incoming migration state.
2630 *
2631 * Returns: true if all register values were updated correctly,
2632 * false if some register was unknown or could not be written.
2633 * Note that we do not stop early on failure -- we will attempt
2634 * writing all registers in the list.
2635 */
2636bool write_list_to_cpustate(ARMCPU *cpu);
2637
2638/**
2639 * write_cpustate_to_list:
2640 * @cpu: ARMCPU
b698e4ee 2641 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2642 *
2643 * For each register listed in the ARMCPU cpreg_indexes list, write
2644 * its value from the ARMCPUState structure into the cpreg_values list.
2645 * This is used to copy info from TCG's working data structures into
2646 * KVM or for outbound migration.
2647 *
b698e4ee
PM
2648 * @kvm_sync is true if we are doing this in order to sync the
2649 * register state back to KVM. In this case we will only update
2650 * values in the list if the previous list->cpustate sync actually
2651 * successfully wrote the CPU state. Otherwise we will keep the value
2652 * that is in the list.
2653 *
721fae12
PM
2654 * Returns: true if all register values were read correctly,
2655 * false if some register was unknown or could not be read.
2656 * Note that we do not stop early on failure -- we will attempt
2657 * reading all registers in the list.
2658 */
b698e4ee 2659bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2660
9ee6e8bb
PB
2661#define ARM_CPUID_TI915T 0x54029152
2662#define ARM_CPUID_TI925T 0x54029252
40f137e1 2663
ba1ba5cc
IM
2664#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2665#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2666#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2667
585df85e
PM
2668#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2669
c732abe2 2670#define cpu_list arm_cpu_list
9467d44c 2671
c1e37810
PM
2672/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2673 *
2674 * If EL3 is 64-bit:
2675 * + NonSecure EL1 & 0 stage 1
2676 * + NonSecure EL1 & 0 stage 2
2677 * + NonSecure EL2
b9f6033c
RH
2678 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2679 * + Secure EL1 & 0
c1e37810
PM
2680 * + Secure EL3
2681 * If EL3 is 32-bit:
2682 * + NonSecure PL1 & 0 stage 1
2683 * + NonSecure PL1 & 0 stage 2
2684 * + NonSecure PL2
b9f6033c
RH
2685 * + Secure PL0
2686 * + Secure PL1
c1e37810
PM
2687 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2688 *
2689 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2690 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2691 * because they may differ in access permissions even if the VA->PA map is
2692 * the same
c1e37810
PM
2693 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2694 * translation, which means that we have one mmu_idx that deals with two
2695 * concatenated translation regimes [this sort of combined s1+2 TLB is
2696 * architecturally permitted]
2697 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2698 * handling via the TLB. The only way to do a stage 1 translation without
2699 * the immediate stage 2 translation is via the ATS or AT system insns,
2700 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2701 * The only use of stage 2 translations is either as part of an s1+2
2702 * lookup or when loading the descriptors during a stage 1 page table walk,
2703 * and in both those cases we don't use the TLB.
c1e37810
PM
2704 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2705 * translation regimes, because they map reasonably well to each other
2706 * and they can't both be active at the same time.
b9f6033c
RH
2707 * 5. we want to be able to use the TLB for accesses done as part of a
2708 * stage1 page table walk, rather than having to walk the stage2 page
2709 * table over and over.
452ef8cb
RH
2710 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2711 * Never (PAN) bit within PSTATE.
d902ae75
RH
2712 * 7. we fold together the secure and non-secure regimes for A-profile,
2713 * because there are no banked system registers for aarch64, so the
2714 * process of switching between secure and non-secure is
2715 * already heavyweight.
c1e37810 2716 *
b9f6033c
RH
2717 * This gives us the following list of cases:
2718 *
d902ae75
RH
2719 * EL0 EL1&0 stage 1+2 (aka NS PL0)
2720 * EL1 EL1&0 stage 1+2 (aka NS PL1)
2721 * EL1 EL1&0 stage 1+2 +PAN
2722 * EL0 EL2&0
2723 * EL2 EL2&0
2724 * EL2 EL2&0 +PAN
2725 * EL2 (aka NS PL2)
2726 * EL3 (aka S PL1)
a1ce3084 2727 * Physical (NS & S)
575a94af 2728 * Stage2 (NS & S)
c1e37810 2729 *
575a94af 2730 * for a total of 12 different mmu_idx.
c1e37810 2731 *
3bef7012 2732 * R profile CPUs have an MPU, but can use the same set of MMU indexes
d902ae75
RH
2733 * as A profile. They only need to distinguish EL0 and EL1 (and
2734 * EL2 if we ever model a Cortex-R52).
3bef7012
PM
2735 *
2736 * M profile CPUs are rather different as they do not have a true MMU.
2737 * They have the following different MMU indexes:
2738 * User
2739 * Privileged
62593718
PM
2740 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2741 * Privileged, execution priority negative (ditto)
66787c78
PM
2742 * If the CPU supports the v8M Security Extension then there are also:
2743 * Secure User
2744 * Secure Privileged
62593718
PM
2745 * Secure User, execution priority negative
2746 * Secure Privileged, execution priority negative
3bef7012 2747 *
8bd5c820
PM
2748 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2749 * are not quite the same -- different CPU types (most notably M profile
2750 * vs A/R profile) would like to use MMU indexes with different semantics,
2751 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2752 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2753 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2754 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2755 * the same for any particular CPU.
2756 * Variables of type ARMMUIdx are always full values, and the core
2757 * index values are in variables of type 'int'.
2758 *
c1e37810
PM
2759 * Our enumeration includes at the end some entries which are not "true"
2760 * mmu_idx values in that they don't have corresponding TLBs and are only
2761 * valid for doing slow path page table walks.
2762 *
2763 * The constant names here are patterned after the general style of the names
2764 * of the AT/ATS operations.
2765 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2766 * For M profile we arrange them to have a bit for priv, a bit for negpri
2767 * and a bit for secure.
c1e37810 2768 */
b9f6033c
RH
2769#define ARM_MMU_IDX_A 0x10 /* A profile */
2770#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2771#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2772
b9f6033c
RH
2773/* Meanings of the bits for M profile mmu idx values */
2774#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2775#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2776#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2777
b9f6033c
RH
2778#define ARM_MMU_IDX_TYPE_MASK \
2779 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2780#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2781
c1e37810 2782typedef enum ARMMMUIdx {
b9f6033c
RH
2783 /*
2784 * A-profile.
2785 */
d902ae75
RH
2786 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2787 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
2788 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2789 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A,
2790 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2791 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2792 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
2793 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
b9f6033c 2794
a1ce3084
RH
2795 /* TLBs with 1-1 mapping to the physical address spaces. */
2796 ARMMMUIdx_Phys_NS = 8 | ARM_MMU_IDX_A,
2797 ARMMMUIdx_Phys_S = 9 | ARM_MMU_IDX_A,
2798
575a94af
RH
2799 /*
2800 * Used for second stage of an S12 page table walk, or for descriptor
2801 * loads during first stage of an S1 page table walk. Note that both
2802 * are in use simultaneously for SecureEL2: the security state for
2803 * the S2 ptw is selected by the NS bit from the S1 ptw.
2804 */
2805 ARMMMUIdx_Stage2 = 10 | ARM_MMU_IDX_A,
2806 ARMMMUIdx_Stage2_S = 11 | ARM_MMU_IDX_A,
2807
b9f6033c
RH
2808 /*
2809 * These are not allocated TLBs and are used only for AT system
2810 * instructions or for the first stage of an S12 page table walk.
2811 */
2812 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2813 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2814 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2815
2816 /*
2817 * M-profile.
2818 */
25568316
RH
2819 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2820 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2821 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2822 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2823 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2824 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2825 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2826 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2827} ARMMMUIdx;
2828
5f09a6df
RH
2829/*
2830 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2831 * for use when calling tlb_flush_by_mmuidx() and friends.
2832 */
5f09a6df
RH
2833#define TO_CORE_BIT(NAME) \
2834 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2835
8bd5c820 2836typedef enum ARMMMUIdxBit {
5f09a6df 2837 TO_CORE_BIT(E10_0),
b9f6033c 2838 TO_CORE_BIT(E20_0),
5f09a6df 2839 TO_CORE_BIT(E10_1),
452ef8cb 2840 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2841 TO_CORE_BIT(E2),
b9f6033c 2842 TO_CORE_BIT(E20_2),
452ef8cb 2843 TO_CORE_BIT(E20_2_PAN),
d902ae75 2844 TO_CORE_BIT(E3),
575a94af
RH
2845 TO_CORE_BIT(Stage2),
2846 TO_CORE_BIT(Stage2_S),
5f09a6df
RH
2847
2848 TO_CORE_BIT(MUser),
2849 TO_CORE_BIT(MPriv),
2850 TO_CORE_BIT(MUserNegPri),
2851 TO_CORE_BIT(MPrivNegPri),
2852 TO_CORE_BIT(MSUser),
2853 TO_CORE_BIT(MSPriv),
2854 TO_CORE_BIT(MSUserNegPri),
2855 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2856} ARMMMUIdxBit;
2857
5f09a6df
RH
2858#undef TO_CORE_BIT
2859
f79fbf39 2860#define MMU_USER_IDX 0
c1e37810 2861
9e273ef2
PM
2862/* Indexes used when registering address spaces with cpu_address_space_init */
2863typedef enum ARMASIdx {
2864 ARMASIdx_NS = 0,
2865 ARMASIdx_S = 1,
8bce44a2
RH
2866 ARMASIdx_TagNS = 2,
2867 ARMASIdx_TagS = 3,
9e273ef2
PM
2868} ARMASIdx;
2869
43bbce7f
PM
2870static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2871{
2872 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2873 * CSSELR is RAZ/WI.
2874 */
2875 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2876}
2877
f9fd40eb
PB
2878static inline bool arm_sctlr_b(CPUARMState *env)
2879{
2880 return
2881 /* We need not implement SCTLR.ITD in user-mode emulation, so
2882 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2883 * This lets people run BE32 binaries with "-cpu any".
2884 */
2885#ifndef CONFIG_USER_ONLY
2886 !arm_feature(env, ARM_FEATURE_V7) &&
2887#endif
2888 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2889}
2890
aaec1432 2891uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 2892
8061a649
RH
2893static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
2894 bool sctlr_b)
2895{
2896#ifdef CONFIG_USER_ONLY
2897 /*
2898 * In system mode, BE32 is modelled in line with the
2899 * architecture (as word-invariant big-endianness), where loads
2900 * and stores are done little endian but from addresses which
2901 * are adjusted by XORing with the appropriate constant. So the
2902 * endianness to use for the raw data access is not affected by
2903 * SCTLR.B.
2904 * In user mode, however, we model BE32 as byte-invariant
2905 * big-endianness (because user-only code cannot tell the
2906 * difference), and so we need to use a data access endianness
2907 * that depends on SCTLR.B.
2908 */
2909 if (sctlr_b) {
2910 return true;
2911 }
2912#endif
2913 /* In 32bit endianness is determined by looking at CPSR's E bit */
2914 return env->uncached_cpsr & CPSR_E;
2915}
2916
2917static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
2918{
2919 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
2920}
64e40755 2921
ed50ff78
PC
2922/* Return true if the processor is in big-endian mode. */
2923static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2924{
ed50ff78 2925 if (!is_a64(env)) {
8061a649 2926 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
2927 } else {
2928 int cur_el = arm_current_el(env);
2929 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 2930 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 2931 }
ed50ff78
PC
2932}
2933
022c62cb 2934#include "exec/cpu-all.h"
622ed360 2935
fdd1b228 2936/*
a378206a
RH
2937 * We have more than 32-bits worth of state per TB, so we split the data
2938 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
2939 * We collect these two parts in CPUARMTBFlags where they are named
2940 * flags and flags2 respectively.
fdd1b228 2941 *
a378206a
RH
2942 * The flags that are shared between all execution modes, TBFLAG_ANY,
2943 * are stored in flags. The flags that are specific to a given mode
2944 * are stores in flags2. Since cs_base is sized on the configured
2945 * address size, flags2 always has 64-bits for A64, and a minimum of
2946 * 32-bits for A32 and M32.
2947 *
2948 * The bits for 32-bit A-profile and M-profile partially overlap:
2949 *
5896f392
RH
2950 * 31 23 11 10 0
2951 * +-------------+----------+----------------+
2952 * | | | TBFLAG_A32 |
2953 * | TBFLAG_AM32 | +-----+----------+
2954 * | | |TBFLAG_M32|
2955 * +-------------+----------------+----------+
26702213 2956 * 31 23 6 5 0
79cabf1f 2957 *
fdd1b228 2958 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 2959 */
eee81d41
RH
2960FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
2961FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
2962FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
2963FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
2964FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 2965/* Target EL if we take a floating-point-disabled exception */
eee81d41 2966FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
4479ec30 2967/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
8480e933
RH
2968FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
2969FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
361c33f6 2970FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
34a8a07e 2971FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
79cabf1f 2972
8bd587c1 2973/*
79cabf1f 2974 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 2975 */
5896f392
RH
2976FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
2977FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 2978
79cabf1f
RH
2979/*
2980 * Bit usage when in AArch32 state, for A-profile only.
2981 */
5896f392
RH
2982FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
2983FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
2984/*
2985 * We store the bottom two bits of the CPAR as TB flags and handle
2986 * checks on the other bits at runtime. This shares the same bits as
2987 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 2988 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 2989 */
5896f392
RH
2990FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
2991FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
2992FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
2993FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
2994/*
2995 * Indicates whether cp register reads and writes by guest code should access
2996 * the secure or nonsecure bank of banked registers; note that this is not
2997 * the same thing as the current security state of the processor!
2998 */
5896f392 2999FIELD(TBFLAG_A32, NS, 10, 1)
75fe8356
RH
3000/*
3001 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3002 * This requires an SME trap from AArch32 mode when using NEON.
3003 */
3004FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
79cabf1f
RH
3005
3006/*
3007 * Bit usage when in AArch32 state, for M-profile only.
3008 */
3009/* Handler (ie not Thread) mode */
5896f392 3010FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3011/* Whether we should generate stack-limit checks */
5896f392 3012FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3013/* Set if FPCCR.LSPACT is set */
5896f392 3014FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3015/* Set if we must create a new FP context */
5896f392 3016FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3017/* Set if FPCCR.S does not match current security state */
5896f392 3018FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3019/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3020FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
a393dee0
RH
3021/* Set if in secure mode */
3022FIELD(TBFLAG_M32, SECURE, 6, 1)
79cabf1f
RH
3023
3024/*
3025 * Bit usage when in AArch64 state
3026 */
476a4692 3027FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac 3028FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
f45ce4c3
RH
3029/* The current vector length, either NVL or SVL. */
3030FIELD(TBFLAG_A64, VL, 4, 4)
0816ef1b 3031FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3032FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3033FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3034FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3035FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3036FIELD(TBFLAG_A64, ATA, 15, 1)
3037FIELD(TBFLAG_A64, TCMA, 16, 2)
3038FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3039FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
6b2ca83e 3040FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
a3637e88
RH
3041FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3042FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
5d7953ad 3043FIELD(TBFLAG_A64, SVL, 24, 4)
75fe8356
RH
3044/* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3045FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
5572f755 3046FIELD(TBFLAG_A64, FGT_ERET, 29, 1)
a1705768 3047
a729a46b
RH
3048/*
3049 * Helpers for using the above.
3050 */
3051#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3052 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3053#define DP_TBFLAG_A64(DST, WHICH, VAL) \
a378206a 3054 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3055#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3056 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3057#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3058 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3059#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3060 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3061
3902bfc6 3062#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
a378206a
RH
3063#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3064#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3065#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3066#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3067
fb901c90
RH
3068/**
3069 * cpu_mmu_index:
3070 * @env: The cpu environment
3071 * @ifetch: True for code access, false for data access.
3072 *
3073 * Return the core mmu index for the current translation regime.
3074 * This function is used by generic TCG code paths.
3075 */
3076static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3077{
a729a46b 3078 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3079}
3080
8b599e5c
RH
3081/**
3082 * sve_vq
3083 * @env: the cpu context
3084 *
3085 * Return the VL cached within env->hflags, in units of quadwords.
3086 */
3087static inline int sve_vq(CPUARMState *env)
3088{
3089 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3090}
3091
5d7953ad
RH
3092/**
3093 * sme_vq
3094 * @env: the cpu context
3095 *
3096 * Return the SVL cached within env->hflags, in units of quadwords.
3097 */
3098static inline int sme_vq(CPUARMState *env)
3099{
3100 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3101}
3102
f9fd40eb
PB
3103static inline bool bswap_code(bool sctlr_b)
3104{
3105#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3106 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3107 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3108 * would also end up as a mixed-endian mode with BE code, LE data.
3109 */
3110 return
ee3eb3a7 3111#if TARGET_BIG_ENDIAN
f9fd40eb
PB
3112 1 ^
3113#endif
3114 sctlr_b;
3115#else
e334bd31
PB
3116 /* All code access in ARM is little endian, and there are no loaders
3117 * doing swaps that need to be reversed
f9fd40eb
PB
3118 */
3119 return 0;
3120#endif
3121}
3122
c3ae85fc
PB
3123#ifdef CONFIG_USER_ONLY
3124static inline bool arm_cpu_bswap_data(CPUARMState *env)
3125{
3126 return
ee3eb3a7 3127#if TARGET_BIG_ENDIAN
c3ae85fc
PB
3128 1 ^
3129#endif
3130 arm_cpu_data_is_big_endian(env);
3131}
3132#endif
3133
a9e01311
RH
3134void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3135 target_ulong *cs_base, uint32_t *flags);
6b917547 3136
98128601
RH
3137enum {
3138 QEMU_PSCI_CONDUIT_DISABLED = 0,
3139 QEMU_PSCI_CONDUIT_SMC = 1,
3140 QEMU_PSCI_CONDUIT_HVC = 2,
3141};
3142
017518c1
PM
3143#ifndef CONFIG_USER_ONLY
3144/* Return the address space index to use for a memory access */
3145static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3146{
3147 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3148}
5ce4ff65
PM
3149
3150/* Return the AddressSpace to use for a memory access
3151 * (which depends on whether the access is S or NS, and whether
3152 * the board gave us a separate AddressSpace for S accesses).
3153 */
3154static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3155{
3156 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3157}
017518c1
PM
3158#endif
3159
bd7d00fc 3160/**
b5c53d1b
AL
3161 * arm_register_pre_el_change_hook:
3162 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3163 * CPU changes exception level or mode. The hook function will be
3164 * passed a pointer to the ARMCPU and the opaque data pointer passed
3165 * to this function when the hook was registered.
b5c53d1b
AL
3166 *
3167 * Note that if a pre-change hook is called, any registered post-change hooks
3168 * are guaranteed to subsequently be called.
bd7d00fc 3169 */
b5c53d1b 3170void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3171 void *opaque);
b5c53d1b
AL
3172/**
3173 * arm_register_el_change_hook:
3174 * Register a hook function which will be called immediately after this
3175 * CPU changes exception level or mode. The hook function will be
3176 * passed a pointer to the ARMCPU and the opaque data pointer passed
3177 * to this function when the hook was registered.
3178 *
3179 * Note that any registered hooks registered here are guaranteed to be called
3180 * if pre-change hooks have been.
3181 */
3182void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3183 *opaque);
bd7d00fc 3184
3d74e2e9
RH
3185/**
3186 * arm_rebuild_hflags:
3187 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3188 */
3189void arm_rebuild_hflags(CPUARMState *env);
3190
9a2b5256
RH
3191/**
3192 * aa32_vfp_dreg:
3193 * Return a pointer to the Dn register within env in 32-bit mode.
3194 */
3195static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3196{
c39c2b90 3197 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3198}
3199
3200/**
3201 * aa32_vfp_qreg:
3202 * Return a pointer to the Qn register within env in 32-bit mode.
3203 */
3204static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3205{
c39c2b90 3206 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3207}
3208
3209/**
3210 * aa64_vfp_qreg:
3211 * Return a pointer to the Qn register within env in 64-bit mode.
3212 */
3213static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3214{
c39c2b90 3215 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3216}
3217
028e2a7b 3218/* Shared between translate-sve.c and sve_helper.c. */
fca75f60 3219extern const uint64_t pred_esz_masks[5];
028e2a7b 3220
be5d6f48
RH
3221/*
3222 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
7f2cf760
RH
3223 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3224 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
be5d6f48 3225 */
7f2cf760
RH
3226#define PAGE_BTI PAGE_TARGET_1
3227#define PAGE_MTE PAGE_TARGET_2
3228#define PAGE_TARGET_STICKY PAGE_MTE
be5d6f48 3229
50d4c8c1
RH
3230/* We associate one allocation tag per 16 bytes, the minimum. */
3231#define LOG2_TAG_GRANULE 4
3232#define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
3233
3234#ifdef CONFIG_USER_ONLY
3235#define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3236#endif
3237
0e0c030c
RH
3238#ifdef TARGET_TAGGED_ADDRESSES
3239/**
3240 * cpu_untagged_addr:
3241 * @cs: CPU context
3242 * @x: tagged address
3243 *
3244 * Remove any address tag from @x. This is explicitly related to the
3245 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3246 *
3247 * There should be a better place to put this, but we need this in
3248 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3249 */
3250static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3251{
3252 ARMCPU *cpu = ARM_CPU(cs);
3253 if (cpu->env.tagged_addr_enable) {
3254 /*
3255 * TBI is enabled for userspace but not kernelspace addresses.
3256 * Only clear the tag if bit 55 is clear.
3257 */
3258 x &= sextract64(x, 0, 56);
3259 }
3260 return x;
3261}
3262#endif
3263
873b73c0
PM
3264/*
3265 * Naming convention for isar_feature functions:
3266 * Functions which test 32-bit ID registers should have _aa32_ in
3267 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3268 * _aa64_ in their name. These must only be used in code where we
3269 * know for certain that the CPU has AArch32 or AArch64 respectively
3270 * or where the correct answer for a CPU which doesn't implement that
3271 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3272 * system registers that are specific to that CPU state, for "should
3273 * we let this system register bit be set" tests where the 32-bit
3274 * flavour of the register doesn't have the bit, and so on).
3275 * Functions which simply ask "does this feature exist at all" have
3276 * _any_ in their name, and always return the logical OR of the _aa64_
3277 * and the _aa32_ function.
873b73c0
PM
3278 */
3279
962fcbf2
RH
3280/*
3281 * 32-bit feature tests via id registers.
3282 */
873b73c0 3283static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3284{
3285 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3286}
3287
873b73c0 3288static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3289{
3290 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3291}
05903f03
PM
3292
3293static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3294{
3295 /* (M-profile) low-overhead loops and branch future */
3296 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3297}
7e0cf8b4 3298
873b73c0 3299static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3300{
3301 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3302}
3303
962fcbf2
RH
3304static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3305{
3306 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3307}
3308
3309static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3310{
3311 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3312}
3313
3314static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3315{
3316 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3317}
3318
3319static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3320{
3321 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3322}
3323
3324static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3325{
3326 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3327}
3328
3329static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3330{
3331 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3332}
3333
3334static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3335{
3336 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3337}
3338
6c1f6f27
RH
3339static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3340{
3341 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3342}
3343
962fcbf2
RH
3344static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3345{
3346 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3347}
3348
87732318
RH
3349static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3350{
3351 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3352}
3353
9888bd1e
RH
3354static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3355{
3356 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3357}
3358
cb570bd3
RH
3359static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3360{
3361 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3362}
3363
c0b9e8a4
RH
3364static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3365{
3366 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3367}
3368
51879c67
RH
3369static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3370{
3371 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3372}
3373
46f4976f
PM
3374static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3375{
3376 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3377}
3378
dfc523a8
PM
3379static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3380{
3381 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3382}
3383
83ff3d6a
PM
3384static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3385{
3386 /*
3387 * Return true if M-profile state handling insns
3388 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3389 */
3390 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3391}
3392
5763190f
RH
3393static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3394{
dfc523a8
PM
3395 /* Sadly this is encoded differently for A-profile and M-profile */
3396 if (isar_feature_aa32_mprofile(id)) {
3397 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3398 } else {
3399 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3400 }
5763190f
RH
3401}
3402
7df6a1ff
PM
3403static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3404{
3405 /*
3406 * Return true if MVE is supported (either integer or floating point).
3407 * We must check for M-profile as the MVFR1 field means something
3408 * else for A-profile.
3409 */
3410 return isar_feature_aa32_mprofile(id) &&
3411 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3412}
3413
3414static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3415{
3416 /*
3417 * Return true if MVE is supported (either integer or floating point).
3418 * We must check for M-profile as the MVFR1 field means something
3419 * else for A-profile.
3420 */
3421 return isar_feature_aa32_mprofile(id) &&
3422 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3423}
3424
7fbc6a40
RH
3425static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3426{
3427 /*
3428 * Return true if either VFP or SIMD is implemented.
3429 * In this case, a minimum of VFP w/ D0-D15.
3430 */
3431 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3432}
3433
0e13ba78 3434static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3435{
3436 /* Return true if D16-D31 are implemented */
b3a816f6 3437 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3438}
3439
266bd25c
PM
3440static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3441{
b3a816f6 3442 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3443}
3444
f67957e1
RH
3445static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3446{
3447 /* Return true if CPU supports single precision floating point, VFPv2 */
3448 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3449}
3450
3451static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3452{
3453 /* Return true if CPU supports single precision floating point, VFPv3 */
3454 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3455}
3456
c4ff8735 3457static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3458{
c4ff8735 3459 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3460 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3461}
3462
f67957e1
RH
3463static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3464{
3465 /* Return true if CPU supports double precision floating point, VFPv3 */
3466 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3467}
3468
7d63183f
RH
3469static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3470{
3471 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3472}
3473
602f6e42
PM
3474/*
3475 * We always set the FP and SIMD FP16 fields to indicate identical
3476 * levels of support (assuming SIMD is implemented at all), so
3477 * we only need one set of accessors.
3478 */
3479static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3480{
b3a816f6 3481 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3482}
3483
3484static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3485{
b3a816f6 3486 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3487}
3488
c52881bb
RH
3489/*
3490 * Note that this ID register field covers both VFP and Neon FMAC,
3491 * so should usually be tested in combination with some other
3492 * check that confirms the presence of whichever of VFP or Neon is
3493 * relevant, to avoid accidentally enabling a Neon feature on
3494 * a VFP-no-Neon core or vice-versa.
3495 */
3496static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3497{
3498 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3499}
3500
c0c760af
PM
3501static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3502{
b3a816f6 3503 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3504}
3505
3506static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3507{
b3a816f6 3508 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3509}
3510
3511static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3512{
b3a816f6 3513 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3514}
3515
3516static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3517{
b3a816f6 3518 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3519}
3520
0ae0326b
PM
3521static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3522{
3523 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3524}
3525
3d6ad6bb
RH
3526static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3527{
10054016 3528 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3529}
3530
3531static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3532{
10054016 3533 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3534}
3535
a793bcd0 3536static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id)
a6179538
PM
3537{
3538 /* 0xf means "non-standard IMPDEF PMU" */
3539 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3540 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3541}
3542
a793bcd0 3543static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id)
15dd1ebd
PM
3544{
3545 /* 0xf means "non-standard IMPDEF PMU" */
3546 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3547 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3548}
3549
0b42f4fa
PM
3550static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id)
3551{
3552 /* 0xf means "non-standard IMPDEF PMU" */
3553 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 &&
3554 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3555}
3556
4036b7d1
PM
3557static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3558{
3559 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3560}
3561
f6287c24
PM
3562static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3563{
3564 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3565}
3566
957e6155
PM
3567static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3568{
3569 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3570}
3571
ce3125be
PM
3572static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3573{
3574 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3575}
3576
d2fd9313
PM
3577static inline bool isar_feature_aa32_half_evt(const ARMISARegisters *id)
3578{
3579 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 1;
3580}
3581
3582static inline bool isar_feature_aa32_evt(const ARMISARegisters *id)
3583{
3584 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 2;
3585}
3586
dc8b1853
RC
3587static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3588{
3589 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3590}
3591
f2f68a78
RC
3592static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3593{
3594 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3595}
3596
09754ca8
PM
3597static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3598{
3599 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3600}
3601
ca56aac5
RH
3602static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3603{
3604 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3605}
3606
f94a6df5
PM
3607static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3608{
3609 return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3610}
3611
962fcbf2
RH
3612/*
3613 * 64-bit feature tests via id registers.
3614 */
3615static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3616{
3617 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3618}
3619
3620static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3621{
3622 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3623}
3624
3625static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3626{
3627 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3628}
3629
3630static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3631{
3632 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3633}
3634
3635static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3636{
3637 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3638}
3639
3640static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3641{
3642 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3643}
3644
3645static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3646{
3647 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3648}
3649
3650static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3651{
3652 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3653}
3654
3655static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3656{
3657 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3658}
3659
3660static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3661{
3662 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3663}
3664
3665static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3666{
3667 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3668}
3669
3670static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3671{
3672 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3673}
3674
0caa5af8
RH
3675static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3676{
3677 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3678}
3679
b89d9c98
RH
3680static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3681{
3682 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3683}
3684
5ef84f11
RH
3685static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3686{
3687 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3688}
3689
de390645
RH
3690static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3691{
3692 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3693}
3694
6c1f6f27
RH
3695static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3696{
3697 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3698}
3699
962fcbf2
RH
3700static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3701{
3702 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3703}
3704
991ad91b
RH
3705static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3706{
3707 /*
283fc52a
RH
3708 * Return true if any form of pauth is enabled, as this
3709 * predicate controls migration of the 128-bit keys.
991ad91b
RH
3710 */
3711 return (id->id_aa64isar1 &
3712 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3713 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3714 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3715 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3716}
3717
283fc52a
RH
3718static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3719{
3720 /*
3721 * Return true if pauth is enabled with the architected QARMA algorithm.
3722 * QEMU will always set APA+GPA to the same value.
3723 */
3724 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3725}
3726
84940ed8
RC
3727static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3728{
3729 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3730}
3731
7113d618
RC
3732static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3733{
3734 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3735}
3736
9888bd1e
RH
3737static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3738{
3739 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3740}
3741
cb570bd3
RH
3742static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3743{
3744 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3745}
3746
6bea2563
RH
3747static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3748{
3749 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3750}
3751
0d57b499
BM
3752static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3753{
3754 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3755}
3756
3757static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3758{
3759 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3760}
3761
c0b9e8a4
RH
3762static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3763{
3764 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3765}
3766
7d63183f
RH
3767static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3768{
3769 /* We always set the AdvSIMD and FP fields identically. */
3770 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3771}
3772
5763190f
RH
3773static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3774{
3775 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3776 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3777}
3778
0f8d06f1
RH
3779static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3780{
3781 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3782}
3783
10d0ef3e
MN
3784static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3785{
3786 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3787}
3788
6bcbb07a
RH
3789static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3790{
3791 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3792}
3793
25e168ab
RH
3794static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3795{
3796 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3797}
3798
7ac61020
PM
3799static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3800{
3801 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3802}
3803
cd208a1c
RH
3804static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3805{
3806 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3807}
3808
5ca192df
RDC
3809static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3810{
3811 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3812}
3813
8fc2ea21
RH
3814static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3815{
3816 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3817}
3818
2d7137c1
RH
3819static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3820{
3821 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3822}
3823
3d6ad6bb
RH
3824static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3825{
3826 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3827}
3828
3829static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3830{
3831 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3832}
3833
dd17143f
PM
3834static inline bool isar_feature_aa64_pan3(const ARMISARegisters *id)
3835{
3836 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 3;
3837}
3838
5814d587
RH
3839static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3840{
3841 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3842}
3843
9eeb7a1c
RH
3844static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3845{
3846 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3847}
3848
c36c65ea
RDC
3849static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3850{
3851 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3852}
3853
cf1cbf50
RH
3854static inline bool isar_feature_aa64_lse2(const ARMISARegisters *id)
3855{
3856 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, AT) != 0;
3857}
3858
8c7e17ef
PM
3859static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
3860{
3861 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
3862}
3863
75662f36
PM
3864static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
3865{
3866 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
3867}
3868
d2fd9313
PM
3869static inline bool isar_feature_aa64_half_evt(const ARMISARegisters *id)
3870{
3871 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 1;
3872}
3873
3874static inline bool isar_feature_aa64_evt(const ARMISARegisters *id)
3875{
3876 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 2;
3877}
3878
be53b6f4
RH
3879static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3880{
3881 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3882}
3883
c7fd0baa
RH
3884static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3885{
3886 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3887}
3888
3889static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3890{
3891 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3892}
3893
f305bf94
RH
3894static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
3895{
3896 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
3897}
3898
a793bcd0 3899static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
2a609df8
PM
3900{
3901 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3902 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3903}
3904
a793bcd0 3905static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 3906{
54117b90
PM
3907 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3908 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
3909}
3910
0b42f4fa
PM
3911static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id)
3912{
3913 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 &&
3914 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3915}
3916
2677cf9f
PM
3917static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3918{
3919 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3920}
3921
a1229109
PM
3922static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3923{
3924 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3925}
3926
f7da051f
RH
3927static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
3928{
3929 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
3930}
3931
ef56c242
RH
3932static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
3933{
3934 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
3935}
3936
3937static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
3938{
3939 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
3940 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
3941}
3942
3943static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
3944{
3945 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
3946}
3947
3948static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
3949{
3950 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
3951 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
3952}
3953
104f703d
PM
3954static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id)
3955{
3956 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0;
3957}
3958
3959static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id)
3960{
3961 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1;
3962}
3963
3964static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id)
3965{
3966 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0;
3967}
3968
3969static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id)
3970{
3971 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
3972 return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id));
3973}
3974
3975static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id)
3976{
3977 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
3978 return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id));
3979}
3980
3981static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id)
3982{
3983 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2);
3984 return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id));
3985}
3986
15126d9c
PM
3987static inline bool isar_feature_aa64_fgt(const ARMISARegisters *id)
3988{
3989 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, FGT) != 0;
3990}
3991
957e6155
PM
3992static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
3993{
3994 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
3995}
3996
0af312b6
RH
3997static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
3998{
3999 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4000}
4001
e4c93e44
PM
4002static inline bool isar_feature_aa64_e0pd(const ARMISARegisters *id)
4003{
4004 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, E0PD) != 0;
4005}
4006
980a6892
RH
4007static inline bool isar_feature_aa64_hafs(const ARMISARegisters *id)
4008{
4009 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) != 0;
4010}
4011
4012static inline bool isar_feature_aa64_hdbs(const ARMISARegisters *id)
4013{
4014 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) >= 2;
4015}
4016
ce3125be
PM
4017static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4018{
4019 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4020}
4021
dc8b1853
RC
4022static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4023{
4024 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4025}
4026
7cb1e618
RH
4027static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4028{
4029 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4030 if (key >= 2) {
4031 return true; /* FEAT_CSV2_2 */
4032 }
4033 if (key == 1) {
4034 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4035 return key >= 2; /* FEAT_CSV2_1p2 */
4036 }
4037 return false;
4038}
4039
f2f68a78
RC
4040static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4041{
4042 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4043}
4044
ca56aac5
RH
4045static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4046{
4047 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4048}
4049
2dc10fa2
RH
4050static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4051{
4052 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4053}
4054
e3a56131
RH
4055static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4056{
4057 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4058}
4059
4060static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4061{
4062 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4063}
4064
cb9c33b8
RH
4065static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4066{
4067 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4068}
4069
c0b9e8a4
RH
4070static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4071{
4072 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4073}
4074
3358eb3f
RH
4075static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4076{
4077 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4078}
4079
3cc7a88e
RH
4080static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4081{
4082 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4083}
4084
2867039a
RH
4085static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4086{
4087 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4088}
4089
4f26756b
SL
4090static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4091{
4092 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4093}
4094
4095static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4096{
4097 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4098}
4099
414c54d5
RH
4100static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4101{
4102 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4103}
4104
4105static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4106{
4107 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4108}
4109
4110static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4111{
4112 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4113}
4114
f94a6df5
PM
4115static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4116{
4117 return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4118}
4119
6e61f839
PM
4120/*
4121 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4122 */
4123static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4124{
4125 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4126}
4127
22e57073
PM
4128static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4129{
4130 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4131}
4132
a793bcd0 4133static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id)
2a609df8 4134{
a793bcd0 4135 return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id);
2a609df8
PM
4136}
4137
a793bcd0 4138static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 4139{
a793bcd0 4140 return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id);
15dd1ebd
PM
4141}
4142
0b42f4fa
PM
4143static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id)
4144{
4145 return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id);
4146}
4147
957e6155
PM
4148static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4149{
4150 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4151}
4152
ce3125be
PM
4153static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4154{
4155 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4156}
4157
ca56aac5
RH
4158static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4159{
4160 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4161}
4162
25e168ab
RH
4163static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4164{
4165 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4166}
4167
d2fd9313
PM
4168static inline bool isar_feature_any_half_evt(const ARMISARegisters *id)
4169{
4170 return isar_feature_aa64_half_evt(id) || isar_feature_aa32_half_evt(id);
4171}
4172
4173static inline bool isar_feature_any_evt(const ARMISARegisters *id)
4174{
4175 return isar_feature_aa64_evt(id) || isar_feature_aa32_evt(id);
4176}
4177
962fcbf2
RH
4178/*
4179 * Forward to the above feature tests given an ARMCPU pointer.
4180 */
4181#define cpu_isar_feature(name, cpu) \
4182 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4183
2c0262af 4184#endif