]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
accel/tcg: Fix typo in translator_io_start() description
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
68970d1e 28#include "qapi/qapi-types-common.h"
9042c0e2 29
ca759f9e
AB
30/* ARM processors have a weak memory model */
31#define TCG_GUEST_DEFAULT_MO (0)
32
e24fd076
DG
33#ifdef TARGET_AARCH64
34#define KVM_HAVE_MCE_INJECTION 1
35#endif
36
b8a9e8f1
FB
37#define EXCP_UDEF 1 /* undefined instruction */
38#define EXCP_SWI 2 /* software interrupt */
39#define EXCP_PREFETCH_ABORT 3
40#define EXCP_DATA_ABORT 4
b5ff1b31
FB
41#define EXCP_IRQ 5
42#define EXCP_FIQ 6
06c949e6 43#define EXCP_BKPT 7
9ee6e8bb 44#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 45#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 46#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 47#define EXCP_HYP_TRAP 12
e0d6e6a5 48#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
49#define EXCP_VIRQ 14
50#define EXCP_VFIQ 15
19a6e31c 51#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 52#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 53#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 54#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 55#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
56#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 58#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
3c29632f 59#define EXCP_VSERR 24
11b76fda 60#define EXCP_GPC 25 /* v9 Granule Protection Check Fault */
2c4a7cc5 61/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
62
63#define ARMV7M_EXCP_RESET 1
64#define ARMV7M_EXCP_NMI 2
65#define ARMV7M_EXCP_HARD 3
66#define ARMV7M_EXCP_MEM 4
67#define ARMV7M_EXCP_BUS 5
68#define ARMV7M_EXCP_USAGE 6
1e577cc7 69#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
70#define ARMV7M_EXCP_SVC 11
71#define ARMV7M_EXCP_DEBUG 12
72#define ARMV7M_EXCP_PENDSV 14
73#define ARMV7M_EXCP_SYSTICK 15
2c0262af 74
acf94941
PM
75/* For M profile, some registers are banked secure vs non-secure;
76 * these are represented as a 2-element array where the first element
77 * is the non-secure copy and the second is the secure copy.
78 * When the CPU does not have implement the security extension then
79 * only the first element is used.
80 * This means that the copy for the current security state can be
81 * accessed via env->registerfield[env->v7m.secure] (whether the security
82 * extension is implemented or not).
83 */
4a16724f
PM
84enum {
85 M_REG_NS = 0,
86 M_REG_S = 1,
87 M_REG_NUM_BANKS = 2,
88};
acf94941 89
403946c0
RH
90/* ARM-specific interrupt pending bits. */
91#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
92#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
93#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
3c29632f 94#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
403946c0 95
e4fe830b
PM
96/* The usual mapping for an AArch64 system register to its AArch32
97 * counterpart is for the 32 bit world to have access to the lower
98 * half only (with writes leaving the upper half untouched). It's
99 * therefore useful to be able to pass TCG the offset of the least
100 * significant half of a uint64_t struct member.
101 */
e03b5686 102#if HOST_BIG_ENDIAN
5cd8a118 103#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 104#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
105#else
106#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 107#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
108#endif
109
136e67e9 110/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
111#define ARM_CPU_IRQ 0
112#define ARM_CPU_FIQ 1
136e67e9
EI
113#define ARM_CPU_VIRQ 2
114#define ARM_CPU_VFIQ 3
403946c0 115
aaa1f954
EI
116/* ARM-specific extra insn start words:
117 * 1: Conditional execution bits
118 * 2: Partial exception syndrome for data aborts
119 */
120#define TARGET_INSN_START_EXTRA_WORDS 2
121
122/* The 2nd extra word holding syndrome info for data aborts does not use
123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
124 * help the sleb128 encoder do a better job.
125 * When restoring the CPU state, we shift it back up.
126 */
127#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
128#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 129
b7bcbe95
FB
130/* We currently assume float and double are IEEE single and double
131 precision respectively.
132 Doing runtime conversions is tricky because VFP registers may contain
133 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
134 s<2n> maps to the least significant half of d<n>
135 s<2n+1> maps to the most significant half of d<n>
136 */
b7bcbe95 137
200bf5b7
AB
138/**
139 * DynamicGDBXMLInfo:
140 * @desc: Contains the XML descriptions.
448d4d14
AB
141 * @num: Number of the registers in this XML seen by GDB.
142 * @data: A union with data specific to the set of registers
143 * @cpregs_keys: Array that contains the corresponding Key of
144 * a given cpreg with the same order of the cpreg
145 * in the XML description.
200bf5b7
AB
146 */
147typedef struct DynamicGDBXMLInfo {
148 char *desc;
448d4d14
AB
149 int num;
150 union {
151 struct {
152 uint32_t *keys;
153 } cpregs;
154 } data;
200bf5b7
AB
155} DynamicGDBXMLInfo;
156
55d284af
PM
157/* CPU state for each instance of a generic timer (in cp15 c14) */
158typedef struct ARMGenericTimer {
159 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 160 uint64_t ctl; /* Timer Control register */
55d284af
PM
161} ARMGenericTimer;
162
8c94b071
RH
163#define GTIMER_PHYS 0
164#define GTIMER_VIRT 1
165#define GTIMER_HYP 2
166#define GTIMER_SEC 3
167#define GTIMER_HYPVIRT 4
168#define NUM_GTIMERS 5
55d284af 169
e9152ee9
RDC
170#define VTCR_NSW (1u << 29)
171#define VTCR_NSA (1u << 30)
172#define VSTCR_SW VTCR_NSW
173#define VSTCR_SA VTCR_NSA
174
c39c2b90
RH
175/* Define a maximum sized vector register.
176 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
177 * For 64-bit, this is a 2048-bit SVE register.
178 *
179 * Note that the mapping between S, D, and Q views of the register bank
180 * differs between AArch64 and AArch32.
181 * In AArch32:
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n / 2].d[n & 1]
184 * Sn = regs[n / 4].d[n % 4 / 2],
185 * bits 31..0 for even n, and bits 63..32 for odd n
186 * (and regs[16] to regs[31] are inaccessible)
187 * In AArch64:
188 * Zn = regs[n].d[*]
189 * Qn = regs[n].d[1]:regs[n].d[0]
190 * Dn = regs[n].d[0]
191 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 192 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
193 *
194 * This corresponds to the architecturally defined mapping between
195 * the two execution states, and means we do not need to explicitly
196 * map these registers when changing states.
197 *
198 * Align the data for use with TCG host vector operations.
199 */
200
201#ifdef TARGET_AARCH64
202# define ARM_MAX_VQ 16
203#else
204# define ARM_MAX_VQ 1
205#endif
206
207typedef struct ARMVectorReg {
208 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
209} ARMVectorReg;
210
3c7d3086 211#ifdef TARGET_AARCH64
991ad91b 212/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 213typedef struct ARMPredicateReg {
46417784 214 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 215} ARMPredicateReg;
991ad91b
RH
216
217/* In AArch32 mode, PAC keys do not exist at all. */
218typedef struct ARMPACKey {
219 uint64_t lo, hi;
220} ARMPACKey;
3c7d3086
RH
221#endif
222
3902bfc6
RH
223/* See the commentary above the TBFLAG field definitions. */
224typedef struct CPUARMTBFlags {
225 uint32_t flags;
a378206a 226 target_ulong flags2;
3902bfc6 227} CPUARMTBFlags;
c39c2b90 228
f3639a64
RH
229typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
230
8f4e07c9
PMD
231typedef struct NVICState NVICState;
232
1ea4a06a 233typedef struct CPUArchState {
b5ff1b31 234 /* Regs for current mode. */
2c0262af 235 uint32_t regs[16];
3926cc84
AG
236
237 /* 32/64 switch only happens when taking and returning from
238 * exceptions so the overlap semantics are taken care of then
239 * instead of having a complicated union.
240 */
241 /* Regs for A64 mode. */
242 uint64_t xregs[32];
243 uint64_t pc;
d356312f
PM
244 /* PSTATE isn't an architectural register for ARMv8. However, it is
245 * convenient for us to assemble the underlying state into a 32 bit format
246 * identical to the architectural format used for the SPSR. (This is also
247 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
248 * 'pstate' register are.) Of the PSTATE bits:
249 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
250 * semantics as for AArch32, as described in the comments on each field)
251 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 252 * DAIF (exception masks) are kept in env->daif
f6e52eaa 253 * BTYPE is kept in env->btype
c37e6ac9 254 * SM and ZA are kept in env->svcr
d356312f 255 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
256 */
257 uint32_t pstate;
53221552 258 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
063bbd80 259 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
3926cc84 260
fdd1b228 261 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 262 CPUARMTBFlags hflags;
fdd1b228 263
b90372ad 264 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 265 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
266 the whole CPSR. */
267 uint32_t uncached_cpsr;
268 uint32_t spsr;
269
270 /* Banked registers. */
28c9457d 271 uint64_t banked_spsr[8];
0b7d409d
FA
272 uint32_t banked_r13[8];
273 uint32_t banked_r14[8];
3b46e624 274
b5ff1b31
FB
275 /* These hold r8-r12. */
276 uint32_t usr_regs[5];
277 uint32_t fiq_regs[5];
3b46e624 278
2c0262af
FB
279 /* cpsr flag cache for faster execution */
280 uint32_t CF; /* 0 or 1 */
281 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
282 uint32_t NF; /* N is bit 31. All other bits are undefined. */
283 uint32_t ZF; /* Z set if zero. */
99c475ab 284 uint32_t QF; /* 0 or 1 */
9ee6e8bb 285 uint32_t GE; /* cpsr[19:16] */
9ee6e8bb 286 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 287 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 288 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
c37e6ac9 289 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
2c0262af 290
1b174238 291 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 292 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 293
b5ff1b31
FB
294 /* System control coprocessor (cp15) */
295 struct {
40f137e1 296 uint32_t c0_cpuid;
b85a1fd6
FA
297 union { /* Cache size selection */
298 struct {
299 uint64_t _unused_csselr0;
300 uint64_t csselr_ns;
301 uint64_t _unused_csselr1;
302 uint64_t csselr_s;
303 };
304 uint64_t csselr_el[4];
305 };
137feaa9
FA
306 union { /* System control register. */
307 struct {
308 uint64_t _unused_sctlr;
309 uint64_t sctlr_ns;
310 uint64_t hsctlr;
311 uint64_t sctlr_s;
312 };
313 uint64_t sctlr_el[4];
314 };
761c4642 315 uint64_t vsctlr; /* Virtualization System control register. */
7ebd5f2e 316 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 317 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 318 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 319 uint64_t sder; /* Secure debug enable register. */
77022576 320 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
321 union { /* MMU translation table base 0. */
322 struct {
323 uint64_t _unused_ttbr0_0;
324 uint64_t ttbr0_ns;
325 uint64_t _unused_ttbr0_1;
326 uint64_t ttbr0_s;
327 };
328 uint64_t ttbr0_el[4];
329 };
330 union { /* MMU translation table base 1. */
331 struct {
332 uint64_t _unused_ttbr1_0;
333 uint64_t ttbr1_ns;
334 uint64_t _unused_ttbr1_1;
335 uint64_t ttbr1_s;
336 };
337 uint64_t ttbr1_el[4];
338 };
b698e9cf 339 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 340 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee 341 /* MMU translation table base control. */
cb4a0a34 342 uint64_t tcr_el[4];
988cc190
PM
343 uint64_t vtcr_el2; /* Virtualization Translation Control. */
344 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
345 uint32_t c2_data; /* MPU data cacheable bits. */
346 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
347 union { /* MMU domain access control register
348 * MPU write buffer control.
349 */
350 struct {
351 uint64_t dacr_ns;
352 uint64_t dacr_s;
353 };
354 struct {
355 uint64_t dacr32_el2;
356 };
357 };
7e09797c
PM
358 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
359 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 360 uint64_t hcr_el2; /* Hypervisor configuration register */
5814d587 361 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
64e0e2de 362 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
363 union { /* Fault status registers. */
364 struct {
365 uint64_t ifsr_ns;
366 uint64_t ifsr_s;
367 };
368 struct {
369 uint64_t ifsr32_el2;
370 };
371 };
4a7e2d73
FA
372 union {
373 struct {
374 uint64_t _unused_dfsr;
375 uint64_t dfsr_ns;
376 uint64_t hsr;
377 uint64_t dfsr_s;
378 };
379 uint64_t esr_el[4];
380 };
ce819861 381 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
382 union { /* Fault address registers. */
383 struct {
384 uint64_t _unused_far0;
e03b5686 385#if HOST_BIG_ENDIAN
b848ce2b
FA
386 uint32_t ifar_ns;
387 uint32_t dfar_ns;
388 uint32_t ifar_s;
389 uint32_t dfar_s;
390#else
391 uint32_t dfar_ns;
392 uint32_t ifar_ns;
393 uint32_t dfar_s;
394 uint32_t ifar_s;
395#endif
396 uint64_t _unused_far3;
397 };
398 uint64_t far_el[4];
399 };
59e05530 400 uint64_t hpfar_el2;
2a5a9abd 401 uint64_t hstr_el2;
01c097f7
FA
402 union { /* Translation result. */
403 struct {
404 uint64_t _unused_par_0;
405 uint64_t par_ns;
406 uint64_t _unused_par_1;
407 uint64_t par_s;
408 };
409 uint64_t par_el[4];
410 };
6cb0b013 411
b5ff1b31
FB
412 uint32_t c9_insn; /* Cache lockdown registers. */
413 uint32_t c9_data;
8521466b
AF
414 uint64_t c9_pmcr; /* performance monitor control register */
415 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
416 uint64_t c9_pmovsr; /* perf monitor overflow status */
417 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 418 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 419 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
420 union { /* Memory attribute redirection */
421 struct {
e03b5686 422#if HOST_BIG_ENDIAN
be693c87
GB
423 uint64_t _unused_mair_0;
424 uint32_t mair1_ns;
425 uint32_t mair0_ns;
426 uint64_t _unused_mair_1;
427 uint32_t mair1_s;
428 uint32_t mair0_s;
429#else
430 uint64_t _unused_mair_0;
431 uint32_t mair0_ns;
432 uint32_t mair1_ns;
433 uint64_t _unused_mair_1;
434 uint32_t mair0_s;
435 uint32_t mair1_s;
436#endif
437 };
438 uint64_t mair_el[4];
439 };
fb6c91ba
GB
440 union { /* vector base address register */
441 struct {
442 uint64_t _unused_vbar;
443 uint64_t vbar_ns;
444 uint64_t hvbar;
445 uint64_t vbar_s;
446 };
447 uint64_t vbar_el[4];
448 };
e89e51a1 449 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 450 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
451 struct { /* FCSE PID. */
452 uint32_t fcseidr_ns;
453 uint32_t fcseidr_s;
454 };
455 union { /* Context ID. */
456 struct {
457 uint64_t _unused_contextidr_0;
458 uint64_t contextidr_ns;
459 uint64_t _unused_contextidr_1;
460 uint64_t contextidr_s;
461 };
462 uint64_t contextidr_el[4];
463 };
464 union { /* User RW Thread register. */
465 struct {
466 uint64_t tpidrurw_ns;
467 uint64_t tpidrprw_ns;
468 uint64_t htpidr;
469 uint64_t _tpidr_el3;
470 };
471 uint64_t tpidr_el[4];
472 };
9e5ec745 473 uint64_t tpidr2_el0;
54bf36ed
FA
474 /* The secure banks of these registers don't map anywhere */
475 uint64_t tpidrurw_s;
476 uint64_t tpidrprw_s;
477 uint64_t tpidruro_s;
478
479 union { /* User RO Thread register. */
480 uint64_t tpidruro_ns;
481 uint64_t tpidrro_el[1];
482 };
a7adc4b7
PM
483 uint64_t c14_cntfrq; /* Counter Frequency register */
484 uint64_t c14_cntkctl; /* Timer Control register */
bb461330 485 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 486 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 487 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 488 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
489 uint32_t c15_ticonfig; /* TI925T configuration byte. */
490 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
491 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
492 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
493 uint32_t c15_config_base_address; /* SCU base address. */
494 uint32_t c15_diagnostic; /* diagnostic register */
495 uint32_t c15_power_diagnostic;
496 uint32_t c15_power_control; /* power control */
0b45451e
PM
497 uint64_t dbgbvr[16]; /* breakpoint value registers */
498 uint64_t dbgbcr[16]; /* breakpoint control registers */
499 uint64_t dbgwvr[16]; /* watchpoint value registers */
500 uint64_t dbgwcr[16]; /* watchpoint control registers */
5fc83f11 501 uint64_t dbgclaim; /* DBGCLAIM bits */
3a298203 502 uint64_t mdscr_el1;
1424ca8d 503 uint64_t oslsr_el1; /* OS Lock Status */
f94a6df5 504 uint64_t osdlr_el1; /* OS DoubleLock status */
14cc7b54 505 uint64_t mdcr_el2;
5513c3ab 506 uint64_t mdcr_el3;
5d05b9d4
AL
507 /* Stores the architectural value of the counter *the last time it was
508 * updated* by pmccntr_op_start. Accesses should always be surrounded
509 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
510 * architecturally-correct value is being read/set.
7c2cb42b 511 */
c92c0687 512 uint64_t c15_ccnt;
5d05b9d4
AL
513 /* Stores the delta between the architectural value and the underlying
514 * cycle count during normal operation. It is used to update c15_ccnt
515 * to be the correct architectural value before accesses. During
516 * accesses, c15_ccnt_delta contains the underlying count being used
517 * for the access, after which it reverts to the delta value in
518 * pmccntr_op_finish.
519 */
520 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
521 uint64_t c14_pmevcntr[31];
522 uint64_t c14_pmevcntr_delta[31];
523 uint64_t c14_pmevtyper[31];
8521466b 524 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 525 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 526 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
527 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
528 uint64_t gcr_el1;
529 uint64_t rgsr_el1;
58e93b48
RH
530
531 /* Minimal RAS registers */
532 uint64_t disr_el1;
533 uint64_t vdisr_el2;
534 uint64_t vsesr_el2;
15126d9c
PM
535
536 /*
537 * Fine-Grained Trap registers. We store these as arrays so the
538 * access checking code doesn't have to manually select
539 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
540 * FEAT_FGT2 will add more elements to these arrays.
541 */
542 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
543 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
544 uint64_t fgt_exec[1]; /* HFGITR */
ef1febe7
RH
545
546 /* RME registers */
547 uint64_t gpccr_el3;
548 uint64_t gptbr_el3;
549 uint64_t mfar_el3;
b5ff1b31 550 } cp15;
40f137e1 551
9ee6e8bb 552 struct {
fb602cb7
PM
553 /* M profile has up to 4 stack pointers:
554 * a Main Stack Pointer and a Process Stack Pointer for each
555 * of the Secure and Non-Secure states. (If the CPU doesn't support
556 * the security extension then it has only two SPs.)
557 * In QEMU we always store the currently active SP in regs[13],
558 * and the non-active SP for the current security state in
559 * v7m.other_sp. The stack pointers for the inactive security state
560 * are stored in other_ss_msp and other_ss_psp.
561 * switch_v7m_security_state() is responsible for rearranging them
562 * when we change security state.
563 */
9ee6e8bb 564 uint32_t other_sp;
fb602cb7
PM
565 uint32_t other_ss_msp;
566 uint32_t other_ss_psp;
4a16724f
PM
567 uint32_t vecbase[M_REG_NUM_BANKS];
568 uint32_t basepri[M_REG_NUM_BANKS];
569 uint32_t control[M_REG_NUM_BANKS];
570 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
571 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
572 uint32_t hfsr; /* HardFault Status */
573 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 574 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 575 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 576 uint32_t bfar; /* BusFault Address */
bed079da 577 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 578 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 579 int exception;
4a16724f
PM
580 uint32_t primask[M_REG_NUM_BANKS];
581 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 582 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 583 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 584 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 585 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
586 uint32_t msplim[M_REG_NUM_BANKS];
587 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
588 uint32_t fpcar[M_REG_NUM_BANKS];
589 uint32_t fpccr[M_REG_NUM_BANKS];
590 uint32_t fpdscr[M_REG_NUM_BANKS];
591 uint32_t cpacr[M_REG_NUM_BANKS];
592 uint32_t nsacr;
b26b5629 593 uint32_t ltpsize;
7c3d47da 594 uint32_t vpr;
9ee6e8bb
PB
595 } v7m;
596
abf1172f
PM
597 /* Information associated with an exception about to be taken:
598 * code which raises an exception must set cs->exception_index and
599 * the relevant parts of this structure; the cpu_do_interrupt function
600 * will then set the guest-visible registers as part of the exception
601 * entry process.
602 */
603 struct {
604 uint32_t syndrome; /* AArch64 format syndrome register */
605 uint32_t fsr; /* AArch32 format fault status register info */
606 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 607 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
608 /* If we implement EL2 we will also need to store information
609 * about the intermediate physical address for stage 2 faults.
610 */
611 } exception;
612
202ccb6b
DG
613 /* Information associated with an SError */
614 struct {
615 uint8_t pending;
616 uint8_t has_esr;
617 uint64_t esr;
618 } serror;
619
1711bfa5
BM
620 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
621
ed89f078
PM
622 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
623 uint32_t irq_line_state;
624
fe1479c3
PB
625 /* Thumb-2 EE state. */
626 uint32_t teecr;
627 uint32_t teehbr;
628
b7bcbe95
FB
629 /* VFP coprocessor state. */
630 struct {
c39c2b90 631 ARMVectorReg zregs[32];
b7bcbe95 632
3c7d3086
RH
633#ifdef TARGET_AARCH64
634 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 635#define FFR_PRED_NUM 16
3c7d3086 636 ARMPredicateReg pregs[17];
516e246a
RH
637 /* Scratch space for aa64 sve predicate temporary. */
638 ARMPredicateReg preg_tmp;
3c7d3086
RH
639#endif
640
b7bcbe95 641 /* We store these fpcsr fields separately for convenience. */
a4d58462 642 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
643 int vec_len;
644 int vec_stride;
645
a4d58462
RH
646 uint32_t xregs[16];
647
516e246a 648 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 649 uint32_t scratch[8];
3b46e624 650
d81ce0ef
AB
651 /* There are a number of distinct float control structures:
652 *
653 * fp_status: is the "normal" fp status.
654 * fp_status_fp16: used for half-precision calculations
655 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
656 * standard_fp_status_fp16 : used for half-precision
657 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
658 *
659 * Half-precision operations are governed by a separate
660 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
661 * status structure to control this.
662 *
663 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
664 * round-to-nearest and is used by any operations (generally
665 * Neon) which the architecture defines as controlled by the
666 * standard FPSCR value rather than the FPSCR.
3a492f3a 667 *
aaae563b
PM
668 * The "standard FPSCR but for fp16 ops" is needed because
669 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
670 * using a fixed value for it.
671 *
3a492f3a
PM
672 * To avoid having to transfer exception bits around, we simply
673 * say that the FPSCR cumulative exception flags are the logical
aaae563b 674 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
675 * only thing which needs to read the exception flags being
676 * an explicit FPSCR read.
677 */
53cd6637 678 float_status fp_status;
d81ce0ef 679 float_status fp_status_f16;
3a492f3a 680 float_status standard_fp_status;
aaae563b 681 float_status standard_fp_status_f16;
5be5e8ed 682
de561988
RH
683 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
684 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
b7bcbe95 685 } vfp;
0f08429c 686
03d05e2d
PM
687 uint64_t exclusive_addr;
688 uint64_t exclusive_val;
0f08429c
RH
689 /*
690 * Contains the 'val' for the second 64-bit register of LDXP, which comes
691 * from the higher address, not the high part of a complete 128-bit value.
692 * In some ways it might be more convenient to record the exclusive value
693 * as the low and high halves of a 128 bit data value, but the current
694 * semantics of these fields are baked into the migration format.
695 */
03d05e2d 696 uint64_t exclusive_high;
b7bcbe95 697
18c9b560
AZ
698 /* iwMMXt coprocessor state. */
699 struct {
700 uint64_t regs[16];
701 uint64_t val;
702
703 uint32_t cregs[16];
704 } iwmmxt;
705
991ad91b 706#ifdef TARGET_AARCH64
108b3ba8
RH
707 struct {
708 ARMPACKey apia;
709 ARMPACKey apib;
710 ARMPACKey apda;
711 ARMPACKey apdb;
712 ARMPACKey apga;
713 } keys;
7cb1e618
RH
714
715 uint64_t scxtnum_el[4];
dc993a01
RH
716
717 /*
718 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
719 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
720 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
721 * When SVL is less than the architectural maximum, the accessible
722 * storage is restricted, such that if the SVL is X bytes the guest can
723 * see only the bottom X elements of zarray[], and only the least
724 * significant X bytes of each element of the array. (In other words,
725 * the observable part is always square.)
726 *
727 * The ZA storage can also be considered as a set of square tiles of
728 * elements of different sizes. The mapping from tiles to the ZA array
729 * is architecturally defined, such that for tiles of elements of esz
730 * bytes, the Nth row (or "horizontal slice") of tile T is in
731 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
732 * in the ZA storage, because its rows are striped through the ZA array.
733 *
734 * Because this is so large, keep this toward the end of the reset area,
735 * to keep the offsets into the rest of the structure smaller.
736 */
737 ARMVectorReg zarray[ARM_MAX_VQ * 16];
991ad91b
RH
738#endif
739
46747d15 740 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
741 struct CPUWatchpoint *cpu_watchpoint[16];
742
f3639a64
RH
743 /* Optional fault info across tlb lookup. */
744 ARMMMUFaultInfo *tlb_fi;
745
1f5c00cf
AB
746 /* Fields up to this point are cleared by a CPU reset */
747 struct {} end_reset_fields;
748
e8b5fae5 749 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 750
581be094 751 /* Internal CPU feature flags. */
918f5dca 752 uint64_t features;
581be094 753
6cb0b013
PC
754 /* PMSAv7 MPU */
755 struct {
756 uint32_t *drbar;
757 uint32_t *drsr;
758 uint32_t *dracr;
4a16724f 759 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
760 } pmsav7;
761
0e1a46bb
PM
762 /* PMSAv8 MPU */
763 struct {
764 /* The PMSAv8 implementation also shares some PMSAv7 config
765 * and state:
766 * pmsav7.rnr (region number register)
767 * pmsav7_dregion (number of configured regions)
768 */
4a16724f
PM
769 uint32_t *rbar[M_REG_NUM_BANKS];
770 uint32_t *rlar[M_REG_NUM_BANKS];
761c4642
TR
771 uint32_t *hprbar;
772 uint32_t *hprlar;
4a16724f
PM
773 uint32_t mair0[M_REG_NUM_BANKS];
774 uint32_t mair1[M_REG_NUM_BANKS];
761c4642 775 uint32_t hprselr;
0e1a46bb
PM
776 } pmsav8;
777
9901c576
PM
778 /* v8M SAU */
779 struct {
780 uint32_t *rbar;
781 uint32_t *rlar;
782 uint32_t rnr;
783 uint32_t ctrl;
784 } sau;
785
1701d70e 786#if !defined(CONFIG_USER_ONLY)
8f4e07c9 787 NVICState *nvic;
2a94a507 788 const struct arm_boot_info *boot_info;
d3a3e529
VK
789 /* Store GICv3CPUState to access from this struct */
790 void *gicv3state;
1701d70e 791#else /* CONFIG_USER_ONLY */
26f08561
PMD
792 /* For usermode syscall translation. */
793 bool eabi;
794#endif /* CONFIG_USER_ONLY */
0e0c030c
RH
795
796#ifdef TARGET_TAGGED_ADDRESSES
797 /* Linux syscall tagged address support */
798 bool tagged_addr_enable;
799#endif
2c0262af
FB
800} CPUARMState;
801
5fda9504
TH
802static inline void set_feature(CPUARMState *env, int feature)
803{
804 env->features |= 1ULL << feature;
805}
806
807static inline void unset_feature(CPUARMState *env, int feature)
808{
809 env->features &= ~(1ULL << feature);
810}
811
bd7d00fc 812/**
08267487 813 * ARMELChangeHookFn:
bd7d00fc
PM
814 * type of a function which can be registered via arm_register_el_change_hook()
815 * to get callbacks when the CPU changes its exception level or mode.
816 */
08267487
AL
817typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
818typedef struct ARMELChangeHook ARMELChangeHook;
819struct ARMELChangeHook {
820 ARMELChangeHookFn *hook;
821 void *opaque;
822 QLIST_ENTRY(ARMELChangeHook) node;
823};
062ba099
AB
824
825/* These values map onto the return values for
826 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
827typedef enum ARMPSCIState {
d5affb0d
AJ
828 PSCI_ON = 0,
829 PSCI_OFF = 1,
062ba099
AB
830 PSCI_ON_PENDING = 2
831} ARMPSCIState;
832
962fcbf2
RH
833typedef struct ARMISARegisters ARMISARegisters;
834
7f9e25a6
RH
835/*
836 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
837 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
838 *
839 * While processing properties during initialization, corresponding init bits
840 * are set for bits in sve_vq_map that have been set by properties.
841 *
842 * Bits set in supported represent valid vector lengths for the CPU type.
843 */
844typedef struct {
845 uint32_t map, init, supported;
846} ARMVQMap;
847
74e75564
PB
848/**
849 * ARMCPU:
850 * @env: #CPUARMState
851 *
852 * An ARM CPU core.
853 */
b36e239e 854struct ArchCPU {
74e75564
PB
855 /*< private >*/
856 CPUState parent_obj;
857 /*< public >*/
858
5b146dc7 859 CPUNegativeOffsetState neg;
74e75564
PB
860 CPUARMState env;
861
862 /* Coprocessor information */
863 GHashTable *cp_regs;
864 /* For marshalling (mostly coprocessor) register state between the
865 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
866 * we use these arrays.
867 */
868 /* List of register indexes managed via these arrays; (full KVM style
869 * 64 bit indexes, not CPRegInfo 32 bit indexes)
870 */
871 uint64_t *cpreg_indexes;
872 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
873 uint64_t *cpreg_values;
874 /* Length of the indexes, values, reset_values arrays */
875 int32_t cpreg_array_len;
876 /* These are used only for migration: incoming data arrives in
877 * these fields and is sanity checked in post_load before copying
878 * to the working data structures above.
879 */
880 uint64_t *cpreg_vmstate_indexes;
881 uint64_t *cpreg_vmstate_values;
882 int32_t cpreg_vmstate_array_len;
883
448d4d14 884 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 885 DynamicGDBXMLInfo dyn_svereg_xml;
7d8b28b8
RH
886 DynamicGDBXMLInfo dyn_m_systemreg_xml;
887 DynamicGDBXMLInfo dyn_m_secextreg_xml;
200bf5b7 888
74e75564
PB
889 /* Timers used by the generic (architected) timer */
890 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
891 /*
892 * Timer used by the PMU. Its state is restored after migration by
893 * pmu_op_finish() - it does not need other handling during migration
894 */
895 QEMUTimer *pmu_timer;
74e75564
PB
896 /* GPIO outputs for generic timer */
897 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
898 /* GPIO output for GICv3 maintenance interrupt signal */
899 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
900 /* GPIO output for the PMU interrupt */
901 qemu_irq pmu_interrupt;
74e75564
PB
902
903 /* MemoryRegion to use for secure physical accesses */
904 MemoryRegion *secure_memory;
905
8bce44a2
RH
906 /* MemoryRegion to use for allocation tag accesses */
907 MemoryRegion *tag_memory;
908 MemoryRegion *secure_tag_memory;
909
181962fd
PM
910 /* For v8M, pointer to the IDAU interface provided by board/SoC */
911 Object *idau;
912
74e75564
PB
913 /* 'compatible' string for this CPU for Linux device trees */
914 const char *dtb_compatible;
915
916 /* PSCI version for this CPU
917 * Bits[31:16] = Major Version
918 * Bits[15:0] = Minor Version
919 */
920 uint32_t psci_version;
921
062ba099
AB
922 /* Current power state, access guarded by BQL */
923 ARMPSCIState power_state;
924
c25bd18a
PM
925 /* CPU has virtualization extension */
926 bool has_el2;
74e75564
PB
927 /* CPU has security extension */
928 bool has_el3;
5c0a3819
SZ
929 /* CPU has PMU (Performance Monitor Unit) */
930 bool has_pmu;
97a28b0e
PM
931 /* CPU has VFP */
932 bool has_vfp;
42bea956
CLG
933 /* CPU has 32 VFP registers */
934 bool has_vfp_d32;
97a28b0e
PM
935 /* CPU has Neon */
936 bool has_neon;
ea90db0a
PM
937 /* CPU has M-profile DSP extension */
938 bool has_dsp;
74e75564
PB
939
940 /* CPU has memory protection unit */
941 bool has_mpu;
942 /* PMSAv7 MPU number of supported regions */
943 uint32_t pmsav7_dregion;
761c4642
TR
944 /* PMSAv8 MPU number of supported hyp regions */
945 uint32_t pmsav8r_hdregion;
9901c576
PM
946 /* v8M SAU number of supported regions */
947 uint32_t sau_sregion;
74e75564
PB
948
949 /* PSCI conduit used to invoke PSCI methods
950 * 0 - disabled, 1 - smc, 2 - hvc
951 */
952 uint32_t psci_conduit;
953
38e2a77c
PM
954 /* For v8M, initial value of the Secure VTOR */
955 uint32_t init_svtor;
7cda2149
PM
956 /* For v8M, initial value of the Non-secure VTOR */
957 uint32_t init_nsvtor;
38e2a77c 958
74e75564
PB
959 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
960 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
961 */
962 uint32_t kvm_target;
963
cf43b5b6 964#ifdef CONFIG_KVM
74e75564
PB
965 /* KVM init features for this CPU */
966 uint32_t kvm_init_features[7];
967
e5ac4200
AJ
968 /* KVM CPU state */
969
970 /* KVM virtual time adjustment */
971 bool kvm_adjvtime;
972 bool kvm_vtime_dirty;
973 uint64_t kvm_vtime;
974
68970d1e
AJ
975 /* KVM steal time */
976 OnOffAuto kvm_steal_time;
cf43b5b6 977#endif /* CONFIG_KVM */
68970d1e 978
74e75564
PB
979 /* Uniprocessor system with MP extensions */
980 bool mp_is_up;
981
c4487d76
PM
982 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
983 * and the probe failed (so we need to report the error in realize)
984 */
985 bool host_cpu_probe_failed;
986
f9a69711
AF
987 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
988 * register.
989 */
990 int32_t core_count;
991
74e75564
PB
992 /* The instance init functions for implementation-specific subclasses
993 * set these fields to specify the implementation-dependent values of
994 * various constant registers and reset values of non-constant
995 * registers.
996 * Some of these might become QOM properties eventually.
997 * Field names match the official register names as defined in the
998 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
999 * is used for reset values of non-constant registers; no reset_
1000 * prefix means a constant register.
47576b94
RH
1001 * Some of these registers are split out into a substructure that
1002 * is shared with the translators to control the ISA.
1548a7b2
PM
1003 *
1004 * Note that if you add an ID register to the ARMISARegisters struct
1005 * you need to also update the 32-bit and 64-bit versions of the
1006 * kvm_arm_get_host_cpu_features() function to correctly populate the
1007 * field by reading the value from the KVM vCPU.
74e75564 1008 */
47576b94
RH
1009 struct ARMISARegisters {
1010 uint32_t id_isar0;
1011 uint32_t id_isar1;
1012 uint32_t id_isar2;
1013 uint32_t id_isar3;
1014 uint32_t id_isar4;
1015 uint32_t id_isar5;
1016 uint32_t id_isar6;
10054016
PM
1017 uint32_t id_mmfr0;
1018 uint32_t id_mmfr1;
1019 uint32_t id_mmfr2;
1020 uint32_t id_mmfr3;
1021 uint32_t id_mmfr4;
32957aad 1022 uint32_t id_mmfr5;
8a130a7b
PM
1023 uint32_t id_pfr0;
1024 uint32_t id_pfr1;
1d51bc96 1025 uint32_t id_pfr2;
47576b94
RH
1026 uint32_t mvfr0;
1027 uint32_t mvfr1;
1028 uint32_t mvfr2;
a6179538 1029 uint32_t id_dfr0;
d22c5649 1030 uint32_t id_dfr1;
4426d361 1031 uint32_t dbgdidr;
09754ca8
PM
1032 uint32_t dbgdevid;
1033 uint32_t dbgdevid1;
47576b94
RH
1034 uint64_t id_aa64isar0;
1035 uint64_t id_aa64isar1;
1036 uint64_t id_aa64pfr0;
1037 uint64_t id_aa64pfr1;
3dc91ddb
PM
1038 uint64_t id_aa64mmfr0;
1039 uint64_t id_aa64mmfr1;
64761e10 1040 uint64_t id_aa64mmfr2;
2a609df8
PM
1041 uint64_t id_aa64dfr0;
1042 uint64_t id_aa64dfr1;
2dc10fa2 1043 uint64_t id_aa64zfr0;
414c54d5 1044 uint64_t id_aa64smfr0;
24526bb9 1045 uint64_t reset_pmcr_el0;
47576b94 1046 } isar;
e544f800 1047 uint64_t midr;
74e75564
PB
1048 uint32_t revidr;
1049 uint32_t reset_fpsid;
a5fd319a 1050 uint64_t ctr;
74e75564 1051 uint32_t reset_sctlr;
cad86737
AL
1052 uint64_t pmceid0;
1053 uint64_t pmceid1;
74e75564 1054 uint32_t id_afr0;
74e75564
PB
1055 uint64_t id_aa64afr0;
1056 uint64_t id_aa64afr1;
f6450bcb 1057 uint64_t clidr;
74e75564
PB
1058 uint64_t mp_affinity; /* MP ID without feature bits */
1059 /* The elements of this array are the CCSIDR values for each cache,
1060 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1061 */
957e6155 1062 uint64_t ccsidr[16];
74e75564
PB
1063 uint64_t reset_cbar;
1064 uint32_t reset_auxcr;
1065 bool reset_hivecs;
ef1febe7 1066 uint8_t reset_l0gptsz;
eb94284d
RH
1067
1068 /*
1069 * Intermediate values used during property parsing.
69b2265d 1070 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
1071 */
1072 bool prop_pauth;
1073 bool prop_pauth_impdef;
69b2265d 1074 bool prop_lpa2;
eb94284d 1075
74e75564 1076 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
ae4acc69 1077 uint8_t dcz_blocksize;
851ec6eb
RH
1078 /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1079 uint8_t gm_blocksize;
ae4acc69 1080
4a7319b7 1081 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 1082
e45868a3
PM
1083 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1084 int gic_num_lrs; /* number of list registers */
1085 int gic_vpribits; /* number of virtual priority bits */
1086 int gic_vprebits; /* number of virtual preemption bits */
39f29e59 1087 int gic_pribits; /* number of physical priority bits */
e45868a3 1088
3a062d57
JB
1089 /* Whether the cfgend input is high (i.e. this CPU should reset into
1090 * big-endian mode). This setting isn't used directly: instead it modifies
1091 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1092 * architecture version.
1093 */
1094 bool cfgend;
1095
b5c53d1b 1096 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1097 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1098
1099 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1100
1101 /* Used to synchronize KVM and QEMU in-kernel device levels */
1102 uint8_t device_irq_level;
adf92eab
RH
1103
1104 /* Used to set the maximum vector length the cpu will support. */
1105 uint32_t sve_max_vq;
0df9142d 1106
b3d52804
RH
1107#ifdef CONFIG_USER_ONLY
1108 /* Used to set the default vector length at process start. */
1109 uint32_t sve_default_vq;
e74c0976 1110 uint32_t sme_default_vq;
b3d52804
RH
1111#endif
1112
7f9e25a6 1113 ARMVQMap sve_vq;
e74c0976 1114 ARMVQMap sme_vq;
7def8754
AJ
1115
1116 /* Generic timer counter frequency, in Hz */
1117 uint64_t gt_cntfrq_hz;
74e75564
PB
1118};
1119
7def8754 1120unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
f6fc36de 1121void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
7def8754 1122
51e5ef45
MAL
1123void arm_cpu_post_init(Object *obj);
1124
46de5913
IM
1125uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1126
74e75564 1127#ifndef CONFIG_USER_ONLY
8a9358cc 1128extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1129
1130void arm_cpu_do_interrupt(CPUState *cpu);
1131void arm_v7m_cpu_do_interrupt(CPUState *cpu);
74e75564 1132
74e75564
PB
1133hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1134 MemTxAttrs *attrs);
6d2d454a 1135#endif /* !CONFIG_USER_ONLY */
74e75564 1136
a010bdbe 1137int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1138int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1139
200bf5b7
AB
1140/* Returns the dynamically generated XML for the gdb stub.
1141 * Returns a pointer to the XML contents for the specified XML file or NULL
1142 * if the XML name doesn't match the predefined one.
1143 */
1144const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1145
74e75564 1146int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1147 int cpuid, DumpState *s);
74e75564 1148int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1149 int cpuid, DumpState *s);
74e75564
PB
1150
1151#ifdef TARGET_AARCH64
a010bdbe 1152int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1153int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1154void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1155void aarch64_sve_change_el(CPUARMState *env, int old_el,
1156 int new_el, bool el0_a64);
2a8af382 1157void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
538baab2
AJ
1158
1159/*
1160 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1161 * The byte at offset i from the start of the in-memory representation contains
1162 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1163 * lowest offsets are stored in the lowest memory addresses, then that nearly
1164 * matches QEMU's representation, which is to use an array of host-endian
1165 * uint64_t's, where the lower offsets are at the lower indices. To complete
1166 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1167 */
1168static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1169{
e03b5686 1170#if HOST_BIG_ENDIAN
538baab2
AJ
1171 int i;
1172
1173 for (i = 0; i < nr; ++i) {
1174 dst[i] = bswap64(src[i]);
1175 }
1176
1177 return dst;
1178#else
1179 return src;
1180#endif
1181}
1182
0ab5953b
RH
1183#else
1184static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1185static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1186 int n, bool a)
1187{ }
74e75564 1188#endif
778c3a06 1189
ce02049d
GB
1190void aarch64_sync_32_to_64(CPUARMState *env);
1191void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1192
ced31551
RH
1193int fp_exception_el(CPUARMState *env, int cur_el);
1194int sve_exception_el(CPUARMState *env, int cur_el);
6b2ca83e 1195int sme_exception_el(CPUARMState *env, int cur_el);
5ef3cc56
RH
1196
1197/**
6ca54aa9 1198 * sve_vqm1_for_el_sm:
5ef3cc56
RH
1199 * @env: CPUARMState
1200 * @el: exception level
6ca54aa9 1201 * @sm: streaming mode
5ef3cc56 1202 *
6ca54aa9 1203 * Compute the current vector length for @el & @sm, in units of
5ef3cc56 1204 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
6ca54aa9 1205 * If @sm, compute for SVL, otherwise NVL.
5ef3cc56 1206 */
6ca54aa9
RH
1207uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1208
1209/* Likewise, but using @sm = PSTATE.SM. */
5ef3cc56 1210uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
ced31551 1211
3926cc84
AG
1212static inline bool is_a64(CPUARMState *env)
1213{
1214 return env->aarch64;
1215}
1216
5d05b9d4
AL
1217/**
1218 * pmu_op_start/finish
ec7b4ce4
AF
1219 * @env: CPUARMState
1220 *
5d05b9d4
AL
1221 * Convert all PMU counters between their delta form (the typical mode when
1222 * they are enabled) and the guest-visible values. These two calls must
1223 * surround any action which might affect the counters.
ec7b4ce4 1224 */
5d05b9d4
AL
1225void pmu_op_start(CPUARMState *env);
1226void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1227
4e7beb0c
AL
1228/*
1229 * Called when a PMU counter is due to overflow
1230 */
1231void arm_pmu_timer_cb(void *opaque);
1232
033614c4
AL
1233/**
1234 * Functions to register as EL change hooks for PMU mode filtering
1235 */
1236void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1237void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1238
57a4a11b 1239/*
bf8d0969
AL
1240 * pmu_init
1241 * @cpu: ARMCPU
57a4a11b 1242 *
bf8d0969
AL
1243 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1244 * for the current configuration
57a4a11b 1245 */
bf8d0969 1246void pmu_init(ARMCPU *cpu);
57a4a11b 1247
76e3e1bc
PM
1248/* SCTLR bit meanings. Several bits have been reused in newer
1249 * versions of the architecture; in that case we define constants
1250 * for both old and new bit meanings. Code which tests against those
1251 * bits should probably check or otherwise arrange that the CPU
1252 * is the architectural version it expects.
1253 */
1254#define SCTLR_M (1U << 0)
1255#define SCTLR_A (1U << 1)
1256#define SCTLR_C (1U << 2)
1257#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1258#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1259#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1260#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1261#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1262#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1263#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1264#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1265#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
83f624d9 1266#define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */
76e3e1bc
PM
1267#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1268#define SCTLR_ITD (1U << 7) /* v8 onward */
1269#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1270#define SCTLR_SED (1U << 8) /* v8 onward */
1271#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1272#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1273#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1274#define SCTLR_SW (1U << 10) /* v7 */
1275#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1276#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1277#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1278#define SCTLR_I (1U << 12)
b2af69d0
RH
1279#define SCTLR_V (1U << 13) /* AArch32 only */
1280#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1281#define SCTLR_RR (1U << 14) /* up to v7 */
1282#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1283#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1284#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1285#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1286#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1287#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1288#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1289#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1290#define SCTLR_nTWE (1U << 18) /* v8 onward */
1291#define SCTLR_WXN (1U << 19)
1292#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0 1293#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
7cb1e618 1294#define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
b2af69d0
RH
1295#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1296#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1297#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1298#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1299#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1300#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1301#define SCTLR_VE (1U << 24) /* up to v7 */
1302#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1303#define SCTLR_EE (1U << 25)
1304#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1305#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1306#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1307#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1308#define SCTLR_TRE (1U << 28) /* AArch32 only */
1309#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1310#define SCTLR_AFE (1U << 29) /* AArch32 only */
1311#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1312#define SCTLR_TE (1U << 30) /* AArch32 only */
1313#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1314#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1315#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
b2af69d0
RH
1316#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1317#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1318#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1319#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1320#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1321#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1322#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1323#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
ad1e6018
RH
1324#define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1325#define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1326#define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1327#define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1328#define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1329#define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1330#define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1331#define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1332#define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1333#define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1334#define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1335#define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1336#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1337#define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
76e3e1bc 1338
fab8ad39
RH
1339/* Bit definitions for CPACR (AArch32 only) */
1340FIELD(CPACR, CP10, 20, 2)
1341FIELD(CPACR, CP11, 22, 2)
1342FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1343FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1344FIELD(CPACR, ASEDIS, 31, 1)
1345
1346/* Bit definitions for CPACR_EL1 (AArch64 only) */
1347FIELD(CPACR_EL1, ZEN, 16, 2)
1348FIELD(CPACR_EL1, FPEN, 20, 2)
1349FIELD(CPACR_EL1, SMEN, 24, 2)
1350FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1351
1352/* Bit definitions for HCPTR (AArch32 only) */
1353FIELD(HCPTR, TCP10, 10, 1)
1354FIELD(HCPTR, TCP11, 11, 1)
1355FIELD(HCPTR, TASE, 15, 1)
1356FIELD(HCPTR, TTA, 20, 1)
1357FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1358FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1359
1360/* Bit definitions for CPTR_EL2 (AArch64 only) */
1361FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1362FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1363FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1364FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1365FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1366FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1367FIELD(CPTR_EL2, TTA, 28, 1)
1368FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1369FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1370
1371/* Bit definitions for CPTR_EL3 (AArch64 only) */
1372FIELD(CPTR_EL3, EZ, 8, 1)
1373FIELD(CPTR_EL3, TFP, 10, 1)
1374FIELD(CPTR_EL3, ESM, 12, 1)
1375FIELD(CPTR_EL3, TTA, 20, 1)
1376FIELD(CPTR_EL3, TAM, 30, 1)
1377FIELD(CPTR_EL3, TCPAC, 31, 1)
c6f19164 1378
f190bd1d
PM
1379#define MDCR_MTPME (1U << 28)
1380#define MDCR_TDCC (1U << 27)
47b385da 1381#define MDCR_HLP (1U << 26) /* MDCR_EL2 */
0b42f4fa
PM
1382#define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
1383#define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
187f678d
PM
1384#define MDCR_EPMAD (1U << 21)
1385#define MDCR_EDAD (1U << 20)
f190bd1d
PM
1386#define MDCR_TTRF (1U << 19)
1387#define MDCR_STE (1U << 18) /* MDCR_EL3 */
033614c4
AL
1388#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1389#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1390#define MDCR_SDD (1U << 16)
a8d64e73 1391#define MDCR_SPD (3U << 14)
187f678d
PM
1392#define MDCR_TDRA (1U << 11)
1393#define MDCR_TDOSA (1U << 10)
1394#define MDCR_TDA (1U << 9)
1395#define MDCR_TDE (1U << 8)
1396#define MDCR_HPME (1U << 7)
1397#define MDCR_TPM (1U << 6)
1398#define MDCR_TPMCR (1U << 5)
033614c4 1399#define MDCR_HPMN (0x1fU)
187f678d 1400
a8d64e73 1401/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
f190bd1d
PM
1402#define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1403 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1404 MDCR_STE | MDCR_SPME | MDCR_SPD)
a8d64e73 1405
78dbbbe4
PM
1406#define CPSR_M (0x1fU)
1407#define CPSR_T (1U << 5)
1408#define CPSR_F (1U << 6)
1409#define CPSR_I (1U << 7)
1410#define CPSR_A (1U << 8)
1411#define CPSR_E (1U << 9)
1412#define CPSR_IT_2_7 (0xfc00U)
1413#define CPSR_GE (0xfU << 16)
4051e12c 1414#define CPSR_IL (1U << 20)
dc8b1853 1415#define CPSR_DIT (1U << 21)
220f508f 1416#define CPSR_PAN (1U << 22)
f2f68a78 1417#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1418#define CPSR_J (1U << 24)
1419#define CPSR_IT_0_1 (3U << 25)
1420#define CPSR_Q (1U << 27)
1421#define CPSR_V (1U << 28)
1422#define CPSR_C (1U << 29)
1423#define CPSR_Z (1U << 30)
1424#define CPSR_N (1U << 31)
9ee6e8bb 1425#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1426#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1427
1428#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1429#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1430 | CPSR_NZCV)
9ee6e8bb 1431/* Bits writable in user mode. */
268b1b3d 1432#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1433/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1434#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1435
987ab45e
PM
1436/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1437#define XPSR_EXCP 0x1ffU
1438#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1439#define XPSR_IT_2_7 CPSR_IT_2_7
1440#define XPSR_GE CPSR_GE
1441#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1442#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1443#define XPSR_IT_0_1 CPSR_IT_0_1
1444#define XPSR_Q CPSR_Q
1445#define XPSR_V CPSR_V
1446#define XPSR_C CPSR_C
1447#define XPSR_Z CPSR_Z
1448#define XPSR_N CPSR_N
1449#define XPSR_NZCV CPSR_NZCV
1450#define XPSR_IT CPSR_IT
1451
e389be16
FA
1452#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1453#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1454#define TTBCR_PD0 (1U << 4)
1455#define TTBCR_PD1 (1U << 5)
1456#define TTBCR_EPD0 (1U << 7)
1457#define TTBCR_IRGN0 (3U << 8)
1458#define TTBCR_ORGN0 (3U << 10)
1459#define TTBCR_SH0 (3U << 12)
1460#define TTBCR_T1SZ (3U << 16)
1461#define TTBCR_A1 (1U << 22)
1462#define TTBCR_EPD1 (1U << 23)
1463#define TTBCR_IRGN1 (3U << 24)
1464#define TTBCR_ORGN1 (3U << 26)
1465#define TTBCR_SH1 (1U << 28)
1466#define TTBCR_EAE (1U << 31)
1467
f04383e7
PM
1468FIELD(VTCR, T0SZ, 0, 6)
1469FIELD(VTCR, SL0, 6, 2)
1470FIELD(VTCR, IRGN0, 8, 2)
1471FIELD(VTCR, ORGN0, 10, 2)
1472FIELD(VTCR, SH0, 12, 2)
1473FIELD(VTCR, TG0, 14, 2)
1474FIELD(VTCR, PS, 16, 3)
1475FIELD(VTCR, VS, 19, 1)
1476FIELD(VTCR, HA, 21, 1)
1477FIELD(VTCR, HD, 22, 1)
1478FIELD(VTCR, HWU59, 25, 1)
1479FIELD(VTCR, HWU60, 26, 1)
1480FIELD(VTCR, HWU61, 27, 1)
1481FIELD(VTCR, HWU62, 28, 1)
1482FIELD(VTCR, NSW, 29, 1)
1483FIELD(VTCR, NSA, 30, 1)
1484FIELD(VTCR, DS, 32, 1)
1485FIELD(VTCR, SL2, 33, 1)
1486
d356312f
PM
1487/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1488 * Only these are valid when in AArch64 mode; in
1489 * AArch32 mode SPSRs are basically CPSR-format.
1490 */
f502cfc2 1491#define PSTATE_SP (1U)
d356312f
PM
1492#define PSTATE_M (0xFU)
1493#define PSTATE_nRW (1U << 4)
1494#define PSTATE_F (1U << 6)
1495#define PSTATE_I (1U << 7)
1496#define PSTATE_A (1U << 8)
1497#define PSTATE_D (1U << 9)
f6e52eaa 1498#define PSTATE_BTYPE (3U << 10)
f2f68a78 1499#define PSTATE_SSBS (1U << 12)
d356312f
PM
1500#define PSTATE_IL (1U << 20)
1501#define PSTATE_SS (1U << 21)
220f508f 1502#define PSTATE_PAN (1U << 22)
9eeb7a1c 1503#define PSTATE_UAO (1U << 23)
dc8b1853 1504#define PSTATE_DIT (1U << 24)
4b779ceb 1505#define PSTATE_TCO (1U << 25)
d356312f
PM
1506#define PSTATE_V (1U << 28)
1507#define PSTATE_C (1U << 29)
1508#define PSTATE_Z (1U << 30)
1509#define PSTATE_N (1U << 31)
1510#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1511#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1512#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1513/* Mode values for AArch64 */
1514#define PSTATE_MODE_EL3h 13
1515#define PSTATE_MODE_EL3t 12
1516#define PSTATE_MODE_EL2h 9
1517#define PSTATE_MODE_EL2t 8
1518#define PSTATE_MODE_EL1h 5
1519#define PSTATE_MODE_EL1t 4
1520#define PSTATE_MODE_EL0t 0
1521
c37e6ac9
RH
1522/* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1523FIELD(SVCR, SM, 0, 1)
1524FIELD(SVCR, ZA, 1, 1)
1525
de561988
RH
1526/* Fields for SMCR_ELx. */
1527FIELD(SMCR, LEN, 0, 4)
1528FIELD(SMCR, FA64, 31, 1)
1529
de2db7ec
PM
1530/* Write a new value to v7m.exception, thus transitioning into or out
1531 * of Handler mode; this may result in a change of active stack pointer.
1532 */
1533void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1534
9e729b57
EI
1535/* Map EL and handler into a PSTATE_MODE. */
1536static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1537{
1538 return (el << 2) | handler;
1539}
1540
d356312f
PM
1541/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1542 * interprocessing, so we don't attempt to sync with the cpsr state used by
1543 * the 32 bit decoder.
1544 */
1545static inline uint32_t pstate_read(CPUARMState *env)
1546{
1547 int ZF;
1548
1549 ZF = (env->ZF == 0);
1550 return (env->NF & 0x80000000) | (ZF << 30)
1551 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1552 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1553}
1554
1555static inline void pstate_write(CPUARMState *env, uint32_t val)
1556{
1557 env->ZF = (~val) & PSTATE_Z;
1558 env->NF = val;
1559 env->CF = (val >> 29) & 1;
1560 env->VF = (val << 3) & 0x80000000;
4cc35614 1561 env->daif = val & PSTATE_DAIF;
f6e52eaa 1562 env->btype = (val >> 10) & 3;
d356312f
PM
1563 env->pstate = val & ~CACHED_PSTATE_BITS;
1564}
1565
b5ff1b31 1566/* Return the current CPSR value. */
2f4a40e5 1567uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1568
1569typedef enum CPSRWriteType {
1570 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1571 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1572 CPSRWriteRaw = 2,
1573 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1574 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1575} CPSRWriteType;
1576
e784807c
PM
1577/*
1578 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1579 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1580 * correspond to TB flags bits cached in the hflags, unless @write_type
1581 * is CPSRWriteRaw.
1582 */
50866ba5
PM
1583void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1584 CPSRWriteType write_type);
9ee6e8bb
PB
1585
1586/* Return the current xPSR value. */
1587static inline uint32_t xpsr_read(CPUARMState *env)
1588{
1589 int ZF;
6fbe23d5
PB
1590 ZF = (env->ZF == 0);
1591 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1592 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1593 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1594 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1595 | (env->GE << 16)
9ee6e8bb 1596 | env->v7m.exception;
b5ff1b31
FB
1597}
1598
9ee6e8bb
PB
1599/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1600static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1601{
987ab45e
PM
1602 if (mask & XPSR_NZCV) {
1603 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1604 env->NF = val;
9ee6e8bb
PB
1605 env->CF = (val >> 29) & 1;
1606 env->VF = (val << 3) & 0x80000000;
1607 }
987ab45e
PM
1608 if (mask & XPSR_Q) {
1609 env->QF = ((val & XPSR_Q) != 0);
1610 }
f1e2598c
PM
1611 if (mask & XPSR_GE) {
1612 env->GE = (val & XPSR_GE) >> 16;
1613 }
04c9c81b 1614#ifndef CONFIG_USER_ONLY
987ab45e
PM
1615 if (mask & XPSR_T) {
1616 env->thumb = ((val & XPSR_T) != 0);
1617 }
1618 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1619 env->condexec_bits &= ~3;
1620 env->condexec_bits |= (val >> 25) & 3;
1621 }
987ab45e 1622 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1623 env->condexec_bits &= 3;
1624 env->condexec_bits |= (val >> 8) & 0xfc;
1625 }
987ab45e 1626 if (mask & XPSR_EXCP) {
de2db7ec
PM
1627 /* Note that this only happens on exception exit */
1628 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1629 }
04c9c81b 1630#endif
9ee6e8bb
PB
1631}
1632
f149e3e8
EI
1633#define HCR_VM (1ULL << 0)
1634#define HCR_SWIO (1ULL << 1)
1635#define HCR_PTW (1ULL << 2)
1636#define HCR_FMO (1ULL << 3)
1637#define HCR_IMO (1ULL << 4)
1638#define HCR_AMO (1ULL << 5)
1639#define HCR_VF (1ULL << 6)
1640#define HCR_VI (1ULL << 7)
1641#define HCR_VSE (1ULL << 8)
1642#define HCR_FB (1ULL << 9)
1643#define HCR_BSU_MASK (3ULL << 10)
1644#define HCR_DC (1ULL << 12)
1645#define HCR_TWI (1ULL << 13)
1646#define HCR_TWE (1ULL << 14)
1647#define HCR_TID0 (1ULL << 15)
1648#define HCR_TID1 (1ULL << 16)
1649#define HCR_TID2 (1ULL << 17)
1650#define HCR_TID3 (1ULL << 18)
1651#define HCR_TSC (1ULL << 19)
1652#define HCR_TIDCP (1ULL << 20)
1653#define HCR_TACR (1ULL << 21)
1654#define HCR_TSW (1ULL << 22)
099bf53b 1655#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1656#define HCR_TPU (1ULL << 24)
1657#define HCR_TTLB (1ULL << 25)
1658#define HCR_TVM (1ULL << 26)
1659#define HCR_TGE (1ULL << 27)
1660#define HCR_TDZ (1ULL << 28)
1661#define HCR_HCD (1ULL << 29)
1662#define HCR_TRVM (1ULL << 30)
1663#define HCR_RW (1ULL << 31)
1664#define HCR_CD (1ULL << 32)
1665#define HCR_ID (1ULL << 33)
ac656b16 1666#define HCR_E2H (1ULL << 34)
099bf53b
RH
1667#define HCR_TLOR (1ULL << 35)
1668#define HCR_TERR (1ULL << 36)
1669#define HCR_TEA (1ULL << 37)
1670#define HCR_MIOCNCE (1ULL << 38)
aa3cc42c 1671#define HCR_TME (1ULL << 39)
099bf53b
RH
1672#define HCR_APK (1ULL << 40)
1673#define HCR_API (1ULL << 41)
1674#define HCR_NV (1ULL << 42)
1675#define HCR_NV1 (1ULL << 43)
1676#define HCR_AT (1ULL << 44)
1677#define HCR_NV2 (1ULL << 45)
1678#define HCR_FWB (1ULL << 46)
1679#define HCR_FIEN (1ULL << 47)
aa3cc42c 1680#define HCR_GPF (1ULL << 48)
099bf53b
RH
1681#define HCR_TID4 (1ULL << 49)
1682#define HCR_TICAB (1ULL << 50)
e0a38bb3 1683#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1684#define HCR_TOCU (1ULL << 52)
e0a38bb3 1685#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1686#define HCR_TTLBIS (1ULL << 54)
1687#define HCR_TTLBOS (1ULL << 55)
1688#define HCR_ATA (1ULL << 56)
1689#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1690#define HCR_TID5 (1ULL << 58)
1691#define HCR_TWEDEN (1ULL << 59)
1692#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1693
5814d587
RH
1694#define HCRX_ENAS0 (1ULL << 0)
1695#define HCRX_ENALS (1ULL << 1)
1696#define HCRX_ENASR (1ULL << 2)
1697#define HCRX_FNXS (1ULL << 3)
1698#define HCRX_FGTNXS (1ULL << 4)
1699#define HCRX_SMPME (1ULL << 5)
1700#define HCRX_TALLINT (1ULL << 6)
1701#define HCRX_VINMI (1ULL << 7)
1702#define HCRX_VFNMI (1ULL << 8)
1703#define HCRX_CMOW (1ULL << 9)
1704#define HCRX_MCE2 (1ULL << 10)
1705#define HCRX_MSCEN (1ULL << 11)
1706
9861248f
RDC
1707#define HPFAR_NS (1ULL << 63)
1708
06f2adcc
JF
1709#define SCR_NS (1ULL << 0)
1710#define SCR_IRQ (1ULL << 1)
1711#define SCR_FIQ (1ULL << 2)
1712#define SCR_EA (1ULL << 3)
1713#define SCR_FW (1ULL << 4)
1714#define SCR_AW (1ULL << 5)
1715#define SCR_NET (1ULL << 6)
1716#define SCR_SMD (1ULL << 7)
1717#define SCR_HCE (1ULL << 8)
1718#define SCR_SIF (1ULL << 9)
1719#define SCR_RW (1ULL << 10)
1720#define SCR_ST (1ULL << 11)
1721#define SCR_TWI (1ULL << 12)
1722#define SCR_TWE (1ULL << 13)
1723#define SCR_TLOR (1ULL << 14)
1724#define SCR_TERR (1ULL << 15)
1725#define SCR_APK (1ULL << 16)
1726#define SCR_API (1ULL << 17)
1727#define SCR_EEL2 (1ULL << 18)
1728#define SCR_EASE (1ULL << 19)
1729#define SCR_NMEA (1ULL << 20)
1730#define SCR_FIEN (1ULL << 21)
1731#define SCR_ENSCXT (1ULL << 25)
1732#define SCR_ATA (1ULL << 26)
1733#define SCR_FGTEN (1ULL << 27)
1734#define SCR_ECVEN (1ULL << 28)
1735#define SCR_TWEDEN (1ULL << 29)
f527d661
RH
1736#define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1737#define SCR_TME (1ULL << 34)
1738#define SCR_AMVOFFEN (1ULL << 35)
1739#define SCR_ENAS0 (1ULL << 36)
1740#define SCR_ADEN (1ULL << 37)
1741#define SCR_HXEN (1ULL << 38)
1742#define SCR_TRNDR (1ULL << 40)
1743#define SCR_ENTP2 (1ULL << 41)
1744#define SCR_GPF (1ULL << 48)
aa3cc42c 1745#define SCR_NSE (1ULL << 62)
64e0e2de 1746
cc7613bf 1747#define HSTR_TTEE (1 << 16)
8e228c9e 1748#define HSTR_TJDBX (1 << 17)
cc7613bf 1749
f6fc36de
JPB
1750#define CNTHCTL_CNTVMASK (1 << 18)
1751#define CNTHCTL_CNTPMASK (1 << 19)
1752
01653295
PM
1753/* Return the current FPSCR value. */
1754uint32_t vfp_get_fpscr(CPUARMState *env);
1755void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1756
d81ce0ef
AB
1757/* FPCR, Floating Point Control Register
1758 * FPSR, Floating Poiht Status Register
1759 *
1760 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1761 * FPCR and FPSR. However since they still use non-overlapping bits
1762 * we store the underlying state in fpscr and just mask on read/write.
1763 */
1764#define FPSR_MASK 0xf800009f
0b62159b 1765#define FPCR_MASK 0x07ff9f00
d81ce0ef 1766
a15945d9
PM
1767#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1768#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1769#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1770#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1771#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1772#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1773#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1774#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1775#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1776#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1777#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1778#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1779#define FPCR_V (1 << 28) /* FP overflow flag */
1780#define FPCR_C (1 << 29) /* FP carry flag */
1781#define FPCR_Z (1 << 30) /* FP zero flag */
1782#define FPCR_N (1 << 31) /* FP negative flag */
1783
99c7834f
PM
1784#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1785#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1786#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1787
9542c30b
PM
1788#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1789#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1790
f903fa22
PM
1791static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1792{
1793 return vfp_get_fpscr(env) & FPSR_MASK;
1794}
1795
1796static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1797{
1798 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1799 vfp_set_fpscr(env, new_fpscr);
1800}
1801
1802static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1803{
1804 return vfp_get_fpscr(env) & FPCR_MASK;
1805}
1806
1807static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1808{
1809 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1810 vfp_set_fpscr(env, new_fpscr);
1811}
1812
b5ff1b31
FB
1813enum arm_cpu_mode {
1814 ARM_CPU_MODE_USR = 0x10,
1815 ARM_CPU_MODE_FIQ = 0x11,
1816 ARM_CPU_MODE_IRQ = 0x12,
1817 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1818 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1819 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1820 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1821 ARM_CPU_MODE_UND = 0x1b,
1822 ARM_CPU_MODE_SYS = 0x1f
1823};
1824
40f137e1
PB
1825/* VFP system registers. */
1826#define ARM_VFP_FPSID 0
1827#define ARM_VFP_FPSCR 1
a50c0f51 1828#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1829#define ARM_VFP_MVFR1 6
1830#define ARM_VFP_MVFR0 7
40f137e1
PB
1831#define ARM_VFP_FPEXC 8
1832#define ARM_VFP_FPINST 9
1833#define ARM_VFP_FPINST2 10
9542c30b
PM
1834/* These ones are M-profile only */
1835#define ARM_VFP_FPSCR_NZCVQC 2
1836#define ARM_VFP_VPR 12
1837#define ARM_VFP_P0 13
1838#define ARM_VFP_FPCXT_NS 14
1839#define ARM_VFP_FPCXT_S 15
40f137e1 1840
32a290b8
PM
1841/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1842#define QEMU_VFP_FPSCR_NZCV 0xffff
1843
18c9b560 1844/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1845#define ARM_IWMMXT_wCID 0
1846#define ARM_IWMMXT_wCon 1
1847#define ARM_IWMMXT_wCSSF 2
1848#define ARM_IWMMXT_wCASF 3
1849#define ARM_IWMMXT_wCGR0 8
1850#define ARM_IWMMXT_wCGR1 9
1851#define ARM_IWMMXT_wCGR2 10
1852#define ARM_IWMMXT_wCGR3 11
18c9b560 1853
2c4da50d
PM
1854/* V7M CCR bits */
1855FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1856FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1857FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1858FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1859FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1860FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1861FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1862FIELD(V7M_CCR, DC, 16, 1)
1863FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1864FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1865FIELD(V7M_CCR, LOB, 19, 1)
1866FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1867
24ac0fb1
PM
1868/* V7M SCR bits */
1869FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1870FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1871FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1872FIELD(V7M_SCR, SEVONPEND, 4, 1)
1873
3b2e9344
PM
1874/* V7M AIRCR bits */
1875FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1876FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1877FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1878FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1879FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1880FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1881FIELD(V7M_AIRCR, PRIS, 14, 1)
1882FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1883FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1884
2c4da50d
PM
1885/* V7M CFSR bits for MMFSR */
1886FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1887FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1888FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1889FIELD(V7M_CFSR, MSTKERR, 4, 1)
1890FIELD(V7M_CFSR, MLSPERR, 5, 1)
1891FIELD(V7M_CFSR, MMARVALID, 7, 1)
1892
1893/* V7M CFSR bits for BFSR */
1894FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1895FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1896FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1897FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1898FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1899FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1900FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1901
1902/* V7M CFSR bits for UFSR */
1903FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1904FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1905FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1906FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1907FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1908FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1909FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1910
334e8dad
PM
1911/* V7M CFSR bit masks covering all of the subregister bits */
1912FIELD(V7M_CFSR, MMFSR, 0, 8)
1913FIELD(V7M_CFSR, BFSR, 8, 8)
1914FIELD(V7M_CFSR, UFSR, 16, 16)
1915
2c4da50d
PM
1916/* V7M HFSR bits */
1917FIELD(V7M_HFSR, VECTTBL, 1, 1)
1918FIELD(V7M_HFSR, FORCED, 30, 1)
1919FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1920
1921/* V7M DFSR bits */
1922FIELD(V7M_DFSR, HALTED, 0, 1)
1923FIELD(V7M_DFSR, BKPT, 1, 1)
1924FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1925FIELD(V7M_DFSR, VCATCH, 3, 1)
1926FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1927
bed079da
PM
1928/* V7M SFSR bits */
1929FIELD(V7M_SFSR, INVEP, 0, 1)
1930FIELD(V7M_SFSR, INVIS, 1, 1)
1931FIELD(V7M_SFSR, INVER, 2, 1)
1932FIELD(V7M_SFSR, AUVIOL, 3, 1)
1933FIELD(V7M_SFSR, INVTRAN, 4, 1)
1934FIELD(V7M_SFSR, LSPERR, 5, 1)
1935FIELD(V7M_SFSR, SFARVALID, 6, 1)
1936FIELD(V7M_SFSR, LSERR, 7, 1)
1937
29c483a5
MD
1938/* v7M MPU_CTRL bits */
1939FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1940FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1941FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1942
43bbce7f
PM
1943/* v7M CLIDR bits */
1944FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1945FIELD(V7M_CLIDR, LOUIS, 21, 3)
1946FIELD(V7M_CLIDR, LOC, 24, 3)
1947FIELD(V7M_CLIDR, LOUU, 27, 3)
1948FIELD(V7M_CLIDR, ICB, 30, 2)
1949
1950FIELD(V7M_CSSELR, IND, 0, 1)
1951FIELD(V7M_CSSELR, LEVEL, 1, 3)
1952/* We use the combination of InD and Level to index into cpu->ccsidr[];
1953 * define a mask for this and check that it doesn't permit running off
1954 * the end of the array.
1955 */
1956FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1957
1958/* v7M FPCCR bits */
1959FIELD(V7M_FPCCR, LSPACT, 0, 1)
1960FIELD(V7M_FPCCR, USER, 1, 1)
1961FIELD(V7M_FPCCR, S, 2, 1)
1962FIELD(V7M_FPCCR, THREAD, 3, 1)
1963FIELD(V7M_FPCCR, HFRDY, 4, 1)
1964FIELD(V7M_FPCCR, MMRDY, 5, 1)
1965FIELD(V7M_FPCCR, BFRDY, 6, 1)
1966FIELD(V7M_FPCCR, SFRDY, 7, 1)
1967FIELD(V7M_FPCCR, MONRDY, 8, 1)
1968FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1969FIELD(V7M_FPCCR, UFRDY, 10, 1)
1970FIELD(V7M_FPCCR, RES0, 11, 15)
1971FIELD(V7M_FPCCR, TS, 26, 1)
1972FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1973FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1974FIELD(V7M_FPCCR, LSPENS, 29, 1)
1975FIELD(V7M_FPCCR, LSPEN, 30, 1)
1976FIELD(V7M_FPCCR, ASPEN, 31, 1)
1977/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1978#define R_V7M_FPCCR_BANKED_MASK \
1979 (R_V7M_FPCCR_LSPACT_MASK | \
1980 R_V7M_FPCCR_USER_MASK | \
1981 R_V7M_FPCCR_THREAD_MASK | \
1982 R_V7M_FPCCR_MMRDY_MASK | \
1983 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1984 R_V7M_FPCCR_UFRDY_MASK | \
1985 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1986
7c3d47da
PM
1987/* v7M VPR bits */
1988FIELD(V7M_VPR, P0, 0, 16)
1989FIELD(V7M_VPR, MASK01, 16, 4)
1990FIELD(V7M_VPR, MASK23, 20, 4)
1991
a62e62af
RH
1992/*
1993 * System register ID fields.
1994 */
2a14526a
LL
1995FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1996FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1997FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1998FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1999FIELD(CLIDR_EL1, CTYPE5, 12, 3)
2000FIELD(CLIDR_EL1, CTYPE6, 15, 3)
2001FIELD(CLIDR_EL1, CTYPE7, 18, 3)
2002FIELD(CLIDR_EL1, LOUIS, 21, 3)
2003FIELD(CLIDR_EL1, LOC, 24, 3)
2004FIELD(CLIDR_EL1, LOUU, 27, 3)
2005FIELD(CLIDR_EL1, ICB, 30, 3)
2006
2007/* When FEAT_CCIDX is implemented */
2008FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2009FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2010FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2011
2012/* When FEAT_CCIDX is not implemented */
2013FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2014FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2015FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2016
2017FIELD(CTR_EL0, IMINLINE, 0, 4)
2018FIELD(CTR_EL0, L1IP, 14, 2)
2019FIELD(CTR_EL0, DMINLINE, 16, 4)
2020FIELD(CTR_EL0, ERG, 20, 4)
2021FIELD(CTR_EL0, CWG, 24, 4)
2022FIELD(CTR_EL0, IDC, 28, 1)
2023FIELD(CTR_EL0, DIC, 29, 1)
2024FIELD(CTR_EL0, TMINLINE, 32, 6)
2025
2bd5f41c
AB
2026FIELD(MIDR_EL1, REVISION, 0, 4)
2027FIELD(MIDR_EL1, PARTNUM, 4, 12)
2028FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2029FIELD(MIDR_EL1, VARIANT, 20, 4)
2030FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2031
a62e62af
RH
2032FIELD(ID_ISAR0, SWAP, 0, 4)
2033FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2034FIELD(ID_ISAR0, BITFIELD, 8, 4)
2035FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2036FIELD(ID_ISAR0, COPROC, 16, 4)
2037FIELD(ID_ISAR0, DEBUG, 20, 4)
2038FIELD(ID_ISAR0, DIVIDE, 24, 4)
2039
2040FIELD(ID_ISAR1, ENDIAN, 0, 4)
2041FIELD(ID_ISAR1, EXCEPT, 4, 4)
2042FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2043FIELD(ID_ISAR1, EXTEND, 12, 4)
2044FIELD(ID_ISAR1, IFTHEN, 16, 4)
2045FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2046FIELD(ID_ISAR1, INTERWORK, 24, 4)
2047FIELD(ID_ISAR1, JAZELLE, 28, 4)
2048
2049FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2050FIELD(ID_ISAR2, MEMHINT, 4, 4)
2051FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2052FIELD(ID_ISAR2, MULT, 12, 4)
2053FIELD(ID_ISAR2, MULTS, 16, 4)
2054FIELD(ID_ISAR2, MULTU, 20, 4)
2055FIELD(ID_ISAR2, PSR_AR, 24, 4)
2056FIELD(ID_ISAR2, REVERSAL, 28, 4)
2057
2058FIELD(ID_ISAR3, SATURATE, 0, 4)
2059FIELD(ID_ISAR3, SIMD, 4, 4)
2060FIELD(ID_ISAR3, SVC, 8, 4)
2061FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2062FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2063FIELD(ID_ISAR3, T32COPY, 20, 4)
2064FIELD(ID_ISAR3, TRUENOP, 24, 4)
2065FIELD(ID_ISAR3, T32EE, 28, 4)
2066
2067FIELD(ID_ISAR4, UNPRIV, 0, 4)
2068FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2069FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2070FIELD(ID_ISAR4, SMC, 12, 4)
2071FIELD(ID_ISAR4, BARRIER, 16, 4)
2072FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2073FIELD(ID_ISAR4, PSR_M, 24, 4)
2074FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2075
2076FIELD(ID_ISAR5, SEVL, 0, 4)
2077FIELD(ID_ISAR5, AES, 4, 4)
2078FIELD(ID_ISAR5, SHA1, 8, 4)
2079FIELD(ID_ISAR5, SHA2, 12, 4)
2080FIELD(ID_ISAR5, CRC32, 16, 4)
2081FIELD(ID_ISAR5, RDM, 24, 4)
2082FIELD(ID_ISAR5, VCMA, 28, 4)
2083
2084FIELD(ID_ISAR6, JSCVT, 0, 4)
2085FIELD(ID_ISAR6, DP, 4, 4)
2086FIELD(ID_ISAR6, FHM, 8, 4)
2087FIELD(ID_ISAR6, SB, 12, 4)
2088FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
2089FIELD(ID_ISAR6, BF16, 20, 4)
2090FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 2091
0ae0326b
PM
2092FIELD(ID_MMFR0, VMSA, 0, 4)
2093FIELD(ID_MMFR0, PMSA, 4, 4)
2094FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2095FIELD(ID_MMFR0, SHARELVL, 12, 4)
2096FIELD(ID_MMFR0, TCM, 16, 4)
2097FIELD(ID_MMFR0, AUXREG, 20, 4)
2098FIELD(ID_MMFR0, FCSE, 24, 4)
2099FIELD(ID_MMFR0, INNERSHR, 28, 4)
2100
bd78b6be
LL
2101FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2102FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2103FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2104FIELD(ID_MMFR1, L1UNISW, 12, 4)
2105FIELD(ID_MMFR1, L1HVD, 16, 4)
2106FIELD(ID_MMFR1, L1UNI, 20, 4)
2107FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2108FIELD(ID_MMFR1, BPRED, 28, 4)
2109
2110FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2111FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2112FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2113FIELD(ID_MMFR2, HVDTLB, 12, 4)
2114FIELD(ID_MMFR2, UNITLB, 16, 4)
2115FIELD(ID_MMFR2, MEMBARR, 20, 4)
2116FIELD(ID_MMFR2, WFISTALL, 24, 4)
2117FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2118
3d6ad6bb
RH
2119FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2120FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2121FIELD(ID_MMFR3, BPMAINT, 8, 4)
2122FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2123FIELD(ID_MMFR3, PAN, 16, 4)
2124FIELD(ID_MMFR3, COHWALK, 20, 4)
2125FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2126FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2127
ab638a32
RH
2128FIELD(ID_MMFR4, SPECSEI, 0, 4)
2129FIELD(ID_MMFR4, AC2, 4, 4)
2130FIELD(ID_MMFR4, XNX, 8, 4)
2131FIELD(ID_MMFR4, CNP, 12, 4)
2132FIELD(ID_MMFR4, HPDS, 16, 4)
2133FIELD(ID_MMFR4, LSM, 20, 4)
2134FIELD(ID_MMFR4, CCIDX, 24, 4)
2135FIELD(ID_MMFR4, EVT, 28, 4)
2136
bd78b6be 2137FIELD(ID_MMFR5, ETS, 0, 4)
c42fb26b 2138FIELD(ID_MMFR5, NTLBPA, 4, 4)
bd78b6be 2139
46f4976f
PM
2140FIELD(ID_PFR0, STATE0, 0, 4)
2141FIELD(ID_PFR0, STATE1, 4, 4)
2142FIELD(ID_PFR0, STATE2, 8, 4)
2143FIELD(ID_PFR0, STATE3, 12, 4)
2144FIELD(ID_PFR0, CSV2, 16, 4)
2145FIELD(ID_PFR0, AMU, 20, 4)
2146FIELD(ID_PFR0, DIT, 24, 4)
2147FIELD(ID_PFR0, RAS, 28, 4)
2148
dfc523a8
PM
2149FIELD(ID_PFR1, PROGMOD, 0, 4)
2150FIELD(ID_PFR1, SECURITY, 4, 4)
2151FIELD(ID_PFR1, MPROGMOD, 8, 4)
2152FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2153FIELD(ID_PFR1, GENTIMER, 16, 4)
2154FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2155FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2156FIELD(ID_PFR1, GIC, 28, 4)
2157
bd78b6be
LL
2158FIELD(ID_PFR2, CSV3, 0, 4)
2159FIELD(ID_PFR2, SSBS, 4, 4)
2160FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2161
a62e62af
RH
2162FIELD(ID_AA64ISAR0, AES, 4, 4)
2163FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2164FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2165FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2166FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2167FIELD(ID_AA64ISAR0, RDM, 28, 4)
2168FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2169FIELD(ID_AA64ISAR0, SM3, 36, 4)
2170FIELD(ID_AA64ISAR0, SM4, 40, 4)
2171FIELD(ID_AA64ISAR0, DP, 44, 4)
2172FIELD(ID_AA64ISAR0, FHM, 48, 4)
2173FIELD(ID_AA64ISAR0, TS, 52, 4)
2174FIELD(ID_AA64ISAR0, TLB, 56, 4)
2175FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2176
2177FIELD(ID_AA64ISAR1, DPB, 0, 4)
2178FIELD(ID_AA64ISAR1, APA, 4, 4)
2179FIELD(ID_AA64ISAR1, API, 8, 4)
2180FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2181FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2182FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2183FIELD(ID_AA64ISAR1, GPA, 24, 4)
2184FIELD(ID_AA64ISAR1, GPI, 28, 4)
2185FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2186FIELD(ID_AA64ISAR1, SB, 36, 4)
2187FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
2188FIELD(ID_AA64ISAR1, BF16, 44, 4)
2189FIELD(ID_AA64ISAR1, DGH, 48, 4)
2190FIELD(ID_AA64ISAR1, I8MM, 52, 4)
c42fb26b
RH
2191FIELD(ID_AA64ISAR1, XS, 56, 4)
2192FIELD(ID_AA64ISAR1, LS64, 60, 4)
2193
2194FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2195FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2196FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2197FIELD(ID_AA64ISAR2, APA3, 12, 4)
2198FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2199FIELD(ID_AA64ISAR2, BC, 20, 4)
2200FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
a62e62af 2201
cd208a1c
RH
2202FIELD(ID_AA64PFR0, EL0, 0, 4)
2203FIELD(ID_AA64PFR0, EL1, 4, 4)
2204FIELD(ID_AA64PFR0, EL2, 8, 4)
2205FIELD(ID_AA64PFR0, EL3, 12, 4)
2206FIELD(ID_AA64PFR0, FP, 16, 4)
2207FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2208FIELD(ID_AA64PFR0, GIC, 24, 4)
2209FIELD(ID_AA64PFR0, RAS, 28, 4)
2210FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
2211FIELD(ID_AA64PFR0, SEL2, 36, 4)
2212FIELD(ID_AA64PFR0, MPAM, 40, 4)
2213FIELD(ID_AA64PFR0, AMU, 44, 4)
2214FIELD(ID_AA64PFR0, DIT, 48, 4)
b9f335c2 2215FIELD(ID_AA64PFR0, RME, 52, 4)
00a92832
LL
2216FIELD(ID_AA64PFR0, CSV2, 56, 4)
2217FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2218
be53b6f4 2219FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2220FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2221FIELD(ID_AA64PFR1, MTE, 8, 4)
2222FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2223FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
c42fb26b
RH
2224FIELD(ID_AA64PFR1, SME, 24, 4)
2225FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2226FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2227FIELD(ID_AA64PFR1, NMI, 36, 4)
be53b6f4 2228
3dc91ddb
PM
2229FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2230FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2231FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2232FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2233FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2234FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2235FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2236FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2237FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2238FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2239FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2240FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2241FIELD(ID_AA64MMFR0, FGT, 56, 4)
2242FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2243
2244FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2245FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2246FIELD(ID_AA64MMFR1, VH, 8, 4)
2247FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2248FIELD(ID_AA64MMFR1, LO, 16, 4)
2249FIELD(ID_AA64MMFR1, PAN, 20, 4)
2250FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2251FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2252FIELD(ID_AA64MMFR1, TWED, 32, 4)
2253FIELD(ID_AA64MMFR1, ETS, 36, 4)
c42fb26b
RH
2254FIELD(ID_AA64MMFR1, HCX, 40, 4)
2255FIELD(ID_AA64MMFR1, AFP, 44, 4)
2256FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2257FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2258FIELD(ID_AA64MMFR1, CMOW, 56, 4)
3dc91ddb 2259
64761e10
RH
2260FIELD(ID_AA64MMFR2, CNP, 0, 4)
2261FIELD(ID_AA64MMFR2, UAO, 4, 4)
2262FIELD(ID_AA64MMFR2, LSM, 8, 4)
2263FIELD(ID_AA64MMFR2, IESB, 12, 4)
2264FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2265FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2266FIELD(ID_AA64MMFR2, NV, 24, 4)
2267FIELD(ID_AA64MMFR2, ST, 28, 4)
2268FIELD(ID_AA64MMFR2, AT, 32, 4)
2269FIELD(ID_AA64MMFR2, IDS, 36, 4)
2270FIELD(ID_AA64MMFR2, FWB, 40, 4)
2271FIELD(ID_AA64MMFR2, TTL, 48, 4)
2272FIELD(ID_AA64MMFR2, BBM, 52, 4)
2273FIELD(ID_AA64MMFR2, EVT, 56, 4)
2274FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2275
ceb2744b
PM
2276FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2277FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2278FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2279FIELD(ID_AA64DFR0, BRPS, 12, 4)
2280FIELD(ID_AA64DFR0, WRPS, 20, 4)
2281FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2282FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2283FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2284FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
c42fb26b 2285FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
00a92832 2286FIELD(ID_AA64DFR0, MTPMU, 48, 4)
c42fb26b
RH
2287FIELD(ID_AA64DFR0, BRBE, 52, 4)
2288FIELD(ID_AA64DFR0, HPMN0, 60, 4)
ceb2744b 2289
2dc10fa2
RH
2290FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2291FIELD(ID_AA64ZFR0, AES, 4, 4)
2292FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2293FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2294FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2295FIELD(ID_AA64ZFR0, SM4, 40, 4)
2296FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2297FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2298FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2299
414c54d5
RH
2300FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2301FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2302FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2303FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2304FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2305FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2306FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2307FIELD(ID_AA64SMFR0, FA64, 63, 1)
2308
beceb99c
AL
2309FIELD(ID_DFR0, COPDBG, 0, 4)
2310FIELD(ID_DFR0, COPSDBG, 4, 4)
2311FIELD(ID_DFR0, MMAPDBG, 8, 4)
2312FIELD(ID_DFR0, COPTRC, 12, 4)
2313FIELD(ID_DFR0, MMAPTRC, 16, 4)
2314FIELD(ID_DFR0, MPROFDBG, 20, 4)
2315FIELD(ID_DFR0, PERFMON, 24, 4)
2316FIELD(ID_DFR0, TRACEFILT, 28, 4)
2317
bd78b6be 2318FIELD(ID_DFR1, MTPMU, 0, 4)
c42fb26b 2319FIELD(ID_DFR1, HPMN0, 4, 4)
bd78b6be 2320
88ce6c6e
PM
2321FIELD(DBGDIDR, SE_IMP, 12, 1)
2322FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2323FIELD(DBGDIDR, VERSION, 16, 4)
2324FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2325FIELD(DBGDIDR, BRPS, 24, 4)
2326FIELD(DBGDIDR, WRPS, 28, 4)
2327
f94a6df5
PM
2328FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2329FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2330FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2331FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2332FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2333FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2334FIELD(DBGDEVID, AUXREGS, 24, 4)
2335FIELD(DBGDEVID, CIDMASK, 28, 4)
2336
602f6e42
PM
2337FIELD(MVFR0, SIMDREG, 0, 4)
2338FIELD(MVFR0, FPSP, 4, 4)
2339FIELD(MVFR0, FPDP, 8, 4)
2340FIELD(MVFR0, FPTRAP, 12, 4)
2341FIELD(MVFR0, FPDIVIDE, 16, 4)
2342FIELD(MVFR0, FPSQRT, 20, 4)
2343FIELD(MVFR0, FPSHVEC, 24, 4)
2344FIELD(MVFR0, FPROUND, 28, 4)
2345
2346FIELD(MVFR1, FPFTZ, 0, 4)
2347FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2348FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2349FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2350FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2351FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2352FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2353FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2354FIELD(MVFR1, FPHP, 24, 4)
2355FIELD(MVFR1, SIMDFMAC, 28, 4)
2356
2357FIELD(MVFR2, SIMDMISC, 0, 4)
2358FIELD(MVFR2, FPMISC, 4, 4)
2359
ef1febe7
RH
2360FIELD(GPCCR, PPS, 0, 3)
2361FIELD(GPCCR, IRGN, 8, 2)
2362FIELD(GPCCR, ORGN, 10, 2)
2363FIELD(GPCCR, SH, 12, 2)
2364FIELD(GPCCR, PGS, 14, 2)
2365FIELD(GPCCR, GPC, 16, 1)
2366FIELD(GPCCR, GPCP, 17, 1)
2367FIELD(GPCCR, L0GPTSZ, 20, 4)
2368
2369FIELD(MFAR, FPA, 12, 40)
2370FIELD(MFAR, NSE, 62, 1)
2371FIELD(MFAR, NS, 63, 1)
2372
43bbce7f
PM
2373QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2374
ce854d7c
BC
2375/* If adding a feature bit which corresponds to a Linux ELF
2376 * HWCAP bit, remember to update the feature-bit-to-hwcap
2377 * mapping in linux-user/elfload.c:get_elf_hwcap().
2378 */
40f137e1 2379enum arm_features {
c1713132
AZ
2380 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2381 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2382 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2383 ARM_FEATURE_V6,
2384 ARM_FEATURE_V6K,
2385 ARM_FEATURE_V7,
2386 ARM_FEATURE_THUMB2,
452a0955 2387 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2388 ARM_FEATURE_NEON,
9ee6e8bb 2389 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2390 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2391 ARM_FEATURE_THUMB2EE,
be5e7a76 2392 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2393 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2394 ARM_FEATURE_V4T,
2395 ARM_FEATURE_V5,
5bc95aa2 2396 ARM_FEATURE_STRONGARM,
906879a9 2397 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2398 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2399 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2400 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2401 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2402 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2403 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2404 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2405 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2406 ARM_FEATURE_V8,
3926cc84 2407 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2408 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2409 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2410 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2411 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2412 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2413 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2414 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2415 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2416 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2417 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2418};
2419
2420static inline int arm_feature(CPUARMState *env, int feature)
2421{
918f5dca 2422 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2423}
2424
0df9142d
AJ
2425void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2426
fcc7404e 2427/*
5d28ac0c
RH
2428 * ARM v9 security states.
2429 * The ordering of the enumeration corresponds to the low 2 bits
2430 * of the GPI value, and (except for Root) the concat of NSE:NS.
2431 */
2432
2433typedef enum ARMSecuritySpace {
2434 ARMSS_Secure = 0,
2435 ARMSS_NonSecure = 1,
2436 ARMSS_Root = 2,
2437 ARMSS_Realm = 3,
2438} ARMSecuritySpace;
2439
2440/* Return true if @space is secure, in the pre-v9 sense. */
2441static inline bool arm_space_is_secure(ARMSecuritySpace space)
2442{
2443 return space == ARMSS_Secure || space == ARMSS_Root;
2444}
2445
2446/* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2447static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2448{
2449 return secure ? ARMSS_Secure : ARMSS_NonSecure;
2450}
2451
2452#if !defined(CONFIG_USER_ONLY)
2453/**
2454 * arm_security_space_below_el3:
2455 * @env: cpu context
2456 *
2457 * Return the security space of exception levels below EL3, following
2458 * an exception return to those levels. Unlike arm_security_space,
2459 * this doesn't care about the current EL.
2460 */
2461ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2462
2463/**
2464 * arm_is_secure_below_el3:
2465 * @env: cpu context
2466 *
fcc7404e 2467 * Return true if exception levels below EL3 are in secure state,
5d28ac0c 2468 * or would be following an exception return to those levels.
19e0fefa
FA
2469 */
2470static inline bool arm_is_secure_below_el3(CPUARMState *env)
2471{
5d28ac0c
RH
2472 ARMSecuritySpace ss = arm_security_space_below_el3(env);
2473 return ss == ARMSS_Secure;
19e0fefa
FA
2474}
2475
71205876
PM
2476/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2477static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa 2478{
fcc7404e 2479 assert(!arm_feature(env, ARM_FEATURE_M));
19e0fefa
FA
2480 if (arm_feature(env, ARM_FEATURE_EL3)) {
2481 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2482 /* CPU currently in AArch64 state and EL3 */
2483 return true;
2484 } else if (!is_a64(env) &&
2485 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2486 /* CPU currently in AArch32 state and monitor mode */
2487 return true;
2488 }
2489 }
71205876
PM
2490 return false;
2491}
2492
5d28ac0c
RH
2493/**
2494 * arm_security_space:
2495 * @env: cpu context
2496 *
2497 * Return the current security space of the cpu.
2498 */
2499ARMSecuritySpace arm_security_space(CPUARMState *env);
2500
2501/**
2502 * arm_is_secure:
2503 * @env: cpu context
2504 *
2505 * Return true if the processor is in secure state.
2506 */
71205876
PM
2507static inline bool arm_is_secure(CPUARMState *env)
2508{
5d28ac0c 2509 return arm_space_is_secure(arm_security_space(env));
19e0fefa
FA
2510}
2511
f3ee5160
RDC
2512/*
2513 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
4477020d 2514 * This corresponds to the pseudocode EL2Enabled().
f3ee5160 2515 */
4477020d
PM
2516static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2517 ARMSecuritySpace space)
b74c0443 2518{
4477020d 2519 assert(space != ARMSS_Root);
b74c0443 2520 return arm_feature(env, ARM_FEATURE_EL2)
4477020d 2521 && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
b74c0443
RH
2522}
2523
f3ee5160
RDC
2524static inline bool arm_is_el2_enabled(CPUARMState *env)
2525{
4477020d 2526 return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
f3ee5160
RDC
2527}
2528
19e0fefa 2529#else
5d28ac0c
RH
2530static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2531{
2532 return ARMSS_NonSecure;
2533}
2534
19e0fefa
FA
2535static inline bool arm_is_secure_below_el3(CPUARMState *env)
2536{
2537 return false;
2538}
2539
5d28ac0c
RH
2540static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2541{
2542 return ARMSS_NonSecure;
2543}
2544
19e0fefa
FA
2545static inline bool arm_is_secure(CPUARMState *env)
2546{
2547 return false;
2548}
f3ee5160 2549
4477020d
PM
2550static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2551 ARMSecuritySpace space)
b74c0443
RH
2552{
2553 return false;
2554}
2555
f3ee5160
RDC
2556static inline bool arm_is_el2_enabled(CPUARMState *env)
2557{
2558 return false;
2559}
19e0fefa
FA
2560#endif
2561
f7778444
RH
2562/**
2563 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2564 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2565 * "for all purposes other than a direct read or write access of HCR_EL2."
2566 * Not included here is HCR_RW.
2567 */
2d12bb96 2568uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
f7778444 2569uint64_t arm_hcr_el2_eff(CPUARMState *env);
5814d587 2570uint64_t arm_hcrx_el2_eff(CPUARMState *env);
f7778444 2571
1f79ee32
PM
2572/* Return true if the specified exception level is running in AArch64 state. */
2573static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2574{
446c81ab
PM
2575 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2576 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2577 */
446c81ab
PM
2578 assert(el >= 1 && el <= 3);
2579 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2580
446c81ab
PM
2581 /* The highest exception level is always at the maximum supported
2582 * register width, and then lower levels have a register width controlled
2583 * by bits in the SCR or HCR registers.
1f79ee32 2584 */
446c81ab
PM
2585 if (el == 3) {
2586 return aa64;
2587 }
2588
926c1b97
RDC
2589 if (arm_feature(env, ARM_FEATURE_EL3) &&
2590 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2591 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2592 }
2593
2594 if (el == 2) {
2595 return aa64;
2596 }
2597
e6ef0169 2598 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2599 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2600 }
2601
2602 return aa64;
1f79ee32
PM
2603}
2604
673d8215 2605/* Function for determining whether guest cp register reads and writes should
3f342b9e
SF
2606 * access the secure or non-secure bank of a cp register. When EL3 is
2607 * operating in AArch32 state, the NS-bit determines whether the secure
2608 * instance of a cp register should be used. When EL3 is AArch64 (or if
2609 * it doesn't exist at all) then there is no register banking, and all
2610 * accesses are to the non-secure version.
2611 */
2612static inline bool access_secure_reg(CPUARMState *env)
2613{
2614 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2615 !arm_el_is_aa64(env, 3) &&
2616 !(env->cp15.scr_el3 & SCR_NS));
2617
2618 return ret;
2619}
2620
ea30a4b8
FA
2621/* Macros for accessing a specified CP register bank */
2622#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2623 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2624
2625#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2626 do { \
2627 if (_secure) { \
2628 (_env)->cp15._regname##_s = (_val); \
2629 } else { \
2630 (_env)->cp15._regname##_ns = (_val); \
2631 } \
2632 } while (0)
2633
2634/* Macros for automatically accessing a specific CP register bank depending on
2635 * the current secure state of the system. These macros are not intended for
2636 * supporting instruction translation reads/writes as these are dependent
2637 * solely on the SCR.NS bit and not the mode.
2638 */
2639#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2640 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2641 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2642
2643#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2644 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2645 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2646 (_val))
2647
0442428a 2648void arm_cpu_list(void);
012a906b
GB
2649uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2650 uint32_t cur_el, bool secure);
40f137e1 2651
75502672
PM
2652/* Return the highest implemented Exception Level */
2653static inline int arm_highest_el(CPUARMState *env)
2654{
2655 if (arm_feature(env, ARM_FEATURE_EL3)) {
2656 return 3;
2657 }
2658 if (arm_feature(env, ARM_FEATURE_EL2)) {
2659 return 2;
2660 }
2661 return 1;
2662}
2663
15b3f556
PM
2664/* Return true if a v7M CPU is in Handler mode */
2665static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2666{
2667 return env->v7m.exception != 0;
2668}
2669
dcbff19b
GB
2670/* Return the current Exception Level (as per ARMv8; note that this differs
2671 * from the ARMv7 Privilege Level).
2672 */
2673static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2674{
6d54ed3c 2675 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2676 return arm_v7m_is_handler_mode(env) ||
2677 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2678 }
2679
592125f8 2680 if (is_a64(env)) {
f5a0a5a5
PM
2681 return extract32(env->pstate, 2, 2);
2682 }
2683
592125f8
FA
2684 switch (env->uncached_cpsr & 0x1f) {
2685 case ARM_CPU_MODE_USR:
4b6a83fb 2686 return 0;
592125f8
FA
2687 case ARM_CPU_MODE_HYP:
2688 return 2;
2689 case ARM_CPU_MODE_MON:
2690 return 3;
2691 default:
2692 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2693 /* If EL3 is 32-bit then all secure privileged modes run in
2694 * EL3
2695 */
2696 return 3;
2697 }
2698
2699 return 1;
4b6a83fb 2700 }
4b6a83fb
PM
2701}
2702
721fae12
PM
2703/**
2704 * write_list_to_cpustate
2705 * @cpu: ARMCPU
2706 *
2707 * For each register listed in the ARMCPU cpreg_indexes list, write
2708 * its value from the cpreg_values list into the ARMCPUState structure.
2709 * This updates TCG's working data structures from KVM data or
2710 * from incoming migration state.
2711 *
2712 * Returns: true if all register values were updated correctly,
2713 * false if some register was unknown or could not be written.
2714 * Note that we do not stop early on failure -- we will attempt
2715 * writing all registers in the list.
2716 */
2717bool write_list_to_cpustate(ARMCPU *cpu);
2718
2719/**
2720 * write_cpustate_to_list:
2721 * @cpu: ARMCPU
b698e4ee 2722 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2723 *
2724 * For each register listed in the ARMCPU cpreg_indexes list, write
2725 * its value from the ARMCPUState structure into the cpreg_values list.
2726 * This is used to copy info from TCG's working data structures into
2727 * KVM or for outbound migration.
2728 *
b698e4ee
PM
2729 * @kvm_sync is true if we are doing this in order to sync the
2730 * register state back to KVM. In this case we will only update
2731 * values in the list if the previous list->cpustate sync actually
2732 * successfully wrote the CPU state. Otherwise we will keep the value
2733 * that is in the list.
2734 *
721fae12
PM
2735 * Returns: true if all register values were read correctly,
2736 * false if some register was unknown or could not be read.
2737 * Note that we do not stop early on failure -- we will attempt
2738 * reading all registers in the list.
2739 */
b698e4ee 2740bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2741
9ee6e8bb
PB
2742#define ARM_CPUID_TI915T 0x54029152
2743#define ARM_CPUID_TI925T 0x54029252
40f137e1 2744
ba1ba5cc
IM
2745#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2746#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2747#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2748
585df85e
PM
2749#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2750
c732abe2 2751#define cpu_list arm_cpu_list
9467d44c 2752
c1e37810
PM
2753/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2754 *
2755 * If EL3 is 64-bit:
2756 * + NonSecure EL1 & 0 stage 1
2757 * + NonSecure EL1 & 0 stage 2
2758 * + NonSecure EL2
b9f6033c
RH
2759 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2760 * + Secure EL1 & 0
c1e37810
PM
2761 * + Secure EL3
2762 * If EL3 is 32-bit:
2763 * + NonSecure PL1 & 0 stage 1
2764 * + NonSecure PL1 & 0 stage 2
2765 * + NonSecure PL2
b9f6033c
RH
2766 * + Secure PL0
2767 * + Secure PL1
c1e37810
PM
2768 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2769 *
2770 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2771 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2772 * because they may differ in access permissions even if the VA->PA map is
2773 * the same
c1e37810
PM
2774 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2775 * translation, which means that we have one mmu_idx that deals with two
2776 * concatenated translation regimes [this sort of combined s1+2 TLB is
2777 * architecturally permitted]
2778 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2779 * handling via the TLB. The only way to do a stage 1 translation without
2780 * the immediate stage 2 translation is via the ATS or AT system insns,
2781 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2782 * The only use of stage 2 translations is either as part of an s1+2
2783 * lookup or when loading the descriptors during a stage 1 page table walk,
2784 * and in both those cases we don't use the TLB.
c1e37810
PM
2785 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2786 * translation regimes, because they map reasonably well to each other
2787 * and they can't both be active at the same time.
b9f6033c
RH
2788 * 5. we want to be able to use the TLB for accesses done as part of a
2789 * stage1 page table walk, rather than having to walk the stage2 page
2790 * table over and over.
452ef8cb
RH
2791 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2792 * Never (PAN) bit within PSTATE.
d902ae75
RH
2793 * 7. we fold together the secure and non-secure regimes for A-profile,
2794 * because there are no banked system registers for aarch64, so the
2795 * process of switching between secure and non-secure is
2796 * already heavyweight.
c1e37810 2797 *
b9f6033c
RH
2798 * This gives us the following list of cases:
2799 *
d902ae75
RH
2800 * EL0 EL1&0 stage 1+2 (aka NS PL0)
2801 * EL1 EL1&0 stage 1+2 (aka NS PL1)
2802 * EL1 EL1&0 stage 1+2 +PAN
2803 * EL0 EL2&0
2804 * EL2 EL2&0
2805 * EL2 EL2&0 +PAN
2806 * EL2 (aka NS PL2)
2807 * EL3 (aka S PL1)
a1ce3084 2808 * Physical (NS & S)
575a94af 2809 * Stage2 (NS & S)
c1e37810 2810 *
575a94af 2811 * for a total of 12 different mmu_idx.
c1e37810 2812 *
3bef7012 2813 * R profile CPUs have an MPU, but can use the same set of MMU indexes
d902ae75
RH
2814 * as A profile. They only need to distinguish EL0 and EL1 (and
2815 * EL2 if we ever model a Cortex-R52).
3bef7012
PM
2816 *
2817 * M profile CPUs are rather different as they do not have a true MMU.
2818 * They have the following different MMU indexes:
2819 * User
2820 * Privileged
62593718
PM
2821 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2822 * Privileged, execution priority negative (ditto)
66787c78
PM
2823 * If the CPU supports the v8M Security Extension then there are also:
2824 * Secure User
2825 * Secure Privileged
62593718
PM
2826 * Secure User, execution priority negative
2827 * Secure Privileged, execution priority negative
3bef7012 2828 *
8bd5c820
PM
2829 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2830 * are not quite the same -- different CPU types (most notably M profile
2831 * vs A/R profile) would like to use MMU indexes with different semantics,
2832 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2833 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2834 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2835 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2836 * the same for any particular CPU.
2837 * Variables of type ARMMUIdx are always full values, and the core
2838 * index values are in variables of type 'int'.
2839 *
c1e37810
PM
2840 * Our enumeration includes at the end some entries which are not "true"
2841 * mmu_idx values in that they don't have corresponding TLBs and are only
2842 * valid for doing slow path page table walks.
2843 *
2844 * The constant names here are patterned after the general style of the names
2845 * of the AT/ATS operations.
2846 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2847 * For M profile we arrange them to have a bit for priv, a bit for negpri
2848 * and a bit for secure.
c1e37810 2849 */
b9f6033c
RH
2850#define ARM_MMU_IDX_A 0x10 /* A profile */
2851#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2852#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2853
b9f6033c
RH
2854/* Meanings of the bits for M profile mmu idx values */
2855#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2856#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2857#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2858
b9f6033c
RH
2859#define ARM_MMU_IDX_TYPE_MASK \
2860 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2861#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2862
c1e37810 2863typedef enum ARMMMUIdx {
b9f6033c
RH
2864 /*
2865 * A-profile.
2866 */
d902ae75
RH
2867 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2868 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
2869 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2870 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A,
2871 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2872 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2873 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
2874 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
b9f6033c 2875
575a94af
RH
2876 /*
2877 * Used for second stage of an S12 page table walk, or for descriptor
2878 * loads during first stage of an S1 page table walk. Note that both
2879 * are in use simultaneously for SecureEL2: the security state for
2880 * the S2 ptw is selected by the NS bit from the S1 ptw.
2881 */
d38fa967
RH
2882 ARMMMUIdx_Stage2_S = 8 | ARM_MMU_IDX_A,
2883 ARMMMUIdx_Stage2 = 9 | ARM_MMU_IDX_A,
2884
2885 /* TLBs with 1-1 mapping to the physical address spaces. */
bb5cc2c8
RH
2886 ARMMMUIdx_Phys_S = 10 | ARM_MMU_IDX_A,
2887 ARMMMUIdx_Phys_NS = 11 | ARM_MMU_IDX_A,
2888 ARMMMUIdx_Phys_Root = 12 | ARM_MMU_IDX_A,
2889 ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
575a94af 2890
b9f6033c
RH
2891 /*
2892 * These are not allocated TLBs and are used only for AT system
2893 * instructions or for the first stage of an S12 page table walk.
2894 */
2895 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2896 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2897 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2898
2899 /*
2900 * M-profile.
2901 */
25568316
RH
2902 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2903 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2904 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2905 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2906 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2907 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2908 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2909 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2910} ARMMMUIdx;
2911
5f09a6df
RH
2912/*
2913 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2914 * for use when calling tlb_flush_by_mmuidx() and friends.
2915 */
5f09a6df
RH
2916#define TO_CORE_BIT(NAME) \
2917 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2918
8bd5c820 2919typedef enum ARMMMUIdxBit {
5f09a6df 2920 TO_CORE_BIT(E10_0),
b9f6033c 2921 TO_CORE_BIT(E20_0),
5f09a6df 2922 TO_CORE_BIT(E10_1),
452ef8cb 2923 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2924 TO_CORE_BIT(E2),
b9f6033c 2925 TO_CORE_BIT(E20_2),
452ef8cb 2926 TO_CORE_BIT(E20_2_PAN),
d902ae75 2927 TO_CORE_BIT(E3),
575a94af
RH
2928 TO_CORE_BIT(Stage2),
2929 TO_CORE_BIT(Stage2_S),
5f09a6df
RH
2930
2931 TO_CORE_BIT(MUser),
2932 TO_CORE_BIT(MPriv),
2933 TO_CORE_BIT(MUserNegPri),
2934 TO_CORE_BIT(MPrivNegPri),
2935 TO_CORE_BIT(MSUser),
2936 TO_CORE_BIT(MSPriv),
2937 TO_CORE_BIT(MSUserNegPri),
2938 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2939} ARMMMUIdxBit;
2940
5f09a6df
RH
2941#undef TO_CORE_BIT
2942
f79fbf39 2943#define MMU_USER_IDX 0
c1e37810 2944
9e273ef2
PM
2945/* Indexes used when registering address spaces with cpu_address_space_init */
2946typedef enum ARMASIdx {
2947 ARMASIdx_NS = 0,
2948 ARMASIdx_S = 1,
8bce44a2
RH
2949 ARMASIdx_TagNS = 2,
2950 ARMASIdx_TagS = 3,
9e273ef2
PM
2951} ARMASIdx;
2952
bb5cc2c8
RH
2953static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2954{
2955 /* Assert the relative order of the physical mmu indexes. */
2956 QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2957 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2958 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2959 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2960
2961 return ARMMMUIdx_Phys_S + space;
2962}
2963
2964static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2965{
2966 assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2967 return idx - ARMMMUIdx_Phys_S;
2968}
2969
43bbce7f
PM
2970static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2971{
2972 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2973 * CSSELR is RAZ/WI.
2974 */
2975 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2976}
2977
f9fd40eb
PB
2978static inline bool arm_sctlr_b(CPUARMState *env)
2979{
2980 return
2981 /* We need not implement SCTLR.ITD in user-mode emulation, so
2982 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2983 * This lets people run BE32 binaries with "-cpu any".
2984 */
2985#ifndef CONFIG_USER_ONLY
2986 !arm_feature(env, ARM_FEATURE_V7) &&
2987#endif
2988 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2989}
2990
aaec1432 2991uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 2992
8061a649
RH
2993static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
2994 bool sctlr_b)
2995{
2996#ifdef CONFIG_USER_ONLY
2997 /*
2998 * In system mode, BE32 is modelled in line with the
2999 * architecture (as word-invariant big-endianness), where loads
3000 * and stores are done little endian but from addresses which
3001 * are adjusted by XORing with the appropriate constant. So the
3002 * endianness to use for the raw data access is not affected by
3003 * SCTLR.B.
3004 * In user mode, however, we model BE32 as byte-invariant
3005 * big-endianness (because user-only code cannot tell the
3006 * difference), and so we need to use a data access endianness
3007 * that depends on SCTLR.B.
3008 */
3009 if (sctlr_b) {
3010 return true;
3011 }
3012#endif
3013 /* In 32bit endianness is determined by looking at CPSR's E bit */
3014 return env->uncached_cpsr & CPSR_E;
3015}
3016
3017static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3018{
3019 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3020}
64e40755 3021
ed50ff78
PC
3022/* Return true if the processor is in big-endian mode. */
3023static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3024{
ed50ff78 3025 if (!is_a64(env)) {
8061a649 3026 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3027 } else {
3028 int cur_el = arm_current_el(env);
3029 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3030 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3031 }
ed50ff78
PC
3032}
3033
022c62cb 3034#include "exec/cpu-all.h"
622ed360 3035
fdd1b228 3036/*
a378206a
RH
3037 * We have more than 32-bits worth of state per TB, so we split the data
3038 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3039 * We collect these two parts in CPUARMTBFlags where they are named
3040 * flags and flags2 respectively.
fdd1b228 3041 *
a378206a
RH
3042 * The flags that are shared between all execution modes, TBFLAG_ANY,
3043 * are stored in flags. The flags that are specific to a given mode
3044 * are stores in flags2. Since cs_base is sized on the configured
3045 * address size, flags2 always has 64-bits for A64, and a minimum of
3046 * 32-bits for A32 and M32.
3047 *
3048 * The bits for 32-bit A-profile and M-profile partially overlap:
3049 *
5896f392
RH
3050 * 31 23 11 10 0
3051 * +-------------+----------+----------------+
3052 * | | | TBFLAG_A32 |
3053 * | TBFLAG_AM32 | +-----+----------+
3054 * | | |TBFLAG_M32|
3055 * +-------------+----------------+----------+
26702213 3056 * 31 23 6 5 0
79cabf1f 3057 *
fdd1b228 3058 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3059 */
eee81d41
RH
3060FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3061FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3062FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3063FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3064FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 3065/* Target EL if we take a floating-point-disabled exception */
eee81d41 3066FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
4479ec30 3067/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
8480e933
RH
3068FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3069FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
361c33f6 3070FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
34a8a07e 3071FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
79cabf1f 3072
8bd587c1 3073/*
79cabf1f 3074 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3075 */
5896f392
RH
3076FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3077FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 3078
79cabf1f
RH
3079/*
3080 * Bit usage when in AArch32 state, for A-profile only.
3081 */
5896f392
RH
3082FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3083FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
3084/*
3085 * We store the bottom two bits of the CPAR as TB flags and handle
3086 * checks on the other bits at runtime. This shares the same bits as
3087 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3088 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3089 */
5896f392
RH
3090FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3091FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3092FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3093FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
3094/*
3095 * Indicates whether cp register reads and writes by guest code should access
3096 * the secure or nonsecure bank of banked registers; note that this is not
3097 * the same thing as the current security state of the processor!
3098 */
5896f392 3099FIELD(TBFLAG_A32, NS, 10, 1)
75fe8356
RH
3100/*
3101 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3102 * This requires an SME trap from AArch32 mode when using NEON.
3103 */
3104FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
79cabf1f
RH
3105
3106/*
3107 * Bit usage when in AArch32 state, for M-profile only.
3108 */
3109/* Handler (ie not Thread) mode */
5896f392 3110FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3111/* Whether we should generate stack-limit checks */
5896f392 3112FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3113/* Set if FPCCR.LSPACT is set */
5896f392 3114FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3115/* Set if we must create a new FP context */
5896f392 3116FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3117/* Set if FPCCR.S does not match current security state */
5896f392 3118FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3119/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3120FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
a393dee0
RH
3121/* Set if in secure mode */
3122FIELD(TBFLAG_M32, SECURE, 6, 1)
79cabf1f
RH
3123
3124/*
3125 * Bit usage when in AArch64 state
3126 */
476a4692 3127FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac 3128FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
f45ce4c3
RH
3129/* The current vector length, either NVL or SVL. */
3130FIELD(TBFLAG_A64, VL, 4, 4)
0816ef1b 3131FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3132FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3133FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3134FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3135FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3136FIELD(TBFLAG_A64, ATA, 15, 1)
3137FIELD(TBFLAG_A64, TCMA, 16, 2)
3138FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3139FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
6b2ca83e 3140FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
a3637e88
RH
3141FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3142FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
5d7953ad 3143FIELD(TBFLAG_A64, SVL, 24, 4)
75fe8356
RH
3144/* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3145FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
5572f755 3146FIELD(TBFLAG_A64, FGT_ERET, 29, 1)
83f624d9 3147FIELD(TBFLAG_A64, NAA, 30, 1)
a1705768 3148
a729a46b
RH
3149/*
3150 * Helpers for using the above.
3151 */
3152#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3153 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3154#define DP_TBFLAG_A64(DST, WHICH, VAL) \
a378206a 3155 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3156#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3157 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3158#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3159 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3160#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3161 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3162
3902bfc6 3163#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
a378206a
RH
3164#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3165#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3166#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3167#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3168
fb901c90
RH
3169/**
3170 * cpu_mmu_index:
3171 * @env: The cpu environment
3172 * @ifetch: True for code access, false for data access.
3173 *
3174 * Return the core mmu index for the current translation regime.
3175 * This function is used by generic TCG code paths.
3176 */
3177static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3178{
a729a46b 3179 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3180}
3181
8b599e5c
RH
3182/**
3183 * sve_vq
3184 * @env: the cpu context
3185 *
3186 * Return the VL cached within env->hflags, in units of quadwords.
3187 */
3188static inline int sve_vq(CPUARMState *env)
3189{
3190 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3191}
3192
5d7953ad
RH
3193/**
3194 * sme_vq
3195 * @env: the cpu context
3196 *
3197 * Return the SVL cached within env->hflags, in units of quadwords.
3198 */
3199static inline int sme_vq(CPUARMState *env)
3200{
3201 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3202}
3203
f9fd40eb
PB
3204static inline bool bswap_code(bool sctlr_b)
3205{
3206#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3207 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3208 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3209 * would also end up as a mixed-endian mode with BE code, LE data.
3210 */
3211 return
ee3eb3a7 3212#if TARGET_BIG_ENDIAN
f9fd40eb
PB
3213 1 ^
3214#endif
3215 sctlr_b;
3216#else
e334bd31
PB
3217 /* All code access in ARM is little endian, and there are no loaders
3218 * doing swaps that need to be reversed
f9fd40eb
PB
3219 */
3220 return 0;
3221#endif
3222}
3223
c3ae85fc
PB
3224#ifdef CONFIG_USER_ONLY
3225static inline bool arm_cpu_bswap_data(CPUARMState *env)
3226{
3227 return
ee3eb3a7 3228#if TARGET_BIG_ENDIAN
c3ae85fc
PB
3229 1 ^
3230#endif
3231 arm_cpu_data_is_big_endian(env);
3232}
3233#endif
3234
bb5de525
AJ
3235void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3236 uint64_t *cs_base, uint32_t *flags);
6b917547 3237
98128601
RH
3238enum {
3239 QEMU_PSCI_CONDUIT_DISABLED = 0,
3240 QEMU_PSCI_CONDUIT_SMC = 1,
3241 QEMU_PSCI_CONDUIT_HVC = 2,
3242};
3243
017518c1
PM
3244#ifndef CONFIG_USER_ONLY
3245/* Return the address space index to use for a memory access */
3246static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3247{
3248 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3249}
5ce4ff65
PM
3250
3251/* Return the AddressSpace to use for a memory access
3252 * (which depends on whether the access is S or NS, and whether
3253 * the board gave us a separate AddressSpace for S accesses).
3254 */
3255static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3256{
3257 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3258}
017518c1
PM
3259#endif
3260
bd7d00fc 3261/**
b5c53d1b
AL
3262 * arm_register_pre_el_change_hook:
3263 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3264 * CPU changes exception level or mode. The hook function will be
3265 * passed a pointer to the ARMCPU and the opaque data pointer passed
3266 * to this function when the hook was registered.
b5c53d1b
AL
3267 *
3268 * Note that if a pre-change hook is called, any registered post-change hooks
3269 * are guaranteed to subsequently be called.
bd7d00fc 3270 */
b5c53d1b 3271void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3272 void *opaque);
b5c53d1b
AL
3273/**
3274 * arm_register_el_change_hook:
3275 * Register a hook function which will be called immediately after this
3276 * CPU changes exception level or mode. The hook function will be
3277 * passed a pointer to the ARMCPU and the opaque data pointer passed
3278 * to this function when the hook was registered.
3279 *
3280 * Note that any registered hooks registered here are guaranteed to be called
3281 * if pre-change hooks have been.
3282 */
3283void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3284 *opaque);
bd7d00fc 3285
3d74e2e9
RH
3286/**
3287 * arm_rebuild_hflags:
3288 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3289 */
3290void arm_rebuild_hflags(CPUARMState *env);
3291
9a2b5256
RH
3292/**
3293 * aa32_vfp_dreg:
3294 * Return a pointer to the Dn register within env in 32-bit mode.
3295 */
3296static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3297{
c39c2b90 3298 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3299}
3300
3301/**
3302 * aa32_vfp_qreg:
3303 * Return a pointer to the Qn register within env in 32-bit mode.
3304 */
3305static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3306{
c39c2b90 3307 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3308}
3309
3310/**
3311 * aa64_vfp_qreg:
3312 * Return a pointer to the Qn register within env in 64-bit mode.
3313 */
3314static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3315{
c39c2b90 3316 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3317}
3318
028e2a7b 3319/* Shared between translate-sve.c and sve_helper.c. */
fca75f60 3320extern const uint64_t pred_esz_masks[5];
028e2a7b 3321
be5d6f48
RH
3322/*
3323 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
7f2cf760
RH
3324 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3325 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
be5d6f48 3326 */
7f2cf760
RH
3327#define PAGE_BTI PAGE_TARGET_1
3328#define PAGE_MTE PAGE_TARGET_2
3329#define PAGE_TARGET_STICKY PAGE_MTE
be5d6f48 3330
50d4c8c1
RH
3331/* We associate one allocation tag per 16 bytes, the minimum. */
3332#define LOG2_TAG_GRANULE 4
3333#define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
3334
3335#ifdef CONFIG_USER_ONLY
3336#define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3337#endif
3338
0e0c030c
RH
3339#ifdef TARGET_TAGGED_ADDRESSES
3340/**
3341 * cpu_untagged_addr:
3342 * @cs: CPU context
3343 * @x: tagged address
3344 *
3345 * Remove any address tag from @x. This is explicitly related to the
3346 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3347 *
3348 * There should be a better place to put this, but we need this in
3349 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3350 */
3351static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3352{
3353 ARMCPU *cpu = ARM_CPU(cs);
3354 if (cpu->env.tagged_addr_enable) {
3355 /*
3356 * TBI is enabled for userspace but not kernelspace addresses.
3357 * Only clear the tag if bit 55 is clear.
3358 */
3359 x &= sextract64(x, 0, 56);
3360 }
3361 return x;
3362}
3363#endif
3364
873b73c0
PM
3365/*
3366 * Naming convention for isar_feature functions:
3367 * Functions which test 32-bit ID registers should have _aa32_ in
3368 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3369 * _aa64_ in their name. These must only be used in code where we
3370 * know for certain that the CPU has AArch32 or AArch64 respectively
3371 * or where the correct answer for a CPU which doesn't implement that
3372 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3373 * system registers that are specific to that CPU state, for "should
3374 * we let this system register bit be set" tests where the 32-bit
3375 * flavour of the register doesn't have the bit, and so on).
3376 * Functions which simply ask "does this feature exist at all" have
3377 * _any_ in their name, and always return the logical OR of the _aa64_
3378 * and the _aa32_ function.
873b73c0
PM
3379 */
3380
962fcbf2
RH
3381/*
3382 * 32-bit feature tests via id registers.
3383 */
873b73c0 3384static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3385{
3386 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3387}
3388
873b73c0 3389static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3390{
3391 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3392}
05903f03
PM
3393
3394static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3395{
3396 /* (M-profile) low-overhead loops and branch future */
3397 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3398}
7e0cf8b4 3399
873b73c0 3400static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3401{
3402 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3403}
3404
962fcbf2
RH
3405static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3406{
3407 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3408}
3409
3410static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3411{
3412 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3413}
3414
3415static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3416{
3417 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3418}
3419
3420static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3421{
3422 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3423}
3424
3425static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3426{
3427 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3428}
3429
3430static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3431{
3432 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3433}
3434
3435static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3436{
3437 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3438}
3439
6c1f6f27
RH
3440static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3441{
3442 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3443}
3444
962fcbf2
RH
3445static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3446{
3447 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3448}
3449
87732318
RH
3450static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3451{
3452 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3453}
3454
9888bd1e
RH
3455static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3456{
3457 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3458}
3459
cb570bd3
RH
3460static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3461{
3462 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3463}
3464
c0b9e8a4
RH
3465static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3466{
3467 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3468}
3469
51879c67
RH
3470static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3471{
3472 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3473}
3474
46f4976f
PM
3475static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3476{
3477 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3478}
3479
dfc523a8
PM
3480static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3481{
3482 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3483}
3484
83ff3d6a
PM
3485static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3486{
3487 /*
3488 * Return true if M-profile state handling insns
3489 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3490 */
3491 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3492}
3493
5763190f
RH
3494static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3495{
dfc523a8
PM
3496 /* Sadly this is encoded differently for A-profile and M-profile */
3497 if (isar_feature_aa32_mprofile(id)) {
3498 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3499 } else {
3500 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3501 }
5763190f
RH
3502}
3503
7df6a1ff
PM
3504static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3505{
3506 /*
3507 * Return true if MVE is supported (either integer or floating point).
3508 * We must check for M-profile as the MVFR1 field means something
3509 * else for A-profile.
3510 */
3511 return isar_feature_aa32_mprofile(id) &&
3512 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3513}
3514
3515static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3516{
3517 /*
3518 * Return true if MVE is supported (either integer or floating point).
3519 * We must check for M-profile as the MVFR1 field means something
3520 * else for A-profile.
3521 */
3522 return isar_feature_aa32_mprofile(id) &&
3523 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3524}
3525
7fbc6a40
RH
3526static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3527{
3528 /*
3529 * Return true if either VFP or SIMD is implemented.
3530 * In this case, a minimum of VFP w/ D0-D15.
3531 */
3532 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3533}
3534
0e13ba78 3535static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3536{
3537 /* Return true if D16-D31 are implemented */
b3a816f6 3538 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3539}
3540
266bd25c
PM
3541static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3542{
b3a816f6 3543 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3544}
3545
f67957e1
RH
3546static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3547{
3548 /* Return true if CPU supports single precision floating point, VFPv2 */
3549 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3550}
3551
3552static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3553{
3554 /* Return true if CPU supports single precision floating point, VFPv3 */
3555 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3556}
3557
c4ff8735 3558static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3559{
c4ff8735 3560 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3561 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3562}
3563
f67957e1
RH
3564static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3565{
3566 /* Return true if CPU supports double precision floating point, VFPv3 */
3567 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3568}
3569
7d63183f
RH
3570static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3571{
3572 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3573}
3574
602f6e42
PM
3575/*
3576 * We always set the FP and SIMD FP16 fields to indicate identical
3577 * levels of support (assuming SIMD is implemented at all), so
3578 * we only need one set of accessors.
3579 */
3580static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3581{
b3a816f6 3582 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3583}
3584
3585static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3586{
b3a816f6 3587 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3588}
3589
c52881bb
RH
3590/*
3591 * Note that this ID register field covers both VFP and Neon FMAC,
3592 * so should usually be tested in combination with some other
3593 * check that confirms the presence of whichever of VFP or Neon is
3594 * relevant, to avoid accidentally enabling a Neon feature on
3595 * a VFP-no-Neon core or vice-versa.
3596 */
3597static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3598{
3599 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3600}
3601
c0c760af
PM
3602static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3603{
b3a816f6 3604 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3605}
3606
3607static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3608{
b3a816f6 3609 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3610}
3611
3612static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3613{
b3a816f6 3614 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3615}
3616
3617static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3618{
b3a816f6 3619 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3620}
3621
0ae0326b
PM
3622static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3623{
3624 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3625}
3626
3d6ad6bb
RH
3627static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3628{
10054016 3629 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3630}
3631
3632static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3633{
10054016 3634 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3635}
3636
a793bcd0 3637static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id)
a6179538
PM
3638{
3639 /* 0xf means "non-standard IMPDEF PMU" */
3640 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3641 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3642}
3643
a793bcd0 3644static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id)
15dd1ebd
PM
3645{
3646 /* 0xf means "non-standard IMPDEF PMU" */
3647 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3648 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3649}
3650
0b42f4fa
PM
3651static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id)
3652{
3653 /* 0xf means "non-standard IMPDEF PMU" */
3654 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 &&
3655 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3656}
3657
4036b7d1
PM
3658static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3659{
3660 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3661}
3662
f6287c24
PM
3663static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3664{
3665 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3666}
3667
957e6155
PM
3668static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3669{
3670 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3671}
3672
ce3125be
PM
3673static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3674{
3675 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3676}
3677
d2fd9313
PM
3678static inline bool isar_feature_aa32_half_evt(const ARMISARegisters *id)
3679{
3680 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 1;
3681}
3682
3683static inline bool isar_feature_aa32_evt(const ARMISARegisters *id)
3684{
3685 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 2;
3686}
3687
dc8b1853
RC
3688static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3689{
3690 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3691}
3692
f2f68a78
RC
3693static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3694{
3695 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3696}
3697
09754ca8
PM
3698static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3699{
3700 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3701}
3702
ca56aac5
RH
3703static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3704{
3705 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3706}
3707
f94a6df5
PM
3708static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3709{
3710 return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3711}
3712
962fcbf2
RH
3713/*
3714 * 64-bit feature tests via id registers.
3715 */
3716static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3717{
3718 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3719}
3720
3721static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3722{
3723 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3724}
3725
3726static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3727{
3728 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3729}
3730
3731static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3732{
3733 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3734}
3735
3736static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3737{
3738 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3739}
3740
3741static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3742{
3743 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3744}
3745
3746static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3747{
3748 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3749}
3750
3751static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3752{
3753 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3754}
3755
3756static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3757{
3758 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3759}
3760
3761static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3762{
3763 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3764}
3765
3766static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3767{
3768 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3769}
3770
3771static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3772{
3773 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3774}
3775
0caa5af8
RH
3776static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3777{
3778 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3779}
3780
b89d9c98
RH
3781static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3782{
3783 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3784}
3785
5ef84f11
RH
3786static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3787{
3788 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3789}
3790
de390645
RH
3791static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3792{
3793 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3794}
3795
6c1f6f27
RH
3796static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3797{
3798 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3799}
3800
962fcbf2
RH
3801static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3802{
3803 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3804}
3805
991ad91b
RH
3806static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3807{
3808 /*
283fc52a
RH
3809 * Return true if any form of pauth is enabled, as this
3810 * predicate controls migration of the 128-bit keys.
991ad91b
RH
3811 */
3812 return (id->id_aa64isar1 &
3813 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3814 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3815 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3816 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3817}
3818
283fc52a
RH
3819static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3820{
3821 /*
3822 * Return true if pauth is enabled with the architected QARMA algorithm.
3823 * QEMU will always set APA+GPA to the same value.
3824 */
3825 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3826}
3827
84940ed8
RC
3828static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3829{
3830 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3831}
3832
7113d618
RC
3833static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3834{
3835 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3836}
3837
9888bd1e
RH
3838static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3839{
3840 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3841}
3842
cb570bd3
RH
3843static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3844{
3845 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3846}
3847
6bea2563
RH
3848static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3849{
3850 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3851}
3852
0d57b499
BM
3853static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3854{
3855 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3856}
3857
3858static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3859{
3860 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3861}
3862
c0b9e8a4
RH
3863static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3864{
3865 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3866}
3867
7d63183f
RH
3868static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3869{
3870 /* We always set the AdvSIMD and FP fields identically. */
3871 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3872}
3873
5763190f
RH
3874static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3875{
3876 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3877 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3878}
3879
0f8d06f1
RH
3880static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3881{
3882 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3883}
3884
10d0ef3e
MN
3885static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3886{
3887 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3888}
3889
6bcbb07a
RH
3890static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3891{
3892 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3893}
3894
25e168ab
RH
3895static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3896{
3897 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3898}
3899
7ac61020
PM
3900static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3901{
3902 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3903}
3904
cd208a1c
RH
3905static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3906{
3907 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3908}
3909
5ca192df
RDC
3910static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3911{
3912 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3913}
3914
b9f335c2
RH
3915static inline bool isar_feature_aa64_rme(const ARMISARegisters *id)
3916{
3917 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RME) != 0;
3918}
3919
8fc2ea21
RH
3920static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3921{
3922 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3923}
3924
2d7137c1
RH
3925static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3926{
3927 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3928}
3929
3d6ad6bb
RH
3930static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3931{
3932 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3933}
3934
3935static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3936{
3937 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3938}
3939
dd17143f
PM
3940static inline bool isar_feature_aa64_pan3(const ARMISARegisters *id)
3941{
3942 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 3;
3943}
3944
5814d587
RH
3945static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3946{
3947 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3948}
3949
9eeb7a1c
RH
3950static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3951{
3952 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3953}
3954
c36c65ea
RDC
3955static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3956{
3957 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3958}
3959
cf1cbf50
RH
3960static inline bool isar_feature_aa64_lse2(const ARMISARegisters *id)
3961{
3962 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, AT) != 0;
3963}
3964
8c7e17ef
PM
3965static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
3966{
3967 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
3968}
3969
75662f36
PM
3970static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
3971{
3972 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
3973}
3974
d2fd9313
PM
3975static inline bool isar_feature_aa64_half_evt(const ARMISARegisters *id)
3976{
3977 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 1;
3978}
3979
3980static inline bool isar_feature_aa64_evt(const ARMISARegisters *id)
3981{
3982 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 2;
3983}
3984
be53b6f4
RH
3985static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3986{
3987 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3988}
3989
c7fd0baa
RH
3990static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3991{
3992 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3993}
3994
3995static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3996{
3997 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3998}
3999
f305bf94
RH
4000static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
4001{
4002 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
4003}
4004
a793bcd0 4005static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
2a609df8
PM
4006{
4007 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4008 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4009}
4010
a793bcd0 4011static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 4012{
54117b90
PM
4013 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4014 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
4015}
4016
0b42f4fa
PM
4017static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id)
4018{
4019 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 &&
4020 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4021}
4022
2677cf9f
PM
4023static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4024{
4025 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4026}
4027
a1229109
PM
4028static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4029{
4030 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4031}
4032
f7da051f
RH
4033static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4034{
4035 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4036}
4037
ef56c242
RH
4038static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4039{
4040 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4041}
4042
4043static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4044{
4045 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4046 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4047}
4048
4049static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4050{
4051 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4052}
4053
4054static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4055{
4056 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4057 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4058}
4059
104f703d
PM
4060static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id)
4061{
4062 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0;
4063}
4064
4065static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id)
4066{
4067 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1;
4068}
4069
4070static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id)
4071{
4072 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0;
4073}
4074
4075static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id)
4076{
4077 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4078 return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id));
4079}
4080
4081static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id)
4082{
4083 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4084 return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id));
4085}
4086
4087static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id)
4088{
4089 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2);
4090 return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id));
4091}
4092
15126d9c
PM
4093static inline bool isar_feature_aa64_fgt(const ARMISARegisters *id)
4094{
4095 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, FGT) != 0;
4096}
4097
957e6155
PM
4098static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4099{
4100 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4101}
4102
0af312b6
RH
4103static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4104{
4105 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4106}
4107
e4c93e44
PM
4108static inline bool isar_feature_aa64_e0pd(const ARMISARegisters *id)
4109{
4110 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, E0PD) != 0;
4111}
4112
980a6892
RH
4113static inline bool isar_feature_aa64_hafs(const ARMISARegisters *id)
4114{
4115 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) != 0;
4116}
4117
4118static inline bool isar_feature_aa64_hdbs(const ARMISARegisters *id)
4119{
4120 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) >= 2;
4121}
4122
ce3125be
PM
4123static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4124{
4125 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4126}
4127
dc8b1853
RC
4128static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4129{
4130 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4131}
4132
7cb1e618
RH
4133static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4134{
4135 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4136 if (key >= 2) {
4137 return true; /* FEAT_CSV2_2 */
4138 }
4139 if (key == 1) {
4140 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4141 return key >= 2; /* FEAT_CSV2_1p2 */
4142 }
4143 return false;
4144}
4145
f2f68a78
RC
4146static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4147{
4148 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4149}
4150
ca56aac5
RH
4151static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4152{
4153 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4154}
4155
2dc10fa2
RH
4156static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4157{
4158 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4159}
4160
e3a56131
RH
4161static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4162{
4163 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4164}
4165
4166static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4167{
4168 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4169}
4170
cb9c33b8
RH
4171static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4172{
4173 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4174}
4175
c0b9e8a4
RH
4176static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4177{
4178 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4179}
4180
3358eb3f
RH
4181static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4182{
4183 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4184}
4185
3cc7a88e
RH
4186static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4187{
4188 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4189}
4190
2867039a
RH
4191static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4192{
4193 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4194}
4195
4f26756b
SL
4196static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4197{
4198 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4199}
4200
4201static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4202{
4203 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4204}
4205
414c54d5
RH
4206static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4207{
4208 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4209}
4210
4211static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4212{
4213 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4214}
4215
4216static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4217{
4218 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4219}
4220
f94a6df5
PM
4221static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4222{
4223 return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4224}
4225
6e61f839
PM
4226/*
4227 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4228 */
4229static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4230{
4231 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4232}
4233
22e57073
PM
4234static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4235{
4236 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4237}
4238
a793bcd0 4239static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id)
2a609df8 4240{
a793bcd0 4241 return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id);
2a609df8
PM
4242}
4243
a793bcd0 4244static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 4245{
a793bcd0 4246 return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id);
15dd1ebd
PM
4247}
4248
0b42f4fa
PM
4249static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id)
4250{
4251 return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id);
4252}
4253
957e6155
PM
4254static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4255{
4256 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4257}
4258
ce3125be
PM
4259static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4260{
4261 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4262}
4263
ca56aac5
RH
4264static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4265{
4266 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4267}
4268
25e168ab
RH
4269static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4270{
4271 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4272}
4273
d2fd9313
PM
4274static inline bool isar_feature_any_half_evt(const ARMISARegisters *id)
4275{
4276 return isar_feature_aa64_half_evt(id) || isar_feature_aa32_half_evt(id);
4277}
4278
4279static inline bool isar_feature_any_evt(const ARMISARegisters *id)
4280{
4281 return isar_feature_aa64_evt(id) || isar_feature_aa32_evt(id);
4282}
4283
962fcbf2
RH
4284/*
4285 * Forward to the above feature tests given an ARMCPU pointer.
4286 */
4287#define cpu_isar_feature(name, cpu) \
4288 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4289
2c0262af 4290#endif