]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
Merge tag 'pull-testing-gdbstub-plugins-gitdm-061022-3' of https://github.com/stsquad...
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
68970d1e 28#include "qapi/qapi-types-common.h"
9042c0e2 29
ca759f9e
AB
30/* ARM processors have a weak memory model */
31#define TCG_GUEST_DEFAULT_MO (0)
32
e24fd076
DG
33#ifdef TARGET_AARCH64
34#define KVM_HAVE_MCE_INJECTION 1
35#endif
36
b8a9e8f1
FB
37#define EXCP_UDEF 1 /* undefined instruction */
38#define EXCP_SWI 2 /* software interrupt */
39#define EXCP_PREFETCH_ABORT 3
40#define EXCP_DATA_ABORT 4
b5ff1b31
FB
41#define EXCP_IRQ 5
42#define EXCP_FIQ 6
06c949e6 43#define EXCP_BKPT 7
9ee6e8bb 44#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 45#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 46#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 47#define EXCP_HYP_TRAP 12
e0d6e6a5 48#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
49#define EXCP_VIRQ 14
50#define EXCP_VFIQ 15
19a6e31c 51#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 52#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 53#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 54#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 55#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
56#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 58#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
3c29632f 59#define EXCP_VSERR 24
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
3c29632f 93#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
403946c0 94
e4fe830b
PM
95/* The usual mapping for an AArch64 system register to its AArch32
96 * counterpart is for the 32 bit world to have access to the lower
97 * half only (with writes leaving the upper half untouched). It's
98 * therefore useful to be able to pass TCG the offset of the least
99 * significant half of a uint64_t struct member.
100 */
e03b5686 101#if HOST_BIG_ENDIAN
5cd8a118 102#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 103#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
104#else
105#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 106#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
107#endif
108
136e67e9 109/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
110#define ARM_CPU_IRQ 0
111#define ARM_CPU_FIQ 1
136e67e9
EI
112#define ARM_CPU_VIRQ 2
113#define ARM_CPU_VFIQ 3
403946c0 114
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
448d4d14
AB
140 * @num: Number of the registers in this XML seen by GDB.
141 * @data: A union with data specific to the set of registers
142 * @cpregs_keys: Array that contains the corresponding Key of
143 * a given cpreg with the same order of the cpreg
144 * in the XML description.
200bf5b7
AB
145 */
146typedef struct DynamicGDBXMLInfo {
147 char *desc;
448d4d14
AB
148 int num;
149 union {
150 struct {
151 uint32_t *keys;
152 } cpregs;
153 } data;
200bf5b7
AB
154} DynamicGDBXMLInfo;
155
55d284af
PM
156/* CPU state for each instance of a generic timer (in cp15 c14) */
157typedef struct ARMGenericTimer {
158 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 159 uint64_t ctl; /* Timer Control register */
55d284af
PM
160} ARMGenericTimer;
161
8c94b071
RH
162#define GTIMER_PHYS 0
163#define GTIMER_VIRT 1
164#define GTIMER_HYP 2
165#define GTIMER_SEC 3
166#define GTIMER_HYPVIRT 4
167#define NUM_GTIMERS 5
55d284af 168
e9152ee9
RDC
169#define VTCR_NSW (1u << 29)
170#define VTCR_NSA (1u << 30)
171#define VSTCR_SW VTCR_NSW
172#define VSTCR_SA VTCR_NSA
173
c39c2b90
RH
174/* Define a maximum sized vector register.
175 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
176 * For 64-bit, this is a 2048-bit SVE register.
177 *
178 * Note that the mapping between S, D, and Q views of the register bank
179 * differs between AArch64 and AArch32.
180 * In AArch32:
181 * Qn = regs[n].d[1]:regs[n].d[0]
182 * Dn = regs[n / 2].d[n & 1]
183 * Sn = regs[n / 4].d[n % 4 / 2],
184 * bits 31..0 for even n, and bits 63..32 for odd n
185 * (and regs[16] to regs[31] are inaccessible)
186 * In AArch64:
187 * Zn = regs[n].d[*]
188 * Qn = regs[n].d[1]:regs[n].d[0]
189 * Dn = regs[n].d[0]
190 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 191 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
192 *
193 * This corresponds to the architecturally defined mapping between
194 * the two execution states, and means we do not need to explicitly
195 * map these registers when changing states.
196 *
197 * Align the data for use with TCG host vector operations.
198 */
199
200#ifdef TARGET_AARCH64
201# define ARM_MAX_VQ 16
202#else
203# define ARM_MAX_VQ 1
204#endif
205
206typedef struct ARMVectorReg {
207 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
208} ARMVectorReg;
209
3c7d3086 210#ifdef TARGET_AARCH64
991ad91b 211/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 212typedef struct ARMPredicateReg {
46417784 213 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 214} ARMPredicateReg;
991ad91b
RH
215
216/* In AArch32 mode, PAC keys do not exist at all. */
217typedef struct ARMPACKey {
218 uint64_t lo, hi;
219} ARMPACKey;
3c7d3086
RH
220#endif
221
3902bfc6
RH
222/* See the commentary above the TBFLAG field definitions. */
223typedef struct CPUARMTBFlags {
224 uint32_t flags;
a378206a 225 target_ulong flags2;
3902bfc6 226} CPUARMTBFlags;
c39c2b90 227
1ea4a06a 228typedef struct CPUArchState {
b5ff1b31 229 /* Regs for current mode. */
2c0262af 230 uint32_t regs[16];
3926cc84
AG
231
232 /* 32/64 switch only happens when taking and returning from
233 * exceptions so the overlap semantics are taken care of then
234 * instead of having a complicated union.
235 */
236 /* Regs for A64 mode. */
237 uint64_t xregs[32];
238 uint64_t pc;
d356312f
PM
239 /* PSTATE isn't an architectural register for ARMv8. However, it is
240 * convenient for us to assemble the underlying state into a 32 bit format
241 * identical to the architectural format used for the SPSR. (This is also
242 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
243 * 'pstate' register are.) Of the PSTATE bits:
244 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
245 * semantics as for AArch32, as described in the comments on each field)
246 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 247 * DAIF (exception masks) are kept in env->daif
f6e52eaa 248 * BTYPE is kept in env->btype
c37e6ac9 249 * SM and ZA are kept in env->svcr
d356312f 250 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
251 */
252 uint32_t pstate;
53221552 253 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
063bbd80 254 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
3926cc84 255
fdd1b228 256 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 257 CPUARMTBFlags hflags;
fdd1b228 258
b90372ad 259 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 260 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
261 the whole CPSR. */
262 uint32_t uncached_cpsr;
263 uint32_t spsr;
264
265 /* Banked registers. */
28c9457d 266 uint64_t banked_spsr[8];
0b7d409d
FA
267 uint32_t banked_r13[8];
268 uint32_t banked_r14[8];
3b46e624 269
b5ff1b31
FB
270 /* These hold r8-r12. */
271 uint32_t usr_regs[5];
272 uint32_t fiq_regs[5];
3b46e624 273
2c0262af
FB
274 /* cpsr flag cache for faster execution */
275 uint32_t CF; /* 0 or 1 */
276 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
277 uint32_t NF; /* N is bit 31. All other bits are undefined. */
278 uint32_t ZF; /* Z set if zero. */
99c475ab 279 uint32_t QF; /* 0 or 1 */
9ee6e8bb 280 uint32_t GE; /* cpsr[19:16] */
9ee6e8bb 281 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 282 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 283 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
c37e6ac9 284 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
2c0262af 285
1b174238 286 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 287 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 288
b5ff1b31
FB
289 /* System control coprocessor (cp15) */
290 struct {
40f137e1 291 uint32_t c0_cpuid;
b85a1fd6
FA
292 union { /* Cache size selection */
293 struct {
294 uint64_t _unused_csselr0;
295 uint64_t csselr_ns;
296 uint64_t _unused_csselr1;
297 uint64_t csselr_s;
298 };
299 uint64_t csselr_el[4];
300 };
137feaa9
FA
301 union { /* System control register. */
302 struct {
303 uint64_t _unused_sctlr;
304 uint64_t sctlr_ns;
305 uint64_t hsctlr;
306 uint64_t sctlr_s;
307 };
308 uint64_t sctlr_el[4];
309 };
7ebd5f2e 310 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 311 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 312 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 313 uint64_t sder; /* Secure debug enable register. */
77022576 314 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
315 union { /* MMU translation table base 0. */
316 struct {
317 uint64_t _unused_ttbr0_0;
318 uint64_t ttbr0_ns;
319 uint64_t _unused_ttbr0_1;
320 uint64_t ttbr0_s;
321 };
322 uint64_t ttbr0_el[4];
323 };
324 union { /* MMU translation table base 1. */
325 struct {
326 uint64_t _unused_ttbr1_0;
327 uint64_t ttbr1_ns;
328 uint64_t _unused_ttbr1_1;
329 uint64_t ttbr1_s;
330 };
331 uint64_t ttbr1_el[4];
332 };
b698e9cf 333 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 334 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee 335 /* MMU translation table base control. */
cb4a0a34 336 uint64_t tcr_el[4];
988cc190
PM
337 uint64_t vtcr_el2; /* Virtualization Translation Control. */
338 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
339 uint32_t c2_data; /* MPU data cacheable bits. */
340 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
341 union { /* MMU domain access control register
342 * MPU write buffer control.
343 */
344 struct {
345 uint64_t dacr_ns;
346 uint64_t dacr_s;
347 };
348 struct {
349 uint64_t dacr32_el2;
350 };
351 };
7e09797c
PM
352 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
353 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 354 uint64_t hcr_el2; /* Hypervisor configuration register */
5814d587 355 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
64e0e2de 356 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
357 union { /* Fault status registers. */
358 struct {
359 uint64_t ifsr_ns;
360 uint64_t ifsr_s;
361 };
362 struct {
363 uint64_t ifsr32_el2;
364 };
365 };
4a7e2d73
FA
366 union {
367 struct {
368 uint64_t _unused_dfsr;
369 uint64_t dfsr_ns;
370 uint64_t hsr;
371 uint64_t dfsr_s;
372 };
373 uint64_t esr_el[4];
374 };
ce819861 375 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
376 union { /* Fault address registers. */
377 struct {
378 uint64_t _unused_far0;
e03b5686 379#if HOST_BIG_ENDIAN
b848ce2b
FA
380 uint32_t ifar_ns;
381 uint32_t dfar_ns;
382 uint32_t ifar_s;
383 uint32_t dfar_s;
384#else
385 uint32_t dfar_ns;
386 uint32_t ifar_ns;
387 uint32_t dfar_s;
388 uint32_t ifar_s;
389#endif
390 uint64_t _unused_far3;
391 };
392 uint64_t far_el[4];
393 };
59e05530 394 uint64_t hpfar_el2;
2a5a9abd 395 uint64_t hstr_el2;
01c097f7
FA
396 union { /* Translation result. */
397 struct {
398 uint64_t _unused_par_0;
399 uint64_t par_ns;
400 uint64_t _unused_par_1;
401 uint64_t par_s;
402 };
403 uint64_t par_el[4];
404 };
6cb0b013 405
b5ff1b31
FB
406 uint32_t c9_insn; /* Cache lockdown registers. */
407 uint32_t c9_data;
8521466b
AF
408 uint64_t c9_pmcr; /* performance monitor control register */
409 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
410 uint64_t c9_pmovsr; /* perf monitor overflow status */
411 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 412 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 413 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
414 union { /* Memory attribute redirection */
415 struct {
e03b5686 416#if HOST_BIG_ENDIAN
be693c87
GB
417 uint64_t _unused_mair_0;
418 uint32_t mair1_ns;
419 uint32_t mair0_ns;
420 uint64_t _unused_mair_1;
421 uint32_t mair1_s;
422 uint32_t mair0_s;
423#else
424 uint64_t _unused_mair_0;
425 uint32_t mair0_ns;
426 uint32_t mair1_ns;
427 uint64_t _unused_mair_1;
428 uint32_t mair0_s;
429 uint32_t mair1_s;
430#endif
431 };
432 uint64_t mair_el[4];
433 };
fb6c91ba
GB
434 union { /* vector base address register */
435 struct {
436 uint64_t _unused_vbar;
437 uint64_t vbar_ns;
438 uint64_t hvbar;
439 uint64_t vbar_s;
440 };
441 uint64_t vbar_el[4];
442 };
e89e51a1 443 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 444 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
445 struct { /* FCSE PID. */
446 uint32_t fcseidr_ns;
447 uint32_t fcseidr_s;
448 };
449 union { /* Context ID. */
450 struct {
451 uint64_t _unused_contextidr_0;
452 uint64_t contextidr_ns;
453 uint64_t _unused_contextidr_1;
454 uint64_t contextidr_s;
455 };
456 uint64_t contextidr_el[4];
457 };
458 union { /* User RW Thread register. */
459 struct {
460 uint64_t tpidrurw_ns;
461 uint64_t tpidrprw_ns;
462 uint64_t htpidr;
463 uint64_t _tpidr_el3;
464 };
465 uint64_t tpidr_el[4];
466 };
9e5ec745 467 uint64_t tpidr2_el0;
54bf36ed
FA
468 /* The secure banks of these registers don't map anywhere */
469 uint64_t tpidrurw_s;
470 uint64_t tpidrprw_s;
471 uint64_t tpidruro_s;
472
473 union { /* User RO Thread register. */
474 uint64_t tpidruro_ns;
475 uint64_t tpidrro_el[1];
476 };
a7adc4b7
PM
477 uint64_t c14_cntfrq; /* Counter Frequency register */
478 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 479 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 480 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 481 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 482 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
483 uint32_t c15_ticonfig; /* TI925T configuration byte. */
484 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
485 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
486 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
487 uint32_t c15_config_base_address; /* SCU base address. */
488 uint32_t c15_diagnostic; /* diagnostic register */
489 uint32_t c15_power_diagnostic;
490 uint32_t c15_power_control; /* power control */
0b45451e
PM
491 uint64_t dbgbvr[16]; /* breakpoint value registers */
492 uint64_t dbgbcr[16]; /* breakpoint control registers */
493 uint64_t dbgwvr[16]; /* watchpoint value registers */
494 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 495 uint64_t mdscr_el1;
1424ca8d 496 uint64_t oslsr_el1; /* OS Lock Status */
f94a6df5 497 uint64_t osdlr_el1; /* OS DoubleLock status */
14cc7b54 498 uint64_t mdcr_el2;
5513c3ab 499 uint64_t mdcr_el3;
5d05b9d4
AL
500 /* Stores the architectural value of the counter *the last time it was
501 * updated* by pmccntr_op_start. Accesses should always be surrounded
502 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
503 * architecturally-correct value is being read/set.
7c2cb42b 504 */
c92c0687 505 uint64_t c15_ccnt;
5d05b9d4
AL
506 /* Stores the delta between the architectural value and the underlying
507 * cycle count during normal operation. It is used to update c15_ccnt
508 * to be the correct architectural value before accesses. During
509 * accesses, c15_ccnt_delta contains the underlying count being used
510 * for the access, after which it reverts to the delta value in
511 * pmccntr_op_finish.
512 */
513 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
514 uint64_t c14_pmevcntr[31];
515 uint64_t c14_pmevcntr_delta[31];
516 uint64_t c14_pmevtyper[31];
8521466b 517 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 518 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 519 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
520 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
521 uint64_t gcr_el1;
522 uint64_t rgsr_el1;
58e93b48
RH
523
524 /* Minimal RAS registers */
525 uint64_t disr_el1;
526 uint64_t vdisr_el2;
527 uint64_t vsesr_el2;
b5ff1b31 528 } cp15;
40f137e1 529
9ee6e8bb 530 struct {
fb602cb7
PM
531 /* M profile has up to 4 stack pointers:
532 * a Main Stack Pointer and a Process Stack Pointer for each
533 * of the Secure and Non-Secure states. (If the CPU doesn't support
534 * the security extension then it has only two SPs.)
535 * In QEMU we always store the currently active SP in regs[13],
536 * and the non-active SP for the current security state in
537 * v7m.other_sp. The stack pointers for the inactive security state
538 * are stored in other_ss_msp and other_ss_psp.
539 * switch_v7m_security_state() is responsible for rearranging them
540 * when we change security state.
541 */
9ee6e8bb 542 uint32_t other_sp;
fb602cb7
PM
543 uint32_t other_ss_msp;
544 uint32_t other_ss_psp;
4a16724f
PM
545 uint32_t vecbase[M_REG_NUM_BANKS];
546 uint32_t basepri[M_REG_NUM_BANKS];
547 uint32_t control[M_REG_NUM_BANKS];
548 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
549 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
550 uint32_t hfsr; /* HardFault Status */
551 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 552 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 553 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 554 uint32_t bfar; /* BusFault Address */
bed079da 555 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 556 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 557 int exception;
4a16724f
PM
558 uint32_t primask[M_REG_NUM_BANKS];
559 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 560 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 561 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 562 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 563 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
564 uint32_t msplim[M_REG_NUM_BANKS];
565 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
566 uint32_t fpcar[M_REG_NUM_BANKS];
567 uint32_t fpccr[M_REG_NUM_BANKS];
568 uint32_t fpdscr[M_REG_NUM_BANKS];
569 uint32_t cpacr[M_REG_NUM_BANKS];
570 uint32_t nsacr;
b26b5629 571 uint32_t ltpsize;
7c3d47da 572 uint32_t vpr;
9ee6e8bb
PB
573 } v7m;
574
abf1172f
PM
575 /* Information associated with an exception about to be taken:
576 * code which raises an exception must set cs->exception_index and
577 * the relevant parts of this structure; the cpu_do_interrupt function
578 * will then set the guest-visible registers as part of the exception
579 * entry process.
580 */
581 struct {
582 uint32_t syndrome; /* AArch64 format syndrome register */
583 uint32_t fsr; /* AArch32 format fault status register info */
584 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 585 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
586 /* If we implement EL2 we will also need to store information
587 * about the intermediate physical address for stage 2 faults.
588 */
589 } exception;
590
202ccb6b
DG
591 /* Information associated with an SError */
592 struct {
593 uint8_t pending;
594 uint8_t has_esr;
595 uint64_t esr;
596 } serror;
597
1711bfa5
BM
598 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
599
ed89f078
PM
600 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
601 uint32_t irq_line_state;
602
fe1479c3
PB
603 /* Thumb-2 EE state. */
604 uint32_t teecr;
605 uint32_t teehbr;
606
b7bcbe95
FB
607 /* VFP coprocessor state. */
608 struct {
c39c2b90 609 ARMVectorReg zregs[32];
b7bcbe95 610
3c7d3086
RH
611#ifdef TARGET_AARCH64
612 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 613#define FFR_PRED_NUM 16
3c7d3086 614 ARMPredicateReg pregs[17];
516e246a
RH
615 /* Scratch space for aa64 sve predicate temporary. */
616 ARMPredicateReg preg_tmp;
3c7d3086
RH
617#endif
618
b7bcbe95 619 /* We store these fpcsr fields separately for convenience. */
a4d58462 620 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
621 int vec_len;
622 int vec_stride;
623
a4d58462
RH
624 uint32_t xregs[16];
625
516e246a 626 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 627 uint32_t scratch[8];
3b46e624 628
d81ce0ef
AB
629 /* There are a number of distinct float control structures:
630 *
631 * fp_status: is the "normal" fp status.
632 * fp_status_fp16: used for half-precision calculations
633 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
634 * standard_fp_status_fp16 : used for half-precision
635 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
636 *
637 * Half-precision operations are governed by a separate
638 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
639 * status structure to control this.
640 *
641 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
642 * round-to-nearest and is used by any operations (generally
643 * Neon) which the architecture defines as controlled by the
644 * standard FPSCR value rather than the FPSCR.
3a492f3a 645 *
aaae563b
PM
646 * The "standard FPSCR but for fp16 ops" is needed because
647 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
648 * using a fixed value for it.
649 *
3a492f3a
PM
650 * To avoid having to transfer exception bits around, we simply
651 * say that the FPSCR cumulative exception flags are the logical
aaae563b 652 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
653 * only thing which needs to read the exception flags being
654 * an explicit FPSCR read.
655 */
53cd6637 656 float_status fp_status;
d81ce0ef 657 float_status fp_status_f16;
3a492f3a 658 float_status standard_fp_status;
aaae563b 659 float_status standard_fp_status_f16;
5be5e8ed 660
de561988
RH
661 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
662 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
b7bcbe95 663 } vfp;
03d05e2d
PM
664 uint64_t exclusive_addr;
665 uint64_t exclusive_val;
666 uint64_t exclusive_high;
b7bcbe95 667
18c9b560
AZ
668 /* iwMMXt coprocessor state. */
669 struct {
670 uint64_t regs[16];
671 uint64_t val;
672
673 uint32_t cregs[16];
674 } iwmmxt;
675
991ad91b 676#ifdef TARGET_AARCH64
108b3ba8
RH
677 struct {
678 ARMPACKey apia;
679 ARMPACKey apib;
680 ARMPACKey apda;
681 ARMPACKey apdb;
682 ARMPACKey apga;
683 } keys;
7cb1e618
RH
684
685 uint64_t scxtnum_el[4];
dc993a01
RH
686
687 /*
688 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
689 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
690 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
691 * When SVL is less than the architectural maximum, the accessible
692 * storage is restricted, such that if the SVL is X bytes the guest can
693 * see only the bottom X elements of zarray[], and only the least
694 * significant X bytes of each element of the array. (In other words,
695 * the observable part is always square.)
696 *
697 * The ZA storage can also be considered as a set of square tiles of
698 * elements of different sizes. The mapping from tiles to the ZA array
699 * is architecturally defined, such that for tiles of elements of esz
700 * bytes, the Nth row (or "horizontal slice") of tile T is in
701 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
702 * in the ZA storage, because its rows are striped through the ZA array.
703 *
704 * Because this is so large, keep this toward the end of the reset area,
705 * to keep the offsets into the rest of the structure smaller.
706 */
707 ARMVectorReg zarray[ARM_MAX_VQ * 16];
991ad91b
RH
708#endif
709
ce4defa0
PB
710#if defined(CONFIG_USER_ONLY)
711 /* For usermode syscall translation. */
712 int eabi;
713#endif
714
46747d15 715 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
716 struct CPUWatchpoint *cpu_watchpoint[16];
717
1f5c00cf
AB
718 /* Fields up to this point are cleared by a CPU reset */
719 struct {} end_reset_fields;
720
e8b5fae5 721 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 722
581be094 723 /* Internal CPU feature flags. */
918f5dca 724 uint64_t features;
581be094 725
6cb0b013
PC
726 /* PMSAv7 MPU */
727 struct {
728 uint32_t *drbar;
729 uint32_t *drsr;
730 uint32_t *dracr;
4a16724f 731 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
732 } pmsav7;
733
0e1a46bb
PM
734 /* PMSAv8 MPU */
735 struct {
736 /* The PMSAv8 implementation also shares some PMSAv7 config
737 * and state:
738 * pmsav7.rnr (region number register)
739 * pmsav7_dregion (number of configured regions)
740 */
4a16724f
PM
741 uint32_t *rbar[M_REG_NUM_BANKS];
742 uint32_t *rlar[M_REG_NUM_BANKS];
743 uint32_t mair0[M_REG_NUM_BANKS];
744 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
745 } pmsav8;
746
9901c576
PM
747 /* v8M SAU */
748 struct {
749 uint32_t *rbar;
750 uint32_t *rlar;
751 uint32_t rnr;
752 uint32_t ctrl;
753 } sau;
754
983fe826 755 void *nvic;
462a8bc6 756 const struct arm_boot_info *boot_info;
d3a3e529
VK
757 /* Store GICv3CPUState to access from this struct */
758 void *gicv3state;
0e0c030c
RH
759
760#ifdef TARGET_TAGGED_ADDRESSES
761 /* Linux syscall tagged address support */
762 bool tagged_addr_enable;
763#endif
2c0262af
FB
764} CPUARMState;
765
5fda9504
TH
766static inline void set_feature(CPUARMState *env, int feature)
767{
768 env->features |= 1ULL << feature;
769}
770
771static inline void unset_feature(CPUARMState *env, int feature)
772{
773 env->features &= ~(1ULL << feature);
774}
775
bd7d00fc 776/**
08267487 777 * ARMELChangeHookFn:
bd7d00fc
PM
778 * type of a function which can be registered via arm_register_el_change_hook()
779 * to get callbacks when the CPU changes its exception level or mode.
780 */
08267487
AL
781typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
782typedef struct ARMELChangeHook ARMELChangeHook;
783struct ARMELChangeHook {
784 ARMELChangeHookFn *hook;
785 void *opaque;
786 QLIST_ENTRY(ARMELChangeHook) node;
787};
062ba099
AB
788
789/* These values map onto the return values for
790 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
791typedef enum ARMPSCIState {
d5affb0d
AJ
792 PSCI_ON = 0,
793 PSCI_OFF = 1,
062ba099
AB
794 PSCI_ON_PENDING = 2
795} ARMPSCIState;
796
962fcbf2
RH
797typedef struct ARMISARegisters ARMISARegisters;
798
7f9e25a6
RH
799/*
800 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
801 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
802 *
803 * While processing properties during initialization, corresponding init bits
804 * are set for bits in sve_vq_map that have been set by properties.
805 *
806 * Bits set in supported represent valid vector lengths for the CPU type.
807 */
808typedef struct {
809 uint32_t map, init, supported;
810} ARMVQMap;
811
74e75564
PB
812/**
813 * ARMCPU:
814 * @env: #CPUARMState
815 *
816 * An ARM CPU core.
817 */
b36e239e 818struct ArchCPU {
74e75564
PB
819 /*< private >*/
820 CPUState parent_obj;
821 /*< public >*/
822
5b146dc7 823 CPUNegativeOffsetState neg;
74e75564
PB
824 CPUARMState env;
825
826 /* Coprocessor information */
827 GHashTable *cp_regs;
828 /* For marshalling (mostly coprocessor) register state between the
829 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
830 * we use these arrays.
831 */
832 /* List of register indexes managed via these arrays; (full KVM style
833 * 64 bit indexes, not CPRegInfo 32 bit indexes)
834 */
835 uint64_t *cpreg_indexes;
836 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
837 uint64_t *cpreg_values;
838 /* Length of the indexes, values, reset_values arrays */
839 int32_t cpreg_array_len;
840 /* These are used only for migration: incoming data arrives in
841 * these fields and is sanity checked in post_load before copying
842 * to the working data structures above.
843 */
844 uint64_t *cpreg_vmstate_indexes;
845 uint64_t *cpreg_vmstate_values;
846 int32_t cpreg_vmstate_array_len;
847
448d4d14 848 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 849 DynamicGDBXMLInfo dyn_svereg_xml;
200bf5b7 850
74e75564
PB
851 /* Timers used by the generic (architected) timer */
852 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
853 /*
854 * Timer used by the PMU. Its state is restored after migration by
855 * pmu_op_finish() - it does not need other handling during migration
856 */
857 QEMUTimer *pmu_timer;
74e75564
PB
858 /* GPIO outputs for generic timer */
859 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
860 /* GPIO output for GICv3 maintenance interrupt signal */
861 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
862 /* GPIO output for the PMU interrupt */
863 qemu_irq pmu_interrupt;
74e75564
PB
864
865 /* MemoryRegion to use for secure physical accesses */
866 MemoryRegion *secure_memory;
867
8bce44a2
RH
868 /* MemoryRegion to use for allocation tag accesses */
869 MemoryRegion *tag_memory;
870 MemoryRegion *secure_tag_memory;
871
181962fd
PM
872 /* For v8M, pointer to the IDAU interface provided by board/SoC */
873 Object *idau;
874
74e75564
PB
875 /* 'compatible' string for this CPU for Linux device trees */
876 const char *dtb_compatible;
877
878 /* PSCI version for this CPU
879 * Bits[31:16] = Major Version
880 * Bits[15:0] = Minor Version
881 */
882 uint32_t psci_version;
883
062ba099
AB
884 /* Current power state, access guarded by BQL */
885 ARMPSCIState power_state;
886
c25bd18a
PM
887 /* CPU has virtualization extension */
888 bool has_el2;
74e75564
PB
889 /* CPU has security extension */
890 bool has_el3;
5c0a3819
SZ
891 /* CPU has PMU (Performance Monitor Unit) */
892 bool has_pmu;
97a28b0e
PM
893 /* CPU has VFP */
894 bool has_vfp;
895 /* CPU has Neon */
896 bool has_neon;
ea90db0a
PM
897 /* CPU has M-profile DSP extension */
898 bool has_dsp;
74e75564
PB
899
900 /* CPU has memory protection unit */
901 bool has_mpu;
902 /* PMSAv7 MPU number of supported regions */
903 uint32_t pmsav7_dregion;
9901c576
PM
904 /* v8M SAU number of supported regions */
905 uint32_t sau_sregion;
74e75564
PB
906
907 /* PSCI conduit used to invoke PSCI methods
908 * 0 - disabled, 1 - smc, 2 - hvc
909 */
910 uint32_t psci_conduit;
911
38e2a77c
PM
912 /* For v8M, initial value of the Secure VTOR */
913 uint32_t init_svtor;
7cda2149
PM
914 /* For v8M, initial value of the Non-secure VTOR */
915 uint32_t init_nsvtor;
38e2a77c 916
74e75564
PB
917 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
918 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
919 */
920 uint32_t kvm_target;
921
922 /* KVM init features for this CPU */
923 uint32_t kvm_init_features[7];
924
e5ac4200
AJ
925 /* KVM CPU state */
926
927 /* KVM virtual time adjustment */
928 bool kvm_adjvtime;
929 bool kvm_vtime_dirty;
930 uint64_t kvm_vtime;
931
68970d1e
AJ
932 /* KVM steal time */
933 OnOffAuto kvm_steal_time;
934
74e75564
PB
935 /* Uniprocessor system with MP extensions */
936 bool mp_is_up;
937
c4487d76
PM
938 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
939 * and the probe failed (so we need to report the error in realize)
940 */
941 bool host_cpu_probe_failed;
942
f9a69711
AF
943 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
944 * register.
945 */
946 int32_t core_count;
947
74e75564
PB
948 /* The instance init functions for implementation-specific subclasses
949 * set these fields to specify the implementation-dependent values of
950 * various constant registers and reset values of non-constant
951 * registers.
952 * Some of these might become QOM properties eventually.
953 * Field names match the official register names as defined in the
954 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
955 * is used for reset values of non-constant registers; no reset_
956 * prefix means a constant register.
47576b94
RH
957 * Some of these registers are split out into a substructure that
958 * is shared with the translators to control the ISA.
1548a7b2
PM
959 *
960 * Note that if you add an ID register to the ARMISARegisters struct
961 * you need to also update the 32-bit and 64-bit versions of the
962 * kvm_arm_get_host_cpu_features() function to correctly populate the
963 * field by reading the value from the KVM vCPU.
74e75564 964 */
47576b94
RH
965 struct ARMISARegisters {
966 uint32_t id_isar0;
967 uint32_t id_isar1;
968 uint32_t id_isar2;
969 uint32_t id_isar3;
970 uint32_t id_isar4;
971 uint32_t id_isar5;
972 uint32_t id_isar6;
10054016
PM
973 uint32_t id_mmfr0;
974 uint32_t id_mmfr1;
975 uint32_t id_mmfr2;
976 uint32_t id_mmfr3;
977 uint32_t id_mmfr4;
32957aad 978 uint32_t id_mmfr5;
8a130a7b
PM
979 uint32_t id_pfr0;
980 uint32_t id_pfr1;
1d51bc96 981 uint32_t id_pfr2;
47576b94
RH
982 uint32_t mvfr0;
983 uint32_t mvfr1;
984 uint32_t mvfr2;
a6179538 985 uint32_t id_dfr0;
d22c5649 986 uint32_t id_dfr1;
4426d361 987 uint32_t dbgdidr;
09754ca8
PM
988 uint32_t dbgdevid;
989 uint32_t dbgdevid1;
47576b94
RH
990 uint64_t id_aa64isar0;
991 uint64_t id_aa64isar1;
992 uint64_t id_aa64pfr0;
993 uint64_t id_aa64pfr1;
3dc91ddb
PM
994 uint64_t id_aa64mmfr0;
995 uint64_t id_aa64mmfr1;
64761e10 996 uint64_t id_aa64mmfr2;
2a609df8
PM
997 uint64_t id_aa64dfr0;
998 uint64_t id_aa64dfr1;
2dc10fa2 999 uint64_t id_aa64zfr0;
414c54d5 1000 uint64_t id_aa64smfr0;
24526bb9 1001 uint64_t reset_pmcr_el0;
47576b94 1002 } isar;
e544f800 1003 uint64_t midr;
74e75564
PB
1004 uint32_t revidr;
1005 uint32_t reset_fpsid;
a5fd319a 1006 uint64_t ctr;
74e75564 1007 uint32_t reset_sctlr;
cad86737
AL
1008 uint64_t pmceid0;
1009 uint64_t pmceid1;
74e75564 1010 uint32_t id_afr0;
74e75564
PB
1011 uint64_t id_aa64afr0;
1012 uint64_t id_aa64afr1;
f6450bcb 1013 uint64_t clidr;
74e75564
PB
1014 uint64_t mp_affinity; /* MP ID without feature bits */
1015 /* The elements of this array are the CCSIDR values for each cache,
1016 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1017 */
957e6155 1018 uint64_t ccsidr[16];
74e75564
PB
1019 uint64_t reset_cbar;
1020 uint32_t reset_auxcr;
1021 bool reset_hivecs;
eb94284d
RH
1022
1023 /*
1024 * Intermediate values used during property parsing.
69b2265d 1025 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
1026 */
1027 bool prop_pauth;
1028 bool prop_pauth_impdef;
69b2265d 1029 bool prop_lpa2;
eb94284d 1030
74e75564
PB
1031 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1032 uint32_t dcz_blocksize;
4a7319b7 1033 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 1034
e45868a3
PM
1035 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1036 int gic_num_lrs; /* number of list registers */
1037 int gic_vpribits; /* number of virtual priority bits */
1038 int gic_vprebits; /* number of virtual preemption bits */
39f29e59 1039 int gic_pribits; /* number of physical priority bits */
e45868a3 1040
3a062d57
JB
1041 /* Whether the cfgend input is high (i.e. this CPU should reset into
1042 * big-endian mode). This setting isn't used directly: instead it modifies
1043 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1044 * architecture version.
1045 */
1046 bool cfgend;
1047
b5c53d1b 1048 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1049 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1050
1051 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1052
1053 /* Used to synchronize KVM and QEMU in-kernel device levels */
1054 uint8_t device_irq_level;
adf92eab
RH
1055
1056 /* Used to set the maximum vector length the cpu will support. */
1057 uint32_t sve_max_vq;
0df9142d 1058
b3d52804
RH
1059#ifdef CONFIG_USER_ONLY
1060 /* Used to set the default vector length at process start. */
1061 uint32_t sve_default_vq;
e74c0976 1062 uint32_t sme_default_vq;
b3d52804
RH
1063#endif
1064
7f9e25a6 1065 ARMVQMap sve_vq;
e74c0976 1066 ARMVQMap sme_vq;
7def8754
AJ
1067
1068 /* Generic timer counter frequency, in Hz */
1069 uint64_t gt_cntfrq_hz;
74e75564
PB
1070};
1071
7def8754
AJ
1072unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1073
51e5ef45
MAL
1074void arm_cpu_post_init(Object *obj);
1075
46de5913
IM
1076uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1077
74e75564 1078#ifndef CONFIG_USER_ONLY
8a9358cc 1079extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1080
1081void arm_cpu_do_interrupt(CPUState *cpu);
1082void arm_v7m_cpu_do_interrupt(CPUState *cpu);
083afd18 1083#endif /* !CONFIG_USER_ONLY */
74e75564 1084
74e75564
PB
1085hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1086 MemTxAttrs *attrs);
1087
a010bdbe 1088int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1089int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1090
d12379c5
AB
1091/*
1092 * Helpers to dynamically generates XML descriptions of the sysregs
1093 * and SVE registers. Returns the number of registers in each set.
200bf5b7 1094 */
32d6e32a 1095int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
d12379c5 1096int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
200bf5b7
AB
1097
1098/* Returns the dynamically generated XML for the gdb stub.
1099 * Returns a pointer to the XML contents for the specified XML file or NULL
1100 * if the XML name doesn't match the predefined one.
1101 */
1102const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1103
74e75564
PB
1104int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1105 int cpuid, void *opaque);
1106int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1107 int cpuid, void *opaque);
1108
1109#ifdef TARGET_AARCH64
a010bdbe 1110int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1111int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1112void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1113void aarch64_sve_change_el(CPUARMState *env, int old_el,
1114 int new_el, bool el0_a64);
f84734b8 1115void arm_reset_sve_state(CPUARMState *env);
538baab2
AJ
1116
1117/*
1118 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1119 * The byte at offset i from the start of the in-memory representation contains
1120 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1121 * lowest offsets are stored in the lowest memory addresses, then that nearly
1122 * matches QEMU's representation, which is to use an array of host-endian
1123 * uint64_t's, where the lower offsets are at the lower indices. To complete
1124 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1125 */
1126static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1127{
e03b5686 1128#if HOST_BIG_ENDIAN
538baab2
AJ
1129 int i;
1130
1131 for (i = 0; i < nr; ++i) {
1132 dst[i] = bswap64(src[i]);
1133 }
1134
1135 return dst;
1136#else
1137 return src;
1138#endif
1139}
1140
0ab5953b
RH
1141#else
1142static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1143static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1144 int n, bool a)
1145{ }
74e75564 1146#endif
778c3a06 1147
ce02049d
GB
1148void aarch64_sync_32_to_64(CPUARMState *env);
1149void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1150
ced31551
RH
1151int fp_exception_el(CPUARMState *env, int cur_el);
1152int sve_exception_el(CPUARMState *env, int cur_el);
6b2ca83e 1153int sme_exception_el(CPUARMState *env, int cur_el);
5ef3cc56
RH
1154
1155/**
6ca54aa9 1156 * sve_vqm1_for_el_sm:
5ef3cc56
RH
1157 * @env: CPUARMState
1158 * @el: exception level
6ca54aa9 1159 * @sm: streaming mode
5ef3cc56 1160 *
6ca54aa9 1161 * Compute the current vector length for @el & @sm, in units of
5ef3cc56 1162 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
6ca54aa9 1163 * If @sm, compute for SVL, otherwise NVL.
5ef3cc56 1164 */
6ca54aa9
RH
1165uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1166
1167/* Likewise, but using @sm = PSTATE.SM. */
5ef3cc56 1168uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
ced31551 1169
3926cc84
AG
1170static inline bool is_a64(CPUARMState *env)
1171{
1172 return env->aarch64;
1173}
1174
5d05b9d4
AL
1175/**
1176 * pmu_op_start/finish
ec7b4ce4
AF
1177 * @env: CPUARMState
1178 *
5d05b9d4
AL
1179 * Convert all PMU counters between their delta form (the typical mode when
1180 * they are enabled) and the guest-visible values. These two calls must
1181 * surround any action which might affect the counters.
ec7b4ce4 1182 */
5d05b9d4
AL
1183void pmu_op_start(CPUARMState *env);
1184void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1185
4e7beb0c
AL
1186/*
1187 * Called when a PMU counter is due to overflow
1188 */
1189void arm_pmu_timer_cb(void *opaque);
1190
033614c4
AL
1191/**
1192 * Functions to register as EL change hooks for PMU mode filtering
1193 */
1194void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1195void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1196
57a4a11b 1197/*
bf8d0969
AL
1198 * pmu_init
1199 * @cpu: ARMCPU
57a4a11b 1200 *
bf8d0969
AL
1201 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1202 * for the current configuration
57a4a11b 1203 */
bf8d0969 1204void pmu_init(ARMCPU *cpu);
57a4a11b 1205
76e3e1bc
PM
1206/* SCTLR bit meanings. Several bits have been reused in newer
1207 * versions of the architecture; in that case we define constants
1208 * for both old and new bit meanings. Code which tests against those
1209 * bits should probably check or otherwise arrange that the CPU
1210 * is the architectural version it expects.
1211 */
1212#define SCTLR_M (1U << 0)
1213#define SCTLR_A (1U << 1)
1214#define SCTLR_C (1U << 2)
1215#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1216#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1217#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1218#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1219#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1220#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1221#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1222#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1223#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1224#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1225#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1226#define SCTLR_ITD (1U << 7) /* v8 onward */
1227#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1228#define SCTLR_SED (1U << 8) /* v8 onward */
1229#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1230#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1231#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1232#define SCTLR_SW (1U << 10) /* v7 */
1233#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1234#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1235#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1236#define SCTLR_I (1U << 12)
b2af69d0
RH
1237#define SCTLR_V (1U << 13) /* AArch32 only */
1238#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1239#define SCTLR_RR (1U << 14) /* up to v7 */
1240#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1241#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1242#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1243#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1244#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1245#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1246#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1247#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1248#define SCTLR_nTWE (1U << 18) /* v8 onward */
1249#define SCTLR_WXN (1U << 19)
1250#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0 1251#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
7cb1e618 1252#define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
b2af69d0
RH
1253#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1254#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1255#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1256#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1257#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1258#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1259#define SCTLR_VE (1U << 24) /* up to v7 */
1260#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1261#define SCTLR_EE (1U << 25)
1262#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1263#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1264#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1265#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1266#define SCTLR_TRE (1U << 28) /* AArch32 only */
1267#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1268#define SCTLR_AFE (1U << 29) /* AArch32 only */
1269#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1270#define SCTLR_TE (1U << 30) /* AArch32 only */
1271#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1272#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1273#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
b2af69d0
RH
1274#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1275#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1276#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1277#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1278#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1279#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1280#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1281#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
ad1e6018
RH
1282#define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1283#define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1284#define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1285#define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1286#define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1287#define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1288#define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1289#define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1290#define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1291#define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1292#define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1293#define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1294#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1295#define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
76e3e1bc 1296
fab8ad39
RH
1297/* Bit definitions for CPACR (AArch32 only) */
1298FIELD(CPACR, CP10, 20, 2)
1299FIELD(CPACR, CP11, 22, 2)
1300FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1301FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1302FIELD(CPACR, ASEDIS, 31, 1)
1303
1304/* Bit definitions for CPACR_EL1 (AArch64 only) */
1305FIELD(CPACR_EL1, ZEN, 16, 2)
1306FIELD(CPACR_EL1, FPEN, 20, 2)
1307FIELD(CPACR_EL1, SMEN, 24, 2)
1308FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1309
1310/* Bit definitions for HCPTR (AArch32 only) */
1311FIELD(HCPTR, TCP10, 10, 1)
1312FIELD(HCPTR, TCP11, 11, 1)
1313FIELD(HCPTR, TASE, 15, 1)
1314FIELD(HCPTR, TTA, 20, 1)
1315FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1316FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1317
1318/* Bit definitions for CPTR_EL2 (AArch64 only) */
1319FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1320FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1321FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1322FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1323FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1324FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1325FIELD(CPTR_EL2, TTA, 28, 1)
1326FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1327FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1328
1329/* Bit definitions for CPTR_EL3 (AArch64 only) */
1330FIELD(CPTR_EL3, EZ, 8, 1)
1331FIELD(CPTR_EL3, TFP, 10, 1)
1332FIELD(CPTR_EL3, ESM, 12, 1)
1333FIELD(CPTR_EL3, TTA, 20, 1)
1334FIELD(CPTR_EL3, TAM, 30, 1)
1335FIELD(CPTR_EL3, TCPAC, 31, 1)
c6f19164 1336
f190bd1d
PM
1337#define MDCR_MTPME (1U << 28)
1338#define MDCR_TDCC (1U << 27)
47b385da 1339#define MDCR_HLP (1U << 26) /* MDCR_EL2 */
0b42f4fa
PM
1340#define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
1341#define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
187f678d
PM
1342#define MDCR_EPMAD (1U << 21)
1343#define MDCR_EDAD (1U << 20)
f190bd1d
PM
1344#define MDCR_TTRF (1U << 19)
1345#define MDCR_STE (1U << 18) /* MDCR_EL3 */
033614c4
AL
1346#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1347#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1348#define MDCR_SDD (1U << 16)
a8d64e73 1349#define MDCR_SPD (3U << 14)
187f678d
PM
1350#define MDCR_TDRA (1U << 11)
1351#define MDCR_TDOSA (1U << 10)
1352#define MDCR_TDA (1U << 9)
1353#define MDCR_TDE (1U << 8)
1354#define MDCR_HPME (1U << 7)
1355#define MDCR_TPM (1U << 6)
1356#define MDCR_TPMCR (1U << 5)
033614c4 1357#define MDCR_HPMN (0x1fU)
187f678d 1358
a8d64e73 1359/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
f190bd1d
PM
1360#define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1361 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1362 MDCR_STE | MDCR_SPME | MDCR_SPD)
a8d64e73 1363
78dbbbe4
PM
1364#define CPSR_M (0x1fU)
1365#define CPSR_T (1U << 5)
1366#define CPSR_F (1U << 6)
1367#define CPSR_I (1U << 7)
1368#define CPSR_A (1U << 8)
1369#define CPSR_E (1U << 9)
1370#define CPSR_IT_2_7 (0xfc00U)
1371#define CPSR_GE (0xfU << 16)
4051e12c 1372#define CPSR_IL (1U << 20)
dc8b1853 1373#define CPSR_DIT (1U << 21)
220f508f 1374#define CPSR_PAN (1U << 22)
f2f68a78 1375#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1376#define CPSR_J (1U << 24)
1377#define CPSR_IT_0_1 (3U << 25)
1378#define CPSR_Q (1U << 27)
1379#define CPSR_V (1U << 28)
1380#define CPSR_C (1U << 29)
1381#define CPSR_Z (1U << 30)
1382#define CPSR_N (1U << 31)
9ee6e8bb 1383#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1384#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1385
1386#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1387#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1388 | CPSR_NZCV)
9ee6e8bb 1389/* Bits writable in user mode. */
268b1b3d 1390#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1391/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1392#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1393
987ab45e
PM
1394/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1395#define XPSR_EXCP 0x1ffU
1396#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1397#define XPSR_IT_2_7 CPSR_IT_2_7
1398#define XPSR_GE CPSR_GE
1399#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1400#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1401#define XPSR_IT_0_1 CPSR_IT_0_1
1402#define XPSR_Q CPSR_Q
1403#define XPSR_V CPSR_V
1404#define XPSR_C CPSR_C
1405#define XPSR_Z CPSR_Z
1406#define XPSR_N CPSR_N
1407#define XPSR_NZCV CPSR_NZCV
1408#define XPSR_IT CPSR_IT
1409
e389be16
FA
1410#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1411#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1412#define TTBCR_PD0 (1U << 4)
1413#define TTBCR_PD1 (1U << 5)
1414#define TTBCR_EPD0 (1U << 7)
1415#define TTBCR_IRGN0 (3U << 8)
1416#define TTBCR_ORGN0 (3U << 10)
1417#define TTBCR_SH0 (3U << 12)
1418#define TTBCR_T1SZ (3U << 16)
1419#define TTBCR_A1 (1U << 22)
1420#define TTBCR_EPD1 (1U << 23)
1421#define TTBCR_IRGN1 (3U << 24)
1422#define TTBCR_ORGN1 (3U << 26)
1423#define TTBCR_SH1 (1U << 28)
1424#define TTBCR_EAE (1U << 31)
1425
f04383e7
PM
1426FIELD(VTCR, T0SZ, 0, 6)
1427FIELD(VTCR, SL0, 6, 2)
1428FIELD(VTCR, IRGN0, 8, 2)
1429FIELD(VTCR, ORGN0, 10, 2)
1430FIELD(VTCR, SH0, 12, 2)
1431FIELD(VTCR, TG0, 14, 2)
1432FIELD(VTCR, PS, 16, 3)
1433FIELD(VTCR, VS, 19, 1)
1434FIELD(VTCR, HA, 21, 1)
1435FIELD(VTCR, HD, 22, 1)
1436FIELD(VTCR, HWU59, 25, 1)
1437FIELD(VTCR, HWU60, 26, 1)
1438FIELD(VTCR, HWU61, 27, 1)
1439FIELD(VTCR, HWU62, 28, 1)
1440FIELD(VTCR, NSW, 29, 1)
1441FIELD(VTCR, NSA, 30, 1)
1442FIELD(VTCR, DS, 32, 1)
1443FIELD(VTCR, SL2, 33, 1)
1444
d356312f
PM
1445/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1446 * Only these are valid when in AArch64 mode; in
1447 * AArch32 mode SPSRs are basically CPSR-format.
1448 */
f502cfc2 1449#define PSTATE_SP (1U)
d356312f
PM
1450#define PSTATE_M (0xFU)
1451#define PSTATE_nRW (1U << 4)
1452#define PSTATE_F (1U << 6)
1453#define PSTATE_I (1U << 7)
1454#define PSTATE_A (1U << 8)
1455#define PSTATE_D (1U << 9)
f6e52eaa 1456#define PSTATE_BTYPE (3U << 10)
f2f68a78 1457#define PSTATE_SSBS (1U << 12)
d356312f
PM
1458#define PSTATE_IL (1U << 20)
1459#define PSTATE_SS (1U << 21)
220f508f 1460#define PSTATE_PAN (1U << 22)
9eeb7a1c 1461#define PSTATE_UAO (1U << 23)
dc8b1853 1462#define PSTATE_DIT (1U << 24)
4b779ceb 1463#define PSTATE_TCO (1U << 25)
d356312f
PM
1464#define PSTATE_V (1U << 28)
1465#define PSTATE_C (1U << 29)
1466#define PSTATE_Z (1U << 30)
1467#define PSTATE_N (1U << 31)
1468#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1469#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1470#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1471/* Mode values for AArch64 */
1472#define PSTATE_MODE_EL3h 13
1473#define PSTATE_MODE_EL3t 12
1474#define PSTATE_MODE_EL2h 9
1475#define PSTATE_MODE_EL2t 8
1476#define PSTATE_MODE_EL1h 5
1477#define PSTATE_MODE_EL1t 4
1478#define PSTATE_MODE_EL0t 0
1479
c37e6ac9
RH
1480/* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1481FIELD(SVCR, SM, 0, 1)
1482FIELD(SVCR, ZA, 1, 1)
1483
de561988
RH
1484/* Fields for SMCR_ELx. */
1485FIELD(SMCR, LEN, 0, 4)
1486FIELD(SMCR, FA64, 31, 1)
1487
de2db7ec
PM
1488/* Write a new value to v7m.exception, thus transitioning into or out
1489 * of Handler mode; this may result in a change of active stack pointer.
1490 */
1491void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1492
9e729b57
EI
1493/* Map EL and handler into a PSTATE_MODE. */
1494static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1495{
1496 return (el << 2) | handler;
1497}
1498
d356312f
PM
1499/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1500 * interprocessing, so we don't attempt to sync with the cpsr state used by
1501 * the 32 bit decoder.
1502 */
1503static inline uint32_t pstate_read(CPUARMState *env)
1504{
1505 int ZF;
1506
1507 ZF = (env->ZF == 0);
1508 return (env->NF & 0x80000000) | (ZF << 30)
1509 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1510 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1511}
1512
1513static inline void pstate_write(CPUARMState *env, uint32_t val)
1514{
1515 env->ZF = (~val) & PSTATE_Z;
1516 env->NF = val;
1517 env->CF = (val >> 29) & 1;
1518 env->VF = (val << 3) & 0x80000000;
4cc35614 1519 env->daif = val & PSTATE_DAIF;
f6e52eaa 1520 env->btype = (val >> 10) & 3;
d356312f
PM
1521 env->pstate = val & ~CACHED_PSTATE_BITS;
1522}
1523
b5ff1b31 1524/* Return the current CPSR value. */
2f4a40e5 1525uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1526
1527typedef enum CPSRWriteType {
1528 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1529 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1530 CPSRWriteRaw = 2,
1531 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1532 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1533} CPSRWriteType;
1534
e784807c
PM
1535/*
1536 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1537 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1538 * correspond to TB flags bits cached in the hflags, unless @write_type
1539 * is CPSRWriteRaw.
1540 */
50866ba5
PM
1541void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1542 CPSRWriteType write_type);
9ee6e8bb
PB
1543
1544/* Return the current xPSR value. */
1545static inline uint32_t xpsr_read(CPUARMState *env)
1546{
1547 int ZF;
6fbe23d5
PB
1548 ZF = (env->ZF == 0);
1549 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1550 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1551 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1552 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1553 | (env->GE << 16)
9ee6e8bb 1554 | env->v7m.exception;
b5ff1b31
FB
1555}
1556
9ee6e8bb
PB
1557/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1558static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1559{
987ab45e
PM
1560 if (mask & XPSR_NZCV) {
1561 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1562 env->NF = val;
9ee6e8bb
PB
1563 env->CF = (val >> 29) & 1;
1564 env->VF = (val << 3) & 0x80000000;
1565 }
987ab45e
PM
1566 if (mask & XPSR_Q) {
1567 env->QF = ((val & XPSR_Q) != 0);
1568 }
f1e2598c
PM
1569 if (mask & XPSR_GE) {
1570 env->GE = (val & XPSR_GE) >> 16;
1571 }
04c9c81b 1572#ifndef CONFIG_USER_ONLY
987ab45e
PM
1573 if (mask & XPSR_T) {
1574 env->thumb = ((val & XPSR_T) != 0);
1575 }
1576 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1577 env->condexec_bits &= ~3;
1578 env->condexec_bits |= (val >> 25) & 3;
1579 }
987ab45e 1580 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1581 env->condexec_bits &= 3;
1582 env->condexec_bits |= (val >> 8) & 0xfc;
1583 }
987ab45e 1584 if (mask & XPSR_EXCP) {
de2db7ec
PM
1585 /* Note that this only happens on exception exit */
1586 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1587 }
04c9c81b 1588#endif
9ee6e8bb
PB
1589}
1590
f149e3e8
EI
1591#define HCR_VM (1ULL << 0)
1592#define HCR_SWIO (1ULL << 1)
1593#define HCR_PTW (1ULL << 2)
1594#define HCR_FMO (1ULL << 3)
1595#define HCR_IMO (1ULL << 4)
1596#define HCR_AMO (1ULL << 5)
1597#define HCR_VF (1ULL << 6)
1598#define HCR_VI (1ULL << 7)
1599#define HCR_VSE (1ULL << 8)
1600#define HCR_FB (1ULL << 9)
1601#define HCR_BSU_MASK (3ULL << 10)
1602#define HCR_DC (1ULL << 12)
1603#define HCR_TWI (1ULL << 13)
1604#define HCR_TWE (1ULL << 14)
1605#define HCR_TID0 (1ULL << 15)
1606#define HCR_TID1 (1ULL << 16)
1607#define HCR_TID2 (1ULL << 17)
1608#define HCR_TID3 (1ULL << 18)
1609#define HCR_TSC (1ULL << 19)
1610#define HCR_TIDCP (1ULL << 20)
1611#define HCR_TACR (1ULL << 21)
1612#define HCR_TSW (1ULL << 22)
099bf53b 1613#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1614#define HCR_TPU (1ULL << 24)
1615#define HCR_TTLB (1ULL << 25)
1616#define HCR_TVM (1ULL << 26)
1617#define HCR_TGE (1ULL << 27)
1618#define HCR_TDZ (1ULL << 28)
1619#define HCR_HCD (1ULL << 29)
1620#define HCR_TRVM (1ULL << 30)
1621#define HCR_RW (1ULL << 31)
1622#define HCR_CD (1ULL << 32)
1623#define HCR_ID (1ULL << 33)
ac656b16 1624#define HCR_E2H (1ULL << 34)
099bf53b
RH
1625#define HCR_TLOR (1ULL << 35)
1626#define HCR_TERR (1ULL << 36)
1627#define HCR_TEA (1ULL << 37)
1628#define HCR_MIOCNCE (1ULL << 38)
e0a38bb3 1629/* RES0 bit 39 */
099bf53b
RH
1630#define HCR_APK (1ULL << 40)
1631#define HCR_API (1ULL << 41)
1632#define HCR_NV (1ULL << 42)
1633#define HCR_NV1 (1ULL << 43)
1634#define HCR_AT (1ULL << 44)
1635#define HCR_NV2 (1ULL << 45)
1636#define HCR_FWB (1ULL << 46)
1637#define HCR_FIEN (1ULL << 47)
e0a38bb3 1638/* RES0 bit 48 */
099bf53b
RH
1639#define HCR_TID4 (1ULL << 49)
1640#define HCR_TICAB (1ULL << 50)
e0a38bb3 1641#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1642#define HCR_TOCU (1ULL << 52)
e0a38bb3 1643#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1644#define HCR_TTLBIS (1ULL << 54)
1645#define HCR_TTLBOS (1ULL << 55)
1646#define HCR_ATA (1ULL << 56)
1647#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1648#define HCR_TID5 (1ULL << 58)
1649#define HCR_TWEDEN (1ULL << 59)
1650#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1651
5814d587
RH
1652#define HCRX_ENAS0 (1ULL << 0)
1653#define HCRX_ENALS (1ULL << 1)
1654#define HCRX_ENASR (1ULL << 2)
1655#define HCRX_FNXS (1ULL << 3)
1656#define HCRX_FGTNXS (1ULL << 4)
1657#define HCRX_SMPME (1ULL << 5)
1658#define HCRX_TALLINT (1ULL << 6)
1659#define HCRX_VINMI (1ULL << 7)
1660#define HCRX_VFNMI (1ULL << 8)
1661#define HCRX_CMOW (1ULL << 9)
1662#define HCRX_MCE2 (1ULL << 10)
1663#define HCRX_MSCEN (1ULL << 11)
1664
9861248f
RDC
1665#define HPFAR_NS (1ULL << 63)
1666
64e0e2de
EI
1667#define SCR_NS (1U << 0)
1668#define SCR_IRQ (1U << 1)
1669#define SCR_FIQ (1U << 2)
1670#define SCR_EA (1U << 3)
1671#define SCR_FW (1U << 4)
1672#define SCR_AW (1U << 5)
1673#define SCR_NET (1U << 6)
1674#define SCR_SMD (1U << 7)
1675#define SCR_HCE (1U << 8)
1676#define SCR_SIF (1U << 9)
1677#define SCR_RW (1U << 10)
1678#define SCR_ST (1U << 11)
1679#define SCR_TWI (1U << 12)
1680#define SCR_TWE (1U << 13)
99f8f86d
RH
1681#define SCR_TLOR (1U << 14)
1682#define SCR_TERR (1U << 15)
1683#define SCR_APK (1U << 16)
1684#define SCR_API (1U << 17)
1685#define SCR_EEL2 (1U << 18)
1686#define SCR_EASE (1U << 19)
1687#define SCR_NMEA (1U << 20)
1688#define SCR_FIEN (1U << 21)
1689#define SCR_ENSCXT (1U << 25)
1690#define SCR_ATA (1U << 26)
f527d661
RH
1691#define SCR_FGTEN (1U << 27)
1692#define SCR_ECVEN (1U << 28)
1693#define SCR_TWEDEN (1U << 29)
1694#define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1695#define SCR_TME (1ULL << 34)
1696#define SCR_AMVOFFEN (1ULL << 35)
1697#define SCR_ENAS0 (1ULL << 36)
1698#define SCR_ADEN (1ULL << 37)
1699#define SCR_HXEN (1ULL << 38)
1700#define SCR_TRNDR (1ULL << 40)
1701#define SCR_ENTP2 (1ULL << 41)
1702#define SCR_GPF (1ULL << 48)
64e0e2de 1703
cc7613bf 1704#define HSTR_TTEE (1 << 16)
8e228c9e 1705#define HSTR_TJDBX (1 << 17)
cc7613bf 1706
01653295
PM
1707/* Return the current FPSCR value. */
1708uint32_t vfp_get_fpscr(CPUARMState *env);
1709void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1710
d81ce0ef
AB
1711/* FPCR, Floating Point Control Register
1712 * FPSR, Floating Poiht Status Register
1713 *
1714 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1715 * FPCR and FPSR. However since they still use non-overlapping bits
1716 * we store the underlying state in fpscr and just mask on read/write.
1717 */
1718#define FPSR_MASK 0xf800009f
0b62159b 1719#define FPCR_MASK 0x07ff9f00
d81ce0ef 1720
a15945d9
PM
1721#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1722#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1723#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1724#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1725#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1726#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1727#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1728#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1729#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1730#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1731#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1732#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1733#define FPCR_V (1 << 28) /* FP overflow flag */
1734#define FPCR_C (1 << 29) /* FP carry flag */
1735#define FPCR_Z (1 << 30) /* FP zero flag */
1736#define FPCR_N (1 << 31) /* FP negative flag */
1737
99c7834f
PM
1738#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1739#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1740#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1741
9542c30b
PM
1742#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1743#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1744
f903fa22
PM
1745static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1746{
1747 return vfp_get_fpscr(env) & FPSR_MASK;
1748}
1749
1750static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1751{
1752 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1753 vfp_set_fpscr(env, new_fpscr);
1754}
1755
1756static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1757{
1758 return vfp_get_fpscr(env) & FPCR_MASK;
1759}
1760
1761static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1762{
1763 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1764 vfp_set_fpscr(env, new_fpscr);
1765}
1766
b5ff1b31
FB
1767enum arm_cpu_mode {
1768 ARM_CPU_MODE_USR = 0x10,
1769 ARM_CPU_MODE_FIQ = 0x11,
1770 ARM_CPU_MODE_IRQ = 0x12,
1771 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1772 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1773 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1774 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1775 ARM_CPU_MODE_UND = 0x1b,
1776 ARM_CPU_MODE_SYS = 0x1f
1777};
1778
40f137e1
PB
1779/* VFP system registers. */
1780#define ARM_VFP_FPSID 0
1781#define ARM_VFP_FPSCR 1
a50c0f51 1782#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1783#define ARM_VFP_MVFR1 6
1784#define ARM_VFP_MVFR0 7
40f137e1
PB
1785#define ARM_VFP_FPEXC 8
1786#define ARM_VFP_FPINST 9
1787#define ARM_VFP_FPINST2 10
9542c30b
PM
1788/* These ones are M-profile only */
1789#define ARM_VFP_FPSCR_NZCVQC 2
1790#define ARM_VFP_VPR 12
1791#define ARM_VFP_P0 13
1792#define ARM_VFP_FPCXT_NS 14
1793#define ARM_VFP_FPCXT_S 15
40f137e1 1794
32a290b8
PM
1795/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1796#define QEMU_VFP_FPSCR_NZCV 0xffff
1797
18c9b560 1798/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1799#define ARM_IWMMXT_wCID 0
1800#define ARM_IWMMXT_wCon 1
1801#define ARM_IWMMXT_wCSSF 2
1802#define ARM_IWMMXT_wCASF 3
1803#define ARM_IWMMXT_wCGR0 8
1804#define ARM_IWMMXT_wCGR1 9
1805#define ARM_IWMMXT_wCGR2 10
1806#define ARM_IWMMXT_wCGR3 11
18c9b560 1807
2c4da50d
PM
1808/* V7M CCR bits */
1809FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1810FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1811FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1812FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1813FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1814FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1815FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1816FIELD(V7M_CCR, DC, 16, 1)
1817FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1818FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1819FIELD(V7M_CCR, LOB, 19, 1)
1820FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1821
24ac0fb1
PM
1822/* V7M SCR bits */
1823FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1824FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1825FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1826FIELD(V7M_SCR, SEVONPEND, 4, 1)
1827
3b2e9344
PM
1828/* V7M AIRCR bits */
1829FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1830FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1831FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1832FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1833FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1834FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1835FIELD(V7M_AIRCR, PRIS, 14, 1)
1836FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1837FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1838
2c4da50d
PM
1839/* V7M CFSR bits for MMFSR */
1840FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1841FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1842FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1843FIELD(V7M_CFSR, MSTKERR, 4, 1)
1844FIELD(V7M_CFSR, MLSPERR, 5, 1)
1845FIELD(V7M_CFSR, MMARVALID, 7, 1)
1846
1847/* V7M CFSR bits for BFSR */
1848FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1849FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1850FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1851FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1852FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1853FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1854FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1855
1856/* V7M CFSR bits for UFSR */
1857FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1858FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1859FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1860FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1861FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1862FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1863FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1864
334e8dad
PM
1865/* V7M CFSR bit masks covering all of the subregister bits */
1866FIELD(V7M_CFSR, MMFSR, 0, 8)
1867FIELD(V7M_CFSR, BFSR, 8, 8)
1868FIELD(V7M_CFSR, UFSR, 16, 16)
1869
2c4da50d
PM
1870/* V7M HFSR bits */
1871FIELD(V7M_HFSR, VECTTBL, 1, 1)
1872FIELD(V7M_HFSR, FORCED, 30, 1)
1873FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1874
1875/* V7M DFSR bits */
1876FIELD(V7M_DFSR, HALTED, 0, 1)
1877FIELD(V7M_DFSR, BKPT, 1, 1)
1878FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1879FIELD(V7M_DFSR, VCATCH, 3, 1)
1880FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1881
bed079da
PM
1882/* V7M SFSR bits */
1883FIELD(V7M_SFSR, INVEP, 0, 1)
1884FIELD(V7M_SFSR, INVIS, 1, 1)
1885FIELD(V7M_SFSR, INVER, 2, 1)
1886FIELD(V7M_SFSR, AUVIOL, 3, 1)
1887FIELD(V7M_SFSR, INVTRAN, 4, 1)
1888FIELD(V7M_SFSR, LSPERR, 5, 1)
1889FIELD(V7M_SFSR, SFARVALID, 6, 1)
1890FIELD(V7M_SFSR, LSERR, 7, 1)
1891
29c483a5
MD
1892/* v7M MPU_CTRL bits */
1893FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1894FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1895FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1896
43bbce7f
PM
1897/* v7M CLIDR bits */
1898FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1899FIELD(V7M_CLIDR, LOUIS, 21, 3)
1900FIELD(V7M_CLIDR, LOC, 24, 3)
1901FIELD(V7M_CLIDR, LOUU, 27, 3)
1902FIELD(V7M_CLIDR, ICB, 30, 2)
1903
1904FIELD(V7M_CSSELR, IND, 0, 1)
1905FIELD(V7M_CSSELR, LEVEL, 1, 3)
1906/* We use the combination of InD and Level to index into cpu->ccsidr[];
1907 * define a mask for this and check that it doesn't permit running off
1908 * the end of the array.
1909 */
1910FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1911
1912/* v7M FPCCR bits */
1913FIELD(V7M_FPCCR, LSPACT, 0, 1)
1914FIELD(V7M_FPCCR, USER, 1, 1)
1915FIELD(V7M_FPCCR, S, 2, 1)
1916FIELD(V7M_FPCCR, THREAD, 3, 1)
1917FIELD(V7M_FPCCR, HFRDY, 4, 1)
1918FIELD(V7M_FPCCR, MMRDY, 5, 1)
1919FIELD(V7M_FPCCR, BFRDY, 6, 1)
1920FIELD(V7M_FPCCR, SFRDY, 7, 1)
1921FIELD(V7M_FPCCR, MONRDY, 8, 1)
1922FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1923FIELD(V7M_FPCCR, UFRDY, 10, 1)
1924FIELD(V7M_FPCCR, RES0, 11, 15)
1925FIELD(V7M_FPCCR, TS, 26, 1)
1926FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1927FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1928FIELD(V7M_FPCCR, LSPENS, 29, 1)
1929FIELD(V7M_FPCCR, LSPEN, 30, 1)
1930FIELD(V7M_FPCCR, ASPEN, 31, 1)
1931/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1932#define R_V7M_FPCCR_BANKED_MASK \
1933 (R_V7M_FPCCR_LSPACT_MASK | \
1934 R_V7M_FPCCR_USER_MASK | \
1935 R_V7M_FPCCR_THREAD_MASK | \
1936 R_V7M_FPCCR_MMRDY_MASK | \
1937 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1938 R_V7M_FPCCR_UFRDY_MASK | \
1939 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1940
7c3d47da
PM
1941/* v7M VPR bits */
1942FIELD(V7M_VPR, P0, 0, 16)
1943FIELD(V7M_VPR, MASK01, 16, 4)
1944FIELD(V7M_VPR, MASK23, 20, 4)
1945
a62e62af
RH
1946/*
1947 * System register ID fields.
1948 */
2a14526a
LL
1949FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1950FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1951FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1952FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1953FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1954FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1955FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1956FIELD(CLIDR_EL1, LOUIS, 21, 3)
1957FIELD(CLIDR_EL1, LOC, 24, 3)
1958FIELD(CLIDR_EL1, LOUU, 27, 3)
1959FIELD(CLIDR_EL1, ICB, 30, 3)
1960
1961/* When FEAT_CCIDX is implemented */
1962FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1963FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1964FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1965
1966/* When FEAT_CCIDX is not implemented */
1967FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1968FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1969FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1970
1971FIELD(CTR_EL0, IMINLINE, 0, 4)
1972FIELD(CTR_EL0, L1IP, 14, 2)
1973FIELD(CTR_EL0, DMINLINE, 16, 4)
1974FIELD(CTR_EL0, ERG, 20, 4)
1975FIELD(CTR_EL0, CWG, 24, 4)
1976FIELD(CTR_EL0, IDC, 28, 1)
1977FIELD(CTR_EL0, DIC, 29, 1)
1978FIELD(CTR_EL0, TMINLINE, 32, 6)
1979
2bd5f41c
AB
1980FIELD(MIDR_EL1, REVISION, 0, 4)
1981FIELD(MIDR_EL1, PARTNUM, 4, 12)
1982FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1983FIELD(MIDR_EL1, VARIANT, 20, 4)
1984FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1985
a62e62af
RH
1986FIELD(ID_ISAR0, SWAP, 0, 4)
1987FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1988FIELD(ID_ISAR0, BITFIELD, 8, 4)
1989FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1990FIELD(ID_ISAR0, COPROC, 16, 4)
1991FIELD(ID_ISAR0, DEBUG, 20, 4)
1992FIELD(ID_ISAR0, DIVIDE, 24, 4)
1993
1994FIELD(ID_ISAR1, ENDIAN, 0, 4)
1995FIELD(ID_ISAR1, EXCEPT, 4, 4)
1996FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1997FIELD(ID_ISAR1, EXTEND, 12, 4)
1998FIELD(ID_ISAR1, IFTHEN, 16, 4)
1999FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2000FIELD(ID_ISAR1, INTERWORK, 24, 4)
2001FIELD(ID_ISAR1, JAZELLE, 28, 4)
2002
2003FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2004FIELD(ID_ISAR2, MEMHINT, 4, 4)
2005FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2006FIELD(ID_ISAR2, MULT, 12, 4)
2007FIELD(ID_ISAR2, MULTS, 16, 4)
2008FIELD(ID_ISAR2, MULTU, 20, 4)
2009FIELD(ID_ISAR2, PSR_AR, 24, 4)
2010FIELD(ID_ISAR2, REVERSAL, 28, 4)
2011
2012FIELD(ID_ISAR3, SATURATE, 0, 4)
2013FIELD(ID_ISAR3, SIMD, 4, 4)
2014FIELD(ID_ISAR3, SVC, 8, 4)
2015FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2016FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2017FIELD(ID_ISAR3, T32COPY, 20, 4)
2018FIELD(ID_ISAR3, TRUENOP, 24, 4)
2019FIELD(ID_ISAR3, T32EE, 28, 4)
2020
2021FIELD(ID_ISAR4, UNPRIV, 0, 4)
2022FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2023FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2024FIELD(ID_ISAR4, SMC, 12, 4)
2025FIELD(ID_ISAR4, BARRIER, 16, 4)
2026FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2027FIELD(ID_ISAR4, PSR_M, 24, 4)
2028FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2029
2030FIELD(ID_ISAR5, SEVL, 0, 4)
2031FIELD(ID_ISAR5, AES, 4, 4)
2032FIELD(ID_ISAR5, SHA1, 8, 4)
2033FIELD(ID_ISAR5, SHA2, 12, 4)
2034FIELD(ID_ISAR5, CRC32, 16, 4)
2035FIELD(ID_ISAR5, RDM, 24, 4)
2036FIELD(ID_ISAR5, VCMA, 28, 4)
2037
2038FIELD(ID_ISAR6, JSCVT, 0, 4)
2039FIELD(ID_ISAR6, DP, 4, 4)
2040FIELD(ID_ISAR6, FHM, 8, 4)
2041FIELD(ID_ISAR6, SB, 12, 4)
2042FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
2043FIELD(ID_ISAR6, BF16, 20, 4)
2044FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 2045
0ae0326b
PM
2046FIELD(ID_MMFR0, VMSA, 0, 4)
2047FIELD(ID_MMFR0, PMSA, 4, 4)
2048FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2049FIELD(ID_MMFR0, SHARELVL, 12, 4)
2050FIELD(ID_MMFR0, TCM, 16, 4)
2051FIELD(ID_MMFR0, AUXREG, 20, 4)
2052FIELD(ID_MMFR0, FCSE, 24, 4)
2053FIELD(ID_MMFR0, INNERSHR, 28, 4)
2054
bd78b6be
LL
2055FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2056FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2057FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2058FIELD(ID_MMFR1, L1UNISW, 12, 4)
2059FIELD(ID_MMFR1, L1HVD, 16, 4)
2060FIELD(ID_MMFR1, L1UNI, 20, 4)
2061FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2062FIELD(ID_MMFR1, BPRED, 28, 4)
2063
2064FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2065FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2066FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2067FIELD(ID_MMFR2, HVDTLB, 12, 4)
2068FIELD(ID_MMFR2, UNITLB, 16, 4)
2069FIELD(ID_MMFR2, MEMBARR, 20, 4)
2070FIELD(ID_MMFR2, WFISTALL, 24, 4)
2071FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2072
3d6ad6bb
RH
2073FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2074FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2075FIELD(ID_MMFR3, BPMAINT, 8, 4)
2076FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2077FIELD(ID_MMFR3, PAN, 16, 4)
2078FIELD(ID_MMFR3, COHWALK, 20, 4)
2079FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2080FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2081
ab638a32
RH
2082FIELD(ID_MMFR4, SPECSEI, 0, 4)
2083FIELD(ID_MMFR4, AC2, 4, 4)
2084FIELD(ID_MMFR4, XNX, 8, 4)
2085FIELD(ID_MMFR4, CNP, 12, 4)
2086FIELD(ID_MMFR4, HPDS, 16, 4)
2087FIELD(ID_MMFR4, LSM, 20, 4)
2088FIELD(ID_MMFR4, CCIDX, 24, 4)
2089FIELD(ID_MMFR4, EVT, 28, 4)
2090
bd78b6be 2091FIELD(ID_MMFR5, ETS, 0, 4)
c42fb26b 2092FIELD(ID_MMFR5, NTLBPA, 4, 4)
bd78b6be 2093
46f4976f
PM
2094FIELD(ID_PFR0, STATE0, 0, 4)
2095FIELD(ID_PFR0, STATE1, 4, 4)
2096FIELD(ID_PFR0, STATE2, 8, 4)
2097FIELD(ID_PFR0, STATE3, 12, 4)
2098FIELD(ID_PFR0, CSV2, 16, 4)
2099FIELD(ID_PFR0, AMU, 20, 4)
2100FIELD(ID_PFR0, DIT, 24, 4)
2101FIELD(ID_PFR0, RAS, 28, 4)
2102
dfc523a8
PM
2103FIELD(ID_PFR1, PROGMOD, 0, 4)
2104FIELD(ID_PFR1, SECURITY, 4, 4)
2105FIELD(ID_PFR1, MPROGMOD, 8, 4)
2106FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2107FIELD(ID_PFR1, GENTIMER, 16, 4)
2108FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2109FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2110FIELD(ID_PFR1, GIC, 28, 4)
2111
bd78b6be
LL
2112FIELD(ID_PFR2, CSV3, 0, 4)
2113FIELD(ID_PFR2, SSBS, 4, 4)
2114FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2115
a62e62af
RH
2116FIELD(ID_AA64ISAR0, AES, 4, 4)
2117FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2118FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2119FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2120FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2121FIELD(ID_AA64ISAR0, RDM, 28, 4)
2122FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2123FIELD(ID_AA64ISAR0, SM3, 36, 4)
2124FIELD(ID_AA64ISAR0, SM4, 40, 4)
2125FIELD(ID_AA64ISAR0, DP, 44, 4)
2126FIELD(ID_AA64ISAR0, FHM, 48, 4)
2127FIELD(ID_AA64ISAR0, TS, 52, 4)
2128FIELD(ID_AA64ISAR0, TLB, 56, 4)
2129FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2130
2131FIELD(ID_AA64ISAR1, DPB, 0, 4)
2132FIELD(ID_AA64ISAR1, APA, 4, 4)
2133FIELD(ID_AA64ISAR1, API, 8, 4)
2134FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2135FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2136FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2137FIELD(ID_AA64ISAR1, GPA, 24, 4)
2138FIELD(ID_AA64ISAR1, GPI, 28, 4)
2139FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2140FIELD(ID_AA64ISAR1, SB, 36, 4)
2141FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
2142FIELD(ID_AA64ISAR1, BF16, 44, 4)
2143FIELD(ID_AA64ISAR1, DGH, 48, 4)
2144FIELD(ID_AA64ISAR1, I8MM, 52, 4)
c42fb26b
RH
2145FIELD(ID_AA64ISAR1, XS, 56, 4)
2146FIELD(ID_AA64ISAR1, LS64, 60, 4)
2147
2148FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2149FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2150FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2151FIELD(ID_AA64ISAR2, APA3, 12, 4)
2152FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2153FIELD(ID_AA64ISAR2, BC, 20, 4)
2154FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
a62e62af 2155
cd208a1c
RH
2156FIELD(ID_AA64PFR0, EL0, 0, 4)
2157FIELD(ID_AA64PFR0, EL1, 4, 4)
2158FIELD(ID_AA64PFR0, EL2, 8, 4)
2159FIELD(ID_AA64PFR0, EL3, 12, 4)
2160FIELD(ID_AA64PFR0, FP, 16, 4)
2161FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2162FIELD(ID_AA64PFR0, GIC, 24, 4)
2163FIELD(ID_AA64PFR0, RAS, 28, 4)
2164FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
2165FIELD(ID_AA64PFR0, SEL2, 36, 4)
2166FIELD(ID_AA64PFR0, MPAM, 40, 4)
2167FIELD(ID_AA64PFR0, AMU, 44, 4)
2168FIELD(ID_AA64PFR0, DIT, 48, 4)
2169FIELD(ID_AA64PFR0, CSV2, 56, 4)
2170FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2171
be53b6f4 2172FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2173FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2174FIELD(ID_AA64PFR1, MTE, 8, 4)
2175FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2176FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
c42fb26b
RH
2177FIELD(ID_AA64PFR1, SME, 24, 4)
2178FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2179FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2180FIELD(ID_AA64PFR1, NMI, 36, 4)
be53b6f4 2181
3dc91ddb
PM
2182FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2183FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2184FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2185FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2186FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2187FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2188FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2189FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2190FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2191FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2192FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2193FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2194FIELD(ID_AA64MMFR0, FGT, 56, 4)
2195FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2196
2197FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2198FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2199FIELD(ID_AA64MMFR1, VH, 8, 4)
2200FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2201FIELD(ID_AA64MMFR1, LO, 16, 4)
2202FIELD(ID_AA64MMFR1, PAN, 20, 4)
2203FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2204FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2205FIELD(ID_AA64MMFR1, TWED, 32, 4)
2206FIELD(ID_AA64MMFR1, ETS, 36, 4)
c42fb26b
RH
2207FIELD(ID_AA64MMFR1, HCX, 40, 4)
2208FIELD(ID_AA64MMFR1, AFP, 44, 4)
2209FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2210FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2211FIELD(ID_AA64MMFR1, CMOW, 56, 4)
3dc91ddb 2212
64761e10
RH
2213FIELD(ID_AA64MMFR2, CNP, 0, 4)
2214FIELD(ID_AA64MMFR2, UAO, 4, 4)
2215FIELD(ID_AA64MMFR2, LSM, 8, 4)
2216FIELD(ID_AA64MMFR2, IESB, 12, 4)
2217FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2218FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2219FIELD(ID_AA64MMFR2, NV, 24, 4)
2220FIELD(ID_AA64MMFR2, ST, 28, 4)
2221FIELD(ID_AA64MMFR2, AT, 32, 4)
2222FIELD(ID_AA64MMFR2, IDS, 36, 4)
2223FIELD(ID_AA64MMFR2, FWB, 40, 4)
2224FIELD(ID_AA64MMFR2, TTL, 48, 4)
2225FIELD(ID_AA64MMFR2, BBM, 52, 4)
2226FIELD(ID_AA64MMFR2, EVT, 56, 4)
2227FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2228
ceb2744b
PM
2229FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2230FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2231FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2232FIELD(ID_AA64DFR0, BRPS, 12, 4)
2233FIELD(ID_AA64DFR0, WRPS, 20, 4)
2234FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2235FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2236FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2237FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
c42fb26b 2238FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
00a92832 2239FIELD(ID_AA64DFR0, MTPMU, 48, 4)
c42fb26b
RH
2240FIELD(ID_AA64DFR0, BRBE, 52, 4)
2241FIELD(ID_AA64DFR0, HPMN0, 60, 4)
ceb2744b 2242
2dc10fa2
RH
2243FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2244FIELD(ID_AA64ZFR0, AES, 4, 4)
2245FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2246FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2247FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2248FIELD(ID_AA64ZFR0, SM4, 40, 4)
2249FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2250FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2251FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2252
414c54d5
RH
2253FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2254FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2255FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2256FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2257FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2258FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2259FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2260FIELD(ID_AA64SMFR0, FA64, 63, 1)
2261
beceb99c
AL
2262FIELD(ID_DFR0, COPDBG, 0, 4)
2263FIELD(ID_DFR0, COPSDBG, 4, 4)
2264FIELD(ID_DFR0, MMAPDBG, 8, 4)
2265FIELD(ID_DFR0, COPTRC, 12, 4)
2266FIELD(ID_DFR0, MMAPTRC, 16, 4)
2267FIELD(ID_DFR0, MPROFDBG, 20, 4)
2268FIELD(ID_DFR0, PERFMON, 24, 4)
2269FIELD(ID_DFR0, TRACEFILT, 28, 4)
2270
bd78b6be 2271FIELD(ID_DFR1, MTPMU, 0, 4)
c42fb26b 2272FIELD(ID_DFR1, HPMN0, 4, 4)
bd78b6be 2273
88ce6c6e
PM
2274FIELD(DBGDIDR, SE_IMP, 12, 1)
2275FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2276FIELD(DBGDIDR, VERSION, 16, 4)
2277FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2278FIELD(DBGDIDR, BRPS, 24, 4)
2279FIELD(DBGDIDR, WRPS, 28, 4)
2280
f94a6df5
PM
2281FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2282FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2283FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2284FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2285FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2286FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2287FIELD(DBGDEVID, AUXREGS, 24, 4)
2288FIELD(DBGDEVID, CIDMASK, 28, 4)
2289
602f6e42
PM
2290FIELD(MVFR0, SIMDREG, 0, 4)
2291FIELD(MVFR0, FPSP, 4, 4)
2292FIELD(MVFR0, FPDP, 8, 4)
2293FIELD(MVFR0, FPTRAP, 12, 4)
2294FIELD(MVFR0, FPDIVIDE, 16, 4)
2295FIELD(MVFR0, FPSQRT, 20, 4)
2296FIELD(MVFR0, FPSHVEC, 24, 4)
2297FIELD(MVFR0, FPROUND, 28, 4)
2298
2299FIELD(MVFR1, FPFTZ, 0, 4)
2300FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2301FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2302FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2303FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2304FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2305FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2306FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2307FIELD(MVFR1, FPHP, 24, 4)
2308FIELD(MVFR1, SIMDFMAC, 28, 4)
2309
2310FIELD(MVFR2, SIMDMISC, 0, 4)
2311FIELD(MVFR2, FPMISC, 4, 4)
2312
43bbce7f
PM
2313QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2314
ce854d7c
BC
2315/* If adding a feature bit which corresponds to a Linux ELF
2316 * HWCAP bit, remember to update the feature-bit-to-hwcap
2317 * mapping in linux-user/elfload.c:get_elf_hwcap().
2318 */
40f137e1 2319enum arm_features {
c1713132
AZ
2320 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2321 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2322 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2323 ARM_FEATURE_V6,
2324 ARM_FEATURE_V6K,
2325 ARM_FEATURE_V7,
2326 ARM_FEATURE_THUMB2,
452a0955 2327 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2328 ARM_FEATURE_NEON,
9ee6e8bb 2329 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2330 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2331 ARM_FEATURE_THUMB2EE,
be5e7a76 2332 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2333 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2334 ARM_FEATURE_V4T,
2335 ARM_FEATURE_V5,
5bc95aa2 2336 ARM_FEATURE_STRONGARM,
906879a9 2337 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2338 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2339 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2340 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2341 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2342 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2343 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2344 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2345 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2346 ARM_FEATURE_V8,
3926cc84 2347 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2348 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2349 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2350 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2351 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2352 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2353 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2354 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2355 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2356 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2357 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2358};
2359
2360static inline int arm_feature(CPUARMState *env, int feature)
2361{
918f5dca 2362 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2363}
2364
0df9142d
AJ
2365void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2366
19e0fefa
FA
2367#if !defined(CONFIG_USER_ONLY)
2368/* Return true if exception levels below EL3 are in secure state,
2369 * or would be following an exception return to that level.
2370 * Unlike arm_is_secure() (which is always a question about the
2371 * _current_ state of the CPU) this doesn't care about the current
2372 * EL or mode.
2373 */
2374static inline bool arm_is_secure_below_el3(CPUARMState *env)
2375{
2376 if (arm_feature(env, ARM_FEATURE_EL3)) {
2377 return !(env->cp15.scr_el3 & SCR_NS);
2378 } else {
6b7f0b61 2379 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
2380 * defined, in which case QEMU defaults to non-secure.
2381 */
2382 return false;
2383 }
2384}
2385
71205876
PM
2386/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2387static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
2388{
2389 if (arm_feature(env, ARM_FEATURE_EL3)) {
2390 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2391 /* CPU currently in AArch64 state and EL3 */
2392 return true;
2393 } else if (!is_a64(env) &&
2394 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2395 /* CPU currently in AArch32 state and monitor mode */
2396 return true;
2397 }
2398 }
71205876
PM
2399 return false;
2400}
2401
2402/* Return true if the processor is in secure state */
2403static inline bool arm_is_secure(CPUARMState *env)
2404{
2405 if (arm_is_el3_or_mon(env)) {
2406 return true;
2407 }
19e0fefa
FA
2408 return arm_is_secure_below_el3(env);
2409}
2410
f3ee5160
RDC
2411/*
2412 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2413 * This corresponds to the pseudocode EL2Enabled()
2414 */
2415static inline bool arm_is_el2_enabled(CPUARMState *env)
2416{
2417 if (arm_feature(env, ARM_FEATURE_EL2)) {
926c1b97
RDC
2418 if (arm_is_secure_below_el3(env)) {
2419 return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2420 }
2421 return true;
f3ee5160
RDC
2422 }
2423 return false;
2424}
2425
19e0fefa
FA
2426#else
2427static inline bool arm_is_secure_below_el3(CPUARMState *env)
2428{
2429 return false;
2430}
2431
2432static inline bool arm_is_secure(CPUARMState *env)
2433{
2434 return false;
2435}
f3ee5160
RDC
2436
2437static inline bool arm_is_el2_enabled(CPUARMState *env)
2438{
2439 return false;
2440}
19e0fefa
FA
2441#endif
2442
f7778444
RH
2443/**
2444 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2445 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2446 * "for all purposes other than a direct read or write access of HCR_EL2."
2447 * Not included here is HCR_RW.
2448 */
2449uint64_t arm_hcr_el2_eff(CPUARMState *env);
5814d587 2450uint64_t arm_hcrx_el2_eff(CPUARMState *env);
f7778444 2451
1f79ee32
PM
2452/* Return true if the specified exception level is running in AArch64 state. */
2453static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2454{
446c81ab
PM
2455 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2456 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2457 */
446c81ab
PM
2458 assert(el >= 1 && el <= 3);
2459 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2460
446c81ab
PM
2461 /* The highest exception level is always at the maximum supported
2462 * register width, and then lower levels have a register width controlled
2463 * by bits in the SCR or HCR registers.
1f79ee32 2464 */
446c81ab
PM
2465 if (el == 3) {
2466 return aa64;
2467 }
2468
926c1b97
RDC
2469 if (arm_feature(env, ARM_FEATURE_EL3) &&
2470 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2471 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2472 }
2473
2474 if (el == 2) {
2475 return aa64;
2476 }
2477
e6ef0169 2478 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2479 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2480 }
2481
2482 return aa64;
1f79ee32
PM
2483}
2484
3f342b9e
SF
2485/* Function for determing whether guest cp register reads and writes should
2486 * access the secure or non-secure bank of a cp register. When EL3 is
2487 * operating in AArch32 state, the NS-bit determines whether the secure
2488 * instance of a cp register should be used. When EL3 is AArch64 (or if
2489 * it doesn't exist at all) then there is no register banking, and all
2490 * accesses are to the non-secure version.
2491 */
2492static inline bool access_secure_reg(CPUARMState *env)
2493{
2494 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2495 !arm_el_is_aa64(env, 3) &&
2496 !(env->cp15.scr_el3 & SCR_NS));
2497
2498 return ret;
2499}
2500
ea30a4b8
FA
2501/* Macros for accessing a specified CP register bank */
2502#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2503 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2504
2505#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2506 do { \
2507 if (_secure) { \
2508 (_env)->cp15._regname##_s = (_val); \
2509 } else { \
2510 (_env)->cp15._regname##_ns = (_val); \
2511 } \
2512 } while (0)
2513
2514/* Macros for automatically accessing a specific CP register bank depending on
2515 * the current secure state of the system. These macros are not intended for
2516 * supporting instruction translation reads/writes as these are dependent
2517 * solely on the SCR.NS bit and not the mode.
2518 */
2519#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2520 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2521 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2522
2523#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2524 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2525 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2526 (_val))
2527
0442428a 2528void arm_cpu_list(void);
012a906b
GB
2529uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2530 uint32_t cur_el, bool secure);
40f137e1 2531
9ee6e8bb 2532/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
2533#ifndef CONFIG_USER_ONLY
2534bool armv7m_nvic_can_take_pending_exception(void *opaque);
2535#else
2536static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2537{
2538 return true;
2539}
2540#endif
2fb50a33
PM
2541/**
2542 * armv7m_nvic_set_pending: mark the specified exception as pending
2543 * @opaque: the NVIC
2544 * @irq: the exception number to mark pending
2545 * @secure: false for non-banked exceptions or for the nonsecure
2546 * version of a banked exception, true for the secure version of a banked
2547 * exception.
2548 *
2549 * Marks the specified exception as pending. Note that we will assert()
2550 * if @secure is true and @irq does not specify one of the fixed set
2551 * of architecturally banked exceptions.
2552 */
2553void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2554/**
2555 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2556 * @opaque: the NVIC
2557 * @irq: the exception number to mark pending
2558 * @secure: false for non-banked exceptions or for the nonsecure
2559 * version of a banked exception, true for the secure version of a banked
2560 * exception.
2561 *
2562 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2563 * exceptions (exceptions generated in the course of trying to take
2564 * a different exception).
2565 */
2566void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2567/**
2568 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2569 * @opaque: the NVIC
2570 * @irq: the exception number to mark pending
2571 * @secure: false for non-banked exceptions or for the nonsecure
2572 * version of a banked exception, true for the secure version of a banked
2573 * exception.
2574 *
2575 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2576 * generated in the course of lazy stacking of FP registers.
2577 */
2578void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2579/**
2580 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2581 * exception, and whether it targets Secure state
2582 * @opaque: the NVIC
2583 * @pirq: set to pending exception number
2584 * @ptargets_secure: set to whether pending exception targets Secure
2585 *
2586 * This function writes the number of the highest priority pending
2587 * exception (the one which would be made active by
2588 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2589 * to true if the current highest priority pending exception should
2590 * be taken to Secure state, false for NS.
2591 */
2592void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2593 bool *ptargets_secure);
5cb18069
PM
2594/**
2595 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2596 * @opaque: the NVIC
2597 *
2598 * Move the current highest priority pending exception from the pending
2599 * state to the active state, and update v7m.exception to indicate that
2600 * it is the exception currently being handled.
5cb18069 2601 */
6c948518 2602void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2603/**
2604 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2605 * @opaque: the NVIC
2606 * @irq: the exception number to complete
5cb18069 2607 * @secure: true if this exception was secure
aa488fe3
PM
2608 *
2609 * Returns: -1 if the irq was not active
2610 * 1 if completing this irq brought us back to base (no active irqs)
2611 * 0 if there is still an irq active after this one was completed
2612 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2613 */
5cb18069 2614int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2615/**
2616 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2617 * @opaque: the NVIC
2618 * @irq: the exception number to mark pending
2619 * @secure: false for non-banked exceptions or for the nonsecure
2620 * version of a banked exception, true for the secure version of a banked
2621 * exception.
2622 *
2623 * Return whether an exception is "ready", i.e. whether the exception is
2624 * enabled and is configured at a priority which would allow it to
2625 * interrupt the current execution priority. This controls whether the
2626 * RDY bit for it in the FPCCR is set.
2627 */
2628bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2629/**
2630 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2631 * @opaque: the NVIC
2632 *
2633 * Returns: the raw execution priority as defined by the v8M architecture.
2634 * This is the execution priority minus the effects of AIRCR.PRIS,
2635 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2636 * (v8M ARM ARM I_PKLD.)
2637 */
2638int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2639/**
2640 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2641 * priority is negative for the specified security state.
2642 * @opaque: the NVIC
2643 * @secure: the security state to test
2644 * This corresponds to the pseudocode IsReqExecPriNeg().
2645 */
2646#ifndef CONFIG_USER_ONLY
2647bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2648#else
2649static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2650{
2651 return false;
2652}
2653#endif
9ee6e8bb 2654
4b6a83fb
PM
2655/* Interface for defining coprocessor registers.
2656 * Registers are defined in tables of arm_cp_reginfo structs
2657 * which are passed to define_arm_cp_regs().
2658 */
2659
2660/* When looking up a coprocessor register we look for it
2661 * via an integer which encodes all of:
2662 * coprocessor number
2663 * Crn, Crm, opc1, opc2 fields
2664 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2665 * or via MRRC/MCRR?)
51a79b03 2666 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2667 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2668 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2669 * For AArch64, there is no 32/64 bit size distinction;
2670 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2671 * and 4 bit CRn and CRm. The encoding patterns are chosen
2672 * to be easy to convert to and from the KVM encodings, and also
2673 * so that the hashtable can contain both AArch32 and AArch64
2674 * registers (to allow for interprocessing where we might run
2675 * 32 bit code on a 64 bit core).
4b6a83fb 2676 */
f5a0a5a5
PM
2677/* This bit is private to our hashtable cpreg; in KVM register
2678 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2679 * in the upper bits of the 64 bit ID.
2680 */
2681#define CP_REG_AA64_SHIFT 28
2682#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2683
51a79b03
PM
2684/* To enable banking of coprocessor registers depending on ns-bit we
2685 * add a bit to distinguish between secure and non-secure cpregs in the
2686 * hashtable.
2687 */
2688#define CP_REG_NS_SHIFT 29
2689#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2690
2691#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2692 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2693 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2694
f5a0a5a5
PM
2695#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2696 (CP_REG_AA64_MASK | \
2697 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2698 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2699 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2700 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2701 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2702 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2703
721fae12
PM
2704/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2705 * version used as a key for the coprocessor register hashtable
2706 */
2707static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2708{
2709 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2710 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2711 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2712 } else {
2713 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2714 cpregid |= (1 << 15);
2715 }
2716
2717 /* KVM is always non-secure so add the NS flag on AArch32 register
2718 * entries.
2719 */
2720 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2721 }
2722 return cpregid;
2723}
2724
2725/* Convert a truncated 32 bit hashtable key into the full
2726 * 64 bit KVM register ID.
2727 */
2728static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2729{
f5a0a5a5
PM
2730 uint64_t kvmid;
2731
2732 if (cpregid & CP_REG_AA64_MASK) {
2733 kvmid = cpregid & ~CP_REG_AA64_MASK;
2734 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2735 } else {
f5a0a5a5
PM
2736 kvmid = cpregid & ~(1 << 15);
2737 if (cpregid & (1 << 15)) {
2738 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2739 } else {
2740 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2741 }
721fae12
PM
2742 }
2743 return kvmid;
2744}
2745
75502672
PM
2746/* Return the highest implemented Exception Level */
2747static inline int arm_highest_el(CPUARMState *env)
2748{
2749 if (arm_feature(env, ARM_FEATURE_EL3)) {
2750 return 3;
2751 }
2752 if (arm_feature(env, ARM_FEATURE_EL2)) {
2753 return 2;
2754 }
2755 return 1;
2756}
2757
15b3f556
PM
2758/* Return true if a v7M CPU is in Handler mode */
2759static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2760{
2761 return env->v7m.exception != 0;
2762}
2763
dcbff19b
GB
2764/* Return the current Exception Level (as per ARMv8; note that this differs
2765 * from the ARMv7 Privilege Level).
2766 */
2767static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2768{
6d54ed3c 2769 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2770 return arm_v7m_is_handler_mode(env) ||
2771 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2772 }
2773
592125f8 2774 if (is_a64(env)) {
f5a0a5a5
PM
2775 return extract32(env->pstate, 2, 2);
2776 }
2777
592125f8
FA
2778 switch (env->uncached_cpsr & 0x1f) {
2779 case ARM_CPU_MODE_USR:
4b6a83fb 2780 return 0;
592125f8
FA
2781 case ARM_CPU_MODE_HYP:
2782 return 2;
2783 case ARM_CPU_MODE_MON:
2784 return 3;
2785 default:
2786 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2787 /* If EL3 is 32-bit then all secure privileged modes run in
2788 * EL3
2789 */
2790 return 3;
2791 }
2792
2793 return 1;
4b6a83fb 2794 }
4b6a83fb
PM
2795}
2796
721fae12
PM
2797/**
2798 * write_list_to_cpustate
2799 * @cpu: ARMCPU
2800 *
2801 * For each register listed in the ARMCPU cpreg_indexes list, write
2802 * its value from the cpreg_values list into the ARMCPUState structure.
2803 * This updates TCG's working data structures from KVM data or
2804 * from incoming migration state.
2805 *
2806 * Returns: true if all register values were updated correctly,
2807 * false if some register was unknown or could not be written.
2808 * Note that we do not stop early on failure -- we will attempt
2809 * writing all registers in the list.
2810 */
2811bool write_list_to_cpustate(ARMCPU *cpu);
2812
2813/**
2814 * write_cpustate_to_list:
2815 * @cpu: ARMCPU
b698e4ee 2816 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2817 *
2818 * For each register listed in the ARMCPU cpreg_indexes list, write
2819 * its value from the ARMCPUState structure into the cpreg_values list.
2820 * This is used to copy info from TCG's working data structures into
2821 * KVM or for outbound migration.
2822 *
b698e4ee
PM
2823 * @kvm_sync is true if we are doing this in order to sync the
2824 * register state back to KVM. In this case we will only update
2825 * values in the list if the previous list->cpustate sync actually
2826 * successfully wrote the CPU state. Otherwise we will keep the value
2827 * that is in the list.
2828 *
721fae12
PM
2829 * Returns: true if all register values were read correctly,
2830 * false if some register was unknown or could not be read.
2831 * Note that we do not stop early on failure -- we will attempt
2832 * reading all registers in the list.
2833 */
b698e4ee 2834bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2835
9ee6e8bb
PB
2836#define ARM_CPUID_TI915T 0x54029152
2837#define ARM_CPUID_TI925T 0x54029252
40f137e1 2838
ba1ba5cc
IM
2839#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2840#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2841#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2842
585df85e
PM
2843#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2844
c732abe2 2845#define cpu_list arm_cpu_list
9467d44c 2846
c1e37810
PM
2847/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2848 *
2849 * If EL3 is 64-bit:
2850 * + NonSecure EL1 & 0 stage 1
2851 * + NonSecure EL1 & 0 stage 2
2852 * + NonSecure EL2
b9f6033c
RH
2853 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2854 * + Secure EL1 & 0
c1e37810
PM
2855 * + Secure EL3
2856 * If EL3 is 32-bit:
2857 * + NonSecure PL1 & 0 stage 1
2858 * + NonSecure PL1 & 0 stage 2
2859 * + NonSecure PL2
b9f6033c
RH
2860 * + Secure PL0
2861 * + Secure PL1
c1e37810
PM
2862 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2863 *
2864 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2865 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2866 * because they may differ in access permissions even if the VA->PA map is
2867 * the same
c1e37810
PM
2868 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2869 * translation, which means that we have one mmu_idx that deals with two
2870 * concatenated translation regimes [this sort of combined s1+2 TLB is
2871 * architecturally permitted]
2872 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2873 * handling via the TLB. The only way to do a stage 1 translation without
2874 * the immediate stage 2 translation is via the ATS or AT system insns,
2875 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2876 * The only use of stage 2 translations is either as part of an s1+2
2877 * lookup or when loading the descriptors during a stage 1 page table walk,
2878 * and in both those cases we don't use the TLB.
c1e37810
PM
2879 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2880 * translation regimes, because they map reasonably well to each other
2881 * and they can't both be active at the same time.
b9f6033c
RH
2882 * 5. we want to be able to use the TLB for accesses done as part of a
2883 * stage1 page table walk, rather than having to walk the stage2 page
2884 * table over and over.
452ef8cb
RH
2885 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2886 * Never (PAN) bit within PSTATE.
c1e37810 2887 *
b9f6033c
RH
2888 * This gives us the following list of cases:
2889 *
2890 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2891 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
452ef8cb 2892 * NS EL1 EL1&0 stage 1+2 +PAN
b9f6033c 2893 * NS EL0 EL2&0
bf05340c 2894 * NS EL2 EL2&0
452ef8cb 2895 * NS EL2 EL2&0 +PAN
c1e37810 2896 * NS EL2 (aka NS PL2)
b9f6033c
RH
2897 * S EL0 EL1&0 (aka S PL0)
2898 * S EL1 EL1&0 (not used if EL3 is 32 bit)
452ef8cb 2899 * S EL1 EL1&0 +PAN
c1e37810 2900 * S EL3 (aka S PL1)
c1e37810 2901 *
bf05340c 2902 * for a total of 11 different mmu_idx.
c1e37810 2903 *
3bef7012
PM
2904 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2905 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2906 * NS EL2 if we ever model a Cortex-R52).
2907 *
2908 * M profile CPUs are rather different as they do not have a true MMU.
2909 * They have the following different MMU indexes:
2910 * User
2911 * Privileged
62593718
PM
2912 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2913 * Privileged, execution priority negative (ditto)
66787c78
PM
2914 * If the CPU supports the v8M Security Extension then there are also:
2915 * Secure User
2916 * Secure Privileged
62593718
PM
2917 * Secure User, execution priority negative
2918 * Secure Privileged, execution priority negative
3bef7012 2919 *
8bd5c820
PM
2920 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2921 * are not quite the same -- different CPU types (most notably M profile
2922 * vs A/R profile) would like to use MMU indexes with different semantics,
2923 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2924 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2925 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2926 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2927 * the same for any particular CPU.
2928 * Variables of type ARMMUIdx are always full values, and the core
2929 * index values are in variables of type 'int'.
2930 *
c1e37810
PM
2931 * Our enumeration includes at the end some entries which are not "true"
2932 * mmu_idx values in that they don't have corresponding TLBs and are only
2933 * valid for doing slow path page table walks.
2934 *
2935 * The constant names here are patterned after the general style of the names
2936 * of the AT/ATS operations.
2937 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2938 * For M profile we arrange them to have a bit for priv, a bit for negpri
2939 * and a bit for secure.
c1e37810 2940 */
b9f6033c
RH
2941#define ARM_MMU_IDX_A 0x10 /* A profile */
2942#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2943#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2944
b6ad6062
RDC
2945/* Meanings of the bits for A profile mmu idx values */
2946#define ARM_MMU_IDX_A_NS 0x8
2947
b9f6033c
RH
2948/* Meanings of the bits for M profile mmu idx values */
2949#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2950#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2951#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2952
b9f6033c
RH
2953#define ARM_MMU_IDX_TYPE_MASK \
2954 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2955#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2956
c1e37810 2957typedef enum ARMMMUIdx {
b9f6033c
RH
2958 /*
2959 * A-profile.
2960 */
b6ad6062
RDC
2961 ARMMMUIdx_SE10_0 = 0 | ARM_MMU_IDX_A,
2962 ARMMMUIdx_SE20_0 = 1 | ARM_MMU_IDX_A,
2963 ARMMMUIdx_SE10_1 = 2 | ARM_MMU_IDX_A,
2964 ARMMMUIdx_SE20_2 = 3 | ARM_MMU_IDX_A,
2965 ARMMMUIdx_SE10_1_PAN = 4 | ARM_MMU_IDX_A,
2966 ARMMMUIdx_SE20_2_PAN = 5 | ARM_MMU_IDX_A,
2967 ARMMMUIdx_SE2 = 6 | ARM_MMU_IDX_A,
2968 ARMMMUIdx_SE3 = 7 | ARM_MMU_IDX_A,
2969
2970 ARMMMUIdx_E10_0 = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
2971 ARMMMUIdx_E20_0 = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
2972 ARMMMUIdx_E10_1 = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
2973 ARMMMUIdx_E20_2 = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
2974 ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
2975 ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
2976 ARMMMUIdx_E2 = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
b9f6033c 2977
b9f6033c
RH
2978 /*
2979 * These are not allocated TLBs and are used only for AT system
2980 * instructions or for the first stage of an S12 page table walk.
2981 */
2982 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2983 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2984 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b1a10c86
RDC
2985 ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
2986 ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
2987 ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
bf05340c
PM
2988 /*
2989 * Not allocated a TLB: used only for second stage of an S12 page
2990 * table walk, or for descriptor loads during first stage of an S1
2991 * page table walk. Note that if we ever want to have a TLB for this
2992 * then various TLB flush insns which currently are no-ops or flush
2993 * only stage 1 MMU indexes will need to change to flush stage 2.
2994 */
b1a10c86
RDC
2995 ARMMMUIdx_Stage2 = 6 | ARM_MMU_IDX_NOTLB,
2996 ARMMMUIdx_Stage2_S = 7 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2997
2998 /*
2999 * M-profile.
3000 */
25568316
RH
3001 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3002 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3003 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3004 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3005 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3006 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3007 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3008 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
3009} ARMMMUIdx;
3010
5f09a6df
RH
3011/*
3012 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
3013 * for use when calling tlb_flush_by_mmuidx() and friends.
3014 */
5f09a6df
RH
3015#define TO_CORE_BIT(NAME) \
3016 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3017
8bd5c820 3018typedef enum ARMMMUIdxBit {
5f09a6df 3019 TO_CORE_BIT(E10_0),
b9f6033c 3020 TO_CORE_BIT(E20_0),
5f09a6df 3021 TO_CORE_BIT(E10_1),
452ef8cb 3022 TO_CORE_BIT(E10_1_PAN),
5f09a6df 3023 TO_CORE_BIT(E2),
b9f6033c 3024 TO_CORE_BIT(E20_2),
452ef8cb 3025 TO_CORE_BIT(E20_2_PAN),
5f09a6df 3026 TO_CORE_BIT(SE10_0),
b6ad6062 3027 TO_CORE_BIT(SE20_0),
5f09a6df 3028 TO_CORE_BIT(SE10_1),
b6ad6062 3029 TO_CORE_BIT(SE20_2),
452ef8cb 3030 TO_CORE_BIT(SE10_1_PAN),
b6ad6062
RDC
3031 TO_CORE_BIT(SE20_2_PAN),
3032 TO_CORE_BIT(SE2),
5f09a6df 3033 TO_CORE_BIT(SE3),
5f09a6df
RH
3034
3035 TO_CORE_BIT(MUser),
3036 TO_CORE_BIT(MPriv),
3037 TO_CORE_BIT(MUserNegPri),
3038 TO_CORE_BIT(MPrivNegPri),
3039 TO_CORE_BIT(MSUser),
3040 TO_CORE_BIT(MSPriv),
3041 TO_CORE_BIT(MSUserNegPri),
3042 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
3043} ARMMMUIdxBit;
3044
5f09a6df
RH
3045#undef TO_CORE_BIT
3046
f79fbf39 3047#define MMU_USER_IDX 0
c1e37810 3048
9e273ef2
PM
3049/* Indexes used when registering address spaces with cpu_address_space_init */
3050typedef enum ARMASIdx {
3051 ARMASIdx_NS = 0,
3052 ARMASIdx_S = 1,
8bce44a2
RH
3053 ARMASIdx_TagNS = 2,
3054 ARMASIdx_TagS = 3,
9e273ef2
PM
3055} ARMASIdx;
3056
43bbce7f
PM
3057static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3058{
3059 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3060 * CSSELR is RAZ/WI.
3061 */
3062 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3063}
3064
f9fd40eb
PB
3065static inline bool arm_sctlr_b(CPUARMState *env)
3066{
3067 return
3068 /* We need not implement SCTLR.ITD in user-mode emulation, so
3069 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3070 * This lets people run BE32 binaries with "-cpu any".
3071 */
3072#ifndef CONFIG_USER_ONLY
3073 !arm_feature(env, ARM_FEATURE_V7) &&
3074#endif
3075 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3076}
3077
aaec1432 3078uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3079
8061a649
RH
3080static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3081 bool sctlr_b)
3082{
3083#ifdef CONFIG_USER_ONLY
3084 /*
3085 * In system mode, BE32 is modelled in line with the
3086 * architecture (as word-invariant big-endianness), where loads
3087 * and stores are done little endian but from addresses which
3088 * are adjusted by XORing with the appropriate constant. So the
3089 * endianness to use for the raw data access is not affected by
3090 * SCTLR.B.
3091 * In user mode, however, we model BE32 as byte-invariant
3092 * big-endianness (because user-only code cannot tell the
3093 * difference), and so we need to use a data access endianness
3094 * that depends on SCTLR.B.
3095 */
3096 if (sctlr_b) {
3097 return true;
3098 }
3099#endif
3100 /* In 32bit endianness is determined by looking at CPSR's E bit */
3101 return env->uncached_cpsr & CPSR_E;
3102}
3103
3104static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3105{
3106 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3107}
64e40755 3108
ed50ff78
PC
3109/* Return true if the processor is in big-endian mode. */
3110static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3111{
ed50ff78 3112 if (!is_a64(env)) {
8061a649 3113 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3114 } else {
3115 int cur_el = arm_current_el(env);
3116 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3117 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3118 }
ed50ff78
PC
3119}
3120
022c62cb 3121#include "exec/cpu-all.h"
622ed360 3122
fdd1b228 3123/*
a378206a
RH
3124 * We have more than 32-bits worth of state per TB, so we split the data
3125 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3126 * We collect these two parts in CPUARMTBFlags where they are named
3127 * flags and flags2 respectively.
fdd1b228 3128 *
a378206a
RH
3129 * The flags that are shared between all execution modes, TBFLAG_ANY,
3130 * are stored in flags. The flags that are specific to a given mode
3131 * are stores in flags2. Since cs_base is sized on the configured
3132 * address size, flags2 always has 64-bits for A64, and a minimum of
3133 * 32-bits for A32 and M32.
3134 *
3135 * The bits for 32-bit A-profile and M-profile partially overlap:
3136 *
5896f392
RH
3137 * 31 23 11 10 0
3138 * +-------------+----------+----------------+
3139 * | | | TBFLAG_A32 |
3140 * | TBFLAG_AM32 | +-----+----------+
3141 * | | |TBFLAG_M32|
3142 * +-------------+----------------+----------+
26702213 3143 * 31 23 6 5 0
79cabf1f 3144 *
fdd1b228 3145 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3146 */
eee81d41
RH
3147FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3148FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3149FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3150FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3151FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 3152/* Target EL if we take a floating-point-disabled exception */
eee81d41 3153FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
4479ec30 3154/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
8480e933
RH
3155FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3156FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
79cabf1f 3157
8bd587c1 3158/*
79cabf1f 3159 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3160 */
5896f392
RH
3161FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3162FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 3163
79cabf1f
RH
3164/*
3165 * Bit usage when in AArch32 state, for A-profile only.
3166 */
5896f392
RH
3167FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3168FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
3169/*
3170 * We store the bottom two bits of the CPAR as TB flags and handle
3171 * checks on the other bits at runtime. This shares the same bits as
3172 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3173 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3174 */
5896f392
RH
3175FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3176FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3177FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3178FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
3179/*
3180 * Indicates whether cp register reads and writes by guest code should access
3181 * the secure or nonsecure bank of banked registers; note that this is not
3182 * the same thing as the current security state of the processor!
3183 */
5896f392 3184FIELD(TBFLAG_A32, NS, 10, 1)
75fe8356
RH
3185/*
3186 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3187 * This requires an SME trap from AArch32 mode when using NEON.
3188 */
3189FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
79cabf1f
RH
3190
3191/*
3192 * Bit usage when in AArch32 state, for M-profile only.
3193 */
3194/* Handler (ie not Thread) mode */
5896f392 3195FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3196/* Whether we should generate stack-limit checks */
5896f392 3197FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3198/* Set if FPCCR.LSPACT is set */
5896f392 3199FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3200/* Set if we must create a new FP context */
5896f392 3201FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3202/* Set if FPCCR.S does not match current security state */
5896f392 3203FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3204/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3205FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
79cabf1f
RH
3206
3207/*
3208 * Bit usage when in AArch64 state
3209 */
476a4692 3210FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac 3211FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
f45ce4c3
RH
3212/* The current vector length, either NVL or SVL. */
3213FIELD(TBFLAG_A64, VL, 4, 4)
0816ef1b 3214FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3215FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3216FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3217FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3218FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3219FIELD(TBFLAG_A64, ATA, 15, 1)
3220FIELD(TBFLAG_A64, TCMA, 16, 2)
3221FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3222FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
6b2ca83e 3223FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
a3637e88
RH
3224FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3225FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
5d7953ad 3226FIELD(TBFLAG_A64, SVL, 24, 4)
75fe8356
RH
3227/* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3228FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
a1705768 3229
a729a46b
RH
3230/*
3231 * Helpers for using the above.
3232 */
3233#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3234 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3235#define DP_TBFLAG_A64(DST, WHICH, VAL) \
a378206a 3236 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3237#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3238 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3239#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3240 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3241#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3242 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3243
3902bfc6 3244#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
a378206a
RH
3245#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3246#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3247#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3248#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3249
fb901c90
RH
3250/**
3251 * cpu_mmu_index:
3252 * @env: The cpu environment
3253 * @ifetch: True for code access, false for data access.
3254 *
3255 * Return the core mmu index for the current translation regime.
3256 * This function is used by generic TCG code paths.
3257 */
3258static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3259{
a729a46b 3260 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3261}
3262
8b599e5c
RH
3263/**
3264 * sve_vq
3265 * @env: the cpu context
3266 *
3267 * Return the VL cached within env->hflags, in units of quadwords.
3268 */
3269static inline int sve_vq(CPUARMState *env)
3270{
3271 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3272}
3273
5d7953ad
RH
3274/**
3275 * sme_vq
3276 * @env: the cpu context
3277 *
3278 * Return the SVL cached within env->hflags, in units of quadwords.
3279 */
3280static inline int sme_vq(CPUARMState *env)
3281{
3282 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3283}
3284
f9fd40eb
PB
3285static inline bool bswap_code(bool sctlr_b)
3286{
3287#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3288 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3289 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3290 * would also end up as a mixed-endian mode with BE code, LE data.
3291 */
3292 return
ee3eb3a7 3293#if TARGET_BIG_ENDIAN
f9fd40eb
PB
3294 1 ^
3295#endif
3296 sctlr_b;
3297#else
e334bd31
PB
3298 /* All code access in ARM is little endian, and there are no loaders
3299 * doing swaps that need to be reversed
f9fd40eb
PB
3300 */
3301 return 0;
3302#endif
3303}
3304
c3ae85fc
PB
3305#ifdef CONFIG_USER_ONLY
3306static inline bool arm_cpu_bswap_data(CPUARMState *env)
3307{
3308 return
ee3eb3a7 3309#if TARGET_BIG_ENDIAN
c3ae85fc
PB
3310 1 ^
3311#endif
3312 arm_cpu_data_is_big_endian(env);
3313}
3314#endif
3315
a9e01311
RH
3316void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3317 target_ulong *cs_base, uint32_t *flags);
6b917547 3318
98128601
RH
3319enum {
3320 QEMU_PSCI_CONDUIT_DISABLED = 0,
3321 QEMU_PSCI_CONDUIT_SMC = 1,
3322 QEMU_PSCI_CONDUIT_HVC = 2,
3323};
3324
017518c1
PM
3325#ifndef CONFIG_USER_ONLY
3326/* Return the address space index to use for a memory access */
3327static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3328{
3329 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3330}
5ce4ff65
PM
3331
3332/* Return the AddressSpace to use for a memory access
3333 * (which depends on whether the access is S or NS, and whether
3334 * the board gave us a separate AddressSpace for S accesses).
3335 */
3336static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3337{
3338 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3339}
017518c1
PM
3340#endif
3341
bd7d00fc 3342/**
b5c53d1b
AL
3343 * arm_register_pre_el_change_hook:
3344 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3345 * CPU changes exception level or mode. The hook function will be
3346 * passed a pointer to the ARMCPU and the opaque data pointer passed
3347 * to this function when the hook was registered.
b5c53d1b
AL
3348 *
3349 * Note that if a pre-change hook is called, any registered post-change hooks
3350 * are guaranteed to subsequently be called.
bd7d00fc 3351 */
b5c53d1b 3352void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3353 void *opaque);
b5c53d1b
AL
3354/**
3355 * arm_register_el_change_hook:
3356 * Register a hook function which will be called immediately after this
3357 * CPU changes exception level or mode. The hook function will be
3358 * passed a pointer to the ARMCPU and the opaque data pointer passed
3359 * to this function when the hook was registered.
3360 *
3361 * Note that any registered hooks registered here are guaranteed to be called
3362 * if pre-change hooks have been.
3363 */
3364void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3365 *opaque);
bd7d00fc 3366
3d74e2e9
RH
3367/**
3368 * arm_rebuild_hflags:
3369 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3370 */
3371void arm_rebuild_hflags(CPUARMState *env);
3372
9a2b5256
RH
3373/**
3374 * aa32_vfp_dreg:
3375 * Return a pointer to the Dn register within env in 32-bit mode.
3376 */
3377static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3378{
c39c2b90 3379 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3380}
3381
3382/**
3383 * aa32_vfp_qreg:
3384 * Return a pointer to the Qn register within env in 32-bit mode.
3385 */
3386static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3387{
c39c2b90 3388 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3389}
3390
3391/**
3392 * aa64_vfp_qreg:
3393 * Return a pointer to the Qn register within env in 64-bit mode.
3394 */
3395static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3396{
c39c2b90 3397 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3398}
3399
028e2a7b 3400/* Shared between translate-sve.c and sve_helper.c. */
fca75f60 3401extern const uint64_t pred_esz_masks[5];
028e2a7b 3402
149d3b31
RH
3403/* Helper for the macros below, validating the argument type. */
3404static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3405{
3406 return x;
3407}
3408
3409/*
3410 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3411 * Using these should be a bit more self-documenting than using the
3412 * generic target bits directly.
3413 */
3414#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
206adacf 3415#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
149d3b31 3416
be5d6f48
RH
3417/*
3418 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
7f2cf760
RH
3419 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3420 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
be5d6f48 3421 */
7f2cf760
RH
3422#define PAGE_BTI PAGE_TARGET_1
3423#define PAGE_MTE PAGE_TARGET_2
3424#define PAGE_TARGET_STICKY PAGE_MTE
be5d6f48 3425
0e0c030c
RH
3426#ifdef TARGET_TAGGED_ADDRESSES
3427/**
3428 * cpu_untagged_addr:
3429 * @cs: CPU context
3430 * @x: tagged address
3431 *
3432 * Remove any address tag from @x. This is explicitly related to the
3433 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3434 *
3435 * There should be a better place to put this, but we need this in
3436 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3437 */
3438static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3439{
3440 ARMCPU *cpu = ARM_CPU(cs);
3441 if (cpu->env.tagged_addr_enable) {
3442 /*
3443 * TBI is enabled for userspace but not kernelspace addresses.
3444 * Only clear the tag if bit 55 is clear.
3445 */
3446 x &= sextract64(x, 0, 56);
3447 }
3448 return x;
3449}
3450#endif
3451
873b73c0
PM
3452/*
3453 * Naming convention for isar_feature functions:
3454 * Functions which test 32-bit ID registers should have _aa32_ in
3455 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3456 * _aa64_ in their name. These must only be used in code where we
3457 * know for certain that the CPU has AArch32 or AArch64 respectively
3458 * or where the correct answer for a CPU which doesn't implement that
3459 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3460 * system registers that are specific to that CPU state, for "should
3461 * we let this system register bit be set" tests where the 32-bit
3462 * flavour of the register doesn't have the bit, and so on).
3463 * Functions which simply ask "does this feature exist at all" have
3464 * _any_ in their name, and always return the logical OR of the _aa64_
3465 * and the _aa32_ function.
873b73c0
PM
3466 */
3467
962fcbf2
RH
3468/*
3469 * 32-bit feature tests via id registers.
3470 */
873b73c0 3471static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3472{
3473 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3474}
3475
873b73c0 3476static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3477{
3478 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3479}
05903f03
PM
3480
3481static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3482{
3483 /* (M-profile) low-overhead loops and branch future */
3484 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3485}
7e0cf8b4 3486
873b73c0 3487static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3488{
3489 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3490}
3491
962fcbf2
RH
3492static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3493{
3494 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3495}
3496
3497static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3498{
3499 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3500}
3501
3502static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3503{
3504 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3505}
3506
3507static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3508{
3509 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3510}
3511
3512static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3513{
3514 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3515}
3516
3517static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3518{
3519 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3520}
3521
3522static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3523{
3524 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3525}
3526
6c1f6f27
RH
3527static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3528{
3529 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3530}
3531
962fcbf2
RH
3532static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3533{
3534 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3535}
3536
87732318
RH
3537static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3538{
3539 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3540}
3541
9888bd1e
RH
3542static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3543{
3544 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3545}
3546
cb570bd3
RH
3547static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3548{
3549 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3550}
3551
c0b9e8a4
RH
3552static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3553{
3554 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3555}
3556
51879c67
RH
3557static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3558{
3559 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3560}
3561
46f4976f
PM
3562static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3563{
3564 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3565}
3566
dfc523a8
PM
3567static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3568{
3569 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3570}
3571
83ff3d6a
PM
3572static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3573{
3574 /*
3575 * Return true if M-profile state handling insns
3576 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3577 */
3578 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3579}
3580
5763190f
RH
3581static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3582{
dfc523a8
PM
3583 /* Sadly this is encoded differently for A-profile and M-profile */
3584 if (isar_feature_aa32_mprofile(id)) {
3585 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3586 } else {
3587 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3588 }
5763190f
RH
3589}
3590
7df6a1ff
PM
3591static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3592{
3593 /*
3594 * Return true if MVE is supported (either integer or floating point).
3595 * We must check for M-profile as the MVFR1 field means something
3596 * else for A-profile.
3597 */
3598 return isar_feature_aa32_mprofile(id) &&
3599 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3600}
3601
3602static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3603{
3604 /*
3605 * Return true if MVE is supported (either integer or floating point).
3606 * We must check for M-profile as the MVFR1 field means something
3607 * else for A-profile.
3608 */
3609 return isar_feature_aa32_mprofile(id) &&
3610 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3611}
3612
7fbc6a40
RH
3613static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3614{
3615 /*
3616 * Return true if either VFP or SIMD is implemented.
3617 * In this case, a minimum of VFP w/ D0-D15.
3618 */
3619 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3620}
3621
0e13ba78 3622static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3623{
3624 /* Return true if D16-D31 are implemented */
b3a816f6 3625 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3626}
3627
266bd25c
PM
3628static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3629{
b3a816f6 3630 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3631}
3632
f67957e1
RH
3633static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3634{
3635 /* Return true if CPU supports single precision floating point, VFPv2 */
3636 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3637}
3638
3639static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3640{
3641 /* Return true if CPU supports single precision floating point, VFPv3 */
3642 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3643}
3644
c4ff8735 3645static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3646{
c4ff8735 3647 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3648 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3649}
3650
f67957e1
RH
3651static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3652{
3653 /* Return true if CPU supports double precision floating point, VFPv3 */
3654 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3655}
3656
7d63183f
RH
3657static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3658{
3659 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3660}
3661
602f6e42
PM
3662/*
3663 * We always set the FP and SIMD FP16 fields to indicate identical
3664 * levels of support (assuming SIMD is implemented at all), so
3665 * we only need one set of accessors.
3666 */
3667static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3668{
b3a816f6 3669 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3670}
3671
3672static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3673{
b3a816f6 3674 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3675}
3676
c52881bb
RH
3677/*
3678 * Note that this ID register field covers both VFP and Neon FMAC,
3679 * so should usually be tested in combination with some other
3680 * check that confirms the presence of whichever of VFP or Neon is
3681 * relevant, to avoid accidentally enabling a Neon feature on
3682 * a VFP-no-Neon core or vice-versa.
3683 */
3684static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3685{
3686 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3687}
3688
c0c760af
PM
3689static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3690{
b3a816f6 3691 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3692}
3693
3694static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3695{
b3a816f6 3696 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3697}
3698
3699static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3700{
b3a816f6 3701 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3702}
3703
3704static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3705{
b3a816f6 3706 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3707}
3708
0ae0326b
PM
3709static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3710{
3711 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3712}
3713
3d6ad6bb
RH
3714static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3715{
10054016 3716 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3717}
3718
3719static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3720{
10054016 3721 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3722}
3723
a793bcd0 3724static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id)
a6179538
PM
3725{
3726 /* 0xf means "non-standard IMPDEF PMU" */
3727 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3728 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3729}
3730
a793bcd0 3731static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id)
15dd1ebd
PM
3732{
3733 /* 0xf means "non-standard IMPDEF PMU" */
3734 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3735 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3736}
3737
0b42f4fa
PM
3738static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id)
3739{
3740 /* 0xf means "non-standard IMPDEF PMU" */
3741 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 &&
3742 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3743}
3744
4036b7d1
PM
3745static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3746{
3747 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3748}
3749
f6287c24
PM
3750static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3751{
3752 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3753}
3754
957e6155
PM
3755static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3756{
3757 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3758}
3759
ce3125be
PM
3760static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3761{
3762 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3763}
3764
dc8b1853
RC
3765static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3766{
3767 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3768}
3769
f2f68a78
RC
3770static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3771{
3772 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3773}
3774
09754ca8
PM
3775static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3776{
3777 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3778}
3779
ca56aac5
RH
3780static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3781{
3782 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3783}
3784
f94a6df5
PM
3785static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3786{
3787 return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3788}
3789
962fcbf2
RH
3790/*
3791 * 64-bit feature tests via id registers.
3792 */
3793static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3794{
3795 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3796}
3797
3798static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3799{
3800 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3801}
3802
3803static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3804{
3805 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3806}
3807
3808static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3809{
3810 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3811}
3812
3813static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3814{
3815 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3816}
3817
3818static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3819{
3820 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3821}
3822
3823static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3824{
3825 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3826}
3827
3828static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3829{
3830 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3831}
3832
3833static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3834{
3835 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3836}
3837
3838static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3839{
3840 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3841}
3842
3843static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3844{
3845 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3846}
3847
3848static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3849{
3850 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3851}
3852
0caa5af8
RH
3853static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3854{
3855 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3856}
3857
b89d9c98
RH
3858static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3859{
3860 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3861}
3862
5ef84f11
RH
3863static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3864{
3865 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3866}
3867
de390645
RH
3868static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3869{
3870 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3871}
3872
6c1f6f27
RH
3873static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3874{
3875 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3876}
3877
962fcbf2
RH
3878static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3879{
3880 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3881}
3882
991ad91b
RH
3883static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3884{
3885 /*
283fc52a
RH
3886 * Return true if any form of pauth is enabled, as this
3887 * predicate controls migration of the 128-bit keys.
991ad91b
RH
3888 */
3889 return (id->id_aa64isar1 &
3890 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3891 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3892 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3893 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3894}
3895
283fc52a
RH
3896static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3897{
3898 /*
3899 * Return true if pauth is enabled with the architected QARMA algorithm.
3900 * QEMU will always set APA+GPA to the same value.
3901 */
3902 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3903}
3904
84940ed8
RC
3905static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3906{
3907 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3908}
3909
7113d618
RC
3910static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3911{
3912 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3913}
3914
9888bd1e
RH
3915static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3916{
3917 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3918}
3919
cb570bd3
RH
3920static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3921{
3922 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3923}
3924
6bea2563
RH
3925static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3926{
3927 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3928}
3929
0d57b499
BM
3930static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3931{
3932 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3933}
3934
3935static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3936{
3937 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3938}
3939
c0b9e8a4
RH
3940static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3941{
3942 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3943}
3944
7d63183f
RH
3945static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3946{
3947 /* We always set the AdvSIMD and FP fields identically. */
3948 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3949}
3950
5763190f
RH
3951static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3952{
3953 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3954 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3955}
3956
0f8d06f1
RH
3957static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3958{
3959 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3960}
3961
10d0ef3e
MN
3962static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3963{
3964 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3965}
3966
6bcbb07a
RH
3967static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3968{
3969 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3970}
3971
25e168ab
RH
3972static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3973{
3974 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3975}
3976
7ac61020
PM
3977static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3978{
3979 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3980}
3981
cd208a1c
RH
3982static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3983{
3984 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3985}
3986
5ca192df
RDC
3987static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3988{
3989 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3990}
3991
8fc2ea21
RH
3992static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3993{
3994 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3995}
3996
2d7137c1
RH
3997static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3998{
3999 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4000}
4001
3d6ad6bb
RH
4002static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4003{
4004 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4005}
4006
4007static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4008{
4009 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4010}
4011
5814d587
RH
4012static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
4013{
4014 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
4015}
4016
9eeb7a1c
RH
4017static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4018{
4019 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4020}
4021
c36c65ea
RDC
4022static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4023{
4024 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4025}
4026
8c7e17ef
PM
4027static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
4028{
4029 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
4030}
4031
75662f36
PM
4032static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
4033{
4034 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
4035}
4036
be53b6f4
RH
4037static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4038{
4039 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4040}
4041
c7fd0baa
RH
4042static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4043{
4044 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4045}
4046
4047static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4048{
4049 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4050}
4051
f305bf94
RH
4052static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
4053{
4054 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
4055}
4056
a793bcd0 4057static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
2a609df8
PM
4058{
4059 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4060 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4061}
4062
a793bcd0 4063static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 4064{
54117b90
PM
4065 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4066 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
4067}
4068
0b42f4fa
PM
4069static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id)
4070{
4071 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 &&
4072 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4073}
4074
2677cf9f
PM
4075static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4076{
4077 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4078}
4079
a1229109
PM
4080static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4081{
4082 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4083}
4084
f7da051f
RH
4085static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4086{
4087 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4088}
4089
ef56c242
RH
4090static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4091{
4092 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4093}
4094
4095static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4096{
4097 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4098 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4099}
4100
4101static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4102{
4103 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4104}
4105
4106static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4107{
4108 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4109 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4110}
4111
957e6155
PM
4112static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4113{
4114 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4115}
4116
0af312b6
RH
4117static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4118{
4119 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4120}
4121
ce3125be
PM
4122static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4123{
4124 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4125}
4126
dc8b1853
RC
4127static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4128{
4129 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4130}
4131
7cb1e618
RH
4132static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4133{
4134 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4135 if (key >= 2) {
4136 return true; /* FEAT_CSV2_2 */
4137 }
4138 if (key == 1) {
4139 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4140 return key >= 2; /* FEAT_CSV2_1p2 */
4141 }
4142 return false;
4143}
4144
f2f68a78
RC
4145static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4146{
4147 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4148}
4149
ca56aac5
RH
4150static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4151{
4152 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4153}
4154
2dc10fa2
RH
4155static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4156{
4157 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4158}
4159
e3a56131
RH
4160static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4161{
4162 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4163}
4164
4165static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4166{
4167 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4168}
4169
cb9c33b8
RH
4170static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4171{
4172 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4173}
4174
c0b9e8a4
RH
4175static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4176{
4177 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4178}
4179
3358eb3f
RH
4180static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4181{
4182 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4183}
4184
3cc7a88e
RH
4185static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4186{
4187 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4188}
4189
2867039a
RH
4190static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4191{
4192 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4193}
4194
4f26756b
SL
4195static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4196{
4197 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4198}
4199
4200static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4201{
4202 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4203}
4204
414c54d5
RH
4205static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4206{
4207 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4208}
4209
4210static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4211{
4212 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4213}
4214
4215static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4216{
4217 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4218}
4219
f94a6df5
PM
4220static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4221{
4222 return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4223}
4224
6e61f839
PM
4225/*
4226 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4227 */
4228static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4229{
4230 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4231}
4232
22e57073
PM
4233static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4234{
4235 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4236}
4237
a793bcd0 4238static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id)
2a609df8 4239{
a793bcd0 4240 return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id);
2a609df8
PM
4241}
4242
a793bcd0 4243static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 4244{
a793bcd0 4245 return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id);
15dd1ebd
PM
4246}
4247
0b42f4fa
PM
4248static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id)
4249{
4250 return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id);
4251}
4252
957e6155
PM
4253static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4254{
4255 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4256}
4257
ce3125be
PM
4258static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4259{
4260 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4261}
4262
ca56aac5
RH
4263static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4264{
4265 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4266}
4267
25e168ab
RH
4268static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4269{
4270 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4271}
4272
962fcbf2
RH
4273/*
4274 * Forward to the above feature tests given an ARMCPU pointer.
4275 */
4276#define cpu_isar_feature(name, cpu) \
4277 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4278
2c0262af 4279#endif