]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Add GPC syndrome
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
68970d1e 28#include "qapi/qapi-types-common.h"
9042c0e2 29
ca759f9e
AB
30/* ARM processors have a weak memory model */
31#define TCG_GUEST_DEFAULT_MO (0)
32
e24fd076
DG
33#ifdef TARGET_AARCH64
34#define KVM_HAVE_MCE_INJECTION 1
35#endif
36
b8a9e8f1
FB
37#define EXCP_UDEF 1 /* undefined instruction */
38#define EXCP_SWI 2 /* software interrupt */
39#define EXCP_PREFETCH_ABORT 3
40#define EXCP_DATA_ABORT 4
b5ff1b31
FB
41#define EXCP_IRQ 5
42#define EXCP_FIQ 6
06c949e6 43#define EXCP_BKPT 7
9ee6e8bb 44#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 45#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 46#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 47#define EXCP_HYP_TRAP 12
e0d6e6a5 48#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
49#define EXCP_VIRQ 14
50#define EXCP_VFIQ 15
19a6e31c 51#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 52#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 53#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 54#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 55#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
56#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 58#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
3c29632f 59#define EXCP_VSERR 24
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
3c29632f 93#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
403946c0 94
e4fe830b
PM
95/* The usual mapping for an AArch64 system register to its AArch32
96 * counterpart is for the 32 bit world to have access to the lower
97 * half only (with writes leaving the upper half untouched). It's
98 * therefore useful to be able to pass TCG the offset of the least
99 * significant half of a uint64_t struct member.
100 */
e03b5686 101#if HOST_BIG_ENDIAN
5cd8a118 102#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 103#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
104#else
105#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 106#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
107#endif
108
136e67e9 109/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
110#define ARM_CPU_IRQ 0
111#define ARM_CPU_FIQ 1
136e67e9
EI
112#define ARM_CPU_VIRQ 2
113#define ARM_CPU_VFIQ 3
403946c0 114
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
448d4d14
AB
140 * @num: Number of the registers in this XML seen by GDB.
141 * @data: A union with data specific to the set of registers
142 * @cpregs_keys: Array that contains the corresponding Key of
143 * a given cpreg with the same order of the cpreg
144 * in the XML description.
200bf5b7
AB
145 */
146typedef struct DynamicGDBXMLInfo {
147 char *desc;
448d4d14
AB
148 int num;
149 union {
150 struct {
151 uint32_t *keys;
152 } cpregs;
153 } data;
200bf5b7
AB
154} DynamicGDBXMLInfo;
155
55d284af
PM
156/* CPU state for each instance of a generic timer (in cp15 c14) */
157typedef struct ARMGenericTimer {
158 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 159 uint64_t ctl; /* Timer Control register */
55d284af
PM
160} ARMGenericTimer;
161
8c94b071
RH
162#define GTIMER_PHYS 0
163#define GTIMER_VIRT 1
164#define GTIMER_HYP 2
165#define GTIMER_SEC 3
166#define GTIMER_HYPVIRT 4
167#define NUM_GTIMERS 5
55d284af 168
e9152ee9
RDC
169#define VTCR_NSW (1u << 29)
170#define VTCR_NSA (1u << 30)
171#define VSTCR_SW VTCR_NSW
172#define VSTCR_SA VTCR_NSA
173
c39c2b90
RH
174/* Define a maximum sized vector register.
175 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
176 * For 64-bit, this is a 2048-bit SVE register.
177 *
178 * Note that the mapping between S, D, and Q views of the register bank
179 * differs between AArch64 and AArch32.
180 * In AArch32:
181 * Qn = regs[n].d[1]:regs[n].d[0]
182 * Dn = regs[n / 2].d[n & 1]
183 * Sn = regs[n / 4].d[n % 4 / 2],
184 * bits 31..0 for even n, and bits 63..32 for odd n
185 * (and regs[16] to regs[31] are inaccessible)
186 * In AArch64:
187 * Zn = regs[n].d[*]
188 * Qn = regs[n].d[1]:regs[n].d[0]
189 * Dn = regs[n].d[0]
190 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 191 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
192 *
193 * This corresponds to the architecturally defined mapping between
194 * the two execution states, and means we do not need to explicitly
195 * map these registers when changing states.
196 *
197 * Align the data for use with TCG host vector operations.
198 */
199
200#ifdef TARGET_AARCH64
201# define ARM_MAX_VQ 16
202#else
203# define ARM_MAX_VQ 1
204#endif
205
206typedef struct ARMVectorReg {
207 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
208} ARMVectorReg;
209
3c7d3086 210#ifdef TARGET_AARCH64
991ad91b 211/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 212typedef struct ARMPredicateReg {
46417784 213 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 214} ARMPredicateReg;
991ad91b
RH
215
216/* In AArch32 mode, PAC keys do not exist at all. */
217typedef struct ARMPACKey {
218 uint64_t lo, hi;
219} ARMPACKey;
3c7d3086
RH
220#endif
221
3902bfc6
RH
222/* See the commentary above the TBFLAG field definitions. */
223typedef struct CPUARMTBFlags {
224 uint32_t flags;
a378206a 225 target_ulong flags2;
3902bfc6 226} CPUARMTBFlags;
c39c2b90 227
f3639a64
RH
228typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
229
8f4e07c9
PMD
230typedef struct NVICState NVICState;
231
1ea4a06a 232typedef struct CPUArchState {
b5ff1b31 233 /* Regs for current mode. */
2c0262af 234 uint32_t regs[16];
3926cc84
AG
235
236 /* 32/64 switch only happens when taking and returning from
237 * exceptions so the overlap semantics are taken care of then
238 * instead of having a complicated union.
239 */
240 /* Regs for A64 mode. */
241 uint64_t xregs[32];
242 uint64_t pc;
d356312f
PM
243 /* PSTATE isn't an architectural register for ARMv8. However, it is
244 * convenient for us to assemble the underlying state into a 32 bit format
245 * identical to the architectural format used for the SPSR. (This is also
246 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
247 * 'pstate' register are.) Of the PSTATE bits:
248 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
249 * semantics as for AArch32, as described in the comments on each field)
250 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 251 * DAIF (exception masks) are kept in env->daif
f6e52eaa 252 * BTYPE is kept in env->btype
c37e6ac9 253 * SM and ZA are kept in env->svcr
d356312f 254 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
255 */
256 uint32_t pstate;
53221552 257 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
063bbd80 258 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
3926cc84 259
fdd1b228 260 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 261 CPUARMTBFlags hflags;
fdd1b228 262
b90372ad 263 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 264 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
265 the whole CPSR. */
266 uint32_t uncached_cpsr;
267 uint32_t spsr;
268
269 /* Banked registers. */
28c9457d 270 uint64_t banked_spsr[8];
0b7d409d
FA
271 uint32_t banked_r13[8];
272 uint32_t banked_r14[8];
3b46e624 273
b5ff1b31
FB
274 /* These hold r8-r12. */
275 uint32_t usr_regs[5];
276 uint32_t fiq_regs[5];
3b46e624 277
2c0262af
FB
278 /* cpsr flag cache for faster execution */
279 uint32_t CF; /* 0 or 1 */
280 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
281 uint32_t NF; /* N is bit 31. All other bits are undefined. */
282 uint32_t ZF; /* Z set if zero. */
99c475ab 283 uint32_t QF; /* 0 or 1 */
9ee6e8bb 284 uint32_t GE; /* cpsr[19:16] */
9ee6e8bb 285 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 286 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 287 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
c37e6ac9 288 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
2c0262af 289
1b174238 290 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 291 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 292
b5ff1b31
FB
293 /* System control coprocessor (cp15) */
294 struct {
40f137e1 295 uint32_t c0_cpuid;
b85a1fd6
FA
296 union { /* Cache size selection */
297 struct {
298 uint64_t _unused_csselr0;
299 uint64_t csselr_ns;
300 uint64_t _unused_csselr1;
301 uint64_t csselr_s;
302 };
303 uint64_t csselr_el[4];
304 };
137feaa9
FA
305 union { /* System control register. */
306 struct {
307 uint64_t _unused_sctlr;
308 uint64_t sctlr_ns;
309 uint64_t hsctlr;
310 uint64_t sctlr_s;
311 };
312 uint64_t sctlr_el[4];
313 };
761c4642 314 uint64_t vsctlr; /* Virtualization System control register. */
7ebd5f2e 315 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 316 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 317 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 318 uint64_t sder; /* Secure debug enable register. */
77022576 319 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
320 union { /* MMU translation table base 0. */
321 struct {
322 uint64_t _unused_ttbr0_0;
323 uint64_t ttbr0_ns;
324 uint64_t _unused_ttbr0_1;
325 uint64_t ttbr0_s;
326 };
327 uint64_t ttbr0_el[4];
328 };
329 union { /* MMU translation table base 1. */
330 struct {
331 uint64_t _unused_ttbr1_0;
332 uint64_t ttbr1_ns;
333 uint64_t _unused_ttbr1_1;
334 uint64_t ttbr1_s;
335 };
336 uint64_t ttbr1_el[4];
337 };
b698e9cf 338 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 339 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee 340 /* MMU translation table base control. */
cb4a0a34 341 uint64_t tcr_el[4];
988cc190
PM
342 uint64_t vtcr_el2; /* Virtualization Translation Control. */
343 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
344 uint32_t c2_data; /* MPU data cacheable bits. */
345 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
346 union { /* MMU domain access control register
347 * MPU write buffer control.
348 */
349 struct {
350 uint64_t dacr_ns;
351 uint64_t dacr_s;
352 };
353 struct {
354 uint64_t dacr32_el2;
355 };
356 };
7e09797c
PM
357 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
358 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 359 uint64_t hcr_el2; /* Hypervisor configuration register */
5814d587 360 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
64e0e2de 361 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
362 union { /* Fault status registers. */
363 struct {
364 uint64_t ifsr_ns;
365 uint64_t ifsr_s;
366 };
367 struct {
368 uint64_t ifsr32_el2;
369 };
370 };
4a7e2d73
FA
371 union {
372 struct {
373 uint64_t _unused_dfsr;
374 uint64_t dfsr_ns;
375 uint64_t hsr;
376 uint64_t dfsr_s;
377 };
378 uint64_t esr_el[4];
379 };
ce819861 380 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
381 union { /* Fault address registers. */
382 struct {
383 uint64_t _unused_far0;
e03b5686 384#if HOST_BIG_ENDIAN
b848ce2b
FA
385 uint32_t ifar_ns;
386 uint32_t dfar_ns;
387 uint32_t ifar_s;
388 uint32_t dfar_s;
389#else
390 uint32_t dfar_ns;
391 uint32_t ifar_ns;
392 uint32_t dfar_s;
393 uint32_t ifar_s;
394#endif
395 uint64_t _unused_far3;
396 };
397 uint64_t far_el[4];
398 };
59e05530 399 uint64_t hpfar_el2;
2a5a9abd 400 uint64_t hstr_el2;
01c097f7
FA
401 union { /* Translation result. */
402 struct {
403 uint64_t _unused_par_0;
404 uint64_t par_ns;
405 uint64_t _unused_par_1;
406 uint64_t par_s;
407 };
408 uint64_t par_el[4];
409 };
6cb0b013 410
b5ff1b31
FB
411 uint32_t c9_insn; /* Cache lockdown registers. */
412 uint32_t c9_data;
8521466b
AF
413 uint64_t c9_pmcr; /* performance monitor control register */
414 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
415 uint64_t c9_pmovsr; /* perf monitor overflow status */
416 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 417 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 418 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
419 union { /* Memory attribute redirection */
420 struct {
e03b5686 421#if HOST_BIG_ENDIAN
be693c87
GB
422 uint64_t _unused_mair_0;
423 uint32_t mair1_ns;
424 uint32_t mair0_ns;
425 uint64_t _unused_mair_1;
426 uint32_t mair1_s;
427 uint32_t mair0_s;
428#else
429 uint64_t _unused_mair_0;
430 uint32_t mair0_ns;
431 uint32_t mair1_ns;
432 uint64_t _unused_mair_1;
433 uint32_t mair0_s;
434 uint32_t mair1_s;
435#endif
436 };
437 uint64_t mair_el[4];
438 };
fb6c91ba
GB
439 union { /* vector base address register */
440 struct {
441 uint64_t _unused_vbar;
442 uint64_t vbar_ns;
443 uint64_t hvbar;
444 uint64_t vbar_s;
445 };
446 uint64_t vbar_el[4];
447 };
e89e51a1 448 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 449 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
450 struct { /* FCSE PID. */
451 uint32_t fcseidr_ns;
452 uint32_t fcseidr_s;
453 };
454 union { /* Context ID. */
455 struct {
456 uint64_t _unused_contextidr_0;
457 uint64_t contextidr_ns;
458 uint64_t _unused_contextidr_1;
459 uint64_t contextidr_s;
460 };
461 uint64_t contextidr_el[4];
462 };
463 union { /* User RW Thread register. */
464 struct {
465 uint64_t tpidrurw_ns;
466 uint64_t tpidrprw_ns;
467 uint64_t htpidr;
468 uint64_t _tpidr_el3;
469 };
470 uint64_t tpidr_el[4];
471 };
9e5ec745 472 uint64_t tpidr2_el0;
54bf36ed
FA
473 /* The secure banks of these registers don't map anywhere */
474 uint64_t tpidrurw_s;
475 uint64_t tpidrprw_s;
476 uint64_t tpidruro_s;
477
478 union { /* User RO Thread register. */
479 uint64_t tpidruro_ns;
480 uint64_t tpidrro_el[1];
481 };
a7adc4b7
PM
482 uint64_t c14_cntfrq; /* Counter Frequency register */
483 uint64_t c14_cntkctl; /* Timer Control register */
bb461330 484 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 485 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 486 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 487 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
488 uint32_t c15_ticonfig; /* TI925T configuration byte. */
489 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
490 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
491 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
492 uint32_t c15_config_base_address; /* SCU base address. */
493 uint32_t c15_diagnostic; /* diagnostic register */
494 uint32_t c15_power_diagnostic;
495 uint32_t c15_power_control; /* power control */
0b45451e
PM
496 uint64_t dbgbvr[16]; /* breakpoint value registers */
497 uint64_t dbgbcr[16]; /* breakpoint control registers */
498 uint64_t dbgwvr[16]; /* watchpoint value registers */
499 uint64_t dbgwcr[16]; /* watchpoint control registers */
5fc83f11 500 uint64_t dbgclaim; /* DBGCLAIM bits */
3a298203 501 uint64_t mdscr_el1;
1424ca8d 502 uint64_t oslsr_el1; /* OS Lock Status */
f94a6df5 503 uint64_t osdlr_el1; /* OS DoubleLock status */
14cc7b54 504 uint64_t mdcr_el2;
5513c3ab 505 uint64_t mdcr_el3;
5d05b9d4
AL
506 /* Stores the architectural value of the counter *the last time it was
507 * updated* by pmccntr_op_start. Accesses should always be surrounded
508 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
509 * architecturally-correct value is being read/set.
7c2cb42b 510 */
c92c0687 511 uint64_t c15_ccnt;
5d05b9d4
AL
512 /* Stores the delta between the architectural value and the underlying
513 * cycle count during normal operation. It is used to update c15_ccnt
514 * to be the correct architectural value before accesses. During
515 * accesses, c15_ccnt_delta contains the underlying count being used
516 * for the access, after which it reverts to the delta value in
517 * pmccntr_op_finish.
518 */
519 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
520 uint64_t c14_pmevcntr[31];
521 uint64_t c14_pmevcntr_delta[31];
522 uint64_t c14_pmevtyper[31];
8521466b 523 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 524 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 525 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
526 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
527 uint64_t gcr_el1;
528 uint64_t rgsr_el1;
58e93b48
RH
529
530 /* Minimal RAS registers */
531 uint64_t disr_el1;
532 uint64_t vdisr_el2;
533 uint64_t vsesr_el2;
15126d9c
PM
534
535 /*
536 * Fine-Grained Trap registers. We store these as arrays so the
537 * access checking code doesn't have to manually select
538 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
539 * FEAT_FGT2 will add more elements to these arrays.
540 */
541 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
542 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
543 uint64_t fgt_exec[1]; /* HFGITR */
ef1febe7
RH
544
545 /* RME registers */
546 uint64_t gpccr_el3;
547 uint64_t gptbr_el3;
548 uint64_t mfar_el3;
b5ff1b31 549 } cp15;
40f137e1 550
9ee6e8bb 551 struct {
fb602cb7
PM
552 /* M profile has up to 4 stack pointers:
553 * a Main Stack Pointer and a Process Stack Pointer for each
554 * of the Secure and Non-Secure states. (If the CPU doesn't support
555 * the security extension then it has only two SPs.)
556 * In QEMU we always store the currently active SP in regs[13],
557 * and the non-active SP for the current security state in
558 * v7m.other_sp. The stack pointers for the inactive security state
559 * are stored in other_ss_msp and other_ss_psp.
560 * switch_v7m_security_state() is responsible for rearranging them
561 * when we change security state.
562 */
9ee6e8bb 563 uint32_t other_sp;
fb602cb7
PM
564 uint32_t other_ss_msp;
565 uint32_t other_ss_psp;
4a16724f
PM
566 uint32_t vecbase[M_REG_NUM_BANKS];
567 uint32_t basepri[M_REG_NUM_BANKS];
568 uint32_t control[M_REG_NUM_BANKS];
569 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
570 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
571 uint32_t hfsr; /* HardFault Status */
572 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 573 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 574 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 575 uint32_t bfar; /* BusFault Address */
bed079da 576 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 577 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 578 int exception;
4a16724f
PM
579 uint32_t primask[M_REG_NUM_BANKS];
580 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 581 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 582 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 583 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 584 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
585 uint32_t msplim[M_REG_NUM_BANKS];
586 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
587 uint32_t fpcar[M_REG_NUM_BANKS];
588 uint32_t fpccr[M_REG_NUM_BANKS];
589 uint32_t fpdscr[M_REG_NUM_BANKS];
590 uint32_t cpacr[M_REG_NUM_BANKS];
591 uint32_t nsacr;
b26b5629 592 uint32_t ltpsize;
7c3d47da 593 uint32_t vpr;
9ee6e8bb
PB
594 } v7m;
595
abf1172f
PM
596 /* Information associated with an exception about to be taken:
597 * code which raises an exception must set cs->exception_index and
598 * the relevant parts of this structure; the cpu_do_interrupt function
599 * will then set the guest-visible registers as part of the exception
600 * entry process.
601 */
602 struct {
603 uint32_t syndrome; /* AArch64 format syndrome register */
604 uint32_t fsr; /* AArch32 format fault status register info */
605 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 606 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
607 /* If we implement EL2 we will also need to store information
608 * about the intermediate physical address for stage 2 faults.
609 */
610 } exception;
611
202ccb6b
DG
612 /* Information associated with an SError */
613 struct {
614 uint8_t pending;
615 uint8_t has_esr;
616 uint64_t esr;
617 } serror;
618
1711bfa5
BM
619 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
620
ed89f078
PM
621 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
622 uint32_t irq_line_state;
623
fe1479c3
PB
624 /* Thumb-2 EE state. */
625 uint32_t teecr;
626 uint32_t teehbr;
627
b7bcbe95
FB
628 /* VFP coprocessor state. */
629 struct {
c39c2b90 630 ARMVectorReg zregs[32];
b7bcbe95 631
3c7d3086
RH
632#ifdef TARGET_AARCH64
633 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 634#define FFR_PRED_NUM 16
3c7d3086 635 ARMPredicateReg pregs[17];
516e246a
RH
636 /* Scratch space for aa64 sve predicate temporary. */
637 ARMPredicateReg preg_tmp;
3c7d3086
RH
638#endif
639
b7bcbe95 640 /* We store these fpcsr fields separately for convenience. */
a4d58462 641 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
642 int vec_len;
643 int vec_stride;
644
a4d58462
RH
645 uint32_t xregs[16];
646
516e246a 647 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 648 uint32_t scratch[8];
3b46e624 649
d81ce0ef
AB
650 /* There are a number of distinct float control structures:
651 *
652 * fp_status: is the "normal" fp status.
653 * fp_status_fp16: used for half-precision calculations
654 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
655 * standard_fp_status_fp16 : used for half-precision
656 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
657 *
658 * Half-precision operations are governed by a separate
659 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
660 * status structure to control this.
661 *
662 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
663 * round-to-nearest and is used by any operations (generally
664 * Neon) which the architecture defines as controlled by the
665 * standard FPSCR value rather than the FPSCR.
3a492f3a 666 *
aaae563b
PM
667 * The "standard FPSCR but for fp16 ops" is needed because
668 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
669 * using a fixed value for it.
670 *
3a492f3a
PM
671 * To avoid having to transfer exception bits around, we simply
672 * say that the FPSCR cumulative exception flags are the logical
aaae563b 673 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
674 * only thing which needs to read the exception flags being
675 * an explicit FPSCR read.
676 */
53cd6637 677 float_status fp_status;
d81ce0ef 678 float_status fp_status_f16;
3a492f3a 679 float_status standard_fp_status;
aaae563b 680 float_status standard_fp_status_f16;
5be5e8ed 681
de561988
RH
682 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
683 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
b7bcbe95 684 } vfp;
0f08429c 685
03d05e2d
PM
686 uint64_t exclusive_addr;
687 uint64_t exclusive_val;
0f08429c
RH
688 /*
689 * Contains the 'val' for the second 64-bit register of LDXP, which comes
690 * from the higher address, not the high part of a complete 128-bit value.
691 * In some ways it might be more convenient to record the exclusive value
692 * as the low and high halves of a 128 bit data value, but the current
693 * semantics of these fields are baked into the migration format.
694 */
03d05e2d 695 uint64_t exclusive_high;
b7bcbe95 696
18c9b560
AZ
697 /* iwMMXt coprocessor state. */
698 struct {
699 uint64_t regs[16];
700 uint64_t val;
701
702 uint32_t cregs[16];
703 } iwmmxt;
704
991ad91b 705#ifdef TARGET_AARCH64
108b3ba8
RH
706 struct {
707 ARMPACKey apia;
708 ARMPACKey apib;
709 ARMPACKey apda;
710 ARMPACKey apdb;
711 ARMPACKey apga;
712 } keys;
7cb1e618
RH
713
714 uint64_t scxtnum_el[4];
dc993a01
RH
715
716 /*
717 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
718 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
719 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
720 * When SVL is less than the architectural maximum, the accessible
721 * storage is restricted, such that if the SVL is X bytes the guest can
722 * see only the bottom X elements of zarray[], and only the least
723 * significant X bytes of each element of the array. (In other words,
724 * the observable part is always square.)
725 *
726 * The ZA storage can also be considered as a set of square tiles of
727 * elements of different sizes. The mapping from tiles to the ZA array
728 * is architecturally defined, such that for tiles of elements of esz
729 * bytes, the Nth row (or "horizontal slice") of tile T is in
730 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
731 * in the ZA storage, because its rows are striped through the ZA array.
732 *
733 * Because this is so large, keep this toward the end of the reset area,
734 * to keep the offsets into the rest of the structure smaller.
735 */
736 ARMVectorReg zarray[ARM_MAX_VQ * 16];
991ad91b
RH
737#endif
738
46747d15 739 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
740 struct CPUWatchpoint *cpu_watchpoint[16];
741
f3639a64
RH
742 /* Optional fault info across tlb lookup. */
743 ARMMMUFaultInfo *tlb_fi;
744
1f5c00cf
AB
745 /* Fields up to this point are cleared by a CPU reset */
746 struct {} end_reset_fields;
747
e8b5fae5 748 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 749
581be094 750 /* Internal CPU feature flags. */
918f5dca 751 uint64_t features;
581be094 752
6cb0b013
PC
753 /* PMSAv7 MPU */
754 struct {
755 uint32_t *drbar;
756 uint32_t *drsr;
757 uint32_t *dracr;
4a16724f 758 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
759 } pmsav7;
760
0e1a46bb
PM
761 /* PMSAv8 MPU */
762 struct {
763 /* The PMSAv8 implementation also shares some PMSAv7 config
764 * and state:
765 * pmsav7.rnr (region number register)
766 * pmsav7_dregion (number of configured regions)
767 */
4a16724f
PM
768 uint32_t *rbar[M_REG_NUM_BANKS];
769 uint32_t *rlar[M_REG_NUM_BANKS];
761c4642
TR
770 uint32_t *hprbar;
771 uint32_t *hprlar;
4a16724f
PM
772 uint32_t mair0[M_REG_NUM_BANKS];
773 uint32_t mair1[M_REG_NUM_BANKS];
761c4642 774 uint32_t hprselr;
0e1a46bb
PM
775 } pmsav8;
776
9901c576
PM
777 /* v8M SAU */
778 struct {
779 uint32_t *rbar;
780 uint32_t *rlar;
781 uint32_t rnr;
782 uint32_t ctrl;
783 } sau;
784
1701d70e 785#if !defined(CONFIG_USER_ONLY)
8f4e07c9 786 NVICState *nvic;
2a94a507 787 const struct arm_boot_info *boot_info;
d3a3e529
VK
788 /* Store GICv3CPUState to access from this struct */
789 void *gicv3state;
1701d70e 790#else /* CONFIG_USER_ONLY */
26f08561
PMD
791 /* For usermode syscall translation. */
792 bool eabi;
793#endif /* CONFIG_USER_ONLY */
0e0c030c
RH
794
795#ifdef TARGET_TAGGED_ADDRESSES
796 /* Linux syscall tagged address support */
797 bool tagged_addr_enable;
798#endif
2c0262af
FB
799} CPUARMState;
800
5fda9504
TH
801static inline void set_feature(CPUARMState *env, int feature)
802{
803 env->features |= 1ULL << feature;
804}
805
806static inline void unset_feature(CPUARMState *env, int feature)
807{
808 env->features &= ~(1ULL << feature);
809}
810
bd7d00fc 811/**
08267487 812 * ARMELChangeHookFn:
bd7d00fc
PM
813 * type of a function which can be registered via arm_register_el_change_hook()
814 * to get callbacks when the CPU changes its exception level or mode.
815 */
08267487
AL
816typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
817typedef struct ARMELChangeHook ARMELChangeHook;
818struct ARMELChangeHook {
819 ARMELChangeHookFn *hook;
820 void *opaque;
821 QLIST_ENTRY(ARMELChangeHook) node;
822};
062ba099
AB
823
824/* These values map onto the return values for
825 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
826typedef enum ARMPSCIState {
d5affb0d
AJ
827 PSCI_ON = 0,
828 PSCI_OFF = 1,
062ba099
AB
829 PSCI_ON_PENDING = 2
830} ARMPSCIState;
831
962fcbf2
RH
832typedef struct ARMISARegisters ARMISARegisters;
833
7f9e25a6
RH
834/*
835 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
836 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
837 *
838 * While processing properties during initialization, corresponding init bits
839 * are set for bits in sve_vq_map that have been set by properties.
840 *
841 * Bits set in supported represent valid vector lengths for the CPU type.
842 */
843typedef struct {
844 uint32_t map, init, supported;
845} ARMVQMap;
846
74e75564
PB
847/**
848 * ARMCPU:
849 * @env: #CPUARMState
850 *
851 * An ARM CPU core.
852 */
b36e239e 853struct ArchCPU {
74e75564
PB
854 /*< private >*/
855 CPUState parent_obj;
856 /*< public >*/
857
5b146dc7 858 CPUNegativeOffsetState neg;
74e75564
PB
859 CPUARMState env;
860
861 /* Coprocessor information */
862 GHashTable *cp_regs;
863 /* For marshalling (mostly coprocessor) register state between the
864 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
865 * we use these arrays.
866 */
867 /* List of register indexes managed via these arrays; (full KVM style
868 * 64 bit indexes, not CPRegInfo 32 bit indexes)
869 */
870 uint64_t *cpreg_indexes;
871 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
872 uint64_t *cpreg_values;
873 /* Length of the indexes, values, reset_values arrays */
874 int32_t cpreg_array_len;
875 /* These are used only for migration: incoming data arrives in
876 * these fields and is sanity checked in post_load before copying
877 * to the working data structures above.
878 */
879 uint64_t *cpreg_vmstate_indexes;
880 uint64_t *cpreg_vmstate_values;
881 int32_t cpreg_vmstate_array_len;
882
448d4d14 883 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 884 DynamicGDBXMLInfo dyn_svereg_xml;
7d8b28b8
RH
885 DynamicGDBXMLInfo dyn_m_systemreg_xml;
886 DynamicGDBXMLInfo dyn_m_secextreg_xml;
200bf5b7 887
74e75564
PB
888 /* Timers used by the generic (architected) timer */
889 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
890 /*
891 * Timer used by the PMU. Its state is restored after migration by
892 * pmu_op_finish() - it does not need other handling during migration
893 */
894 QEMUTimer *pmu_timer;
74e75564
PB
895 /* GPIO outputs for generic timer */
896 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
897 /* GPIO output for GICv3 maintenance interrupt signal */
898 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
899 /* GPIO output for the PMU interrupt */
900 qemu_irq pmu_interrupt;
74e75564
PB
901
902 /* MemoryRegion to use for secure physical accesses */
903 MemoryRegion *secure_memory;
904
8bce44a2
RH
905 /* MemoryRegion to use for allocation tag accesses */
906 MemoryRegion *tag_memory;
907 MemoryRegion *secure_tag_memory;
908
181962fd
PM
909 /* For v8M, pointer to the IDAU interface provided by board/SoC */
910 Object *idau;
911
74e75564
PB
912 /* 'compatible' string for this CPU for Linux device trees */
913 const char *dtb_compatible;
914
915 /* PSCI version for this CPU
916 * Bits[31:16] = Major Version
917 * Bits[15:0] = Minor Version
918 */
919 uint32_t psci_version;
920
062ba099
AB
921 /* Current power state, access guarded by BQL */
922 ARMPSCIState power_state;
923
c25bd18a
PM
924 /* CPU has virtualization extension */
925 bool has_el2;
74e75564
PB
926 /* CPU has security extension */
927 bool has_el3;
5c0a3819
SZ
928 /* CPU has PMU (Performance Monitor Unit) */
929 bool has_pmu;
97a28b0e
PM
930 /* CPU has VFP */
931 bool has_vfp;
42bea956
CLG
932 /* CPU has 32 VFP registers */
933 bool has_vfp_d32;
97a28b0e
PM
934 /* CPU has Neon */
935 bool has_neon;
ea90db0a
PM
936 /* CPU has M-profile DSP extension */
937 bool has_dsp;
74e75564
PB
938
939 /* CPU has memory protection unit */
940 bool has_mpu;
941 /* PMSAv7 MPU number of supported regions */
942 uint32_t pmsav7_dregion;
761c4642
TR
943 /* PMSAv8 MPU number of supported hyp regions */
944 uint32_t pmsav8r_hdregion;
9901c576
PM
945 /* v8M SAU number of supported regions */
946 uint32_t sau_sregion;
74e75564
PB
947
948 /* PSCI conduit used to invoke PSCI methods
949 * 0 - disabled, 1 - smc, 2 - hvc
950 */
951 uint32_t psci_conduit;
952
38e2a77c
PM
953 /* For v8M, initial value of the Secure VTOR */
954 uint32_t init_svtor;
7cda2149
PM
955 /* For v8M, initial value of the Non-secure VTOR */
956 uint32_t init_nsvtor;
38e2a77c 957
74e75564
PB
958 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
959 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
960 */
961 uint32_t kvm_target;
962
963 /* KVM init features for this CPU */
964 uint32_t kvm_init_features[7];
965
e5ac4200
AJ
966 /* KVM CPU state */
967
968 /* KVM virtual time adjustment */
969 bool kvm_adjvtime;
970 bool kvm_vtime_dirty;
971 uint64_t kvm_vtime;
972
68970d1e
AJ
973 /* KVM steal time */
974 OnOffAuto kvm_steal_time;
975
74e75564
PB
976 /* Uniprocessor system with MP extensions */
977 bool mp_is_up;
978
c4487d76
PM
979 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
980 * and the probe failed (so we need to report the error in realize)
981 */
982 bool host_cpu_probe_failed;
983
f9a69711
AF
984 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
985 * register.
986 */
987 int32_t core_count;
988
74e75564
PB
989 /* The instance init functions for implementation-specific subclasses
990 * set these fields to specify the implementation-dependent values of
991 * various constant registers and reset values of non-constant
992 * registers.
993 * Some of these might become QOM properties eventually.
994 * Field names match the official register names as defined in the
995 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
996 * is used for reset values of non-constant registers; no reset_
997 * prefix means a constant register.
47576b94
RH
998 * Some of these registers are split out into a substructure that
999 * is shared with the translators to control the ISA.
1548a7b2
PM
1000 *
1001 * Note that if you add an ID register to the ARMISARegisters struct
1002 * you need to also update the 32-bit and 64-bit versions of the
1003 * kvm_arm_get_host_cpu_features() function to correctly populate the
1004 * field by reading the value from the KVM vCPU.
74e75564 1005 */
47576b94
RH
1006 struct ARMISARegisters {
1007 uint32_t id_isar0;
1008 uint32_t id_isar1;
1009 uint32_t id_isar2;
1010 uint32_t id_isar3;
1011 uint32_t id_isar4;
1012 uint32_t id_isar5;
1013 uint32_t id_isar6;
10054016
PM
1014 uint32_t id_mmfr0;
1015 uint32_t id_mmfr1;
1016 uint32_t id_mmfr2;
1017 uint32_t id_mmfr3;
1018 uint32_t id_mmfr4;
32957aad 1019 uint32_t id_mmfr5;
8a130a7b
PM
1020 uint32_t id_pfr0;
1021 uint32_t id_pfr1;
1d51bc96 1022 uint32_t id_pfr2;
47576b94
RH
1023 uint32_t mvfr0;
1024 uint32_t mvfr1;
1025 uint32_t mvfr2;
a6179538 1026 uint32_t id_dfr0;
d22c5649 1027 uint32_t id_dfr1;
4426d361 1028 uint32_t dbgdidr;
09754ca8
PM
1029 uint32_t dbgdevid;
1030 uint32_t dbgdevid1;
47576b94
RH
1031 uint64_t id_aa64isar0;
1032 uint64_t id_aa64isar1;
1033 uint64_t id_aa64pfr0;
1034 uint64_t id_aa64pfr1;
3dc91ddb
PM
1035 uint64_t id_aa64mmfr0;
1036 uint64_t id_aa64mmfr1;
64761e10 1037 uint64_t id_aa64mmfr2;
2a609df8
PM
1038 uint64_t id_aa64dfr0;
1039 uint64_t id_aa64dfr1;
2dc10fa2 1040 uint64_t id_aa64zfr0;
414c54d5 1041 uint64_t id_aa64smfr0;
24526bb9 1042 uint64_t reset_pmcr_el0;
47576b94 1043 } isar;
e544f800 1044 uint64_t midr;
74e75564
PB
1045 uint32_t revidr;
1046 uint32_t reset_fpsid;
a5fd319a 1047 uint64_t ctr;
74e75564 1048 uint32_t reset_sctlr;
cad86737
AL
1049 uint64_t pmceid0;
1050 uint64_t pmceid1;
74e75564 1051 uint32_t id_afr0;
74e75564
PB
1052 uint64_t id_aa64afr0;
1053 uint64_t id_aa64afr1;
f6450bcb 1054 uint64_t clidr;
74e75564
PB
1055 uint64_t mp_affinity; /* MP ID without feature bits */
1056 /* The elements of this array are the CCSIDR values for each cache,
1057 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1058 */
957e6155 1059 uint64_t ccsidr[16];
74e75564
PB
1060 uint64_t reset_cbar;
1061 uint32_t reset_auxcr;
1062 bool reset_hivecs;
ef1febe7 1063 uint8_t reset_l0gptsz;
eb94284d
RH
1064
1065 /*
1066 * Intermediate values used during property parsing.
69b2265d 1067 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
1068 */
1069 bool prop_pauth;
1070 bool prop_pauth_impdef;
69b2265d 1071 bool prop_lpa2;
eb94284d 1072
74e75564
PB
1073 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1074 uint32_t dcz_blocksize;
4a7319b7 1075 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 1076
e45868a3
PM
1077 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1078 int gic_num_lrs; /* number of list registers */
1079 int gic_vpribits; /* number of virtual priority bits */
1080 int gic_vprebits; /* number of virtual preemption bits */
39f29e59 1081 int gic_pribits; /* number of physical priority bits */
e45868a3 1082
3a062d57
JB
1083 /* Whether the cfgend input is high (i.e. this CPU should reset into
1084 * big-endian mode). This setting isn't used directly: instead it modifies
1085 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1086 * architecture version.
1087 */
1088 bool cfgend;
1089
b5c53d1b 1090 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1091 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1092
1093 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1094
1095 /* Used to synchronize KVM and QEMU in-kernel device levels */
1096 uint8_t device_irq_level;
adf92eab
RH
1097
1098 /* Used to set the maximum vector length the cpu will support. */
1099 uint32_t sve_max_vq;
0df9142d 1100
b3d52804
RH
1101#ifdef CONFIG_USER_ONLY
1102 /* Used to set the default vector length at process start. */
1103 uint32_t sve_default_vq;
e74c0976 1104 uint32_t sme_default_vq;
b3d52804
RH
1105#endif
1106
7f9e25a6 1107 ARMVQMap sve_vq;
e74c0976 1108 ARMVQMap sme_vq;
7def8754
AJ
1109
1110 /* Generic timer counter frequency, in Hz */
1111 uint64_t gt_cntfrq_hz;
74e75564
PB
1112};
1113
7def8754
AJ
1114unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1115
51e5ef45
MAL
1116void arm_cpu_post_init(Object *obj);
1117
46de5913
IM
1118uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1119
74e75564 1120#ifndef CONFIG_USER_ONLY
8a9358cc 1121extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1122
1123void arm_cpu_do_interrupt(CPUState *cpu);
1124void arm_v7m_cpu_do_interrupt(CPUState *cpu);
74e75564 1125
74e75564
PB
1126hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1127 MemTxAttrs *attrs);
6d2d454a 1128#endif /* !CONFIG_USER_ONLY */
74e75564 1129
a010bdbe 1130int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1131int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1132
200bf5b7
AB
1133/* Returns the dynamically generated XML for the gdb stub.
1134 * Returns a pointer to the XML contents for the specified XML file or NULL
1135 * if the XML name doesn't match the predefined one.
1136 */
1137const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1138
74e75564 1139int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1140 int cpuid, DumpState *s);
74e75564 1141int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1142 int cpuid, DumpState *s);
74e75564
PB
1143
1144#ifdef TARGET_AARCH64
a010bdbe 1145int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1146int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1147void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1148void aarch64_sve_change_el(CPUARMState *env, int old_el,
1149 int new_el, bool el0_a64);
2a8af382 1150void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
538baab2
AJ
1151
1152/*
1153 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1154 * The byte at offset i from the start of the in-memory representation contains
1155 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1156 * lowest offsets are stored in the lowest memory addresses, then that nearly
1157 * matches QEMU's representation, which is to use an array of host-endian
1158 * uint64_t's, where the lower offsets are at the lower indices. To complete
1159 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1160 */
1161static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1162{
e03b5686 1163#if HOST_BIG_ENDIAN
538baab2
AJ
1164 int i;
1165
1166 for (i = 0; i < nr; ++i) {
1167 dst[i] = bswap64(src[i]);
1168 }
1169
1170 return dst;
1171#else
1172 return src;
1173#endif
1174}
1175
0ab5953b
RH
1176#else
1177static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1178static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1179 int n, bool a)
1180{ }
74e75564 1181#endif
778c3a06 1182
ce02049d
GB
1183void aarch64_sync_32_to_64(CPUARMState *env);
1184void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1185
ced31551
RH
1186int fp_exception_el(CPUARMState *env, int cur_el);
1187int sve_exception_el(CPUARMState *env, int cur_el);
6b2ca83e 1188int sme_exception_el(CPUARMState *env, int cur_el);
5ef3cc56
RH
1189
1190/**
6ca54aa9 1191 * sve_vqm1_for_el_sm:
5ef3cc56
RH
1192 * @env: CPUARMState
1193 * @el: exception level
6ca54aa9 1194 * @sm: streaming mode
5ef3cc56 1195 *
6ca54aa9 1196 * Compute the current vector length for @el & @sm, in units of
5ef3cc56 1197 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
6ca54aa9 1198 * If @sm, compute for SVL, otherwise NVL.
5ef3cc56 1199 */
6ca54aa9
RH
1200uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1201
1202/* Likewise, but using @sm = PSTATE.SM. */
5ef3cc56 1203uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
ced31551 1204
3926cc84
AG
1205static inline bool is_a64(CPUARMState *env)
1206{
1207 return env->aarch64;
1208}
1209
5d05b9d4
AL
1210/**
1211 * pmu_op_start/finish
ec7b4ce4
AF
1212 * @env: CPUARMState
1213 *
5d05b9d4
AL
1214 * Convert all PMU counters between their delta form (the typical mode when
1215 * they are enabled) and the guest-visible values. These two calls must
1216 * surround any action which might affect the counters.
ec7b4ce4 1217 */
5d05b9d4
AL
1218void pmu_op_start(CPUARMState *env);
1219void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1220
4e7beb0c
AL
1221/*
1222 * Called when a PMU counter is due to overflow
1223 */
1224void arm_pmu_timer_cb(void *opaque);
1225
033614c4
AL
1226/**
1227 * Functions to register as EL change hooks for PMU mode filtering
1228 */
1229void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1230void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1231
57a4a11b 1232/*
bf8d0969
AL
1233 * pmu_init
1234 * @cpu: ARMCPU
57a4a11b 1235 *
bf8d0969
AL
1236 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1237 * for the current configuration
57a4a11b 1238 */
bf8d0969 1239void pmu_init(ARMCPU *cpu);
57a4a11b 1240
76e3e1bc
PM
1241/* SCTLR bit meanings. Several bits have been reused in newer
1242 * versions of the architecture; in that case we define constants
1243 * for both old and new bit meanings. Code which tests against those
1244 * bits should probably check or otherwise arrange that the CPU
1245 * is the architectural version it expects.
1246 */
1247#define SCTLR_M (1U << 0)
1248#define SCTLR_A (1U << 1)
1249#define SCTLR_C (1U << 2)
1250#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1251#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1252#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1253#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1254#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1255#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1256#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1257#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1258#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
83f624d9 1259#define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */
76e3e1bc
PM
1260#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1261#define SCTLR_ITD (1U << 7) /* v8 onward */
1262#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1263#define SCTLR_SED (1U << 8) /* v8 onward */
1264#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1265#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1266#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1267#define SCTLR_SW (1U << 10) /* v7 */
1268#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1269#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1270#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1271#define SCTLR_I (1U << 12)
b2af69d0
RH
1272#define SCTLR_V (1U << 13) /* AArch32 only */
1273#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1274#define SCTLR_RR (1U << 14) /* up to v7 */
1275#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1276#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1277#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1278#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1279#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1280#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1281#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1282#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1283#define SCTLR_nTWE (1U << 18) /* v8 onward */
1284#define SCTLR_WXN (1U << 19)
1285#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0 1286#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
7cb1e618 1287#define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
b2af69d0
RH
1288#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1289#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1290#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1291#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1292#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1293#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1294#define SCTLR_VE (1U << 24) /* up to v7 */
1295#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1296#define SCTLR_EE (1U << 25)
1297#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1298#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1299#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1300#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1301#define SCTLR_TRE (1U << 28) /* AArch32 only */
1302#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1303#define SCTLR_AFE (1U << 29) /* AArch32 only */
1304#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1305#define SCTLR_TE (1U << 30) /* AArch32 only */
1306#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1307#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1308#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
b2af69d0
RH
1309#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1310#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1311#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1312#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1313#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1314#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1315#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1316#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
ad1e6018
RH
1317#define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1318#define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1319#define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1320#define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1321#define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1322#define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1323#define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1324#define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1325#define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1326#define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1327#define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1328#define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1329#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1330#define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
76e3e1bc 1331
fab8ad39
RH
1332/* Bit definitions for CPACR (AArch32 only) */
1333FIELD(CPACR, CP10, 20, 2)
1334FIELD(CPACR, CP11, 22, 2)
1335FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1336FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1337FIELD(CPACR, ASEDIS, 31, 1)
1338
1339/* Bit definitions for CPACR_EL1 (AArch64 only) */
1340FIELD(CPACR_EL1, ZEN, 16, 2)
1341FIELD(CPACR_EL1, FPEN, 20, 2)
1342FIELD(CPACR_EL1, SMEN, 24, 2)
1343FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1344
1345/* Bit definitions for HCPTR (AArch32 only) */
1346FIELD(HCPTR, TCP10, 10, 1)
1347FIELD(HCPTR, TCP11, 11, 1)
1348FIELD(HCPTR, TASE, 15, 1)
1349FIELD(HCPTR, TTA, 20, 1)
1350FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1351FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1352
1353/* Bit definitions for CPTR_EL2 (AArch64 only) */
1354FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1355FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1356FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1357FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1358FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1359FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1360FIELD(CPTR_EL2, TTA, 28, 1)
1361FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1362FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1363
1364/* Bit definitions for CPTR_EL3 (AArch64 only) */
1365FIELD(CPTR_EL3, EZ, 8, 1)
1366FIELD(CPTR_EL3, TFP, 10, 1)
1367FIELD(CPTR_EL3, ESM, 12, 1)
1368FIELD(CPTR_EL3, TTA, 20, 1)
1369FIELD(CPTR_EL3, TAM, 30, 1)
1370FIELD(CPTR_EL3, TCPAC, 31, 1)
c6f19164 1371
f190bd1d
PM
1372#define MDCR_MTPME (1U << 28)
1373#define MDCR_TDCC (1U << 27)
47b385da 1374#define MDCR_HLP (1U << 26) /* MDCR_EL2 */
0b42f4fa
PM
1375#define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
1376#define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
187f678d
PM
1377#define MDCR_EPMAD (1U << 21)
1378#define MDCR_EDAD (1U << 20)
f190bd1d
PM
1379#define MDCR_TTRF (1U << 19)
1380#define MDCR_STE (1U << 18) /* MDCR_EL3 */
033614c4
AL
1381#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1382#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1383#define MDCR_SDD (1U << 16)
a8d64e73 1384#define MDCR_SPD (3U << 14)
187f678d
PM
1385#define MDCR_TDRA (1U << 11)
1386#define MDCR_TDOSA (1U << 10)
1387#define MDCR_TDA (1U << 9)
1388#define MDCR_TDE (1U << 8)
1389#define MDCR_HPME (1U << 7)
1390#define MDCR_TPM (1U << 6)
1391#define MDCR_TPMCR (1U << 5)
033614c4 1392#define MDCR_HPMN (0x1fU)
187f678d 1393
a8d64e73 1394/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
f190bd1d
PM
1395#define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1396 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1397 MDCR_STE | MDCR_SPME | MDCR_SPD)
a8d64e73 1398
78dbbbe4
PM
1399#define CPSR_M (0x1fU)
1400#define CPSR_T (1U << 5)
1401#define CPSR_F (1U << 6)
1402#define CPSR_I (1U << 7)
1403#define CPSR_A (1U << 8)
1404#define CPSR_E (1U << 9)
1405#define CPSR_IT_2_7 (0xfc00U)
1406#define CPSR_GE (0xfU << 16)
4051e12c 1407#define CPSR_IL (1U << 20)
dc8b1853 1408#define CPSR_DIT (1U << 21)
220f508f 1409#define CPSR_PAN (1U << 22)
f2f68a78 1410#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1411#define CPSR_J (1U << 24)
1412#define CPSR_IT_0_1 (3U << 25)
1413#define CPSR_Q (1U << 27)
1414#define CPSR_V (1U << 28)
1415#define CPSR_C (1U << 29)
1416#define CPSR_Z (1U << 30)
1417#define CPSR_N (1U << 31)
9ee6e8bb 1418#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1419#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1420
1421#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1422#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1423 | CPSR_NZCV)
9ee6e8bb 1424/* Bits writable in user mode. */
268b1b3d 1425#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1426/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1427#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1428
987ab45e
PM
1429/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1430#define XPSR_EXCP 0x1ffU
1431#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1432#define XPSR_IT_2_7 CPSR_IT_2_7
1433#define XPSR_GE CPSR_GE
1434#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1435#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1436#define XPSR_IT_0_1 CPSR_IT_0_1
1437#define XPSR_Q CPSR_Q
1438#define XPSR_V CPSR_V
1439#define XPSR_C CPSR_C
1440#define XPSR_Z CPSR_Z
1441#define XPSR_N CPSR_N
1442#define XPSR_NZCV CPSR_NZCV
1443#define XPSR_IT CPSR_IT
1444
e389be16
FA
1445#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1446#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1447#define TTBCR_PD0 (1U << 4)
1448#define TTBCR_PD1 (1U << 5)
1449#define TTBCR_EPD0 (1U << 7)
1450#define TTBCR_IRGN0 (3U << 8)
1451#define TTBCR_ORGN0 (3U << 10)
1452#define TTBCR_SH0 (3U << 12)
1453#define TTBCR_T1SZ (3U << 16)
1454#define TTBCR_A1 (1U << 22)
1455#define TTBCR_EPD1 (1U << 23)
1456#define TTBCR_IRGN1 (3U << 24)
1457#define TTBCR_ORGN1 (3U << 26)
1458#define TTBCR_SH1 (1U << 28)
1459#define TTBCR_EAE (1U << 31)
1460
f04383e7
PM
1461FIELD(VTCR, T0SZ, 0, 6)
1462FIELD(VTCR, SL0, 6, 2)
1463FIELD(VTCR, IRGN0, 8, 2)
1464FIELD(VTCR, ORGN0, 10, 2)
1465FIELD(VTCR, SH0, 12, 2)
1466FIELD(VTCR, TG0, 14, 2)
1467FIELD(VTCR, PS, 16, 3)
1468FIELD(VTCR, VS, 19, 1)
1469FIELD(VTCR, HA, 21, 1)
1470FIELD(VTCR, HD, 22, 1)
1471FIELD(VTCR, HWU59, 25, 1)
1472FIELD(VTCR, HWU60, 26, 1)
1473FIELD(VTCR, HWU61, 27, 1)
1474FIELD(VTCR, HWU62, 28, 1)
1475FIELD(VTCR, NSW, 29, 1)
1476FIELD(VTCR, NSA, 30, 1)
1477FIELD(VTCR, DS, 32, 1)
1478FIELD(VTCR, SL2, 33, 1)
1479
d356312f
PM
1480/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1481 * Only these are valid when in AArch64 mode; in
1482 * AArch32 mode SPSRs are basically CPSR-format.
1483 */
f502cfc2 1484#define PSTATE_SP (1U)
d356312f
PM
1485#define PSTATE_M (0xFU)
1486#define PSTATE_nRW (1U << 4)
1487#define PSTATE_F (1U << 6)
1488#define PSTATE_I (1U << 7)
1489#define PSTATE_A (1U << 8)
1490#define PSTATE_D (1U << 9)
f6e52eaa 1491#define PSTATE_BTYPE (3U << 10)
f2f68a78 1492#define PSTATE_SSBS (1U << 12)
d356312f
PM
1493#define PSTATE_IL (1U << 20)
1494#define PSTATE_SS (1U << 21)
220f508f 1495#define PSTATE_PAN (1U << 22)
9eeb7a1c 1496#define PSTATE_UAO (1U << 23)
dc8b1853 1497#define PSTATE_DIT (1U << 24)
4b779ceb 1498#define PSTATE_TCO (1U << 25)
d356312f
PM
1499#define PSTATE_V (1U << 28)
1500#define PSTATE_C (1U << 29)
1501#define PSTATE_Z (1U << 30)
1502#define PSTATE_N (1U << 31)
1503#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1504#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1505#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1506/* Mode values for AArch64 */
1507#define PSTATE_MODE_EL3h 13
1508#define PSTATE_MODE_EL3t 12
1509#define PSTATE_MODE_EL2h 9
1510#define PSTATE_MODE_EL2t 8
1511#define PSTATE_MODE_EL1h 5
1512#define PSTATE_MODE_EL1t 4
1513#define PSTATE_MODE_EL0t 0
1514
c37e6ac9
RH
1515/* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1516FIELD(SVCR, SM, 0, 1)
1517FIELD(SVCR, ZA, 1, 1)
1518
de561988
RH
1519/* Fields for SMCR_ELx. */
1520FIELD(SMCR, LEN, 0, 4)
1521FIELD(SMCR, FA64, 31, 1)
1522
de2db7ec
PM
1523/* Write a new value to v7m.exception, thus transitioning into or out
1524 * of Handler mode; this may result in a change of active stack pointer.
1525 */
1526void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1527
9e729b57
EI
1528/* Map EL and handler into a PSTATE_MODE. */
1529static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1530{
1531 return (el << 2) | handler;
1532}
1533
d356312f
PM
1534/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1535 * interprocessing, so we don't attempt to sync with the cpsr state used by
1536 * the 32 bit decoder.
1537 */
1538static inline uint32_t pstate_read(CPUARMState *env)
1539{
1540 int ZF;
1541
1542 ZF = (env->ZF == 0);
1543 return (env->NF & 0x80000000) | (ZF << 30)
1544 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1545 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1546}
1547
1548static inline void pstate_write(CPUARMState *env, uint32_t val)
1549{
1550 env->ZF = (~val) & PSTATE_Z;
1551 env->NF = val;
1552 env->CF = (val >> 29) & 1;
1553 env->VF = (val << 3) & 0x80000000;
4cc35614 1554 env->daif = val & PSTATE_DAIF;
f6e52eaa 1555 env->btype = (val >> 10) & 3;
d356312f
PM
1556 env->pstate = val & ~CACHED_PSTATE_BITS;
1557}
1558
b5ff1b31 1559/* Return the current CPSR value. */
2f4a40e5 1560uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1561
1562typedef enum CPSRWriteType {
1563 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1564 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1565 CPSRWriteRaw = 2,
1566 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1567 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1568} CPSRWriteType;
1569
e784807c
PM
1570/*
1571 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1572 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1573 * correspond to TB flags bits cached in the hflags, unless @write_type
1574 * is CPSRWriteRaw.
1575 */
50866ba5
PM
1576void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1577 CPSRWriteType write_type);
9ee6e8bb
PB
1578
1579/* Return the current xPSR value. */
1580static inline uint32_t xpsr_read(CPUARMState *env)
1581{
1582 int ZF;
6fbe23d5
PB
1583 ZF = (env->ZF == 0);
1584 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1585 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1586 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1587 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1588 | (env->GE << 16)
9ee6e8bb 1589 | env->v7m.exception;
b5ff1b31
FB
1590}
1591
9ee6e8bb
PB
1592/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1593static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1594{
987ab45e
PM
1595 if (mask & XPSR_NZCV) {
1596 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1597 env->NF = val;
9ee6e8bb
PB
1598 env->CF = (val >> 29) & 1;
1599 env->VF = (val << 3) & 0x80000000;
1600 }
987ab45e
PM
1601 if (mask & XPSR_Q) {
1602 env->QF = ((val & XPSR_Q) != 0);
1603 }
f1e2598c
PM
1604 if (mask & XPSR_GE) {
1605 env->GE = (val & XPSR_GE) >> 16;
1606 }
04c9c81b 1607#ifndef CONFIG_USER_ONLY
987ab45e
PM
1608 if (mask & XPSR_T) {
1609 env->thumb = ((val & XPSR_T) != 0);
1610 }
1611 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1612 env->condexec_bits &= ~3;
1613 env->condexec_bits |= (val >> 25) & 3;
1614 }
987ab45e 1615 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1616 env->condexec_bits &= 3;
1617 env->condexec_bits |= (val >> 8) & 0xfc;
1618 }
987ab45e 1619 if (mask & XPSR_EXCP) {
de2db7ec
PM
1620 /* Note that this only happens on exception exit */
1621 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1622 }
04c9c81b 1623#endif
9ee6e8bb
PB
1624}
1625
f149e3e8
EI
1626#define HCR_VM (1ULL << 0)
1627#define HCR_SWIO (1ULL << 1)
1628#define HCR_PTW (1ULL << 2)
1629#define HCR_FMO (1ULL << 3)
1630#define HCR_IMO (1ULL << 4)
1631#define HCR_AMO (1ULL << 5)
1632#define HCR_VF (1ULL << 6)
1633#define HCR_VI (1ULL << 7)
1634#define HCR_VSE (1ULL << 8)
1635#define HCR_FB (1ULL << 9)
1636#define HCR_BSU_MASK (3ULL << 10)
1637#define HCR_DC (1ULL << 12)
1638#define HCR_TWI (1ULL << 13)
1639#define HCR_TWE (1ULL << 14)
1640#define HCR_TID0 (1ULL << 15)
1641#define HCR_TID1 (1ULL << 16)
1642#define HCR_TID2 (1ULL << 17)
1643#define HCR_TID3 (1ULL << 18)
1644#define HCR_TSC (1ULL << 19)
1645#define HCR_TIDCP (1ULL << 20)
1646#define HCR_TACR (1ULL << 21)
1647#define HCR_TSW (1ULL << 22)
099bf53b 1648#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1649#define HCR_TPU (1ULL << 24)
1650#define HCR_TTLB (1ULL << 25)
1651#define HCR_TVM (1ULL << 26)
1652#define HCR_TGE (1ULL << 27)
1653#define HCR_TDZ (1ULL << 28)
1654#define HCR_HCD (1ULL << 29)
1655#define HCR_TRVM (1ULL << 30)
1656#define HCR_RW (1ULL << 31)
1657#define HCR_CD (1ULL << 32)
1658#define HCR_ID (1ULL << 33)
ac656b16 1659#define HCR_E2H (1ULL << 34)
099bf53b
RH
1660#define HCR_TLOR (1ULL << 35)
1661#define HCR_TERR (1ULL << 36)
1662#define HCR_TEA (1ULL << 37)
1663#define HCR_MIOCNCE (1ULL << 38)
aa3cc42c 1664#define HCR_TME (1ULL << 39)
099bf53b
RH
1665#define HCR_APK (1ULL << 40)
1666#define HCR_API (1ULL << 41)
1667#define HCR_NV (1ULL << 42)
1668#define HCR_NV1 (1ULL << 43)
1669#define HCR_AT (1ULL << 44)
1670#define HCR_NV2 (1ULL << 45)
1671#define HCR_FWB (1ULL << 46)
1672#define HCR_FIEN (1ULL << 47)
aa3cc42c 1673#define HCR_GPF (1ULL << 48)
099bf53b
RH
1674#define HCR_TID4 (1ULL << 49)
1675#define HCR_TICAB (1ULL << 50)
e0a38bb3 1676#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1677#define HCR_TOCU (1ULL << 52)
e0a38bb3 1678#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1679#define HCR_TTLBIS (1ULL << 54)
1680#define HCR_TTLBOS (1ULL << 55)
1681#define HCR_ATA (1ULL << 56)
1682#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1683#define HCR_TID5 (1ULL << 58)
1684#define HCR_TWEDEN (1ULL << 59)
1685#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1686
5814d587
RH
1687#define HCRX_ENAS0 (1ULL << 0)
1688#define HCRX_ENALS (1ULL << 1)
1689#define HCRX_ENASR (1ULL << 2)
1690#define HCRX_FNXS (1ULL << 3)
1691#define HCRX_FGTNXS (1ULL << 4)
1692#define HCRX_SMPME (1ULL << 5)
1693#define HCRX_TALLINT (1ULL << 6)
1694#define HCRX_VINMI (1ULL << 7)
1695#define HCRX_VFNMI (1ULL << 8)
1696#define HCRX_CMOW (1ULL << 9)
1697#define HCRX_MCE2 (1ULL << 10)
1698#define HCRX_MSCEN (1ULL << 11)
1699
9861248f
RDC
1700#define HPFAR_NS (1ULL << 63)
1701
06f2adcc
JF
1702#define SCR_NS (1ULL << 0)
1703#define SCR_IRQ (1ULL << 1)
1704#define SCR_FIQ (1ULL << 2)
1705#define SCR_EA (1ULL << 3)
1706#define SCR_FW (1ULL << 4)
1707#define SCR_AW (1ULL << 5)
1708#define SCR_NET (1ULL << 6)
1709#define SCR_SMD (1ULL << 7)
1710#define SCR_HCE (1ULL << 8)
1711#define SCR_SIF (1ULL << 9)
1712#define SCR_RW (1ULL << 10)
1713#define SCR_ST (1ULL << 11)
1714#define SCR_TWI (1ULL << 12)
1715#define SCR_TWE (1ULL << 13)
1716#define SCR_TLOR (1ULL << 14)
1717#define SCR_TERR (1ULL << 15)
1718#define SCR_APK (1ULL << 16)
1719#define SCR_API (1ULL << 17)
1720#define SCR_EEL2 (1ULL << 18)
1721#define SCR_EASE (1ULL << 19)
1722#define SCR_NMEA (1ULL << 20)
1723#define SCR_FIEN (1ULL << 21)
1724#define SCR_ENSCXT (1ULL << 25)
1725#define SCR_ATA (1ULL << 26)
1726#define SCR_FGTEN (1ULL << 27)
1727#define SCR_ECVEN (1ULL << 28)
1728#define SCR_TWEDEN (1ULL << 29)
f527d661
RH
1729#define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1730#define SCR_TME (1ULL << 34)
1731#define SCR_AMVOFFEN (1ULL << 35)
1732#define SCR_ENAS0 (1ULL << 36)
1733#define SCR_ADEN (1ULL << 37)
1734#define SCR_HXEN (1ULL << 38)
1735#define SCR_TRNDR (1ULL << 40)
1736#define SCR_ENTP2 (1ULL << 41)
1737#define SCR_GPF (1ULL << 48)
aa3cc42c 1738#define SCR_NSE (1ULL << 62)
64e0e2de 1739
cc7613bf 1740#define HSTR_TTEE (1 << 16)
8e228c9e 1741#define HSTR_TJDBX (1 << 17)
cc7613bf 1742
01653295
PM
1743/* Return the current FPSCR value. */
1744uint32_t vfp_get_fpscr(CPUARMState *env);
1745void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1746
d81ce0ef
AB
1747/* FPCR, Floating Point Control Register
1748 * FPSR, Floating Poiht Status Register
1749 *
1750 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1751 * FPCR and FPSR. However since they still use non-overlapping bits
1752 * we store the underlying state in fpscr and just mask on read/write.
1753 */
1754#define FPSR_MASK 0xf800009f
0b62159b 1755#define FPCR_MASK 0x07ff9f00
d81ce0ef 1756
a15945d9
PM
1757#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1758#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1759#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1760#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1761#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1762#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1763#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1764#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1765#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1766#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1767#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1768#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1769#define FPCR_V (1 << 28) /* FP overflow flag */
1770#define FPCR_C (1 << 29) /* FP carry flag */
1771#define FPCR_Z (1 << 30) /* FP zero flag */
1772#define FPCR_N (1 << 31) /* FP negative flag */
1773
99c7834f
PM
1774#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1775#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1776#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1777
9542c30b
PM
1778#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1779#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1780
f903fa22
PM
1781static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1782{
1783 return vfp_get_fpscr(env) & FPSR_MASK;
1784}
1785
1786static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1787{
1788 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1789 vfp_set_fpscr(env, new_fpscr);
1790}
1791
1792static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1793{
1794 return vfp_get_fpscr(env) & FPCR_MASK;
1795}
1796
1797static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1798{
1799 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1800 vfp_set_fpscr(env, new_fpscr);
1801}
1802
b5ff1b31
FB
1803enum arm_cpu_mode {
1804 ARM_CPU_MODE_USR = 0x10,
1805 ARM_CPU_MODE_FIQ = 0x11,
1806 ARM_CPU_MODE_IRQ = 0x12,
1807 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1808 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1809 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1810 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1811 ARM_CPU_MODE_UND = 0x1b,
1812 ARM_CPU_MODE_SYS = 0x1f
1813};
1814
40f137e1
PB
1815/* VFP system registers. */
1816#define ARM_VFP_FPSID 0
1817#define ARM_VFP_FPSCR 1
a50c0f51 1818#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1819#define ARM_VFP_MVFR1 6
1820#define ARM_VFP_MVFR0 7
40f137e1
PB
1821#define ARM_VFP_FPEXC 8
1822#define ARM_VFP_FPINST 9
1823#define ARM_VFP_FPINST2 10
9542c30b
PM
1824/* These ones are M-profile only */
1825#define ARM_VFP_FPSCR_NZCVQC 2
1826#define ARM_VFP_VPR 12
1827#define ARM_VFP_P0 13
1828#define ARM_VFP_FPCXT_NS 14
1829#define ARM_VFP_FPCXT_S 15
40f137e1 1830
32a290b8
PM
1831/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1832#define QEMU_VFP_FPSCR_NZCV 0xffff
1833
18c9b560 1834/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1835#define ARM_IWMMXT_wCID 0
1836#define ARM_IWMMXT_wCon 1
1837#define ARM_IWMMXT_wCSSF 2
1838#define ARM_IWMMXT_wCASF 3
1839#define ARM_IWMMXT_wCGR0 8
1840#define ARM_IWMMXT_wCGR1 9
1841#define ARM_IWMMXT_wCGR2 10
1842#define ARM_IWMMXT_wCGR3 11
18c9b560 1843
2c4da50d
PM
1844/* V7M CCR bits */
1845FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1846FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1847FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1848FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1849FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1850FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1851FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1852FIELD(V7M_CCR, DC, 16, 1)
1853FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1854FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1855FIELD(V7M_CCR, LOB, 19, 1)
1856FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1857
24ac0fb1
PM
1858/* V7M SCR bits */
1859FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1860FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1861FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1862FIELD(V7M_SCR, SEVONPEND, 4, 1)
1863
3b2e9344
PM
1864/* V7M AIRCR bits */
1865FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1866FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1867FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1868FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1869FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1870FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1871FIELD(V7M_AIRCR, PRIS, 14, 1)
1872FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1873FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1874
2c4da50d
PM
1875/* V7M CFSR bits for MMFSR */
1876FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1877FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1878FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1879FIELD(V7M_CFSR, MSTKERR, 4, 1)
1880FIELD(V7M_CFSR, MLSPERR, 5, 1)
1881FIELD(V7M_CFSR, MMARVALID, 7, 1)
1882
1883/* V7M CFSR bits for BFSR */
1884FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1885FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1886FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1887FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1888FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1889FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1890FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1891
1892/* V7M CFSR bits for UFSR */
1893FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1894FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1895FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1896FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1897FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1898FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1899FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1900
334e8dad
PM
1901/* V7M CFSR bit masks covering all of the subregister bits */
1902FIELD(V7M_CFSR, MMFSR, 0, 8)
1903FIELD(V7M_CFSR, BFSR, 8, 8)
1904FIELD(V7M_CFSR, UFSR, 16, 16)
1905
2c4da50d
PM
1906/* V7M HFSR bits */
1907FIELD(V7M_HFSR, VECTTBL, 1, 1)
1908FIELD(V7M_HFSR, FORCED, 30, 1)
1909FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1910
1911/* V7M DFSR bits */
1912FIELD(V7M_DFSR, HALTED, 0, 1)
1913FIELD(V7M_DFSR, BKPT, 1, 1)
1914FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1915FIELD(V7M_DFSR, VCATCH, 3, 1)
1916FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1917
bed079da
PM
1918/* V7M SFSR bits */
1919FIELD(V7M_SFSR, INVEP, 0, 1)
1920FIELD(V7M_SFSR, INVIS, 1, 1)
1921FIELD(V7M_SFSR, INVER, 2, 1)
1922FIELD(V7M_SFSR, AUVIOL, 3, 1)
1923FIELD(V7M_SFSR, INVTRAN, 4, 1)
1924FIELD(V7M_SFSR, LSPERR, 5, 1)
1925FIELD(V7M_SFSR, SFARVALID, 6, 1)
1926FIELD(V7M_SFSR, LSERR, 7, 1)
1927
29c483a5
MD
1928/* v7M MPU_CTRL bits */
1929FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1930FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1931FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1932
43bbce7f
PM
1933/* v7M CLIDR bits */
1934FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1935FIELD(V7M_CLIDR, LOUIS, 21, 3)
1936FIELD(V7M_CLIDR, LOC, 24, 3)
1937FIELD(V7M_CLIDR, LOUU, 27, 3)
1938FIELD(V7M_CLIDR, ICB, 30, 2)
1939
1940FIELD(V7M_CSSELR, IND, 0, 1)
1941FIELD(V7M_CSSELR, LEVEL, 1, 3)
1942/* We use the combination of InD and Level to index into cpu->ccsidr[];
1943 * define a mask for this and check that it doesn't permit running off
1944 * the end of the array.
1945 */
1946FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1947
1948/* v7M FPCCR bits */
1949FIELD(V7M_FPCCR, LSPACT, 0, 1)
1950FIELD(V7M_FPCCR, USER, 1, 1)
1951FIELD(V7M_FPCCR, S, 2, 1)
1952FIELD(V7M_FPCCR, THREAD, 3, 1)
1953FIELD(V7M_FPCCR, HFRDY, 4, 1)
1954FIELD(V7M_FPCCR, MMRDY, 5, 1)
1955FIELD(V7M_FPCCR, BFRDY, 6, 1)
1956FIELD(V7M_FPCCR, SFRDY, 7, 1)
1957FIELD(V7M_FPCCR, MONRDY, 8, 1)
1958FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1959FIELD(V7M_FPCCR, UFRDY, 10, 1)
1960FIELD(V7M_FPCCR, RES0, 11, 15)
1961FIELD(V7M_FPCCR, TS, 26, 1)
1962FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1963FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1964FIELD(V7M_FPCCR, LSPENS, 29, 1)
1965FIELD(V7M_FPCCR, LSPEN, 30, 1)
1966FIELD(V7M_FPCCR, ASPEN, 31, 1)
1967/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1968#define R_V7M_FPCCR_BANKED_MASK \
1969 (R_V7M_FPCCR_LSPACT_MASK | \
1970 R_V7M_FPCCR_USER_MASK | \
1971 R_V7M_FPCCR_THREAD_MASK | \
1972 R_V7M_FPCCR_MMRDY_MASK | \
1973 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1974 R_V7M_FPCCR_UFRDY_MASK | \
1975 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1976
7c3d47da
PM
1977/* v7M VPR bits */
1978FIELD(V7M_VPR, P0, 0, 16)
1979FIELD(V7M_VPR, MASK01, 16, 4)
1980FIELD(V7M_VPR, MASK23, 20, 4)
1981
a62e62af
RH
1982/*
1983 * System register ID fields.
1984 */
2a14526a
LL
1985FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1986FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1987FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1988FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1989FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1990FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1991FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1992FIELD(CLIDR_EL1, LOUIS, 21, 3)
1993FIELD(CLIDR_EL1, LOC, 24, 3)
1994FIELD(CLIDR_EL1, LOUU, 27, 3)
1995FIELD(CLIDR_EL1, ICB, 30, 3)
1996
1997/* When FEAT_CCIDX is implemented */
1998FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1999FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2000FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2001
2002/* When FEAT_CCIDX is not implemented */
2003FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2004FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2005FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2006
2007FIELD(CTR_EL0, IMINLINE, 0, 4)
2008FIELD(CTR_EL0, L1IP, 14, 2)
2009FIELD(CTR_EL0, DMINLINE, 16, 4)
2010FIELD(CTR_EL0, ERG, 20, 4)
2011FIELD(CTR_EL0, CWG, 24, 4)
2012FIELD(CTR_EL0, IDC, 28, 1)
2013FIELD(CTR_EL0, DIC, 29, 1)
2014FIELD(CTR_EL0, TMINLINE, 32, 6)
2015
2bd5f41c
AB
2016FIELD(MIDR_EL1, REVISION, 0, 4)
2017FIELD(MIDR_EL1, PARTNUM, 4, 12)
2018FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2019FIELD(MIDR_EL1, VARIANT, 20, 4)
2020FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2021
a62e62af
RH
2022FIELD(ID_ISAR0, SWAP, 0, 4)
2023FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2024FIELD(ID_ISAR0, BITFIELD, 8, 4)
2025FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2026FIELD(ID_ISAR0, COPROC, 16, 4)
2027FIELD(ID_ISAR0, DEBUG, 20, 4)
2028FIELD(ID_ISAR0, DIVIDE, 24, 4)
2029
2030FIELD(ID_ISAR1, ENDIAN, 0, 4)
2031FIELD(ID_ISAR1, EXCEPT, 4, 4)
2032FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2033FIELD(ID_ISAR1, EXTEND, 12, 4)
2034FIELD(ID_ISAR1, IFTHEN, 16, 4)
2035FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2036FIELD(ID_ISAR1, INTERWORK, 24, 4)
2037FIELD(ID_ISAR1, JAZELLE, 28, 4)
2038
2039FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2040FIELD(ID_ISAR2, MEMHINT, 4, 4)
2041FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2042FIELD(ID_ISAR2, MULT, 12, 4)
2043FIELD(ID_ISAR2, MULTS, 16, 4)
2044FIELD(ID_ISAR2, MULTU, 20, 4)
2045FIELD(ID_ISAR2, PSR_AR, 24, 4)
2046FIELD(ID_ISAR2, REVERSAL, 28, 4)
2047
2048FIELD(ID_ISAR3, SATURATE, 0, 4)
2049FIELD(ID_ISAR3, SIMD, 4, 4)
2050FIELD(ID_ISAR3, SVC, 8, 4)
2051FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2052FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2053FIELD(ID_ISAR3, T32COPY, 20, 4)
2054FIELD(ID_ISAR3, TRUENOP, 24, 4)
2055FIELD(ID_ISAR3, T32EE, 28, 4)
2056
2057FIELD(ID_ISAR4, UNPRIV, 0, 4)
2058FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2059FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2060FIELD(ID_ISAR4, SMC, 12, 4)
2061FIELD(ID_ISAR4, BARRIER, 16, 4)
2062FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2063FIELD(ID_ISAR4, PSR_M, 24, 4)
2064FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2065
2066FIELD(ID_ISAR5, SEVL, 0, 4)
2067FIELD(ID_ISAR5, AES, 4, 4)
2068FIELD(ID_ISAR5, SHA1, 8, 4)
2069FIELD(ID_ISAR5, SHA2, 12, 4)
2070FIELD(ID_ISAR5, CRC32, 16, 4)
2071FIELD(ID_ISAR5, RDM, 24, 4)
2072FIELD(ID_ISAR5, VCMA, 28, 4)
2073
2074FIELD(ID_ISAR6, JSCVT, 0, 4)
2075FIELD(ID_ISAR6, DP, 4, 4)
2076FIELD(ID_ISAR6, FHM, 8, 4)
2077FIELD(ID_ISAR6, SB, 12, 4)
2078FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
2079FIELD(ID_ISAR6, BF16, 20, 4)
2080FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 2081
0ae0326b
PM
2082FIELD(ID_MMFR0, VMSA, 0, 4)
2083FIELD(ID_MMFR0, PMSA, 4, 4)
2084FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2085FIELD(ID_MMFR0, SHARELVL, 12, 4)
2086FIELD(ID_MMFR0, TCM, 16, 4)
2087FIELD(ID_MMFR0, AUXREG, 20, 4)
2088FIELD(ID_MMFR0, FCSE, 24, 4)
2089FIELD(ID_MMFR0, INNERSHR, 28, 4)
2090
bd78b6be
LL
2091FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2092FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2093FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2094FIELD(ID_MMFR1, L1UNISW, 12, 4)
2095FIELD(ID_MMFR1, L1HVD, 16, 4)
2096FIELD(ID_MMFR1, L1UNI, 20, 4)
2097FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2098FIELD(ID_MMFR1, BPRED, 28, 4)
2099
2100FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2101FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2102FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2103FIELD(ID_MMFR2, HVDTLB, 12, 4)
2104FIELD(ID_MMFR2, UNITLB, 16, 4)
2105FIELD(ID_MMFR2, MEMBARR, 20, 4)
2106FIELD(ID_MMFR2, WFISTALL, 24, 4)
2107FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2108
3d6ad6bb
RH
2109FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2110FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2111FIELD(ID_MMFR3, BPMAINT, 8, 4)
2112FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2113FIELD(ID_MMFR3, PAN, 16, 4)
2114FIELD(ID_MMFR3, COHWALK, 20, 4)
2115FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2116FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2117
ab638a32
RH
2118FIELD(ID_MMFR4, SPECSEI, 0, 4)
2119FIELD(ID_MMFR4, AC2, 4, 4)
2120FIELD(ID_MMFR4, XNX, 8, 4)
2121FIELD(ID_MMFR4, CNP, 12, 4)
2122FIELD(ID_MMFR4, HPDS, 16, 4)
2123FIELD(ID_MMFR4, LSM, 20, 4)
2124FIELD(ID_MMFR4, CCIDX, 24, 4)
2125FIELD(ID_MMFR4, EVT, 28, 4)
2126
bd78b6be 2127FIELD(ID_MMFR5, ETS, 0, 4)
c42fb26b 2128FIELD(ID_MMFR5, NTLBPA, 4, 4)
bd78b6be 2129
46f4976f
PM
2130FIELD(ID_PFR0, STATE0, 0, 4)
2131FIELD(ID_PFR0, STATE1, 4, 4)
2132FIELD(ID_PFR0, STATE2, 8, 4)
2133FIELD(ID_PFR0, STATE3, 12, 4)
2134FIELD(ID_PFR0, CSV2, 16, 4)
2135FIELD(ID_PFR0, AMU, 20, 4)
2136FIELD(ID_PFR0, DIT, 24, 4)
2137FIELD(ID_PFR0, RAS, 28, 4)
2138
dfc523a8
PM
2139FIELD(ID_PFR1, PROGMOD, 0, 4)
2140FIELD(ID_PFR1, SECURITY, 4, 4)
2141FIELD(ID_PFR1, MPROGMOD, 8, 4)
2142FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2143FIELD(ID_PFR1, GENTIMER, 16, 4)
2144FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2145FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2146FIELD(ID_PFR1, GIC, 28, 4)
2147
bd78b6be
LL
2148FIELD(ID_PFR2, CSV3, 0, 4)
2149FIELD(ID_PFR2, SSBS, 4, 4)
2150FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2151
a62e62af
RH
2152FIELD(ID_AA64ISAR0, AES, 4, 4)
2153FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2154FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2155FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2156FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2157FIELD(ID_AA64ISAR0, RDM, 28, 4)
2158FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2159FIELD(ID_AA64ISAR0, SM3, 36, 4)
2160FIELD(ID_AA64ISAR0, SM4, 40, 4)
2161FIELD(ID_AA64ISAR0, DP, 44, 4)
2162FIELD(ID_AA64ISAR0, FHM, 48, 4)
2163FIELD(ID_AA64ISAR0, TS, 52, 4)
2164FIELD(ID_AA64ISAR0, TLB, 56, 4)
2165FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2166
2167FIELD(ID_AA64ISAR1, DPB, 0, 4)
2168FIELD(ID_AA64ISAR1, APA, 4, 4)
2169FIELD(ID_AA64ISAR1, API, 8, 4)
2170FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2171FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2172FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2173FIELD(ID_AA64ISAR1, GPA, 24, 4)
2174FIELD(ID_AA64ISAR1, GPI, 28, 4)
2175FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2176FIELD(ID_AA64ISAR1, SB, 36, 4)
2177FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
2178FIELD(ID_AA64ISAR1, BF16, 44, 4)
2179FIELD(ID_AA64ISAR1, DGH, 48, 4)
2180FIELD(ID_AA64ISAR1, I8MM, 52, 4)
c42fb26b
RH
2181FIELD(ID_AA64ISAR1, XS, 56, 4)
2182FIELD(ID_AA64ISAR1, LS64, 60, 4)
2183
2184FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2185FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2186FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2187FIELD(ID_AA64ISAR2, APA3, 12, 4)
2188FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2189FIELD(ID_AA64ISAR2, BC, 20, 4)
2190FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
a62e62af 2191
cd208a1c
RH
2192FIELD(ID_AA64PFR0, EL0, 0, 4)
2193FIELD(ID_AA64PFR0, EL1, 4, 4)
2194FIELD(ID_AA64PFR0, EL2, 8, 4)
2195FIELD(ID_AA64PFR0, EL3, 12, 4)
2196FIELD(ID_AA64PFR0, FP, 16, 4)
2197FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2198FIELD(ID_AA64PFR0, GIC, 24, 4)
2199FIELD(ID_AA64PFR0, RAS, 28, 4)
2200FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
2201FIELD(ID_AA64PFR0, SEL2, 36, 4)
2202FIELD(ID_AA64PFR0, MPAM, 40, 4)
2203FIELD(ID_AA64PFR0, AMU, 44, 4)
2204FIELD(ID_AA64PFR0, DIT, 48, 4)
b9f335c2 2205FIELD(ID_AA64PFR0, RME, 52, 4)
00a92832
LL
2206FIELD(ID_AA64PFR0, CSV2, 56, 4)
2207FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2208
be53b6f4 2209FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2210FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2211FIELD(ID_AA64PFR1, MTE, 8, 4)
2212FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2213FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
c42fb26b
RH
2214FIELD(ID_AA64PFR1, SME, 24, 4)
2215FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2216FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2217FIELD(ID_AA64PFR1, NMI, 36, 4)
be53b6f4 2218
3dc91ddb
PM
2219FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2220FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2221FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2222FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2223FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2224FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2225FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2226FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2227FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2228FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2229FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2230FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2231FIELD(ID_AA64MMFR0, FGT, 56, 4)
2232FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2233
2234FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2235FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2236FIELD(ID_AA64MMFR1, VH, 8, 4)
2237FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2238FIELD(ID_AA64MMFR1, LO, 16, 4)
2239FIELD(ID_AA64MMFR1, PAN, 20, 4)
2240FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2241FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2242FIELD(ID_AA64MMFR1, TWED, 32, 4)
2243FIELD(ID_AA64MMFR1, ETS, 36, 4)
c42fb26b
RH
2244FIELD(ID_AA64MMFR1, HCX, 40, 4)
2245FIELD(ID_AA64MMFR1, AFP, 44, 4)
2246FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2247FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2248FIELD(ID_AA64MMFR1, CMOW, 56, 4)
3dc91ddb 2249
64761e10
RH
2250FIELD(ID_AA64MMFR2, CNP, 0, 4)
2251FIELD(ID_AA64MMFR2, UAO, 4, 4)
2252FIELD(ID_AA64MMFR2, LSM, 8, 4)
2253FIELD(ID_AA64MMFR2, IESB, 12, 4)
2254FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2255FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2256FIELD(ID_AA64MMFR2, NV, 24, 4)
2257FIELD(ID_AA64MMFR2, ST, 28, 4)
2258FIELD(ID_AA64MMFR2, AT, 32, 4)
2259FIELD(ID_AA64MMFR2, IDS, 36, 4)
2260FIELD(ID_AA64MMFR2, FWB, 40, 4)
2261FIELD(ID_AA64MMFR2, TTL, 48, 4)
2262FIELD(ID_AA64MMFR2, BBM, 52, 4)
2263FIELD(ID_AA64MMFR2, EVT, 56, 4)
2264FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2265
ceb2744b
PM
2266FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2267FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2268FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2269FIELD(ID_AA64DFR0, BRPS, 12, 4)
2270FIELD(ID_AA64DFR0, WRPS, 20, 4)
2271FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2272FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2273FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2274FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
c42fb26b 2275FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
00a92832 2276FIELD(ID_AA64DFR0, MTPMU, 48, 4)
c42fb26b
RH
2277FIELD(ID_AA64DFR0, BRBE, 52, 4)
2278FIELD(ID_AA64DFR0, HPMN0, 60, 4)
ceb2744b 2279
2dc10fa2
RH
2280FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2281FIELD(ID_AA64ZFR0, AES, 4, 4)
2282FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2283FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2284FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2285FIELD(ID_AA64ZFR0, SM4, 40, 4)
2286FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2287FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2288FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2289
414c54d5
RH
2290FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2291FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2292FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2293FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2294FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2295FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2296FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2297FIELD(ID_AA64SMFR0, FA64, 63, 1)
2298
beceb99c
AL
2299FIELD(ID_DFR0, COPDBG, 0, 4)
2300FIELD(ID_DFR0, COPSDBG, 4, 4)
2301FIELD(ID_DFR0, MMAPDBG, 8, 4)
2302FIELD(ID_DFR0, COPTRC, 12, 4)
2303FIELD(ID_DFR0, MMAPTRC, 16, 4)
2304FIELD(ID_DFR0, MPROFDBG, 20, 4)
2305FIELD(ID_DFR0, PERFMON, 24, 4)
2306FIELD(ID_DFR0, TRACEFILT, 28, 4)
2307
bd78b6be 2308FIELD(ID_DFR1, MTPMU, 0, 4)
c42fb26b 2309FIELD(ID_DFR1, HPMN0, 4, 4)
bd78b6be 2310
88ce6c6e
PM
2311FIELD(DBGDIDR, SE_IMP, 12, 1)
2312FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2313FIELD(DBGDIDR, VERSION, 16, 4)
2314FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2315FIELD(DBGDIDR, BRPS, 24, 4)
2316FIELD(DBGDIDR, WRPS, 28, 4)
2317
f94a6df5
PM
2318FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2319FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2320FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2321FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2322FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2323FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2324FIELD(DBGDEVID, AUXREGS, 24, 4)
2325FIELD(DBGDEVID, CIDMASK, 28, 4)
2326
602f6e42
PM
2327FIELD(MVFR0, SIMDREG, 0, 4)
2328FIELD(MVFR0, FPSP, 4, 4)
2329FIELD(MVFR0, FPDP, 8, 4)
2330FIELD(MVFR0, FPTRAP, 12, 4)
2331FIELD(MVFR0, FPDIVIDE, 16, 4)
2332FIELD(MVFR0, FPSQRT, 20, 4)
2333FIELD(MVFR0, FPSHVEC, 24, 4)
2334FIELD(MVFR0, FPROUND, 28, 4)
2335
2336FIELD(MVFR1, FPFTZ, 0, 4)
2337FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2338FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2339FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2340FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2341FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2342FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2343FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2344FIELD(MVFR1, FPHP, 24, 4)
2345FIELD(MVFR1, SIMDFMAC, 28, 4)
2346
2347FIELD(MVFR2, SIMDMISC, 0, 4)
2348FIELD(MVFR2, FPMISC, 4, 4)
2349
ef1febe7
RH
2350FIELD(GPCCR, PPS, 0, 3)
2351FIELD(GPCCR, IRGN, 8, 2)
2352FIELD(GPCCR, ORGN, 10, 2)
2353FIELD(GPCCR, SH, 12, 2)
2354FIELD(GPCCR, PGS, 14, 2)
2355FIELD(GPCCR, GPC, 16, 1)
2356FIELD(GPCCR, GPCP, 17, 1)
2357FIELD(GPCCR, L0GPTSZ, 20, 4)
2358
2359FIELD(MFAR, FPA, 12, 40)
2360FIELD(MFAR, NSE, 62, 1)
2361FIELD(MFAR, NS, 63, 1)
2362
43bbce7f
PM
2363QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2364
ce854d7c
BC
2365/* If adding a feature bit which corresponds to a Linux ELF
2366 * HWCAP bit, remember to update the feature-bit-to-hwcap
2367 * mapping in linux-user/elfload.c:get_elf_hwcap().
2368 */
40f137e1 2369enum arm_features {
c1713132
AZ
2370 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2371 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2372 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2373 ARM_FEATURE_V6,
2374 ARM_FEATURE_V6K,
2375 ARM_FEATURE_V7,
2376 ARM_FEATURE_THUMB2,
452a0955 2377 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2378 ARM_FEATURE_NEON,
9ee6e8bb 2379 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2380 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2381 ARM_FEATURE_THUMB2EE,
be5e7a76 2382 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2383 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2384 ARM_FEATURE_V4T,
2385 ARM_FEATURE_V5,
5bc95aa2 2386 ARM_FEATURE_STRONGARM,
906879a9 2387 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2388 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2389 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2390 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2391 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2392 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2393 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2394 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2395 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2396 ARM_FEATURE_V8,
3926cc84 2397 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2398 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2399 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2400 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2401 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2402 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2403 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2404 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2405 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2406 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2407 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2408};
2409
2410static inline int arm_feature(CPUARMState *env, int feature)
2411{
918f5dca 2412 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2413}
2414
0df9142d
AJ
2415void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2416
fcc7404e 2417/*
5d28ac0c
RH
2418 * ARM v9 security states.
2419 * The ordering of the enumeration corresponds to the low 2 bits
2420 * of the GPI value, and (except for Root) the concat of NSE:NS.
2421 */
2422
2423typedef enum ARMSecuritySpace {
2424 ARMSS_Secure = 0,
2425 ARMSS_NonSecure = 1,
2426 ARMSS_Root = 2,
2427 ARMSS_Realm = 3,
2428} ARMSecuritySpace;
2429
2430/* Return true if @space is secure, in the pre-v9 sense. */
2431static inline bool arm_space_is_secure(ARMSecuritySpace space)
2432{
2433 return space == ARMSS_Secure || space == ARMSS_Root;
2434}
2435
2436/* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2437static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2438{
2439 return secure ? ARMSS_Secure : ARMSS_NonSecure;
2440}
2441
2442#if !defined(CONFIG_USER_ONLY)
2443/**
2444 * arm_security_space_below_el3:
2445 * @env: cpu context
2446 *
2447 * Return the security space of exception levels below EL3, following
2448 * an exception return to those levels. Unlike arm_security_space,
2449 * this doesn't care about the current EL.
2450 */
2451ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2452
2453/**
2454 * arm_is_secure_below_el3:
2455 * @env: cpu context
2456 *
fcc7404e 2457 * Return true if exception levels below EL3 are in secure state,
5d28ac0c 2458 * or would be following an exception return to those levels.
19e0fefa
FA
2459 */
2460static inline bool arm_is_secure_below_el3(CPUARMState *env)
2461{
5d28ac0c
RH
2462 ARMSecuritySpace ss = arm_security_space_below_el3(env);
2463 return ss == ARMSS_Secure;
19e0fefa
FA
2464}
2465
71205876
PM
2466/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2467static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa 2468{
fcc7404e 2469 assert(!arm_feature(env, ARM_FEATURE_M));
19e0fefa
FA
2470 if (arm_feature(env, ARM_FEATURE_EL3)) {
2471 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2472 /* CPU currently in AArch64 state and EL3 */
2473 return true;
2474 } else if (!is_a64(env) &&
2475 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2476 /* CPU currently in AArch32 state and monitor mode */
2477 return true;
2478 }
2479 }
71205876
PM
2480 return false;
2481}
2482
5d28ac0c
RH
2483/**
2484 * arm_security_space:
2485 * @env: cpu context
2486 *
2487 * Return the current security space of the cpu.
2488 */
2489ARMSecuritySpace arm_security_space(CPUARMState *env);
2490
2491/**
2492 * arm_is_secure:
2493 * @env: cpu context
2494 *
2495 * Return true if the processor is in secure state.
2496 */
71205876
PM
2497static inline bool arm_is_secure(CPUARMState *env)
2498{
5d28ac0c 2499 return arm_space_is_secure(arm_security_space(env));
19e0fefa
FA
2500}
2501
f3ee5160
RDC
2502/*
2503 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2504 * This corresponds to the pseudocode EL2Enabled()
2505 */
b74c0443
RH
2506static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2507{
2508 return arm_feature(env, ARM_FEATURE_EL2)
2509 && (!secure || (env->cp15.scr_el3 & SCR_EEL2));
2510}
2511
f3ee5160
RDC
2512static inline bool arm_is_el2_enabled(CPUARMState *env)
2513{
b74c0443 2514 return arm_is_el2_enabled_secstate(env, arm_is_secure_below_el3(env));
f3ee5160
RDC
2515}
2516
19e0fefa 2517#else
5d28ac0c
RH
2518static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2519{
2520 return ARMSS_NonSecure;
2521}
2522
19e0fefa
FA
2523static inline bool arm_is_secure_below_el3(CPUARMState *env)
2524{
2525 return false;
2526}
2527
5d28ac0c
RH
2528static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2529{
2530 return ARMSS_NonSecure;
2531}
2532
19e0fefa
FA
2533static inline bool arm_is_secure(CPUARMState *env)
2534{
2535 return false;
2536}
f3ee5160 2537
b74c0443
RH
2538static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2539{
2540 return false;
2541}
2542
f3ee5160
RDC
2543static inline bool arm_is_el2_enabled(CPUARMState *env)
2544{
2545 return false;
2546}
19e0fefa
FA
2547#endif
2548
f7778444
RH
2549/**
2550 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2551 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2552 * "for all purposes other than a direct read or write access of HCR_EL2."
2553 * Not included here is HCR_RW.
2554 */
b74c0443 2555uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure);
f7778444 2556uint64_t arm_hcr_el2_eff(CPUARMState *env);
5814d587 2557uint64_t arm_hcrx_el2_eff(CPUARMState *env);
f7778444 2558
1f79ee32
PM
2559/* Return true if the specified exception level is running in AArch64 state. */
2560static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2561{
446c81ab
PM
2562 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2563 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2564 */
446c81ab
PM
2565 assert(el >= 1 && el <= 3);
2566 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2567
446c81ab
PM
2568 /* The highest exception level is always at the maximum supported
2569 * register width, and then lower levels have a register width controlled
2570 * by bits in the SCR or HCR registers.
1f79ee32 2571 */
446c81ab
PM
2572 if (el == 3) {
2573 return aa64;
2574 }
2575
926c1b97
RDC
2576 if (arm_feature(env, ARM_FEATURE_EL3) &&
2577 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2578 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2579 }
2580
2581 if (el == 2) {
2582 return aa64;
2583 }
2584
e6ef0169 2585 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2586 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2587 }
2588
2589 return aa64;
1f79ee32
PM
2590}
2591
3f342b9e
SF
2592/* Function for determing whether guest cp register reads and writes should
2593 * access the secure or non-secure bank of a cp register. When EL3 is
2594 * operating in AArch32 state, the NS-bit determines whether the secure
2595 * instance of a cp register should be used. When EL3 is AArch64 (or if
2596 * it doesn't exist at all) then there is no register banking, and all
2597 * accesses are to the non-secure version.
2598 */
2599static inline bool access_secure_reg(CPUARMState *env)
2600{
2601 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2602 !arm_el_is_aa64(env, 3) &&
2603 !(env->cp15.scr_el3 & SCR_NS));
2604
2605 return ret;
2606}
2607
ea30a4b8
FA
2608/* Macros for accessing a specified CP register bank */
2609#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2610 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2611
2612#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2613 do { \
2614 if (_secure) { \
2615 (_env)->cp15._regname##_s = (_val); \
2616 } else { \
2617 (_env)->cp15._regname##_ns = (_val); \
2618 } \
2619 } while (0)
2620
2621/* Macros for automatically accessing a specific CP register bank depending on
2622 * the current secure state of the system. These macros are not intended for
2623 * supporting instruction translation reads/writes as these are dependent
2624 * solely on the SCR.NS bit and not the mode.
2625 */
2626#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2627 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2628 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2629
2630#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2631 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2632 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2633 (_val))
2634
0442428a 2635void arm_cpu_list(void);
012a906b
GB
2636uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2637 uint32_t cur_el, bool secure);
40f137e1 2638
75502672
PM
2639/* Return the highest implemented Exception Level */
2640static inline int arm_highest_el(CPUARMState *env)
2641{
2642 if (arm_feature(env, ARM_FEATURE_EL3)) {
2643 return 3;
2644 }
2645 if (arm_feature(env, ARM_FEATURE_EL2)) {
2646 return 2;
2647 }
2648 return 1;
2649}
2650
15b3f556
PM
2651/* Return true if a v7M CPU is in Handler mode */
2652static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2653{
2654 return env->v7m.exception != 0;
2655}
2656
dcbff19b
GB
2657/* Return the current Exception Level (as per ARMv8; note that this differs
2658 * from the ARMv7 Privilege Level).
2659 */
2660static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2661{
6d54ed3c 2662 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2663 return arm_v7m_is_handler_mode(env) ||
2664 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2665 }
2666
592125f8 2667 if (is_a64(env)) {
f5a0a5a5
PM
2668 return extract32(env->pstate, 2, 2);
2669 }
2670
592125f8
FA
2671 switch (env->uncached_cpsr & 0x1f) {
2672 case ARM_CPU_MODE_USR:
4b6a83fb 2673 return 0;
592125f8
FA
2674 case ARM_CPU_MODE_HYP:
2675 return 2;
2676 case ARM_CPU_MODE_MON:
2677 return 3;
2678 default:
2679 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2680 /* If EL3 is 32-bit then all secure privileged modes run in
2681 * EL3
2682 */
2683 return 3;
2684 }
2685
2686 return 1;
4b6a83fb 2687 }
4b6a83fb
PM
2688}
2689
721fae12
PM
2690/**
2691 * write_list_to_cpustate
2692 * @cpu: ARMCPU
2693 *
2694 * For each register listed in the ARMCPU cpreg_indexes list, write
2695 * its value from the cpreg_values list into the ARMCPUState structure.
2696 * This updates TCG's working data structures from KVM data or
2697 * from incoming migration state.
2698 *
2699 * Returns: true if all register values were updated correctly,
2700 * false if some register was unknown or could not be written.
2701 * Note that we do not stop early on failure -- we will attempt
2702 * writing all registers in the list.
2703 */
2704bool write_list_to_cpustate(ARMCPU *cpu);
2705
2706/**
2707 * write_cpustate_to_list:
2708 * @cpu: ARMCPU
b698e4ee 2709 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2710 *
2711 * For each register listed in the ARMCPU cpreg_indexes list, write
2712 * its value from the ARMCPUState structure into the cpreg_values list.
2713 * This is used to copy info from TCG's working data structures into
2714 * KVM or for outbound migration.
2715 *
b698e4ee
PM
2716 * @kvm_sync is true if we are doing this in order to sync the
2717 * register state back to KVM. In this case we will only update
2718 * values in the list if the previous list->cpustate sync actually
2719 * successfully wrote the CPU state. Otherwise we will keep the value
2720 * that is in the list.
2721 *
721fae12
PM
2722 * Returns: true if all register values were read correctly,
2723 * false if some register was unknown or could not be read.
2724 * Note that we do not stop early on failure -- we will attempt
2725 * reading all registers in the list.
2726 */
b698e4ee 2727bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2728
9ee6e8bb
PB
2729#define ARM_CPUID_TI915T 0x54029152
2730#define ARM_CPUID_TI925T 0x54029252
40f137e1 2731
ba1ba5cc
IM
2732#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2733#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2734#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2735
585df85e
PM
2736#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2737
c732abe2 2738#define cpu_list arm_cpu_list
9467d44c 2739
c1e37810
PM
2740/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2741 *
2742 * If EL3 is 64-bit:
2743 * + NonSecure EL1 & 0 stage 1
2744 * + NonSecure EL1 & 0 stage 2
2745 * + NonSecure EL2
b9f6033c
RH
2746 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2747 * + Secure EL1 & 0
c1e37810
PM
2748 * + Secure EL3
2749 * If EL3 is 32-bit:
2750 * + NonSecure PL1 & 0 stage 1
2751 * + NonSecure PL1 & 0 stage 2
2752 * + NonSecure PL2
b9f6033c
RH
2753 * + Secure PL0
2754 * + Secure PL1
c1e37810
PM
2755 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2756 *
2757 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2758 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2759 * because they may differ in access permissions even if the VA->PA map is
2760 * the same
c1e37810
PM
2761 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2762 * translation, which means that we have one mmu_idx that deals with two
2763 * concatenated translation regimes [this sort of combined s1+2 TLB is
2764 * architecturally permitted]
2765 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2766 * handling via the TLB. The only way to do a stage 1 translation without
2767 * the immediate stage 2 translation is via the ATS or AT system insns,
2768 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2769 * The only use of stage 2 translations is either as part of an s1+2
2770 * lookup or when loading the descriptors during a stage 1 page table walk,
2771 * and in both those cases we don't use the TLB.
c1e37810
PM
2772 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2773 * translation regimes, because they map reasonably well to each other
2774 * and they can't both be active at the same time.
b9f6033c
RH
2775 * 5. we want to be able to use the TLB for accesses done as part of a
2776 * stage1 page table walk, rather than having to walk the stage2 page
2777 * table over and over.
452ef8cb
RH
2778 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2779 * Never (PAN) bit within PSTATE.
d902ae75
RH
2780 * 7. we fold together the secure and non-secure regimes for A-profile,
2781 * because there are no banked system registers for aarch64, so the
2782 * process of switching between secure and non-secure is
2783 * already heavyweight.
c1e37810 2784 *
b9f6033c
RH
2785 * This gives us the following list of cases:
2786 *
d902ae75
RH
2787 * EL0 EL1&0 stage 1+2 (aka NS PL0)
2788 * EL1 EL1&0 stage 1+2 (aka NS PL1)
2789 * EL1 EL1&0 stage 1+2 +PAN
2790 * EL0 EL2&0
2791 * EL2 EL2&0
2792 * EL2 EL2&0 +PAN
2793 * EL2 (aka NS PL2)
2794 * EL3 (aka S PL1)
a1ce3084 2795 * Physical (NS & S)
575a94af 2796 * Stage2 (NS & S)
c1e37810 2797 *
575a94af 2798 * for a total of 12 different mmu_idx.
c1e37810 2799 *
3bef7012 2800 * R profile CPUs have an MPU, but can use the same set of MMU indexes
d902ae75
RH
2801 * as A profile. They only need to distinguish EL0 and EL1 (and
2802 * EL2 if we ever model a Cortex-R52).
3bef7012
PM
2803 *
2804 * M profile CPUs are rather different as they do not have a true MMU.
2805 * They have the following different MMU indexes:
2806 * User
2807 * Privileged
62593718
PM
2808 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2809 * Privileged, execution priority negative (ditto)
66787c78
PM
2810 * If the CPU supports the v8M Security Extension then there are also:
2811 * Secure User
2812 * Secure Privileged
62593718
PM
2813 * Secure User, execution priority negative
2814 * Secure Privileged, execution priority negative
3bef7012 2815 *
8bd5c820
PM
2816 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2817 * are not quite the same -- different CPU types (most notably M profile
2818 * vs A/R profile) would like to use MMU indexes with different semantics,
2819 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2820 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2821 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2822 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2823 * the same for any particular CPU.
2824 * Variables of type ARMMUIdx are always full values, and the core
2825 * index values are in variables of type 'int'.
2826 *
c1e37810
PM
2827 * Our enumeration includes at the end some entries which are not "true"
2828 * mmu_idx values in that they don't have corresponding TLBs and are only
2829 * valid for doing slow path page table walks.
2830 *
2831 * The constant names here are patterned after the general style of the names
2832 * of the AT/ATS operations.
2833 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2834 * For M profile we arrange them to have a bit for priv, a bit for negpri
2835 * and a bit for secure.
c1e37810 2836 */
b9f6033c
RH
2837#define ARM_MMU_IDX_A 0x10 /* A profile */
2838#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2839#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2840
b9f6033c
RH
2841/* Meanings of the bits for M profile mmu idx values */
2842#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2843#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2844#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2845
b9f6033c
RH
2846#define ARM_MMU_IDX_TYPE_MASK \
2847 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2848#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2849
c1e37810 2850typedef enum ARMMMUIdx {
b9f6033c
RH
2851 /*
2852 * A-profile.
2853 */
d902ae75
RH
2854 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2855 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
2856 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2857 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A,
2858 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2859 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2860 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
2861 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
b9f6033c 2862
575a94af
RH
2863 /*
2864 * Used for second stage of an S12 page table walk, or for descriptor
2865 * loads during first stage of an S1 page table walk. Note that both
2866 * are in use simultaneously for SecureEL2: the security state for
2867 * the S2 ptw is selected by the NS bit from the S1 ptw.
2868 */
d38fa967
RH
2869 ARMMMUIdx_Stage2_S = 8 | ARM_MMU_IDX_A,
2870 ARMMMUIdx_Stage2 = 9 | ARM_MMU_IDX_A,
2871
2872 /* TLBs with 1-1 mapping to the physical address spaces. */
bb5cc2c8
RH
2873 ARMMMUIdx_Phys_S = 10 | ARM_MMU_IDX_A,
2874 ARMMMUIdx_Phys_NS = 11 | ARM_MMU_IDX_A,
2875 ARMMMUIdx_Phys_Root = 12 | ARM_MMU_IDX_A,
2876 ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
575a94af 2877
b9f6033c
RH
2878 /*
2879 * These are not allocated TLBs and are used only for AT system
2880 * instructions or for the first stage of an S12 page table walk.
2881 */
2882 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2883 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2884 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2885
2886 /*
2887 * M-profile.
2888 */
25568316
RH
2889 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2890 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2891 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2892 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2893 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2894 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2895 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2896 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2897} ARMMMUIdx;
2898
5f09a6df
RH
2899/*
2900 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2901 * for use when calling tlb_flush_by_mmuidx() and friends.
2902 */
5f09a6df
RH
2903#define TO_CORE_BIT(NAME) \
2904 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2905
8bd5c820 2906typedef enum ARMMMUIdxBit {
5f09a6df 2907 TO_CORE_BIT(E10_0),
b9f6033c 2908 TO_CORE_BIT(E20_0),
5f09a6df 2909 TO_CORE_BIT(E10_1),
452ef8cb 2910 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2911 TO_CORE_BIT(E2),
b9f6033c 2912 TO_CORE_BIT(E20_2),
452ef8cb 2913 TO_CORE_BIT(E20_2_PAN),
d902ae75 2914 TO_CORE_BIT(E3),
575a94af
RH
2915 TO_CORE_BIT(Stage2),
2916 TO_CORE_BIT(Stage2_S),
5f09a6df
RH
2917
2918 TO_CORE_BIT(MUser),
2919 TO_CORE_BIT(MPriv),
2920 TO_CORE_BIT(MUserNegPri),
2921 TO_CORE_BIT(MPrivNegPri),
2922 TO_CORE_BIT(MSUser),
2923 TO_CORE_BIT(MSPriv),
2924 TO_CORE_BIT(MSUserNegPri),
2925 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2926} ARMMMUIdxBit;
2927
5f09a6df
RH
2928#undef TO_CORE_BIT
2929
f79fbf39 2930#define MMU_USER_IDX 0
c1e37810 2931
9e273ef2
PM
2932/* Indexes used when registering address spaces with cpu_address_space_init */
2933typedef enum ARMASIdx {
2934 ARMASIdx_NS = 0,
2935 ARMASIdx_S = 1,
8bce44a2
RH
2936 ARMASIdx_TagNS = 2,
2937 ARMASIdx_TagS = 3,
9e273ef2
PM
2938} ARMASIdx;
2939
bb5cc2c8
RH
2940static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2941{
2942 /* Assert the relative order of the physical mmu indexes. */
2943 QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2944 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2945 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2946 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2947
2948 return ARMMMUIdx_Phys_S + space;
2949}
2950
2951static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2952{
2953 assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2954 return idx - ARMMMUIdx_Phys_S;
2955}
2956
43bbce7f
PM
2957static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2958{
2959 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2960 * CSSELR is RAZ/WI.
2961 */
2962 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2963}
2964
f9fd40eb
PB
2965static inline bool arm_sctlr_b(CPUARMState *env)
2966{
2967 return
2968 /* We need not implement SCTLR.ITD in user-mode emulation, so
2969 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2970 * This lets people run BE32 binaries with "-cpu any".
2971 */
2972#ifndef CONFIG_USER_ONLY
2973 !arm_feature(env, ARM_FEATURE_V7) &&
2974#endif
2975 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2976}
2977
aaec1432 2978uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 2979
8061a649
RH
2980static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
2981 bool sctlr_b)
2982{
2983#ifdef CONFIG_USER_ONLY
2984 /*
2985 * In system mode, BE32 is modelled in line with the
2986 * architecture (as word-invariant big-endianness), where loads
2987 * and stores are done little endian but from addresses which
2988 * are adjusted by XORing with the appropriate constant. So the
2989 * endianness to use for the raw data access is not affected by
2990 * SCTLR.B.
2991 * In user mode, however, we model BE32 as byte-invariant
2992 * big-endianness (because user-only code cannot tell the
2993 * difference), and so we need to use a data access endianness
2994 * that depends on SCTLR.B.
2995 */
2996 if (sctlr_b) {
2997 return true;
2998 }
2999#endif
3000 /* In 32bit endianness is determined by looking at CPSR's E bit */
3001 return env->uncached_cpsr & CPSR_E;
3002}
3003
3004static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3005{
3006 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3007}
64e40755 3008
ed50ff78
PC
3009/* Return true if the processor is in big-endian mode. */
3010static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3011{
ed50ff78 3012 if (!is_a64(env)) {
8061a649 3013 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3014 } else {
3015 int cur_el = arm_current_el(env);
3016 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3017 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3018 }
ed50ff78
PC
3019}
3020
022c62cb 3021#include "exec/cpu-all.h"
622ed360 3022
fdd1b228 3023/*
a378206a
RH
3024 * We have more than 32-bits worth of state per TB, so we split the data
3025 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3026 * We collect these two parts in CPUARMTBFlags where they are named
3027 * flags and flags2 respectively.
fdd1b228 3028 *
a378206a
RH
3029 * The flags that are shared between all execution modes, TBFLAG_ANY,
3030 * are stored in flags. The flags that are specific to a given mode
3031 * are stores in flags2. Since cs_base is sized on the configured
3032 * address size, flags2 always has 64-bits for A64, and a minimum of
3033 * 32-bits for A32 and M32.
3034 *
3035 * The bits for 32-bit A-profile and M-profile partially overlap:
3036 *
5896f392
RH
3037 * 31 23 11 10 0
3038 * +-------------+----------+----------------+
3039 * | | | TBFLAG_A32 |
3040 * | TBFLAG_AM32 | +-----+----------+
3041 * | | |TBFLAG_M32|
3042 * +-------------+----------------+----------+
26702213 3043 * 31 23 6 5 0
79cabf1f 3044 *
fdd1b228 3045 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3046 */
eee81d41
RH
3047FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3048FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3049FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3050FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3051FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 3052/* Target EL if we take a floating-point-disabled exception */
eee81d41 3053FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
4479ec30 3054/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
8480e933
RH
3055FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3056FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
361c33f6 3057FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
34a8a07e 3058FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
79cabf1f 3059
8bd587c1 3060/*
79cabf1f 3061 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3062 */
5896f392
RH
3063FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3064FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 3065
79cabf1f
RH
3066/*
3067 * Bit usage when in AArch32 state, for A-profile only.
3068 */
5896f392
RH
3069FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3070FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
3071/*
3072 * We store the bottom two bits of the CPAR as TB flags and handle
3073 * checks on the other bits at runtime. This shares the same bits as
3074 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3075 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3076 */
5896f392
RH
3077FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3078FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3079FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3080FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
3081/*
3082 * Indicates whether cp register reads and writes by guest code should access
3083 * the secure or nonsecure bank of banked registers; note that this is not
3084 * the same thing as the current security state of the processor!
3085 */
5896f392 3086FIELD(TBFLAG_A32, NS, 10, 1)
75fe8356
RH
3087/*
3088 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3089 * This requires an SME trap from AArch32 mode when using NEON.
3090 */
3091FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
79cabf1f
RH
3092
3093/*
3094 * Bit usage when in AArch32 state, for M-profile only.
3095 */
3096/* Handler (ie not Thread) mode */
5896f392 3097FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3098/* Whether we should generate stack-limit checks */
5896f392 3099FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3100/* Set if FPCCR.LSPACT is set */
5896f392 3101FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3102/* Set if we must create a new FP context */
5896f392 3103FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3104/* Set if FPCCR.S does not match current security state */
5896f392 3105FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3106/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3107FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
a393dee0
RH
3108/* Set if in secure mode */
3109FIELD(TBFLAG_M32, SECURE, 6, 1)
79cabf1f
RH
3110
3111/*
3112 * Bit usage when in AArch64 state
3113 */
476a4692 3114FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac 3115FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
f45ce4c3
RH
3116/* The current vector length, either NVL or SVL. */
3117FIELD(TBFLAG_A64, VL, 4, 4)
0816ef1b 3118FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3119FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3120FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3121FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3122FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3123FIELD(TBFLAG_A64, ATA, 15, 1)
3124FIELD(TBFLAG_A64, TCMA, 16, 2)
3125FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3126FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
6b2ca83e 3127FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
a3637e88
RH
3128FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3129FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
5d7953ad 3130FIELD(TBFLAG_A64, SVL, 24, 4)
75fe8356
RH
3131/* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3132FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
5572f755 3133FIELD(TBFLAG_A64, FGT_ERET, 29, 1)
83f624d9 3134FIELD(TBFLAG_A64, NAA, 30, 1)
a1705768 3135
a729a46b
RH
3136/*
3137 * Helpers for using the above.
3138 */
3139#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3140 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3141#define DP_TBFLAG_A64(DST, WHICH, VAL) \
a378206a 3142 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3143#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3144 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3145#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3146 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3147#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3148 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3149
3902bfc6 3150#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
a378206a
RH
3151#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3152#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3153#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3154#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3155
fb901c90
RH
3156/**
3157 * cpu_mmu_index:
3158 * @env: The cpu environment
3159 * @ifetch: True for code access, false for data access.
3160 *
3161 * Return the core mmu index for the current translation regime.
3162 * This function is used by generic TCG code paths.
3163 */
3164static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3165{
a729a46b 3166 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3167}
3168
8b599e5c
RH
3169/**
3170 * sve_vq
3171 * @env: the cpu context
3172 *
3173 * Return the VL cached within env->hflags, in units of quadwords.
3174 */
3175static inline int sve_vq(CPUARMState *env)
3176{
3177 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3178}
3179
5d7953ad
RH
3180/**
3181 * sme_vq
3182 * @env: the cpu context
3183 *
3184 * Return the SVL cached within env->hflags, in units of quadwords.
3185 */
3186static inline int sme_vq(CPUARMState *env)
3187{
3188 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3189}
3190
f9fd40eb
PB
3191static inline bool bswap_code(bool sctlr_b)
3192{
3193#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3194 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3195 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3196 * would also end up as a mixed-endian mode with BE code, LE data.
3197 */
3198 return
ee3eb3a7 3199#if TARGET_BIG_ENDIAN
f9fd40eb
PB
3200 1 ^
3201#endif
3202 sctlr_b;
3203#else
e334bd31
PB
3204 /* All code access in ARM is little endian, and there are no loaders
3205 * doing swaps that need to be reversed
f9fd40eb
PB
3206 */
3207 return 0;
3208#endif
3209}
3210
c3ae85fc
PB
3211#ifdef CONFIG_USER_ONLY
3212static inline bool arm_cpu_bswap_data(CPUARMState *env)
3213{
3214 return
ee3eb3a7 3215#if TARGET_BIG_ENDIAN
c3ae85fc
PB
3216 1 ^
3217#endif
3218 arm_cpu_data_is_big_endian(env);
3219}
3220#endif
3221
a9e01311
RH
3222void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3223 target_ulong *cs_base, uint32_t *flags);
6b917547 3224
98128601
RH
3225enum {
3226 QEMU_PSCI_CONDUIT_DISABLED = 0,
3227 QEMU_PSCI_CONDUIT_SMC = 1,
3228 QEMU_PSCI_CONDUIT_HVC = 2,
3229};
3230
017518c1
PM
3231#ifndef CONFIG_USER_ONLY
3232/* Return the address space index to use for a memory access */
3233static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3234{
3235 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3236}
5ce4ff65
PM
3237
3238/* Return the AddressSpace to use for a memory access
3239 * (which depends on whether the access is S or NS, and whether
3240 * the board gave us a separate AddressSpace for S accesses).
3241 */
3242static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3243{
3244 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3245}
017518c1
PM
3246#endif
3247
bd7d00fc 3248/**
b5c53d1b
AL
3249 * arm_register_pre_el_change_hook:
3250 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3251 * CPU changes exception level or mode. The hook function will be
3252 * passed a pointer to the ARMCPU and the opaque data pointer passed
3253 * to this function when the hook was registered.
b5c53d1b
AL
3254 *
3255 * Note that if a pre-change hook is called, any registered post-change hooks
3256 * are guaranteed to subsequently be called.
bd7d00fc 3257 */
b5c53d1b 3258void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3259 void *opaque);
b5c53d1b
AL
3260/**
3261 * arm_register_el_change_hook:
3262 * Register a hook function which will be called immediately after this
3263 * CPU changes exception level or mode. The hook function will be
3264 * passed a pointer to the ARMCPU and the opaque data pointer passed
3265 * to this function when the hook was registered.
3266 *
3267 * Note that any registered hooks registered here are guaranteed to be called
3268 * if pre-change hooks have been.
3269 */
3270void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3271 *opaque);
bd7d00fc 3272
3d74e2e9
RH
3273/**
3274 * arm_rebuild_hflags:
3275 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3276 */
3277void arm_rebuild_hflags(CPUARMState *env);
3278
9a2b5256
RH
3279/**
3280 * aa32_vfp_dreg:
3281 * Return a pointer to the Dn register within env in 32-bit mode.
3282 */
3283static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3284{
c39c2b90 3285 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3286}
3287
3288/**
3289 * aa32_vfp_qreg:
3290 * Return a pointer to the Qn register within env in 32-bit mode.
3291 */
3292static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3293{
c39c2b90 3294 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3295}
3296
3297/**
3298 * aa64_vfp_qreg:
3299 * Return a pointer to the Qn register within env in 64-bit mode.
3300 */
3301static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3302{
c39c2b90 3303 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3304}
3305
028e2a7b 3306/* Shared between translate-sve.c and sve_helper.c. */
fca75f60 3307extern const uint64_t pred_esz_masks[5];
028e2a7b 3308
be5d6f48
RH
3309/*
3310 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
7f2cf760
RH
3311 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3312 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
be5d6f48 3313 */
7f2cf760
RH
3314#define PAGE_BTI PAGE_TARGET_1
3315#define PAGE_MTE PAGE_TARGET_2
3316#define PAGE_TARGET_STICKY PAGE_MTE
be5d6f48 3317
50d4c8c1
RH
3318/* We associate one allocation tag per 16 bytes, the minimum. */
3319#define LOG2_TAG_GRANULE 4
3320#define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
3321
3322#ifdef CONFIG_USER_ONLY
3323#define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3324#endif
3325
0e0c030c
RH
3326#ifdef TARGET_TAGGED_ADDRESSES
3327/**
3328 * cpu_untagged_addr:
3329 * @cs: CPU context
3330 * @x: tagged address
3331 *
3332 * Remove any address tag from @x. This is explicitly related to the
3333 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3334 *
3335 * There should be a better place to put this, but we need this in
3336 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3337 */
3338static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3339{
3340 ARMCPU *cpu = ARM_CPU(cs);
3341 if (cpu->env.tagged_addr_enable) {
3342 /*
3343 * TBI is enabled for userspace but not kernelspace addresses.
3344 * Only clear the tag if bit 55 is clear.
3345 */
3346 x &= sextract64(x, 0, 56);
3347 }
3348 return x;
3349}
3350#endif
3351
873b73c0
PM
3352/*
3353 * Naming convention for isar_feature functions:
3354 * Functions which test 32-bit ID registers should have _aa32_ in
3355 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3356 * _aa64_ in their name. These must only be used in code where we
3357 * know for certain that the CPU has AArch32 or AArch64 respectively
3358 * or where the correct answer for a CPU which doesn't implement that
3359 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3360 * system registers that are specific to that CPU state, for "should
3361 * we let this system register bit be set" tests where the 32-bit
3362 * flavour of the register doesn't have the bit, and so on).
3363 * Functions which simply ask "does this feature exist at all" have
3364 * _any_ in their name, and always return the logical OR of the _aa64_
3365 * and the _aa32_ function.
873b73c0
PM
3366 */
3367
962fcbf2
RH
3368/*
3369 * 32-bit feature tests via id registers.
3370 */
873b73c0 3371static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3372{
3373 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3374}
3375
873b73c0 3376static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3377{
3378 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3379}
05903f03
PM
3380
3381static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3382{
3383 /* (M-profile) low-overhead loops and branch future */
3384 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3385}
7e0cf8b4 3386
873b73c0 3387static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3388{
3389 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3390}
3391
962fcbf2
RH
3392static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3393{
3394 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3395}
3396
3397static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3398{
3399 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3400}
3401
3402static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3403{
3404 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3405}
3406
3407static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3408{
3409 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3410}
3411
3412static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3413{
3414 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3415}
3416
3417static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3418{
3419 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3420}
3421
3422static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3423{
3424 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3425}
3426
6c1f6f27
RH
3427static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3428{
3429 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3430}
3431
962fcbf2
RH
3432static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3433{
3434 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3435}
3436
87732318
RH
3437static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3438{
3439 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3440}
3441
9888bd1e
RH
3442static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3443{
3444 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3445}
3446
cb570bd3
RH
3447static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3448{
3449 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3450}
3451
c0b9e8a4
RH
3452static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3453{
3454 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3455}
3456
51879c67
RH
3457static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3458{
3459 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3460}
3461
46f4976f
PM
3462static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3463{
3464 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3465}
3466
dfc523a8
PM
3467static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3468{
3469 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3470}
3471
83ff3d6a
PM
3472static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3473{
3474 /*
3475 * Return true if M-profile state handling insns
3476 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3477 */
3478 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3479}
3480
5763190f
RH
3481static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3482{
dfc523a8
PM
3483 /* Sadly this is encoded differently for A-profile and M-profile */
3484 if (isar_feature_aa32_mprofile(id)) {
3485 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3486 } else {
3487 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3488 }
5763190f
RH
3489}
3490
7df6a1ff
PM
3491static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3492{
3493 /*
3494 * Return true if MVE is supported (either integer or floating point).
3495 * We must check for M-profile as the MVFR1 field means something
3496 * else for A-profile.
3497 */
3498 return isar_feature_aa32_mprofile(id) &&
3499 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3500}
3501
3502static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3503{
3504 /*
3505 * Return true if MVE is supported (either integer or floating point).
3506 * We must check for M-profile as the MVFR1 field means something
3507 * else for A-profile.
3508 */
3509 return isar_feature_aa32_mprofile(id) &&
3510 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3511}
3512
7fbc6a40
RH
3513static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3514{
3515 /*
3516 * Return true if either VFP or SIMD is implemented.
3517 * In this case, a minimum of VFP w/ D0-D15.
3518 */
3519 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3520}
3521
0e13ba78 3522static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3523{
3524 /* Return true if D16-D31 are implemented */
b3a816f6 3525 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3526}
3527
266bd25c
PM
3528static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3529{
b3a816f6 3530 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3531}
3532
f67957e1
RH
3533static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3534{
3535 /* Return true if CPU supports single precision floating point, VFPv2 */
3536 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3537}
3538
3539static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3540{
3541 /* Return true if CPU supports single precision floating point, VFPv3 */
3542 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3543}
3544
c4ff8735 3545static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3546{
c4ff8735 3547 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3548 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3549}
3550
f67957e1
RH
3551static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3552{
3553 /* Return true if CPU supports double precision floating point, VFPv3 */
3554 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3555}
3556
7d63183f
RH
3557static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3558{
3559 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3560}
3561
602f6e42
PM
3562/*
3563 * We always set the FP and SIMD FP16 fields to indicate identical
3564 * levels of support (assuming SIMD is implemented at all), so
3565 * we only need one set of accessors.
3566 */
3567static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3568{
b3a816f6 3569 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3570}
3571
3572static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3573{
b3a816f6 3574 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3575}
3576
c52881bb
RH
3577/*
3578 * Note that this ID register field covers both VFP and Neon FMAC,
3579 * so should usually be tested in combination with some other
3580 * check that confirms the presence of whichever of VFP or Neon is
3581 * relevant, to avoid accidentally enabling a Neon feature on
3582 * a VFP-no-Neon core or vice-versa.
3583 */
3584static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3585{
3586 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3587}
3588
c0c760af
PM
3589static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3590{
b3a816f6 3591 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3592}
3593
3594static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3595{
b3a816f6 3596 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3597}
3598
3599static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3600{
b3a816f6 3601 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3602}
3603
3604static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3605{
b3a816f6 3606 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3607}
3608
0ae0326b
PM
3609static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3610{
3611 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3612}
3613
3d6ad6bb
RH
3614static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3615{
10054016 3616 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3617}
3618
3619static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3620{
10054016 3621 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3622}
3623
a793bcd0 3624static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id)
a6179538
PM
3625{
3626 /* 0xf means "non-standard IMPDEF PMU" */
3627 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3628 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3629}
3630
a793bcd0 3631static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id)
15dd1ebd
PM
3632{
3633 /* 0xf means "non-standard IMPDEF PMU" */
3634 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3635 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3636}
3637
0b42f4fa
PM
3638static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id)
3639{
3640 /* 0xf means "non-standard IMPDEF PMU" */
3641 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 &&
3642 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3643}
3644
4036b7d1
PM
3645static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3646{
3647 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3648}
3649
f6287c24
PM
3650static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3651{
3652 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3653}
3654
957e6155
PM
3655static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3656{
3657 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3658}
3659
ce3125be
PM
3660static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3661{
3662 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3663}
3664
d2fd9313
PM
3665static inline bool isar_feature_aa32_half_evt(const ARMISARegisters *id)
3666{
3667 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 1;
3668}
3669
3670static inline bool isar_feature_aa32_evt(const ARMISARegisters *id)
3671{
3672 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 2;
3673}
3674
dc8b1853
RC
3675static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3676{
3677 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3678}
3679
f2f68a78
RC
3680static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3681{
3682 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3683}
3684
09754ca8
PM
3685static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3686{
3687 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3688}
3689
ca56aac5
RH
3690static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3691{
3692 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3693}
3694
f94a6df5
PM
3695static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3696{
3697 return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3698}
3699
962fcbf2
RH
3700/*
3701 * 64-bit feature tests via id registers.
3702 */
3703static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3704{
3705 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3706}
3707
3708static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3709{
3710 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3711}
3712
3713static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3714{
3715 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3716}
3717
3718static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3719{
3720 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3721}
3722
3723static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3724{
3725 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3726}
3727
3728static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3729{
3730 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3731}
3732
3733static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3734{
3735 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3736}
3737
3738static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3739{
3740 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3741}
3742
3743static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3744{
3745 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3746}
3747
3748static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3749{
3750 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3751}
3752
3753static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3754{
3755 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3756}
3757
3758static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3759{
3760 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3761}
3762
0caa5af8
RH
3763static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3764{
3765 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3766}
3767
b89d9c98
RH
3768static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3769{
3770 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3771}
3772
5ef84f11
RH
3773static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3774{
3775 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3776}
3777
de390645
RH
3778static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3779{
3780 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3781}
3782
6c1f6f27
RH
3783static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3784{
3785 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3786}
3787
962fcbf2
RH
3788static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3789{
3790 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3791}
3792
991ad91b
RH
3793static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3794{
3795 /*
283fc52a
RH
3796 * Return true if any form of pauth is enabled, as this
3797 * predicate controls migration of the 128-bit keys.
991ad91b
RH
3798 */
3799 return (id->id_aa64isar1 &
3800 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3801 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3802 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3803 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3804}
3805
283fc52a
RH
3806static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3807{
3808 /*
3809 * Return true if pauth is enabled with the architected QARMA algorithm.
3810 * QEMU will always set APA+GPA to the same value.
3811 */
3812 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3813}
3814
84940ed8
RC
3815static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3816{
3817 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3818}
3819
7113d618
RC
3820static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3821{
3822 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3823}
3824
9888bd1e
RH
3825static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3826{
3827 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3828}
3829
cb570bd3
RH
3830static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3831{
3832 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3833}
3834
6bea2563
RH
3835static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3836{
3837 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3838}
3839
0d57b499
BM
3840static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3841{
3842 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3843}
3844
3845static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3846{
3847 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3848}
3849
c0b9e8a4
RH
3850static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3851{
3852 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3853}
3854
7d63183f
RH
3855static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3856{
3857 /* We always set the AdvSIMD and FP fields identically. */
3858 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3859}
3860
5763190f
RH
3861static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3862{
3863 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3864 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3865}
3866
0f8d06f1
RH
3867static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3868{
3869 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3870}
3871
10d0ef3e
MN
3872static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3873{
3874 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3875}
3876
6bcbb07a
RH
3877static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3878{
3879 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3880}
3881
25e168ab
RH
3882static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3883{
3884 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3885}
3886
7ac61020
PM
3887static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3888{
3889 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3890}
3891
cd208a1c
RH
3892static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3893{
3894 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3895}
3896
5ca192df
RDC
3897static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3898{
3899 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3900}
3901
b9f335c2
RH
3902static inline bool isar_feature_aa64_rme(const ARMISARegisters *id)
3903{
3904 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RME) != 0;
3905}
3906
8fc2ea21
RH
3907static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3908{
3909 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3910}
3911
2d7137c1
RH
3912static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3913{
3914 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3915}
3916
3d6ad6bb
RH
3917static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3918{
3919 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3920}
3921
3922static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3923{
3924 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3925}
3926
dd17143f
PM
3927static inline bool isar_feature_aa64_pan3(const ARMISARegisters *id)
3928{
3929 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 3;
3930}
3931
5814d587
RH
3932static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3933{
3934 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3935}
3936
9eeb7a1c
RH
3937static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3938{
3939 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3940}
3941
c36c65ea
RDC
3942static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3943{
3944 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3945}
3946
cf1cbf50
RH
3947static inline bool isar_feature_aa64_lse2(const ARMISARegisters *id)
3948{
3949 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, AT) != 0;
3950}
3951
8c7e17ef
PM
3952static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
3953{
3954 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
3955}
3956
75662f36
PM
3957static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
3958{
3959 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
3960}
3961
d2fd9313
PM
3962static inline bool isar_feature_aa64_half_evt(const ARMISARegisters *id)
3963{
3964 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 1;
3965}
3966
3967static inline bool isar_feature_aa64_evt(const ARMISARegisters *id)
3968{
3969 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 2;
3970}
3971
be53b6f4
RH
3972static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3973{
3974 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3975}
3976
c7fd0baa
RH
3977static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3978{
3979 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3980}
3981
3982static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3983{
3984 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3985}
3986
f305bf94
RH
3987static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
3988{
3989 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
3990}
3991
a793bcd0 3992static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
2a609df8
PM
3993{
3994 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3995 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3996}
3997
a793bcd0 3998static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 3999{
54117b90
PM
4000 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4001 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
4002}
4003
0b42f4fa
PM
4004static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id)
4005{
4006 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 &&
4007 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4008}
4009
2677cf9f
PM
4010static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4011{
4012 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4013}
4014
a1229109
PM
4015static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4016{
4017 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4018}
4019
f7da051f
RH
4020static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4021{
4022 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4023}
4024
ef56c242
RH
4025static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4026{
4027 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4028}
4029
4030static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4031{
4032 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4033 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4034}
4035
4036static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4037{
4038 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4039}
4040
4041static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4042{
4043 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4044 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4045}
4046
104f703d
PM
4047static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id)
4048{
4049 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0;
4050}
4051
4052static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id)
4053{
4054 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1;
4055}
4056
4057static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id)
4058{
4059 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0;
4060}
4061
4062static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id)
4063{
4064 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4065 return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id));
4066}
4067
4068static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id)
4069{
4070 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4071 return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id));
4072}
4073
4074static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id)
4075{
4076 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2);
4077 return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id));
4078}
4079
15126d9c
PM
4080static inline bool isar_feature_aa64_fgt(const ARMISARegisters *id)
4081{
4082 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, FGT) != 0;
4083}
4084
957e6155
PM
4085static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4086{
4087 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4088}
4089
0af312b6
RH
4090static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4091{
4092 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4093}
4094
e4c93e44
PM
4095static inline bool isar_feature_aa64_e0pd(const ARMISARegisters *id)
4096{
4097 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, E0PD) != 0;
4098}
4099
980a6892
RH
4100static inline bool isar_feature_aa64_hafs(const ARMISARegisters *id)
4101{
4102 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) != 0;
4103}
4104
4105static inline bool isar_feature_aa64_hdbs(const ARMISARegisters *id)
4106{
4107 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) >= 2;
4108}
4109
ce3125be
PM
4110static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4111{
4112 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4113}
4114
dc8b1853
RC
4115static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4116{
4117 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4118}
4119
7cb1e618
RH
4120static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4121{
4122 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4123 if (key >= 2) {
4124 return true; /* FEAT_CSV2_2 */
4125 }
4126 if (key == 1) {
4127 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4128 return key >= 2; /* FEAT_CSV2_1p2 */
4129 }
4130 return false;
4131}
4132
f2f68a78
RC
4133static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4134{
4135 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4136}
4137
ca56aac5
RH
4138static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4139{
4140 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4141}
4142
2dc10fa2
RH
4143static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4144{
4145 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4146}
4147
e3a56131
RH
4148static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4149{
4150 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4151}
4152
4153static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4154{
4155 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4156}
4157
cb9c33b8
RH
4158static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4159{
4160 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4161}
4162
c0b9e8a4
RH
4163static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4164{
4165 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4166}
4167
3358eb3f
RH
4168static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4169{
4170 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4171}
4172
3cc7a88e
RH
4173static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4174{
4175 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4176}
4177
2867039a
RH
4178static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4179{
4180 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4181}
4182
4f26756b
SL
4183static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4184{
4185 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4186}
4187
4188static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4189{
4190 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4191}
4192
414c54d5
RH
4193static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4194{
4195 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4196}
4197
4198static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4199{
4200 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4201}
4202
4203static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4204{
4205 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4206}
4207
f94a6df5
PM
4208static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4209{
4210 return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4211}
4212
6e61f839
PM
4213/*
4214 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4215 */
4216static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4217{
4218 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4219}
4220
22e57073
PM
4221static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4222{
4223 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4224}
4225
a793bcd0 4226static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id)
2a609df8 4227{
a793bcd0 4228 return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id);
2a609df8
PM
4229}
4230
a793bcd0 4231static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 4232{
a793bcd0 4233 return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id);
15dd1ebd
PM
4234}
4235
0b42f4fa
PM
4236static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id)
4237{
4238 return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id);
4239}
4240
957e6155
PM
4241static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4242{
4243 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4244}
4245
ce3125be
PM
4246static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4247{
4248 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4249}
4250
ca56aac5
RH
4251static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4252{
4253 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4254}
4255
25e168ab
RH
4256static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4257{
4258 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4259}
4260
d2fd9313
PM
4261static inline bool isar_feature_any_half_evt(const ARMISARegisters *id)
4262{
4263 return isar_feature_aa64_half_evt(id) || isar_feature_aa32_half_evt(id);
4264}
4265
4266static inline bool isar_feature_any_evt(const ARMISARegisters *id)
4267{
4268 return isar_feature_aa64_evt(id) || isar_feature_aa32_evt(id);
4269}
4270
962fcbf2
RH
4271/*
4272 * Forward to the above feature tests given an ARMCPU pointer.
4273 */
4274#define cpu_isar_feature(name, cpu) \
4275 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4276
2c0262af 4277#endif