]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
hw/arm/virt: add DT property /secure-chosen/stdout-path indicating secure UART
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
72b0cd35 25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
3926cc84
AG
29#else
30# define TARGET_LONG_BITS 32
3926cc84 31#endif
9042c0e2 32
ca759f9e
AB
33/* ARM processors have a weak memory model */
34#define TCG_GUEST_DEFAULT_MO (0)
35
9349b4f9 36#define CPUArchState struct CPUARMState
c2764719 37
9a78eead 38#include "qemu-common.h"
74e75564 39#include "cpu-qom.h"
022c62cb 40#include "exec/cpu-defs.h"
2c0262af 41
b8a9e8f1
FB
42#define EXCP_UDEF 1 /* undefined instruction */
43#define EXCP_SWI 2 /* software interrupt */
44#define EXCP_PREFETCH_ABORT 3
45#define EXCP_DATA_ABORT 4
b5ff1b31
FB
46#define EXCP_IRQ 5
47#define EXCP_FIQ 6
06c949e6 48#define EXCP_BKPT 7
9ee6e8bb 49#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 50#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 51#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 52#define EXCP_HYP_TRAP 12
e0d6e6a5 53#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
54#define EXCP_VIRQ 14
55#define EXCP_VFIQ 15
19a6e31c 56#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 57#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 58#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 59#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 93
e4fe830b
PM
94/* The usual mapping for an AArch64 system register to its AArch32
95 * counterpart is for the 32 bit world to have access to the lower
96 * half only (with writes leaving the upper half untouched). It's
97 * therefore useful to be able to pass TCG the offset of the least
98 * significant half of a uint64_t struct member.
99 */
100#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 101#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 102#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
103#else
104#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 105#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
106#endif
107
136e67e9 108/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
109#define ARM_CPU_IRQ 0
110#define ARM_CPU_FIQ 1
136e67e9
EI
111#define ARM_CPU_VIRQ 2
112#define ARM_CPU_VFIQ 3
403946c0 113
62593718 114#define NB_MMU_MODES 8
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
140 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141 * @cpregs_keys: Array that contains the corresponding Key of
142 * a given cpreg with the same order of the cpreg in the XML description.
143 */
144typedef struct DynamicGDBXMLInfo {
145 char *desc;
146 int num_cpregs;
147 uint32_t *cpregs_keys;
148} DynamicGDBXMLInfo;
149
55d284af
PM
150/* CPU state for each instance of a generic timer (in cp15 c14) */
151typedef struct ARMGenericTimer {
152 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 153 uint64_t ctl; /* Timer Control register */
55d284af
PM
154} ARMGenericTimer;
155
156#define GTIMER_PHYS 0
157#define GTIMER_VIRT 1
b0e66d95 158#define GTIMER_HYP 2
b4d3978c
PM
159#define GTIMER_SEC 3
160#define NUM_GTIMERS 4
55d284af 161
11f136ee
FA
162typedef struct {
163 uint64_t raw_tcr;
164 uint32_t mask;
165 uint32_t base_mask;
166} TCR;
167
c39c2b90
RH
168/* Define a maximum sized vector register.
169 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170 * For 64-bit, this is a 2048-bit SVE register.
171 *
172 * Note that the mapping between S, D, and Q views of the register bank
173 * differs between AArch64 and AArch32.
174 * In AArch32:
175 * Qn = regs[n].d[1]:regs[n].d[0]
176 * Dn = regs[n / 2].d[n & 1]
177 * Sn = regs[n / 4].d[n % 4 / 2],
178 * bits 31..0 for even n, and bits 63..32 for odd n
179 * (and regs[16] to regs[31] are inaccessible)
180 * In AArch64:
181 * Zn = regs[n].d[*]
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n].d[0]
184 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 185 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
186 *
187 * This corresponds to the architecturally defined mapping between
188 * the two execution states, and means we do not need to explicitly
189 * map these registers when changing states.
190 *
191 * Align the data for use with TCG host vector operations.
192 */
193
194#ifdef TARGET_AARCH64
195# define ARM_MAX_VQ 16
196#else
197# define ARM_MAX_VQ 1
198#endif
199
200typedef struct ARMVectorReg {
201 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202} ARMVectorReg;
203
3c7d3086
RH
204/* In AArch32 mode, predicate registers do not exist at all. */
205#ifdef TARGET_AARCH64
206typedef struct ARMPredicateReg {
207 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208} ARMPredicateReg;
209#endif
210
c39c2b90 211
2c0262af 212typedef struct CPUARMState {
b5ff1b31 213 /* Regs for current mode. */
2c0262af 214 uint32_t regs[16];
3926cc84
AG
215
216 /* 32/64 switch only happens when taking and returning from
217 * exceptions so the overlap semantics are taken care of then
218 * instead of having a complicated union.
219 */
220 /* Regs for A64 mode. */
221 uint64_t xregs[32];
222 uint64_t pc;
d356312f
PM
223 /* PSTATE isn't an architectural register for ARMv8. However, it is
224 * convenient for us to assemble the underlying state into a 32 bit format
225 * identical to the architectural format used for the SPSR. (This is also
226 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
227 * 'pstate' register are.) Of the PSTATE bits:
228 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
229 * semantics as for AArch32, as described in the comments on each field)
230 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 231 * DAIF (exception masks) are kept in env->daif
d356312f 232 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
233 */
234 uint32_t pstate;
235 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
236
b90372ad 237 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 238 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
239 the whole CPSR. */
240 uint32_t uncached_cpsr;
241 uint32_t spsr;
242
243 /* Banked registers. */
28c9457d 244 uint64_t banked_spsr[8];
0b7d409d
FA
245 uint32_t banked_r13[8];
246 uint32_t banked_r14[8];
3b46e624 247
b5ff1b31
FB
248 /* These hold r8-r12. */
249 uint32_t usr_regs[5];
250 uint32_t fiq_regs[5];
3b46e624 251
2c0262af
FB
252 /* cpsr flag cache for faster execution */
253 uint32_t CF; /* 0 or 1 */
254 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
255 uint32_t NF; /* N is bit 31. All other bits are undefined. */
256 uint32_t ZF; /* Z set if zero. */
99c475ab 257 uint32_t QF; /* 0 or 1 */
9ee6e8bb 258 uint32_t GE; /* cpsr[19:16] */
b26eefb6 259 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 260 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
b6af0975 261 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 262
1b174238 263 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 264 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 265
b5ff1b31
FB
266 /* System control coprocessor (cp15) */
267 struct {
40f137e1 268 uint32_t c0_cpuid;
b85a1fd6
FA
269 union { /* Cache size selection */
270 struct {
271 uint64_t _unused_csselr0;
272 uint64_t csselr_ns;
273 uint64_t _unused_csselr1;
274 uint64_t csselr_s;
275 };
276 uint64_t csselr_el[4];
277 };
137feaa9
FA
278 union { /* System control register. */
279 struct {
280 uint64_t _unused_sctlr;
281 uint64_t sctlr_ns;
282 uint64_t hsctlr;
283 uint64_t sctlr_s;
284 };
285 uint64_t sctlr_el[4];
286 };
7ebd5f2e 287 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 288 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 289 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 290 uint64_t sder; /* Secure debug enable register. */
77022576 291 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
292 union { /* MMU translation table base 0. */
293 struct {
294 uint64_t _unused_ttbr0_0;
295 uint64_t ttbr0_ns;
296 uint64_t _unused_ttbr0_1;
297 uint64_t ttbr0_s;
298 };
299 uint64_t ttbr0_el[4];
300 };
301 union { /* MMU translation table base 1. */
302 struct {
303 uint64_t _unused_ttbr1_0;
304 uint64_t ttbr1_ns;
305 uint64_t _unused_ttbr1_1;
306 uint64_t ttbr1_s;
307 };
308 uint64_t ttbr1_el[4];
309 };
b698e9cf 310 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
311 /* MMU translation table base control. */
312 TCR tcr_el[4];
68e9c2fe 313 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
314 uint32_t c2_data; /* MPU data cacheable bits. */
315 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
316 union { /* MMU domain access control register
317 * MPU write buffer control.
318 */
319 struct {
320 uint64_t dacr_ns;
321 uint64_t dacr_s;
322 };
323 struct {
324 uint64_t dacr32_el2;
325 };
326 };
7e09797c
PM
327 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
328 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 329 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 330 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
331 union { /* Fault status registers. */
332 struct {
333 uint64_t ifsr_ns;
334 uint64_t ifsr_s;
335 };
336 struct {
337 uint64_t ifsr32_el2;
338 };
339 };
4a7e2d73
FA
340 union {
341 struct {
342 uint64_t _unused_dfsr;
343 uint64_t dfsr_ns;
344 uint64_t hsr;
345 uint64_t dfsr_s;
346 };
347 uint64_t esr_el[4];
348 };
ce819861 349 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
350 union { /* Fault address registers. */
351 struct {
352 uint64_t _unused_far0;
353#ifdef HOST_WORDS_BIGENDIAN
354 uint32_t ifar_ns;
355 uint32_t dfar_ns;
356 uint32_t ifar_s;
357 uint32_t dfar_s;
358#else
359 uint32_t dfar_ns;
360 uint32_t ifar_ns;
361 uint32_t dfar_s;
362 uint32_t ifar_s;
363#endif
364 uint64_t _unused_far3;
365 };
366 uint64_t far_el[4];
367 };
59e05530 368 uint64_t hpfar_el2;
2a5a9abd 369 uint64_t hstr_el2;
01c097f7
FA
370 union { /* Translation result. */
371 struct {
372 uint64_t _unused_par_0;
373 uint64_t par_ns;
374 uint64_t _unused_par_1;
375 uint64_t par_s;
376 };
377 uint64_t par_el[4];
378 };
6cb0b013 379
b5ff1b31
FB
380 uint32_t c9_insn; /* Cache lockdown registers. */
381 uint32_t c9_data;
8521466b
AF
382 uint64_t c9_pmcr; /* performance monitor control register */
383 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
384 uint64_t c9_pmovsr; /* perf monitor overflow status */
385 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 386 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 387 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
388 union { /* Memory attribute redirection */
389 struct {
390#ifdef HOST_WORDS_BIGENDIAN
391 uint64_t _unused_mair_0;
392 uint32_t mair1_ns;
393 uint32_t mair0_ns;
394 uint64_t _unused_mair_1;
395 uint32_t mair1_s;
396 uint32_t mair0_s;
397#else
398 uint64_t _unused_mair_0;
399 uint32_t mair0_ns;
400 uint32_t mair1_ns;
401 uint64_t _unused_mair_1;
402 uint32_t mair0_s;
403 uint32_t mair1_s;
404#endif
405 };
406 uint64_t mair_el[4];
407 };
fb6c91ba
GB
408 union { /* vector base address register */
409 struct {
410 uint64_t _unused_vbar;
411 uint64_t vbar_ns;
412 uint64_t hvbar;
413 uint64_t vbar_s;
414 };
415 uint64_t vbar_el[4];
416 };
e89e51a1 417 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
418 struct { /* FCSE PID. */
419 uint32_t fcseidr_ns;
420 uint32_t fcseidr_s;
421 };
422 union { /* Context ID. */
423 struct {
424 uint64_t _unused_contextidr_0;
425 uint64_t contextidr_ns;
426 uint64_t _unused_contextidr_1;
427 uint64_t contextidr_s;
428 };
429 uint64_t contextidr_el[4];
430 };
431 union { /* User RW Thread register. */
432 struct {
433 uint64_t tpidrurw_ns;
434 uint64_t tpidrprw_ns;
435 uint64_t htpidr;
436 uint64_t _tpidr_el3;
437 };
438 uint64_t tpidr_el[4];
439 };
440 /* The secure banks of these registers don't map anywhere */
441 uint64_t tpidrurw_s;
442 uint64_t tpidrprw_s;
443 uint64_t tpidruro_s;
444
445 union { /* User RO Thread register. */
446 uint64_t tpidruro_ns;
447 uint64_t tpidrro_el[1];
448 };
a7adc4b7
PM
449 uint64_t c14_cntfrq; /* Counter Frequency register */
450 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 451 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 452 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 453 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 454 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
455 uint32_t c15_ticonfig; /* TI925T configuration byte. */
456 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
457 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
458 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
459 uint32_t c15_config_base_address; /* SCU base address. */
460 uint32_t c15_diagnostic; /* diagnostic register */
461 uint32_t c15_power_diagnostic;
462 uint32_t c15_power_control; /* power control */
0b45451e
PM
463 uint64_t dbgbvr[16]; /* breakpoint value registers */
464 uint64_t dbgbcr[16]; /* breakpoint control registers */
465 uint64_t dbgwvr[16]; /* watchpoint value registers */
466 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 467 uint64_t mdscr_el1;
1424ca8d 468 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 469 uint64_t mdcr_el2;
5513c3ab 470 uint64_t mdcr_el3;
7c2cb42b
AF
471 /* If the counter is enabled, this stores the last time the counter
472 * was reset. Otherwise it stores the counter value
473 */
c92c0687 474 uint64_t c15_ccnt;
8521466b 475 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 476 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 477 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 478 } cp15;
40f137e1 479
9ee6e8bb 480 struct {
fb602cb7
PM
481 /* M profile has up to 4 stack pointers:
482 * a Main Stack Pointer and a Process Stack Pointer for each
483 * of the Secure and Non-Secure states. (If the CPU doesn't support
484 * the security extension then it has only two SPs.)
485 * In QEMU we always store the currently active SP in regs[13],
486 * and the non-active SP for the current security state in
487 * v7m.other_sp. The stack pointers for the inactive security state
488 * are stored in other_ss_msp and other_ss_psp.
489 * switch_v7m_security_state() is responsible for rearranging them
490 * when we change security state.
491 */
9ee6e8bb 492 uint32_t other_sp;
fb602cb7
PM
493 uint32_t other_ss_msp;
494 uint32_t other_ss_psp;
4a16724f
PM
495 uint32_t vecbase[M_REG_NUM_BANKS];
496 uint32_t basepri[M_REG_NUM_BANKS];
497 uint32_t control[M_REG_NUM_BANKS];
498 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
499 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
500 uint32_t hfsr; /* HardFault Status */
501 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 502 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 503 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 504 uint32_t bfar; /* BusFault Address */
bed079da 505 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 506 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 507 int exception;
4a16724f
PM
508 uint32_t primask[M_REG_NUM_BANKS];
509 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 510 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 511 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 512 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 513 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
514 uint32_t msplim[M_REG_NUM_BANKS];
515 uint32_t psplim[M_REG_NUM_BANKS];
9ee6e8bb
PB
516 } v7m;
517
abf1172f
PM
518 /* Information associated with an exception about to be taken:
519 * code which raises an exception must set cs->exception_index and
520 * the relevant parts of this structure; the cpu_do_interrupt function
521 * will then set the guest-visible registers as part of the exception
522 * entry process.
523 */
524 struct {
525 uint32_t syndrome; /* AArch64 format syndrome register */
526 uint32_t fsr; /* AArch32 format fault status register info */
527 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 528 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
529 /* If we implement EL2 we will also need to store information
530 * about the intermediate physical address for stage 2 faults.
531 */
532 } exception;
533
fe1479c3
PB
534 /* Thumb-2 EE state. */
535 uint32_t teecr;
536 uint32_t teehbr;
537
b7bcbe95
FB
538 /* VFP coprocessor state. */
539 struct {
c39c2b90 540 ARMVectorReg zregs[32];
b7bcbe95 541
3c7d3086
RH
542#ifdef TARGET_AARCH64
543 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 544#define FFR_PRED_NUM 16
3c7d3086 545 ARMPredicateReg pregs[17];
516e246a
RH
546 /* Scratch space for aa64 sve predicate temporary. */
547 ARMPredicateReg preg_tmp;
3c7d3086
RH
548#endif
549
40f137e1 550 uint32_t xregs[16];
b7bcbe95
FB
551 /* We store these fpcsr fields separately for convenience. */
552 int vec_len;
553 int vec_stride;
554
516e246a 555 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 556 uint32_t scratch[8];
3b46e624 557
d81ce0ef
AB
558 /* There are a number of distinct float control structures:
559 *
560 * fp_status: is the "normal" fp status.
561 * fp_status_fp16: used for half-precision calculations
562 * standard_fp_status : the ARM "Standard FPSCR Value"
563 *
564 * Half-precision operations are governed by a separate
565 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
566 * status structure to control this.
567 *
568 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
569 * round-to-nearest and is used by any operations (generally
570 * Neon) which the architecture defines as controlled by the
571 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
572 *
573 * To avoid having to transfer exception bits around, we simply
574 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 575 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
576 * only thing which needs to read the exception flags being
577 * an explicit FPSCR read.
578 */
53cd6637 579 float_status fp_status;
d81ce0ef 580 float_status fp_status_f16;
3a492f3a 581 float_status standard_fp_status;
5be5e8ed
RH
582
583 /* ZCR_EL[1-3] */
584 uint64_t zcr_el[4];
b7bcbe95 585 } vfp;
03d05e2d
PM
586 uint64_t exclusive_addr;
587 uint64_t exclusive_val;
588 uint64_t exclusive_high;
b7bcbe95 589
18c9b560
AZ
590 /* iwMMXt coprocessor state. */
591 struct {
592 uint64_t regs[16];
593 uint64_t val;
594
595 uint32_t cregs[16];
596 } iwmmxt;
597
ce4defa0
PB
598#if defined(CONFIG_USER_ONLY)
599 /* For usermode syscall translation. */
600 int eabi;
601#endif
602
46747d15 603 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
604 struct CPUWatchpoint *cpu_watchpoint[16];
605
1f5c00cf
AB
606 /* Fields up to this point are cleared by a CPU reset */
607 struct {} end_reset_fields;
608
a316d335
FB
609 CPU_COMMON
610
1f5c00cf 611 /* Fields after CPU_COMMON are preserved across CPU reset. */
9ba8c3f4 612
581be094 613 /* Internal CPU feature flags. */
918f5dca 614 uint64_t features;
581be094 615
6cb0b013
PC
616 /* PMSAv7 MPU */
617 struct {
618 uint32_t *drbar;
619 uint32_t *drsr;
620 uint32_t *dracr;
4a16724f 621 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
622 } pmsav7;
623
0e1a46bb
PM
624 /* PMSAv8 MPU */
625 struct {
626 /* The PMSAv8 implementation also shares some PMSAv7 config
627 * and state:
628 * pmsav7.rnr (region number register)
629 * pmsav7_dregion (number of configured regions)
630 */
4a16724f
PM
631 uint32_t *rbar[M_REG_NUM_BANKS];
632 uint32_t *rlar[M_REG_NUM_BANKS];
633 uint32_t mair0[M_REG_NUM_BANKS];
634 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
635 } pmsav8;
636
9901c576
PM
637 /* v8M SAU */
638 struct {
639 uint32_t *rbar;
640 uint32_t *rlar;
641 uint32_t rnr;
642 uint32_t ctrl;
643 } sau;
644
983fe826 645 void *nvic;
462a8bc6 646 const struct arm_boot_info *boot_info;
d3a3e529
VK
647 /* Store GICv3CPUState to access from this struct */
648 void *gicv3state;
2c0262af
FB
649} CPUARMState;
650
bd7d00fc 651/**
08267487 652 * ARMELChangeHookFn:
bd7d00fc
PM
653 * type of a function which can be registered via arm_register_el_change_hook()
654 * to get callbacks when the CPU changes its exception level or mode.
655 */
08267487
AL
656typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
657typedef struct ARMELChangeHook ARMELChangeHook;
658struct ARMELChangeHook {
659 ARMELChangeHookFn *hook;
660 void *opaque;
661 QLIST_ENTRY(ARMELChangeHook) node;
662};
062ba099
AB
663
664/* These values map onto the return values for
665 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
666typedef enum ARMPSCIState {
d5affb0d
AJ
667 PSCI_ON = 0,
668 PSCI_OFF = 1,
062ba099
AB
669 PSCI_ON_PENDING = 2
670} ARMPSCIState;
671
74e75564
PB
672/**
673 * ARMCPU:
674 * @env: #CPUARMState
675 *
676 * An ARM CPU core.
677 */
678struct ARMCPU {
679 /*< private >*/
680 CPUState parent_obj;
681 /*< public >*/
682
683 CPUARMState env;
684
685 /* Coprocessor information */
686 GHashTable *cp_regs;
687 /* For marshalling (mostly coprocessor) register state between the
688 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
689 * we use these arrays.
690 */
691 /* List of register indexes managed via these arrays; (full KVM style
692 * 64 bit indexes, not CPRegInfo 32 bit indexes)
693 */
694 uint64_t *cpreg_indexes;
695 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
696 uint64_t *cpreg_values;
697 /* Length of the indexes, values, reset_values arrays */
698 int32_t cpreg_array_len;
699 /* These are used only for migration: incoming data arrives in
700 * these fields and is sanity checked in post_load before copying
701 * to the working data structures above.
702 */
703 uint64_t *cpreg_vmstate_indexes;
704 uint64_t *cpreg_vmstate_values;
705 int32_t cpreg_vmstate_array_len;
706
200bf5b7
AB
707 DynamicGDBXMLInfo dyn_xml;
708
74e75564
PB
709 /* Timers used by the generic (architected) timer */
710 QEMUTimer *gt_timer[NUM_GTIMERS];
711 /* GPIO outputs for generic timer */
712 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
713 /* GPIO output for GICv3 maintenance interrupt signal */
714 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
715 /* GPIO output for the PMU interrupt */
716 qemu_irq pmu_interrupt;
74e75564
PB
717
718 /* MemoryRegion to use for secure physical accesses */
719 MemoryRegion *secure_memory;
720
181962fd
PM
721 /* For v8M, pointer to the IDAU interface provided by board/SoC */
722 Object *idau;
723
74e75564
PB
724 /* 'compatible' string for this CPU for Linux device trees */
725 const char *dtb_compatible;
726
727 /* PSCI version for this CPU
728 * Bits[31:16] = Major Version
729 * Bits[15:0] = Minor Version
730 */
731 uint32_t psci_version;
732
733 /* Should CPU start in PSCI powered-off state? */
734 bool start_powered_off;
062ba099
AB
735
736 /* Current power state, access guarded by BQL */
737 ARMPSCIState power_state;
738
c25bd18a
PM
739 /* CPU has virtualization extension */
740 bool has_el2;
74e75564
PB
741 /* CPU has security extension */
742 bool has_el3;
5c0a3819
SZ
743 /* CPU has PMU (Performance Monitor Unit) */
744 bool has_pmu;
74e75564
PB
745
746 /* CPU has memory protection unit */
747 bool has_mpu;
748 /* PMSAv7 MPU number of supported regions */
749 uint32_t pmsav7_dregion;
9901c576
PM
750 /* v8M SAU number of supported regions */
751 uint32_t sau_sregion;
74e75564
PB
752
753 /* PSCI conduit used to invoke PSCI methods
754 * 0 - disabled, 1 - smc, 2 - hvc
755 */
756 uint32_t psci_conduit;
757
38e2a77c
PM
758 /* For v8M, initial value of the Secure VTOR */
759 uint32_t init_svtor;
760
74e75564
PB
761 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
762 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
763 */
764 uint32_t kvm_target;
765
766 /* KVM init features for this CPU */
767 uint32_t kvm_init_features[7];
768
769 /* Uniprocessor system with MP extensions */
770 bool mp_is_up;
771
c4487d76
PM
772 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
773 * and the probe failed (so we need to report the error in realize)
774 */
775 bool host_cpu_probe_failed;
776
f9a69711
AF
777 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
778 * register.
779 */
780 int32_t core_count;
781
74e75564
PB
782 /* The instance init functions for implementation-specific subclasses
783 * set these fields to specify the implementation-dependent values of
784 * various constant registers and reset values of non-constant
785 * registers.
786 * Some of these might become QOM properties eventually.
787 * Field names match the official register names as defined in the
788 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
789 * is used for reset values of non-constant registers; no reset_
790 * prefix means a constant register.
791 */
792 uint32_t midr;
793 uint32_t revidr;
794 uint32_t reset_fpsid;
795 uint32_t mvfr0;
796 uint32_t mvfr1;
797 uint32_t mvfr2;
798 uint32_t ctr;
799 uint32_t reset_sctlr;
800 uint32_t id_pfr0;
801 uint32_t id_pfr1;
802 uint32_t id_dfr0;
803 uint32_t pmceid0;
804 uint32_t pmceid1;
805 uint32_t id_afr0;
806 uint32_t id_mmfr0;
807 uint32_t id_mmfr1;
808 uint32_t id_mmfr2;
809 uint32_t id_mmfr3;
810 uint32_t id_mmfr4;
811 uint32_t id_isar0;
812 uint32_t id_isar1;
813 uint32_t id_isar2;
814 uint32_t id_isar3;
815 uint32_t id_isar4;
816 uint32_t id_isar5;
802abf40 817 uint32_t id_isar6;
74e75564
PB
818 uint64_t id_aa64pfr0;
819 uint64_t id_aa64pfr1;
820 uint64_t id_aa64dfr0;
821 uint64_t id_aa64dfr1;
822 uint64_t id_aa64afr0;
823 uint64_t id_aa64afr1;
824 uint64_t id_aa64isar0;
825 uint64_t id_aa64isar1;
826 uint64_t id_aa64mmfr0;
827 uint64_t id_aa64mmfr1;
828 uint32_t dbgdidr;
829 uint32_t clidr;
830 uint64_t mp_affinity; /* MP ID without feature bits */
831 /* The elements of this array are the CCSIDR values for each cache,
832 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
833 */
834 uint32_t ccsidr[16];
835 uint64_t reset_cbar;
836 uint32_t reset_auxcr;
837 bool reset_hivecs;
838 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
839 uint32_t dcz_blocksize;
840 uint64_t rvbar;
bd7d00fc 841
e45868a3
PM
842 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
843 int gic_num_lrs; /* number of list registers */
844 int gic_vpribits; /* number of virtual priority bits */
845 int gic_vprebits; /* number of virtual preemption bits */
846
3a062d57
JB
847 /* Whether the cfgend input is high (i.e. this CPU should reset into
848 * big-endian mode). This setting isn't used directly: instead it modifies
849 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
850 * architecture version.
851 */
852 bool cfgend;
853
b5c53d1b 854 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 855 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
856
857 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
858
859 /* Used to synchronize KVM and QEMU in-kernel device levels */
860 uint8_t device_irq_level;
adf92eab
RH
861
862 /* Used to set the maximum vector length the cpu will support. */
863 uint32_t sve_max_vq;
74e75564
PB
864};
865
866static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
867{
868 return container_of(env, ARMCPU, env);
869}
870
46de5913
IM
871uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
872
74e75564
PB
873#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
874
875#define ENV_OFFSET offsetof(ARMCPU, env)
876
877#ifndef CONFIG_USER_ONLY
878extern const struct VMStateDescription vmstate_arm_cpu;
879#endif
880
881void arm_cpu_do_interrupt(CPUState *cpu);
882void arm_v7m_cpu_do_interrupt(CPUState *cpu);
883bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
884
885void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
886 int flags);
887
888hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
889 MemTxAttrs *attrs);
890
891int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
892int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
893
200bf5b7
AB
894/* Dynamically generates for gdb stub an XML description of the sysregs from
895 * the cp_regs hashtable. Returns the registered sysregs number.
896 */
897int arm_gen_dynamic_xml(CPUState *cpu);
898
899/* Returns the dynamically generated XML for the gdb stub.
900 * Returns a pointer to the XML contents for the specified XML file or NULL
901 * if the XML name doesn't match the predefined one.
902 */
903const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
904
74e75564
PB
905int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
906 int cpuid, void *opaque);
907int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
908 int cpuid, void *opaque);
909
910#ifdef TARGET_AARCH64
911int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
912int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 913void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
0ab5953b
RH
914void aarch64_sve_change_el(CPUARMState *env, int old_el, int new_el);
915#else
916static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
917static inline void aarch64_sve_change_el(CPUARMState *env, int o, int n) { }
74e75564 918#endif
778c3a06 919
faacc041 920target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
921void aarch64_sync_32_to_64(CPUARMState *env);
922void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 923
ced31551
RH
924int fp_exception_el(CPUARMState *env, int cur_el);
925int sve_exception_el(CPUARMState *env, int cur_el);
926uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
927
3926cc84
AG
928static inline bool is_a64(CPUARMState *env)
929{
930 return env->aarch64;
931}
932
2c0262af
FB
933/* you can call this signal handler from your SIGBUS and SIGSEGV
934 signal handlers to inform the virtual CPU of exceptions. non zero
935 is returned if the signal was handled by the virtual CPU. */
5fafdf24 936int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
937 void *puc);
938
ec7b4ce4
AF
939/**
940 * pmccntr_sync
941 * @env: CPUARMState
942 *
943 * Synchronises the counter in the PMCCNTR. This must always be called twice,
944 * once before any action that might affect the timer and again afterwards.
945 * The function is used to swap the state of the register if required.
946 * This only happens when not in user mode (!CONFIG_USER_ONLY)
947 */
948void pmccntr_sync(CPUARMState *env);
949
76e3e1bc
PM
950/* SCTLR bit meanings. Several bits have been reused in newer
951 * versions of the architecture; in that case we define constants
952 * for both old and new bit meanings. Code which tests against those
953 * bits should probably check or otherwise arrange that the CPU
954 * is the architectural version it expects.
955 */
956#define SCTLR_M (1U << 0)
957#define SCTLR_A (1U << 1)
958#define SCTLR_C (1U << 2)
959#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
960#define SCTLR_SA (1U << 3)
961#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
962#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
963#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
964#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
965#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
966#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
967#define SCTLR_ITD (1U << 7) /* v8 onward */
968#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
969#define SCTLR_SED (1U << 8) /* v8 onward */
970#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
971#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
972#define SCTLR_F (1U << 10) /* up to v6 */
973#define SCTLR_SW (1U << 10) /* v7 onward */
974#define SCTLR_Z (1U << 11)
975#define SCTLR_I (1U << 12)
976#define SCTLR_V (1U << 13)
977#define SCTLR_RR (1U << 14) /* up to v7 */
978#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
979#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
980#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
981#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
982#define SCTLR_nTWI (1U << 16) /* v8 onward */
983#define SCTLR_HA (1U << 17)
f6bda88f 984#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
985#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
986#define SCTLR_nTWE (1U << 18) /* v8 onward */
987#define SCTLR_WXN (1U << 19)
988#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
989#define SCTLR_UWXN (1U << 20) /* v7 onward */
990#define SCTLR_FI (1U << 21)
991#define SCTLR_U (1U << 22)
992#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
993#define SCTLR_VE (1U << 24) /* up to v7 */
994#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
995#define SCTLR_EE (1U << 25)
996#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
997#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
998#define SCTLR_NMFI (1U << 27)
999#define SCTLR_TRE (1U << 28)
1000#define SCTLR_AFE (1U << 29)
1001#define SCTLR_TE (1U << 30)
1002
c6f19164
GB
1003#define CPTR_TCPAC (1U << 31)
1004#define CPTR_TTA (1U << 20)
1005#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1006#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1007#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1008
187f678d
PM
1009#define MDCR_EPMAD (1U << 21)
1010#define MDCR_EDAD (1U << 20)
1011#define MDCR_SPME (1U << 17)
1012#define MDCR_SDD (1U << 16)
a8d64e73 1013#define MDCR_SPD (3U << 14)
187f678d
PM
1014#define MDCR_TDRA (1U << 11)
1015#define MDCR_TDOSA (1U << 10)
1016#define MDCR_TDA (1U << 9)
1017#define MDCR_TDE (1U << 8)
1018#define MDCR_HPME (1U << 7)
1019#define MDCR_TPM (1U << 6)
1020#define MDCR_TPMCR (1U << 5)
1021
a8d64e73
PM
1022/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1023#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1024
78dbbbe4
PM
1025#define CPSR_M (0x1fU)
1026#define CPSR_T (1U << 5)
1027#define CPSR_F (1U << 6)
1028#define CPSR_I (1U << 7)
1029#define CPSR_A (1U << 8)
1030#define CPSR_E (1U << 9)
1031#define CPSR_IT_2_7 (0xfc00U)
1032#define CPSR_GE (0xfU << 16)
4051e12c
PM
1033#define CPSR_IL (1U << 20)
1034/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1035 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1036 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1037 * where it is live state but not accessible to the AArch32 code.
1038 */
1039#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
1040#define CPSR_J (1U << 24)
1041#define CPSR_IT_0_1 (3U << 25)
1042#define CPSR_Q (1U << 27)
1043#define CPSR_V (1U << 28)
1044#define CPSR_C (1U << 29)
1045#define CPSR_Z (1U << 30)
1046#define CPSR_N (1U << 31)
9ee6e8bb 1047#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1048#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1049
1050#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1051#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1052 | CPSR_NZCV)
9ee6e8bb
PB
1053/* Bits writable in user mode. */
1054#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1055/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
1056#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1057/* Mask of bits which may be set by exception return copying them from SPSR */
1058#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1059
987ab45e
PM
1060/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1061#define XPSR_EXCP 0x1ffU
1062#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1063#define XPSR_IT_2_7 CPSR_IT_2_7
1064#define XPSR_GE CPSR_GE
1065#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1066#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1067#define XPSR_IT_0_1 CPSR_IT_0_1
1068#define XPSR_Q CPSR_Q
1069#define XPSR_V CPSR_V
1070#define XPSR_C CPSR_C
1071#define XPSR_Z CPSR_Z
1072#define XPSR_N CPSR_N
1073#define XPSR_NZCV CPSR_NZCV
1074#define XPSR_IT CPSR_IT
1075
e389be16
FA
1076#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1077#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1078#define TTBCR_PD0 (1U << 4)
1079#define TTBCR_PD1 (1U << 5)
1080#define TTBCR_EPD0 (1U << 7)
1081#define TTBCR_IRGN0 (3U << 8)
1082#define TTBCR_ORGN0 (3U << 10)
1083#define TTBCR_SH0 (3U << 12)
1084#define TTBCR_T1SZ (3U << 16)
1085#define TTBCR_A1 (1U << 22)
1086#define TTBCR_EPD1 (1U << 23)
1087#define TTBCR_IRGN1 (3U << 24)
1088#define TTBCR_ORGN1 (3U << 26)
1089#define TTBCR_SH1 (1U << 28)
1090#define TTBCR_EAE (1U << 31)
1091
d356312f
PM
1092/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1093 * Only these are valid when in AArch64 mode; in
1094 * AArch32 mode SPSRs are basically CPSR-format.
1095 */
f502cfc2 1096#define PSTATE_SP (1U)
d356312f
PM
1097#define PSTATE_M (0xFU)
1098#define PSTATE_nRW (1U << 4)
1099#define PSTATE_F (1U << 6)
1100#define PSTATE_I (1U << 7)
1101#define PSTATE_A (1U << 8)
1102#define PSTATE_D (1U << 9)
1103#define PSTATE_IL (1U << 20)
1104#define PSTATE_SS (1U << 21)
1105#define PSTATE_V (1U << 28)
1106#define PSTATE_C (1U << 29)
1107#define PSTATE_Z (1U << 30)
1108#define PSTATE_N (1U << 31)
1109#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614
PM
1110#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1111#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
d356312f
PM
1112/* Mode values for AArch64 */
1113#define PSTATE_MODE_EL3h 13
1114#define PSTATE_MODE_EL3t 12
1115#define PSTATE_MODE_EL2h 9
1116#define PSTATE_MODE_EL2t 8
1117#define PSTATE_MODE_EL1h 5
1118#define PSTATE_MODE_EL1t 4
1119#define PSTATE_MODE_EL0t 0
1120
de2db7ec
PM
1121/* Write a new value to v7m.exception, thus transitioning into or out
1122 * of Handler mode; this may result in a change of active stack pointer.
1123 */
1124void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1125
9e729b57
EI
1126/* Map EL and handler into a PSTATE_MODE. */
1127static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1128{
1129 return (el << 2) | handler;
1130}
1131
d356312f
PM
1132/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1133 * interprocessing, so we don't attempt to sync with the cpsr state used by
1134 * the 32 bit decoder.
1135 */
1136static inline uint32_t pstate_read(CPUARMState *env)
1137{
1138 int ZF;
1139
1140 ZF = (env->ZF == 0);
1141 return (env->NF & 0x80000000) | (ZF << 30)
1142 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
4cc35614 1143 | env->pstate | env->daif;
d356312f
PM
1144}
1145
1146static inline void pstate_write(CPUARMState *env, uint32_t val)
1147{
1148 env->ZF = (~val) & PSTATE_Z;
1149 env->NF = val;
1150 env->CF = (val >> 29) & 1;
1151 env->VF = (val << 3) & 0x80000000;
4cc35614 1152 env->daif = val & PSTATE_DAIF;
d356312f
PM
1153 env->pstate = val & ~CACHED_PSTATE_BITS;
1154}
1155
b5ff1b31 1156/* Return the current CPSR value. */
2f4a40e5 1157uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1158
1159typedef enum CPSRWriteType {
1160 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1161 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1162 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1163 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1164} CPSRWriteType;
1165
1166/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1167void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1168 CPSRWriteType write_type);
9ee6e8bb
PB
1169
1170/* Return the current xPSR value. */
1171static inline uint32_t xpsr_read(CPUARMState *env)
1172{
1173 int ZF;
6fbe23d5
PB
1174 ZF = (env->ZF == 0);
1175 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1176 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1177 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1178 | ((env->condexec_bits & 0xfc) << 8)
1179 | env->v7m.exception;
b5ff1b31
FB
1180}
1181
9ee6e8bb
PB
1182/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1183static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1184{
987ab45e
PM
1185 if (mask & XPSR_NZCV) {
1186 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1187 env->NF = val;
9ee6e8bb
PB
1188 env->CF = (val >> 29) & 1;
1189 env->VF = (val << 3) & 0x80000000;
1190 }
987ab45e
PM
1191 if (mask & XPSR_Q) {
1192 env->QF = ((val & XPSR_Q) != 0);
1193 }
1194 if (mask & XPSR_T) {
1195 env->thumb = ((val & XPSR_T) != 0);
1196 }
1197 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1198 env->condexec_bits &= ~3;
1199 env->condexec_bits |= (val >> 25) & 3;
1200 }
987ab45e 1201 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1202 env->condexec_bits &= 3;
1203 env->condexec_bits |= (val >> 8) & 0xfc;
1204 }
987ab45e 1205 if (mask & XPSR_EXCP) {
de2db7ec
PM
1206 /* Note that this only happens on exception exit */
1207 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1208 }
1209}
1210
f149e3e8
EI
1211#define HCR_VM (1ULL << 0)
1212#define HCR_SWIO (1ULL << 1)
1213#define HCR_PTW (1ULL << 2)
1214#define HCR_FMO (1ULL << 3)
1215#define HCR_IMO (1ULL << 4)
1216#define HCR_AMO (1ULL << 5)
1217#define HCR_VF (1ULL << 6)
1218#define HCR_VI (1ULL << 7)
1219#define HCR_VSE (1ULL << 8)
1220#define HCR_FB (1ULL << 9)
1221#define HCR_BSU_MASK (3ULL << 10)
1222#define HCR_DC (1ULL << 12)
1223#define HCR_TWI (1ULL << 13)
1224#define HCR_TWE (1ULL << 14)
1225#define HCR_TID0 (1ULL << 15)
1226#define HCR_TID1 (1ULL << 16)
1227#define HCR_TID2 (1ULL << 17)
1228#define HCR_TID3 (1ULL << 18)
1229#define HCR_TSC (1ULL << 19)
1230#define HCR_TIDCP (1ULL << 20)
1231#define HCR_TACR (1ULL << 21)
1232#define HCR_TSW (1ULL << 22)
1233#define HCR_TPC (1ULL << 23)
1234#define HCR_TPU (1ULL << 24)
1235#define HCR_TTLB (1ULL << 25)
1236#define HCR_TVM (1ULL << 26)
1237#define HCR_TGE (1ULL << 27)
1238#define HCR_TDZ (1ULL << 28)
1239#define HCR_HCD (1ULL << 29)
1240#define HCR_TRVM (1ULL << 30)
1241#define HCR_RW (1ULL << 31)
1242#define HCR_CD (1ULL << 32)
1243#define HCR_ID (1ULL << 33)
ac656b16
PM
1244#define HCR_E2H (1ULL << 34)
1245/*
1246 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1247 * HCR_MASK and then clear it again if the feature bit is not set in
1248 * hcr_write().
1249 */
f149e3e8
EI
1250#define HCR_MASK ((1ULL << 34) - 1)
1251
64e0e2de
EI
1252#define SCR_NS (1U << 0)
1253#define SCR_IRQ (1U << 1)
1254#define SCR_FIQ (1U << 2)
1255#define SCR_EA (1U << 3)
1256#define SCR_FW (1U << 4)
1257#define SCR_AW (1U << 5)
1258#define SCR_NET (1U << 6)
1259#define SCR_SMD (1U << 7)
1260#define SCR_HCE (1U << 8)
1261#define SCR_SIF (1U << 9)
1262#define SCR_RW (1U << 10)
1263#define SCR_ST (1U << 11)
1264#define SCR_TWI (1U << 12)
1265#define SCR_TWE (1U << 13)
1266#define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1267#define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1268
01653295
PM
1269/* Return the current FPSCR value. */
1270uint32_t vfp_get_fpscr(CPUARMState *env);
1271void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1272
d81ce0ef
AB
1273/* FPCR, Floating Point Control Register
1274 * FPSR, Floating Poiht Status Register
1275 *
1276 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1277 * FPCR and FPSR. However since they still use non-overlapping bits
1278 * we store the underlying state in fpscr and just mask on read/write.
1279 */
1280#define FPSR_MASK 0xf800009f
0b62159b 1281#define FPCR_MASK 0x07ff9f00
d81ce0ef
AB
1282
1283#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1284#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1285#define FPCR_DN (1 << 25) /* Default NaN enable bit */
1286
f903fa22
PM
1287static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1288{
1289 return vfp_get_fpscr(env) & FPSR_MASK;
1290}
1291
1292static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1293{
1294 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1295 vfp_set_fpscr(env, new_fpscr);
1296}
1297
1298static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1299{
1300 return vfp_get_fpscr(env) & FPCR_MASK;
1301}
1302
1303static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1304{
1305 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1306 vfp_set_fpscr(env, new_fpscr);
1307}
1308
b5ff1b31
FB
1309enum arm_cpu_mode {
1310 ARM_CPU_MODE_USR = 0x10,
1311 ARM_CPU_MODE_FIQ = 0x11,
1312 ARM_CPU_MODE_IRQ = 0x12,
1313 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1314 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1315 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1316 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1317 ARM_CPU_MODE_UND = 0x1b,
1318 ARM_CPU_MODE_SYS = 0x1f
1319};
1320
40f137e1
PB
1321/* VFP system registers. */
1322#define ARM_VFP_FPSID 0
1323#define ARM_VFP_FPSCR 1
a50c0f51 1324#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1325#define ARM_VFP_MVFR1 6
1326#define ARM_VFP_MVFR0 7
40f137e1
PB
1327#define ARM_VFP_FPEXC 8
1328#define ARM_VFP_FPINST 9
1329#define ARM_VFP_FPINST2 10
1330
18c9b560 1331/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1332#define ARM_IWMMXT_wCID 0
1333#define ARM_IWMMXT_wCon 1
1334#define ARM_IWMMXT_wCSSF 2
1335#define ARM_IWMMXT_wCASF 3
1336#define ARM_IWMMXT_wCGR0 8
1337#define ARM_IWMMXT_wCGR1 9
1338#define ARM_IWMMXT_wCGR2 10
1339#define ARM_IWMMXT_wCGR3 11
18c9b560 1340
2c4da50d
PM
1341/* V7M CCR bits */
1342FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1343FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1344FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1345FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1346FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1347FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1348FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1349FIELD(V7M_CCR, DC, 16, 1)
1350FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1351FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1352
24ac0fb1
PM
1353/* V7M SCR bits */
1354FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1355FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1356FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1357FIELD(V7M_SCR, SEVONPEND, 4, 1)
1358
3b2e9344
PM
1359/* V7M AIRCR bits */
1360FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1361FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1362FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1363FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1364FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1365FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1366FIELD(V7M_AIRCR, PRIS, 14, 1)
1367FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1368FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1369
2c4da50d
PM
1370/* V7M CFSR bits for MMFSR */
1371FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1372FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1373FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1374FIELD(V7M_CFSR, MSTKERR, 4, 1)
1375FIELD(V7M_CFSR, MLSPERR, 5, 1)
1376FIELD(V7M_CFSR, MMARVALID, 7, 1)
1377
1378/* V7M CFSR bits for BFSR */
1379FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1380FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1381FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1382FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1383FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1384FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1385FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1386
1387/* V7M CFSR bits for UFSR */
1388FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1389FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1390FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1391FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1392FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1393FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1394FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1395
334e8dad
PM
1396/* V7M CFSR bit masks covering all of the subregister bits */
1397FIELD(V7M_CFSR, MMFSR, 0, 8)
1398FIELD(V7M_CFSR, BFSR, 8, 8)
1399FIELD(V7M_CFSR, UFSR, 16, 16)
1400
2c4da50d
PM
1401/* V7M HFSR bits */
1402FIELD(V7M_HFSR, VECTTBL, 1, 1)
1403FIELD(V7M_HFSR, FORCED, 30, 1)
1404FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1405
1406/* V7M DFSR bits */
1407FIELD(V7M_DFSR, HALTED, 0, 1)
1408FIELD(V7M_DFSR, BKPT, 1, 1)
1409FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1410FIELD(V7M_DFSR, VCATCH, 3, 1)
1411FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1412
bed079da
PM
1413/* V7M SFSR bits */
1414FIELD(V7M_SFSR, INVEP, 0, 1)
1415FIELD(V7M_SFSR, INVIS, 1, 1)
1416FIELD(V7M_SFSR, INVER, 2, 1)
1417FIELD(V7M_SFSR, AUVIOL, 3, 1)
1418FIELD(V7M_SFSR, INVTRAN, 4, 1)
1419FIELD(V7M_SFSR, LSPERR, 5, 1)
1420FIELD(V7M_SFSR, SFARVALID, 6, 1)
1421FIELD(V7M_SFSR, LSERR, 7, 1)
1422
29c483a5
MD
1423/* v7M MPU_CTRL bits */
1424FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1425FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1426FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1427
43bbce7f
PM
1428/* v7M CLIDR bits */
1429FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1430FIELD(V7M_CLIDR, LOUIS, 21, 3)
1431FIELD(V7M_CLIDR, LOC, 24, 3)
1432FIELD(V7M_CLIDR, LOUU, 27, 3)
1433FIELD(V7M_CLIDR, ICB, 30, 2)
1434
1435FIELD(V7M_CSSELR, IND, 0, 1)
1436FIELD(V7M_CSSELR, LEVEL, 1, 3)
1437/* We use the combination of InD and Level to index into cpu->ccsidr[];
1438 * define a mask for this and check that it doesn't permit running off
1439 * the end of the array.
1440 */
1441FIELD(V7M_CSSELR, INDEX, 0, 4)
1442
1443QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1444
ce854d7c
BC
1445/* If adding a feature bit which corresponds to a Linux ELF
1446 * HWCAP bit, remember to update the feature-bit-to-hwcap
1447 * mapping in linux-user/elfload.c:get_elf_hwcap().
1448 */
40f137e1
PB
1449enum arm_features {
1450 ARM_FEATURE_VFP,
c1713132
AZ
1451 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1452 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1453 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1454 ARM_FEATURE_V6,
1455 ARM_FEATURE_V6K,
1456 ARM_FEATURE_V7,
1457 ARM_FEATURE_THUMB2,
452a0955 1458 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1459 ARM_FEATURE_VFP3,
60011498 1460 ARM_FEATURE_VFP_FP16,
9ee6e8bb 1461 ARM_FEATURE_NEON,
47789990 1462 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 1463 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1464 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1465 ARM_FEATURE_THUMB2EE,
be5e7a76 1466 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1467 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1468 ARM_FEATURE_V4T,
1469 ARM_FEATURE_V5,
5bc95aa2 1470 ARM_FEATURE_STRONGARM,
906879a9 1471 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 1472 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 1473 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1474 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1475 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1476 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1477 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1478 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1479 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1480 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1481 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1482 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1483 ARM_FEATURE_V8,
3926cc84 1484 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 1485 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 1486 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1487 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1488 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1489 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1490 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
f1ecb913
AB
1491 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1492 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
4e624eda 1493 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
62b44f05 1494 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1495 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1496 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1497 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
c99a55d3 1498 ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
0d0a16c6 1499 ARM_FEATURE_SVE, /* has Scalable Vector Extension */
90b827d1 1500 ARM_FEATURE_V8_SHA512, /* implements SHA512 part of v8 Crypto Extensions */
cd270ade 1501 ARM_FEATURE_V8_SHA3, /* implements SHA3 part of v8 Crypto Extensions */
80d6f4c6 1502 ARM_FEATURE_V8_SM3, /* implements SM3 part of v8 Crypto Extensions */
b6577bcd 1503 ARM_FEATURE_V8_SM4, /* implements SM4 part of v8 Crypto Extensions */
68412d2e 1504 ARM_FEATURE_V8_ATOMICS, /* ARMv8.1-Atomics feature */
1dc81c15 1505 ARM_FEATURE_V8_RDM, /* implements v8.1 simd round multiply */
26c470a7 1506 ARM_FEATURE_V8_DOTPROD, /* implements v8.2 simd dot product */
6ad4d618 1507 ARM_FEATURE_V8_FP16, /* implements v8.2 half-precision float */
0438f037 1508 ARM_FEATURE_V8_FCMA, /* has complex number part of v8.3 extensions. */
cc2ae7c9 1509 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1510};
1511
1512static inline int arm_feature(CPUARMState *env, int feature)
1513{
918f5dca 1514 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1515}
1516
19e0fefa
FA
1517#if !defined(CONFIG_USER_ONLY)
1518/* Return true if exception levels below EL3 are in secure state,
1519 * or would be following an exception return to that level.
1520 * Unlike arm_is_secure() (which is always a question about the
1521 * _current_ state of the CPU) this doesn't care about the current
1522 * EL or mode.
1523 */
1524static inline bool arm_is_secure_below_el3(CPUARMState *env)
1525{
1526 if (arm_feature(env, ARM_FEATURE_EL3)) {
1527 return !(env->cp15.scr_el3 & SCR_NS);
1528 } else {
6b7f0b61 1529 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1530 * defined, in which case QEMU defaults to non-secure.
1531 */
1532 return false;
1533 }
1534}
1535
71205876
PM
1536/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1537static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1538{
1539 if (arm_feature(env, ARM_FEATURE_EL3)) {
1540 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1541 /* CPU currently in AArch64 state and EL3 */
1542 return true;
1543 } else if (!is_a64(env) &&
1544 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1545 /* CPU currently in AArch32 state and monitor mode */
1546 return true;
1547 }
1548 }
71205876
PM
1549 return false;
1550}
1551
1552/* Return true if the processor is in secure state */
1553static inline bool arm_is_secure(CPUARMState *env)
1554{
1555 if (arm_is_el3_or_mon(env)) {
1556 return true;
1557 }
19e0fefa
FA
1558 return arm_is_secure_below_el3(env);
1559}
1560
1561#else
1562static inline bool arm_is_secure_below_el3(CPUARMState *env)
1563{
1564 return false;
1565}
1566
1567static inline bool arm_is_secure(CPUARMState *env)
1568{
1569 return false;
1570}
1571#endif
1572
1f79ee32
PM
1573/* Return true if the specified exception level is running in AArch64 state. */
1574static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1575{
446c81ab
PM
1576 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1577 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1578 */
446c81ab
PM
1579 assert(el >= 1 && el <= 3);
1580 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1581
446c81ab
PM
1582 /* The highest exception level is always at the maximum supported
1583 * register width, and then lower levels have a register width controlled
1584 * by bits in the SCR or HCR registers.
1f79ee32 1585 */
446c81ab
PM
1586 if (el == 3) {
1587 return aa64;
1588 }
1589
1590 if (arm_feature(env, ARM_FEATURE_EL3)) {
1591 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1592 }
1593
1594 if (el == 2) {
1595 return aa64;
1596 }
1597
1598 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1599 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1600 }
1601
1602 return aa64;
1f79ee32
PM
1603}
1604
3f342b9e
SF
1605/* Function for determing whether guest cp register reads and writes should
1606 * access the secure or non-secure bank of a cp register. When EL3 is
1607 * operating in AArch32 state, the NS-bit determines whether the secure
1608 * instance of a cp register should be used. When EL3 is AArch64 (or if
1609 * it doesn't exist at all) then there is no register banking, and all
1610 * accesses are to the non-secure version.
1611 */
1612static inline bool access_secure_reg(CPUARMState *env)
1613{
1614 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1615 !arm_el_is_aa64(env, 3) &&
1616 !(env->cp15.scr_el3 & SCR_NS));
1617
1618 return ret;
1619}
1620
ea30a4b8
FA
1621/* Macros for accessing a specified CP register bank */
1622#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1623 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1624
1625#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1626 do { \
1627 if (_secure) { \
1628 (_env)->cp15._regname##_s = (_val); \
1629 } else { \
1630 (_env)->cp15._regname##_ns = (_val); \
1631 } \
1632 } while (0)
1633
1634/* Macros for automatically accessing a specific CP register bank depending on
1635 * the current secure state of the system. These macros are not intended for
1636 * supporting instruction translation reads/writes as these are dependent
1637 * solely on the SCR.NS bit and not the mode.
1638 */
1639#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1640 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1641 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1642
1643#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1644 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1645 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1646 (_val))
1647
9a78eead 1648void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
012a906b
GB
1649uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1650 uint32_t cur_el, bool secure);
40f137e1 1651
9ee6e8bb 1652/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1653#ifndef CONFIG_USER_ONLY
1654bool armv7m_nvic_can_take_pending_exception(void *opaque);
1655#else
1656static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1657{
1658 return true;
1659}
1660#endif
2fb50a33
PM
1661/**
1662 * armv7m_nvic_set_pending: mark the specified exception as pending
1663 * @opaque: the NVIC
1664 * @irq: the exception number to mark pending
1665 * @secure: false for non-banked exceptions or for the nonsecure
1666 * version of a banked exception, true for the secure version of a banked
1667 * exception.
1668 *
1669 * Marks the specified exception as pending. Note that we will assert()
1670 * if @secure is true and @irq does not specify one of the fixed set
1671 * of architecturally banked exceptions.
1672 */
1673void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
1674/**
1675 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1676 * @opaque: the NVIC
1677 * @irq: the exception number to mark pending
1678 * @secure: false for non-banked exceptions or for the nonsecure
1679 * version of a banked exception, true for the secure version of a banked
1680 * exception.
1681 *
1682 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1683 * exceptions (exceptions generated in the course of trying to take
1684 * a different exception).
1685 */
1686void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
6c948518
PM
1687/**
1688 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1689 * exception, and whether it targets Secure state
1690 * @opaque: the NVIC
1691 * @pirq: set to pending exception number
1692 * @ptargets_secure: set to whether pending exception targets Secure
1693 *
1694 * This function writes the number of the highest priority pending
1695 * exception (the one which would be made active by
1696 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1697 * to true if the current highest priority pending exception should
1698 * be taken to Secure state, false for NS.
1699 */
1700void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1701 bool *ptargets_secure);
5cb18069
PM
1702/**
1703 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1704 * @opaque: the NVIC
1705 *
1706 * Move the current highest priority pending exception from the pending
1707 * state to the active state, and update v7m.exception to indicate that
1708 * it is the exception currently being handled.
5cb18069 1709 */
6c948518 1710void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
1711/**
1712 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1713 * @opaque: the NVIC
1714 * @irq: the exception number to complete
5cb18069 1715 * @secure: true if this exception was secure
aa488fe3
PM
1716 *
1717 * Returns: -1 if the irq was not active
1718 * 1 if completing this irq brought us back to base (no active irqs)
1719 * 0 if there is still an irq active after this one was completed
1720 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1721 */
5cb18069 1722int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
42a6686b
PM
1723/**
1724 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1725 * @opaque: the NVIC
1726 *
1727 * Returns: the raw execution priority as defined by the v8M architecture.
1728 * This is the execution priority minus the effects of AIRCR.PRIS,
1729 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1730 * (v8M ARM ARM I_PKLD.)
1731 */
1732int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
1733/**
1734 * armv7m_nvic_neg_prio_requested: return true if the requested execution
1735 * priority is negative for the specified security state.
1736 * @opaque: the NVIC
1737 * @secure: the security state to test
1738 * This corresponds to the pseudocode IsReqExecPriNeg().
1739 */
1740#ifndef CONFIG_USER_ONLY
1741bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1742#else
1743static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1744{
1745 return false;
1746}
1747#endif
9ee6e8bb 1748
4b6a83fb
PM
1749/* Interface for defining coprocessor registers.
1750 * Registers are defined in tables of arm_cp_reginfo structs
1751 * which are passed to define_arm_cp_regs().
1752 */
1753
1754/* When looking up a coprocessor register we look for it
1755 * via an integer which encodes all of:
1756 * coprocessor number
1757 * Crn, Crm, opc1, opc2 fields
1758 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1759 * or via MRRC/MCRR?)
51a79b03 1760 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
1761 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1762 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
1763 * For AArch64, there is no 32/64 bit size distinction;
1764 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1765 * and 4 bit CRn and CRm. The encoding patterns are chosen
1766 * to be easy to convert to and from the KVM encodings, and also
1767 * so that the hashtable can contain both AArch32 and AArch64
1768 * registers (to allow for interprocessing where we might run
1769 * 32 bit code on a 64 bit core).
4b6a83fb 1770 */
f5a0a5a5
PM
1771/* This bit is private to our hashtable cpreg; in KVM register
1772 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1773 * in the upper bits of the 64 bit ID.
1774 */
1775#define CP_REG_AA64_SHIFT 28
1776#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1777
51a79b03
PM
1778/* To enable banking of coprocessor registers depending on ns-bit we
1779 * add a bit to distinguish between secure and non-secure cpregs in the
1780 * hashtable.
1781 */
1782#define CP_REG_NS_SHIFT 29
1783#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1784
1785#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1786 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1787 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 1788
f5a0a5a5
PM
1789#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1790 (CP_REG_AA64_MASK | \
1791 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1792 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1793 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1794 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1795 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1796 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1797
721fae12
PM
1798/* Convert a full 64 bit KVM register ID to the truncated 32 bit
1799 * version used as a key for the coprocessor register hashtable
1800 */
1801static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1802{
1803 uint32_t cpregid = kvmid;
f5a0a5a5
PM
1804 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1805 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
1806 } else {
1807 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1808 cpregid |= (1 << 15);
1809 }
1810
1811 /* KVM is always non-secure so add the NS flag on AArch32 register
1812 * entries.
1813 */
1814 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
1815 }
1816 return cpregid;
1817}
1818
1819/* Convert a truncated 32 bit hashtable key into the full
1820 * 64 bit KVM register ID.
1821 */
1822static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1823{
f5a0a5a5
PM
1824 uint64_t kvmid;
1825
1826 if (cpregid & CP_REG_AA64_MASK) {
1827 kvmid = cpregid & ~CP_REG_AA64_MASK;
1828 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 1829 } else {
f5a0a5a5
PM
1830 kvmid = cpregid & ~(1 << 15);
1831 if (cpregid & (1 << 15)) {
1832 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1833 } else {
1834 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1835 }
721fae12
PM
1836 }
1837 return kvmid;
1838}
1839
4b6a83fb 1840/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 1841 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
1842 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1843 * TCG can assume the value to be constant (ie load at translate time)
1844 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1845 * indicates that the TB should not be ended after a write to this register
1846 * (the default is that the TB ends after cp writes). OVERRIDE permits
1847 * a register definition to override a previous definition for the
1848 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1849 * old must have the OVERRIDE bit set.
7a0e58fa
PM
1850 * ALIAS indicates that this register is an alias view of some underlying
1851 * state which is also visible via another register, and that the other
b061a82b
SF
1852 * register is handling migration and reset; registers marked ALIAS will not be
1853 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
1854 * NO_RAW indicates that this register has no underlying state and does not
1855 * support raw access for state saving/loading; it will not be used for either
1856 * migration or KVM state synchronization. (Typically this is for "registers"
1857 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
1858 * IO indicates that this register does I/O and therefore its accesses
1859 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1860 * registers which implement clocks or timers require this.
4b6a83fb 1861 */
fe03d45f
RH
1862#define ARM_CP_SPECIAL 0x0001
1863#define ARM_CP_CONST 0x0002
1864#define ARM_CP_64BIT 0x0004
1865#define ARM_CP_SUPPRESS_TB_END 0x0008
1866#define ARM_CP_OVERRIDE 0x0010
1867#define ARM_CP_ALIAS 0x0020
1868#define ARM_CP_IO 0x0040
1869#define ARM_CP_NO_RAW 0x0080
1870#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
1871#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
1872#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
1873#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
1874#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
1875#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1876#define ARM_CP_FPU 0x1000
490aa7f1 1877#define ARM_CP_SVE 0x2000
1f163787 1878#define ARM_CP_NO_GDB 0x4000
4b6a83fb 1879/* Used only as a terminator for ARMCPRegInfo lists */
fe03d45f 1880#define ARM_CP_SENTINEL 0xffff
4b6a83fb 1881/* Mask of only the flag bits in a type field */
1f163787 1882#define ARM_CP_FLAG_MASK 0x70ff
4b6a83fb 1883
f5a0a5a5
PM
1884/* Valid values for ARMCPRegInfo state field, indicating which of
1885 * the AArch32 and AArch64 execution states this register is visible in.
1886 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1887 * If the reginfo is declared to be visible in both states then a second
1888 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1889 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1890 * Note that we rely on the values of these enums as we iterate through
1891 * the various states in some places.
1892 */
1893enum {
1894 ARM_CP_STATE_AA32 = 0,
1895 ARM_CP_STATE_AA64 = 1,
1896 ARM_CP_STATE_BOTH = 2,
1897};
1898
c3e30260
FA
1899/* ARM CP register secure state flags. These flags identify security state
1900 * attributes for a given CP register entry.
1901 * The existence of both or neither secure and non-secure flags indicates that
1902 * the register has both a secure and non-secure hash entry. A single one of
1903 * these flags causes the register to only be hashed for the specified
1904 * security state.
1905 * Although definitions may have any combination of the S/NS bits, each
1906 * registered entry will only have one to identify whether the entry is secure
1907 * or non-secure.
1908 */
1909enum {
1910 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1911 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1912};
1913
4b6a83fb
PM
1914/* Return true if cptype is a valid type field. This is used to try to
1915 * catch errors where the sentinel has been accidentally left off the end
1916 * of a list of registers.
1917 */
1918static inline bool cptype_valid(int cptype)
1919{
1920 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1921 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 1922 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
1923}
1924
1925/* Access rights:
1926 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1927 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1928 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1929 * (ie any of the privileged modes in Secure state, or Monitor mode).
1930 * If a register is accessible in one privilege level it's always accessible
1931 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1932 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1933 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1934 * terminology a little and call this PL3.
f5a0a5a5
PM
1935 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1936 * with the ELx exception levels.
4b6a83fb
PM
1937 *
1938 * If access permissions for a register are more complex than can be
1939 * described with these bits, then use a laxer set of restrictions, and
1940 * do the more restrictive/complex check inside a helper function.
1941 */
1942#define PL3_R 0x80
1943#define PL3_W 0x40
1944#define PL2_R (0x20 | PL3_R)
1945#define PL2_W (0x10 | PL3_W)
1946#define PL1_R (0x08 | PL2_R)
1947#define PL1_W (0x04 | PL2_W)
1948#define PL0_R (0x02 | PL1_R)
1949#define PL0_W (0x01 | PL1_W)
1950
1951#define PL3_RW (PL3_R | PL3_W)
1952#define PL2_RW (PL2_R | PL2_W)
1953#define PL1_RW (PL1_R | PL1_W)
1954#define PL0_RW (PL0_R | PL0_W)
1955
75502672
PM
1956/* Return the highest implemented Exception Level */
1957static inline int arm_highest_el(CPUARMState *env)
1958{
1959 if (arm_feature(env, ARM_FEATURE_EL3)) {
1960 return 3;
1961 }
1962 if (arm_feature(env, ARM_FEATURE_EL2)) {
1963 return 2;
1964 }
1965 return 1;
1966}
1967
15b3f556
PM
1968/* Return true if a v7M CPU is in Handler mode */
1969static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1970{
1971 return env->v7m.exception != 0;
1972}
1973
dcbff19b
GB
1974/* Return the current Exception Level (as per ARMv8; note that this differs
1975 * from the ARMv7 Privilege Level).
1976 */
1977static inline int arm_current_el(CPUARMState *env)
4b6a83fb 1978{
6d54ed3c 1979 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
1980 return arm_v7m_is_handler_mode(env) ||
1981 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
1982 }
1983
592125f8 1984 if (is_a64(env)) {
f5a0a5a5
PM
1985 return extract32(env->pstate, 2, 2);
1986 }
1987
592125f8
FA
1988 switch (env->uncached_cpsr & 0x1f) {
1989 case ARM_CPU_MODE_USR:
4b6a83fb 1990 return 0;
592125f8
FA
1991 case ARM_CPU_MODE_HYP:
1992 return 2;
1993 case ARM_CPU_MODE_MON:
1994 return 3;
1995 default:
1996 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1997 /* If EL3 is 32-bit then all secure privileged modes run in
1998 * EL3
1999 */
2000 return 3;
2001 }
2002
2003 return 1;
4b6a83fb 2004 }
4b6a83fb
PM
2005}
2006
2007typedef struct ARMCPRegInfo ARMCPRegInfo;
2008
f59df3f2
PM
2009typedef enum CPAccessResult {
2010 /* Access is permitted */
2011 CP_ACCESS_OK = 0,
2012 /* Access fails due to a configurable trap or enable which would
2013 * result in a categorized exception syndrome giving information about
2014 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2015 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2016 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2017 */
2018 CP_ACCESS_TRAP = 1,
2019 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2020 * Note that this is not a catch-all case -- the set of cases which may
2021 * result in this failure is specifically defined by the architecture.
2022 */
2023 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2024 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2025 CP_ACCESS_TRAP_EL2 = 3,
2026 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2027 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2028 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2029 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2030 /* Access fails and results in an exception syndrome for an FP access,
2031 * trapped directly to EL2 or EL3
2032 */
2033 CP_ACCESS_TRAP_FP_EL2 = 7,
2034 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2035} CPAccessResult;
2036
c4241c7d
PM
2037/* Access functions for coprocessor registers. These cannot fail and
2038 * may not raise exceptions.
2039 */
2040typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2041typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2042 uint64_t value);
f59df3f2 2043/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2044typedef CPAccessResult CPAccessFn(CPUARMState *env,
2045 const ARMCPRegInfo *opaque,
2046 bool isread);
4b6a83fb
PM
2047/* Hook function for register reset */
2048typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2049
2050#define CP_ANY 0xff
2051
2052/* Definition of an ARM coprocessor register */
2053struct ARMCPRegInfo {
2054 /* Name of register (useful mainly for debugging, need not be unique) */
2055 const char *name;
2056 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2057 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2058 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2059 * will be decoded to this register. The register read and write
2060 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2061 * used by the program, so it is possible to register a wildcard and
2062 * then behave differently on read/write if necessary.
2063 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2064 * must both be zero.
f5a0a5a5
PM
2065 * For AArch64-visible registers, opc0 is also used.
2066 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2067 * way to distinguish (for KVM's benefit) guest-visible system registers
2068 * from demuxed ones provided to preserve the "no side effects on
2069 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2070 * visible (to match KVM's encoding); cp==0 will be converted to
2071 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2072 */
2073 uint8_t cp;
2074 uint8_t crn;
2075 uint8_t crm;
f5a0a5a5 2076 uint8_t opc0;
4b6a83fb
PM
2077 uint8_t opc1;
2078 uint8_t opc2;
f5a0a5a5
PM
2079 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2080 int state;
4b6a83fb
PM
2081 /* Register type: ARM_CP_* bits/values */
2082 int type;
2083 /* Access rights: PL*_[RW] */
2084 int access;
c3e30260
FA
2085 /* Security state: ARM_CP_SECSTATE_* bits/values */
2086 int secure;
4b6a83fb
PM
2087 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2088 * this register was defined: can be used to hand data through to the
2089 * register read/write functions, since they are passed the ARMCPRegInfo*.
2090 */
2091 void *opaque;
2092 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2093 * fieldoffset is non-zero, the reset value of the register.
2094 */
2095 uint64_t resetvalue;
c3e30260
FA
2096 /* Offset of the field in CPUARMState for this register.
2097 *
2098 * This is not needed if either:
4b6a83fb
PM
2099 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2100 * 2. both readfn and writefn are specified
2101 */
2102 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2103
2104 /* Offsets of the secure and non-secure fields in CPUARMState for the
2105 * register if it is banked. These fields are only used during the static
2106 * registration of a register. During hashing the bank associated
2107 * with a given security state is copied to fieldoffset which is used from
2108 * there on out.
2109 *
2110 * It is expected that register definitions use either fieldoffset or
2111 * bank_fieldoffsets in the definition but not both. It is also expected
2112 * that both bank offsets are set when defining a banked register. This
2113 * use indicates that a register is banked.
2114 */
2115 ptrdiff_t bank_fieldoffsets[2];
2116
f59df3f2
PM
2117 /* Function for making any access checks for this register in addition to
2118 * those specified by the 'access' permissions bits. If NULL, no extra
2119 * checks required. The access check is performed at runtime, not at
2120 * translate time.
2121 */
2122 CPAccessFn *accessfn;
4b6a83fb
PM
2123 /* Function for handling reads of this register. If NULL, then reads
2124 * will be done by loading from the offset into CPUARMState specified
2125 * by fieldoffset.
2126 */
2127 CPReadFn *readfn;
2128 /* Function for handling writes of this register. If NULL, then writes
2129 * will be done by writing to the offset into CPUARMState specified
2130 * by fieldoffset.
2131 */
2132 CPWriteFn *writefn;
7023ec7e
PM
2133 /* Function for doing a "raw" read; used when we need to copy
2134 * coprocessor state to the kernel for KVM or out for
2135 * migration. This only needs to be provided if there is also a
c4241c7d 2136 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2137 */
2138 CPReadFn *raw_readfn;
2139 /* Function for doing a "raw" write; used when we need to copy KVM
2140 * kernel coprocessor state into userspace, or for inbound
2141 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2142 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2143 * or similar behaviour.
7023ec7e
PM
2144 */
2145 CPWriteFn *raw_writefn;
4b6a83fb
PM
2146 /* Function for resetting the register. If NULL, then reset will be done
2147 * by writing resetvalue to the field specified in fieldoffset. If
2148 * fieldoffset is 0 then no reset will be done.
2149 */
2150 CPResetFn *resetfn;
2151};
2152
2153/* Macros which are lvalues for the field in CPUARMState for the
2154 * ARMCPRegInfo *ri.
2155 */
2156#define CPREG_FIELD32(env, ri) \
2157 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2158#define CPREG_FIELD64(env, ri) \
2159 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2160
2161#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2162
2163void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2164 const ARMCPRegInfo *regs, void *opaque);
2165void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2166 const ARMCPRegInfo *regs, void *opaque);
2167static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2168{
2169 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2170}
2171static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2172{
2173 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2174}
60322b39 2175const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
2176
2177/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2178void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2179 uint64_t value);
4b6a83fb 2180/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2181uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2182
f5a0a5a5
PM
2183/* CPResetFn that does nothing, for use if no reset is required even
2184 * if fieldoffset is non zero.
2185 */
2186void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2187
67ed771d
PM
2188/* Return true if this reginfo struct's field in the cpu state struct
2189 * is 64 bits wide.
2190 */
2191static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2192{
2193 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2194}
2195
dcbff19b 2196static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2197 const ARMCPRegInfo *ri, int isread)
2198{
dcbff19b 2199 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2200}
2201
49a66191
PM
2202/* Raw read of a coprocessor register (as needed for migration, etc) */
2203uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2204
721fae12
PM
2205/**
2206 * write_list_to_cpustate
2207 * @cpu: ARMCPU
2208 *
2209 * For each register listed in the ARMCPU cpreg_indexes list, write
2210 * its value from the cpreg_values list into the ARMCPUState structure.
2211 * This updates TCG's working data structures from KVM data or
2212 * from incoming migration state.
2213 *
2214 * Returns: true if all register values were updated correctly,
2215 * false if some register was unknown or could not be written.
2216 * Note that we do not stop early on failure -- we will attempt
2217 * writing all registers in the list.
2218 */
2219bool write_list_to_cpustate(ARMCPU *cpu);
2220
2221/**
2222 * write_cpustate_to_list:
2223 * @cpu: ARMCPU
2224 *
2225 * For each register listed in the ARMCPU cpreg_indexes list, write
2226 * its value from the ARMCPUState structure into the cpreg_values list.
2227 * This is used to copy info from TCG's working data structures into
2228 * KVM or for outbound migration.
2229 *
2230 * Returns: true if all register values were read correctly,
2231 * false if some register was unknown or could not be read.
2232 * Note that we do not stop early on failure -- we will attempt
2233 * reading all registers in the list.
2234 */
2235bool write_cpustate_to_list(ARMCPU *cpu);
2236
9ee6e8bb
PB
2237#define ARM_CPUID_TI915T 0x54029152
2238#define ARM_CPUID_TI925T 0x54029252
40f137e1 2239
b5ff1b31 2240#if defined(CONFIG_USER_ONLY)
2c0262af 2241#define TARGET_PAGE_BITS 12
b5ff1b31 2242#else
e97da98f
PM
2243/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2244 * have to support 1K tiny pages.
2245 */
2246#define TARGET_PAGE_BITS_VARY
2247#define TARGET_PAGE_BITS_MIN 10
b5ff1b31 2248#endif
9467d44c 2249
3926cc84
AG
2250#if defined(TARGET_AARCH64)
2251# define TARGET_PHYS_ADDR_SPACE_BITS 48
2252# define TARGET_VIRT_ADDR_SPACE_BITS 64
2253#else
2254# define TARGET_PHYS_ADDR_SPACE_BITS 40
2255# define TARGET_VIRT_ADDR_SPACE_BITS 32
2256#endif
52705890 2257
ac656b16
PM
2258/**
2259 * arm_hcr_el2_imo(): Return the effective value of HCR_EL2.IMO.
2260 * Depending on the values of HCR_EL2.E2H and TGE, this may be
2261 * "behaves as 1 for all purposes other than direct read/write" or
2262 * "behaves as 0 for all purposes other than direct read/write"
2263 */
2264static inline bool arm_hcr_el2_imo(CPUARMState *env)
2265{
2266 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2267 case HCR_TGE:
2268 return true;
2269 case HCR_TGE | HCR_E2H:
2270 return false;
2271 default:
2272 return env->cp15.hcr_el2 & HCR_IMO;
2273 }
2274}
2275
2276/**
2277 * arm_hcr_el2_fmo(): Return the effective value of HCR_EL2.FMO.
2278 */
2279static inline bool arm_hcr_el2_fmo(CPUARMState *env)
2280{
2281 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2282 case HCR_TGE:
2283 return true;
2284 case HCR_TGE | HCR_E2H:
2285 return false;
2286 default:
2287 return env->cp15.hcr_el2 & HCR_FMO;
2288 }
2289}
2290
2291/**
2292 * arm_hcr_el2_amo(): Return the effective value of HCR_EL2.AMO.
2293 */
2294static inline bool arm_hcr_el2_amo(CPUARMState *env)
2295{
2296 switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2297 case HCR_TGE:
2298 return true;
2299 case HCR_TGE | HCR_E2H:
2300 return false;
2301 default:
2302 return env->cp15.hcr_el2 & HCR_AMO;
2303 }
2304}
2305
012a906b
GB
2306static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2307 unsigned int target_el)
043b7f8d
EI
2308{
2309 CPUARMState *env = cs->env_ptr;
dcbff19b 2310 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2311 bool secure = arm_is_secure(env);
57e3a0c7
GB
2312 bool pstate_unmasked;
2313 int8_t unmasked = 0;
2314
2315 /* Don't take exceptions if they target a lower EL.
2316 * This check should catch any exceptions that would not be taken but left
2317 * pending.
2318 */
dfafd090
EI
2319 if (cur_el > target_el) {
2320 return false;
2321 }
043b7f8d
EI
2322
2323 switch (excp_idx) {
2324 case EXCP_FIQ:
57e3a0c7
GB
2325 pstate_unmasked = !(env->daif & PSTATE_F);
2326 break;
2327
043b7f8d 2328 case EXCP_IRQ:
57e3a0c7
GB
2329 pstate_unmasked = !(env->daif & PSTATE_I);
2330 break;
2331
136e67e9 2332 case EXCP_VFIQ:
ac656b16 2333 if (secure || !arm_hcr_el2_fmo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
136e67e9
EI
2334 /* VFIQs are only taken when hypervized and non-secure. */
2335 return false;
2336 }
2337 return !(env->daif & PSTATE_F);
2338 case EXCP_VIRQ:
ac656b16 2339 if (secure || !arm_hcr_el2_imo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
136e67e9
EI
2340 /* VIRQs are only taken when hypervized and non-secure. */
2341 return false;
2342 }
b5c633c5 2343 return !(env->daif & PSTATE_I);
043b7f8d
EI
2344 default:
2345 g_assert_not_reached();
2346 }
57e3a0c7
GB
2347
2348 /* Use the target EL, current execution state and SCR/HCR settings to
2349 * determine whether the corresponding CPSR bit is used to mask the
2350 * interrupt.
2351 */
2352 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2353 /* Exceptions targeting a higher EL may not be maskable */
2354 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2355 /* 64-bit masking rules are simple: exceptions to EL3
2356 * can't be masked, and exceptions to EL2 can only be
2357 * masked from Secure state. The HCR and SCR settings
2358 * don't affect the masking logic, only the interrupt routing.
2359 */
2360 if (target_el == 3 || !secure) {
2361 unmasked = 1;
2362 }
2363 } else {
2364 /* The old 32-bit-only environment has a more complicated
2365 * masking setup. HCR and SCR bits not only affect interrupt
2366 * routing but also change the behaviour of masking.
2367 */
2368 bool hcr, scr;
2369
2370 switch (excp_idx) {
2371 case EXCP_FIQ:
2372 /* If FIQs are routed to EL3 or EL2 then there are cases where
2373 * we override the CPSR.F in determining if the exception is
2374 * masked or not. If neither of these are set then we fall back
2375 * to the CPSR.F setting otherwise we further assess the state
2376 * below.
2377 */
ac656b16 2378 hcr = arm_hcr_el2_fmo(env);
7cd6de3b
PM
2379 scr = (env->cp15.scr_el3 & SCR_FIQ);
2380
2381 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2382 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2383 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2384 * when non-secure but only when FIQs are only routed to EL3.
2385 */
2386 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2387 break;
2388 case EXCP_IRQ:
2389 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2390 * we may override the CPSR.I masking when in non-secure state.
2391 * The SCR.IRQ setting has already been taken into consideration
2392 * when setting the target EL, so it does not have a further
2393 * affect here.
2394 */
ac656b16 2395 hcr = arm_hcr_el2_imo(env);
7cd6de3b
PM
2396 scr = false;
2397 break;
2398 default:
2399 g_assert_not_reached();
2400 }
2401
2402 if ((scr || hcr) && !secure) {
2403 unmasked = 1;
2404 }
57e3a0c7
GB
2405 }
2406 }
2407
2408 /* The PSTATE bits only mask the interrupt if we have not overriden the
2409 * ability above.
2410 */
2411 return unmasked || pstate_unmasked;
043b7f8d
EI
2412}
2413
ba1ba5cc
IM
2414#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2415#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2416#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2417
9467d44c 2418#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2419#define cpu_list arm_cpu_list
9467d44c 2420
c1e37810
PM
2421/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2422 *
2423 * If EL3 is 64-bit:
2424 * + NonSecure EL1 & 0 stage 1
2425 * + NonSecure EL1 & 0 stage 2
2426 * + NonSecure EL2
2427 * + Secure EL1 & EL0
2428 * + Secure EL3
2429 * If EL3 is 32-bit:
2430 * + NonSecure PL1 & 0 stage 1
2431 * + NonSecure PL1 & 0 stage 2
2432 * + NonSecure PL2
2433 * + Secure PL0 & PL1
2434 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2435 *
2436 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2437 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2438 * may differ in access permissions even if the VA->PA map is the same
2439 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2440 * translation, which means that we have one mmu_idx that deals with two
2441 * concatenated translation regimes [this sort of combined s1+2 TLB is
2442 * architecturally permitted]
2443 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2444 * handling via the TLB. The only way to do a stage 1 translation without
2445 * the immediate stage 2 translation is via the ATS or AT system insns,
2446 * which can be slow-pathed and always do a page table walk.
2447 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2448 * translation regimes, because they map reasonably well to each other
2449 * and they can't both be active at the same time.
2450 * This gives us the following list of mmu_idx values:
2451 *
2452 * NS EL0 (aka NS PL0) stage 1+2
2453 * NS EL1 (aka NS PL1) stage 1+2
2454 * NS EL2 (aka NS PL2)
2455 * S EL3 (aka S PL1)
2456 * S EL0 (aka S PL0)
2457 * S EL1 (not used if EL3 is 32 bit)
2458 * NS EL0+1 stage 2
2459 *
2460 * (The last of these is an mmu_idx because we want to be able to use the TLB
2461 * for the accesses done as part of a stage 1 page table walk, rather than
2462 * having to walk the stage 2 page table over and over.)
2463 *
3bef7012
PM
2464 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2465 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2466 * NS EL2 if we ever model a Cortex-R52).
2467 *
2468 * M profile CPUs are rather different as they do not have a true MMU.
2469 * They have the following different MMU indexes:
2470 * User
2471 * Privileged
62593718
PM
2472 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2473 * Privileged, execution priority negative (ditto)
66787c78
PM
2474 * If the CPU supports the v8M Security Extension then there are also:
2475 * Secure User
2476 * Secure Privileged
62593718
PM
2477 * Secure User, execution priority negative
2478 * Secure Privileged, execution priority negative
3bef7012 2479 *
8bd5c820
PM
2480 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2481 * are not quite the same -- different CPU types (most notably M profile
2482 * vs A/R profile) would like to use MMU indexes with different semantics,
2483 * but since we don't ever need to use all of those in a single CPU we
2484 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2485 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2486 * the same for any particular CPU.
2487 * Variables of type ARMMUIdx are always full values, and the core
2488 * index values are in variables of type 'int'.
2489 *
c1e37810
PM
2490 * Our enumeration includes at the end some entries which are not "true"
2491 * mmu_idx values in that they don't have corresponding TLBs and are only
2492 * valid for doing slow path page table walks.
2493 *
2494 * The constant names here are patterned after the general style of the names
2495 * of the AT/ATS operations.
2496 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2497 * For M profile we arrange them to have a bit for priv, a bit for negpri
2498 * and a bit for secure.
c1e37810 2499 */
e7b921c2 2500#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2501#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2502#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2503
62593718
PM
2504/* meanings of the bits for M profile mmu idx values */
2505#define ARM_MMU_IDX_M_PRIV 0x1
2506#define ARM_MMU_IDX_M_NEGPRI 0x2
2507#define ARM_MMU_IDX_M_S 0x4
2508
8bd5c820
PM
2509#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2510#define ARM_MMU_IDX_COREIDX_MASK 0x7
2511
c1e37810 2512typedef enum ARMMMUIdx {
8bd5c820
PM
2513 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2514 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2515 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2516 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2517 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2518 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2519 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2520 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2521 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
62593718
PM
2522 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2523 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2524 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2525 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2526 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2527 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
c1e37810
PM
2528 /* Indexes below here don't have TLBs and are used only for AT system
2529 * instructions or for the first stage of an S12 page table walk.
2530 */
8bd5c820
PM
2531 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2532 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2533} ARMMMUIdx;
2534
8bd5c820
PM
2535/* Bit macros for the core-mmu-index values for each index,
2536 * for use when calling tlb_flush_by_mmuidx() and friends.
2537 */
2538typedef enum ARMMMUIdxBit {
2539 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2540 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2541 ARMMMUIdxBit_S1E2 = 1 << 2,
2542 ARMMMUIdxBit_S1E3 = 1 << 3,
2543 ARMMMUIdxBit_S1SE0 = 1 << 4,
2544 ARMMMUIdxBit_S1SE1 = 1 << 5,
2545 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2546 ARMMMUIdxBit_MUser = 1 << 0,
2547 ARMMMUIdxBit_MPriv = 1 << 1,
62593718
PM
2548 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2549 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2550 ARMMMUIdxBit_MSUser = 1 << 4,
2551 ARMMMUIdxBit_MSPriv = 1 << 5,
2552 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2553 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
8bd5c820
PM
2554} ARMMMUIdxBit;
2555
f79fbf39 2556#define MMU_USER_IDX 0
c1e37810 2557
8bd5c820
PM
2558static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2559{
2560 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2561}
2562
2563static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2564{
e7b921c2
PM
2565 if (arm_feature(env, ARM_FEATURE_M)) {
2566 return mmu_idx | ARM_MMU_IDX_M;
2567 } else {
2568 return mmu_idx | ARM_MMU_IDX_A;
2569 }
8bd5c820
PM
2570}
2571
c1e37810
PM
2572/* Return the exception level we're running at if this is our mmu_idx */
2573static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2574{
8bd5c820
PM
2575 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2576 case ARM_MMU_IDX_A:
2577 return mmu_idx & 3;
e7b921c2 2578 case ARM_MMU_IDX_M:
62593718 2579 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2580 default:
2581 g_assert_not_reached();
2582 }
c1e37810
PM
2583}
2584
ec8e3340
PM
2585/* Return the MMU index for a v7M CPU in the specified security and
2586 * privilege state
2587 */
2588static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2589 bool secstate,
2590 bool priv)
b81ac0eb 2591{
62593718 2592 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
b81ac0eb 2593
ec8e3340 2594 if (priv) {
62593718 2595 mmu_idx |= ARM_MMU_IDX_M_PRIV;
b81ac0eb
PM
2596 }
2597
2598 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
62593718
PM
2599 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2600 }
2601
2602 if (secstate) {
2603 mmu_idx |= ARM_MMU_IDX_M_S;
b81ac0eb
PM
2604 }
2605
2606 return mmu_idx;
2607}
2608
ec8e3340
PM
2609/* Return the MMU index for a v7M CPU in the specified security state */
2610static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2611 bool secstate)
2612{
2613 bool priv = arm_current_el(env) != 0;
2614
2615 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2616}
2617
c1e37810 2618/* Determine the current mmu_idx to use for normal loads/stores */
97ed5ccd 2619static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
c1e37810
PM
2620{
2621 int el = arm_current_el(env);
2622
e7b921c2 2623 if (arm_feature(env, ARM_FEATURE_M)) {
b81ac0eb 2624 ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
3bef7012 2625
e7b921c2
PM
2626 return arm_to_core_mmu_idx(mmu_idx);
2627 }
2628
c1e37810 2629 if (el < 2 && arm_is_secure_below_el3(env)) {
8bd5c820 2630 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
c1e37810
PM
2631 }
2632 return el;
6ebbf390
JM
2633}
2634
9e273ef2
PM
2635/* Indexes used when registering address spaces with cpu_address_space_init */
2636typedef enum ARMASIdx {
2637 ARMASIdx_NS = 0,
2638 ARMASIdx_S = 1,
2639} ARMASIdx;
2640
533e93f1 2641/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2642static inline int arm_debug_target_el(CPUARMState *env)
2643{
81669b8b
SF
2644 bool secure = arm_is_secure(env);
2645 bool route_to_el2 = false;
2646
2647 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2648 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2649 env->cp15.mdcr_el2 & (1 << 8);
2650 }
2651
2652 if (route_to_el2) {
2653 return 2;
2654 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2655 !arm_el_is_aa64(env, 3) && secure) {
2656 return 3;
2657 } else {
2658 return 1;
2659 }
3a298203
PM
2660}
2661
43bbce7f
PM
2662static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2663{
2664 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2665 * CSSELR is RAZ/WI.
2666 */
2667 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2668}
2669
3a298203
PM
2670static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2671{
533e93f1
PM
2672 if (arm_is_secure(env)) {
2673 /* MDCR_EL3.SDD disables debug events from Secure state */
2674 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2675 || arm_current_el(env) == 3) {
2676 return false;
2677 }
2678 }
2679
dcbff19b 2680 if (arm_current_el(env) == arm_debug_target_el(env)) {
3a298203
PM
2681 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2682 || (env->daif & PSTATE_D)) {
2683 return false;
2684 }
2685 }
2686 return true;
2687}
2688
2689static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2690{
533e93f1
PM
2691 int el = arm_current_el(env);
2692
2693 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
2694 return aa64_generate_debug_exceptions(env);
2695 }
533e93f1
PM
2696
2697 if (arm_is_secure(env)) {
2698 int spd;
2699
2700 if (el == 0 && (env->cp15.sder & 1)) {
2701 /* SDER.SUIDEN means debug exceptions from Secure EL0
2702 * are always enabled. Otherwise they are controlled by
2703 * SDCR.SPD like those from other Secure ELs.
2704 */
2705 return true;
2706 }
2707
2708 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2709 switch (spd) {
2710 case 1:
2711 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2712 case 0:
2713 /* For 0b00 we return true if external secure invasive debug
2714 * is enabled. On real hardware this is controlled by external
2715 * signals to the core. QEMU always permits debug, and behaves
2716 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2717 */
2718 return true;
2719 case 2:
2720 return false;
2721 case 3:
2722 return true;
2723 }
2724 }
2725
2726 return el != 2;
3a298203
PM
2727}
2728
2729/* Return true if debugging exceptions are currently enabled.
2730 * This corresponds to what in ARM ARM pseudocode would be
2731 * if UsingAArch32() then
2732 * return AArch32.GenerateDebugExceptions()
2733 * else
2734 * return AArch64.GenerateDebugExceptions()
2735 * We choose to push the if() down into this function for clarity,
2736 * since the pseudocode has it at all callsites except for the one in
2737 * CheckSoftwareStep(), where it is elided because both branches would
2738 * always return the same value.
2739 *
2740 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2741 * don't yet implement those exception levels or their associated trap bits.
2742 */
2743static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2744{
2745 if (env->aarch64) {
2746 return aa64_generate_debug_exceptions(env);
2747 } else {
2748 return aa32_generate_debug_exceptions(env);
2749 }
2750}
2751
2752/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2753 * implicitly means this always returns false in pre-v8 CPUs.)
2754 */
2755static inline bool arm_singlestep_active(CPUARMState *env)
2756{
2757 return extract32(env->cp15.mdscr_el1, 0, 1)
2758 && arm_el_is_aa64(env, arm_debug_target_el(env))
2759 && arm_generate_debug_exceptions(env);
2760}
2761
f9fd40eb
PB
2762static inline bool arm_sctlr_b(CPUARMState *env)
2763{
2764 return
2765 /* We need not implement SCTLR.ITD in user-mode emulation, so
2766 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2767 * This lets people run BE32 binaries with "-cpu any".
2768 */
2769#ifndef CONFIG_USER_ONLY
2770 !arm_feature(env, ARM_FEATURE_V7) &&
2771#endif
2772 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2773}
2774
ed50ff78
PC
2775/* Return true if the processor is in big-endian mode. */
2776static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2777{
2778 int cur_el;
2779
2780 /* In 32bit endianness is determined by looking at CPSR's E bit */
2781 if (!is_a64(env)) {
b2e62d9a
PC
2782 return
2783#ifdef CONFIG_USER_ONLY
2784 /* In system mode, BE32 is modelled in line with the
2785 * architecture (as word-invariant big-endianness), where loads
2786 * and stores are done little endian but from addresses which
2787 * are adjusted by XORing with the appropriate constant. So the
2788 * endianness to use for the raw data access is not affected by
2789 * SCTLR.B.
2790 * In user mode, however, we model BE32 as byte-invariant
2791 * big-endianness (because user-only code cannot tell the
2792 * difference), and so we need to use a data access endianness
2793 * that depends on SCTLR.B.
2794 */
2795 arm_sctlr_b(env) ||
2796#endif
2797 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
ed50ff78
PC
2798 }
2799
2800 cur_el = arm_current_el(env);
2801
2802 if (cur_el == 0) {
2803 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2804 }
2805
2806 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2807}
2808
022c62cb 2809#include "exec/cpu-all.h"
622ed360 2810
3926cc84
AG
2811/* Bit usage in the TB flags field: bit 31 indicates whether we are
2812 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
2813 * We put flags which are shared between 32 and 64 bit mode at the top
2814 * of the word, and flags which apply to only one mode at the bottom.
3926cc84
AG
2815 */
2816#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2817#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
2818#define ARM_TBFLAG_MMUIDX_SHIFT 28
2819#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
2820#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2821#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2822#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2823#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
2824/* Target EL if we take a floating-point-disabled exception */
2825#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2826#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
3926cc84
AG
2827
2828/* Bit usage when in AArch32 state: */
a1705768
PM
2829#define ARM_TBFLAG_THUMB_SHIFT 0
2830#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2831#define ARM_TBFLAG_VECLEN_SHIFT 1
2832#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2833#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2834#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
2835#define ARM_TBFLAG_VFPEN_SHIFT 7
2836#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2837#define ARM_TBFLAG_CONDEXEC_SHIFT 8
2838#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb
PB
2839#define ARM_TBFLAG_SCTLR_B_SHIFT 16
2840#define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
c0f4af17
PM
2841/* We store the bottom two bits of the CPAR as TB flags and handle
2842 * checks on the other bits at runtime
2843 */
647f767b 2844#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
c0f4af17 2845#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
2846/* Indicates whether cp register reads and writes by guest code should access
2847 * the secure or nonsecure bank of banked registers; note that this is not
2848 * the same thing as the current security state of the processor!
2849 */
647f767b 2850#define ARM_TBFLAG_NS_SHIFT 19
3f342b9e 2851#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
91cca2cd
PC
2852#define ARM_TBFLAG_BE_DATA_SHIFT 20
2853#define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
064c379c
PM
2854/* For M profile only, Handler (ie not Thread) mode */
2855#define ARM_TBFLAG_HANDLER_SHIFT 21
2856#define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
4730fb85
PM
2857/* For M profile only, whether we should generate stack-limit checks */
2858#define ARM_TBFLAG_STACKCHECK_SHIFT 22
2859#define ARM_TBFLAG_STACKCHECK_MASK (1 << ARM_TBFLAG_STACKCHECK_SHIFT)
3926cc84 2860
86fb3fa4
TH
2861/* Bit usage when in AArch64 state */
2862#define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2863#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2864#define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2865#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
1db5e96c
RH
2866#define ARM_TBFLAG_SVEEXC_EL_SHIFT 2
2867#define ARM_TBFLAG_SVEEXC_EL_MASK (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
2868#define ARM_TBFLAG_ZCR_LEN_SHIFT 4
2869#define ARM_TBFLAG_ZCR_LEN_MASK (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
a1705768
PM
2870
2871/* some convenience accessor macros */
3926cc84
AG
2872#define ARM_TBFLAG_AARCH64_STATE(F) \
2873 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
2874#define ARM_TBFLAG_MMUIDX(F) \
2875 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
2876#define ARM_TBFLAG_SS_ACTIVE(F) \
2877 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2878#define ARM_TBFLAG_PSTATE_SS(F) \
2879 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
2880#define ARM_TBFLAG_FPEXC_EL(F) \
2881 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
a1705768
PM
2882#define ARM_TBFLAG_THUMB(F) \
2883 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2884#define ARM_TBFLAG_VECLEN(F) \
2885 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2886#define ARM_TBFLAG_VECSTRIDE(F) \
2887 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
2888#define ARM_TBFLAG_VFPEN(F) \
2889 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2890#define ARM_TBFLAG_CONDEXEC(F) \
2891 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
f9fd40eb
PB
2892#define ARM_TBFLAG_SCTLR_B(F) \
2893 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
c0f4af17
PM
2894#define ARM_TBFLAG_XSCALE_CPAR(F) \
2895 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
2896#define ARM_TBFLAG_NS(F) \
2897 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
91cca2cd
PC
2898#define ARM_TBFLAG_BE_DATA(F) \
2899 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
064c379c
PM
2900#define ARM_TBFLAG_HANDLER(F) \
2901 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
4730fb85
PM
2902#define ARM_TBFLAG_STACKCHECK(F) \
2903 (((F) & ARM_TBFLAG_STACKCHECK_MASK) >> ARM_TBFLAG_STACKCHECK_SHIFT)
86fb3fa4
TH
2904#define ARM_TBFLAG_TBI0(F) \
2905 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2906#define ARM_TBFLAG_TBI1(F) \
2907 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
1db5e96c
RH
2908#define ARM_TBFLAG_SVEEXC_EL(F) \
2909 (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
2910#define ARM_TBFLAG_ZCR_LEN(F) \
2911 (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
a1705768 2912
f9fd40eb
PB
2913static inline bool bswap_code(bool sctlr_b)
2914{
2915#ifdef CONFIG_USER_ONLY
2916 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2917 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2918 * would also end up as a mixed-endian mode with BE code, LE data.
2919 */
2920 return
2921#ifdef TARGET_WORDS_BIGENDIAN
2922 1 ^
2923#endif
2924 sctlr_b;
2925#else
e334bd31
PB
2926 /* All code access in ARM is little endian, and there are no loaders
2927 * doing swaps that need to be reversed
f9fd40eb
PB
2928 */
2929 return 0;
2930#endif
2931}
2932
c3ae85fc
PB
2933#ifdef CONFIG_USER_ONLY
2934static inline bool arm_cpu_bswap_data(CPUARMState *env)
2935{
2936 return
2937#ifdef TARGET_WORDS_BIGENDIAN
2938 1 ^
2939#endif
2940 arm_cpu_data_is_big_endian(env);
2941}
2942#endif
2943
86fb3fa4
TH
2944#ifndef CONFIG_USER_ONLY
2945/**
2946 * arm_regime_tbi0:
2947 * @env: CPUARMState
2948 * @mmu_idx: MMU index indicating required translation regime
2949 *
2950 * Extracts the TBI0 value from the appropriate TCR for the current EL
2951 *
2952 * Returns: the TBI0 value.
2953 */
2954uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2955
2956/**
2957 * arm_regime_tbi1:
2958 * @env: CPUARMState
2959 * @mmu_idx: MMU index indicating required translation regime
2960 *
2961 * Extracts the TBI1 value from the appropriate TCR for the current EL
2962 *
2963 * Returns: the TBI1 value.
2964 */
2965uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2966#else
2967/* We can't handle tagged addresses properly in user-only mode */
2968static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2969{
2970 return 0;
2971}
2972
2973static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2974{
2975 return 0;
2976}
2977#endif
2978
a9e01311
RH
2979void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2980 target_ulong *cs_base, uint32_t *flags);
6b917547 2981
98128601
RH
2982enum {
2983 QEMU_PSCI_CONDUIT_DISABLED = 0,
2984 QEMU_PSCI_CONDUIT_SMC = 1,
2985 QEMU_PSCI_CONDUIT_HVC = 2,
2986};
2987
017518c1
PM
2988#ifndef CONFIG_USER_ONLY
2989/* Return the address space index to use for a memory access */
2990static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2991{
2992 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2993}
5ce4ff65
PM
2994
2995/* Return the AddressSpace to use for a memory access
2996 * (which depends on whether the access is S or NS, and whether
2997 * the board gave us a separate AddressSpace for S accesses).
2998 */
2999static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3000{
3001 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3002}
017518c1
PM
3003#endif
3004
bd7d00fc 3005/**
b5c53d1b
AL
3006 * arm_register_pre_el_change_hook:
3007 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3008 * CPU changes exception level or mode. The hook function will be
3009 * passed a pointer to the ARMCPU and the opaque data pointer passed
3010 * to this function when the hook was registered.
b5c53d1b
AL
3011 *
3012 * Note that if a pre-change hook is called, any registered post-change hooks
3013 * are guaranteed to subsequently be called.
bd7d00fc 3014 */
b5c53d1b 3015void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3016 void *opaque);
b5c53d1b
AL
3017/**
3018 * arm_register_el_change_hook:
3019 * Register a hook function which will be called immediately after this
3020 * CPU changes exception level or mode. The hook function will be
3021 * passed a pointer to the ARMCPU and the opaque data pointer passed
3022 * to this function when the hook was registered.
3023 *
3024 * Note that any registered hooks registered here are guaranteed to be called
3025 * if pre-change hooks have been.
3026 */
3027void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3028 *opaque);
bd7d00fc 3029
9a2b5256
RH
3030/**
3031 * aa32_vfp_dreg:
3032 * Return a pointer to the Dn register within env in 32-bit mode.
3033 */
3034static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3035{
c39c2b90 3036 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3037}
3038
3039/**
3040 * aa32_vfp_qreg:
3041 * Return a pointer to the Qn register within env in 32-bit mode.
3042 */
3043static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3044{
c39c2b90 3045 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3046}
3047
3048/**
3049 * aa64_vfp_qreg:
3050 * Return a pointer to the Qn register within env in 64-bit mode.
3051 */
3052static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3053{
c39c2b90 3054 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3055}
3056
028e2a7b
RH
3057/* Shared between translate-sve.c and sve_helper.c. */
3058extern const uint64_t pred_esz_masks[4];
3059
2c0262af 3060#endif