]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
Merge tag 'pull-maintainer-may24-160524-2' of https://gitlab.com/stsquad/qemu into...
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
690bd97b 28#include "exec/gdbstub.h"
74781c08 29#include "exec/page-protection.h"
68970d1e 30#include "qapi/qapi-types-common.h"
e2d8cf9b 31#include "target/arm/multiprocessing.h"
f4f318b4 32#include "target/arm/gtimer.h"
9042c0e2 33
e24fd076
DG
34#ifdef TARGET_AARCH64
35#define KVM_HAVE_MCE_INJECTION 1
36#endif
37
b8a9e8f1
FB
38#define EXCP_UDEF 1 /* undefined instruction */
39#define EXCP_SWI 2 /* software interrupt */
40#define EXCP_PREFETCH_ABORT 3
41#define EXCP_DATA_ABORT 4
b5ff1b31
FB
42#define EXCP_IRQ 5
43#define EXCP_FIQ 6
06c949e6 44#define EXCP_BKPT 7
9ee6e8bb 45#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 46#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 47#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 48#define EXCP_HYP_TRAP 12
e0d6e6a5 49#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
50#define EXCP_VIRQ 14
51#define EXCP_VFIQ 15
19a6e31c 52#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 53#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 54#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 55#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 56#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
57#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
58#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 59#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
3c29632f 60#define EXCP_VSERR 24
11b76fda 61#define EXCP_GPC 25 /* v9 Granule Protection Check Fault */
b36a32ea
JR
62#define EXCP_NMI 26
63#define EXCP_VINMI 27
64#define EXCP_VFNMI 28
2c4a7cc5 65/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
66
67#define ARMV7M_EXCP_RESET 1
68#define ARMV7M_EXCP_NMI 2
69#define ARMV7M_EXCP_HARD 3
70#define ARMV7M_EXCP_MEM 4
71#define ARMV7M_EXCP_BUS 5
72#define ARMV7M_EXCP_USAGE 6
1e577cc7 73#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
74#define ARMV7M_EXCP_SVC 11
75#define ARMV7M_EXCP_DEBUG 12
76#define ARMV7M_EXCP_PENDSV 14
77#define ARMV7M_EXCP_SYSTICK 15
2c0262af 78
403946c0
RH
79/* ARM-specific interrupt pending bits. */
80#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
81#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
82#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
3c29632f 83#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
b36a32ea
JR
84#define CPU_INTERRUPT_NMI CPU_INTERRUPT_TGT_EXT_4
85#define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0
86#define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1
403946c0 87
e4fe830b
PM
88/* The usual mapping for an AArch64 system register to its AArch32
89 * counterpart is for the 32 bit world to have access to the lower
90 * half only (with writes leaving the upper half untouched). It's
91 * therefore useful to be able to pass TCG the offset of the least
92 * significant half of a uint64_t struct member.
93 */
e03b5686 94#if HOST_BIG_ENDIAN
5cd8a118 95#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 96#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
97#else
98#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 99#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
100#endif
101
aaa1f954
EI
102/* ARM-specific extra insn start words:
103 * 1: Conditional execution bits
104 * 2: Partial exception syndrome for data aborts
105 */
106#define TARGET_INSN_START_EXTRA_WORDS 2
107
108/* The 2nd extra word holding syndrome info for data aborts does not use
674e5345 109 * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
aaa1f954
EI
110 * help the sleb128 encoder do a better job.
111 * When restoring the CPU state, we shift it back up.
112 */
113#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
674e5345 114#define ARM_INSN_START_WORD2_SHIFT 13
6ebbf390 115
b7bcbe95
FB
116/* We currently assume float and double are IEEE single and double
117 precision respectively.
118 Doing runtime conversions is tricky because VFP registers may contain
119 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
120 s<2n> maps to the least significant half of d<n>
121 s<2n+1> maps to the most significant half of d<n>
122 */
b7bcbe95 123
200bf5b7 124/**
690bd97b
AO
125 * DynamicGDBFeatureInfo:
126 * @desc: Contains the feature descriptions.
448d4d14
AB
127 * @data: A union with data specific to the set of registers
128 * @cpregs_keys: Array that contains the corresponding Key of
129 * a given cpreg with the same order of the cpreg
130 * in the XML description.
200bf5b7 131 */
690bd97b
AO
132typedef struct DynamicGDBFeatureInfo {
133 GDBFeature desc;
448d4d14
AB
134 union {
135 struct {
136 uint32_t *keys;
137 } cpregs;
138 } data;
690bd97b 139} DynamicGDBFeatureInfo;
200bf5b7 140
55d284af
PM
141/* CPU state for each instance of a generic timer (in cp15 c14) */
142typedef struct ARMGenericTimer {
143 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 144 uint64_t ctl; /* Timer Control register */
55d284af
PM
145} ARMGenericTimer;
146
c39c2b90
RH
147/* Define a maximum sized vector register.
148 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
149 * For 64-bit, this is a 2048-bit SVE register.
150 *
151 * Note that the mapping between S, D, and Q views of the register bank
152 * differs between AArch64 and AArch32.
153 * In AArch32:
154 * Qn = regs[n].d[1]:regs[n].d[0]
155 * Dn = regs[n / 2].d[n & 1]
156 * Sn = regs[n / 4].d[n % 4 / 2],
157 * bits 31..0 for even n, and bits 63..32 for odd n
158 * (and regs[16] to regs[31] are inaccessible)
159 * In AArch64:
160 * Zn = regs[n].d[*]
161 * Qn = regs[n].d[1]:regs[n].d[0]
162 * Dn = regs[n].d[0]
163 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 164 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
165 *
166 * This corresponds to the architecturally defined mapping between
167 * the two execution states, and means we do not need to explicitly
168 * map these registers when changing states.
169 *
170 * Align the data for use with TCG host vector operations.
171 */
172
173#ifdef TARGET_AARCH64
174# define ARM_MAX_VQ 16
175#else
176# define ARM_MAX_VQ 1
177#endif
178
179typedef struct ARMVectorReg {
180 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
181} ARMVectorReg;
182
3c7d3086 183#ifdef TARGET_AARCH64
991ad91b 184/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 185typedef struct ARMPredicateReg {
46417784 186 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 187} ARMPredicateReg;
991ad91b
RH
188
189/* In AArch32 mode, PAC keys do not exist at all. */
190typedef struct ARMPACKey {
191 uint64_t lo, hi;
192} ARMPACKey;
3c7d3086
RH
193#endif
194
3902bfc6
RH
195/* See the commentary above the TBFLAG field definitions. */
196typedef struct CPUARMTBFlags {
197 uint32_t flags;
a378206a 198 target_ulong flags2;
3902bfc6 199} CPUARMTBFlags;
c39c2b90 200
f3639a64
RH
201typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
202
8f4e07c9
PMD
203typedef struct NVICState NVICState;
204
1ea4a06a 205typedef struct CPUArchState {
b5ff1b31 206 /* Regs for current mode. */
2c0262af 207 uint32_t regs[16];
3926cc84
AG
208
209 /* 32/64 switch only happens when taking and returning from
210 * exceptions so the overlap semantics are taken care of then
211 * instead of having a complicated union.
212 */
213 /* Regs for A64 mode. */
214 uint64_t xregs[32];
215 uint64_t pc;
d356312f
PM
216 /* PSTATE isn't an architectural register for ARMv8. However, it is
217 * convenient for us to assemble the underlying state into a 32 bit format
218 * identical to the architectural format used for the SPSR. (This is also
219 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
220 * 'pstate' register are.) Of the PSTATE bits:
221 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
222 * semantics as for AArch32, as described in the comments on each field)
223 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 224 * DAIF (exception masks) are kept in env->daif
f6e52eaa 225 * BTYPE is kept in env->btype
c37e6ac9 226 * SM and ZA are kept in env->svcr
d356312f 227 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
228 */
229 uint32_t pstate;
53221552 230 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
063bbd80 231 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
3926cc84 232
fdd1b228 233 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 234 CPUARMTBFlags hflags;
fdd1b228 235
b90372ad 236 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 237 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
238 the whole CPSR. */
239 uint32_t uncached_cpsr;
240 uint32_t spsr;
241
242 /* Banked registers. */
28c9457d 243 uint64_t banked_spsr[8];
0b7d409d
FA
244 uint32_t banked_r13[8];
245 uint32_t banked_r14[8];
3b46e624 246
b5ff1b31
FB
247 /* These hold r8-r12. */
248 uint32_t usr_regs[5];
249 uint32_t fiq_regs[5];
3b46e624 250
2c0262af
FB
251 /* cpsr flag cache for faster execution */
252 uint32_t CF; /* 0 or 1 */
253 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
254 uint32_t NF; /* N is bit 31. All other bits are undefined. */
255 uint32_t ZF; /* Z set if zero. */
99c475ab 256 uint32_t QF; /* 0 or 1 */
9ee6e8bb 257 uint32_t GE; /* cpsr[19:16] */
9ee6e8bb 258 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 259 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 260 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
c37e6ac9 261 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
2c0262af 262
1b174238 263 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 264 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 265
b5ff1b31
FB
266 /* System control coprocessor (cp15) */
267 struct {
40f137e1 268 uint32_t c0_cpuid;
b85a1fd6
FA
269 union { /* Cache size selection */
270 struct {
271 uint64_t _unused_csselr0;
272 uint64_t csselr_ns;
273 uint64_t _unused_csselr1;
274 uint64_t csselr_s;
275 };
276 uint64_t csselr_el[4];
277 };
137feaa9
FA
278 union { /* System control register. */
279 struct {
280 uint64_t _unused_sctlr;
281 uint64_t sctlr_ns;
282 uint64_t hsctlr;
283 uint64_t sctlr_s;
284 };
285 uint64_t sctlr_el[4];
286 };
761c4642 287 uint64_t vsctlr; /* Virtualization System control register. */
7ebd5f2e 288 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 289 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 290 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 291 uint64_t sder; /* Secure debug enable register. */
77022576 292 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
293 union { /* MMU translation table base 0. */
294 struct {
295 uint64_t _unused_ttbr0_0;
296 uint64_t ttbr0_ns;
297 uint64_t _unused_ttbr0_1;
298 uint64_t ttbr0_s;
299 };
300 uint64_t ttbr0_el[4];
301 };
302 union { /* MMU translation table base 1. */
303 struct {
304 uint64_t _unused_ttbr1_0;
305 uint64_t ttbr1_ns;
306 uint64_t _unused_ttbr1_1;
307 uint64_t ttbr1_s;
308 };
309 uint64_t ttbr1_el[4];
310 };
b698e9cf 311 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 312 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee 313 /* MMU translation table base control. */
cb4a0a34 314 uint64_t tcr_el[4];
988cc190
PM
315 uint64_t vtcr_el2; /* Virtualization Translation Control. */
316 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
317 uint32_t c2_data; /* MPU data cacheable bits. */
318 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
319 union { /* MMU domain access control register
320 * MPU write buffer control.
321 */
322 struct {
323 uint64_t dacr_ns;
324 uint64_t dacr_s;
325 };
326 struct {
327 uint64_t dacr32_el2;
328 };
329 };
7e09797c
PM
330 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
331 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 332 uint64_t hcr_el2; /* Hypervisor configuration register */
5814d587 333 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
64e0e2de 334 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
335 union { /* Fault status registers. */
336 struct {
337 uint64_t ifsr_ns;
338 uint64_t ifsr_s;
339 };
340 struct {
341 uint64_t ifsr32_el2;
342 };
343 };
4a7e2d73
FA
344 union {
345 struct {
346 uint64_t _unused_dfsr;
347 uint64_t dfsr_ns;
348 uint64_t hsr;
349 uint64_t dfsr_s;
350 };
351 uint64_t esr_el[4];
352 };
ce819861 353 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
354 union { /* Fault address registers. */
355 struct {
356 uint64_t _unused_far0;
e03b5686 357#if HOST_BIG_ENDIAN
b848ce2b
FA
358 uint32_t ifar_ns;
359 uint32_t dfar_ns;
360 uint32_t ifar_s;
361 uint32_t dfar_s;
362#else
363 uint32_t dfar_ns;
364 uint32_t ifar_ns;
365 uint32_t dfar_s;
366 uint32_t ifar_s;
367#endif
368 uint64_t _unused_far3;
369 };
370 uint64_t far_el[4];
371 };
59e05530 372 uint64_t hpfar_el2;
2a5a9abd 373 uint64_t hstr_el2;
01c097f7
FA
374 union { /* Translation result. */
375 struct {
376 uint64_t _unused_par_0;
377 uint64_t par_ns;
378 uint64_t _unused_par_1;
379 uint64_t par_s;
380 };
381 uint64_t par_el[4];
382 };
6cb0b013 383
b5ff1b31
FB
384 uint32_t c9_insn; /* Cache lockdown registers. */
385 uint32_t c9_data;
8521466b
AF
386 uint64_t c9_pmcr; /* performance monitor control register */
387 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
388 uint64_t c9_pmovsr; /* perf monitor overflow status */
389 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 390 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 391 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
392 union { /* Memory attribute redirection */
393 struct {
e03b5686 394#if HOST_BIG_ENDIAN
be693c87
GB
395 uint64_t _unused_mair_0;
396 uint32_t mair1_ns;
397 uint32_t mair0_ns;
398 uint64_t _unused_mair_1;
399 uint32_t mair1_s;
400 uint32_t mair0_s;
401#else
402 uint64_t _unused_mair_0;
403 uint32_t mair0_ns;
404 uint32_t mair1_ns;
405 uint64_t _unused_mair_1;
406 uint32_t mair0_s;
407 uint32_t mair1_s;
408#endif
409 };
410 uint64_t mair_el[4];
411 };
fb6c91ba
GB
412 union { /* vector base address register */
413 struct {
414 uint64_t _unused_vbar;
415 uint64_t vbar_ns;
416 uint64_t hvbar;
417 uint64_t vbar_s;
418 };
419 uint64_t vbar_el[4];
420 };
e89e51a1 421 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 422 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
423 struct { /* FCSE PID. */
424 uint32_t fcseidr_ns;
425 uint32_t fcseidr_s;
426 };
427 union { /* Context ID. */
428 struct {
429 uint64_t _unused_contextidr_0;
430 uint64_t contextidr_ns;
431 uint64_t _unused_contextidr_1;
432 uint64_t contextidr_s;
433 };
434 uint64_t contextidr_el[4];
435 };
436 union { /* User RW Thread register. */
437 struct {
438 uint64_t tpidrurw_ns;
439 uint64_t tpidrprw_ns;
440 uint64_t htpidr;
441 uint64_t _tpidr_el3;
442 };
443 uint64_t tpidr_el[4];
444 };
9e5ec745 445 uint64_t tpidr2_el0;
54bf36ed
FA
446 /* The secure banks of these registers don't map anywhere */
447 uint64_t tpidrurw_s;
448 uint64_t tpidrprw_s;
449 uint64_t tpidruro_s;
450
451 union { /* User RO Thread register. */
452 uint64_t tpidruro_ns;
453 uint64_t tpidrro_el[1];
454 };
a7adc4b7
PM
455 uint64_t c14_cntfrq; /* Counter Frequency register */
456 uint64_t c14_cntkctl; /* Timer Control register */
bb461330 457 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 458 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
2808d3b3 459 uint64_t cntpoff_el2; /* Counter Physical Offset register */
55d284af 460 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 461 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
462 uint32_t c15_ticonfig; /* TI925T configuration byte. */
463 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
464 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
465 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
466 uint32_t c15_config_base_address; /* SCU base address. */
467 uint32_t c15_diagnostic; /* diagnostic register */
468 uint32_t c15_power_diagnostic;
469 uint32_t c15_power_control; /* power control */
0b45451e
PM
470 uint64_t dbgbvr[16]; /* breakpoint value registers */
471 uint64_t dbgbcr[16]; /* breakpoint control registers */
472 uint64_t dbgwvr[16]; /* watchpoint value registers */
473 uint64_t dbgwcr[16]; /* watchpoint control registers */
5fc83f11 474 uint64_t dbgclaim; /* DBGCLAIM bits */
3a298203 475 uint64_t mdscr_el1;
1424ca8d 476 uint64_t oslsr_el1; /* OS Lock Status */
f94a6df5 477 uint64_t osdlr_el1; /* OS DoubleLock status */
14cc7b54 478 uint64_t mdcr_el2;
5513c3ab 479 uint64_t mdcr_el3;
5d05b9d4
AL
480 /* Stores the architectural value of the counter *the last time it was
481 * updated* by pmccntr_op_start. Accesses should always be surrounded
482 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
483 * architecturally-correct value is being read/set.
7c2cb42b 484 */
c92c0687 485 uint64_t c15_ccnt;
5d05b9d4
AL
486 /* Stores the delta between the architectural value and the underlying
487 * cycle count during normal operation. It is used to update c15_ccnt
488 * to be the correct architectural value before accesses. During
489 * accesses, c15_ccnt_delta contains the underlying count being used
490 * for the access, after which it reverts to the delta value in
491 * pmccntr_op_finish.
492 */
493 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
494 uint64_t c14_pmevcntr[31];
495 uint64_t c14_pmevcntr_delta[31];
496 uint64_t c14_pmevtyper[31];
8521466b 497 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 498 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 499 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
500 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
501 uint64_t gcr_el1;
502 uint64_t rgsr_el1;
58e93b48
RH
503
504 /* Minimal RAS registers */
505 uint64_t disr_el1;
506 uint64_t vdisr_el2;
507 uint64_t vsesr_el2;
15126d9c
PM
508
509 /*
510 * Fine-Grained Trap registers. We store these as arrays so the
511 * access checking code doesn't have to manually select
512 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
513 * FEAT_FGT2 will add more elements to these arrays.
514 */
515 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
516 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
517 uint64_t fgt_exec[1]; /* HFGITR */
ef1febe7
RH
518
519 /* RME registers */
520 uint64_t gpccr_el3;
521 uint64_t gptbr_el3;
522 uint64_t mfar_el3;
b5ba6c99
PM
523
524 /* NV2 register */
525 uint64_t vncr_el2;
b5ff1b31 526 } cp15;
40f137e1 527
9ee6e8bb 528 struct {
fb602cb7
PM
529 /* M profile has up to 4 stack pointers:
530 * a Main Stack Pointer and a Process Stack Pointer for each
531 * of the Secure and Non-Secure states. (If the CPU doesn't support
532 * the security extension then it has only two SPs.)
533 * In QEMU we always store the currently active SP in regs[13],
534 * and the non-active SP for the current security state in
535 * v7m.other_sp. The stack pointers for the inactive security state
536 * are stored in other_ss_msp and other_ss_psp.
537 * switch_v7m_security_state() is responsible for rearranging them
538 * when we change security state.
539 */
9ee6e8bb 540 uint32_t other_sp;
fb602cb7
PM
541 uint32_t other_ss_msp;
542 uint32_t other_ss_psp;
4a16724f
PM
543 uint32_t vecbase[M_REG_NUM_BANKS];
544 uint32_t basepri[M_REG_NUM_BANKS];
545 uint32_t control[M_REG_NUM_BANKS];
546 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
547 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
548 uint32_t hfsr; /* HardFault Status */
549 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 550 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 551 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 552 uint32_t bfar; /* BusFault Address */
bed079da 553 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 554 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 555 int exception;
4a16724f
PM
556 uint32_t primask[M_REG_NUM_BANKS];
557 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 558 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 559 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 560 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 561 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
562 uint32_t msplim[M_REG_NUM_BANKS];
563 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
564 uint32_t fpcar[M_REG_NUM_BANKS];
565 uint32_t fpccr[M_REG_NUM_BANKS];
566 uint32_t fpdscr[M_REG_NUM_BANKS];
567 uint32_t cpacr[M_REG_NUM_BANKS];
568 uint32_t nsacr;
b26b5629 569 uint32_t ltpsize;
7c3d47da 570 uint32_t vpr;
9ee6e8bb
PB
571 } v7m;
572
abf1172f
PM
573 /* Information associated with an exception about to be taken:
574 * code which raises an exception must set cs->exception_index and
575 * the relevant parts of this structure; the cpu_do_interrupt function
576 * will then set the guest-visible registers as part of the exception
577 * entry process.
578 */
579 struct {
580 uint32_t syndrome; /* AArch64 format syndrome register */
581 uint32_t fsr; /* AArch32 format fault status register info */
582 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 583 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
584 /* If we implement EL2 we will also need to store information
585 * about the intermediate physical address for stage 2 faults.
586 */
587 } exception;
588
202ccb6b
DG
589 /* Information associated with an SError */
590 struct {
591 uint8_t pending;
592 uint8_t has_esr;
593 uint64_t esr;
594 } serror;
595
1711bfa5
BM
596 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
597
ed89f078
PM
598 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
599 uint32_t irq_line_state;
600
fe1479c3
PB
601 /* Thumb-2 EE state. */
602 uint32_t teecr;
603 uint32_t teehbr;
604
b7bcbe95
FB
605 /* VFP coprocessor state. */
606 struct {
c39c2b90 607 ARMVectorReg zregs[32];
b7bcbe95 608
3c7d3086
RH
609#ifdef TARGET_AARCH64
610 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 611#define FFR_PRED_NUM 16
3c7d3086 612 ARMPredicateReg pregs[17];
516e246a
RH
613 /* Scratch space for aa64 sve predicate temporary. */
614 ARMPredicateReg preg_tmp;
3c7d3086
RH
615#endif
616
b7bcbe95 617 /* We store these fpcsr fields separately for convenience. */
a4d58462 618 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
619 int vec_len;
620 int vec_stride;
621
a4d58462
RH
622 uint32_t xregs[16];
623
516e246a 624 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 625 uint32_t scratch[8];
3b46e624 626
d81ce0ef
AB
627 /* There are a number of distinct float control structures:
628 *
629 * fp_status: is the "normal" fp status.
630 * fp_status_fp16: used for half-precision calculations
631 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
632 * standard_fp_status_fp16 : used for half-precision
633 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
634 *
635 * Half-precision operations are governed by a separate
636 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
637 * status structure to control this.
638 *
639 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
640 * round-to-nearest and is used by any operations (generally
641 * Neon) which the architecture defines as controlled by the
642 * standard FPSCR value rather than the FPSCR.
3a492f3a 643 *
aaae563b
PM
644 * The "standard FPSCR but for fp16 ops" is needed because
645 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
646 * using a fixed value for it.
647 *
3a492f3a
PM
648 * To avoid having to transfer exception bits around, we simply
649 * say that the FPSCR cumulative exception flags are the logical
aaae563b 650 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
651 * only thing which needs to read the exception flags being
652 * an explicit FPSCR read.
653 */
53cd6637 654 float_status fp_status;
d81ce0ef 655 float_status fp_status_f16;
3a492f3a 656 float_status standard_fp_status;
aaae563b 657 float_status standard_fp_status_f16;
5be5e8ed 658
de561988
RH
659 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
660 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
b7bcbe95 661 } vfp;
0f08429c 662
03d05e2d
PM
663 uint64_t exclusive_addr;
664 uint64_t exclusive_val;
0f08429c
RH
665 /*
666 * Contains the 'val' for the second 64-bit register of LDXP, which comes
667 * from the higher address, not the high part of a complete 128-bit value.
668 * In some ways it might be more convenient to record the exclusive value
669 * as the low and high halves of a 128 bit data value, but the current
670 * semantics of these fields are baked into the migration format.
671 */
03d05e2d 672 uint64_t exclusive_high;
b7bcbe95 673
18c9b560
AZ
674 /* iwMMXt coprocessor state. */
675 struct {
676 uint64_t regs[16];
677 uint64_t val;
678
679 uint32_t cregs[16];
680 } iwmmxt;
681
991ad91b 682#ifdef TARGET_AARCH64
108b3ba8
RH
683 struct {
684 ARMPACKey apia;
685 ARMPACKey apib;
686 ARMPACKey apda;
687 ARMPACKey apdb;
688 ARMPACKey apga;
689 } keys;
7cb1e618
RH
690
691 uint64_t scxtnum_el[4];
dc993a01
RH
692
693 /*
694 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
695 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
696 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
697 * When SVL is less than the architectural maximum, the accessible
698 * storage is restricted, such that if the SVL is X bytes the guest can
699 * see only the bottom X elements of zarray[], and only the least
700 * significant X bytes of each element of the array. (In other words,
701 * the observable part is always square.)
702 *
703 * The ZA storage can also be considered as a set of square tiles of
704 * elements of different sizes. The mapping from tiles to the ZA array
705 * is architecturally defined, such that for tiles of elements of esz
706 * bytes, the Nth row (or "horizontal slice") of tile T is in
707 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
708 * in the ZA storage, because its rows are striped through the ZA array.
709 *
710 * Because this is so large, keep this toward the end of the reset area,
711 * to keep the offsets into the rest of the structure smaller.
712 */
713 ARMVectorReg zarray[ARM_MAX_VQ * 16];
991ad91b
RH
714#endif
715
46747d15 716 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
717 struct CPUWatchpoint *cpu_watchpoint[16];
718
f3639a64
RH
719 /* Optional fault info across tlb lookup. */
720 ARMMMUFaultInfo *tlb_fi;
721
1f5c00cf
AB
722 /* Fields up to this point are cleared by a CPU reset */
723 struct {} end_reset_fields;
724
e8b5fae5 725 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 726
581be094 727 /* Internal CPU feature flags. */
918f5dca 728 uint64_t features;
581be094 729
6cb0b013
PC
730 /* PMSAv7 MPU */
731 struct {
732 uint32_t *drbar;
733 uint32_t *drsr;
734 uint32_t *dracr;
4a16724f 735 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
736 } pmsav7;
737
0e1a46bb
PM
738 /* PMSAv8 MPU */
739 struct {
740 /* The PMSAv8 implementation also shares some PMSAv7 config
741 * and state:
742 * pmsav7.rnr (region number register)
743 * pmsav7_dregion (number of configured regions)
744 */
4a16724f
PM
745 uint32_t *rbar[M_REG_NUM_BANKS];
746 uint32_t *rlar[M_REG_NUM_BANKS];
761c4642
TR
747 uint32_t *hprbar;
748 uint32_t *hprlar;
4a16724f
PM
749 uint32_t mair0[M_REG_NUM_BANKS];
750 uint32_t mair1[M_REG_NUM_BANKS];
761c4642 751 uint32_t hprselr;
0e1a46bb
PM
752 } pmsav8;
753
9901c576
PM
754 /* v8M SAU */
755 struct {
756 uint32_t *rbar;
757 uint32_t *rlar;
758 uint32_t rnr;
759 uint32_t ctrl;
760 } sau;
761
1701d70e 762#if !defined(CONFIG_USER_ONLY)
8f4e07c9 763 NVICState *nvic;
2a94a507 764 const struct arm_boot_info *boot_info;
d3a3e529
VK
765 /* Store GICv3CPUState to access from this struct */
766 void *gicv3state;
1701d70e 767#else /* CONFIG_USER_ONLY */
26f08561
PMD
768 /* For usermode syscall translation. */
769 bool eabi;
770#endif /* CONFIG_USER_ONLY */
0e0c030c
RH
771
772#ifdef TARGET_TAGGED_ADDRESSES
773 /* Linux syscall tagged address support */
774 bool tagged_addr_enable;
775#endif
2c0262af
FB
776} CPUARMState;
777
5fda9504
TH
778static inline void set_feature(CPUARMState *env, int feature)
779{
780 env->features |= 1ULL << feature;
781}
782
783static inline void unset_feature(CPUARMState *env, int feature)
784{
785 env->features &= ~(1ULL << feature);
786}
787
bd7d00fc 788/**
08267487 789 * ARMELChangeHookFn:
bd7d00fc
PM
790 * type of a function which can be registered via arm_register_el_change_hook()
791 * to get callbacks when the CPU changes its exception level or mode.
792 */
08267487
AL
793typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
794typedef struct ARMELChangeHook ARMELChangeHook;
795struct ARMELChangeHook {
796 ARMELChangeHookFn *hook;
797 void *opaque;
798 QLIST_ENTRY(ARMELChangeHook) node;
799};
062ba099
AB
800
801/* These values map onto the return values for
802 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
803typedef enum ARMPSCIState {
d5affb0d
AJ
804 PSCI_ON = 0,
805 PSCI_OFF = 1,
062ba099
AB
806 PSCI_ON_PENDING = 2
807} ARMPSCIState;
808
962fcbf2
RH
809typedef struct ARMISARegisters ARMISARegisters;
810
7f9e25a6
RH
811/*
812 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
813 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
814 *
815 * While processing properties during initialization, corresponding init bits
816 * are set for bits in sve_vq_map that have been set by properties.
817 *
818 * Bits set in supported represent valid vector lengths for the CPU type.
819 */
820typedef struct {
821 uint32_t map, init, supported;
822} ARMVQMap;
823
74e75564
PB
824/**
825 * ARMCPU:
826 * @env: #CPUARMState
827 *
828 * An ARM CPU core.
829 */
b36e239e 830struct ArchCPU {
74e75564 831 CPUState parent_obj;
74e75564
PB
832
833 CPUARMState env;
834
835 /* Coprocessor information */
836 GHashTable *cp_regs;
837 /* For marshalling (mostly coprocessor) register state between the
838 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
839 * we use these arrays.
840 */
841 /* List of register indexes managed via these arrays; (full KVM style
842 * 64 bit indexes, not CPRegInfo 32 bit indexes)
843 */
844 uint64_t *cpreg_indexes;
845 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
846 uint64_t *cpreg_values;
847 /* Length of the indexes, values, reset_values arrays */
848 int32_t cpreg_array_len;
849 /* These are used only for migration: incoming data arrives in
850 * these fields and is sanity checked in post_load before copying
851 * to the working data structures above.
852 */
853 uint64_t *cpreg_vmstate_indexes;
854 uint64_t *cpreg_vmstate_values;
855 int32_t cpreg_vmstate_array_len;
856
690bd97b
AO
857 DynamicGDBFeatureInfo dyn_sysreg_feature;
858 DynamicGDBFeatureInfo dyn_svereg_feature;
859 DynamicGDBFeatureInfo dyn_m_systemreg_feature;
860 DynamicGDBFeatureInfo dyn_m_secextreg_feature;
200bf5b7 861
74e75564
PB
862 /* Timers used by the generic (architected) timer */
863 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
864 /*
865 * Timer used by the PMU. Its state is restored after migration by
866 * pmu_op_finish() - it does not need other handling during migration
867 */
868 QEMUTimer *pmu_timer;
74e75564
PB
869 /* GPIO outputs for generic timer */
870 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
871 /* GPIO output for GICv3 maintenance interrupt signal */
872 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
873 /* GPIO output for the PMU interrupt */
874 qemu_irq pmu_interrupt;
74e75564
PB
875
876 /* MemoryRegion to use for secure physical accesses */
877 MemoryRegion *secure_memory;
878
8bce44a2
RH
879 /* MemoryRegion to use for allocation tag accesses */
880 MemoryRegion *tag_memory;
881 MemoryRegion *secure_tag_memory;
882
181962fd
PM
883 /* For v8M, pointer to the IDAU interface provided by board/SoC */
884 Object *idau;
885
74e75564
PB
886 /* 'compatible' string for this CPU for Linux device trees */
887 const char *dtb_compatible;
888
889 /* PSCI version for this CPU
890 * Bits[31:16] = Major Version
891 * Bits[15:0] = Minor Version
892 */
893 uint32_t psci_version;
894
062ba099
AB
895 /* Current power state, access guarded by BQL */
896 ARMPSCIState power_state;
897
c25bd18a
PM
898 /* CPU has virtualization extension */
899 bool has_el2;
74e75564
PB
900 /* CPU has security extension */
901 bool has_el3;
5c0a3819
SZ
902 /* CPU has PMU (Performance Monitor Unit) */
903 bool has_pmu;
97a28b0e
PM
904 /* CPU has VFP */
905 bool has_vfp;
42bea956
CLG
906 /* CPU has 32 VFP registers */
907 bool has_vfp_d32;
97a28b0e
PM
908 /* CPU has Neon */
909 bool has_neon;
ea90db0a
PM
910 /* CPU has M-profile DSP extension */
911 bool has_dsp;
74e75564
PB
912
913 /* CPU has memory protection unit */
914 bool has_mpu;
915 /* PMSAv7 MPU number of supported regions */
916 uint32_t pmsav7_dregion;
761c4642
TR
917 /* PMSAv8 MPU number of supported hyp regions */
918 uint32_t pmsav8r_hdregion;
9901c576
PM
919 /* v8M SAU number of supported regions */
920 uint32_t sau_sregion;
74e75564
PB
921
922 /* PSCI conduit used to invoke PSCI methods
923 * 0 - disabled, 1 - smc, 2 - hvc
924 */
925 uint32_t psci_conduit;
926
38e2a77c
PM
927 /* For v8M, initial value of the Secure VTOR */
928 uint32_t init_svtor;
7cda2149
PM
929 /* For v8M, initial value of the Non-secure VTOR */
930 uint32_t init_nsvtor;
38e2a77c 931
74e75564
PB
932 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
933 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
934 */
935 uint32_t kvm_target;
936
cf43b5b6 937#ifdef CONFIG_KVM
74e75564
PB
938 /* KVM init features for this CPU */
939 uint32_t kvm_init_features[7];
940
e5ac4200
AJ
941 /* KVM CPU state */
942
943 /* KVM virtual time adjustment */
944 bool kvm_adjvtime;
945 bool kvm_vtime_dirty;
946 uint64_t kvm_vtime;
947
68970d1e
AJ
948 /* KVM steal time */
949 OnOffAuto kvm_steal_time;
cf43b5b6 950#endif /* CONFIG_KVM */
68970d1e 951
74e75564
PB
952 /* Uniprocessor system with MP extensions */
953 bool mp_is_up;
954
c4487d76
PM
955 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
956 * and the probe failed (so we need to report the error in realize)
957 */
958 bool host_cpu_probe_failed;
959
f037f5b4
PM
960 /* QOM property to indicate we should use the back-compat CNTFRQ default */
961 bool backcompat_cntfrq;
962
f9a69711
AF
963 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
964 * register.
965 */
966 int32_t core_count;
967
74e75564
PB
968 /* The instance init functions for implementation-specific subclasses
969 * set these fields to specify the implementation-dependent values of
970 * various constant registers and reset values of non-constant
971 * registers.
972 * Some of these might become QOM properties eventually.
973 * Field names match the official register names as defined in the
974 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
975 * is used for reset values of non-constant registers; no reset_
976 * prefix means a constant register.
47576b94
RH
977 * Some of these registers are split out into a substructure that
978 * is shared with the translators to control the ISA.
1548a7b2
PM
979 *
980 * Note that if you add an ID register to the ARMISARegisters struct
981 * you need to also update the 32-bit and 64-bit versions of the
982 * kvm_arm_get_host_cpu_features() function to correctly populate the
983 * field by reading the value from the KVM vCPU.
74e75564 984 */
47576b94
RH
985 struct ARMISARegisters {
986 uint32_t id_isar0;
987 uint32_t id_isar1;
988 uint32_t id_isar2;
989 uint32_t id_isar3;
990 uint32_t id_isar4;
991 uint32_t id_isar5;
992 uint32_t id_isar6;
10054016
PM
993 uint32_t id_mmfr0;
994 uint32_t id_mmfr1;
995 uint32_t id_mmfr2;
996 uint32_t id_mmfr3;
997 uint32_t id_mmfr4;
32957aad 998 uint32_t id_mmfr5;
8a130a7b
PM
999 uint32_t id_pfr0;
1000 uint32_t id_pfr1;
1d51bc96 1001 uint32_t id_pfr2;
47576b94
RH
1002 uint32_t mvfr0;
1003 uint32_t mvfr1;
1004 uint32_t mvfr2;
a6179538 1005 uint32_t id_dfr0;
d22c5649 1006 uint32_t id_dfr1;
4426d361 1007 uint32_t dbgdidr;
09754ca8
PM
1008 uint32_t dbgdevid;
1009 uint32_t dbgdevid1;
47576b94
RH
1010 uint64_t id_aa64isar0;
1011 uint64_t id_aa64isar1;
a969fe97 1012 uint64_t id_aa64isar2;
47576b94
RH
1013 uint64_t id_aa64pfr0;
1014 uint64_t id_aa64pfr1;
3dc91ddb
PM
1015 uint64_t id_aa64mmfr0;
1016 uint64_t id_aa64mmfr1;
64761e10 1017 uint64_t id_aa64mmfr2;
f7ddd7b6 1018 uint64_t id_aa64mmfr3;
2a609df8
PM
1019 uint64_t id_aa64dfr0;
1020 uint64_t id_aa64dfr1;
2dc10fa2 1021 uint64_t id_aa64zfr0;
414c54d5 1022 uint64_t id_aa64smfr0;
24526bb9 1023 uint64_t reset_pmcr_el0;
47576b94 1024 } isar;
e544f800 1025 uint64_t midr;
74e75564
PB
1026 uint32_t revidr;
1027 uint32_t reset_fpsid;
a5fd319a 1028 uint64_t ctr;
74e75564 1029 uint32_t reset_sctlr;
cad86737
AL
1030 uint64_t pmceid0;
1031 uint64_t pmceid1;
74e75564 1032 uint32_t id_afr0;
74e75564
PB
1033 uint64_t id_aa64afr0;
1034 uint64_t id_aa64afr1;
f6450bcb 1035 uint64_t clidr;
74e75564
PB
1036 uint64_t mp_affinity; /* MP ID without feature bits */
1037 /* The elements of this array are the CCSIDR values for each cache,
1038 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1039 */
957e6155 1040 uint64_t ccsidr[16];
74e75564
PB
1041 uint64_t reset_cbar;
1042 uint32_t reset_auxcr;
1043 bool reset_hivecs;
ef1febe7 1044 uint8_t reset_l0gptsz;
eb94284d
RH
1045
1046 /*
1047 * Intermediate values used during property parsing.
69b2265d 1048 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
1049 */
1050 bool prop_pauth;
1051 bool prop_pauth_impdef;
399e5e71 1052 bool prop_pauth_qarma3;
69b2265d 1053 bool prop_lpa2;
eb94284d 1054
74e75564 1055 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
ae4acc69 1056 uint8_t dcz_blocksize;
851ec6eb
RH
1057 /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1058 uint8_t gm_blocksize;
ae4acc69 1059
4a7319b7 1060 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 1061
e45868a3
PM
1062 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1063 int gic_num_lrs; /* number of list registers */
1064 int gic_vpribits; /* number of virtual priority bits */
1065 int gic_vprebits; /* number of virtual preemption bits */
39f29e59 1066 int gic_pribits; /* number of physical priority bits */
e45868a3 1067
3a062d57
JB
1068 /* Whether the cfgend input is high (i.e. this CPU should reset into
1069 * big-endian mode). This setting isn't used directly: instead it modifies
1070 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1071 * architecture version.
1072 */
1073 bool cfgend;
1074
b5c53d1b 1075 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1076 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1077
1078 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1079
1080 /* Used to synchronize KVM and QEMU in-kernel device levels */
1081 uint8_t device_irq_level;
adf92eab
RH
1082
1083 /* Used to set the maximum vector length the cpu will support. */
1084 uint32_t sve_max_vq;
0df9142d 1085
b3d52804
RH
1086#ifdef CONFIG_USER_ONLY
1087 /* Used to set the default vector length at process start. */
1088 uint32_t sve_default_vq;
e74c0976 1089 uint32_t sme_default_vq;
b3d52804
RH
1090#endif
1091
7f9e25a6 1092 ARMVQMap sve_vq;
e74c0976 1093 ARMVQMap sme_vq;
7def8754
AJ
1094
1095 /* Generic timer counter frequency, in Hz */
1096 uint64_t gt_cntfrq_hz;
74e75564
PB
1097};
1098
9348028e
PMD
1099typedef struct ARMCPUInfo {
1100 const char *name;
1101 void (*initfn)(Object *obj);
1102 void (*class_init)(ObjectClass *oc, void *data);
1103} ARMCPUInfo;
1104
1105/**
1106 * ARMCPUClass:
1107 * @parent_realize: The parent class' realize handler.
1108 * @parent_phases: The parent class' reset phase handlers.
1109 *
1110 * An ARM CPU model.
1111 */
1112struct ARMCPUClass {
1113 CPUClass parent_class;
1114
1115 const ARMCPUInfo *info;
1116 DeviceRealize parent_realize;
1117 ResettablePhases parent_phases;
1118};
1119
1120struct AArch64CPUClass {
1121 ARMCPUClass parent_class;
1122};
1123
f6524ddf
PMD
1124/* Callback functions for the generic timer's timers. */
1125void arm_gt_ptimer_cb(void *opaque);
1126void arm_gt_vtimer_cb(void *opaque);
1127void arm_gt_htimer_cb(void *opaque);
1128void arm_gt_stimer_cb(void *opaque);
1129void arm_gt_hvtimer_cb(void *opaque);
1130
7def8754 1131unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
f6fc36de 1132void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
7def8754 1133
51e5ef45
MAL
1134void arm_cpu_post_init(Object *obj);
1135
f6524ddf
PMD
1136#define ARM_AFF0_SHIFT 0
1137#define ARM_AFF0_MASK (0xFFULL << ARM_AFF0_SHIFT)
1138#define ARM_AFF1_SHIFT 8
1139#define ARM_AFF1_MASK (0xFFULL << ARM_AFF1_SHIFT)
1140#define ARM_AFF2_SHIFT 16
1141#define ARM_AFF2_MASK (0xFFULL << ARM_AFF2_SHIFT)
1142#define ARM_AFF3_SHIFT 32
1143#define ARM_AFF3_MASK (0xFFULL << ARM_AFF3_SHIFT)
1144#define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1145
1146#define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1147#define ARM64_AFFINITY_MASK \
1148 (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1149#define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1150
750245ed 1151uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
46de5913 1152
74e75564 1153#ifndef CONFIG_USER_ONLY
8a9358cc 1154extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1155
1156void arm_cpu_do_interrupt(CPUState *cpu);
1157void arm_v7m_cpu_do_interrupt(CPUState *cpu);
74e75564 1158
74e75564
PB
1159hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1160 MemTxAttrs *attrs);
6d2d454a 1161#endif /* !CONFIG_USER_ONLY */
74e75564 1162
a010bdbe 1163int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1164int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1165
1166int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1167 int cpuid, DumpState *s);
74e75564 1168int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1169 int cpuid, DumpState *s);
74e75564 1170
3a45f4f5
PM
1171/**
1172 * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1173 * @cpu: CPU (which must have been freshly reset)
1174 * @target_el: exception level to put the CPU into
1175 * @secure: whether to put the CPU in secure state
1176 *
1177 * When QEMU is directly running a guest kernel at a lower level than
1178 * EL3 it implicitly emulates some aspects of the guest firmware.
1179 * This includes that on reset we need to configure the parts of the
1180 * CPU corresponding to EL3 so that the real guest code can run at its
1181 * lower exception level. This function does that post-reset CPU setup,
1182 * for when we do direct boot of a guest kernel, and for when we
1183 * emulate PSCI and similar firmware interfaces starting a CPU at a
1184 * lower exception level.
1185 *
1186 * @target_el must be an EL implemented by the CPU between 1 and 3.
1187 * We do not support dropping into a Secure EL other than 3.
1188 *
1189 * It is the responsibility of the caller to call arm_rebuild_hflags().
1190 */
1191void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1192
74e75564 1193#ifdef TARGET_AARCH64
a010bdbe 1194int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1195int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1196void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1197void aarch64_sve_change_el(CPUARMState *env, int old_el,
1198 int new_el, bool el0_a64);
2a8af382 1199void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
538baab2
AJ
1200
1201/*
1202 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1203 * The byte at offset i from the start of the in-memory representation contains
1204 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1205 * lowest offsets are stored in the lowest memory addresses, then that nearly
1206 * matches QEMU's representation, which is to use an array of host-endian
1207 * uint64_t's, where the lower offsets are at the lower indices. To complete
1208 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1209 */
1210static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1211{
e03b5686 1212#if HOST_BIG_ENDIAN
538baab2
AJ
1213 int i;
1214
1215 for (i = 0; i < nr; ++i) {
1216 dst[i] = bswap64(src[i]);
1217 }
1218
1219 return dst;
1220#else
1221 return src;
1222#endif
1223}
1224
0ab5953b
RH
1225#else
1226static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1227static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1228 int n, bool a)
1229{ }
74e75564 1230#endif
778c3a06 1231
ce02049d
GB
1232void aarch64_sync_32_to_64(CPUARMState *env);
1233void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1234
ced31551
RH
1235int fp_exception_el(CPUARMState *env, int cur_el);
1236int sve_exception_el(CPUARMState *env, int cur_el);
6b2ca83e 1237int sme_exception_el(CPUARMState *env, int cur_el);
5ef3cc56
RH
1238
1239/**
6ca54aa9 1240 * sve_vqm1_for_el_sm:
5ef3cc56
RH
1241 * @env: CPUARMState
1242 * @el: exception level
6ca54aa9 1243 * @sm: streaming mode
5ef3cc56 1244 *
6ca54aa9 1245 * Compute the current vector length for @el & @sm, in units of
5ef3cc56 1246 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
6ca54aa9 1247 * If @sm, compute for SVL, otherwise NVL.
5ef3cc56 1248 */
6ca54aa9
RH
1249uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1250
1251/* Likewise, but using @sm = PSTATE.SM. */
5ef3cc56 1252uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
ced31551 1253
3926cc84
AG
1254static inline bool is_a64(CPUARMState *env)
1255{
1256 return env->aarch64;
1257}
1258
5d05b9d4
AL
1259/**
1260 * pmu_op_start/finish
ec7b4ce4
AF
1261 * @env: CPUARMState
1262 *
5d05b9d4
AL
1263 * Convert all PMU counters between their delta form (the typical mode when
1264 * they are enabled) and the guest-visible values. These two calls must
1265 * surround any action which might affect the counters.
ec7b4ce4 1266 */
5d05b9d4
AL
1267void pmu_op_start(CPUARMState *env);
1268void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1269
4e7beb0c
AL
1270/*
1271 * Called when a PMU counter is due to overflow
1272 */
1273void arm_pmu_timer_cb(void *opaque);
1274
033614c4
AL
1275/**
1276 * Functions to register as EL change hooks for PMU mode filtering
1277 */
1278void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1279void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1280
57a4a11b 1281/*
bf8d0969
AL
1282 * pmu_init
1283 * @cpu: ARMCPU
57a4a11b 1284 *
bf8d0969
AL
1285 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1286 * for the current configuration
57a4a11b 1287 */
bf8d0969 1288void pmu_init(ARMCPU *cpu);
57a4a11b 1289
76e3e1bc
PM
1290/* SCTLR bit meanings. Several bits have been reused in newer
1291 * versions of the architecture; in that case we define constants
1292 * for both old and new bit meanings. Code which tests against those
1293 * bits should probably check or otherwise arrange that the CPU
1294 * is the architectural version it expects.
1295 */
1296#define SCTLR_M (1U << 0)
1297#define SCTLR_A (1U << 1)
1298#define SCTLR_C (1U << 2)
1299#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1300#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1301#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1302#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1303#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1304#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1305#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1306#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1307#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
83f624d9 1308#define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */
76e3e1bc
PM
1309#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1310#define SCTLR_ITD (1U << 7) /* v8 onward */
1311#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1312#define SCTLR_SED (1U << 8) /* v8 onward */
1313#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1314#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1315#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1316#define SCTLR_SW (1U << 10) /* v7 */
1317#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1318#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1319#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1320#define SCTLR_I (1U << 12)
b2af69d0
RH
1321#define SCTLR_V (1U << 13) /* AArch32 only */
1322#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1323#define SCTLR_RR (1U << 14) /* up to v7 */
1324#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1325#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1326#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1327#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1328#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1329#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1330#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1331#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1332#define SCTLR_nTWE (1U << 18) /* v8 onward */
1333#define SCTLR_WXN (1U << 19)
1334#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0 1335#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
7cb1e618 1336#define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
b2af69d0
RH
1337#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1338#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1339#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1340#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1341#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1342#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1343#define SCTLR_VE (1U << 24) /* up to v7 */
1344#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1345#define SCTLR_EE (1U << 25)
1346#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1347#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1348#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1349#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1350#define SCTLR_TRE (1U << 28) /* AArch32 only */
1351#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1352#define SCTLR_AFE (1U << 29) /* AArch32 only */
1353#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1354#define SCTLR_TE (1U << 30) /* AArch32 only */
1355#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1356#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1357#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
dbc678f9 1358#define SCTLR_MSCEN (1ULL << 33) /* FEAT_MOPS */
b2af69d0
RH
1359#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1360#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1361#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1362#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1363#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1364#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1365#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1366#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
ad1e6018
RH
1367#define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1368#define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1369#define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1370#define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1371#define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1372#define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1373#define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1374#define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1375#define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1376#define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1377#define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1378#define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1379#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1380#define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
76e3e1bc 1381
78dbbbe4
PM
1382#define CPSR_M (0x1fU)
1383#define CPSR_T (1U << 5)
1384#define CPSR_F (1U << 6)
1385#define CPSR_I (1U << 7)
1386#define CPSR_A (1U << 8)
1387#define CPSR_E (1U << 9)
1388#define CPSR_IT_2_7 (0xfc00U)
1389#define CPSR_GE (0xfU << 16)
4051e12c 1390#define CPSR_IL (1U << 20)
dc8b1853 1391#define CPSR_DIT (1U << 21)
220f508f 1392#define CPSR_PAN (1U << 22)
f2f68a78 1393#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1394#define CPSR_J (1U << 24)
1395#define CPSR_IT_0_1 (3U << 25)
1396#define CPSR_Q (1U << 27)
1397#define CPSR_V (1U << 28)
1398#define CPSR_C (1U << 29)
1399#define CPSR_Z (1U << 30)
1400#define CPSR_N (1U << 31)
9ee6e8bb 1401#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1402#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
2e0be5f6
JR
1403#define ISR_FS (1U << 9)
1404#define ISR_IS (1U << 10)
9ee6e8bb
PB
1405
1406#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1407#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1408 | CPSR_NZCV)
9ee6e8bb 1409/* Bits writable in user mode. */
268b1b3d 1410#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1411/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1412#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1413
987ab45e
PM
1414/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1415#define XPSR_EXCP 0x1ffU
1416#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1417#define XPSR_IT_2_7 CPSR_IT_2_7
1418#define XPSR_GE CPSR_GE
1419#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1420#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1421#define XPSR_IT_0_1 CPSR_IT_0_1
1422#define XPSR_Q CPSR_Q
1423#define XPSR_V CPSR_V
1424#define XPSR_C CPSR_C
1425#define XPSR_Z CPSR_Z
1426#define XPSR_N CPSR_N
1427#define XPSR_NZCV CPSR_NZCV
1428#define XPSR_IT CPSR_IT
1429
d356312f
PM
1430/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1431 * Only these are valid when in AArch64 mode; in
1432 * AArch32 mode SPSRs are basically CPSR-format.
1433 */
f502cfc2 1434#define PSTATE_SP (1U)
d356312f
PM
1435#define PSTATE_M (0xFU)
1436#define PSTATE_nRW (1U << 4)
1437#define PSTATE_F (1U << 6)
1438#define PSTATE_I (1U << 7)
1439#define PSTATE_A (1U << 8)
1440#define PSTATE_D (1U << 9)
f6e52eaa 1441#define PSTATE_BTYPE (3U << 10)
f2f68a78 1442#define PSTATE_SSBS (1U << 12)
6aa20415 1443#define PSTATE_ALLINT (1U << 13)
d356312f
PM
1444#define PSTATE_IL (1U << 20)
1445#define PSTATE_SS (1U << 21)
220f508f 1446#define PSTATE_PAN (1U << 22)
9eeb7a1c 1447#define PSTATE_UAO (1U << 23)
dc8b1853 1448#define PSTATE_DIT (1U << 24)
4b779ceb 1449#define PSTATE_TCO (1U << 25)
d356312f
PM
1450#define PSTATE_V (1U << 28)
1451#define PSTATE_C (1U << 29)
1452#define PSTATE_Z (1U << 30)
1453#define PSTATE_N (1U << 31)
1454#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1455#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1456#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1457/* Mode values for AArch64 */
1458#define PSTATE_MODE_EL3h 13
1459#define PSTATE_MODE_EL3t 12
1460#define PSTATE_MODE_EL2h 9
1461#define PSTATE_MODE_EL2t 8
1462#define PSTATE_MODE_EL1h 5
1463#define PSTATE_MODE_EL1t 4
1464#define PSTATE_MODE_EL0t 0
1465
c37e6ac9
RH
1466/* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1467FIELD(SVCR, SM, 0, 1)
1468FIELD(SVCR, ZA, 1, 1)
1469
de561988
RH
1470/* Fields for SMCR_ELx. */
1471FIELD(SMCR, LEN, 0, 4)
1472FIELD(SMCR, FA64, 31, 1)
1473
de2db7ec
PM
1474/* Write a new value to v7m.exception, thus transitioning into or out
1475 * of Handler mode; this may result in a change of active stack pointer.
1476 */
1477void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1478
9e729b57
EI
1479/* Map EL and handler into a PSTATE_MODE. */
1480static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1481{
1482 return (el << 2) | handler;
1483}
1484
d356312f
PM
1485/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1486 * interprocessing, so we don't attempt to sync with the cpsr state used by
1487 * the 32 bit decoder.
1488 */
1489static inline uint32_t pstate_read(CPUARMState *env)
1490{
1491 int ZF;
1492
1493 ZF = (env->ZF == 0);
1494 return (env->NF & 0x80000000) | (ZF << 30)
1495 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1496 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1497}
1498
1499static inline void pstate_write(CPUARMState *env, uint32_t val)
1500{
1501 env->ZF = (~val) & PSTATE_Z;
1502 env->NF = val;
1503 env->CF = (val >> 29) & 1;
1504 env->VF = (val << 3) & 0x80000000;
4cc35614 1505 env->daif = val & PSTATE_DAIF;
f6e52eaa 1506 env->btype = (val >> 10) & 3;
d356312f
PM
1507 env->pstate = val & ~CACHED_PSTATE_BITS;
1508}
1509
b5ff1b31 1510/* Return the current CPSR value. */
2f4a40e5 1511uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1512
1513typedef enum CPSRWriteType {
1514 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1515 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1516 CPSRWriteRaw = 2,
1517 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1518 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1519} CPSRWriteType;
1520
e784807c
PM
1521/*
1522 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1523 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1524 * correspond to TB flags bits cached in the hflags, unless @write_type
1525 * is CPSRWriteRaw.
1526 */
50866ba5
PM
1527void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1528 CPSRWriteType write_type);
9ee6e8bb
PB
1529
1530/* Return the current xPSR value. */
1531static inline uint32_t xpsr_read(CPUARMState *env)
1532{
1533 int ZF;
6fbe23d5
PB
1534 ZF = (env->ZF == 0);
1535 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1536 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1537 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1538 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1539 | (env->GE << 16)
9ee6e8bb 1540 | env->v7m.exception;
b5ff1b31
FB
1541}
1542
9ee6e8bb
PB
1543/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1544static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1545{
987ab45e
PM
1546 if (mask & XPSR_NZCV) {
1547 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1548 env->NF = val;
9ee6e8bb
PB
1549 env->CF = (val >> 29) & 1;
1550 env->VF = (val << 3) & 0x80000000;
1551 }
987ab45e
PM
1552 if (mask & XPSR_Q) {
1553 env->QF = ((val & XPSR_Q) != 0);
1554 }
f1e2598c
PM
1555 if (mask & XPSR_GE) {
1556 env->GE = (val & XPSR_GE) >> 16;
1557 }
04c9c81b 1558#ifndef CONFIG_USER_ONLY
987ab45e
PM
1559 if (mask & XPSR_T) {
1560 env->thumb = ((val & XPSR_T) != 0);
1561 }
1562 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1563 env->condexec_bits &= ~3;
1564 env->condexec_bits |= (val >> 25) & 3;
1565 }
987ab45e 1566 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1567 env->condexec_bits &= 3;
1568 env->condexec_bits |= (val >> 8) & 0xfc;
1569 }
987ab45e 1570 if (mask & XPSR_EXCP) {
de2db7ec
PM
1571 /* Note that this only happens on exception exit */
1572 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1573 }
04c9c81b 1574#endif
9ee6e8bb
PB
1575}
1576
f149e3e8
EI
1577#define HCR_VM (1ULL << 0)
1578#define HCR_SWIO (1ULL << 1)
1579#define HCR_PTW (1ULL << 2)
1580#define HCR_FMO (1ULL << 3)
1581#define HCR_IMO (1ULL << 4)
1582#define HCR_AMO (1ULL << 5)
1583#define HCR_VF (1ULL << 6)
1584#define HCR_VI (1ULL << 7)
1585#define HCR_VSE (1ULL << 8)
1586#define HCR_FB (1ULL << 9)
1587#define HCR_BSU_MASK (3ULL << 10)
1588#define HCR_DC (1ULL << 12)
1589#define HCR_TWI (1ULL << 13)
1590#define HCR_TWE (1ULL << 14)
1591#define HCR_TID0 (1ULL << 15)
1592#define HCR_TID1 (1ULL << 16)
1593#define HCR_TID2 (1ULL << 17)
1594#define HCR_TID3 (1ULL << 18)
1595#define HCR_TSC (1ULL << 19)
1596#define HCR_TIDCP (1ULL << 20)
1597#define HCR_TACR (1ULL << 21)
1598#define HCR_TSW (1ULL << 22)
099bf53b 1599#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1600#define HCR_TPU (1ULL << 24)
1601#define HCR_TTLB (1ULL << 25)
1602#define HCR_TVM (1ULL << 26)
1603#define HCR_TGE (1ULL << 27)
1604#define HCR_TDZ (1ULL << 28)
1605#define HCR_HCD (1ULL << 29)
1606#define HCR_TRVM (1ULL << 30)
1607#define HCR_RW (1ULL << 31)
1608#define HCR_CD (1ULL << 32)
1609#define HCR_ID (1ULL << 33)
ac656b16 1610#define HCR_E2H (1ULL << 34)
099bf53b
RH
1611#define HCR_TLOR (1ULL << 35)
1612#define HCR_TERR (1ULL << 36)
1613#define HCR_TEA (1ULL << 37)
1614#define HCR_MIOCNCE (1ULL << 38)
aa3cc42c 1615#define HCR_TME (1ULL << 39)
099bf53b
RH
1616#define HCR_APK (1ULL << 40)
1617#define HCR_API (1ULL << 41)
1618#define HCR_NV (1ULL << 42)
1619#define HCR_NV1 (1ULL << 43)
1620#define HCR_AT (1ULL << 44)
1621#define HCR_NV2 (1ULL << 45)
1622#define HCR_FWB (1ULL << 46)
1623#define HCR_FIEN (1ULL << 47)
aa3cc42c 1624#define HCR_GPF (1ULL << 48)
099bf53b
RH
1625#define HCR_TID4 (1ULL << 49)
1626#define HCR_TICAB (1ULL << 50)
e0a38bb3 1627#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1628#define HCR_TOCU (1ULL << 52)
e0a38bb3 1629#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1630#define HCR_TTLBIS (1ULL << 54)
1631#define HCR_TTLBOS (1ULL << 55)
1632#define HCR_ATA (1ULL << 56)
1633#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1634#define HCR_TID5 (1ULL << 58)
1635#define HCR_TWEDEN (1ULL << 59)
1636#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1637
06f2adcc
JF
1638#define SCR_NS (1ULL << 0)
1639#define SCR_IRQ (1ULL << 1)
1640#define SCR_FIQ (1ULL << 2)
1641#define SCR_EA (1ULL << 3)
1642#define SCR_FW (1ULL << 4)
1643#define SCR_AW (1ULL << 5)
1644#define SCR_NET (1ULL << 6)
1645#define SCR_SMD (1ULL << 7)
1646#define SCR_HCE (1ULL << 8)
1647#define SCR_SIF (1ULL << 9)
1648#define SCR_RW (1ULL << 10)
1649#define SCR_ST (1ULL << 11)
1650#define SCR_TWI (1ULL << 12)
1651#define SCR_TWE (1ULL << 13)
1652#define SCR_TLOR (1ULL << 14)
1653#define SCR_TERR (1ULL << 15)
1654#define SCR_APK (1ULL << 16)
1655#define SCR_API (1ULL << 17)
1656#define SCR_EEL2 (1ULL << 18)
1657#define SCR_EASE (1ULL << 19)
1658#define SCR_NMEA (1ULL << 20)
1659#define SCR_FIEN (1ULL << 21)
1660#define SCR_ENSCXT (1ULL << 25)
1661#define SCR_ATA (1ULL << 26)
1662#define SCR_FGTEN (1ULL << 27)
1663#define SCR_ECVEN (1ULL << 28)
1664#define SCR_TWEDEN (1ULL << 29)
f527d661
RH
1665#define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1666#define SCR_TME (1ULL << 34)
1667#define SCR_AMVOFFEN (1ULL << 35)
1668#define SCR_ENAS0 (1ULL << 36)
1669#define SCR_ADEN (1ULL << 37)
1670#define SCR_HXEN (1ULL << 38)
1671#define SCR_TRNDR (1ULL << 40)
1672#define SCR_ENTP2 (1ULL << 41)
1673#define SCR_GPF (1ULL << 48)
aa3cc42c 1674#define SCR_NSE (1ULL << 62)
64e0e2de 1675
01653295
PM
1676/* Return the current FPSCR value. */
1677uint32_t vfp_get_fpscr(CPUARMState *env);
1678void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1679
d81ce0ef
AB
1680/* FPCR, Floating Point Control Register
1681 * FPSR, Floating Poiht Status Register
1682 *
1683 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1684 * FPCR and FPSR. However since they still use non-overlapping bits
1685 * we store the underlying state in fpscr and just mask on read/write.
1686 */
1687#define FPSR_MASK 0xf800009f
0b62159b 1688#define FPCR_MASK 0x07ff9f00
d81ce0ef 1689
a15945d9
PM
1690#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1691#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1692#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1693#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1694#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1695#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1696#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1697#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1698#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1699#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1700#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1701#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1702#define FPCR_V (1 << 28) /* FP overflow flag */
1703#define FPCR_C (1 << 29) /* FP carry flag */
1704#define FPCR_Z (1 << 30) /* FP zero flag */
1705#define FPCR_N (1 << 31) /* FP negative flag */
1706
99c7834f
PM
1707#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1708#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1709#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1710
9542c30b
PM
1711#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1712#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1713
f903fa22
PM
1714static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1715{
1716 return vfp_get_fpscr(env) & FPSR_MASK;
1717}
1718
1719static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1720{
1721 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1722 vfp_set_fpscr(env, new_fpscr);
1723}
1724
1725static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1726{
1727 return vfp_get_fpscr(env) & FPCR_MASK;
1728}
1729
1730static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1731{
1732 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1733 vfp_set_fpscr(env, new_fpscr);
1734}
1735
b5ff1b31
FB
1736enum arm_cpu_mode {
1737 ARM_CPU_MODE_USR = 0x10,
1738 ARM_CPU_MODE_FIQ = 0x11,
1739 ARM_CPU_MODE_IRQ = 0x12,
1740 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1741 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1742 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1743 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1744 ARM_CPU_MODE_UND = 0x1b,
1745 ARM_CPU_MODE_SYS = 0x1f
1746};
1747
40f137e1
PB
1748/* VFP system registers. */
1749#define ARM_VFP_FPSID 0
1750#define ARM_VFP_FPSCR 1
a50c0f51 1751#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1752#define ARM_VFP_MVFR1 6
1753#define ARM_VFP_MVFR0 7
40f137e1
PB
1754#define ARM_VFP_FPEXC 8
1755#define ARM_VFP_FPINST 9
1756#define ARM_VFP_FPINST2 10
9542c30b
PM
1757/* These ones are M-profile only */
1758#define ARM_VFP_FPSCR_NZCVQC 2
1759#define ARM_VFP_VPR 12
1760#define ARM_VFP_P0 13
1761#define ARM_VFP_FPCXT_NS 14
1762#define ARM_VFP_FPCXT_S 15
40f137e1 1763
32a290b8
PM
1764/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1765#define QEMU_VFP_FPSCR_NZCV 0xffff
1766
18c9b560 1767/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1768#define ARM_IWMMXT_wCID 0
1769#define ARM_IWMMXT_wCon 1
1770#define ARM_IWMMXT_wCSSF 2
1771#define ARM_IWMMXT_wCASF 3
1772#define ARM_IWMMXT_wCGR0 8
1773#define ARM_IWMMXT_wCGR1 9
1774#define ARM_IWMMXT_wCGR2 10
1775#define ARM_IWMMXT_wCGR3 11
18c9b560 1776
2c4da50d
PM
1777/* V7M CCR bits */
1778FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1779FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1780FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1781FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1782FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1783FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1784FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1785FIELD(V7M_CCR, DC, 16, 1)
1786FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1787FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1788FIELD(V7M_CCR, LOB, 19, 1)
1789FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1790
24ac0fb1
PM
1791/* V7M SCR bits */
1792FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1793FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1794FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1795FIELD(V7M_SCR, SEVONPEND, 4, 1)
1796
3b2e9344
PM
1797/* V7M AIRCR bits */
1798FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1799FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1800FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1801FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1802FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1803FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1804FIELD(V7M_AIRCR, PRIS, 14, 1)
1805FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1806FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1807
2c4da50d
PM
1808/* V7M CFSR bits for MMFSR */
1809FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1810FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1811FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1812FIELD(V7M_CFSR, MSTKERR, 4, 1)
1813FIELD(V7M_CFSR, MLSPERR, 5, 1)
1814FIELD(V7M_CFSR, MMARVALID, 7, 1)
1815
1816/* V7M CFSR bits for BFSR */
1817FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1818FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1819FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1820FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1821FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1822FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1823FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1824
1825/* V7M CFSR bits for UFSR */
1826FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1827FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1828FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1829FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1830FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1831FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1832FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1833
334e8dad
PM
1834/* V7M CFSR bit masks covering all of the subregister bits */
1835FIELD(V7M_CFSR, MMFSR, 0, 8)
1836FIELD(V7M_CFSR, BFSR, 8, 8)
1837FIELD(V7M_CFSR, UFSR, 16, 16)
1838
2c4da50d
PM
1839/* V7M HFSR bits */
1840FIELD(V7M_HFSR, VECTTBL, 1, 1)
1841FIELD(V7M_HFSR, FORCED, 30, 1)
1842FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1843
1844/* V7M DFSR bits */
1845FIELD(V7M_DFSR, HALTED, 0, 1)
1846FIELD(V7M_DFSR, BKPT, 1, 1)
1847FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1848FIELD(V7M_DFSR, VCATCH, 3, 1)
1849FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1850
bed079da
PM
1851/* V7M SFSR bits */
1852FIELD(V7M_SFSR, INVEP, 0, 1)
1853FIELD(V7M_SFSR, INVIS, 1, 1)
1854FIELD(V7M_SFSR, INVER, 2, 1)
1855FIELD(V7M_SFSR, AUVIOL, 3, 1)
1856FIELD(V7M_SFSR, INVTRAN, 4, 1)
1857FIELD(V7M_SFSR, LSPERR, 5, 1)
1858FIELD(V7M_SFSR, SFARVALID, 6, 1)
1859FIELD(V7M_SFSR, LSERR, 7, 1)
1860
29c483a5
MD
1861/* v7M MPU_CTRL bits */
1862FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1863FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1864FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1865
43bbce7f
PM
1866/* v7M CLIDR bits */
1867FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1868FIELD(V7M_CLIDR, LOUIS, 21, 3)
1869FIELD(V7M_CLIDR, LOC, 24, 3)
1870FIELD(V7M_CLIDR, LOUU, 27, 3)
1871FIELD(V7M_CLIDR, ICB, 30, 2)
1872
1873FIELD(V7M_CSSELR, IND, 0, 1)
1874FIELD(V7M_CSSELR, LEVEL, 1, 3)
1875/* We use the combination of InD and Level to index into cpu->ccsidr[];
1876 * define a mask for this and check that it doesn't permit running off
1877 * the end of the array.
1878 */
1879FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1880
1881/* v7M FPCCR bits */
1882FIELD(V7M_FPCCR, LSPACT, 0, 1)
1883FIELD(V7M_FPCCR, USER, 1, 1)
1884FIELD(V7M_FPCCR, S, 2, 1)
1885FIELD(V7M_FPCCR, THREAD, 3, 1)
1886FIELD(V7M_FPCCR, HFRDY, 4, 1)
1887FIELD(V7M_FPCCR, MMRDY, 5, 1)
1888FIELD(V7M_FPCCR, BFRDY, 6, 1)
1889FIELD(V7M_FPCCR, SFRDY, 7, 1)
1890FIELD(V7M_FPCCR, MONRDY, 8, 1)
1891FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1892FIELD(V7M_FPCCR, UFRDY, 10, 1)
1893FIELD(V7M_FPCCR, RES0, 11, 15)
1894FIELD(V7M_FPCCR, TS, 26, 1)
1895FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1896FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1897FIELD(V7M_FPCCR, LSPENS, 29, 1)
1898FIELD(V7M_FPCCR, LSPEN, 30, 1)
1899FIELD(V7M_FPCCR, ASPEN, 31, 1)
1900/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1901#define R_V7M_FPCCR_BANKED_MASK \
1902 (R_V7M_FPCCR_LSPACT_MASK | \
1903 R_V7M_FPCCR_USER_MASK | \
1904 R_V7M_FPCCR_THREAD_MASK | \
1905 R_V7M_FPCCR_MMRDY_MASK | \
1906 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1907 R_V7M_FPCCR_UFRDY_MASK | \
1908 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1909
7c3d47da
PM
1910/* v7M VPR bits */
1911FIELD(V7M_VPR, P0, 0, 16)
1912FIELD(V7M_VPR, MASK01, 16, 4)
1913FIELD(V7M_VPR, MASK23, 20, 4)
1914
a62e62af
RH
1915/*
1916 * System register ID fields.
1917 */
2a14526a
LL
1918FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1919FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1920FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1921FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1922FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1923FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1924FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1925FIELD(CLIDR_EL1, LOUIS, 21, 3)
1926FIELD(CLIDR_EL1, LOC, 24, 3)
1927FIELD(CLIDR_EL1, LOUU, 27, 3)
1928FIELD(CLIDR_EL1, ICB, 30, 3)
1929
1930/* When FEAT_CCIDX is implemented */
1931FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1932FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1933FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1934
1935/* When FEAT_CCIDX is not implemented */
1936FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1937FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1938FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1939
1940FIELD(CTR_EL0, IMINLINE, 0, 4)
1941FIELD(CTR_EL0, L1IP, 14, 2)
1942FIELD(CTR_EL0, DMINLINE, 16, 4)
1943FIELD(CTR_EL0, ERG, 20, 4)
1944FIELD(CTR_EL0, CWG, 24, 4)
1945FIELD(CTR_EL0, IDC, 28, 1)
1946FIELD(CTR_EL0, DIC, 29, 1)
1947FIELD(CTR_EL0, TMINLINE, 32, 6)
1948
2bd5f41c
AB
1949FIELD(MIDR_EL1, REVISION, 0, 4)
1950FIELD(MIDR_EL1, PARTNUM, 4, 12)
1951FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1952FIELD(MIDR_EL1, VARIANT, 20, 4)
1953FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1954
a62e62af
RH
1955FIELD(ID_ISAR0, SWAP, 0, 4)
1956FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1957FIELD(ID_ISAR0, BITFIELD, 8, 4)
1958FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1959FIELD(ID_ISAR0, COPROC, 16, 4)
1960FIELD(ID_ISAR0, DEBUG, 20, 4)
1961FIELD(ID_ISAR0, DIVIDE, 24, 4)
1962
1963FIELD(ID_ISAR1, ENDIAN, 0, 4)
1964FIELD(ID_ISAR1, EXCEPT, 4, 4)
1965FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1966FIELD(ID_ISAR1, EXTEND, 12, 4)
1967FIELD(ID_ISAR1, IFTHEN, 16, 4)
1968FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1969FIELD(ID_ISAR1, INTERWORK, 24, 4)
1970FIELD(ID_ISAR1, JAZELLE, 28, 4)
1971
1972FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1973FIELD(ID_ISAR2, MEMHINT, 4, 4)
1974FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1975FIELD(ID_ISAR2, MULT, 12, 4)
1976FIELD(ID_ISAR2, MULTS, 16, 4)
1977FIELD(ID_ISAR2, MULTU, 20, 4)
1978FIELD(ID_ISAR2, PSR_AR, 24, 4)
1979FIELD(ID_ISAR2, REVERSAL, 28, 4)
1980
1981FIELD(ID_ISAR3, SATURATE, 0, 4)
1982FIELD(ID_ISAR3, SIMD, 4, 4)
1983FIELD(ID_ISAR3, SVC, 8, 4)
1984FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1985FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1986FIELD(ID_ISAR3, T32COPY, 20, 4)
1987FIELD(ID_ISAR3, TRUENOP, 24, 4)
1988FIELD(ID_ISAR3, T32EE, 28, 4)
1989
1990FIELD(ID_ISAR4, UNPRIV, 0, 4)
1991FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1992FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1993FIELD(ID_ISAR4, SMC, 12, 4)
1994FIELD(ID_ISAR4, BARRIER, 16, 4)
1995FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1996FIELD(ID_ISAR4, PSR_M, 24, 4)
1997FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1998
1999FIELD(ID_ISAR5, SEVL, 0, 4)
2000FIELD(ID_ISAR5, AES, 4, 4)
2001FIELD(ID_ISAR5, SHA1, 8, 4)
2002FIELD(ID_ISAR5, SHA2, 12, 4)
2003FIELD(ID_ISAR5, CRC32, 16, 4)
2004FIELD(ID_ISAR5, RDM, 24, 4)
2005FIELD(ID_ISAR5, VCMA, 28, 4)
2006
2007FIELD(ID_ISAR6, JSCVT, 0, 4)
2008FIELD(ID_ISAR6, DP, 4, 4)
2009FIELD(ID_ISAR6, FHM, 8, 4)
2010FIELD(ID_ISAR6, SB, 12, 4)
2011FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
2012FIELD(ID_ISAR6, BF16, 20, 4)
2013FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 2014
0ae0326b
PM
2015FIELD(ID_MMFR0, VMSA, 0, 4)
2016FIELD(ID_MMFR0, PMSA, 4, 4)
2017FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2018FIELD(ID_MMFR0, SHARELVL, 12, 4)
2019FIELD(ID_MMFR0, TCM, 16, 4)
2020FIELD(ID_MMFR0, AUXREG, 20, 4)
2021FIELD(ID_MMFR0, FCSE, 24, 4)
2022FIELD(ID_MMFR0, INNERSHR, 28, 4)
2023
bd78b6be
LL
2024FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2025FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2026FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2027FIELD(ID_MMFR1, L1UNISW, 12, 4)
2028FIELD(ID_MMFR1, L1HVD, 16, 4)
2029FIELD(ID_MMFR1, L1UNI, 20, 4)
2030FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2031FIELD(ID_MMFR1, BPRED, 28, 4)
2032
2033FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2034FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2035FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2036FIELD(ID_MMFR2, HVDTLB, 12, 4)
2037FIELD(ID_MMFR2, UNITLB, 16, 4)
2038FIELD(ID_MMFR2, MEMBARR, 20, 4)
2039FIELD(ID_MMFR2, WFISTALL, 24, 4)
2040FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2041
3d6ad6bb
RH
2042FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2043FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2044FIELD(ID_MMFR3, BPMAINT, 8, 4)
2045FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2046FIELD(ID_MMFR3, PAN, 16, 4)
2047FIELD(ID_MMFR3, COHWALK, 20, 4)
2048FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2049FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2050
ab638a32
RH
2051FIELD(ID_MMFR4, SPECSEI, 0, 4)
2052FIELD(ID_MMFR4, AC2, 4, 4)
2053FIELD(ID_MMFR4, XNX, 8, 4)
2054FIELD(ID_MMFR4, CNP, 12, 4)
2055FIELD(ID_MMFR4, HPDS, 16, 4)
2056FIELD(ID_MMFR4, LSM, 20, 4)
2057FIELD(ID_MMFR4, CCIDX, 24, 4)
2058FIELD(ID_MMFR4, EVT, 28, 4)
2059
bd78b6be 2060FIELD(ID_MMFR5, ETS, 0, 4)
c42fb26b 2061FIELD(ID_MMFR5, NTLBPA, 4, 4)
bd78b6be 2062
46f4976f
PM
2063FIELD(ID_PFR0, STATE0, 0, 4)
2064FIELD(ID_PFR0, STATE1, 4, 4)
2065FIELD(ID_PFR0, STATE2, 8, 4)
2066FIELD(ID_PFR0, STATE3, 12, 4)
2067FIELD(ID_PFR0, CSV2, 16, 4)
2068FIELD(ID_PFR0, AMU, 20, 4)
2069FIELD(ID_PFR0, DIT, 24, 4)
2070FIELD(ID_PFR0, RAS, 28, 4)
2071
dfc523a8
PM
2072FIELD(ID_PFR1, PROGMOD, 0, 4)
2073FIELD(ID_PFR1, SECURITY, 4, 4)
2074FIELD(ID_PFR1, MPROGMOD, 8, 4)
2075FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2076FIELD(ID_PFR1, GENTIMER, 16, 4)
2077FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2078FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2079FIELD(ID_PFR1, GIC, 28, 4)
2080
bd78b6be
LL
2081FIELD(ID_PFR2, CSV3, 0, 4)
2082FIELD(ID_PFR2, SSBS, 4, 4)
2083FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2084
a62e62af
RH
2085FIELD(ID_AA64ISAR0, AES, 4, 4)
2086FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2087FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2088FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2089FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
4d9eb296 2090FIELD(ID_AA64ISAR0, TME, 24, 4)
a62e62af
RH
2091FIELD(ID_AA64ISAR0, RDM, 28, 4)
2092FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2093FIELD(ID_AA64ISAR0, SM3, 36, 4)
2094FIELD(ID_AA64ISAR0, SM4, 40, 4)
2095FIELD(ID_AA64ISAR0, DP, 44, 4)
2096FIELD(ID_AA64ISAR0, FHM, 48, 4)
2097FIELD(ID_AA64ISAR0, TS, 52, 4)
2098FIELD(ID_AA64ISAR0, TLB, 56, 4)
2099FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2100
2101FIELD(ID_AA64ISAR1, DPB, 0, 4)
2102FIELD(ID_AA64ISAR1, APA, 4, 4)
2103FIELD(ID_AA64ISAR1, API, 8, 4)
2104FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2105FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2106FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2107FIELD(ID_AA64ISAR1, GPA, 24, 4)
2108FIELD(ID_AA64ISAR1, GPI, 28, 4)
2109FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2110FIELD(ID_AA64ISAR1, SB, 36, 4)
2111FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
2112FIELD(ID_AA64ISAR1, BF16, 44, 4)
2113FIELD(ID_AA64ISAR1, DGH, 48, 4)
2114FIELD(ID_AA64ISAR1, I8MM, 52, 4)
c42fb26b
RH
2115FIELD(ID_AA64ISAR1, XS, 56, 4)
2116FIELD(ID_AA64ISAR1, LS64, 60, 4)
2117
2118FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2119FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2120FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2121FIELD(ID_AA64ISAR2, APA3, 12, 4)
2122FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2123FIELD(ID_AA64ISAR2, BC, 20, 4)
2124FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
4d9eb296
PM
2125FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2126FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2127FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2128FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2129FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2130FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2131FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
a62e62af 2132
cd208a1c
RH
2133FIELD(ID_AA64PFR0, EL0, 0, 4)
2134FIELD(ID_AA64PFR0, EL1, 4, 4)
2135FIELD(ID_AA64PFR0, EL2, 8, 4)
2136FIELD(ID_AA64PFR0, EL3, 12, 4)
2137FIELD(ID_AA64PFR0, FP, 16, 4)
2138FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2139FIELD(ID_AA64PFR0, GIC, 24, 4)
2140FIELD(ID_AA64PFR0, RAS, 28, 4)
2141FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
2142FIELD(ID_AA64PFR0, SEL2, 36, 4)
2143FIELD(ID_AA64PFR0, MPAM, 40, 4)
2144FIELD(ID_AA64PFR0, AMU, 44, 4)
2145FIELD(ID_AA64PFR0, DIT, 48, 4)
b9f335c2 2146FIELD(ID_AA64PFR0, RME, 52, 4)
00a92832
LL
2147FIELD(ID_AA64PFR0, CSV2, 56, 4)
2148FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2149
be53b6f4 2150FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2151FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2152FIELD(ID_AA64PFR1, MTE, 8, 4)
2153FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2154FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
c42fb26b
RH
2155FIELD(ID_AA64PFR1, SME, 24, 4)
2156FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2157FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2158FIELD(ID_AA64PFR1, NMI, 36, 4)
4d9eb296
PM
2159FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2160FIELD(ID_AA64PFR1, GCS, 44, 4)
2161FIELD(ID_AA64PFR1, THE, 48, 4)
2162FIELD(ID_AA64PFR1, MTEX, 52, 4)
2163FIELD(ID_AA64PFR1, DF2, 56, 4)
2164FIELD(ID_AA64PFR1, PFAR, 60, 4)
be53b6f4 2165
3dc91ddb
PM
2166FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2167FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2168FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2169FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2170FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2171FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2172FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2173FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2174FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2175FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2176FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2177FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2178FIELD(ID_AA64MMFR0, FGT, 56, 4)
2179FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2180
2181FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2182FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2183FIELD(ID_AA64MMFR1, VH, 8, 4)
2184FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2185FIELD(ID_AA64MMFR1, LO, 16, 4)
2186FIELD(ID_AA64MMFR1, PAN, 20, 4)
2187FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2188FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2189FIELD(ID_AA64MMFR1, TWED, 32, 4)
2190FIELD(ID_AA64MMFR1, ETS, 36, 4)
c42fb26b
RH
2191FIELD(ID_AA64MMFR1, HCX, 40, 4)
2192FIELD(ID_AA64MMFR1, AFP, 44, 4)
2193FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2194FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2195FIELD(ID_AA64MMFR1, CMOW, 56, 4)
4d9eb296 2196FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
3dc91ddb 2197
64761e10
RH
2198FIELD(ID_AA64MMFR2, CNP, 0, 4)
2199FIELD(ID_AA64MMFR2, UAO, 4, 4)
2200FIELD(ID_AA64MMFR2, LSM, 8, 4)
2201FIELD(ID_AA64MMFR2, IESB, 12, 4)
2202FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2203FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2204FIELD(ID_AA64MMFR2, NV, 24, 4)
2205FIELD(ID_AA64MMFR2, ST, 28, 4)
2206FIELD(ID_AA64MMFR2, AT, 32, 4)
2207FIELD(ID_AA64MMFR2, IDS, 36, 4)
2208FIELD(ID_AA64MMFR2, FWB, 40, 4)
2209FIELD(ID_AA64MMFR2, TTL, 48, 4)
2210FIELD(ID_AA64MMFR2, BBM, 52, 4)
2211FIELD(ID_AA64MMFR2, EVT, 56, 4)
2212FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2213
f7ddd7b6
PM
2214FIELD(ID_AA64MMFR3, TCRX, 0, 4)
2215FIELD(ID_AA64MMFR3, SCTLRX, 4, 4)
2216FIELD(ID_AA64MMFR3, S1PIE, 8, 4)
2217FIELD(ID_AA64MMFR3, S2PIE, 12, 4)
2218FIELD(ID_AA64MMFR3, S1POE, 16, 4)
2219FIELD(ID_AA64MMFR3, S2POE, 20, 4)
2220FIELD(ID_AA64MMFR3, AIE, 24, 4)
2221FIELD(ID_AA64MMFR3, MEC, 28, 4)
2222FIELD(ID_AA64MMFR3, D128, 32, 4)
2223FIELD(ID_AA64MMFR3, D128_2, 36, 4)
2224FIELD(ID_AA64MMFR3, SNERR, 40, 4)
2225FIELD(ID_AA64MMFR3, ANERR, 44, 4)
2226FIELD(ID_AA64MMFR3, SDERR, 52, 4)
2227FIELD(ID_AA64MMFR3, ADERR, 56, 4)
2228FIELD(ID_AA64MMFR3, SPEC_FPACC, 60, 4)
2229
ceb2744b
PM
2230FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2231FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2232FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2233FIELD(ID_AA64DFR0, BRPS, 12, 4)
4d9eb296 2234FIELD(ID_AA64DFR0, PMSS, 16, 4)
ceb2744b 2235FIELD(ID_AA64DFR0, WRPS, 20, 4)
4d9eb296 2236FIELD(ID_AA64DFR0, SEBEP, 24, 4)
ceb2744b
PM
2237FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2238FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2239FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2240FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
c42fb26b 2241FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
00a92832 2242FIELD(ID_AA64DFR0, MTPMU, 48, 4)
c42fb26b 2243FIELD(ID_AA64DFR0, BRBE, 52, 4)
4d9eb296 2244FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
c42fb26b 2245FIELD(ID_AA64DFR0, HPMN0, 60, 4)
ceb2744b 2246
2dc10fa2
RH
2247FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2248FIELD(ID_AA64ZFR0, AES, 4, 4)
2249FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2250FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
4d9eb296 2251FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2dc10fa2
RH
2252FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2253FIELD(ID_AA64ZFR0, SM4, 40, 4)
2254FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2255FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2256FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2257
414c54d5 2258FIELD(ID_AA64SMFR0, F32F32, 32, 1)
4d9eb296 2259FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
414c54d5
RH
2260FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2261FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2262FIELD(ID_AA64SMFR0, I8I32, 36, 4)
4d9eb296
PM
2263FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2264FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2265FIELD(ID_AA64SMFR0, I16I32, 44, 4)
414c54d5
RH
2266FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2267FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2268FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2269FIELD(ID_AA64SMFR0, FA64, 63, 1)
2270
beceb99c
AL
2271FIELD(ID_DFR0, COPDBG, 0, 4)
2272FIELD(ID_DFR0, COPSDBG, 4, 4)
2273FIELD(ID_DFR0, MMAPDBG, 8, 4)
2274FIELD(ID_DFR0, COPTRC, 12, 4)
2275FIELD(ID_DFR0, MMAPTRC, 16, 4)
2276FIELD(ID_DFR0, MPROFDBG, 20, 4)
2277FIELD(ID_DFR0, PERFMON, 24, 4)
2278FIELD(ID_DFR0, TRACEFILT, 28, 4)
2279
bd78b6be 2280FIELD(ID_DFR1, MTPMU, 0, 4)
c42fb26b 2281FIELD(ID_DFR1, HPMN0, 4, 4)
bd78b6be 2282
88ce6c6e
PM
2283FIELD(DBGDIDR, SE_IMP, 12, 1)
2284FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2285FIELD(DBGDIDR, VERSION, 16, 4)
2286FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2287FIELD(DBGDIDR, BRPS, 24, 4)
2288FIELD(DBGDIDR, WRPS, 28, 4)
2289
f94a6df5
PM
2290FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2291FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2292FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2293FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2294FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2295FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2296FIELD(DBGDEVID, AUXREGS, 24, 4)
2297FIELD(DBGDEVID, CIDMASK, 28, 4)
2298
602f6e42
PM
2299FIELD(MVFR0, SIMDREG, 0, 4)
2300FIELD(MVFR0, FPSP, 4, 4)
2301FIELD(MVFR0, FPDP, 8, 4)
2302FIELD(MVFR0, FPTRAP, 12, 4)
2303FIELD(MVFR0, FPDIVIDE, 16, 4)
2304FIELD(MVFR0, FPSQRT, 20, 4)
2305FIELD(MVFR0, FPSHVEC, 24, 4)
2306FIELD(MVFR0, FPROUND, 28, 4)
2307
2308FIELD(MVFR1, FPFTZ, 0, 4)
2309FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2310FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2311FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2312FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2313FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2314FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2315FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2316FIELD(MVFR1, FPHP, 24, 4)
2317FIELD(MVFR1, SIMDFMAC, 28, 4)
2318
2319FIELD(MVFR2, SIMDMISC, 0, 4)
2320FIELD(MVFR2, FPMISC, 4, 4)
2321
ef1febe7
RH
2322FIELD(GPCCR, PPS, 0, 3)
2323FIELD(GPCCR, IRGN, 8, 2)
2324FIELD(GPCCR, ORGN, 10, 2)
2325FIELD(GPCCR, SH, 12, 2)
2326FIELD(GPCCR, PGS, 14, 2)
2327FIELD(GPCCR, GPC, 16, 1)
2328FIELD(GPCCR, GPCP, 17, 1)
2329FIELD(GPCCR, L0GPTSZ, 20, 4)
2330
2331FIELD(MFAR, FPA, 12, 40)
2332FIELD(MFAR, NSE, 62, 1)
2333FIELD(MFAR, NS, 63, 1)
2334
43bbce7f
PM
2335QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2336
ce854d7c
BC
2337/* If adding a feature bit which corresponds to a Linux ELF
2338 * HWCAP bit, remember to update the feature-bit-to-hwcap
2339 * mapping in linux-user/elfload.c:get_elf_hwcap().
2340 */
40f137e1 2341enum arm_features {
c1713132
AZ
2342 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2343 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2344 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2345 ARM_FEATURE_V6,
2346 ARM_FEATURE_V6K,
2347 ARM_FEATURE_V7,
2348 ARM_FEATURE_THUMB2,
452a0955 2349 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2350 ARM_FEATURE_NEON,
9ee6e8bb 2351 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2352 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2353 ARM_FEATURE_THUMB2EE,
be5e7a76 2354 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2355 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2356 ARM_FEATURE_V4T,
2357 ARM_FEATURE_V5,
5bc95aa2 2358 ARM_FEATURE_STRONGARM,
906879a9 2359 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2360 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2361 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2362 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2363 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2364 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2365 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2366 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2367 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2368 ARM_FEATURE_V8,
3926cc84 2369 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2370 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2371 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2372 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2373 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2374 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2375 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2376 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2377 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2378 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2379 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
f037f5b4
PM
2380 /*
2381 * ARM_FEATURE_BACKCOMPAT_CNTFRQ makes the CPU default cntfrq be 62.5MHz
2382 * if the board doesn't set a value, instead of 1GHz. It is for backwards
2383 * compatibility and used only with CPU definitions that were already
2384 * in QEMU before we changed the default. It should not be set on any
2385 * CPU types added in future.
2386 */
2387 ARM_FEATURE_BACKCOMPAT_CNTFRQ, /* 62.5MHz timer default */
40f137e1
PB
2388};
2389
2390static inline int arm_feature(CPUARMState *env, int feature)
2391{
918f5dca 2392 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2393}
2394
0df9142d
AJ
2395void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2396
fcc7404e 2397/*
5d28ac0c
RH
2398 * ARM v9 security states.
2399 * The ordering of the enumeration corresponds to the low 2 bits
2400 * of the GPI value, and (except for Root) the concat of NSE:NS.
2401 */
2402
2403typedef enum ARMSecuritySpace {
2404 ARMSS_Secure = 0,
2405 ARMSS_NonSecure = 1,
2406 ARMSS_Root = 2,
2407 ARMSS_Realm = 3,
2408} ARMSecuritySpace;
2409
2410/* Return true if @space is secure, in the pre-v9 sense. */
2411static inline bool arm_space_is_secure(ARMSecuritySpace space)
2412{
2413 return space == ARMSS_Secure || space == ARMSS_Root;
2414}
2415
2416/* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2417static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2418{
2419 return secure ? ARMSS_Secure : ARMSS_NonSecure;
2420}
2421
2422#if !defined(CONFIG_USER_ONLY)
2423/**
2424 * arm_security_space_below_el3:
2425 * @env: cpu context
2426 *
2427 * Return the security space of exception levels below EL3, following
2428 * an exception return to those levels. Unlike arm_security_space,
2429 * this doesn't care about the current EL.
2430 */
2431ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2432
2433/**
2434 * arm_is_secure_below_el3:
2435 * @env: cpu context
2436 *
fcc7404e 2437 * Return true if exception levels below EL3 are in secure state,
5d28ac0c 2438 * or would be following an exception return to those levels.
19e0fefa
FA
2439 */
2440static inline bool arm_is_secure_below_el3(CPUARMState *env)
2441{
5d28ac0c
RH
2442 ARMSecuritySpace ss = arm_security_space_below_el3(env);
2443 return ss == ARMSS_Secure;
19e0fefa
FA
2444}
2445
71205876
PM
2446/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2447static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa 2448{
fcc7404e 2449 assert(!arm_feature(env, ARM_FEATURE_M));
19e0fefa
FA
2450 if (arm_feature(env, ARM_FEATURE_EL3)) {
2451 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2452 /* CPU currently in AArch64 state and EL3 */
2453 return true;
2454 } else if (!is_a64(env) &&
2455 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2456 /* CPU currently in AArch32 state and monitor mode */
2457 return true;
2458 }
2459 }
71205876
PM
2460 return false;
2461}
2462
5d28ac0c
RH
2463/**
2464 * arm_security_space:
2465 * @env: cpu context
2466 *
2467 * Return the current security space of the cpu.
2468 */
2469ARMSecuritySpace arm_security_space(CPUARMState *env);
2470
2471/**
2472 * arm_is_secure:
2473 * @env: cpu context
2474 *
2475 * Return true if the processor is in secure state.
2476 */
71205876
PM
2477static inline bool arm_is_secure(CPUARMState *env)
2478{
5d28ac0c 2479 return arm_space_is_secure(arm_security_space(env));
19e0fefa
FA
2480}
2481
f3ee5160
RDC
2482/*
2483 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
4477020d 2484 * This corresponds to the pseudocode EL2Enabled().
f3ee5160 2485 */
4477020d
PM
2486static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2487 ARMSecuritySpace space)
b74c0443 2488{
4477020d 2489 assert(space != ARMSS_Root);
b74c0443 2490 return arm_feature(env, ARM_FEATURE_EL2)
4477020d 2491 && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
b74c0443
RH
2492}
2493
f3ee5160
RDC
2494static inline bool arm_is_el2_enabled(CPUARMState *env)
2495{
4477020d 2496 return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
f3ee5160
RDC
2497}
2498
19e0fefa 2499#else
5d28ac0c
RH
2500static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2501{
2502 return ARMSS_NonSecure;
2503}
2504
19e0fefa
FA
2505static inline bool arm_is_secure_below_el3(CPUARMState *env)
2506{
2507 return false;
2508}
2509
5d28ac0c
RH
2510static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2511{
2512 return ARMSS_NonSecure;
2513}
2514
19e0fefa
FA
2515static inline bool arm_is_secure(CPUARMState *env)
2516{
2517 return false;
2518}
f3ee5160 2519
4477020d
PM
2520static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2521 ARMSecuritySpace space)
b74c0443
RH
2522{
2523 return false;
2524}
2525
f3ee5160
RDC
2526static inline bool arm_is_el2_enabled(CPUARMState *env)
2527{
2528 return false;
2529}
19e0fefa
FA
2530#endif
2531
f7778444
RH
2532/**
2533 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2534 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2535 * "for all purposes other than a direct read or write access of HCR_EL2."
2536 * Not included here is HCR_RW.
2537 */
2d12bb96 2538uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
f7778444 2539uint64_t arm_hcr_el2_eff(CPUARMState *env);
5814d587 2540uint64_t arm_hcrx_el2_eff(CPUARMState *env);
f7778444 2541
1f79ee32
PM
2542/* Return true if the specified exception level is running in AArch64 state. */
2543static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2544{
446c81ab
PM
2545 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2546 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2547 */
446c81ab
PM
2548 assert(el >= 1 && el <= 3);
2549 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2550
446c81ab
PM
2551 /* The highest exception level is always at the maximum supported
2552 * register width, and then lower levels have a register width controlled
2553 * by bits in the SCR or HCR registers.
1f79ee32 2554 */
446c81ab
PM
2555 if (el == 3) {
2556 return aa64;
2557 }
2558
926c1b97
RDC
2559 if (arm_feature(env, ARM_FEATURE_EL3) &&
2560 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2561 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2562 }
2563
2564 if (el == 2) {
2565 return aa64;
2566 }
2567
e6ef0169 2568 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2569 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2570 }
2571
2572 return aa64;
1f79ee32
PM
2573}
2574
673d8215 2575/* Function for determining whether guest cp register reads and writes should
3f342b9e
SF
2576 * access the secure or non-secure bank of a cp register. When EL3 is
2577 * operating in AArch32 state, the NS-bit determines whether the secure
2578 * instance of a cp register should be used. When EL3 is AArch64 (or if
2579 * it doesn't exist at all) then there is no register banking, and all
2580 * accesses are to the non-secure version.
2581 */
2582static inline bool access_secure_reg(CPUARMState *env)
2583{
2584 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2585 !arm_el_is_aa64(env, 3) &&
2586 !(env->cp15.scr_el3 & SCR_NS));
2587
2588 return ret;
2589}
2590
ea30a4b8
FA
2591/* Macros for accessing a specified CP register bank */
2592#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2593 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2594
2595#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2596 do { \
2597 if (_secure) { \
2598 (_env)->cp15._regname##_s = (_val); \
2599 } else { \
2600 (_env)->cp15._regname##_ns = (_val); \
2601 } \
2602 } while (0)
2603
2604/* Macros for automatically accessing a specific CP register bank depending on
2605 * the current secure state of the system. These macros are not intended for
2606 * supporting instruction translation reads/writes as these are dependent
2607 * solely on the SCR.NS bit and not the mode.
2608 */
2609#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2610 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2611 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2612
2613#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2614 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2615 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2616 (_val))
2617
012a906b
GB
2618uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2619 uint32_t cur_el, bool secure);
40f137e1 2620
75502672
PM
2621/* Return the highest implemented Exception Level */
2622static inline int arm_highest_el(CPUARMState *env)
2623{
2624 if (arm_feature(env, ARM_FEATURE_EL3)) {
2625 return 3;
2626 }
2627 if (arm_feature(env, ARM_FEATURE_EL2)) {
2628 return 2;
2629 }
2630 return 1;
2631}
2632
15b3f556
PM
2633/* Return true if a v7M CPU is in Handler mode */
2634static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2635{
2636 return env->v7m.exception != 0;
2637}
2638
dcbff19b
GB
2639/* Return the current Exception Level (as per ARMv8; note that this differs
2640 * from the ARMv7 Privilege Level).
2641 */
2642static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2643{
6d54ed3c 2644 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2645 return arm_v7m_is_handler_mode(env) ||
2646 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2647 }
2648
592125f8 2649 if (is_a64(env)) {
f5a0a5a5
PM
2650 return extract32(env->pstate, 2, 2);
2651 }
2652
592125f8
FA
2653 switch (env->uncached_cpsr & 0x1f) {
2654 case ARM_CPU_MODE_USR:
4b6a83fb 2655 return 0;
592125f8
FA
2656 case ARM_CPU_MODE_HYP:
2657 return 2;
2658 case ARM_CPU_MODE_MON:
2659 return 3;
2660 default:
2661 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2662 /* If EL3 is 32-bit then all secure privileged modes run in
2663 * EL3
2664 */
2665 return 3;
2666 }
2667
2668 return 1;
4b6a83fb 2669 }
4b6a83fb
PM
2670}
2671
721fae12
PM
2672/**
2673 * write_list_to_cpustate
2674 * @cpu: ARMCPU
2675 *
2676 * For each register listed in the ARMCPU cpreg_indexes list, write
2677 * its value from the cpreg_values list into the ARMCPUState structure.
2678 * This updates TCG's working data structures from KVM data or
2679 * from incoming migration state.
2680 *
2681 * Returns: true if all register values were updated correctly,
2682 * false if some register was unknown or could not be written.
2683 * Note that we do not stop early on failure -- we will attempt
2684 * writing all registers in the list.
2685 */
2686bool write_list_to_cpustate(ARMCPU *cpu);
2687
2688/**
2689 * write_cpustate_to_list:
2690 * @cpu: ARMCPU
b698e4ee 2691 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2692 *
2693 * For each register listed in the ARMCPU cpreg_indexes list, write
2694 * its value from the ARMCPUState structure into the cpreg_values list.
2695 * This is used to copy info from TCG's working data structures into
2696 * KVM or for outbound migration.
2697 *
b698e4ee
PM
2698 * @kvm_sync is true if we are doing this in order to sync the
2699 * register state back to KVM. In this case we will only update
2700 * values in the list if the previous list->cpustate sync actually
2701 * successfully wrote the CPU state. Otherwise we will keep the value
2702 * that is in the list.
2703 *
721fae12
PM
2704 * Returns: true if all register values were read correctly,
2705 * false if some register was unknown or could not be read.
2706 * Note that we do not stop early on failure -- we will attempt
2707 * reading all registers in the list.
2708 */
b698e4ee 2709bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2710
9ee6e8bb
PB
2711#define ARM_CPUID_TI915T 0x54029152
2712#define ARM_CPUID_TI925T 0x54029252
40f137e1 2713
0dacec87 2714#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2715
585df85e
PM
2716#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2717
c1e37810
PM
2718/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2719 *
2720 * If EL3 is 64-bit:
2721 * + NonSecure EL1 & 0 stage 1
2722 * + NonSecure EL1 & 0 stage 2
2723 * + NonSecure EL2
b9f6033c
RH
2724 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2725 * + Secure EL1 & 0
c1e37810
PM
2726 * + Secure EL3
2727 * If EL3 is 32-bit:
2728 * + NonSecure PL1 & 0 stage 1
2729 * + NonSecure PL1 & 0 stage 2
2730 * + NonSecure PL2
b9f6033c
RH
2731 * + Secure PL0
2732 * + Secure PL1
c1e37810
PM
2733 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2734 *
2735 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2736 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2737 * because they may differ in access permissions even if the VA->PA map is
2738 * the same
c1e37810
PM
2739 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2740 * translation, which means that we have one mmu_idx that deals with two
2741 * concatenated translation regimes [this sort of combined s1+2 TLB is
2742 * architecturally permitted]
2743 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2744 * handling via the TLB. The only way to do a stage 1 translation without
2745 * the immediate stage 2 translation is via the ATS or AT system insns,
2746 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2747 * The only use of stage 2 translations is either as part of an s1+2
2748 * lookup or when loading the descriptors during a stage 1 page table walk,
2749 * and in both those cases we don't use the TLB.
c1e37810
PM
2750 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2751 * translation regimes, because they map reasonably well to each other
2752 * and they can't both be active at the same time.
b9f6033c
RH
2753 * 5. we want to be able to use the TLB for accesses done as part of a
2754 * stage1 page table walk, rather than having to walk the stage2 page
2755 * table over and over.
452ef8cb
RH
2756 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2757 * Never (PAN) bit within PSTATE.
d902ae75
RH
2758 * 7. we fold together the secure and non-secure regimes for A-profile,
2759 * because there are no banked system registers for aarch64, so the
2760 * process of switching between secure and non-secure is
2761 * already heavyweight.
c1e37810 2762 *
b9f6033c
RH
2763 * This gives us the following list of cases:
2764 *
d902ae75
RH
2765 * EL0 EL1&0 stage 1+2 (aka NS PL0)
2766 * EL1 EL1&0 stage 1+2 (aka NS PL1)
2767 * EL1 EL1&0 stage 1+2 +PAN
2768 * EL0 EL2&0
2769 * EL2 EL2&0
2770 * EL2 EL2&0 +PAN
2771 * EL2 (aka NS PL2)
2772 * EL3 (aka S PL1)
a1ce3084 2773 * Physical (NS & S)
575a94af 2774 * Stage2 (NS & S)
c1e37810 2775 *
575a94af 2776 * for a total of 12 different mmu_idx.
c1e37810 2777 *
3bef7012 2778 * R profile CPUs have an MPU, but can use the same set of MMU indexes
d902ae75
RH
2779 * as A profile. They only need to distinguish EL0 and EL1 (and
2780 * EL2 if we ever model a Cortex-R52).
3bef7012
PM
2781 *
2782 * M profile CPUs are rather different as they do not have a true MMU.
2783 * They have the following different MMU indexes:
2784 * User
2785 * Privileged
62593718
PM
2786 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2787 * Privileged, execution priority negative (ditto)
66787c78
PM
2788 * If the CPU supports the v8M Security Extension then there are also:
2789 * Secure User
2790 * Secure Privileged
62593718
PM
2791 * Secure User, execution priority negative
2792 * Secure Privileged, execution priority negative
3bef7012 2793 *
8bd5c820
PM
2794 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2795 * are not quite the same -- different CPU types (most notably M profile
2796 * vs A/R profile) would like to use MMU indexes with different semantics,
2797 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2798 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2799 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2800 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2801 * the same for any particular CPU.
2802 * Variables of type ARMMUIdx are always full values, and the core
2803 * index values are in variables of type 'int'.
2804 *
c1e37810
PM
2805 * Our enumeration includes at the end some entries which are not "true"
2806 * mmu_idx values in that they don't have corresponding TLBs and are only
2807 * valid for doing slow path page table walks.
2808 *
2809 * The constant names here are patterned after the general style of the names
2810 * of the AT/ATS operations.
2811 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2812 * For M profile we arrange them to have a bit for priv, a bit for negpri
2813 * and a bit for secure.
c1e37810 2814 */
b9f6033c
RH
2815#define ARM_MMU_IDX_A 0x10 /* A profile */
2816#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2817#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2818
b9f6033c
RH
2819/* Meanings of the bits for M profile mmu idx values */
2820#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2821#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2822#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2823
b9f6033c
RH
2824#define ARM_MMU_IDX_TYPE_MASK \
2825 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2826#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2827
c1e37810 2828typedef enum ARMMMUIdx {
b9f6033c
RH
2829 /*
2830 * A-profile.
2831 */
d902ae75
RH
2832 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2833 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
2834 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2835 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A,
2836 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2837 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2838 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
2839 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
b9f6033c 2840
575a94af
RH
2841 /*
2842 * Used for second stage of an S12 page table walk, or for descriptor
2843 * loads during first stage of an S1 page table walk. Note that both
2844 * are in use simultaneously for SecureEL2: the security state for
2845 * the S2 ptw is selected by the NS bit from the S1 ptw.
2846 */
d38fa967
RH
2847 ARMMMUIdx_Stage2_S = 8 | ARM_MMU_IDX_A,
2848 ARMMMUIdx_Stage2 = 9 | ARM_MMU_IDX_A,
2849
2850 /* TLBs with 1-1 mapping to the physical address spaces. */
bb5cc2c8
RH
2851 ARMMMUIdx_Phys_S = 10 | ARM_MMU_IDX_A,
2852 ARMMMUIdx_Phys_NS = 11 | ARM_MMU_IDX_A,
2853 ARMMMUIdx_Phys_Root = 12 | ARM_MMU_IDX_A,
2854 ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
575a94af 2855
b9f6033c
RH
2856 /*
2857 * These are not allocated TLBs and are used only for AT system
2858 * instructions or for the first stage of an S12 page table walk.
2859 */
2860 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2861 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2862 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2863
2864 /*
2865 * M-profile.
2866 */
25568316
RH
2867 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2868 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2869 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2870 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2871 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2872 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2873 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2874 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2875} ARMMMUIdx;
2876
5f09a6df
RH
2877/*
2878 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2879 * for use when calling tlb_flush_by_mmuidx() and friends.
2880 */
5f09a6df
RH
2881#define TO_CORE_BIT(NAME) \
2882 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2883
8bd5c820 2884typedef enum ARMMMUIdxBit {
5f09a6df 2885 TO_CORE_BIT(E10_0),
b9f6033c 2886 TO_CORE_BIT(E20_0),
5f09a6df 2887 TO_CORE_BIT(E10_1),
452ef8cb 2888 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2889 TO_CORE_BIT(E2),
b9f6033c 2890 TO_CORE_BIT(E20_2),
452ef8cb 2891 TO_CORE_BIT(E20_2_PAN),
d902ae75 2892 TO_CORE_BIT(E3),
575a94af
RH
2893 TO_CORE_BIT(Stage2),
2894 TO_CORE_BIT(Stage2_S),
5f09a6df
RH
2895
2896 TO_CORE_BIT(MUser),
2897 TO_CORE_BIT(MPriv),
2898 TO_CORE_BIT(MUserNegPri),
2899 TO_CORE_BIT(MPrivNegPri),
2900 TO_CORE_BIT(MSUser),
2901 TO_CORE_BIT(MSPriv),
2902 TO_CORE_BIT(MSUserNegPri),
2903 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2904} ARMMMUIdxBit;
2905
5f09a6df
RH
2906#undef TO_CORE_BIT
2907
f79fbf39 2908#define MMU_USER_IDX 0
c1e37810 2909
9e273ef2
PM
2910/* Indexes used when registering address spaces with cpu_address_space_init */
2911typedef enum ARMASIdx {
2912 ARMASIdx_NS = 0,
2913 ARMASIdx_S = 1,
8bce44a2
RH
2914 ARMASIdx_TagNS = 2,
2915 ARMASIdx_TagS = 3,
9e273ef2
PM
2916} ARMASIdx;
2917
bb5cc2c8
RH
2918static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2919{
2920 /* Assert the relative order of the physical mmu indexes. */
2921 QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2922 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2923 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2924 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2925
2926 return ARMMMUIdx_Phys_S + space;
2927}
2928
2929static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2930{
2931 assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2932 return idx - ARMMMUIdx_Phys_S;
2933}
2934
43bbce7f
PM
2935static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2936{
2937 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2938 * CSSELR is RAZ/WI.
2939 */
2940 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2941}
2942
f9fd40eb
PB
2943static inline bool arm_sctlr_b(CPUARMState *env)
2944{
2945 return
2946 /* We need not implement SCTLR.ITD in user-mode emulation, so
2947 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2948 * This lets people run BE32 binaries with "-cpu any".
2949 */
2950#ifndef CONFIG_USER_ONLY
2951 !arm_feature(env, ARM_FEATURE_V7) &&
2952#endif
2953 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2954}
2955
aaec1432 2956uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 2957
8061a649
RH
2958static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
2959 bool sctlr_b)
2960{
2961#ifdef CONFIG_USER_ONLY
2962 /*
2963 * In system mode, BE32 is modelled in line with the
2964 * architecture (as word-invariant big-endianness), where loads
2965 * and stores are done little endian but from addresses which
2966 * are adjusted by XORing with the appropriate constant. So the
2967 * endianness to use for the raw data access is not affected by
2968 * SCTLR.B.
2969 * In user mode, however, we model BE32 as byte-invariant
2970 * big-endianness (because user-only code cannot tell the
2971 * difference), and so we need to use a data access endianness
2972 * that depends on SCTLR.B.
2973 */
2974 if (sctlr_b) {
2975 return true;
2976 }
2977#endif
2978 /* In 32bit endianness is determined by looking at CPSR's E bit */
2979 return env->uncached_cpsr & CPSR_E;
2980}
2981
2982static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
2983{
2984 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
2985}
64e40755 2986
ed50ff78
PC
2987/* Return true if the processor is in big-endian mode. */
2988static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2989{
ed50ff78 2990 if (!is_a64(env)) {
8061a649 2991 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
2992 } else {
2993 int cur_el = arm_current_el(env);
2994 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 2995 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 2996 }
ed50ff78
PC
2997}
2998
022c62cb 2999#include "exec/cpu-all.h"
622ed360 3000
fdd1b228 3001/*
a378206a
RH
3002 * We have more than 32-bits worth of state per TB, so we split the data
3003 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3004 * We collect these two parts in CPUARMTBFlags where they are named
3005 * flags and flags2 respectively.
fdd1b228 3006 *
a378206a
RH
3007 * The flags that are shared between all execution modes, TBFLAG_ANY,
3008 * are stored in flags. The flags that are specific to a given mode
3009 * are stores in flags2. Since cs_base is sized on the configured
3010 * address size, flags2 always has 64-bits for A64, and a minimum of
3011 * 32-bits for A32 and M32.
3012 *
3013 * The bits for 32-bit A-profile and M-profile partially overlap:
3014 *
5896f392
RH
3015 * 31 23 11 10 0
3016 * +-------------+----------+----------------+
3017 * | | | TBFLAG_A32 |
3018 * | TBFLAG_AM32 | +-----+----------+
3019 * | | |TBFLAG_M32|
3020 * +-------------+----------------+----------+
26702213 3021 * 31 23 6 5 0
79cabf1f 3022 *
fdd1b228 3023 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3024 */
eee81d41
RH
3025FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3026FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3027FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3028FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3029FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 3030/* Target EL if we take a floating-point-disabled exception */
eee81d41 3031FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
4479ec30 3032/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
8480e933
RH
3033FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3034FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
361c33f6 3035FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
34a8a07e 3036FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
79cabf1f 3037
8bd587c1 3038/*
79cabf1f 3039 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3040 */
5896f392
RH
3041FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3042FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 3043
79cabf1f
RH
3044/*
3045 * Bit usage when in AArch32 state, for A-profile only.
3046 */
5896f392
RH
3047FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3048FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
3049/*
3050 * We store the bottom two bits of the CPAR as TB flags and handle
3051 * checks on the other bits at runtime. This shares the same bits as
3052 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3053 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3054 */
5896f392
RH
3055FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3056FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3057FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3058FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
3059/*
3060 * Indicates whether cp register reads and writes by guest code should access
3061 * the secure or nonsecure bank of banked registers; note that this is not
3062 * the same thing as the current security state of the processor!
3063 */
5896f392 3064FIELD(TBFLAG_A32, NS, 10, 1)
75fe8356
RH
3065/*
3066 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3067 * This requires an SME trap from AArch32 mode when using NEON.
3068 */
3069FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
79cabf1f
RH
3070
3071/*
3072 * Bit usage when in AArch32 state, for M-profile only.
3073 */
3074/* Handler (ie not Thread) mode */
5896f392 3075FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3076/* Whether we should generate stack-limit checks */
5896f392 3077FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3078/* Set if FPCCR.LSPACT is set */
5896f392 3079FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3080/* Set if we must create a new FP context */
5896f392 3081FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3082/* Set if FPCCR.S does not match current security state */
5896f392 3083FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3084/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3085FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
a393dee0
RH
3086/* Set if in secure mode */
3087FIELD(TBFLAG_M32, SECURE, 6, 1)
79cabf1f
RH
3088
3089/*
3090 * Bit usage when in AArch64 state
3091 */
476a4692 3092FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac 3093FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
f45ce4c3
RH
3094/* The current vector length, either NVL or SVL. */
3095FIELD(TBFLAG_A64, VL, 4, 4)
0816ef1b 3096FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3097FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3098FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3099FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3100FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3101FIELD(TBFLAG_A64, ATA, 15, 1)
3102FIELD(TBFLAG_A64, TCMA, 16, 2)
3103FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3104FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
6b2ca83e 3105FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
a3637e88
RH
3106FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3107FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
5d7953ad 3108FIELD(TBFLAG_A64, SVL, 24, 4)
75fe8356
RH
3109/* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3110FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
e37e98b7 3111FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
83f624d9 3112FIELD(TBFLAG_A64, NAA, 30, 1)
179e9a3b 3113FIELD(TBFLAG_A64, ATA0, 31, 1)
67d10fc4 3114FIELD(TBFLAG_A64, NV, 32, 1)
c35da11d
PM
3115FIELD(TBFLAG_A64, NV1, 33, 1)
3116FIELD(TBFLAG_A64, NV2, 34, 1)
daf9b4a0
PM
3117/* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3118FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3119/* Set if FEAT_NV2 RAM accesses are big-endian */
3120FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
a1705768 3121
a729a46b 3122/*
29a15a61
PM
3123 * Helpers for using the above. Note that only the A64 accessors use
3124 * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3125 * word either is or might be 32 bits only.
a729a46b
RH
3126 */
3127#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3128 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3129#define DP_TBFLAG_A64(DST, WHICH, VAL) \
29a15a61 3130 (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3131#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3132 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3133#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3134 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3135#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3136 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3137
3902bfc6 3138#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
29a15a61 3139#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
a378206a
RH
3140#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3141#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3142#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3143
8b599e5c
RH
3144/**
3145 * sve_vq
3146 * @env: the cpu context
3147 *
3148 * Return the VL cached within env->hflags, in units of quadwords.
3149 */
3150static inline int sve_vq(CPUARMState *env)
3151{
3152 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3153}
3154
5d7953ad
RH
3155/**
3156 * sme_vq
3157 * @env: the cpu context
3158 *
3159 * Return the SVL cached within env->hflags, in units of quadwords.
3160 */
3161static inline int sme_vq(CPUARMState *env)
3162{
3163 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3164}
3165
f9fd40eb
PB
3166static inline bool bswap_code(bool sctlr_b)
3167{
3168#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3169 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3170 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3171 * would also end up as a mixed-endian mode with BE code, LE data.
3172 */
ded625e7 3173 return TARGET_BIG_ENDIAN ^ sctlr_b;
f9fd40eb 3174#else
e334bd31
PB
3175 /* All code access in ARM is little endian, and there are no loaders
3176 * doing swaps that need to be reversed
f9fd40eb
PB
3177 */
3178 return 0;
3179#endif
3180}
3181
c3ae85fc
PB
3182#ifdef CONFIG_USER_ONLY
3183static inline bool arm_cpu_bswap_data(CPUARMState *env)
3184{
ded625e7 3185 return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
c3ae85fc
PB
3186}
3187#endif
3188
bb5de525
AJ
3189void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3190 uint64_t *cs_base, uint32_t *flags);
6b917547 3191
98128601
RH
3192enum {
3193 QEMU_PSCI_CONDUIT_DISABLED = 0,
3194 QEMU_PSCI_CONDUIT_SMC = 1,
3195 QEMU_PSCI_CONDUIT_HVC = 2,
3196};
3197
017518c1
PM
3198#ifndef CONFIG_USER_ONLY
3199/* Return the address space index to use for a memory access */
3200static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3201{
3202 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3203}
5ce4ff65
PM
3204
3205/* Return the AddressSpace to use for a memory access
3206 * (which depends on whether the access is S or NS, and whether
3207 * the board gave us a separate AddressSpace for S accesses).
3208 */
3209static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3210{
3211 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3212}
017518c1
PM
3213#endif
3214
bd7d00fc 3215/**
b5c53d1b
AL
3216 * arm_register_pre_el_change_hook:
3217 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3218 * CPU changes exception level or mode. The hook function will be
3219 * passed a pointer to the ARMCPU and the opaque data pointer passed
3220 * to this function when the hook was registered.
b5c53d1b
AL
3221 *
3222 * Note that if a pre-change hook is called, any registered post-change hooks
3223 * are guaranteed to subsequently be called.
bd7d00fc 3224 */
b5c53d1b 3225void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3226 void *opaque);
b5c53d1b
AL
3227/**
3228 * arm_register_el_change_hook:
3229 * Register a hook function which will be called immediately after this
3230 * CPU changes exception level or mode. The hook function will be
3231 * passed a pointer to the ARMCPU and the opaque data pointer passed
3232 * to this function when the hook was registered.
3233 *
3234 * Note that any registered hooks registered here are guaranteed to be called
3235 * if pre-change hooks have been.
3236 */
3237void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3238 *opaque);
bd7d00fc 3239
3d74e2e9
RH
3240/**
3241 * arm_rebuild_hflags:
3242 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3243 */
3244void arm_rebuild_hflags(CPUARMState *env);
3245
9a2b5256
RH
3246/**
3247 * aa32_vfp_dreg:
3248 * Return a pointer to the Dn register within env in 32-bit mode.
3249 */
3250static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3251{
c39c2b90 3252 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3253}
3254
3255/**
3256 * aa32_vfp_qreg:
3257 * Return a pointer to the Qn register within env in 32-bit mode.
3258 */
3259static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3260{
c39c2b90 3261 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3262}
3263
3264/**
3265 * aa64_vfp_qreg:
3266 * Return a pointer to the Qn register within env in 64-bit mode.
3267 */
3268static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3269{
c39c2b90 3270 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3271}
3272
028e2a7b 3273/* Shared between translate-sve.c and sve_helper.c. */
fca75f60 3274extern const uint64_t pred_esz_masks[5];
028e2a7b 3275
be5d6f48
RH
3276/*
3277 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
7f2cf760
RH
3278 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3279 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
be5d6f48 3280 */
7f2cf760
RH
3281#define PAGE_BTI PAGE_TARGET_1
3282#define PAGE_MTE PAGE_TARGET_2
3283#define PAGE_TARGET_STICKY PAGE_MTE
be5d6f48 3284
50d4c8c1
RH
3285/* We associate one allocation tag per 16 bytes, the minimum. */
3286#define LOG2_TAG_GRANULE 4
3287#define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
3288
3289#ifdef CONFIG_USER_ONLY
3290#define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3291#endif
3292
0e0c030c
RH
3293#ifdef TARGET_TAGGED_ADDRESSES
3294/**
3295 * cpu_untagged_addr:
3296 * @cs: CPU context
3297 * @x: tagged address
3298 *
3299 * Remove any address tag from @x. This is explicitly related to the
3300 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3301 *
3302 * There should be a better place to put this, but we need this in
3303 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3304 */
3305static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3306{
3307 ARMCPU *cpu = ARM_CPU(cs);
3308 if (cpu->env.tagged_addr_enable) {
3309 /*
3310 * TBI is enabled for userspace but not kernelspace addresses.
3311 * Only clear the tag if bit 55 is clear.
3312 */
3313 x &= sextract64(x, 0, 56);
3314 }
3315 return x;
3316}
3317#endif
3318
2c0262af 3319#endif