]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/gdbstub64.c
target/arm: Move arm_gen_dynamic_svereg_xml to gdbstub64.c
[mirror_qemu.git] / target / arm / gdbstub64.c
CommitLineData
96c04212
AG
1/*
2 * ARM gdb server stub: AArch64 specific functions.
3 *
4 * Copyright (c) 2013 SUSE LINUX Products GmbH
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
96c04212
AG
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
74c21bd0 19#include "qemu/osdep.h"
89f4f20e 20#include "qemu/log.h"
33c11879 21#include "cpu.h"
89f4f20e 22#include "internals.h"
96c04212
AG
23#include "exec/gdbstub.h"
24
a010bdbe 25int aarch64_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
96c04212
AG
26{
27 ARMCPU *cpu = ARM_CPU(cs);
28 CPUARMState *env = &cpu->env;
29
30 if (n < 31) {
31 /* Core integer register. */
32 return gdb_get_reg64(mem_buf, env->xregs[n]);
33 }
34 switch (n) {
35 case 31:
36 return gdb_get_reg64(mem_buf, env->xregs[31]);
96c04212
AG
37 case 32:
38 return gdb_get_reg64(mem_buf, env->pc);
96c04212 39 case 33:
d356312f 40 return gdb_get_reg32(mem_buf, pstate_read(env));
96c04212
AG
41 }
42 /* Unknown register. */
43 return 0;
44}
45
46int aarch64_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
47{
48 ARMCPU *cpu = ARM_CPU(cs);
49 CPUARMState *env = &cpu->env;
50 uint64_t tmp;
51
52 tmp = ldq_p(mem_buf);
53
54 if (n < 31) {
55 /* Core integer register. */
56 env->xregs[n] = tmp;
57 return 8;
58 }
59 switch (n) {
60 case 31:
61 env->xregs[31] = tmp;
62 return 8;
63 case 32:
64 env->pc = tmp;
65 return 8;
66 case 33:
67 /* CPSR */
d356312f 68 pstate_write(env, tmp);
96c04212
AG
69 return 4;
70 }
71 /* Unknown register. */
72 return 0;
73}
89f4f20e 74
963a6b91 75int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg)
89f4f20e
PM
76{
77 switch (reg) {
78 case 0 ... 31:
79 {
80 /* 128 bit FP register - quads are in LE order */
81 uint64_t *q = aa64_vfp_qreg(env, reg);
82 return gdb_get_reg128(buf, q[1], q[0]);
83 }
84 case 32:
85 /* FPSR */
86 return gdb_get_reg32(buf, vfp_get_fpsr(env));
87 case 33:
88 /* FPCR */
89 return gdb_get_reg32(buf, vfp_get_fpcr(env));
90 default:
91 return 0;
92 }
93}
94
963a6b91 95int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg)
89f4f20e
PM
96{
97 switch (reg) {
98 case 0 ... 31:
99 /* 128 bit FP register */
100 {
101 uint64_t *q = aa64_vfp_qreg(env, reg);
102 q[0] = ldq_le_p(buf);
103 q[1] = ldq_le_p(buf + 8);
104 return 16;
105 }
106 case 32:
107 /* FPSR */
108 vfp_set_fpsr(env, ldl_p(buf));
109 return 4;
110 case 33:
111 /* FPCR */
112 vfp_set_fpcr(env, ldl_p(buf));
113 return 4;
114 default:
115 return 0;
116 }
117}
118
963a6b91 119int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg)
89f4f20e
PM
120{
121 ARMCPU *cpu = env_archcpu(env);
122
123 switch (reg) {
124 /* The first 32 registers are the zregs */
125 case 0 ... 31:
126 {
127 int vq, len = 0;
128 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
129 len += gdb_get_reg128(buf,
130 env->vfp.zregs[reg].d[vq * 2 + 1],
131 env->vfp.zregs[reg].d[vq * 2]);
132 }
133 return len;
134 }
135 case 32:
136 return gdb_get_reg32(buf, vfp_get_fpsr(env));
137 case 33:
138 return gdb_get_reg32(buf, vfp_get_fpcr(env));
139 /* then 16 predicates and the ffr */
140 case 34 ... 50:
141 {
142 int preg = reg - 34;
143 int vq, len = 0;
144 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
145 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
146 }
147 return len;
148 }
149 case 51:
150 {
151 /*
152 * We report in Vector Granules (VG) which is 64bit in a Z reg
153 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
154 */
5ef3cc56 155 int vq = sve_vqm1_for_el(env, arm_current_el(env)) + 1;
89f4f20e
PM
156 return gdb_get_reg64(buf, vq * 2);
157 }
158 default:
159 /* gdbstub asked for something out our range */
160 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
161 break;
162 }
163
164 return 0;
165}
166
963a6b91 167int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg)
89f4f20e
PM
168{
169 ARMCPU *cpu = env_archcpu(env);
170
171 /* The first 32 registers are the zregs */
172 switch (reg) {
173 /* The first 32 registers are the zregs */
174 case 0 ... 31:
175 {
176 int vq, len = 0;
177 uint64_t *p = (uint64_t *) buf;
178 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
179 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
180 env->vfp.zregs[reg].d[vq * 2] = *p++;
181 len += 16;
182 }
183 return len;
184 }
185 case 32:
186 vfp_set_fpsr(env, *(uint32_t *)buf);
187 return 4;
188 case 33:
189 vfp_set_fpcr(env, *(uint32_t *)buf);
190 return 4;
191 case 34 ... 50:
192 {
193 int preg = reg - 34;
194 int vq, len = 0;
195 uint64_t *p = (uint64_t *) buf;
196 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
197 env->vfp.pregs[preg].p[vq / 4] = *p++;
198 len += 8;
199 }
200 return len;
201 }
202 case 51:
203 /* cannot set vg via gdbstub */
204 return 0;
205 default:
206 /* gdbstub asked for something out our range */
207 break;
208 }
209
210 return 0;
211}
e03aba88
RH
212
213struct TypeSize {
214 const char *gdb_type;
215 short size;
216 char sz, suffix;
217};
218
219static const struct TypeSize vec_lanes[] = {
220 /* quads */
221 { "uint128", 128, 'q', 'u' },
222 { "int128", 128, 'q', 's' },
223 /* 64 bit */
224 { "ieee_double", 64, 'd', 'f' },
225 { "uint64", 64, 'd', 'u' },
226 { "int64", 64, 'd', 's' },
227 /* 32 bit */
228 { "ieee_single", 32, 's', 'f' },
229 { "uint32", 32, 's', 'u' },
230 { "int32", 32, 's', 's' },
231 /* 16 bit */
232 { "ieee_half", 16, 'h', 'f' },
233 { "uint16", 16, 'h', 'u' },
234 { "int16", 16, 'h', 's' },
235 /* bytes */
236 { "uint8", 8, 'b', 'u' },
237 { "int8", 8, 'b', 's' },
238};
239
240int arm_gen_dynamic_svereg_xml(CPUState *cs, int base_reg)
241{
242 ARMCPU *cpu = ARM_CPU(cs);
243 GString *s = g_string_new(NULL);
244 DynamicGDBXMLInfo *info = &cpu->dyn_svereg_xml;
245 g_autoptr(GString) ts = g_string_new("");
246 int i, j, bits, reg_width = (cpu->sve_max_vq * 128);
247 info->num = 0;
248 g_string_printf(s, "<?xml version=\"1.0\"?>");
249 g_string_append_printf(s, "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">");
250 g_string_append_printf(s, "<feature name=\"org.gnu.gdb.aarch64.sve\">");
251
252 /* First define types and totals in a whole VL */
253 for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) {
254 int count = reg_width / vec_lanes[i].size;
255 g_string_printf(ts, "svev%c%c", vec_lanes[i].sz, vec_lanes[i].suffix);
256 g_string_append_printf(s,
257 "<vector id=\"%s\" type=\"%s\" count=\"%d\"/>",
258 ts->str, vec_lanes[i].gdb_type, count);
259 }
260 /*
261 * Now define a union for each size group containing unsigned and
262 * signed and potentially float versions of each size from 128 to
263 * 8 bits.
264 */
265 for (bits = 128, i = 0; bits >= 8; bits /= 2, i++) {
266 const char suf[] = { 'q', 'd', 's', 'h', 'b' };
267 g_string_append_printf(s, "<union id=\"svevn%c\">", suf[i]);
268 for (j = 0; j < ARRAY_SIZE(vec_lanes); j++) {
269 if (vec_lanes[j].size == bits) {
270 g_string_append_printf(s, "<field name=\"%c\" type=\"svev%c%c\"/>",
271 vec_lanes[j].suffix,
272 vec_lanes[j].sz, vec_lanes[j].suffix);
273 }
274 }
275 g_string_append(s, "</union>");
276 }
277 /* And now the final union of unions */
278 g_string_append(s, "<union id=\"svev\">");
279 for (bits = 128, i = 0; bits >= 8; bits /= 2, i++) {
280 const char suf[] = { 'q', 'd', 's', 'h', 'b' };
281 g_string_append_printf(s, "<field name=\"%c\" type=\"svevn%c\"/>",
282 suf[i], suf[i]);
283 }
284 g_string_append(s, "</union>");
285
286 /* Finally the sve prefix type */
287 g_string_append_printf(s,
288 "<vector id=\"svep\" type=\"uint8\" count=\"%d\"/>",
289 reg_width / 8);
290
291 /* Then define each register in parts for each vq */
292 for (i = 0; i < 32; i++) {
293 g_string_append_printf(s,
294 "<reg name=\"z%d\" bitsize=\"%d\""
295 " regnum=\"%d\" type=\"svev\"/>",
296 i, reg_width, base_reg++);
297 info->num++;
298 }
299 /* fpscr & status registers */
300 g_string_append_printf(s, "<reg name=\"fpsr\" bitsize=\"32\""
301 " regnum=\"%d\" group=\"float\""
302 " type=\"int\"/>", base_reg++);
303 g_string_append_printf(s, "<reg name=\"fpcr\" bitsize=\"32\""
304 " regnum=\"%d\" group=\"float\""
305 " type=\"int\"/>", base_reg++);
306 info->num += 2;
307
308 for (i = 0; i < 16; i++) {
309 g_string_append_printf(s,
310 "<reg name=\"p%d\" bitsize=\"%d\""
311 " regnum=\"%d\" type=\"svep\"/>",
312 i, cpu->sve_max_vq * 16, base_reg++);
313 info->num++;
314 }
315 g_string_append_printf(s,
316 "<reg name=\"ffr\" bitsize=\"%d\""
317 " regnum=\"%d\" group=\"vector\""
318 " type=\"svep\"/>",
319 cpu->sve_max_vq * 16, base_reg++);
320 g_string_append_printf(s,
321 "<reg name=\"vg\" bitsize=\"64\""
322 " regnum=\"%d\" type=\"int\"/>",
323 base_reg++);
324 info->num += 2;
325 g_string_append_printf(s, "</feature>");
326 info->desc = g_string_free(s, false);
327
328 return info->num;
329}