]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/helper.c
cpu: Replace ENV_GET_CPU with env_cpu
[mirror_qemu.git] / target / arm / helper.c
CommitLineData
74c21bd0 1#include "qemu/osdep.h"
63159601 2#include "qemu/units.h"
181962fd 3#include "target/arm/idau.h"
194cbc49 4#include "trace.h"
b5ff1b31 5#include "cpu.h"
ccd38087 6#include "internals.h"
022c62cb 7#include "exec/gdbstub.h"
2ef6175a 8#include "exec/helper-proto.h"
1de7afc9 9#include "qemu/host-utils.h"
78027bb6 10#include "sysemu/arch_init.h"
9c17d615 11#include "sysemu/sysemu.h"
1de7afc9 12#include "qemu/bitops.h"
eb0ecd5a 13#include "qemu/crc32c.h"
0442428a 14#include "qemu/qemu-print.h"
63c91552 15#include "exec/exec-all.h"
f08b6170 16#include "exec/cpu_ldst.h"
1d854765 17#include "arm_ldst.h"
eb0ecd5a 18#include <zlib.h> /* For crc32 */
f1672e6f 19#include "hw/semihosting/semihost.h"
b2e23725 20#include "sysemu/cpus.h"
f3a9b694 21#include "sysemu/kvm.h"
24f91e81 22#include "fpu/softfloat.h"
9d2b5a58 23#include "qemu/range.h"
25a9d6ca 24#include "qapi/qapi-commands-target.h"
de390645
RH
25#include "qapi/error.h"
26#include "qemu/guest-random.h"
0b03bdfc 27
352c98e5
LV
28#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
29
4a501606 30#ifndef CONFIG_USER_ONLY
5b2d261d
AB
31/* Cacheability and shareability attributes for a memory access */
32typedef struct ARMCacheAttrs {
33 unsigned int attrs:8; /* as in the MAIR register encoding */
34 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
35} ARMCacheAttrs;
36
af51f566 37static bool get_phys_addr(CPUARMState *env, target_ulong address,
03ae85f8 38 MMUAccessType access_type, ARMMMUIdx mmu_idx,
af51f566 39 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
bc52bfeb 40 target_ulong *page_size,
5b2d261d 41 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
7c2cb42b 42
37785977 43static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
03ae85f8 44 MMUAccessType access_type, ARMMMUIdx mmu_idx,
37785977 45 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
da909b2c 46 target_ulong *page_size_ptr,
5b2d261d 47 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
37785977 48
35337cc3
PM
49/* Security attributes for an address, as returned by v8m_security_lookup. */
50typedef struct V8M_SAttributes {
72042435 51 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
35337cc3
PM
52 bool ns;
53 bool nsc;
54 uint8_t sregion;
55 bool srvalid;
56 uint8_t iregion;
57 bool irvalid;
58} V8M_SAttributes;
59
333e10c5
PM
60static void v8m_security_lookup(CPUARMState *env, uint32_t address,
61 MMUAccessType access_type, ARMMMUIdx mmu_idx,
62 V8M_SAttributes *sattrs);
4a501606
PM
63#endif
64
affdb64d
PM
65static void switch_mode(CPUARMState *env, int mode);
66
0ecb72a5 67static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
68{
69 int nregs;
70
71 /* VFP data registers are always little-endian. */
72 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
73 if (reg < nregs) {
9a2b5256 74 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
56aebc89
PB
75 return 8;
76 }
77 if (arm_feature(env, ARM_FEATURE_NEON)) {
78 /* Aliases for Q regs. */
79 nregs += 16;
80 if (reg < nregs) {
9a2b5256
RH
81 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
82 stq_le_p(buf, q[0]);
83 stq_le_p(buf + 8, q[1]);
56aebc89
PB
84 return 16;
85 }
86 }
87 switch (reg - nregs) {
88 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
b0a909a4 89 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
56aebc89
PB
90 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
91 }
92 return 0;
93}
94
0ecb72a5 95static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
96{
97 int nregs;
98
99 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
100 if (reg < nregs) {
9a2b5256 101 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
56aebc89
PB
102 return 8;
103 }
104 if (arm_feature(env, ARM_FEATURE_NEON)) {
105 nregs += 16;
106 if (reg < nregs) {
9a2b5256
RH
107 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
108 q[0] = ldq_le_p(buf);
109 q[1] = ldq_le_p(buf + 8);
56aebc89
PB
110 return 16;
111 }
112 }
113 switch (reg - nregs) {
114 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
b0a909a4 115 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
71b3c3de 116 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
117 }
118 return 0;
119}
120
6a669427
PM
121static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
122{
123 switch (reg) {
124 case 0 ... 31:
125 /* 128 bit FP register */
9a2b5256
RH
126 {
127 uint64_t *q = aa64_vfp_qreg(env, reg);
128 stq_le_p(buf, q[0]);
129 stq_le_p(buf + 8, q[1]);
130 return 16;
131 }
6a669427
PM
132 case 32:
133 /* FPSR */
134 stl_p(buf, vfp_get_fpsr(env));
135 return 4;
136 case 33:
137 /* FPCR */
138 stl_p(buf, vfp_get_fpcr(env));
139 return 4;
140 default:
141 return 0;
142 }
143}
144
145static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
146{
147 switch (reg) {
148 case 0 ... 31:
149 /* 128 bit FP register */
9a2b5256
RH
150 {
151 uint64_t *q = aa64_vfp_qreg(env, reg);
152 q[0] = ldq_le_p(buf);
153 q[1] = ldq_le_p(buf + 8);
154 return 16;
155 }
6a669427
PM
156 case 32:
157 /* FPSR */
158 vfp_set_fpsr(env, ldl_p(buf));
159 return 4;
160 case 33:
161 /* FPCR */
162 vfp_set_fpcr(env, ldl_p(buf));
163 return 4;
164 default:
165 return 0;
166 }
167}
168
c4241c7d 169static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
d4e6df63 170{
375421cc 171 assert(ri->fieldoffset);
67ed771d 172 if (cpreg_field_is_64bit(ri)) {
c4241c7d 173 return CPREG_FIELD64(env, ri);
22d9e1a9 174 } else {
c4241c7d 175 return CPREG_FIELD32(env, ri);
22d9e1a9 176 }
d4e6df63
PM
177}
178
c4241c7d
PM
179static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
180 uint64_t value)
d4e6df63 181{
375421cc 182 assert(ri->fieldoffset);
67ed771d 183 if (cpreg_field_is_64bit(ri)) {
22d9e1a9
PM
184 CPREG_FIELD64(env, ri) = value;
185 } else {
186 CPREG_FIELD32(env, ri) = value;
187 }
d4e6df63
PM
188}
189
11f136ee
FA
190static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
191{
192 return (char *)env + ri->fieldoffset;
193}
194
49a66191 195uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
721fae12 196{
59a1c327 197 /* Raw read of a coprocessor register (as needed for migration, etc). */
721fae12 198 if (ri->type & ARM_CP_CONST) {
59a1c327 199 return ri->resetvalue;
721fae12 200 } else if (ri->raw_readfn) {
59a1c327 201 return ri->raw_readfn(env, ri);
721fae12 202 } else if (ri->readfn) {
59a1c327 203 return ri->readfn(env, ri);
721fae12 204 } else {
59a1c327 205 return raw_read(env, ri);
721fae12 206 }
721fae12
PM
207}
208
59a1c327 209static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
7900e9f1 210 uint64_t v)
721fae12
PM
211{
212 /* Raw write of a coprocessor register (as needed for migration, etc).
721fae12
PM
213 * Note that constant registers are treated as write-ignored; the
214 * caller should check for success by whether a readback gives the
215 * value written.
216 */
217 if (ri->type & ARM_CP_CONST) {
59a1c327 218 return;
721fae12 219 } else if (ri->raw_writefn) {
c4241c7d 220 ri->raw_writefn(env, ri, v);
721fae12 221 } else if (ri->writefn) {
c4241c7d 222 ri->writefn(env, ri, v);
721fae12 223 } else {
afb2530f 224 raw_write(env, ri, v);
721fae12 225 }
721fae12
PM
226}
227
200bf5b7
AB
228static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
229{
230 ARMCPU *cpu = arm_env_get_cpu(env);
231 const ARMCPRegInfo *ri;
232 uint32_t key;
233
234 key = cpu->dyn_xml.cpregs_keys[reg];
235 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
236 if (ri) {
237 if (cpreg_field_is_64bit(ri)) {
238 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
239 } else {
240 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
241 }
242 }
243 return 0;
244}
245
246static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
247{
248 return 0;
249}
250
375421cc
PM
251static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
252{
253 /* Return true if the regdef would cause an assertion if you called
254 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
255 * program bug for it not to have the NO_RAW flag).
256 * NB that returning false here doesn't necessarily mean that calling
257 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
258 * read/write access functions which are safe for raw use" from "has
259 * read/write access functions which have side effects but has forgotten
260 * to provide raw access functions".
261 * The tests here line up with the conditions in read/write_raw_cp_reg()
262 * and assertions in raw_read()/raw_write().
263 */
264 if ((ri->type & ARM_CP_CONST) ||
265 ri->fieldoffset ||
266 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
267 return false;
268 }
269 return true;
270}
271
b698e4ee 272bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
721fae12
PM
273{
274 /* Write the coprocessor state from cpu->env to the (index,value) list. */
275 int i;
276 bool ok = true;
277
278 for (i = 0; i < cpu->cpreg_array_len; i++) {
279 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
280 const ARMCPRegInfo *ri;
b698e4ee 281 uint64_t newval;
59a1c327 282
60322b39 283 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
284 if (!ri) {
285 ok = false;
286 continue;
287 }
7a0e58fa 288 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
289 continue;
290 }
b698e4ee
PM
291
292 newval = read_raw_cp_reg(&cpu->env, ri);
293 if (kvm_sync) {
294 /*
295 * Only sync if the previous list->cpustate sync succeeded.
296 * Rather than tracking the success/failure state for every
297 * item in the list, we just recheck "does the raw write we must
298 * have made in write_list_to_cpustate() read back OK" here.
299 */
300 uint64_t oldval = cpu->cpreg_values[i];
301
302 if (oldval == newval) {
303 continue;
304 }
305
306 write_raw_cp_reg(&cpu->env, ri, oldval);
307 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
308 continue;
309 }
310
311 write_raw_cp_reg(&cpu->env, ri, newval);
312 }
313 cpu->cpreg_values[i] = newval;
721fae12
PM
314 }
315 return ok;
316}
317
318bool write_list_to_cpustate(ARMCPU *cpu)
319{
320 int i;
321 bool ok = true;
322
323 for (i = 0; i < cpu->cpreg_array_len; i++) {
324 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
325 uint64_t v = cpu->cpreg_values[i];
721fae12
PM
326 const ARMCPRegInfo *ri;
327
60322b39 328 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
329 if (!ri) {
330 ok = false;
331 continue;
332 }
7a0e58fa 333 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
334 continue;
335 }
336 /* Write value and confirm it reads back as written
337 * (to catch read-only registers and partially read-only
338 * registers where the incoming migration value doesn't match)
339 */
59a1c327
PM
340 write_raw_cp_reg(&cpu->env, ri, v);
341 if (read_raw_cp_reg(&cpu->env, ri) != v) {
721fae12
PM
342 ok = false;
343 }
344 }
345 return ok;
346}
347
348static void add_cpreg_to_list(gpointer key, gpointer opaque)
349{
350 ARMCPU *cpu = opaque;
351 uint64_t regidx;
352 const ARMCPRegInfo *ri;
353
354 regidx = *(uint32_t *)key;
60322b39 355 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 356
7a0e58fa 357 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
358 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
359 /* The value array need not be initialized at this point */
360 cpu->cpreg_array_len++;
361 }
362}
363
364static void count_cpreg(gpointer key, gpointer opaque)
365{
366 ARMCPU *cpu = opaque;
367 uint64_t regidx;
368 const ARMCPRegInfo *ri;
369
370 regidx = *(uint32_t *)key;
60322b39 371 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 372
7a0e58fa 373 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
374 cpu->cpreg_array_len++;
375 }
376}
377
378static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
379{
cbf239b7
AR
380 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
381 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
721fae12 382
cbf239b7
AR
383 if (aidx > bidx) {
384 return 1;
385 }
386 if (aidx < bidx) {
387 return -1;
388 }
389 return 0;
721fae12
PM
390}
391
392void init_cpreg_list(ARMCPU *cpu)
393{
394 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
395 * Note that we require cpreg_tuples[] to be sorted by key ID.
396 */
57b6d95e 397 GList *keys;
721fae12
PM
398 int arraylen;
399
57b6d95e 400 keys = g_hash_table_get_keys(cpu->cp_regs);
721fae12
PM
401 keys = g_list_sort(keys, cpreg_key_compare);
402
403 cpu->cpreg_array_len = 0;
404
405 g_list_foreach(keys, count_cpreg, cpu);
406
407 arraylen = cpu->cpreg_array_len;
408 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
409 cpu->cpreg_values = g_new(uint64_t, arraylen);
410 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
411 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
412 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
413 cpu->cpreg_array_len = 0;
414
415 g_list_foreach(keys, add_cpreg_to_list, cpu);
416
417 assert(cpu->cpreg_array_len == arraylen);
418
419 g_list_free(keys);
420}
421
68e9c2fe
EI
422/*
423 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
424 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
425 *
426 * access_el3_aa32ns: Used to check AArch32 register views.
427 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
428 */
429static CPAccessResult access_el3_aa32ns(CPUARMState *env,
3f208fd7
PM
430 const ARMCPRegInfo *ri,
431 bool isread)
68e9c2fe
EI
432{
433 bool secure = arm_is_secure_below_el3(env);
434
435 assert(!arm_el_is_aa64(env, 3));
436 if (secure) {
437 return CP_ACCESS_TRAP_UNCATEGORIZED;
438 }
439 return CP_ACCESS_OK;
440}
441
442static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
3f208fd7
PM
443 const ARMCPRegInfo *ri,
444 bool isread)
68e9c2fe
EI
445{
446 if (!arm_el_is_aa64(env, 3)) {
3f208fd7 447 return access_el3_aa32ns(env, ri, isread);
68e9c2fe
EI
448 }
449 return CP_ACCESS_OK;
450}
451
5513c3ab
PM
452/* Some secure-only AArch32 registers trap to EL3 if used from
453 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
454 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
455 * We assume that the .access field is set to PL1_RW.
456 */
457static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
3f208fd7
PM
458 const ARMCPRegInfo *ri,
459 bool isread)
5513c3ab
PM
460{
461 if (arm_current_el(env) == 3) {
462 return CP_ACCESS_OK;
463 }
464 if (arm_is_secure_below_el3(env)) {
465 return CP_ACCESS_TRAP_EL3;
466 }
467 /* This will be EL1 NS and EL2 NS, which just UNDEF */
468 return CP_ACCESS_TRAP_UNCATEGORIZED;
469}
470
187f678d
PM
471/* Check for traps to "powerdown debug" registers, which are controlled
472 * by MDCR.TDOSA
473 */
474static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
475 bool isread)
476{
477 int el = arm_current_el(env);
30ac6339
PM
478 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
479 (env->cp15.mdcr_el2 & MDCR_TDE) ||
7c208e0f 480 (arm_hcr_el2_eff(env) & HCR_TGE);
187f678d 481
30ac6339 482 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
187f678d
PM
483 return CP_ACCESS_TRAP_EL2;
484 }
485 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
486 return CP_ACCESS_TRAP_EL3;
487 }
488 return CP_ACCESS_OK;
489}
490
91b0a238
PM
491/* Check for traps to "debug ROM" registers, which are controlled
492 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
493 */
494static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
495 bool isread)
496{
497 int el = arm_current_el(env);
30ac6339
PM
498 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
499 (env->cp15.mdcr_el2 & MDCR_TDE) ||
7c208e0f 500 (arm_hcr_el2_eff(env) & HCR_TGE);
91b0a238 501
30ac6339 502 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
91b0a238
PM
503 return CP_ACCESS_TRAP_EL2;
504 }
505 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
506 return CP_ACCESS_TRAP_EL3;
507 }
508 return CP_ACCESS_OK;
509}
510
d6c8cf81
PM
511/* Check for traps to general debug registers, which are controlled
512 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
513 */
514static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
515 bool isread)
516{
517 int el = arm_current_el(env);
30ac6339
PM
518 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
519 (env->cp15.mdcr_el2 & MDCR_TDE) ||
7c208e0f 520 (arm_hcr_el2_eff(env) & HCR_TGE);
d6c8cf81 521
30ac6339 522 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
d6c8cf81
PM
523 return CP_ACCESS_TRAP_EL2;
524 }
525 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
526 return CP_ACCESS_TRAP_EL3;
527 }
528 return CP_ACCESS_OK;
529}
530
1fce1ba9
PM
531/* Check for traps to performance monitor registers, which are controlled
532 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
533 */
534static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
535 bool isread)
536{
537 int el = arm_current_el(env);
538
539 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
540 && !arm_is_secure_below_el3(env)) {
541 return CP_ACCESS_TRAP_EL2;
542 }
543 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
544 return CP_ACCESS_TRAP_EL3;
545 }
546 return CP_ACCESS_OK;
547}
548
c4241c7d 549static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
c983fe6c 550{
00c8cb0a
AF
551 ARMCPU *cpu = arm_env_get_cpu(env);
552
8d5c773e 553 raw_write(env, ri, value);
d10eb08f 554 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
c983fe6c
PM
555}
556
c4241c7d 557static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
08de207b 558{
00c8cb0a
AF
559 ARMCPU *cpu = arm_env_get_cpu(env);
560
8d5c773e 561 if (raw_read(env, ri) != value) {
08de207b
PM
562 /* Unlike real hardware the qemu TLB uses virtual addresses,
563 * not modified virtual addresses, so this causes a TLB flush.
564 */
d10eb08f 565 tlb_flush(CPU(cpu));
8d5c773e 566 raw_write(env, ri, value);
08de207b 567 }
08de207b 568}
c4241c7d
PM
569
570static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
571 uint64_t value)
08de207b 572{
00c8cb0a
AF
573 ARMCPU *cpu = arm_env_get_cpu(env);
574
452a0955 575 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
014406b5 576 && !extended_addresses_enabled(env)) {
08de207b
PM
577 /* For VMSA (when not using the LPAE long descriptor page table
578 * format) this register includes the ASID, so do a TLB flush.
579 * For PMSA it is purely a process ID and no action is needed.
580 */
d10eb08f 581 tlb_flush(CPU(cpu));
08de207b 582 }
8d5c773e 583 raw_write(env, ri, value);
08de207b
PM
584}
585
b4ab8ce9
PM
586/* IS variants of TLB operations must affect all cores */
587static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
588 uint64_t value)
589{
29a0af61 590 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
591
592 tlb_flush_all_cpus_synced(cs);
593}
594
595static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
596 uint64_t value)
597{
29a0af61 598 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
599
600 tlb_flush_all_cpus_synced(cs);
601}
602
603static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
604 uint64_t value)
605{
29a0af61 606 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
607
608 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
609}
610
611static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
612 uint64_t value)
613{
29a0af61 614 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
615
616 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
617}
618
619/*
620 * Non-IS variants of TLB operations are upgraded to
621 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
622 * force broadcast of these operations.
623 */
624static bool tlb_force_broadcast(CPUARMState *env)
625{
626 return (env->cp15.hcr_el2 & HCR_FB) &&
627 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
628}
629
c4241c7d
PM
630static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
631 uint64_t value)
d929823f
PM
632{
633 /* Invalidate all (TLBIALL) */
00c8cb0a
AF
634 ARMCPU *cpu = arm_env_get_cpu(env);
635
b4ab8ce9
PM
636 if (tlb_force_broadcast(env)) {
637 tlbiall_is_write(env, NULL, value);
638 return;
639 }
640
d10eb08f 641 tlb_flush(CPU(cpu));
d929823f
PM
642}
643
c4241c7d
PM
644static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
645 uint64_t value)
d929823f
PM
646{
647 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
31b030d4
AF
648 ARMCPU *cpu = arm_env_get_cpu(env);
649
b4ab8ce9
PM
650 if (tlb_force_broadcast(env)) {
651 tlbimva_is_write(env, NULL, value);
652 return;
653 }
654
31b030d4 655 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
656}
657
c4241c7d
PM
658static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
659 uint64_t value)
d929823f
PM
660{
661 /* Invalidate by ASID (TLBIASID) */
00c8cb0a
AF
662 ARMCPU *cpu = arm_env_get_cpu(env);
663
b4ab8ce9
PM
664 if (tlb_force_broadcast(env)) {
665 tlbiasid_is_write(env, NULL, value);
666 return;
667 }
668
d10eb08f 669 tlb_flush(CPU(cpu));
d929823f
PM
670}
671
c4241c7d
PM
672static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
673 uint64_t value)
d929823f
PM
674{
675 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
31b030d4
AF
676 ARMCPU *cpu = arm_env_get_cpu(env);
677
b4ab8ce9
PM
678 if (tlb_force_broadcast(env)) {
679 tlbimvaa_is_write(env, NULL, value);
680 return;
681 }
fa439fc5 682
b4ab8ce9 683 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
fa439fc5
PM
684}
685
541ef8c2
SS
686static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
687 uint64_t value)
688{
29a0af61 689 CPUState *cs = env_cpu(env);
541ef8c2 690
0336cbf8 691 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
692 ARMMMUIdxBit_S12NSE1 |
693 ARMMMUIdxBit_S12NSE0 |
694 ARMMMUIdxBit_S2NS);
541ef8c2
SS
695}
696
697static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
698 uint64_t value)
699{
29a0af61 700 CPUState *cs = env_cpu(env);
541ef8c2 701
a67cf277 702 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
703 ARMMMUIdxBit_S12NSE1 |
704 ARMMMUIdxBit_S12NSE0 |
705 ARMMMUIdxBit_S2NS);
541ef8c2
SS
706}
707
708static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
709 uint64_t value)
710{
711 /* Invalidate by IPA. This has to invalidate any structures that
712 * contain only stage 2 translation information, but does not need
713 * to apply to structures that contain combined stage 1 and stage 2
714 * translation information.
715 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
716 */
29a0af61 717 CPUState *cs = env_cpu(env);
541ef8c2
SS
718 uint64_t pageaddr;
719
720 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
721 return;
722 }
723
724 pageaddr = sextract64(value << 12, 0, 40);
725
8bd5c820 726 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
541ef8c2
SS
727}
728
729static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
730 uint64_t value)
731{
29a0af61 732 CPUState *cs = env_cpu(env);
541ef8c2
SS
733 uint64_t pageaddr;
734
735 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
736 return;
737 }
738
739 pageaddr = sextract64(value << 12, 0, 40);
740
a67cf277 741 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 742 ARMMMUIdxBit_S2NS);
541ef8c2
SS
743}
744
745static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
746 uint64_t value)
747{
29a0af61 748 CPUState *cs = env_cpu(env);
541ef8c2 749
8bd5c820 750 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
541ef8c2
SS
751}
752
753static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
754 uint64_t value)
755{
29a0af61 756 CPUState *cs = env_cpu(env);
541ef8c2 757
8bd5c820 758 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
541ef8c2
SS
759}
760
761static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
762 uint64_t value)
763{
29a0af61 764 CPUState *cs = env_cpu(env);
541ef8c2
SS
765 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
766
8bd5c820 767 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
541ef8c2
SS
768}
769
770static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
771 uint64_t value)
772{
29a0af61 773 CPUState *cs = env_cpu(env);
541ef8c2
SS
774 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
775
a67cf277 776 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 777 ARMMMUIdxBit_S1E2);
541ef8c2
SS
778}
779
e9aa6c21 780static const ARMCPRegInfo cp_reginfo[] = {
54bf36ed
FA
781 /* Define the secure and non-secure FCSE identifier CP registers
782 * separately because there is no secure bank in V8 (no _EL3). This allows
783 * the secure register to be properly reset and migrated. There is also no
784 * v8 EL1 version of the register so the non-secure instance stands alone.
785 */
9c513e78 786 { .name = "FCSEIDR",
54bf36ed
FA
787 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
788 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
789 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
790 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
9c513e78 791 { .name = "FCSEIDR_S",
54bf36ed
FA
792 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
793 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
794 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
d4e6df63 795 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
54bf36ed
FA
796 /* Define the secure and non-secure context identifier CP registers
797 * separately because there is no secure bank in V8 (no _EL3). This allows
798 * the secure register to be properly reset and migrated. In the
799 * non-secure case, the 32-bit register will have reset and migration
800 * disabled during registration as it is handled by the 64-bit instance.
801 */
802 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
014406b5 803 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
54bf36ed
FA
804 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
805 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
806 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9c513e78 807 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
54bf36ed
FA
808 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
809 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
810 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
d4e6df63 811 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9449fdf6
PM
812 REGINFO_SENTINEL
813};
814
815static const ARMCPRegInfo not_v8_cp_reginfo[] = {
816 /* NB: Some of these registers exist in v8 but with more precise
817 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
818 */
819 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
820 { .name = "DACR",
821 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
822 .access = PL1_RW, .resetvalue = 0,
823 .writefn = dacr_write, .raw_writefn = raw_write,
824 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
825 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a903c449
EI
826 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
827 * For v6 and v5, these mappings are overly broad.
4fdd17dd 828 */
a903c449
EI
829 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
830 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
831 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
832 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
833 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
834 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
835 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
4fdd17dd 836 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
c4804214
PM
837 /* Cache maintenance ops; some of this space may be overridden later. */
838 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
839 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
840 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
841 REGINFO_SENTINEL
842};
843
7d57f408
PM
844static const ARMCPRegInfo not_v6_cp_reginfo[] = {
845 /* Not all pre-v6 cores implemented this WFI, so this is slightly
846 * over-broad.
847 */
848 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
849 .access = PL1_W, .type = ARM_CP_WFI },
850 REGINFO_SENTINEL
851};
852
853static const ARMCPRegInfo not_v7_cp_reginfo[] = {
854 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
855 * is UNPREDICTABLE; we choose to NOP as most implementations do).
856 */
857 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
858 .access = PL1_W, .type = ARM_CP_WFI },
34f90529
PM
859 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
860 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
861 * OMAPCP will override this space.
862 */
863 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
864 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
865 .resetvalue = 0 },
866 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
867 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
868 .resetvalue = 0 },
776d4e5c
PM
869 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
870 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
7a0e58fa 871 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 872 .resetvalue = 0 },
50300698
PM
873 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
874 * implementing it as RAZ means the "debug architecture version" bits
875 * will read as a reserved value, which should cause Linux to not try
876 * to use the debug hardware.
877 */
878 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
879 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
995939a6
PM
880 /* MMU TLB control. Note that the wildcarding means we cover not just
881 * the unified TLB ops but also the dside/iside/inner-shareable variants.
882 */
883 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
884 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
7a0e58fa 885 .type = ARM_CP_NO_RAW },
995939a6
PM
886 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
887 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
7a0e58fa 888 .type = ARM_CP_NO_RAW },
995939a6
PM
889 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
890 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
7a0e58fa 891 .type = ARM_CP_NO_RAW },
995939a6
PM
892 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
893 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
7a0e58fa 894 .type = ARM_CP_NO_RAW },
a903c449
EI
895 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
896 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
897 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
898 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
7d57f408
PM
899 REGINFO_SENTINEL
900};
901
c4241c7d
PM
902static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
903 uint64_t value)
2771db27 904{
f0aff255
FA
905 uint32_t mask = 0;
906
907 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
908 if (!arm_feature(env, ARM_FEATURE_V8)) {
909 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
910 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
911 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
912 */
913 if (arm_feature(env, ARM_FEATURE_VFP)) {
914 /* VFP coprocessor: cp10 & cp11 [23:20] */
915 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
916
917 if (!arm_feature(env, ARM_FEATURE_NEON)) {
918 /* ASEDIS [31] bit is RAO/WI */
919 value |= (1 << 31);
920 }
921
922 /* VFPv3 and upwards with NEON implement 32 double precision
923 * registers (D0-D31).
924 */
925 if (!arm_feature(env, ARM_FEATURE_NEON) ||
926 !arm_feature(env, ARM_FEATURE_VFP3)) {
927 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
928 value |= (1 << 30);
929 }
930 }
931 value &= mask;
2771db27 932 }
7ebd5f2e 933 env->cp15.cpacr_el1 = value;
2771db27
PM
934}
935
5deac39c
PM
936static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
937{
938 /* Call cpacr_write() so that we reset with the correct RAO bits set
939 * for our CPU features.
940 */
941 cpacr_write(env, ri, 0);
942}
943
3f208fd7
PM
944static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
945 bool isread)
c6f19164
GB
946{
947 if (arm_feature(env, ARM_FEATURE_V8)) {
948 /* Check if CPACR accesses are to be trapped to EL2 */
949 if (arm_current_el(env) == 1 &&
950 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
951 return CP_ACCESS_TRAP_EL2;
952 /* Check if CPACR accesses are to be trapped to EL3 */
953 } else if (arm_current_el(env) < 3 &&
954 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
955 return CP_ACCESS_TRAP_EL3;
956 }
957 }
958
959 return CP_ACCESS_OK;
960}
961
3f208fd7
PM
962static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
963 bool isread)
c6f19164
GB
964{
965 /* Check if CPTR accesses are set to trap to EL3 */
966 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
967 return CP_ACCESS_TRAP_EL3;
968 }
969
970 return CP_ACCESS_OK;
971}
972
7d57f408
PM
973static const ARMCPRegInfo v6_cp_reginfo[] = {
974 /* prefetch by MVA in v6, NOP in v7 */
975 { .name = "MVA_prefetch",
976 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
977 .access = PL1_W, .type = ARM_CP_NOP },
6df99dec
SS
978 /* We need to break the TB after ISB to execute self-modifying code
979 * correctly and also to take any pending interrupts immediately.
980 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
981 */
7d57f408 982 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
6df99dec 983 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
091fd17c 984 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 985 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 986 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 987 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31 988 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
6cd8a264 989 .access = PL1_RW,
b848ce2b
FA
990 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
991 offsetof(CPUARMState, cp15.ifar_ns) },
06d76f31
PM
992 .resetvalue = 0, },
993 /* Watchpoint Fault Address Register : should actually only be present
994 * for 1136, 1176, 11MPCore.
995 */
996 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
997 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
34222fb8 998 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
c6f19164 999 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
7ebd5f2e 1000 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
5deac39c 1001 .resetfn = cpacr_reset, .writefn = cpacr_write },
7d57f408
PM
1002 REGINFO_SENTINEL
1003};
1004
7ece99b1
AL
1005/* Definitions for the PMU registers */
1006#define PMCRN_MASK 0xf800
1007#define PMCRN_SHIFT 11
f4efb4b2 1008#define PMCRLC 0x40
033614c4 1009#define PMCRDP 0x10
7ece99b1
AL
1010#define PMCRD 0x8
1011#define PMCRC 0x4
5ecdd3e4 1012#define PMCRP 0x2
7ece99b1
AL
1013#define PMCRE 0x1
1014
033614c4
AL
1015#define PMXEVTYPER_P 0x80000000
1016#define PMXEVTYPER_U 0x40000000
1017#define PMXEVTYPER_NSK 0x20000000
1018#define PMXEVTYPER_NSU 0x10000000
1019#define PMXEVTYPER_NSH 0x08000000
1020#define PMXEVTYPER_M 0x04000000
1021#define PMXEVTYPER_MT 0x02000000
1022#define PMXEVTYPER_EVTCOUNT 0x0000ffff
1023#define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1024 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1025 PMXEVTYPER_M | PMXEVTYPER_MT | \
1026 PMXEVTYPER_EVTCOUNT)
1027
4b8afa1f
AL
1028#define PMCCFILTR 0xf8000000
1029#define PMCCFILTR_M PMXEVTYPER_M
1030#define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1031
7ece99b1
AL
1032static inline uint32_t pmu_num_counters(CPUARMState *env)
1033{
1034 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1035}
1036
1037/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1038static inline uint64_t pmu_counter_mask(CPUARMState *env)
1039{
1040 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1041}
1042
57a4a11b
AL
1043typedef struct pm_event {
1044 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1045 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1046 bool (*supported)(CPUARMState *);
1047 /*
1048 * Retrieve the current count of the underlying event. The programmed
1049 * counters hold a difference from the return value from this function
1050 */
1051 uint64_t (*get_count)(CPUARMState *);
4e7beb0c
AL
1052 /*
1053 * Return how many nanoseconds it will take (at a minimum) for count events
1054 * to occur. A negative value indicates the counter will never overflow, or
1055 * that the counter has otherwise arranged for the overflow bit to be set
1056 * and the PMU interrupt to be raised on overflow.
1057 */
1058 int64_t (*ns_per_count)(uint64_t);
57a4a11b
AL
1059} pm_event;
1060
b2e23725
AL
1061static bool event_always_supported(CPUARMState *env)
1062{
1063 return true;
1064}
1065
0d4bfd7d
AL
1066static uint64_t swinc_get_count(CPUARMState *env)
1067{
1068 /*
1069 * SW_INCR events are written directly to the pmevcntr's by writes to
1070 * PMSWINC, so there is no underlying count maintained by the PMU itself
1071 */
1072 return 0;
1073}
1074
4e7beb0c
AL
1075static int64_t swinc_ns_per(uint64_t ignored)
1076{
1077 return -1;
1078}
1079
b2e23725
AL
1080/*
1081 * Return the underlying cycle count for the PMU cycle counters. If we're in
1082 * usermode, simply return 0.
1083 */
1084static uint64_t cycles_get_count(CPUARMState *env)
1085{
1086#ifndef CONFIG_USER_ONLY
1087 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1088 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1089#else
1090 return cpu_get_host_ticks();
1091#endif
1092}
1093
1094#ifndef CONFIG_USER_ONLY
4e7beb0c
AL
1095static int64_t cycles_ns_per(uint64_t cycles)
1096{
1097 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1098}
1099
b2e23725
AL
1100static bool instructions_supported(CPUARMState *env)
1101{
1102 return use_icount == 1 /* Precise instruction counting */;
1103}
1104
1105static uint64_t instructions_get_count(CPUARMState *env)
1106{
1107 return (uint64_t)cpu_get_icount_raw();
1108}
4e7beb0c
AL
1109
1110static int64_t instructions_ns_per(uint64_t icount)
1111{
1112 return cpu_icount_to_ns((int64_t)icount);
1113}
b2e23725
AL
1114#endif
1115
57a4a11b 1116static const pm_event pm_events[] = {
0d4bfd7d
AL
1117 { .number = 0x000, /* SW_INCR */
1118 .supported = event_always_supported,
1119 .get_count = swinc_get_count,
4e7beb0c 1120 .ns_per_count = swinc_ns_per,
0d4bfd7d 1121 },
b2e23725
AL
1122#ifndef CONFIG_USER_ONLY
1123 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1124 .supported = instructions_supported,
1125 .get_count = instructions_get_count,
4e7beb0c 1126 .ns_per_count = instructions_ns_per,
b2e23725
AL
1127 },
1128 { .number = 0x011, /* CPU_CYCLES, Cycle */
1129 .supported = event_always_supported,
1130 .get_count = cycles_get_count,
4e7beb0c 1131 .ns_per_count = cycles_ns_per,
b2e23725
AL
1132 }
1133#endif
57a4a11b
AL
1134};
1135
1136/*
1137 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1138 * events (i.e. the statistical profiling extension), this implementation
1139 * should first be updated to something sparse instead of the current
1140 * supported_event_map[] array.
1141 */
b2e23725 1142#define MAX_EVENT_ID 0x11
57a4a11b
AL
1143#define UNSUPPORTED_EVENT UINT16_MAX
1144static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1145
1146/*
bf8d0969
AL
1147 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1148 * of ARM event numbers to indices in our pm_events array.
57a4a11b
AL
1149 *
1150 * Note: Events in the 0x40XX range are not currently supported.
1151 */
bf8d0969 1152void pmu_init(ARMCPU *cpu)
57a4a11b 1153{
57a4a11b
AL
1154 unsigned int i;
1155
bf8d0969
AL
1156 /*
1157 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1158 * events to them
1159 */
57a4a11b
AL
1160 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1161 supported_event_map[i] = UNSUPPORTED_EVENT;
1162 }
bf8d0969
AL
1163 cpu->pmceid0 = 0;
1164 cpu->pmceid1 = 0;
57a4a11b
AL
1165
1166 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1167 const pm_event *cnt = &pm_events[i];
1168 assert(cnt->number <= MAX_EVENT_ID);
1169 /* We do not currently support events in the 0x40xx range */
1170 assert(cnt->number <= 0x3f);
1171
bf8d0969 1172 if (cnt->supported(&cpu->env)) {
57a4a11b 1173 supported_event_map[cnt->number] = i;
67da43d6 1174 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
bf8d0969
AL
1175 if (cnt->number & 0x20) {
1176 cpu->pmceid1 |= event_mask;
1177 } else {
1178 cpu->pmceid0 |= event_mask;
1179 }
57a4a11b
AL
1180 }
1181 }
57a4a11b
AL
1182}
1183
5ecdd3e4
AL
1184/*
1185 * Check at runtime whether a PMU event is supported for the current machine
1186 */
1187static bool event_supported(uint16_t number)
1188{
1189 if (number > MAX_EVENT_ID) {
1190 return false;
1191 }
1192 return supported_event_map[number] != UNSUPPORTED_EVENT;
1193}
1194
3f208fd7
PM
1195static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1196 bool isread)
200ac0ef 1197{
3b163b01 1198 /* Performance monitor registers user accessibility is controlled
1fce1ba9
PM
1199 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1200 * trapping to EL2 or EL3 for other accesses.
200ac0ef 1201 */
1fce1ba9
PM
1202 int el = arm_current_el(env);
1203
6ecd0b6b 1204 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
fcd25206 1205 return CP_ACCESS_TRAP;
200ac0ef 1206 }
1fce1ba9
PM
1207 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1208 && !arm_is_secure_below_el3(env)) {
1209 return CP_ACCESS_TRAP_EL2;
1210 }
1211 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1212 return CP_ACCESS_TRAP_EL3;
1213 }
1214
fcd25206 1215 return CP_ACCESS_OK;
200ac0ef
PM
1216}
1217
6ecd0b6b
AB
1218static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1219 const ARMCPRegInfo *ri,
1220 bool isread)
1221{
1222 /* ER: event counter read trap control */
1223 if (arm_feature(env, ARM_FEATURE_V8)
1224 && arm_current_el(env) == 0
1225 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1226 && isread) {
1227 return CP_ACCESS_OK;
1228 }
1229
1230 return pmreg_access(env, ri, isread);
1231}
1232
1233static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1234 const ARMCPRegInfo *ri,
1235 bool isread)
1236{
1237 /* SW: software increment write trap control */
1238 if (arm_feature(env, ARM_FEATURE_V8)
1239 && arm_current_el(env) == 0
1240 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1241 && !isread) {
1242 return CP_ACCESS_OK;
1243 }
1244
1245 return pmreg_access(env, ri, isread);
1246}
1247
6ecd0b6b
AB
1248static CPAccessResult pmreg_access_selr(CPUARMState *env,
1249 const ARMCPRegInfo *ri,
1250 bool isread)
1251{
1252 /* ER: event counter read trap control */
1253 if (arm_feature(env, ARM_FEATURE_V8)
1254 && arm_current_el(env) == 0
1255 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1256 return CP_ACCESS_OK;
1257 }
1258
1259 return pmreg_access(env, ri, isread);
1260}
1261
1262static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1263 const ARMCPRegInfo *ri,
1264 bool isread)
1265{
1266 /* CR: cycle counter read trap control */
1267 if (arm_feature(env, ARM_FEATURE_V8)
1268 && arm_current_el(env) == 0
1269 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1270 && isread) {
1271 return CP_ACCESS_OK;
1272 }
1273
1274 return pmreg_access(env, ri, isread);
1275}
1276
033614c4
AL
1277/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1278 * the current EL, security state, and register configuration.
1279 */
1280static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
87124fde 1281{
033614c4
AL
1282 uint64_t filter;
1283 bool e, p, u, nsk, nsu, nsh, m;
1284 bool enabled, prohibited, filtered;
1285 bool secure = arm_is_secure(env);
1286 int el = arm_current_el(env);
1287 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
87124fde 1288
cbbb3041
AJ
1289 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1290 return false;
1291 }
1292
033614c4
AL
1293 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1294 (counter < hpmn || counter == 31)) {
1295 e = env->cp15.c9_pmcr & PMCRE;
1296 } else {
1297 e = env->cp15.mdcr_el2 & MDCR_HPME;
87124fde 1298 }
033614c4 1299 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
87124fde 1300
033614c4
AL
1301 if (!secure) {
1302 if (el == 2 && (counter < hpmn || counter == 31)) {
1303 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1304 } else {
1305 prohibited = false;
1306 }
1307 } else {
1308 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1309 (env->cp15.mdcr_el3 & MDCR_SPME);
1310 }
1311
1312 if (prohibited && counter == 31) {
1313 prohibited = env->cp15.c9_pmcr & PMCRDP;
1314 }
1315
5ecdd3e4
AL
1316 if (counter == 31) {
1317 filter = env->cp15.pmccfiltr_el0;
1318 } else {
1319 filter = env->cp15.c14_pmevtyper[counter];
1320 }
033614c4
AL
1321
1322 p = filter & PMXEVTYPER_P;
1323 u = filter & PMXEVTYPER_U;
1324 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1325 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1326 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1327 m = arm_el_is_aa64(env, 1) &&
1328 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1329
1330 if (el == 0) {
1331 filtered = secure ? u : u != nsu;
1332 } else if (el == 1) {
1333 filtered = secure ? p : p != nsk;
1334 } else if (el == 2) {
1335 filtered = !nsh;
1336 } else { /* EL3 */
1337 filtered = m != p;
1338 }
1339
5ecdd3e4
AL
1340 if (counter != 31) {
1341 /*
1342 * If not checking PMCCNTR, ensure the counter is setup to an event we
1343 * support
1344 */
1345 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1346 if (!event_supported(event)) {
1347 return false;
1348 }
1349 }
1350
033614c4 1351 return enabled && !prohibited && !filtered;
87124fde 1352}
033614c4 1353
f4efb4b2
AL
1354static void pmu_update_irq(CPUARMState *env)
1355{
1356 ARMCPU *cpu = arm_env_get_cpu(env);
1357 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1358 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1359}
1360
5d05b9d4
AL
1361/*
1362 * Ensure c15_ccnt is the guest-visible count so that operations such as
1363 * enabling/disabling the counter or filtering, modifying the count itself,
1364 * etc. can be done logically. This is essentially a no-op if the counter is
1365 * not enabled at the time of the call.
1366 */
f2b2f53f 1367static void pmccntr_op_start(CPUARMState *env)
ec7b4ce4 1368{
b2e23725 1369 uint64_t cycles = cycles_get_count(env);
ec7b4ce4 1370
033614c4 1371 if (pmu_counter_enabled(env, 31)) {
5d05b9d4
AL
1372 uint64_t eff_cycles = cycles;
1373 if (env->cp15.c9_pmcr & PMCRD) {
1374 /* Increment once every 64 processor clock cycles */
1375 eff_cycles /= 64;
1376 }
1377
f4efb4b2
AL
1378 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1379
1380 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1381 1ull << 63 : 1ull << 31;
1382 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1383 env->cp15.c9_pmovsr |= (1 << 31);
1384 pmu_update_irq(env);
1385 }
1386
1387 env->cp15.c15_ccnt = new_pmccntr;
ec7b4ce4 1388 }
5d05b9d4
AL
1389 env->cp15.c15_ccnt_delta = cycles;
1390}
ec7b4ce4 1391
5d05b9d4
AL
1392/*
1393 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1394 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1395 * pmccntr_op_start.
1396 */
f2b2f53f 1397static void pmccntr_op_finish(CPUARMState *env)
5d05b9d4 1398{
033614c4 1399 if (pmu_counter_enabled(env, 31)) {
4e7beb0c
AL
1400#ifndef CONFIG_USER_ONLY
1401 /* Calculate when the counter will next overflow */
1402 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1403 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1404 remaining_cycles = (uint32_t)remaining_cycles;
1405 }
1406 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1407
1408 if (overflow_in > 0) {
1409 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1410 overflow_in;
1411 ARMCPU *cpu = arm_env_get_cpu(env);
1412 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1413 }
1414#endif
5d05b9d4 1415
4e7beb0c 1416 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
5d05b9d4
AL
1417 if (env->cp15.c9_pmcr & PMCRD) {
1418 /* Increment once every 64 processor clock cycles */
1419 prev_cycles /= 64;
1420 }
5d05b9d4 1421 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
ec7b4ce4
AF
1422 }
1423}
1424
5ecdd3e4
AL
1425static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1426{
1427
1428 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1429 uint64_t count = 0;
1430 if (event_supported(event)) {
1431 uint16_t event_idx = supported_event_map[event];
1432 count = pm_events[event_idx].get_count(env);
1433 }
1434
1435 if (pmu_counter_enabled(env, counter)) {
f4efb4b2
AL
1436 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1437
1438 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1439 env->cp15.c9_pmovsr |= (1 << counter);
1440 pmu_update_irq(env);
1441 }
1442 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
5ecdd3e4
AL
1443 }
1444 env->cp15.c14_pmevcntr_delta[counter] = count;
1445}
1446
1447static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1448{
1449 if (pmu_counter_enabled(env, counter)) {
4e7beb0c
AL
1450#ifndef CONFIG_USER_ONLY
1451 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1452 uint16_t event_idx = supported_event_map[event];
1453 uint64_t delta = UINT32_MAX -
1454 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1455 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1456
1457 if (overflow_in > 0) {
1458 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1459 overflow_in;
1460 ARMCPU *cpu = arm_env_get_cpu(env);
1461 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1462 }
1463#endif
1464
5ecdd3e4
AL
1465 env->cp15.c14_pmevcntr_delta[counter] -=
1466 env->cp15.c14_pmevcntr[counter];
1467 }
1468}
1469
5d05b9d4
AL
1470void pmu_op_start(CPUARMState *env)
1471{
5ecdd3e4 1472 unsigned int i;
5d05b9d4 1473 pmccntr_op_start(env);
5ecdd3e4
AL
1474 for (i = 0; i < pmu_num_counters(env); i++) {
1475 pmevcntr_op_start(env, i);
1476 }
5d05b9d4
AL
1477}
1478
1479void pmu_op_finish(CPUARMState *env)
1480{
5ecdd3e4 1481 unsigned int i;
5d05b9d4 1482 pmccntr_op_finish(env);
5ecdd3e4
AL
1483 for (i = 0; i < pmu_num_counters(env); i++) {
1484 pmevcntr_op_finish(env, i);
1485 }
5d05b9d4
AL
1486}
1487
033614c4
AL
1488void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1489{
1490 pmu_op_start(&cpu->env);
1491}
1492
1493void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1494{
1495 pmu_op_finish(&cpu->env);
1496}
1497
4e7beb0c
AL
1498void arm_pmu_timer_cb(void *opaque)
1499{
1500 ARMCPU *cpu = opaque;
1501
1502 /*
1503 * Update all the counter values based on the current underlying counts,
1504 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1505 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1506 * counter may expire.
1507 */
1508 pmu_op_start(&cpu->env);
1509 pmu_op_finish(&cpu->env);
1510}
1511
c4241c7d
PM
1512static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1513 uint64_t value)
200ac0ef 1514{
5d05b9d4 1515 pmu_op_start(env);
7c2cb42b
AF
1516
1517 if (value & PMCRC) {
1518 /* The counter has been reset */
1519 env->cp15.c15_ccnt = 0;
1520 }
1521
5ecdd3e4
AL
1522 if (value & PMCRP) {
1523 unsigned int i;
1524 for (i = 0; i < pmu_num_counters(env); i++) {
1525 env->cp15.c14_pmevcntr[i] = 0;
1526 }
1527 }
1528
200ac0ef
PM
1529 /* only the DP, X, D and E bits are writable */
1530 env->cp15.c9_pmcr &= ~0x39;
1531 env->cp15.c9_pmcr |= (value & 0x39);
7c2cb42b 1532
5d05b9d4 1533 pmu_op_finish(env);
7c2cb42b
AF
1534}
1535
0d4bfd7d
AL
1536static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1537 uint64_t value)
1538{
1539 unsigned int i;
1540 for (i = 0; i < pmu_num_counters(env); i++) {
1541 /* Increment a counter's count iff: */
1542 if ((value & (1 << i)) && /* counter's bit is set */
1543 /* counter is enabled and not filtered */
1544 pmu_counter_enabled(env, i) &&
1545 /* counter is SW_INCR */
1546 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1547 pmevcntr_op_start(env, i);
f4efb4b2
AL
1548
1549 /*
1550 * Detect if this write causes an overflow since we can't predict
1551 * PMSWINC overflows like we can for other events
1552 */
1553 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1554
1555 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1556 env->cp15.c9_pmovsr |= (1 << i);
1557 pmu_update_irq(env);
1558 }
1559
1560 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1561
0d4bfd7d
AL
1562 pmevcntr_op_finish(env, i);
1563 }
1564 }
1565}
1566
7c2cb42b
AF
1567static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1568{
5d05b9d4
AL
1569 uint64_t ret;
1570 pmccntr_op_start(env);
1571 ret = env->cp15.c15_ccnt;
1572 pmccntr_op_finish(env);
1573 return ret;
7c2cb42b
AF
1574}
1575
6b040780
WH
1576static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1577 uint64_t value)
1578{
1579 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1580 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1581 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1582 * accessed.
1583 */
1584 env->cp15.c9_pmselr = value & 0x1f;
1585}
1586
7c2cb42b
AF
1587static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1588 uint64_t value)
1589{
5d05b9d4
AL
1590 pmccntr_op_start(env);
1591 env->cp15.c15_ccnt = value;
1592 pmccntr_op_finish(env);
200ac0ef 1593}
421c7ebd
PC
1594
1595static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1596 uint64_t value)
1597{
1598 uint64_t cur_val = pmccntr_read(env, NULL);
1599
1600 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1601}
1602
0614601c
AF
1603static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1604 uint64_t value)
1605{
5d05b9d4 1606 pmccntr_op_start(env);
4b8afa1f
AL
1607 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1608 pmccntr_op_finish(env);
1609}
1610
1611static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1612 uint64_t value)
1613{
1614 pmccntr_op_start(env);
1615 /* M is not accessible from AArch32 */
1616 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1617 (value & PMCCFILTR);
5d05b9d4 1618 pmccntr_op_finish(env);
0614601c
AF
1619}
1620
4b8afa1f
AL
1621static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1622{
1623 /* M is not visible in AArch32 */
1624 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1625}
1626
c4241c7d 1627static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1628 uint64_t value)
1629{
7ece99b1 1630 value &= pmu_counter_mask(env);
200ac0ef 1631 env->cp15.c9_pmcnten |= value;
200ac0ef
PM
1632}
1633
c4241c7d
PM
1634static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1635 uint64_t value)
200ac0ef 1636{
7ece99b1 1637 value &= pmu_counter_mask(env);
200ac0ef 1638 env->cp15.c9_pmcnten &= ~value;
200ac0ef
PM
1639}
1640
c4241c7d
PM
1641static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1642 uint64_t value)
200ac0ef 1643{
599b71e2 1644 value &= pmu_counter_mask(env);
200ac0ef 1645 env->cp15.c9_pmovsr &= ~value;
f4efb4b2 1646 pmu_update_irq(env);
200ac0ef
PM
1647}
1648
327dd510
AL
1649static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1650 uint64_t value)
1651{
1652 value &= pmu_counter_mask(env);
1653 env->cp15.c9_pmovsr |= value;
f4efb4b2 1654 pmu_update_irq(env);
327dd510
AL
1655}
1656
5ecdd3e4
AL
1657static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1658 uint64_t value, const uint8_t counter)
200ac0ef 1659{
5ecdd3e4
AL
1660 if (counter == 31) {
1661 pmccfiltr_write(env, ri, value);
1662 } else if (counter < pmu_num_counters(env)) {
1663 pmevcntr_op_start(env, counter);
1664
1665 /*
1666 * If this counter's event type is changing, store the current
1667 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1668 * pmevcntr_op_finish has the correct baseline when it converts back to
1669 * a delta.
1670 */
1671 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1672 PMXEVTYPER_EVTCOUNT;
1673 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1674 if (old_event != new_event) {
1675 uint64_t count = 0;
1676 if (event_supported(new_event)) {
1677 uint16_t event_idx = supported_event_map[new_event];
1678 count = pm_events[event_idx].get_count(env);
1679 }
1680 env->cp15.c14_pmevcntr_delta[counter] = count;
1681 }
1682
1683 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1684 pmevcntr_op_finish(env, counter);
1685 }
fdb86656
WH
1686 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1687 * PMSELR value is equal to or greater than the number of implemented
1688 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1689 */
5ecdd3e4
AL
1690}
1691
1692static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1693 const uint8_t counter)
1694{
1695 if (counter == 31) {
1696 return env->cp15.pmccfiltr_el0;
1697 } else if (counter < pmu_num_counters(env)) {
1698 return env->cp15.c14_pmevtyper[counter];
1699 } else {
1700 /*
1701 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1702 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1703 */
1704 return 0;
1705 }
1706}
1707
1708static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1709 uint64_t value)
1710{
1711 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1712 pmevtyper_write(env, ri, value, counter);
1713}
1714
1715static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1716 uint64_t value)
1717{
1718 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1719 env->cp15.c14_pmevtyper[counter] = value;
1720
1721 /*
1722 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1723 * pmu_op_finish calls when loading saved state for a migration. Because
1724 * we're potentially updating the type of event here, the value written to
1725 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1726 * different counter type. Therefore, we need to set this value to the
1727 * current count for the counter type we're writing so that pmu_op_finish
1728 * has the correct count for its calculation.
1729 */
1730 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1731 if (event_supported(event)) {
1732 uint16_t event_idx = supported_event_map[event];
1733 env->cp15.c14_pmevcntr_delta[counter] =
1734 pm_events[event_idx].get_count(env);
fdb86656
WH
1735 }
1736}
1737
5ecdd3e4
AL
1738static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1739{
1740 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1741 return pmevtyper_read(env, ri, counter);
1742}
1743
1744static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745 uint64_t value)
1746{
1747 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1748}
1749
fdb86656
WH
1750static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1751{
5ecdd3e4
AL
1752 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1753}
1754
1755static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1756 uint64_t value, uint8_t counter)
1757{
1758 if (counter < pmu_num_counters(env)) {
1759 pmevcntr_op_start(env, counter);
1760 env->cp15.c14_pmevcntr[counter] = value;
1761 pmevcntr_op_finish(env, counter);
1762 }
1763 /*
1764 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1765 * are CONSTRAINED UNPREDICTABLE.
fdb86656 1766 */
5ecdd3e4
AL
1767}
1768
1769static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1770 uint8_t counter)
1771{
1772 if (counter < pmu_num_counters(env)) {
1773 uint64_t ret;
1774 pmevcntr_op_start(env, counter);
1775 ret = env->cp15.c14_pmevcntr[counter];
1776 pmevcntr_op_finish(env, counter);
1777 return ret;
fdb86656 1778 } else {
5ecdd3e4
AL
1779 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1780 * are CONSTRAINED UNPREDICTABLE. */
fdb86656
WH
1781 return 0;
1782 }
200ac0ef
PM
1783}
1784
5ecdd3e4
AL
1785static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1786 uint64_t value)
1787{
1788 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1789 pmevcntr_write(env, ri, value, counter);
1790}
1791
1792static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1793{
1794 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1795 return pmevcntr_read(env, ri, counter);
1796}
1797
1798static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1799 uint64_t value)
1800{
1801 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1802 assert(counter < pmu_num_counters(env));
1803 env->cp15.c14_pmevcntr[counter] = value;
1804 pmevcntr_write(env, ri, value, counter);
1805}
1806
1807static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1808{
1809 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1810 assert(counter < pmu_num_counters(env));
1811 return env->cp15.c14_pmevcntr[counter];
1812}
1813
1814static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value)
1816{
1817 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1818}
1819
1820static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1821{
1822 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1823}
1824
c4241c7d 1825static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1826 uint64_t value)
1827{
6ecd0b6b
AB
1828 if (arm_feature(env, ARM_FEATURE_V8)) {
1829 env->cp15.c9_pmuserenr = value & 0xf;
1830 } else {
1831 env->cp15.c9_pmuserenr = value & 1;
1832 }
200ac0ef
PM
1833}
1834
c4241c7d
PM
1835static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1836 uint64_t value)
200ac0ef
PM
1837{
1838 /* We have no event counters so only the C bit can be changed */
7ece99b1 1839 value &= pmu_counter_mask(env);
200ac0ef 1840 env->cp15.c9_pminten |= value;
f4efb4b2 1841 pmu_update_irq(env);
200ac0ef
PM
1842}
1843
c4241c7d
PM
1844static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1845 uint64_t value)
200ac0ef 1846{
7ece99b1 1847 value &= pmu_counter_mask(env);
200ac0ef 1848 env->cp15.c9_pminten &= ~value;
f4efb4b2 1849 pmu_update_irq(env);
200ac0ef
PM
1850}
1851
c4241c7d
PM
1852static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1853 uint64_t value)
8641136c 1854{
a505d7fe
PM
1855 /* Note that even though the AArch64 view of this register has bits
1856 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1857 * architectural requirements for bits which are RES0 only in some
1858 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1859 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1860 */
855ea66d 1861 raw_write(env, ri, value & ~0x1FULL);
8641136c
NR
1862}
1863
64e0e2de
EI
1864static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1865{
ea22747c
RH
1866 /* Begin with base v8.0 state. */
1867 uint32_t valid_mask = 0x3fff;
2d7137c1 1868 ARMCPU *cpu = arm_env_get_cpu(env);
ea22747c
RH
1869
1870 if (arm_el_is_aa64(env, 3)) {
1871 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1872 valid_mask &= ~SCR_NET;
1873 } else {
1874 valid_mask &= ~(SCR_RW | SCR_ST);
1875 }
64e0e2de
EI
1876
1877 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1878 valid_mask &= ~SCR_HCE;
1879
1880 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1881 * supported if EL2 exists. The bit is UNK/SBZP when
1882 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1883 * when EL2 is unavailable.
4eb27640 1884 * On ARMv8, this bit is always available.
64e0e2de 1885 */
4eb27640
GB
1886 if (arm_feature(env, ARM_FEATURE_V7) &&
1887 !arm_feature(env, ARM_FEATURE_V8)) {
64e0e2de
EI
1888 valid_mask &= ~SCR_SMD;
1889 }
1890 }
2d7137c1
RH
1891 if (cpu_isar_feature(aa64_lor, cpu)) {
1892 valid_mask |= SCR_TLOR;
1893 }
ef682cdb
RH
1894 if (cpu_isar_feature(aa64_pauth, cpu)) {
1895 valid_mask |= SCR_API | SCR_APK;
1896 }
64e0e2de
EI
1897
1898 /* Clear all-context RES0 bits. */
1899 value &= valid_mask;
1900 raw_write(env, ri, value);
1901}
1902
c4241c7d 1903static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
776d4e5c
PM
1904{
1905 ARMCPU *cpu = arm_env_get_cpu(env);
b85a1fd6
FA
1906
1907 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1908 * bank
1909 */
1910 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1911 ri->secure & ARM_CP_SECSTATE_S);
1912
1913 return cpu->ccsidr[index];
776d4e5c
PM
1914}
1915
c4241c7d
PM
1916static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1917 uint64_t value)
776d4e5c 1918{
8d5c773e 1919 raw_write(env, ri, value & 0xf);
776d4e5c
PM
1920}
1921
1090b9c6
PM
1922static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1923{
29a0af61 1924 CPUState *cs = env_cpu(env);
f7778444 1925 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1090b9c6
PM
1926 uint64_t ret = 0;
1927
f7778444 1928 if (hcr_el2 & HCR_IMO) {
636540e9
PM
1929 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1930 ret |= CPSR_I;
1931 }
1932 } else {
1933 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1934 ret |= CPSR_I;
1935 }
1090b9c6 1936 }
636540e9 1937
f7778444 1938 if (hcr_el2 & HCR_FMO) {
636540e9
PM
1939 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1940 ret |= CPSR_F;
1941 }
1942 } else {
1943 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1944 ret |= CPSR_F;
1945 }
1090b9c6 1946 }
636540e9 1947
1090b9c6
PM
1948 /* External aborts are not possible in QEMU so A bit is always clear */
1949 return ret;
1950}
1951
e9aa6c21 1952static const ARMCPRegInfo v7_cp_reginfo[] = {
7d57f408
PM
1953 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1954 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1955 .access = PL1_W, .type = ARM_CP_NOP },
200ac0ef
PM
1956 /* Performance monitors are implementation defined in v7,
1957 * but with an ARM recommended set of registers, which we
ac689a2e 1958 * follow.
200ac0ef
PM
1959 *
1960 * Performance registers fall into three categories:
1961 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1962 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1963 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1964 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1965 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1966 */
1967 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
7a0e58fa 1968 .access = PL0_RW, .type = ARM_CP_ALIAS,
8521466b 1969 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1970 .writefn = pmcntenset_write,
1971 .accessfn = pmreg_access,
1972 .raw_writefn = raw_write },
8521466b
AF
1973 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1974 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1975 .access = PL0_RW, .accessfn = pmreg_access,
1976 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1977 .writefn = pmcntenset_write, .raw_writefn = raw_write },
200ac0ef 1978 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
8521466b
AF
1979 .access = PL0_RW,
1980 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1981 .accessfn = pmreg_access,
1982 .writefn = pmcntenclr_write,
7a0e58fa 1983 .type = ARM_CP_ALIAS },
8521466b
AF
1984 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1985 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1986 .access = PL0_RW, .accessfn = pmreg_access,
7a0e58fa 1987 .type = ARM_CP_ALIAS,
8521466b
AF
1988 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1989 .writefn = pmcntenclr_write },
200ac0ef 1990 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
f4efb4b2 1991 .access = PL0_RW, .type = ARM_CP_IO,
e4e91a21 1992 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
fcd25206
PM
1993 .accessfn = pmreg_access,
1994 .writefn = pmovsr_write,
1995 .raw_writefn = raw_write },
978364f1
AF
1996 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1997 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1998 .access = PL0_RW, .accessfn = pmreg_access,
f4efb4b2 1999 .type = ARM_CP_ALIAS | ARM_CP_IO,
978364f1
AF
2000 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2001 .writefn = pmovsr_write,
2002 .raw_writefn = raw_write },
200ac0ef 2003 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
f4efb4b2
AL
2004 .access = PL0_W, .accessfn = pmreg_access_swinc,
2005 .type = ARM_CP_NO_RAW | ARM_CP_IO,
0d4bfd7d
AL
2006 .writefn = pmswinc_write },
2007 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2008 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
f4efb4b2
AL
2009 .access = PL0_W, .accessfn = pmreg_access_swinc,
2010 .type = ARM_CP_NO_RAW | ARM_CP_IO,
0d4bfd7d 2011 .writefn = pmswinc_write },
6b040780
WH
2012 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2013 .access = PL0_RW, .type = ARM_CP_ALIAS,
2014 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
6ecd0b6b 2015 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
6b040780
WH
2016 .raw_writefn = raw_write},
2017 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2018 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
6ecd0b6b 2019 .access = PL0_RW, .accessfn = pmreg_access_selr,
6b040780
WH
2020 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2021 .writefn = pmselr_write, .raw_writefn = raw_write, },
200ac0ef 2022 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
169c8938 2023 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
421c7ebd 2024 .readfn = pmccntr_read, .writefn = pmccntr_write32,
6ecd0b6b 2025 .accessfn = pmreg_access_ccntr },
8521466b
AF
2026 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2027 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
6ecd0b6b 2028 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
8521466b 2029 .type = ARM_CP_IO,
980ebe87
AL
2030 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2031 .readfn = pmccntr_read, .writefn = pmccntr_write,
2032 .raw_readfn = raw_read, .raw_writefn = raw_write, },
4b8afa1f
AL
2033 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2034 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2035 .access = PL0_RW, .accessfn = pmreg_access,
2036 .type = ARM_CP_ALIAS | ARM_CP_IO,
2037 .resetvalue = 0, },
8521466b
AF
2038 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2039 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
980ebe87 2040 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
8521466b
AF
2041 .access = PL0_RW, .accessfn = pmreg_access,
2042 .type = ARM_CP_IO,
2043 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2044 .resetvalue = 0, },
200ac0ef 2045 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
5ecdd3e4
AL
2046 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2047 .accessfn = pmreg_access,
fdb86656
WH
2048 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2049 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2050 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
5ecdd3e4
AL
2051 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2052 .accessfn = pmreg_access,
fdb86656 2053 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
200ac0ef 2054 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
5ecdd3e4
AL
2055 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2056 .accessfn = pmreg_access_xevcntr,
2057 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2058 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2059 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2060 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2061 .accessfn = pmreg_access_xevcntr,
2062 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
200ac0ef 2063 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1fce1ba9 2064 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
e4e91a21 2065 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
200ac0ef 2066 .resetvalue = 0,
d4e6df63 2067 .writefn = pmuserenr_write, .raw_writefn = raw_write },
8a83ffc2
AF
2068 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2069 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1fce1ba9 2070 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
8a83ffc2
AF
2071 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2072 .resetvalue = 0,
2073 .writefn = pmuserenr_write, .raw_writefn = raw_write },
200ac0ef 2074 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1fce1ba9 2075 .access = PL1_RW, .accessfn = access_tpm,
b7d793ad 2076 .type = ARM_CP_ALIAS | ARM_CP_IO,
e6ec5457 2077 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
200ac0ef 2078 .resetvalue = 0,
d4e6df63 2079 .writefn = pmintenset_write, .raw_writefn = raw_write },
e6ec5457
WH
2080 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2081 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2082 .access = PL1_RW, .accessfn = access_tpm,
2083 .type = ARM_CP_IO,
2084 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2085 .writefn = pmintenset_write, .raw_writefn = raw_write,
2086 .resetvalue = 0x0 },
200ac0ef 2087 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
fc5f6856
AL
2088 .access = PL1_RW, .accessfn = access_tpm,
2089 .type = ARM_CP_ALIAS | ARM_CP_IO,
200ac0ef 2090 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
b061a82b 2091 .writefn = pmintenclr_write, },
978364f1
AF
2092 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2093 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
fc5f6856
AL
2094 .access = PL1_RW, .accessfn = access_tpm,
2095 .type = ARM_CP_ALIAS | ARM_CP_IO,
978364f1
AF
2096 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2097 .writefn = pmintenclr_write },
7da845b0
PM
2098 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2099 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
7a0e58fa 2100 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
7da845b0
PM
2101 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2102 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
b85a1fd6
FA
2103 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2104 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2105 offsetof(CPUARMState, cp15.csselr_ns) } },
776d4e5c
PM
2106 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2107 * just RAZ for all cores:
2108 */
0ff644a7
PM
2109 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2110 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
776d4e5c 2111 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
f32cdad5
PM
2112 /* Auxiliary fault status registers: these also are IMPDEF, and we
2113 * choose to RAZ/WI for all cores.
2114 */
2115 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2116 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2117 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2118 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2119 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2120 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b0fe2427
PM
2121 /* MAIR can just read-as-written because we don't implement caches
2122 * and so don't need to care about memory attributes.
2123 */
2124 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2125 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
be693c87 2126 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
b0fe2427 2127 .resetvalue = 0 },
4cfb8ad8
PM
2128 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2129 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2130 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2131 .resetvalue = 0 },
b0fe2427
PM
2132 /* For non-long-descriptor page tables these are PRRR and NMRR;
2133 * regardless they still act as reads-as-written for QEMU.
b0fe2427 2134 */
1281f8e3 2135 /* MAIR0/1 are defined separately from their 64-bit counterpart which
be693c87
GB
2136 * allows them to assign the correct fieldoffset based on the endianness
2137 * handled in the field definitions.
2138 */
a903c449 2139 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
b0fe2427 2140 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
be693c87
GB
2141 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2142 offsetof(CPUARMState, cp15.mair0_ns) },
b0fe2427 2143 .resetfn = arm_cp_reset_ignore },
a903c449 2144 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
b0fe2427 2145 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
be693c87
GB
2146 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2147 offsetof(CPUARMState, cp15.mair1_ns) },
b0fe2427 2148 .resetfn = arm_cp_reset_ignore },
1090b9c6
PM
2149 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2150 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
7a0e58fa 2151 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
995939a6
PM
2152 /* 32 bit ITLB invalidates */
2153 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
7a0e58fa 2154 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 2155 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7a0e58fa 2156 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 2157 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
7a0e58fa 2158 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
2159 /* 32 bit DTLB invalidates */
2160 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
7a0e58fa 2161 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 2162 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7a0e58fa 2163 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 2164 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
7a0e58fa 2165 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
2166 /* 32 bit TLB invalidates */
2167 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 2168 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 2169 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 2170 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 2171 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 2172 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6 2173 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 2174 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
995939a6
PM
2175 REGINFO_SENTINEL
2176};
2177
2178static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2179 /* 32 bit TLB invalidates, Inner Shareable */
2180 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 2181 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
995939a6 2182 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 2183 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
995939a6 2184 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 2185 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 2186 .writefn = tlbiasid_is_write },
995939a6 2187 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 2188 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 2189 .writefn = tlbimvaa_is_write },
e9aa6c21
PM
2190 REGINFO_SENTINEL
2191};
2192
327dd510
AL
2193static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2194 /* PMOVSSET is not implemented in v7 before v7ve */
2195 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2196 .access = PL0_RW, .accessfn = pmreg_access,
f4efb4b2 2197 .type = ARM_CP_ALIAS | ARM_CP_IO,
327dd510
AL
2198 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2199 .writefn = pmovsset_write,
2200 .raw_writefn = raw_write },
2201 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2202 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2203 .access = PL0_RW, .accessfn = pmreg_access,
f4efb4b2 2204 .type = ARM_CP_ALIAS | ARM_CP_IO,
327dd510
AL
2205 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2206 .writefn = pmovsset_write,
2207 .raw_writefn = raw_write },
2208 REGINFO_SENTINEL
2209};
2210
c4241c7d
PM
2211static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2212 uint64_t value)
c326b979
PM
2213{
2214 value &= 1;
2215 env->teecr = value;
c326b979
PM
2216}
2217
3f208fd7
PM
2218static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2219 bool isread)
c326b979 2220{
dcbff19b 2221 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
92611c00 2222 return CP_ACCESS_TRAP;
c326b979 2223 }
92611c00 2224 return CP_ACCESS_OK;
c326b979
PM
2225}
2226
2227static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2228 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2229 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2230 .resetvalue = 0,
2231 .writefn = teecr_write },
2232 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2233 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
92611c00 2234 .accessfn = teehbr_access, .resetvalue = 0 },
c326b979
PM
2235 REGINFO_SENTINEL
2236};
2237
4d31c596 2238static const ARMCPRegInfo v6k_cp_reginfo[] = {
e4fe830b
PM
2239 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2240 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2241 .access = PL0_RW,
54bf36ed 2242 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
4d31c596
PM
2243 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2244 .access = PL0_RW,
54bf36ed
FA
2245 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2246 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
e4fe830b
PM
2247 .resetfn = arm_cp_reset_ignore },
2248 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2249 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2250 .access = PL0_R|PL1_W,
54bf36ed
FA
2251 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2252 .resetvalue = 0},
4d31c596
PM
2253 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2254 .access = PL0_R|PL1_W,
54bf36ed
FA
2255 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2256 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
e4fe830b 2257 .resetfn = arm_cp_reset_ignore },
54bf36ed 2258 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
e4fe830b 2259 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
4d31c596 2260 .access = PL1_RW,
54bf36ed
FA
2261 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2262 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2263 .access = PL1_RW,
2264 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2265 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2266 .resetvalue = 0 },
4d31c596
PM
2267 REGINFO_SENTINEL
2268};
2269
55d284af
PM
2270#ifndef CONFIG_USER_ONLY
2271
3f208fd7
PM
2272static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2273 bool isread)
00108f2d 2274{
75502672
PM
2275 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2276 * Writable only at the highest implemented exception level.
2277 */
2278 int el = arm_current_el(env);
2279
2280 switch (el) {
2281 case 0:
2282 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2283 return CP_ACCESS_TRAP;
2284 }
2285 break;
2286 case 1:
2287 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2288 arm_is_secure_below_el3(env)) {
2289 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2290 return CP_ACCESS_TRAP_UNCATEGORIZED;
2291 }
2292 break;
2293 case 2:
2294 case 3:
2295 break;
00108f2d 2296 }
75502672
PM
2297
2298 if (!isread && el < arm_highest_el(env)) {
2299 return CP_ACCESS_TRAP_UNCATEGORIZED;
2300 }
2301
00108f2d
PM
2302 return CP_ACCESS_OK;
2303}
2304
3f208fd7
PM
2305static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2306 bool isread)
00108f2d 2307{
0b6440af
EI
2308 unsigned int cur_el = arm_current_el(env);
2309 bool secure = arm_is_secure(env);
2310
00108f2d 2311 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
0b6440af 2312 if (cur_el == 0 &&
00108f2d
PM
2313 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2314 return CP_ACCESS_TRAP;
2315 }
0b6440af
EI
2316
2317 if (arm_feature(env, ARM_FEATURE_EL2) &&
2318 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2319 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2320 return CP_ACCESS_TRAP_EL2;
2321 }
00108f2d
PM
2322 return CP_ACCESS_OK;
2323}
2324
3f208fd7
PM
2325static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2326 bool isread)
00108f2d 2327{
0b6440af
EI
2328 unsigned int cur_el = arm_current_el(env);
2329 bool secure = arm_is_secure(env);
2330
00108f2d
PM
2331 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2332 * EL0[PV]TEN is zero.
2333 */
0b6440af 2334 if (cur_el == 0 &&
00108f2d
PM
2335 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2336 return CP_ACCESS_TRAP;
2337 }
0b6440af
EI
2338
2339 if (arm_feature(env, ARM_FEATURE_EL2) &&
2340 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2341 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2342 return CP_ACCESS_TRAP_EL2;
2343 }
00108f2d
PM
2344 return CP_ACCESS_OK;
2345}
2346
2347static CPAccessResult gt_pct_access(CPUARMState *env,
3f208fd7
PM
2348 const ARMCPRegInfo *ri,
2349 bool isread)
00108f2d 2350{
3f208fd7 2351 return gt_counter_access(env, GTIMER_PHYS, isread);
00108f2d
PM
2352}
2353
2354static CPAccessResult gt_vct_access(CPUARMState *env,
3f208fd7
PM
2355 const ARMCPRegInfo *ri,
2356 bool isread)
00108f2d 2357{
3f208fd7 2358 return gt_counter_access(env, GTIMER_VIRT, isread);
00108f2d
PM
2359}
2360
3f208fd7
PM
2361static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2362 bool isread)
00108f2d 2363{
3f208fd7 2364 return gt_timer_access(env, GTIMER_PHYS, isread);
00108f2d
PM
2365}
2366
3f208fd7
PM
2367static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2368 bool isread)
00108f2d 2369{
3f208fd7 2370 return gt_timer_access(env, GTIMER_VIRT, isread);
00108f2d
PM
2371}
2372
b4d3978c 2373static CPAccessResult gt_stimer_access(CPUARMState *env,
3f208fd7
PM
2374 const ARMCPRegInfo *ri,
2375 bool isread)
b4d3978c
PM
2376{
2377 /* The AArch64 register view of the secure physical timer is
2378 * always accessible from EL3, and configurably accessible from
2379 * Secure EL1.
2380 */
2381 switch (arm_current_el(env)) {
2382 case 1:
2383 if (!arm_is_secure(env)) {
2384 return CP_ACCESS_TRAP;
2385 }
2386 if (!(env->cp15.scr_el3 & SCR_ST)) {
2387 return CP_ACCESS_TRAP_EL3;
2388 }
2389 return CP_ACCESS_OK;
2390 case 0:
2391 case 2:
2392 return CP_ACCESS_TRAP;
2393 case 3:
2394 return CP_ACCESS_OK;
2395 default:
2396 g_assert_not_reached();
2397 }
2398}
2399
55d284af
PM
2400static uint64_t gt_get_countervalue(CPUARMState *env)
2401{
bc72ad67 2402 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
55d284af
PM
2403}
2404
2405static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2406{
2407 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2408
2409 if (gt->ctl & 1) {
2410 /* Timer enabled: calculate and set current ISTATUS, irq, and
2411 * reset timer to when ISTATUS next has to change
2412 */
edac4d8a
EI
2413 uint64_t offset = timeridx == GTIMER_VIRT ?
2414 cpu->env.cp15.cntvoff_el2 : 0;
55d284af
PM
2415 uint64_t count = gt_get_countervalue(&cpu->env);
2416 /* Note that this must be unsigned 64 bit arithmetic: */
edac4d8a 2417 int istatus = count - offset >= gt->cval;
55d284af 2418 uint64_t nexttick;
194cbc49 2419 int irqstate;
55d284af
PM
2420
2421 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
194cbc49
PM
2422
2423 irqstate = (istatus && !(gt->ctl & 2));
2424 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2425
55d284af
PM
2426 if (istatus) {
2427 /* Next transition is when count rolls back over to zero */
2428 nexttick = UINT64_MAX;
2429 } else {
2430 /* Next transition is when we hit cval */
edac4d8a 2431 nexttick = gt->cval + offset;
55d284af
PM
2432 }
2433 /* Note that the desired next expiry time might be beyond the
2434 * signed-64-bit range of a QEMUTimer -- in this case we just
2435 * set the timer for as far in the future as possible. When the
2436 * timer expires we will reset the timer for any remaining period.
2437 */
2438 if (nexttick > INT64_MAX / GTIMER_SCALE) {
2439 nexttick = INT64_MAX / GTIMER_SCALE;
2440 }
bc72ad67 2441 timer_mod(cpu->gt_timer[timeridx], nexttick);
194cbc49 2442 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
55d284af
PM
2443 } else {
2444 /* Timer disabled: ISTATUS and timer output always clear */
2445 gt->ctl &= ~4;
2446 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
bc72ad67 2447 timer_del(cpu->gt_timer[timeridx]);
194cbc49 2448 trace_arm_gt_recalc_disabled(timeridx);
55d284af
PM
2449 }
2450}
2451
0e3eca4c
EI
2452static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2453 int timeridx)
55d284af
PM
2454{
2455 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af 2456
bc72ad67 2457 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
2458}
2459
c4241c7d 2460static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af 2461{
c4241c7d 2462 return gt_get_countervalue(env);
55d284af
PM
2463}
2464
edac4d8a
EI
2465static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2466{
2467 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2468}
2469
c4241c7d 2470static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 2471 int timeridx,
c4241c7d 2472 uint64_t value)
55d284af 2473{
194cbc49 2474 trace_arm_gt_cval_write(timeridx, value);
55d284af
PM
2475 env->cp15.c14_timer[timeridx].cval = value;
2476 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af 2477}
c4241c7d 2478
0e3eca4c
EI
2479static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2480 int timeridx)
55d284af 2481{
edac4d8a 2482 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 2483
c4241c7d 2484 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
edac4d8a 2485 (gt_get_countervalue(env) - offset));
55d284af
PM
2486}
2487
c4241c7d 2488static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 2489 int timeridx,
c4241c7d 2490 uint64_t value)
55d284af 2491{
edac4d8a 2492 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 2493
194cbc49 2494 trace_arm_gt_tval_write(timeridx, value);
edac4d8a 2495 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
18084b2f 2496 sextract64(value, 0, 32);
55d284af 2497 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af
PM
2498}
2499
c4241c7d 2500static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 2501 int timeridx,
c4241c7d 2502 uint64_t value)
55d284af
PM
2503{
2504 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af
PM
2505 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2506
194cbc49 2507 trace_arm_gt_ctl_write(timeridx, value);
d3afacc7 2508 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
55d284af
PM
2509 if ((oldval ^ value) & 1) {
2510 /* Enable toggled */
2511 gt_recalc_timer(cpu, timeridx);
d3afacc7 2512 } else if ((oldval ^ value) & 2) {
55d284af
PM
2513 /* IMASK toggled: don't need to recalculate,
2514 * just set the interrupt line based on ISTATUS
2515 */
194cbc49
PM
2516 int irqstate = (oldval & 4) && !(value & 2);
2517
2518 trace_arm_gt_imask_toggle(timeridx, irqstate);
2519 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
55d284af 2520 }
55d284af
PM
2521}
2522
0e3eca4c
EI
2523static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2524{
2525 gt_timer_reset(env, ri, GTIMER_PHYS);
2526}
2527
2528static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2529 uint64_t value)
2530{
2531 gt_cval_write(env, ri, GTIMER_PHYS, value);
2532}
2533
2534static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2535{
2536 return gt_tval_read(env, ri, GTIMER_PHYS);
2537}
2538
2539static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2540 uint64_t value)
2541{
2542 gt_tval_write(env, ri, GTIMER_PHYS, value);
2543}
2544
2545static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2546 uint64_t value)
2547{
2548 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2549}
2550
2551static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2552{
2553 gt_timer_reset(env, ri, GTIMER_VIRT);
2554}
2555
2556static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2557 uint64_t value)
2558{
2559 gt_cval_write(env, ri, GTIMER_VIRT, value);
2560}
2561
2562static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2563{
2564 return gt_tval_read(env, ri, GTIMER_VIRT);
2565}
2566
2567static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2568 uint64_t value)
2569{
2570 gt_tval_write(env, ri, GTIMER_VIRT, value);
2571}
2572
2573static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2574 uint64_t value)
2575{
2576 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2577}
2578
edac4d8a
EI
2579static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2580 uint64_t value)
2581{
2582 ARMCPU *cpu = arm_env_get_cpu(env);
2583
194cbc49 2584 trace_arm_gt_cntvoff_write(value);
edac4d8a
EI
2585 raw_write(env, ri, value);
2586 gt_recalc_timer(cpu, GTIMER_VIRT);
2587}
2588
b0e66d95
EI
2589static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2590{
2591 gt_timer_reset(env, ri, GTIMER_HYP);
2592}
2593
2594static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2595 uint64_t value)
2596{
2597 gt_cval_write(env, ri, GTIMER_HYP, value);
2598}
2599
2600static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2601{
2602 return gt_tval_read(env, ri, GTIMER_HYP);
2603}
2604
2605static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2606 uint64_t value)
2607{
2608 gt_tval_write(env, ri, GTIMER_HYP, value);
2609}
2610
2611static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2612 uint64_t value)
2613{
2614 gt_ctl_write(env, ri, GTIMER_HYP, value);
2615}
2616
b4d3978c
PM
2617static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2618{
2619 gt_timer_reset(env, ri, GTIMER_SEC);
2620}
2621
2622static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2623 uint64_t value)
2624{
2625 gt_cval_write(env, ri, GTIMER_SEC, value);
2626}
2627
2628static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2629{
2630 return gt_tval_read(env, ri, GTIMER_SEC);
2631}
2632
2633static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2634 uint64_t value)
2635{
2636 gt_tval_write(env, ri, GTIMER_SEC, value);
2637}
2638
2639static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2640 uint64_t value)
2641{
2642 gt_ctl_write(env, ri, GTIMER_SEC, value);
2643}
2644
55d284af
PM
2645void arm_gt_ptimer_cb(void *opaque)
2646{
2647 ARMCPU *cpu = opaque;
2648
2649 gt_recalc_timer(cpu, GTIMER_PHYS);
2650}
2651
2652void arm_gt_vtimer_cb(void *opaque)
2653{
2654 ARMCPU *cpu = opaque;
2655
2656 gt_recalc_timer(cpu, GTIMER_VIRT);
2657}
2658
b0e66d95
EI
2659void arm_gt_htimer_cb(void *opaque)
2660{
2661 ARMCPU *cpu = opaque;
2662
2663 gt_recalc_timer(cpu, GTIMER_HYP);
2664}
2665
b4d3978c
PM
2666void arm_gt_stimer_cb(void *opaque)
2667{
2668 ARMCPU *cpu = opaque;
2669
2670 gt_recalc_timer(cpu, GTIMER_SEC);
2671}
2672
55d284af
PM
2673static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2674 /* Note that CNTFRQ is purely reads-as-written for the benefit
2675 * of software; writing it doesn't actually change the timer frequency.
2676 * Our reset value matches the fixed frequency we implement the timer at.
2677 */
2678 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2679 .type = ARM_CP_ALIAS,
a7adc4b7
PM
2680 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2681 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
a7adc4b7
PM
2682 },
2683 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2684 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2685 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
55d284af
PM
2686 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2687 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
55d284af
PM
2688 },
2689 /* overall control: mostly access permissions */
a7adc4b7
PM
2690 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2691 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
55d284af
PM
2692 .access = PL1_RW,
2693 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2694 .resetvalue = 0,
2695 },
2696 /* per-timer control */
2697 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
9ff9dd3c 2698 .secure = ARM_CP_SECSTATE_NS,
daf1dc5f 2699 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
a7adc4b7
PM
2700 .accessfn = gt_ptimer_access,
2701 .fieldoffset = offsetoflow32(CPUARMState,
2702 cp15.c14_timer[GTIMER_PHYS].ctl),
0e3eca4c 2703 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
a7adc4b7 2704 },
9c513e78 2705 { .name = "CNTP_CTL_S",
9ff9dd3c
PM
2706 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2707 .secure = ARM_CP_SECSTATE_S,
daf1dc5f 2708 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
9ff9dd3c
PM
2709 .accessfn = gt_ptimer_access,
2710 .fieldoffset = offsetoflow32(CPUARMState,
2711 cp15.c14_timer[GTIMER_SEC].ctl),
2712 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2713 },
a7adc4b7
PM
2714 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2715 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
daf1dc5f 2716 .type = ARM_CP_IO, .access = PL0_RW,
a7adc4b7 2717 .accessfn = gt_ptimer_access,
55d284af
PM
2718 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2719 .resetvalue = 0,
0e3eca4c 2720 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
55d284af
PM
2721 },
2722 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
daf1dc5f 2723 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
a7adc4b7
PM
2724 .accessfn = gt_vtimer_access,
2725 .fieldoffset = offsetoflow32(CPUARMState,
2726 cp15.c14_timer[GTIMER_VIRT].ctl),
0e3eca4c 2727 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
a7adc4b7
PM
2728 },
2729 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2730 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
daf1dc5f 2731 .type = ARM_CP_IO, .access = PL0_RW,
a7adc4b7 2732 .accessfn = gt_vtimer_access,
55d284af
PM
2733 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2734 .resetvalue = 0,
0e3eca4c 2735 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
55d284af
PM
2736 },
2737 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2738 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
9ff9dd3c 2739 .secure = ARM_CP_SECSTATE_NS,
daf1dc5f 2740 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
00108f2d 2741 .accessfn = gt_ptimer_access,
0e3eca4c 2742 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
55d284af 2743 },
9c513e78 2744 { .name = "CNTP_TVAL_S",
9ff9dd3c
PM
2745 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2746 .secure = ARM_CP_SECSTATE_S,
daf1dc5f 2747 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
9ff9dd3c
PM
2748 .accessfn = gt_ptimer_access,
2749 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2750 },
a7adc4b7
PM
2751 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2752 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
daf1dc5f 2753 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
0e3eca4c
EI
2754 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2755 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
a7adc4b7 2756 },
55d284af 2757 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
daf1dc5f 2758 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
00108f2d 2759 .accessfn = gt_vtimer_access,
0e3eca4c 2760 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
55d284af 2761 },
a7adc4b7
PM
2762 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2763 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
daf1dc5f 2764 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
0e3eca4c
EI
2765 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2766 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
a7adc4b7 2767 },
55d284af
PM
2768 /* The counter itself */
2769 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
7a0e58fa 2770 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 2771 .accessfn = gt_pct_access,
a7adc4b7
PM
2772 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2773 },
2774 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2775 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
7a0e58fa 2776 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 2777 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
55d284af
PM
2778 },
2779 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
7a0e58fa 2780 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 2781 .accessfn = gt_vct_access,
edac4d8a 2782 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
a7adc4b7
PM
2783 },
2784 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2785 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
7a0e58fa 2786 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 2787 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
55d284af
PM
2788 },
2789 /* Comparison value, indicating when the timer goes off */
2790 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 2791 .secure = ARM_CP_SECSTATE_NS,
daf1dc5f 2792 .access = PL0_RW,
7a0e58fa 2793 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 2794 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
b061a82b 2795 .accessfn = gt_ptimer_access,
0e3eca4c 2796 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
a7adc4b7 2797 },
9c513e78 2798 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 2799 .secure = ARM_CP_SECSTATE_S,
daf1dc5f 2800 .access = PL0_RW,
9ff9dd3c
PM
2801 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2802 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2803 .accessfn = gt_ptimer_access,
2804 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2805 },
a7adc4b7
PM
2806 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2807 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
daf1dc5f 2808 .access = PL0_RW,
a7adc4b7
PM
2809 .type = ARM_CP_IO,
2810 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
12cde08a 2811 .resetvalue = 0, .accessfn = gt_ptimer_access,
0e3eca4c 2812 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
55d284af
PM
2813 },
2814 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
daf1dc5f 2815 .access = PL0_RW,
7a0e58fa 2816 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 2817 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
b061a82b 2818 .accessfn = gt_vtimer_access,
0e3eca4c 2819 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
a7adc4b7
PM
2820 },
2821 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2822 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
daf1dc5f 2823 .access = PL0_RW,
a7adc4b7
PM
2824 .type = ARM_CP_IO,
2825 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2826 .resetvalue = 0, .accessfn = gt_vtimer_access,
0e3eca4c 2827 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
55d284af 2828 },
b4d3978c
PM
2829 /* Secure timer -- this is actually restricted to only EL3
2830 * and configurably Secure-EL1 via the accessfn.
2831 */
2832 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2833 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2834 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2835 .accessfn = gt_stimer_access,
2836 .readfn = gt_sec_tval_read,
2837 .writefn = gt_sec_tval_write,
2838 .resetfn = gt_sec_timer_reset,
2839 },
2840 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2841 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2842 .type = ARM_CP_IO, .access = PL1_RW,
2843 .accessfn = gt_stimer_access,
2844 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2845 .resetvalue = 0,
2846 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2847 },
2848 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2849 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2850 .type = ARM_CP_IO, .access = PL1_RW,
2851 .accessfn = gt_stimer_access,
2852 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2853 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2854 },
55d284af
PM
2855 REGINFO_SENTINEL
2856};
2857
2858#else
26c4a83b
AB
2859
2860/* In user-mode most of the generic timer registers are inaccessible
2861 * however modern kernels (4.12+) allow access to cntvct_el0
55d284af 2862 */
26c4a83b
AB
2863
2864static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2865{
2866 /* Currently we have no support for QEMUTimer in linux-user so we
2867 * can't call gt_get_countervalue(env), instead we directly
2868 * call the lower level functions.
2869 */
2870 return cpu_get_clock() / GTIMER_SCALE;
2871}
2872
6cc7a3ae 2873static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
26c4a83b
AB
2874 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2875 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2876 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2877 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2878 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2879 },
2880 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2881 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2882 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2883 .readfn = gt_virt_cnt_read,
2884 },
6cc7a3ae
PM
2885 REGINFO_SENTINEL
2886};
2887
55d284af
PM
2888#endif
2889
c4241c7d 2890static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 2891{
891a2fe7 2892 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8d5c773e 2893 raw_write(env, ri, value);
891a2fe7 2894 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8d5c773e 2895 raw_write(env, ri, value & 0xfffff6ff);
4a501606 2896 } else {
8d5c773e 2897 raw_write(env, ri, value & 0xfffff1ff);
4a501606 2898 }
4a501606
PM
2899}
2900
2901#ifndef CONFIG_USER_ONLY
2902/* get_phys_addr() isn't present for user-mode-only targets */
702a9357 2903
3f208fd7
PM
2904static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2905 bool isread)
92611c00
PM
2906{
2907 if (ri->opc2 & 4) {
87562e4f
PM
2908 /* The ATS12NSO* operations must trap to EL3 if executed in
2909 * Secure EL1 (which can only happen if EL3 is AArch64).
2910 * They are simply UNDEF if executed from NS EL1.
2911 * They function normally from EL2 or EL3.
92611c00 2912 */
87562e4f
PM
2913 if (arm_current_el(env) == 1) {
2914 if (arm_is_secure_below_el3(env)) {
2915 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2916 }
2917 return CP_ACCESS_TRAP_UNCATEGORIZED;
2918 }
92611c00
PM
2919 }
2920 return CP_ACCESS_OK;
2921}
2922
060e8a48 2923static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
03ae85f8 2924 MMUAccessType access_type, ARMMMUIdx mmu_idx)
4a501606 2925{
a8170e5e 2926 hwaddr phys_addr;
4a501606
PM
2927 target_ulong page_size;
2928 int prot;
b7cc4e82 2929 bool ret;
01c097f7 2930 uint64_t par64;
1313e2d7 2931 bool format64 = false;
8bf5b6a9 2932 MemTxAttrs attrs = {};
e14b5a23 2933 ARMMMUFaultInfo fi = {};
5b2d261d 2934 ARMCacheAttrs cacheattrs = {};
4a501606 2935
5b2d261d 2936 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
bc52bfeb 2937 &prot, &page_size, &fi, &cacheattrs);
1313e2d7
EI
2938
2939 if (is_a64(env)) {
2940 format64 = true;
2941 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2942 /*
2943 * ATS1Cxx:
2944 * * TTBCR.EAE determines whether the result is returned using the
2945 * 32-bit or the 64-bit PAR format
2946 * * Instructions executed in Hyp mode always use the 64bit format
2947 *
2948 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2949 * * The Non-secure TTBCR.EAE bit is set to 1
2950 * * The implementation includes EL2, and the value of HCR.VM is 1
2951 *
9d1bab33
PM
2952 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2953 *
23463e0e 2954 * ATS1Hx always uses the 64bit format.
1313e2d7
EI
2955 */
2956 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2957
2958 if (arm_feature(env, ARM_FEATURE_EL2)) {
2959 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9d1bab33 2960 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
1313e2d7
EI
2961 } else {
2962 format64 |= arm_current_el(env) == 2;
2963 }
2964 }
2965 }
2966
2967 if (format64) {
5efe9ed4 2968 /* Create a 64-bit PAR */
01c097f7 2969 par64 = (1 << 11); /* LPAE bit always set */
b7cc4e82 2970 if (!ret) {
702a9357 2971 par64 |= phys_addr & ~0xfffULL;
8bf5b6a9
PM
2972 if (!attrs.secure) {
2973 par64 |= (1 << 9); /* NS */
2974 }
5b2d261d
AB
2975 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2976 par64 |= cacheattrs.shareability << 7; /* SH */
4a501606 2977 } else {
5efe9ed4
PM
2978 uint32_t fsr = arm_fi_to_lfsc(&fi);
2979
702a9357 2980 par64 |= 1; /* F */
b7cc4e82 2981 par64 |= (fsr & 0x3f) << 1; /* FS */
0f7b791b
PM
2982 if (fi.stage2) {
2983 par64 |= (1 << 9); /* S */
2984 }
2985 if (fi.s1ptw) {
2986 par64 |= (1 << 8); /* PTW */
2987 }
4a501606
PM
2988 }
2989 } else {
b7cc4e82 2990 /* fsr is a DFSR/IFSR value for the short descriptor
702a9357
PM
2991 * translation table format (with WnR always clear).
2992 * Convert it to a 32-bit PAR.
2993 */
b7cc4e82 2994 if (!ret) {
702a9357
PM
2995 /* We do not set any attribute bits in the PAR */
2996 if (page_size == (1 << 24)
2997 && arm_feature(env, ARM_FEATURE_V7)) {
01c097f7 2998 par64 = (phys_addr & 0xff000000) | (1 << 1);
702a9357 2999 } else {
01c097f7 3000 par64 = phys_addr & 0xfffff000;
702a9357 3001 }
8bf5b6a9
PM
3002 if (!attrs.secure) {
3003 par64 |= (1 << 9); /* NS */
3004 }
702a9357 3005 } else {
5efe9ed4
PM
3006 uint32_t fsr = arm_fi_to_sfsc(&fi);
3007
b7cc4e82
PC
3008 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3009 ((fsr & 0xf) << 1) | 1;
702a9357 3010 }
4a501606 3011 }
060e8a48
PM
3012 return par64;
3013}
3014
3015static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3016{
03ae85f8 3017 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
060e8a48 3018 uint64_t par64;
d3649702
PM
3019 ARMMMUIdx mmu_idx;
3020 int el = arm_current_el(env);
3021 bool secure = arm_is_secure_below_el3(env);
060e8a48 3022
d3649702
PM
3023 switch (ri->opc2 & 6) {
3024 case 0:
3025 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3026 switch (el) {
3027 case 3:
3028 mmu_idx = ARMMMUIdx_S1E3;
3029 break;
3030 case 2:
3031 mmu_idx = ARMMMUIdx_S1NSE1;
3032 break;
3033 case 1:
3034 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3035 break;
3036 default:
3037 g_assert_not_reached();
3038 }
3039 break;
3040 case 2:
3041 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3042 switch (el) {
3043 case 3:
3044 mmu_idx = ARMMMUIdx_S1SE0;
3045 break;
3046 case 2:
3047 mmu_idx = ARMMMUIdx_S1NSE0;
3048 break;
3049 case 1:
3050 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3051 break;
3052 default:
3053 g_assert_not_reached();
3054 }
3055 break;
3056 case 4:
3057 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3058 mmu_idx = ARMMMUIdx_S12NSE1;
3059 break;
3060 case 6:
3061 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3062 mmu_idx = ARMMMUIdx_S12NSE0;
3063 break;
3064 default:
3065 g_assert_not_reached();
3066 }
3067
3068 par64 = do_ats_write(env, value, access_type, mmu_idx);
01c097f7
FA
3069
3070 A32_BANKED_CURRENT_REG_SET(env, par, par64);
4a501606 3071}
060e8a48 3072
14db7fe0
PM
3073static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3074 uint64_t value)
3075{
03ae85f8 3076 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
14db7fe0
PM
3077 uint64_t par64;
3078
23463e0e 3079 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
14db7fe0
PM
3080
3081 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3082}
3083
3f208fd7
PM
3084static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3085 bool isread)
2a47df95
PM
3086{
3087 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3088 return CP_ACCESS_TRAP;
3089 }
3090 return CP_ACCESS_OK;
3091}
3092
060e8a48
PM
3093static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3094 uint64_t value)
3095{
03ae85f8 3096 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
d3649702
PM
3097 ARMMMUIdx mmu_idx;
3098 int secure = arm_is_secure_below_el3(env);
3099
3100 switch (ri->opc2 & 6) {
3101 case 0:
3102 switch (ri->opc1) {
3103 case 0: /* AT S1E1R, AT S1E1W */
3104 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3105 break;
3106 case 4: /* AT S1E2R, AT S1E2W */
3107 mmu_idx = ARMMMUIdx_S1E2;
3108 break;
3109 case 6: /* AT S1E3R, AT S1E3W */
3110 mmu_idx = ARMMMUIdx_S1E3;
3111 break;
3112 default:
3113 g_assert_not_reached();
3114 }
3115 break;
3116 case 2: /* AT S1E0R, AT S1E0W */
3117 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3118 break;
3119 case 4: /* AT S12E1R, AT S12E1W */
2a47df95 3120 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
d3649702
PM
3121 break;
3122 case 6: /* AT S12E0R, AT S12E0W */
2a47df95 3123 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
d3649702
PM
3124 break;
3125 default:
3126 g_assert_not_reached();
3127 }
060e8a48 3128
d3649702 3129 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
060e8a48 3130}
4a501606
PM
3131#endif
3132
3133static const ARMCPRegInfo vapa_cp_reginfo[] = {
3134 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3135 .access = PL1_RW, .resetvalue = 0,
01c097f7
FA
3136 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3137 offsetoflow32(CPUARMState, cp15.par_ns) },
4a501606
PM
3138 .writefn = par_write },
3139#ifndef CONFIG_USER_ONLY
87562e4f 3140 /* This underdecoding is safe because the reginfo is NO_RAW. */
4a501606 3141 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
92611c00 3142 .access = PL1_W, .accessfn = ats_access,
7a0e58fa 3143 .writefn = ats_write, .type = ARM_CP_NO_RAW },
4a501606
PM
3144#endif
3145 REGINFO_SENTINEL
3146};
3147
18032bec
PM
3148/* Return basic MPU access permission bits. */
3149static uint32_t simple_mpu_ap_bits(uint32_t val)
3150{
3151 uint32_t ret;
3152 uint32_t mask;
3153 int i;
3154 ret = 0;
3155 mask = 3;
3156 for (i = 0; i < 16; i += 2) {
3157 ret |= (val >> i) & mask;
3158 mask <<= 2;
3159 }
3160 return ret;
3161}
3162
3163/* Pad basic MPU access permission bits to extended format. */
3164static uint32_t extended_mpu_ap_bits(uint32_t val)
3165{
3166 uint32_t ret;
3167 uint32_t mask;
3168 int i;
3169 ret = 0;
3170 mask = 3;
3171 for (i = 0; i < 16; i += 2) {
3172 ret |= (val & mask) << i;
3173 mask <<= 2;
3174 }
3175 return ret;
3176}
3177
c4241c7d
PM
3178static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3179 uint64_t value)
18032bec 3180{
7e09797c 3181 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
18032bec
PM
3182}
3183
c4241c7d 3184static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 3185{
7e09797c 3186 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
18032bec
PM
3187}
3188
c4241c7d
PM
3189static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3190 uint64_t value)
18032bec 3191{
7e09797c 3192 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
18032bec
PM
3193}
3194
c4241c7d 3195static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 3196{
7e09797c 3197 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
18032bec
PM
3198}
3199
6cb0b013
PC
3200static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3201{
3202 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3203
3204 if (!u32p) {
3205 return 0;
3206 }
3207
1bc04a88 3208 u32p += env->pmsav7.rnr[M_REG_NS];
6cb0b013
PC
3209 return *u32p;
3210}
3211
3212static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3213 uint64_t value)
3214{
3215 ARMCPU *cpu = arm_env_get_cpu(env);
3216 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3217
3218 if (!u32p) {
3219 return;
3220 }
3221
1bc04a88 3222 u32p += env->pmsav7.rnr[M_REG_NS];
d10eb08f 3223 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
6cb0b013
PC
3224 *u32p = value;
3225}
3226
6cb0b013
PC
3227static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3228 uint64_t value)
3229{
3230 ARMCPU *cpu = arm_env_get_cpu(env);
3231 uint32_t nrgs = cpu->pmsav7_dregion;
3232
3233 if (value >= nrgs) {
3234 qemu_log_mask(LOG_GUEST_ERROR,
3235 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3236 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3237 return;
3238 }
3239
3240 raw_write(env, ri, value);
3241}
3242
3243static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
69ceea64
PM
3244 /* Reset for all these registers is handled in arm_cpu_reset(),
3245 * because the PMSAv7 is also used by M-profile CPUs, which do
3246 * not register cpregs but still need the state to be reset.
3247 */
6cb0b013
PC
3248 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3249 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3250 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
69ceea64
PM
3251 .readfn = pmsav7_read, .writefn = pmsav7_write,
3252 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
3253 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3254 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3255 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
69ceea64
PM
3256 .readfn = pmsav7_read, .writefn = pmsav7_write,
3257 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
3258 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3259 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3260 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
69ceea64
PM
3261 .readfn = pmsav7_read, .writefn = pmsav7_write,
3262 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
3263 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3264 .access = PL1_RW,
1bc04a88 3265 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
69ceea64
PM
3266 .writefn = pmsav7_rgnr_write,
3267 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
3268 REGINFO_SENTINEL
3269};
3270
18032bec
PM
3271static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3272 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 3273 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 3274 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
18032bec
PM
3275 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3276 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
7a0e58fa 3277 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 3278 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
18032bec
PM
3279 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3280 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3281 .access = PL1_RW,
7e09797c
PM
3282 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3283 .resetvalue = 0, },
18032bec
PM
3284 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3285 .access = PL1_RW,
7e09797c
PM
3286 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3287 .resetvalue = 0, },
ecce5c3c
PM
3288 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3289 .access = PL1_RW,
3290 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3291 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3292 .access = PL1_RW,
3293 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31 3294 /* Protection region base and size registers */
e508a92b
PM
3295 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3296 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3297 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3298 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3299 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3300 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3301 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3302 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3303 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3304 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3305 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3306 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3307 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3308 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3309 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3310 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3311 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3312 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3313 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3314 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3315 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3316 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3317 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3318 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
18032bec
PM
3319 REGINFO_SENTINEL
3320};
3321
c4241c7d
PM
3322static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3323 uint64_t value)
ecce5c3c 3324{
11f136ee 3325 TCR *tcr = raw_ptr(env, ri);
2ebcebe2
PM
3326 int maskshift = extract32(value, 0, 3);
3327
e389be16
FA
3328 if (!arm_feature(env, ARM_FEATURE_V8)) {
3329 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3330 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3331 * using Long-desciptor translation table format */
3332 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3333 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3334 /* In an implementation that includes the Security Extensions
3335 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3336 * Short-descriptor translation table format.
3337 */
3338 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3339 } else {
3340 value &= TTBCR_N;
3341 }
e42c4db3 3342 }
e389be16 3343
b6af0975 3344 /* Update the masks corresponding to the TCR bank being written
11f136ee 3345 * Note that we always calculate mask and base_mask, but
e42c4db3 3346 * they are only used for short-descriptor tables (ie if EAE is 0);
11f136ee
FA
3347 * for long-descriptor tables the TCR fields are used differently
3348 * and the mask and base_mask values are meaningless.
e42c4db3 3349 */
11f136ee
FA
3350 tcr->raw_tcr = value;
3351 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3352 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
ecce5c3c
PM
3353}
3354
c4241c7d
PM
3355static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3356 uint64_t value)
d4e6df63 3357{
00c8cb0a 3358 ARMCPU *cpu = arm_env_get_cpu(env);
ab638a32 3359 TCR *tcr = raw_ptr(env, ri);
00c8cb0a 3360
d4e6df63
PM
3361 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3362 /* With LPAE the TTBCR could result in a change of ASID
3363 * via the TTBCR.A1 bit, so do a TLB flush.
3364 */
d10eb08f 3365 tlb_flush(CPU(cpu));
d4e6df63 3366 }
ab638a32
RH
3367 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3368 value = deposit64(tcr->raw_tcr, 0, 32, value);
c4241c7d 3369 vmsa_ttbcr_raw_write(env, ri, value);
d4e6df63
PM
3370}
3371
ecce5c3c
PM
3372static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3373{
11f136ee
FA
3374 TCR *tcr = raw_ptr(env, ri);
3375
3376 /* Reset both the TCR as well as the masks corresponding to the bank of
3377 * the TCR being reset.
3378 */
3379 tcr->raw_tcr = 0;
3380 tcr->mask = 0;
3381 tcr->base_mask = 0xffffc000u;
ecce5c3c
PM
3382}
3383
cb2e37df
PM
3384static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3385 uint64_t value)
3386{
00c8cb0a 3387 ARMCPU *cpu = arm_env_get_cpu(env);
11f136ee 3388 TCR *tcr = raw_ptr(env, ri);
00c8cb0a 3389
cb2e37df 3390 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
d10eb08f 3391 tlb_flush(CPU(cpu));
11f136ee 3392 tcr->raw_tcr = value;
cb2e37df
PM
3393}
3394
327ed10f
PM
3395static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3396 uint64_t value)
3397{
93f379b0
RH
3398 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3399 if (cpreg_field_is_64bit(ri) &&
3400 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
00c8cb0a 3401 ARMCPU *cpu = arm_env_get_cpu(env);
d10eb08f 3402 tlb_flush(CPU(cpu));
327ed10f
PM
3403 }
3404 raw_write(env, ri, value);
3405}
3406
b698e9cf
EI
3407static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3408 uint64_t value)
3409{
3410 ARMCPU *cpu = arm_env_get_cpu(env);
3411 CPUState *cs = CPU(cpu);
3412
3413 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
3414 if (raw_read(env, ri) != value) {
0336cbf8 3415 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3416 ARMMMUIdxBit_S12NSE1 |
3417 ARMMMUIdxBit_S12NSE0 |
3418 ARMMMUIdxBit_S2NS);
b698e9cf
EI
3419 raw_write(env, ri, value);
3420 }
3421}
3422
8e5d75c9 3423static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
18032bec 3424 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 3425 .access = PL1_RW, .type = ARM_CP_ALIAS,
4a7e2d73 3426 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
b061a82b 3427 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
18032bec 3428 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
88ca1c2d
FA
3429 .access = PL1_RW, .resetvalue = 0,
3430 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3431 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
8e5d75c9
PC
3432 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3433 .access = PL1_RW, .resetvalue = 0,
3434 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3435 offsetof(CPUARMState, cp15.dfar_ns) } },
3436 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3437 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3438 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3439 .resetvalue = 0, },
3440 REGINFO_SENTINEL
3441};
3442
3443static const ARMCPRegInfo vmsa_cp_reginfo[] = {
6cd8a264
RH
3444 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3445 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3446 .access = PL1_RW,
d81c519c 3447 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
327ed10f 3448 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
3449 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3450 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3451 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3452 offsetof(CPUARMState, cp15.ttbr0_ns) } },
327ed10f 3453 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
3454 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3455 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3456 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3457 offsetof(CPUARMState, cp15.ttbr1_ns) } },
cb2e37df
PM
3458 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3459 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3460 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3461 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
11f136ee 3462 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
cb2e37df 3463 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
7a0e58fa 3464 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
b061a82b 3465 .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee
FA
3466 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3467 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
18032bec
PM
3468 REGINFO_SENTINEL
3469};
3470
ab638a32
RH
3471/* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3472 * qemu tlbs nor adjusting cached masks.
3473 */
3474static const ARMCPRegInfo ttbcr2_reginfo = {
3475 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3476 .access = PL1_RW, .type = ARM_CP_ALIAS,
3477 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3478 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3479};
3480
c4241c7d
PM
3481static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3482 uint64_t value)
1047b9d7
PM
3483{
3484 env->cp15.c15_ticonfig = value & 0xe7;
3485 /* The OS_TYPE bit in this register changes the reported CPUID! */
3486 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3487 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1047b9d7
PM
3488}
3489
c4241c7d
PM
3490static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3491 uint64_t value)
1047b9d7
PM
3492{
3493 env->cp15.c15_threadid = value & 0xffff;
1047b9d7
PM
3494}
3495
c4241c7d
PM
3496static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3497 uint64_t value)
1047b9d7
PM
3498{
3499 /* Wait-for-interrupt (deprecated) */
c3affe56 3500 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1047b9d7
PM
3501}
3502
c4241c7d
PM
3503static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3504 uint64_t value)
c4804214
PM
3505{
3506 /* On OMAP there are registers indicating the max/min index of dcache lines
3507 * containing a dirty line; cache flush operations have to reset these.
3508 */
3509 env->cp15.c15_i_max = 0x000;
3510 env->cp15.c15_i_min = 0xff0;
c4804214
PM
3511}
3512
18032bec
PM
3513static const ARMCPRegInfo omap_cp_reginfo[] = {
3514 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3515 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
d81c519c 3516 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
6cd8a264 3517 .resetvalue = 0, },
1047b9d7
PM
3518 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3519 .access = PL1_RW, .type = ARM_CP_NOP },
3520 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3521 .access = PL1_RW,
3522 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3523 .writefn = omap_ticonfig_write },
3524 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3525 .access = PL1_RW,
3526 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3527 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3528 .access = PL1_RW, .resetvalue = 0xff0,
3529 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3530 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3531 .access = PL1_RW,
3532 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3533 .writefn = omap_threadid_write },
3534 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3535 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
7a0e58fa 3536 .type = ARM_CP_NO_RAW,
1047b9d7
PM
3537 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3538 /* TODO: Peripheral port remap register:
3539 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3540 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3541 * when MMU is off.
3542 */
c4804214 3543 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
d4e6df63 3544 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
7a0e58fa 3545 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
c4804214 3546 .writefn = omap_cachemaint_write },
34f90529
PM
3547 { .name = "C9", .cp = 15, .crn = 9,
3548 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3549 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
3550 REGINFO_SENTINEL
3551};
3552
c4241c7d
PM
3553static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3554 uint64_t value)
1047b9d7 3555{
c0f4af17 3556 env->cp15.c15_cpar = value & 0x3fff;
1047b9d7
PM
3557}
3558
3559static const ARMCPRegInfo xscale_cp_reginfo[] = {
3560 { .name = "XSCALE_CPAR",
3561 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3562 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3563 .writefn = xscale_cpar_write, },
2771db27
PM
3564 { .name = "XSCALE_AUXCR",
3565 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3566 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3567 .resetvalue = 0, },
3b771579
PM
3568 /* XScale specific cache-lockdown: since we have no cache we NOP these
3569 * and hope the guest does not really rely on cache behaviour.
3570 */
3571 { .name = "XSCALE_LOCK_ICACHE_LINE",
3572 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3573 .access = PL1_W, .type = ARM_CP_NOP },
3574 { .name = "XSCALE_UNLOCK_ICACHE",
3575 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3576 .access = PL1_W, .type = ARM_CP_NOP },
3577 { .name = "XSCALE_DCACHE_LOCK",
3578 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3579 .access = PL1_RW, .type = ARM_CP_NOP },
3580 { .name = "XSCALE_UNLOCK_DCACHE",
3581 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3582 .access = PL1_W, .type = ARM_CP_NOP },
1047b9d7
PM
3583 REGINFO_SENTINEL
3584};
3585
3586static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3587 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3588 * implementation of this implementation-defined space.
3589 * Ideally this should eventually disappear in favour of actually
3590 * implementing the correct behaviour for all cores.
3591 */
3592 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3593 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671cd87 3594 .access = PL1_RW,
7a0e58fa 3595 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
d4e6df63 3596 .resetvalue = 0 },
18032bec
PM
3597 REGINFO_SENTINEL
3598};
3599
c4804214
PM
3600static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3601 /* Cache status: RAZ because we have no cache so it's always clean */
3602 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
7a0e58fa 3603 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 3604 .resetvalue = 0 },
c4804214
PM
3605 REGINFO_SENTINEL
3606};
3607
3608static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3609 /* We never have a a block transfer operation in progress */
3610 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
7a0e58fa 3611 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 3612 .resetvalue = 0 },
30b05bba
PM
3613 /* The cache ops themselves: these all NOP for QEMU */
3614 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3615 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3616 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3617 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3618 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3619 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3620 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3621 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3622 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3623 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3624 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3625 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
c4804214
PM
3626 REGINFO_SENTINEL
3627};
3628
3629static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3630 /* The cache test-and-clean instructions always return (1 << 30)
3631 * to indicate that there are no dirty cache lines.
3632 */
3633 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
7a0e58fa 3634 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 3635 .resetvalue = (1 << 30) },
c4804214 3636 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
7a0e58fa 3637 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 3638 .resetvalue = (1 << 30) },
c4804214
PM
3639 REGINFO_SENTINEL
3640};
3641
34f90529
PM
3642static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3643 /* Ignore ReadBuffer accesses */
3644 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3645 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
d4e6df63 3646 .access = PL1_RW, .resetvalue = 0,
7a0e58fa 3647 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
34f90529
PM
3648 REGINFO_SENTINEL
3649};
3650
731de9e6
EI
3651static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3652{
3653 ARMCPU *cpu = arm_env_get_cpu(env);
3654 unsigned int cur_el = arm_current_el(env);
3655 bool secure = arm_is_secure(env);
3656
3657 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3658 return env->cp15.vpidr_el2;
3659 }
3660 return raw_read(env, ri);
3661}
3662
06a7e647 3663static uint64_t mpidr_read_val(CPUARMState *env)
81bdde9d 3664{
eb5e1d3c
PF
3665 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
3666 uint64_t mpidr = cpu->mp_affinity;
3667
81bdde9d 3668 if (arm_feature(env, ARM_FEATURE_V7MP)) {
78dbbbe4 3669 mpidr |= (1U << 31);
81bdde9d
PM
3670 /* Cores which are uniprocessor (non-coherent)
3671 * but still implement the MP extensions set
a8e81b31 3672 * bit 30. (For instance, Cortex-R5).
81bdde9d 3673 */
a8e81b31
PC
3674 if (cpu->mp_is_up) {
3675 mpidr |= (1u << 30);
3676 }
81bdde9d 3677 }
c4241c7d 3678 return mpidr;
81bdde9d
PM
3679}
3680
06a7e647
EI
3681static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3682{
f0d574d6
EI
3683 unsigned int cur_el = arm_current_el(env);
3684 bool secure = arm_is_secure(env);
3685
3686 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3687 return env->cp15.vmpidr_el2;
3688 }
06a7e647
EI
3689 return mpidr_read_val(env);
3690}
3691
7ac681cf 3692static const ARMCPRegInfo lpae_cp_reginfo[] = {
a903c449 3693 /* NOP AMAIR0/1 */
b0fe2427
PM
3694 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3695 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
a903c449 3696 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 3697 .resetvalue = 0 },
b0fe2427 3698 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
7ac681cf 3699 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
a903c449 3700 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 3701 .resetvalue = 0 },
891a2fe7 3702 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
01c097f7
FA
3703 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3704 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3705 offsetof(CPUARMState, cp15.par_ns)} },
891a2fe7 3706 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
7a0e58fa 3707 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
3708 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3709 offsetof(CPUARMState, cp15.ttbr0_ns) },
b061a82b 3710 .writefn = vmsa_ttbr_write, },
891a2fe7 3711 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
7a0e58fa 3712 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
3713 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3714 offsetof(CPUARMState, cp15.ttbr1_ns) },
b061a82b 3715 .writefn = vmsa_ttbr_write, },
7ac681cf
PM
3716 REGINFO_SENTINEL
3717};
3718
c4241c7d 3719static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 3720{
c4241c7d 3721 return vfp_get_fpcr(env);
b0d2b7d0
PM
3722}
3723
c4241c7d
PM
3724static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3725 uint64_t value)
b0d2b7d0
PM
3726{
3727 vfp_set_fpcr(env, value);
b0d2b7d0
PM
3728}
3729
c4241c7d 3730static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 3731{
c4241c7d 3732 return vfp_get_fpsr(env);
b0d2b7d0
PM
3733}
3734
c4241c7d
PM
3735static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3736 uint64_t value)
b0d2b7d0
PM
3737{
3738 vfp_set_fpsr(env, value);
b0d2b7d0
PM
3739}
3740
3f208fd7
PM
3741static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3742 bool isread)
c2b820fe 3743{
137feaa9 3744 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
c2b820fe
PM
3745 return CP_ACCESS_TRAP;
3746 }
3747 return CP_ACCESS_OK;
3748}
3749
3750static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3751 uint64_t value)
3752{
3753 env->daif = value & PSTATE_DAIF;
3754}
3755
8af35c37 3756static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3f208fd7
PM
3757 const ARMCPRegInfo *ri,
3758 bool isread)
8af35c37
PM
3759{
3760 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3761 * SCTLR_EL1.UCI is set.
3762 */
137feaa9 3763 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
8af35c37
PM
3764 return CP_ACCESS_TRAP;
3765 }
3766 return CP_ACCESS_OK;
3767}
3768
dbb1fb27
AB
3769/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3770 * Page D4-1736 (DDI0487A.b)
3771 */
3772
fd3ed969
PM
3773static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3774 uint64_t value)
168aa23b 3775{
29a0af61 3776 CPUState *cs = env_cpu(env);
fd3ed969 3777 bool sec = arm_is_secure_below_el3(env);
dbb1fb27 3778
a67cf277
AB
3779 if (sec) {
3780 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3781 ARMMMUIdxBit_S1SE1 |
3782 ARMMMUIdxBit_S1SE0);
a67cf277
AB
3783 } else {
3784 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3785 ARMMMUIdxBit_S12NSE1 |
3786 ARMMMUIdxBit_S12NSE0);
fd3ed969 3787 }
168aa23b
PM
3788}
3789
b4ab8ce9
PM
3790static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3791 uint64_t value)
3792{
29a0af61 3793 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
3794
3795 if (tlb_force_broadcast(env)) {
09a86dfa 3796 tlbi_aa64_vmalle1is_write(env, NULL, value);
b4ab8ce9
PM
3797 return;
3798 }
3799
3800 if (arm_is_secure_below_el3(env)) {
3801 tlb_flush_by_mmuidx(cs,
3802 ARMMMUIdxBit_S1SE1 |
3803 ARMMMUIdxBit_S1SE0);
3804 } else {
3805 tlb_flush_by_mmuidx(cs,
3806 ARMMMUIdxBit_S12NSE1 |
3807 ARMMMUIdxBit_S12NSE0);
3808 }
3809}
3810
fd3ed969
PM
3811static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3812 uint64_t value)
168aa23b 3813{
fd3ed969
PM
3814 /* Note that the 'ALL' scope must invalidate both stage 1 and
3815 * stage 2 translations, whereas most other scopes only invalidate
3816 * stage 1 translations.
3817 */
00c8cb0a 3818 ARMCPU *cpu = arm_env_get_cpu(env);
fd3ed969
PM
3819 CPUState *cs = CPU(cpu);
3820
3821 if (arm_is_secure_below_el3(env)) {
0336cbf8 3822 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3823 ARMMMUIdxBit_S1SE1 |
3824 ARMMMUIdxBit_S1SE0);
fd3ed969
PM
3825 } else {
3826 if (arm_feature(env, ARM_FEATURE_EL2)) {
0336cbf8 3827 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3828 ARMMMUIdxBit_S12NSE1 |
3829 ARMMMUIdxBit_S12NSE0 |
3830 ARMMMUIdxBit_S2NS);
fd3ed969 3831 } else {
0336cbf8 3832 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3833 ARMMMUIdxBit_S12NSE1 |
3834 ARMMMUIdxBit_S12NSE0);
fd3ed969
PM
3835 }
3836 }
168aa23b
PM
3837}
3838
fd3ed969 3839static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
fa439fc5
PM
3840 uint64_t value)
3841{
fd3ed969
PM
3842 ARMCPU *cpu = arm_env_get_cpu(env);
3843 CPUState *cs = CPU(cpu);
3844
8bd5c820 3845 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
fd3ed969
PM
3846}
3847
43efaa33
PM
3848static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3849 uint64_t value)
3850{
3851 ARMCPU *cpu = arm_env_get_cpu(env);
3852 CPUState *cs = CPU(cpu);
3853
8bd5c820 3854 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
43efaa33
PM
3855}
3856
fd3ed969
PM
3857static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3858 uint64_t value)
3859{
3860 /* Note that the 'ALL' scope must invalidate both stage 1 and
3861 * stage 2 translations, whereas most other scopes only invalidate
3862 * stage 1 translations.
3863 */
29a0af61 3864 CPUState *cs = env_cpu(env);
fd3ed969
PM
3865 bool sec = arm_is_secure_below_el3(env);
3866 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
a67cf277
AB
3867
3868 if (sec) {
3869 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3870 ARMMMUIdxBit_S1SE1 |
3871 ARMMMUIdxBit_S1SE0);
a67cf277
AB
3872 } else if (has_el2) {
3873 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3874 ARMMMUIdxBit_S12NSE1 |
3875 ARMMMUIdxBit_S12NSE0 |
3876 ARMMMUIdxBit_S2NS);
a67cf277
AB
3877 } else {
3878 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3879 ARMMMUIdxBit_S12NSE1 |
3880 ARMMMUIdxBit_S12NSE0);
fa439fc5
PM
3881 }
3882}
3883
2bfb9d75
PM
3884static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3885 uint64_t value)
3886{
29a0af61 3887 CPUState *cs = env_cpu(env);
2bfb9d75 3888
8bd5c820 3889 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
2bfb9d75
PM
3890}
3891
43efaa33
PM
3892static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3893 uint64_t value)
3894{
29a0af61 3895 CPUState *cs = env_cpu(env);
43efaa33 3896
8bd5c820 3897 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
43efaa33
PM
3898}
3899
fd3ed969
PM
3900static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3901 uint64_t value)
fa439fc5 3902{
fd3ed969
PM
3903 /* Invalidate by VA, EL2
3904 * Currently handles both VAE2 and VALE2, since we don't support
3905 * flush-last-level-only.
3906 */
3907 ARMCPU *cpu = arm_env_get_cpu(env);
3908 CPUState *cs = CPU(cpu);
3909 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3910
8bd5c820 3911 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
fd3ed969
PM
3912}
3913
43efaa33
PM
3914static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3915 uint64_t value)
3916{
3917 /* Invalidate by VA, EL3
3918 * Currently handles both VAE3 and VALE3, since we don't support
3919 * flush-last-level-only.
3920 */
3921 ARMCPU *cpu = arm_env_get_cpu(env);
3922 CPUState *cs = CPU(cpu);
3923 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3924
8bd5c820 3925 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
43efaa33
PM
3926}
3927
fd3ed969
PM
3928static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3929 uint64_t value)
3930{
a67cf277
AB
3931 ARMCPU *cpu = arm_env_get_cpu(env);
3932 CPUState *cs = CPU(cpu);
fd3ed969 3933 bool sec = arm_is_secure_below_el3(env);
fa439fc5
PM
3934 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3935
a67cf277
AB
3936 if (sec) {
3937 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820
PM
3938 ARMMMUIdxBit_S1SE1 |
3939 ARMMMUIdxBit_S1SE0);
a67cf277
AB
3940 } else {
3941 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820
PM
3942 ARMMMUIdxBit_S12NSE1 |
3943 ARMMMUIdxBit_S12NSE0);
fa439fc5
PM
3944 }
3945}
3946
b4ab8ce9
PM
3947static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3948 uint64_t value)
3949{
3950 /* Invalidate by VA, EL1&0 (AArch64 version).
3951 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3952 * since we don't support flush-for-specific-ASID-only or
3953 * flush-last-level-only.
3954 */
3955 ARMCPU *cpu = arm_env_get_cpu(env);
3956 CPUState *cs = CPU(cpu);
3957 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3958
3959 if (tlb_force_broadcast(env)) {
3960 tlbi_aa64_vae1is_write(env, NULL, value);
3961 return;
3962 }
3963
3964 if (arm_is_secure_below_el3(env)) {
3965 tlb_flush_page_by_mmuidx(cs, pageaddr,
3966 ARMMMUIdxBit_S1SE1 |
3967 ARMMMUIdxBit_S1SE0);
3968 } else {
3969 tlb_flush_page_by_mmuidx(cs, pageaddr,
3970 ARMMMUIdxBit_S12NSE1 |
3971 ARMMMUIdxBit_S12NSE0);
3972 }
3973}
3974
fd3ed969
PM
3975static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3976 uint64_t value)
fa439fc5 3977{
29a0af61 3978 CPUState *cs = env_cpu(env);
fd3ed969 3979 uint64_t pageaddr = sextract64(value << 12, 0, 56);
fa439fc5 3980
a67cf277 3981 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3982 ARMMMUIdxBit_S1E2);
fa439fc5
PM
3983}
3984
43efaa33
PM
3985static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3986 uint64_t value)
3987{
29a0af61 3988 CPUState *cs = env_cpu(env);
43efaa33
PM
3989 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3990
a67cf277 3991 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3992 ARMMMUIdxBit_S1E3);
43efaa33
PM
3993}
3994
cea66e91
PM
3995static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3996 uint64_t value)
3997{
3998 /* Invalidate by IPA. This has to invalidate any structures that
3999 * contain only stage 2 translation information, but does not need
4000 * to apply to structures that contain combined stage 1 and stage 2
4001 * translation information.
4002 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4003 */
4004 ARMCPU *cpu = arm_env_get_cpu(env);
4005 CPUState *cs = CPU(cpu);
4006 uint64_t pageaddr;
4007
4008 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4009 return;
4010 }
4011
4012 pageaddr = sextract64(value << 12, 0, 48);
4013
8bd5c820 4014 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
cea66e91
PM
4015}
4016
4017static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4018 uint64_t value)
4019{
29a0af61 4020 CPUState *cs = env_cpu(env);
cea66e91
PM
4021 uint64_t pageaddr;
4022
4023 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4024 return;
4025 }
4026
4027 pageaddr = sextract64(value << 12, 0, 48);
4028
a67cf277 4029 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 4030 ARMMMUIdxBit_S2NS);
cea66e91
PM
4031}
4032
3f208fd7
PM
4033static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4034 bool isread)
aca3f40b
PM
4035{
4036 /* We don't implement EL2, so the only control on DC ZVA is the
4037 * bit in the SCTLR which can prohibit access for EL0.
4038 */
137feaa9 4039 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
aca3f40b
PM
4040 return CP_ACCESS_TRAP;
4041 }
4042 return CP_ACCESS_OK;
4043}
4044
4045static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4046{
4047 ARMCPU *cpu = arm_env_get_cpu(env);
4048 int dzp_bit = 1 << 4;
4049
4050 /* DZP indicates whether DC ZVA access is allowed */
3f208fd7 4051 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
aca3f40b
PM
4052 dzp_bit = 0;
4053 }
4054 return cpu->dcz_blocksize | dzp_bit;
4055}
4056
3f208fd7
PM
4057static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4058 bool isread)
f502cfc2 4059{
cdcf1405 4060 if (!(env->pstate & PSTATE_SP)) {
f502cfc2
PM
4061 /* Access to SP_EL0 is undefined if it's being used as
4062 * the stack pointer.
4063 */
4064 return CP_ACCESS_TRAP_UNCATEGORIZED;
4065 }
4066 return CP_ACCESS_OK;
4067}
4068
4069static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4070{
4071 return env->pstate & PSTATE_SP;
4072}
4073
4074static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4075{
4076 update_spsel(env, val);
4077}
4078
137feaa9
FA
4079static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4080 uint64_t value)
4081{
4082 ARMCPU *cpu = arm_env_get_cpu(env);
4083
4084 if (raw_read(env, ri) == value) {
4085 /* Skip the TLB flush if nothing actually changed; Linux likes
4086 * to do a lot of pointless SCTLR writes.
4087 */
4088 return;
4089 }
4090
06312feb
PM
4091 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4092 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4093 value &= ~SCTLR_M;
4094 }
4095
137feaa9
FA
4096 raw_write(env, ri, value);
4097 /* ??? Lots of these bits are not implemented. */
4098 /* This may enable/disable the MMU, so do a TLB flush. */
d10eb08f 4099 tlb_flush(CPU(cpu));
137feaa9
FA
4100}
4101
3f208fd7
PM
4102static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4103 bool isread)
03fbf20f
PM
4104{
4105 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
f2cae609 4106 return CP_ACCESS_TRAP_FP_EL2;
03fbf20f
PM
4107 }
4108 if (env->cp15.cptr_el[3] & CPTR_TFP) {
f2cae609 4109 return CP_ACCESS_TRAP_FP_EL3;
03fbf20f
PM
4110 }
4111 return CP_ACCESS_OK;
4112}
4113
a8d64e73
PM
4114static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4115 uint64_t value)
4116{
4117 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4118}
4119
b0d2b7d0
PM
4120static const ARMCPRegInfo v8_cp_reginfo[] = {
4121 /* Minimal set of EL0-visible registers. This will need to be expanded
4122 * significantly for system emulation of AArch64 CPUs.
4123 */
4124 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4125 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4126 .access = PL0_RW, .type = ARM_CP_NZCV },
c2b820fe
PM
4127 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4128 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
7a0e58fa 4129 .type = ARM_CP_NO_RAW,
c2b820fe
PM
4130 .access = PL0_RW, .accessfn = aa64_daif_access,
4131 .fieldoffset = offsetof(CPUARMState, daif),
4132 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
b0d2b7d0
PM
4133 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4134 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
b916c9c3 4135 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
fe03d45f 4136 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
b0d2b7d0
PM
4137 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4138 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
b916c9c3 4139 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
fe03d45f 4140 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
b0d2b7d0
PM
4141 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4142 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
7a0e58fa 4143 .access = PL0_R, .type = ARM_CP_NO_RAW,
aca3f40b
PM
4144 .readfn = aa64_dczid_read },
4145 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4146 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4147 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4148#ifndef CONFIG_USER_ONLY
4149 /* Avoid overhead of an access check that always passes in user-mode */
4150 .accessfn = aa64_zva_access,
4151#endif
4152 },
0eef9d98
PM
4153 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4154 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4155 .access = PL1_R, .type = ARM_CP_CURRENTEL },
8af35c37
PM
4156 /* Cache ops: all NOPs since we don't emulate caches */
4157 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4158 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4159 .access = PL1_W, .type = ARM_CP_NOP },
4160 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4161 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4162 .access = PL1_W, .type = ARM_CP_NOP },
4163 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4164 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4165 .access = PL0_W, .type = ARM_CP_NOP,
4166 .accessfn = aa64_cacheop_access },
4167 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4168 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4169 .access = PL1_W, .type = ARM_CP_NOP },
4170 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4171 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4172 .access = PL1_W, .type = ARM_CP_NOP },
4173 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4174 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4175 .access = PL0_W, .type = ARM_CP_NOP,
4176 .accessfn = aa64_cacheop_access },
4177 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4178 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4179 .access = PL1_W, .type = ARM_CP_NOP },
4180 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4181 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4182 .access = PL0_W, .type = ARM_CP_NOP,
4183 .accessfn = aa64_cacheop_access },
4184 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4185 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4186 .access = PL0_W, .type = ARM_CP_NOP,
4187 .accessfn = aa64_cacheop_access },
4188 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4189 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4190 .access = PL1_W, .type = ARM_CP_NOP },
168aa23b
PM
4191 /* TLBI operations */
4192 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4193 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 4194 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4195 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 4196 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4197 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 4198 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4199 .writefn = tlbi_aa64_vae1is_write },
168aa23b 4200 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4201 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 4202 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4203 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 4204 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4205 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 4206 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4207 .writefn = tlbi_aa64_vae1is_write },
168aa23b 4208 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4209 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 4210 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4211 .writefn = tlbi_aa64_vae1is_write },
168aa23b 4212 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4213 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 4214 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4215 .writefn = tlbi_aa64_vae1is_write },
168aa23b 4216 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4217 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 4218 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4219 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 4220 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4221 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 4222 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4223 .writefn = tlbi_aa64_vae1_write },
168aa23b 4224 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4225 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 4226 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4227 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 4228 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4229 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 4230 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4231 .writefn = tlbi_aa64_vae1_write },
168aa23b 4232 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4233 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 4234 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4235 .writefn = tlbi_aa64_vae1_write },
168aa23b 4236 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4237 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 4238 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4239 .writefn = tlbi_aa64_vae1_write },
cea66e91
PM
4240 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4241 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4242 .access = PL2_W, .type = ARM_CP_NO_RAW,
4243 .writefn = tlbi_aa64_ipas2e1is_write },
4244 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4245 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4246 .access = PL2_W, .type = ARM_CP_NO_RAW,
4247 .writefn = tlbi_aa64_ipas2e1is_write },
83ddf975
PM
4248 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4249 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4250 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 4251 .writefn = tlbi_aa64_alle1is_write },
43efaa33
PM
4252 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4253 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4254 .access = PL2_W, .type = ARM_CP_NO_RAW,
4255 .writefn = tlbi_aa64_alle1is_write },
cea66e91
PM
4256 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4257 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4258 .access = PL2_W, .type = ARM_CP_NO_RAW,
4259 .writefn = tlbi_aa64_ipas2e1_write },
4260 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4261 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4262 .access = PL2_W, .type = ARM_CP_NO_RAW,
4263 .writefn = tlbi_aa64_ipas2e1_write },
83ddf975
PM
4264 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4265 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4266 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 4267 .writefn = tlbi_aa64_alle1_write },
43efaa33
PM
4268 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4269 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4270 .access = PL2_W, .type = ARM_CP_NO_RAW,
4271 .writefn = tlbi_aa64_alle1is_write },
19525524
PM
4272#ifndef CONFIG_USER_ONLY
4273 /* 64 bit address translation operations */
4274 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4275 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
060e8a48 4276 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
4277 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4278 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
060e8a48 4279 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
4280 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4281 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
060e8a48 4282 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
4283 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4284 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
060e8a48 4285 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2a47df95 4286 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
7a379c7e 4287 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
2a47df95
PM
4288 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4289 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
7a379c7e 4290 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
2a47df95
PM
4291 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4292 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
7a379c7e 4293 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
2a47df95
PM
4294 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4295 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
7a379c7e 4296 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
2a47df95
PM
4297 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4298 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4299 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4300 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4301 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4302 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4303 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4304 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
c96fc9b5
EI
4305 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4306 .type = ARM_CP_ALIAS,
4307 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4308 .access = PL1_RW, .resetvalue = 0,
4309 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4310 .writefn = par_write },
19525524 4311#endif
995939a6 4312 /* TLB invalidate last level of translation table walk */
9449fdf6 4313 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 4314 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
9449fdf6 4315 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 4316 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 4317 .writefn = tlbimvaa_is_write },
9449fdf6 4318 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 4319 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
9449fdf6 4320 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 4321 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
541ef8c2
SS
4322 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4323 .type = ARM_CP_NO_RAW, .access = PL2_W,
4324 .writefn = tlbimva_hyp_write },
4325 { .name = "TLBIMVALHIS",
4326 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4327 .type = ARM_CP_NO_RAW, .access = PL2_W,
4328 .writefn = tlbimva_hyp_is_write },
4329 { .name = "TLBIIPAS2",
4330 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4331 .type = ARM_CP_NO_RAW, .access = PL2_W,
4332 .writefn = tlbiipas2_write },
4333 { .name = "TLBIIPAS2IS",
4334 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4335 .type = ARM_CP_NO_RAW, .access = PL2_W,
4336 .writefn = tlbiipas2_is_write },
4337 { .name = "TLBIIPAS2L",
4338 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4339 .type = ARM_CP_NO_RAW, .access = PL2_W,
4340 .writefn = tlbiipas2_write },
4341 { .name = "TLBIIPAS2LIS",
4342 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4343 .type = ARM_CP_NO_RAW, .access = PL2_W,
4344 .writefn = tlbiipas2_is_write },
9449fdf6
PM
4345 /* 32 bit cache operations */
4346 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4347 .type = ARM_CP_NOP, .access = PL1_W },
4348 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4349 .type = ARM_CP_NOP, .access = PL1_W },
4350 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4351 .type = ARM_CP_NOP, .access = PL1_W },
4352 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4353 .type = ARM_CP_NOP, .access = PL1_W },
4354 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4355 .type = ARM_CP_NOP, .access = PL1_W },
4356 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4357 .type = ARM_CP_NOP, .access = PL1_W },
4358 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4359 .type = ARM_CP_NOP, .access = PL1_W },
4360 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4361 .type = ARM_CP_NOP, .access = PL1_W },
4362 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4363 .type = ARM_CP_NOP, .access = PL1_W },
4364 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4365 .type = ARM_CP_NOP, .access = PL1_W },
4366 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4367 .type = ARM_CP_NOP, .access = PL1_W },
4368 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4369 .type = ARM_CP_NOP, .access = PL1_W },
4370 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4371 .type = ARM_CP_NOP, .access = PL1_W },
4372 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
4373 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4374 .access = PL1_RW, .resetvalue = 0,
4375 .writefn = dacr_write, .raw_writefn = raw_write,
4376 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4377 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a0618a19 4378 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 4379 .type = ARM_CP_ALIAS,
a0618a19 4380 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
6947f059
EI
4381 .access = PL1_RW,
4382 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
a65f1de9 4383 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 4384 .type = ARM_CP_ALIAS,
a65f1de9 4385 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
4386 .access = PL1_RW,
4387 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
f502cfc2
PM
4388 /* We rely on the access checks not allowing the guest to write to the
4389 * state field when SPSel indicates that it's being used as the stack
4390 * pointer.
4391 */
4392 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4393 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4394 .access = PL1_RW, .accessfn = sp_el0_access,
7a0e58fa 4395 .type = ARM_CP_ALIAS,
f502cfc2 4396 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
884b4dee
GB
4397 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4398 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 4399 .access = PL2_RW, .type = ARM_CP_ALIAS,
884b4dee 4400 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
f502cfc2
PM
4401 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4402 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
7a0e58fa 4403 .type = ARM_CP_NO_RAW,
f502cfc2 4404 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
03fbf20f
PM
4405 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4406 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4407 .type = ARM_CP_ALIAS,
4408 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4409 .access = PL2_RW, .accessfn = fpexc32_access },
6a43e0b6
PM
4410 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4411 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4412 .access = PL2_RW, .resetvalue = 0,
4413 .writefn = dacr_write, .raw_writefn = raw_write,
4414 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4415 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4416 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4417 .access = PL2_RW, .resetvalue = 0,
4418 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4419 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4420 .type = ARM_CP_ALIAS,
4421 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4422 .access = PL2_RW,
4423 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4424 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4425 .type = ARM_CP_ALIAS,
4426 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4427 .access = PL2_RW,
4428 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4429 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4430 .type = ARM_CP_ALIAS,
4431 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4432 .access = PL2_RW,
4433 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4434 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4435 .type = ARM_CP_ALIAS,
4436 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4437 .access = PL2_RW,
4438 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
a8d64e73
PM
4439 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4440 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4441 .resetvalue = 0,
4442 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4443 { .name = "SDCR", .type = ARM_CP_ALIAS,
4444 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4445 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4446 .writefn = sdcr_write,
4447 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
b0d2b7d0
PM
4448 REGINFO_SENTINEL
4449};
4450
d42e3c26 4451/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4771cd01 4452static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
d79e0c06 4453 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
d42e3c26
EI
4454 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4455 .access = PL2_RW,
4456 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
ce4afed8 4457 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
7a0e58fa 4458 .type = ARM_CP_NO_RAW,
f149e3e8
EI
4459 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4460 .access = PL2_RW,
ce4afed8 4461 .type = ARM_CP_CONST, .resetvalue = 0 },
831a2fca
PM
4462 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4463 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4464 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
68e78e33
PM
4465 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4466 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4467 .access = PL2_RW,
4468 .type = ARM_CP_CONST, .resetvalue = 0 },
c6f19164
GB
4469 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4470 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4471 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
95f949ac
EI
4472 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4473 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4474 .access = PL2_RW, .type = ARM_CP_CONST,
4475 .resetvalue = 0 },
4476 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
b5ede85b 4477 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
95f949ac 4478 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2179ef95
PM
4479 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4480 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4481 .access = PL2_RW, .type = ARM_CP_CONST,
4482 .resetvalue = 0 },
55b53c71 4483 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
b5ede85b 4484 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
2179ef95
PM
4485 .access = PL2_RW, .type = ARM_CP_CONST,
4486 .resetvalue = 0 },
37cd6c24
PM
4487 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4488 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4489 .access = PL2_RW, .type = ARM_CP_CONST,
4490 .resetvalue = 0 },
4491 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4492 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4493 .access = PL2_RW, .type = ARM_CP_CONST,
4494 .resetvalue = 0 },
06ec4c8c
EI
4495 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4496 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4497 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
68e9c2fe
EI
4498 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4499 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4500 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4501 .type = ARM_CP_CONST, .resetvalue = 0 },
b698e9cf
EI
4502 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4503 .cp = 15, .opc1 = 6, .crm = 2,
4504 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4505 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4506 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4507 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4508 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b9cb5323
EI
4509 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4510 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4511 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
ff05f37b
EI
4512 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4513 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4514 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
a57633c0
EI
4515 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4516 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4517 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4518 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4519 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4520 .resetvalue = 0 },
0b6440af
EI
4521 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4522 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4523 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
edac4d8a
EI
4524 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4525 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4526 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4527 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4528 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4529 .resetvalue = 0 },
b0e66d95
EI
4530 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4531 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4532 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4533 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4534 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4535 .resetvalue = 0 },
4536 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4537 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4538 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4539 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4540 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4541 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
14cc7b54
SF
4542 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4543 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
d6c8cf81
PM
4544 .access = PL2_RW, .accessfn = access_tda,
4545 .type = ARM_CP_CONST, .resetvalue = 0 },
59e05530
EI
4546 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4547 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4548 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4549 .type = ARM_CP_CONST, .resetvalue = 0 },
2a5a9abd
AF
4550 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4551 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4552 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
cba517c3
PM
4553 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4554 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4555 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4556 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4557 .type = ARM_CP_CONST,
4558 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4559 .access = PL2_RW, .resetvalue = 0 },
d42e3c26
EI
4560 REGINFO_SENTINEL
4561};
4562
ce4afed8
PM
4563/* Ditto, but for registers which exist in ARMv8 but not v7 */
4564static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4565 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4566 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4567 .access = PL2_RW,
4568 .type = ARM_CP_CONST, .resetvalue = 0 },
4569 REGINFO_SENTINEL
4570};
4571
f149e3e8
EI
4572static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4573{
4574 ARMCPU *cpu = arm_env_get_cpu(env);
4575 uint64_t valid_mask = HCR_MASK;
4576
4577 if (arm_feature(env, ARM_FEATURE_EL3)) {
4578 valid_mask &= ~HCR_HCD;
77077a83
JK
4579 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4580 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4581 * However, if we're using the SMC PSCI conduit then QEMU is
4582 * effectively acting like EL3 firmware and so the guest at
4583 * EL2 should retain the ability to prevent EL1 from being
4584 * able to make SMC calls into the ersatz firmware, so in
4585 * that case HCR.TSC should be read/write.
4586 */
f149e3e8
EI
4587 valid_mask &= ~HCR_TSC;
4588 }
2d7137c1
RH
4589 if (cpu_isar_feature(aa64_lor, cpu)) {
4590 valid_mask |= HCR_TLOR;
4591 }
ef682cdb
RH
4592 if (cpu_isar_feature(aa64_pauth, cpu)) {
4593 valid_mask |= HCR_API | HCR_APK;
4594 }
f149e3e8
EI
4595
4596 /* Clear RES0 bits. */
4597 value &= valid_mask;
4598
4599 /* These bits change the MMU setup:
4600 * HCR_VM enables stage 2 translation
4601 * HCR_PTW forbids certain page-table setups
4602 * HCR_DC Disables stage1 and enables stage2 translation
4603 */
ce4afed8 4604 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
d10eb08f 4605 tlb_flush(CPU(cpu));
f149e3e8 4606 }
ce4afed8 4607 env->cp15.hcr_el2 = value;
89430fc6
PM
4608
4609 /*
4610 * Updates to VI and VF require us to update the status of
4611 * virtual interrupts, which are the logical OR of these bits
4612 * and the state of the input lines from the GIC. (This requires
4613 * that we have the iothread lock, which is done by marking the
4614 * reginfo structs as ARM_CP_IO.)
4615 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4616 * possible for it to be taken immediately, because VIRQ and
4617 * VFIQ are masked unless running at EL0 or EL1, and HCR
4618 * can only be written at EL2.
4619 */
4620 g_assert(qemu_mutex_iothread_locked());
4621 arm_cpu_update_virq(cpu);
4622 arm_cpu_update_vfiq(cpu);
ce4afed8
PM
4623}
4624
4625static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4626 uint64_t value)
4627{
4628 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4629 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4630 hcr_write(env, NULL, value);
4631}
4632
4633static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4634 uint64_t value)
4635{
4636 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4637 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4638 hcr_write(env, NULL, value);
f149e3e8
EI
4639}
4640
f7778444
RH
4641/*
4642 * Return the effective value of HCR_EL2.
4643 * Bits that are not included here:
4644 * RW (read from SCR_EL3.RW as needed)
4645 */
4646uint64_t arm_hcr_el2_eff(CPUARMState *env)
4647{
4648 uint64_t ret = env->cp15.hcr_el2;
4649
4650 if (arm_is_secure_below_el3(env)) {
4651 /*
4652 * "This register has no effect if EL2 is not enabled in the
4653 * current Security state". This is ARMv8.4-SecEL2 speak for
4654 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4655 *
4656 * Prior to that, the language was "In an implementation that
4657 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4658 * as if this field is 0 for all purposes other than a direct
4659 * read or write access of HCR_EL2". With lots of enumeration
4660 * on a per-field basis. In current QEMU, this is condition
4661 * is arm_is_secure_below_el3.
4662 *
4663 * Since the v8.4 language applies to the entire register, and
4664 * appears to be backward compatible, use that.
4665 */
4666 ret = 0;
4667 } else if (ret & HCR_TGE) {
4668 /* These bits are up-to-date as of ARMv8.4. */
4669 if (ret & HCR_E2H) {
4670 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4671 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4672 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4673 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4674 } else {
4675 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4676 }
4677 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4678 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4679 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4680 HCR_TLOR);
4681 }
4682
4683 return ret;
4684}
4685
4771cd01 4686static const ARMCPRegInfo el2_cp_reginfo[] = {
f149e3e8 4687 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
89430fc6 4688 .type = ARM_CP_IO,
f149e3e8
EI
4689 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4690 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
c624ea0f 4691 .writefn = hcr_write },
ce4afed8 4692 { .name = "HCR", .state = ARM_CP_STATE_AA32,
89430fc6 4693 .type = ARM_CP_ALIAS | ARM_CP_IO,
ce4afed8
PM
4694 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4695 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
c624ea0f 4696 .writefn = hcr_writelow },
831a2fca
PM
4697 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4698 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4699 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3b685ba7 4700 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 4701 .type = ARM_CP_ALIAS,
3b685ba7
EI
4702 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4703 .access = PL2_RW,
4704 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
68e78e33 4705 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
f2c30f42
EI
4706 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4707 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
cba517c3 4708 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
63b60551
EI
4709 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4710 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
cba517c3
PM
4711 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4712 .type = ARM_CP_ALIAS,
4713 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4714 .access = PL2_RW,
4715 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
3b685ba7 4716 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 4717 .type = ARM_CP_ALIAS,
3b685ba7 4718 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
4719 .access = PL2_RW,
4720 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
d79e0c06 4721 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
d42e3c26
EI
4722 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4723 .access = PL2_RW, .writefn = vbar_write,
4724 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4725 .resetvalue = 0 },
884b4dee
GB
4726 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4727 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 4728 .access = PL3_RW, .type = ARM_CP_ALIAS,
884b4dee 4729 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
c6f19164
GB
4730 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4731 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4732 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4733 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
95f949ac
EI
4734 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4735 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4736 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4737 .resetvalue = 0 },
4738 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
b5ede85b 4739 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
95f949ac
EI
4740 .access = PL2_RW, .type = ARM_CP_ALIAS,
4741 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2179ef95
PM
4742 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4743 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4744 .access = PL2_RW, .type = ARM_CP_CONST,
4745 .resetvalue = 0 },
4746 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
55b53c71 4747 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
b5ede85b 4748 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
2179ef95
PM
4749 .access = PL2_RW, .type = ARM_CP_CONST,
4750 .resetvalue = 0 },
37cd6c24
PM
4751 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4752 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4753 .access = PL2_RW, .type = ARM_CP_CONST,
4754 .resetvalue = 0 },
4755 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4756 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4757 .access = PL2_RW, .type = ARM_CP_CONST,
4758 .resetvalue = 0 },
06ec4c8c
EI
4759 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4760 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
4761 .access = PL2_RW,
4762 /* no .writefn needed as this can't cause an ASID change;
4763 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4764 */
06ec4c8c 4765 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
68e9c2fe
EI
4766 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4767 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112 4768 .type = ARM_CP_ALIAS,
68e9c2fe
EI
4769 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4770 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4771 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4772 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112
PM
4773 .access = PL2_RW,
4774 /* no .writefn needed as this can't cause an ASID change;
4775 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4776 */
68e9c2fe 4777 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
b698e9cf
EI
4778 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4779 .cp = 15, .opc1 = 6, .crm = 2,
4780 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4781 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4782 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4783 .writefn = vttbr_write },
4784 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4785 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4786 .access = PL2_RW, .writefn = vttbr_write,
4787 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
b9cb5323
EI
4788 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4789 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4790 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4791 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
ff05f37b
EI
4792 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4793 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4794 .access = PL2_RW, .resetvalue = 0,
4795 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
a57633c0
EI
4796 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4797 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4798 .access = PL2_RW, .resetvalue = 0,
4799 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4800 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4801 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
a57633c0 4802 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
541ef8c2
SS
4803 { .name = "TLBIALLNSNH",
4804 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4805 .type = ARM_CP_NO_RAW, .access = PL2_W,
4806 .writefn = tlbiall_nsnh_write },
4807 { .name = "TLBIALLNSNHIS",
4808 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4809 .type = ARM_CP_NO_RAW, .access = PL2_W,
4810 .writefn = tlbiall_nsnh_is_write },
4811 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4812 .type = ARM_CP_NO_RAW, .access = PL2_W,
4813 .writefn = tlbiall_hyp_write },
4814 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4815 .type = ARM_CP_NO_RAW, .access = PL2_W,
4816 .writefn = tlbiall_hyp_is_write },
4817 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4818 .type = ARM_CP_NO_RAW, .access = PL2_W,
4819 .writefn = tlbimva_hyp_write },
4820 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4821 .type = ARM_CP_NO_RAW, .access = PL2_W,
4822 .writefn = tlbimva_hyp_is_write },
51da9014
EI
4823 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4824 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4825 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 4826 .writefn = tlbi_aa64_alle2_write },
8742d49d
EI
4827 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4828 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4829 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 4830 .writefn = tlbi_aa64_vae2_write },
2bfb9d75
PM
4831 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4832 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4833 .access = PL2_W, .type = ARM_CP_NO_RAW,
4834 .writefn = tlbi_aa64_vae2_write },
4835 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4836 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4837 .access = PL2_W, .type = ARM_CP_NO_RAW,
4838 .writefn = tlbi_aa64_alle2is_write },
8742d49d
EI
4839 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4840 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4841 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 4842 .writefn = tlbi_aa64_vae2is_write },
2bfb9d75
PM
4843 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4844 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4845 .access = PL2_W, .type = ARM_CP_NO_RAW,
4846 .writefn = tlbi_aa64_vae2is_write },
edac4d8a 4847#ifndef CONFIG_USER_ONLY
2a47df95
PM
4848 /* Unlike the other EL2-related AT operations, these must
4849 * UNDEF from EL3 if EL2 is not implemented, which is why we
4850 * define them here rather than with the rest of the AT ops.
4851 */
4852 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4853 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4854 .access = PL2_W, .accessfn = at_s1e2_access,
4855 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4856 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4857 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4858 .access = PL2_W, .accessfn = at_s1e2_access,
4859 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
14db7fe0
PM
4860 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4861 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4862 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4863 * to behave as if SCR.NS was 1.
4864 */
4865 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4866 .access = PL2_W,
4867 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4868 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4869 .access = PL2_W,
4870 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
0b6440af
EI
4871 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4872 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4873 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4874 * reset values as IMPDEF. We choose to reset to 3 to comply with
4875 * both ARMv7 and ARMv8.
4876 */
4877 .access = PL2_RW, .resetvalue = 3,
4878 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
edac4d8a
EI
4879 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4880 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4881 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4882 .writefn = gt_cntvoff_write,
4883 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4884 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4885 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4886 .writefn = gt_cntvoff_write,
4887 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
b0e66d95
EI
4888 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4889 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4890 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4891 .type = ARM_CP_IO, .access = PL2_RW,
4892 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4893 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4894 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4895 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4896 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4897 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4898 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
d44ec156 4899 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
b0e66d95
EI
4900 .resetfn = gt_hyp_timer_reset,
4901 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4902 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4903 .type = ARM_CP_IO,
4904 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4905 .access = PL2_RW,
4906 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4907 .resetvalue = 0,
4908 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
edac4d8a 4909#endif
14cc7b54
SF
4910 /* The only field of MDCR_EL2 that has a defined architectural reset value
4911 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5ecdd3e4 4912 * don't implement any PMU event counters, so using zero as a reset
14cc7b54
SF
4913 * value for MDCR_EL2 is okay
4914 */
4915 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4916 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4917 .access = PL2_RW, .resetvalue = 0,
4918 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
59e05530
EI
4919 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4920 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4921 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4922 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4923 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4924 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4925 .access = PL2_RW,
4926 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
2a5a9abd
AF
4927 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4928 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4929 .access = PL2_RW,
4930 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3b685ba7
EI
4931 REGINFO_SENTINEL
4932};
4933
ce4afed8
PM
4934static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4935 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
89430fc6 4936 .type = ARM_CP_ALIAS | ARM_CP_IO,
ce4afed8
PM
4937 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4938 .access = PL2_RW,
4939 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4940 .writefn = hcr_writehigh },
4941 REGINFO_SENTINEL
4942};
4943
2f027fc5
PM
4944static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4945 bool isread)
4946{
4947 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4948 * At Secure EL1 it traps to EL3.
4949 */
4950 if (arm_current_el(env) == 3) {
4951 return CP_ACCESS_OK;
4952 }
4953 if (arm_is_secure_below_el3(env)) {
4954 return CP_ACCESS_TRAP_EL3;
4955 }
4956 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4957 if (isread) {
4958 return CP_ACCESS_OK;
4959 }
4960 return CP_ACCESS_TRAP_UNCATEGORIZED;
4961}
4962
60fb1a87
GB
4963static const ARMCPRegInfo el3_cp_reginfo[] = {
4964 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4965 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4966 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4967 .resetvalue = 0, .writefn = scr_write },
7a0e58fa 4968 { .name = "SCR", .type = ARM_CP_ALIAS,
60fb1a87 4969 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
efe4a274
PM
4970 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4971 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
b061a82b 4972 .writefn = scr_write },
60fb1a87
GB
4973 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4974 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4975 .access = PL3_RW, .resetvalue = 0,
4976 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4977 { .name = "SDER",
4978 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4979 .access = PL3_RW, .resetvalue = 0,
4980 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
60fb1a87 4981 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
efe4a274
PM
4982 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4983 .writefn = vbar_write, .resetvalue = 0,
60fb1a87 4984 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
7dd8c9af
FA
4985 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4986 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
f478847f 4987 .access = PL3_RW, .resetvalue = 0,
7dd8c9af 4988 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
11f136ee
FA
4989 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4990 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
4991 .access = PL3_RW,
4992 /* no .writefn needed as this can't cause an ASID change;
811595a2
PM
4993 * we must provide a .raw_writefn and .resetfn because we handle
4994 * reset and migration for the AArch32 TTBCR(S), which might be
4995 * using mask and base_mask.
6459b94c 4996 */
811595a2 4997 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee 4998 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
81547d66 4999 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 5000 .type = ARM_CP_ALIAS,
81547d66
EI
5001 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5002 .access = PL3_RW,
5003 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
f2c30f42 5004 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
5005 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5006 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
63b60551
EI
5007 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5008 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5009 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
81547d66 5010 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 5011 .type = ARM_CP_ALIAS,
81547d66 5012 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
5013 .access = PL3_RW,
5014 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
a1ba125c
EI
5015 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5016 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5017 .access = PL3_RW, .writefn = vbar_write,
5018 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5019 .resetvalue = 0 },
c6f19164
GB
5020 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5021 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5022 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5023 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4cfb8ad8
PM
5024 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5025 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5026 .access = PL3_RW, .resetvalue = 0,
5027 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
2179ef95
PM
5028 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5029 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5030 .access = PL3_RW, .type = ARM_CP_CONST,
5031 .resetvalue = 0 },
37cd6c24
PM
5032 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5033 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5034 .access = PL3_RW, .type = ARM_CP_CONST,
5035 .resetvalue = 0 },
5036 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5037 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5038 .access = PL3_RW, .type = ARM_CP_CONST,
5039 .resetvalue = 0 },
43efaa33
PM
5040 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5041 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5042 .access = PL3_W, .type = ARM_CP_NO_RAW,
5043 .writefn = tlbi_aa64_alle3is_write },
5044 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5045 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5046 .access = PL3_W, .type = ARM_CP_NO_RAW,
5047 .writefn = tlbi_aa64_vae3is_write },
5048 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5049 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5050 .access = PL3_W, .type = ARM_CP_NO_RAW,
5051 .writefn = tlbi_aa64_vae3is_write },
5052 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5053 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5054 .access = PL3_W, .type = ARM_CP_NO_RAW,
5055 .writefn = tlbi_aa64_alle3_write },
5056 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5057 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5058 .access = PL3_W, .type = ARM_CP_NO_RAW,
5059 .writefn = tlbi_aa64_vae3_write },
5060 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5061 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5062 .access = PL3_W, .type = ARM_CP_NO_RAW,
5063 .writefn = tlbi_aa64_vae3_write },
0f1a3b24
FA
5064 REGINFO_SENTINEL
5065};
5066
3f208fd7
PM
5067static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5068 bool isread)
7da845b0
PM
5069{
5070 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5071 * but the AArch32 CTR has its own reginfo struct)
5072 */
137feaa9 5073 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7da845b0
PM
5074 return CP_ACCESS_TRAP;
5075 }
5076 return CP_ACCESS_OK;
5077}
5078
1424ca8d
DM
5079static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5080 uint64_t value)
5081{
5082 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5083 * read via a bit in OSLSR_EL1.
5084 */
5085 int oslock;
5086
5087 if (ri->state == ARM_CP_STATE_AA32) {
5088 oslock = (value == 0xC5ACCE55);
5089 } else {
5090 oslock = value & 1;
5091 }
5092
5093 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5094}
5095
50300698 5096static const ARMCPRegInfo debug_cp_reginfo[] = {
50300698 5097 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
10aae104
PM
5098 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5099 * unlike DBGDRAR it is never accessible from EL0.
5100 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5101 * accessor.
50300698
PM
5102 */
5103 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
5104 .access = PL0_R, .accessfn = access_tdra,
5105 .type = ARM_CP_CONST, .resetvalue = 0 },
10aae104
PM
5106 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5107 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
91b0a238
PM
5108 .access = PL1_R, .accessfn = access_tdra,
5109 .type = ARM_CP_CONST, .resetvalue = 0 },
50300698 5110 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
5111 .access = PL0_R, .accessfn = access_tdra,
5112 .type = ARM_CP_CONST, .resetvalue = 0 },
17a9eb53 5113 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
10aae104
PM
5114 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5115 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
d6c8cf81 5116 .access = PL1_RW, .accessfn = access_tda,
0e5e8935
PM
5117 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5118 .resetvalue = 0 },
5e8b12ff
PM
5119 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5120 * We don't implement the configurable EL0 access.
5121 */
5122 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5123 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7a0e58fa 5124 .type = ARM_CP_ALIAS,
d6c8cf81 5125 .access = PL1_R, .accessfn = access_tda,
b061a82b 5126 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
10aae104
PM
5127 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5128 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1424ca8d 5129 .access = PL1_W, .type = ARM_CP_NO_RAW,
187f678d 5130 .accessfn = access_tdosa,
1424ca8d
DM
5131 .writefn = oslar_write },
5132 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5133 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5134 .access = PL1_R, .resetvalue = 10,
187f678d 5135 .accessfn = access_tdosa,
1424ca8d 5136 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5e8b12ff
PM
5137 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5138 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5139 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
187f678d
PM
5140 .access = PL1_RW, .accessfn = access_tdosa,
5141 .type = ARM_CP_NOP },
5e8b12ff
PM
5142 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5143 * implement vector catch debug events yet.
5144 */
5145 { .name = "DBGVCR",
5146 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
d6c8cf81
PM
5147 .access = PL1_RW, .accessfn = access_tda,
5148 .type = ARM_CP_NOP },
4d2ec4da
PM
5149 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5150 * to save and restore a 32-bit guest's DBGVCR)
5151 */
5152 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5153 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5154 .access = PL2_RW, .accessfn = access_tda,
5155 .type = ARM_CP_NOP },
5dbdc434
PM
5156 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5157 * Channel but Linux may try to access this register. The 32-bit
5158 * alias is DBGDCCINT.
5159 */
5160 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5161 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5162 .access = PL1_RW, .accessfn = access_tda,
5163 .type = ARM_CP_NOP },
50300698
PM
5164 REGINFO_SENTINEL
5165};
5166
5167static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5168 /* 64 bit access versions of the (dummy) debug registers */
5169 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5170 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5171 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5172 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5173 REGINFO_SENTINEL
5174};
5175
60eed086
RH
5176/* Return the exception level to which exceptions should be taken
5177 * via SVEAccessTrap. If an exception should be routed through
5178 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5179 * take care of raising that exception.
5180 * C.f. the ARM pseudocode function CheckSVEEnabled.
5be5e8ed 5181 */
ced31551 5182int sve_exception_el(CPUARMState *env, int el)
5be5e8ed
RH
5183{
5184#ifndef CONFIG_USER_ONLY
2de7ace2 5185 if (el <= 1) {
60eed086
RH
5186 bool disabled = false;
5187
5188 /* The CPACR.ZEN controls traps to EL1:
5189 * 0, 2 : trap EL0 and EL1 accesses
5190 * 1 : trap only EL0 accesses
5191 * 3 : trap no accesses
5192 */
5193 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5194 disabled = true;
5195 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
2de7ace2 5196 disabled = el == 0;
5be5e8ed 5197 }
60eed086
RH
5198 if (disabled) {
5199 /* route_to_el2 */
5200 return (arm_feature(env, ARM_FEATURE_EL2)
7c208e0f 5201 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5be5e8ed 5202 }
5be5e8ed 5203
60eed086
RH
5204 /* Check CPACR.FPEN. */
5205 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5206 disabled = true;
5207 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
2de7ace2 5208 disabled = el == 0;
5be5e8ed 5209 }
60eed086
RH
5210 if (disabled) {
5211 return 0;
5be5e8ed 5212 }
5be5e8ed
RH
5213 }
5214
60eed086
RH
5215 /* CPTR_EL2. Since TZ and TFP are positive,
5216 * they will be zero when EL2 is not present.
5217 */
2de7ace2 5218 if (el <= 2 && !arm_is_secure_below_el3(env)) {
60eed086
RH
5219 if (env->cp15.cptr_el[2] & CPTR_TZ) {
5220 return 2;
5221 }
5222 if (env->cp15.cptr_el[2] & CPTR_TFP) {
5223 return 0;
5224 }
5be5e8ed
RH
5225 }
5226
60eed086
RH
5227 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5228 if (arm_feature(env, ARM_FEATURE_EL3)
5229 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5be5e8ed
RH
5230 return 3;
5231 }
5232#endif
5233 return 0;
5234}
5235
0ab5953b
RH
5236/*
5237 * Given that SVE is enabled, return the vector length for EL.
5238 */
ced31551 5239uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
0ab5953b
RH
5240{
5241 ARMCPU *cpu = arm_env_get_cpu(env);
5242 uint32_t zcr_len = cpu->sve_max_vq - 1;
5243
5244 if (el <= 1) {
5245 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5246 }
5247 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5248 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5249 }
5250 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
5251 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5252 }
5253 return zcr_len;
5254}
5255
5be5e8ed
RH
5256static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5257 uint64_t value)
5258{
0ab5953b
RH
5259 int cur_el = arm_current_el(env);
5260 int old_len = sve_zcr_len_for_el(env, cur_el);
5261 int new_len;
5262
5be5e8ed
RH
5263 /* Bits other than [3:0] are RAZ/WI. */
5264 raw_write(env, ri, value & 0xf);
0ab5953b
RH
5265
5266 /*
5267 * Because we arrived here, we know both FP and SVE are enabled;
5268 * otherwise we would have trapped access to the ZCR_ELn register.
5269 */
5270 new_len = sve_zcr_len_for_el(env, cur_el);
5271 if (new_len < old_len) {
5272 aarch64_sve_narrow_vq(env, new_len + 1);
5273 }
5be5e8ed
RH
5274}
5275
5276static const ARMCPRegInfo zcr_el1_reginfo = {
5277 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5278 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
11d7870b 5279 .access = PL1_RW, .type = ARM_CP_SVE,
5be5e8ed
RH
5280 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5281 .writefn = zcr_write, .raw_writefn = raw_write
5282};
5283
5284static const ARMCPRegInfo zcr_el2_reginfo = {
5285 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5286 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
11d7870b 5287 .access = PL2_RW, .type = ARM_CP_SVE,
5be5e8ed
RH
5288 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5289 .writefn = zcr_write, .raw_writefn = raw_write
5290};
5291
5292static const ARMCPRegInfo zcr_no_el2_reginfo = {
5293 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5294 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
11d7870b 5295 .access = PL2_RW, .type = ARM_CP_SVE,
5be5e8ed
RH
5296 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5297};
5298
5299static const ARMCPRegInfo zcr_el3_reginfo = {
5300 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5301 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
11d7870b 5302 .access = PL3_RW, .type = ARM_CP_SVE,
5be5e8ed
RH
5303 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5304 .writefn = zcr_write, .raw_writefn = raw_write
5305};
5306
9ee98ce8
PM
5307void hw_watchpoint_update(ARMCPU *cpu, int n)
5308{
5309 CPUARMState *env = &cpu->env;
5310 vaddr len = 0;
5311 vaddr wvr = env->cp15.dbgwvr[n];
5312 uint64_t wcr = env->cp15.dbgwcr[n];
5313 int mask;
5314 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5315
5316 if (env->cpu_watchpoint[n]) {
5317 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5318 env->cpu_watchpoint[n] = NULL;
5319 }
5320
5321 if (!extract64(wcr, 0, 1)) {
5322 /* E bit clear : watchpoint disabled */
5323 return;
5324 }
5325
5326 switch (extract64(wcr, 3, 2)) {
5327 case 0:
5328 /* LSC 00 is reserved and must behave as if the wp is disabled */
5329 return;
5330 case 1:
5331 flags |= BP_MEM_READ;
5332 break;
5333 case 2:
5334 flags |= BP_MEM_WRITE;
5335 break;
5336 case 3:
5337 flags |= BP_MEM_ACCESS;
5338 break;
5339 }
5340
5341 /* Attempts to use both MASK and BAS fields simultaneously are
5342 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5343 * thus generating a watchpoint for every byte in the masked region.
5344 */
5345 mask = extract64(wcr, 24, 4);
5346 if (mask == 1 || mask == 2) {
5347 /* Reserved values of MASK; we must act as if the mask value was
5348 * some non-reserved value, or as if the watchpoint were disabled.
5349 * We choose the latter.
5350 */
5351 return;
5352 } else if (mask) {
5353 /* Watchpoint covers an aligned area up to 2GB in size */
5354 len = 1ULL << mask;
5355 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5356 * whether the watchpoint fires when the unmasked bits match; we opt
5357 * to generate the exceptions.
5358 */
5359 wvr &= ~(len - 1);
5360 } else {
5361 /* Watchpoint covers bytes defined by the byte address select bits */
5362 int bas = extract64(wcr, 5, 8);
5363 int basstart;
5364
5365 if (bas == 0) {
5366 /* This must act as if the watchpoint is disabled */
5367 return;
5368 }
5369
5370 if (extract64(wvr, 2, 1)) {
5371 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5372 * ignored, and BAS[3:0] define which bytes to watch.
5373 */
5374 bas &= 0xf;
5375 }
5376 /* The BAS bits are supposed to be programmed to indicate a contiguous
5377 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5378 * we fire for each byte in the word/doubleword addressed by the WVR.
5379 * We choose to ignore any non-zero bits after the first range of 1s.
5380 */
5381 basstart = ctz32(bas);
5382 len = cto32(bas >> basstart);
5383 wvr += basstart;
5384 }
5385
5386 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5387 &env->cpu_watchpoint[n]);
5388}
5389
5390void hw_watchpoint_update_all(ARMCPU *cpu)
5391{
5392 int i;
5393 CPUARMState *env = &cpu->env;
5394
5395 /* Completely clear out existing QEMU watchpoints and our array, to
5396 * avoid possible stale entries following migration load.
5397 */
5398 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5399 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5400
5401 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5402 hw_watchpoint_update(cpu, i);
5403 }
5404}
5405
5406static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5407 uint64_t value)
5408{
5409 ARMCPU *cpu = arm_env_get_cpu(env);
5410 int i = ri->crm;
5411
5412 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5413 * register reads and behaves as if values written are sign extended.
5414 * Bits [1:0] are RES0.
5415 */
5416 value = sextract64(value, 0, 49) & ~3ULL;
5417
5418 raw_write(env, ri, value);
5419 hw_watchpoint_update(cpu, i);
5420}
5421
5422static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5423 uint64_t value)
5424{
5425 ARMCPU *cpu = arm_env_get_cpu(env);
5426 int i = ri->crm;
5427
5428 raw_write(env, ri, value);
5429 hw_watchpoint_update(cpu, i);
5430}
5431
46747d15
PM
5432void hw_breakpoint_update(ARMCPU *cpu, int n)
5433{
5434 CPUARMState *env = &cpu->env;
5435 uint64_t bvr = env->cp15.dbgbvr[n];
5436 uint64_t bcr = env->cp15.dbgbcr[n];
5437 vaddr addr;
5438 int bt;
5439 int flags = BP_CPU;
5440
5441 if (env->cpu_breakpoint[n]) {
5442 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5443 env->cpu_breakpoint[n] = NULL;
5444 }
5445
5446 if (!extract64(bcr, 0, 1)) {
5447 /* E bit clear : watchpoint disabled */
5448 return;
5449 }
5450
5451 bt = extract64(bcr, 20, 4);
5452
5453 switch (bt) {
5454 case 4: /* unlinked address mismatch (reserved if AArch64) */
5455 case 5: /* linked address mismatch (reserved if AArch64) */
5456 qemu_log_mask(LOG_UNIMP,
0221c8fd 5457 "arm: address mismatch breakpoint types not implemented\n");
46747d15
PM
5458 return;
5459 case 0: /* unlinked address match */
5460 case 1: /* linked address match */
5461 {
5462 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5463 * we behave as if the register was sign extended. Bits [1:0] are
5464 * RES0. The BAS field is used to allow setting breakpoints on 16
5465 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5466 * a bp will fire if the addresses covered by the bp and the addresses
5467 * covered by the insn overlap but the insn doesn't start at the
5468 * start of the bp address range. We choose to require the insn and
5469 * the bp to have the same address. The constraints on writing to
5470 * BAS enforced in dbgbcr_write mean we have only four cases:
5471 * 0b0000 => no breakpoint
5472 * 0b0011 => breakpoint on addr
5473 * 0b1100 => breakpoint on addr + 2
5474 * 0b1111 => breakpoint on addr
5475 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5476 */
5477 int bas = extract64(bcr, 5, 4);
5478 addr = sextract64(bvr, 0, 49) & ~3ULL;
5479 if (bas == 0) {
5480 return;
5481 }
5482 if (bas == 0xc) {
5483 addr += 2;
5484 }
5485 break;
5486 }
5487 case 2: /* unlinked context ID match */
5488 case 8: /* unlinked VMID match (reserved if no EL2) */
5489 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5490 qemu_log_mask(LOG_UNIMP,
0221c8fd 5491 "arm: unlinked context breakpoint types not implemented\n");
46747d15
PM
5492 return;
5493 case 9: /* linked VMID match (reserved if no EL2) */
5494 case 11: /* linked context ID and VMID match (reserved if no EL2) */
5495 case 3: /* linked context ID match */
5496 default:
5497 /* We must generate no events for Linked context matches (unless
5498 * they are linked to by some other bp/wp, which is handled in
5499 * updates for the linking bp/wp). We choose to also generate no events
5500 * for reserved values.
5501 */
5502 return;
5503 }
5504
5505 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5506}
5507
5508void hw_breakpoint_update_all(ARMCPU *cpu)
5509{
5510 int i;
5511 CPUARMState *env = &cpu->env;
5512
5513 /* Completely clear out existing QEMU breakpoints and our array, to
5514 * avoid possible stale entries following migration load.
5515 */
5516 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5517 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5518
5519 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5520 hw_breakpoint_update(cpu, i);
5521 }
5522}
5523
5524static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5525 uint64_t value)
5526{
5527 ARMCPU *cpu = arm_env_get_cpu(env);
5528 int i = ri->crm;
5529
5530 raw_write(env, ri, value);
5531 hw_breakpoint_update(cpu, i);
5532}
5533
5534static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5535 uint64_t value)
5536{
5537 ARMCPU *cpu = arm_env_get_cpu(env);
5538 int i = ri->crm;
5539
5540 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5541 * copy of BAS[0].
5542 */
5543 value = deposit64(value, 6, 1, extract64(value, 5, 1));
5544 value = deposit64(value, 8, 1, extract64(value, 7, 1));
5545
5546 raw_write(env, ri, value);
5547 hw_breakpoint_update(cpu, i);
5548}
5549
50300698 5550static void define_debug_regs(ARMCPU *cpu)
0b45451e 5551{
50300698
PM
5552 /* Define v7 and v8 architectural debug registers.
5553 * These are just dummy implementations for now.
0b45451e
PM
5554 */
5555 int i;
3ff6fc91 5556 int wrps, brps, ctx_cmps;
48eb3ae6
PM
5557 ARMCPRegInfo dbgdidr = {
5558 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
d6c8cf81
PM
5559 .access = PL0_R, .accessfn = access_tda,
5560 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
48eb3ae6
PM
5561 };
5562
3ff6fc91 5563 /* Note that all these register fields hold "number of Xs minus 1". */
48eb3ae6
PM
5564 brps = extract32(cpu->dbgdidr, 24, 4);
5565 wrps = extract32(cpu->dbgdidr, 28, 4);
3ff6fc91
PM
5566 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5567
5568 assert(ctx_cmps <= brps);
48eb3ae6
PM
5569
5570 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5571 * of the debug registers such as number of breakpoints;
5572 * check that if they both exist then they agree.
5573 */
5574 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5575 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5576 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3ff6fc91 5577 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
48eb3ae6 5578 }
0b45451e 5579
48eb3ae6 5580 define_one_arm_cp_reg(cpu, &dbgdidr);
50300698
PM
5581 define_arm_cp_regs(cpu, debug_cp_reginfo);
5582
5583 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5584 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5585 }
5586
48eb3ae6 5587 for (i = 0; i < brps + 1; i++) {
0b45451e 5588 ARMCPRegInfo dbgregs[] = {
10aae104
PM
5589 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5590 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
d6c8cf81 5591 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
5592 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5593 .writefn = dbgbvr_write, .raw_writefn = raw_write
5594 },
10aae104
PM
5595 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5596 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
d6c8cf81 5597 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
5598 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5599 .writefn = dbgbcr_write, .raw_writefn = raw_write
5600 },
48eb3ae6
PM
5601 REGINFO_SENTINEL
5602 };
5603 define_arm_cp_regs(cpu, dbgregs);
5604 }
5605
5606 for (i = 0; i < wrps + 1; i++) {
5607 ARMCPRegInfo dbgregs[] = {
10aae104
PM
5608 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5609 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
d6c8cf81 5610 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
5611 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5612 .writefn = dbgwvr_write, .raw_writefn = raw_write
5613 },
10aae104
PM
5614 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5615 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
d6c8cf81 5616 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
5617 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5618 .writefn = dbgwcr_write, .raw_writefn = raw_write
5619 },
5620 REGINFO_SENTINEL
0b45451e
PM
5621 };
5622 define_arm_cp_regs(cpu, dbgregs);
5623 }
5624}
5625
96a8b92e
PM
5626/* We don't know until after realize whether there's a GICv3
5627 * attached, and that is what registers the gicv3 sysregs.
5628 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5629 * at runtime.
5630 */
5631static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5632{
5633 ARMCPU *cpu = arm_env_get_cpu(env);
5634 uint64_t pfr1 = cpu->id_pfr1;
5635
5636 if (env->gicv3state) {
5637 pfr1 |= 1 << 28;
5638 }
5639 return pfr1;
5640}
5641
5642static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5643{
5644 ARMCPU *cpu = arm_env_get_cpu(env);
47576b94 5645 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
96a8b92e
PM
5646
5647 if (env->gicv3state) {
5648 pfr0 |= 1 << 24;
5649 }
5650 return pfr0;
5651}
5652
2d7137c1
RH
5653/* Shared logic between LORID and the rest of the LOR* registers.
5654 * Secure state has already been delt with.
5655 */
5656static CPAccessResult access_lor_ns(CPUARMState *env)
5657{
5658 int el = arm_current_el(env);
5659
5660 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5661 return CP_ACCESS_TRAP_EL2;
5662 }
5663 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5664 return CP_ACCESS_TRAP_EL3;
5665 }
5666 return CP_ACCESS_OK;
5667}
5668
5669static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5670 bool isread)
5671{
5672 if (arm_is_secure_below_el3(env)) {
5673 /* Access ok in secure mode. */
5674 return CP_ACCESS_OK;
5675 }
5676 return access_lor_ns(env);
5677}
5678
5679static CPAccessResult access_lor_other(CPUARMState *env,
5680 const ARMCPRegInfo *ri, bool isread)
5681{
5682 if (arm_is_secure_below_el3(env)) {
5683 /* Access denied in secure mode. */
5684 return CP_ACCESS_TRAP;
5685 }
5686 return access_lor_ns(env);
5687}
5688
967aa94f
RH
5689#ifdef TARGET_AARCH64
5690static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5691 bool isread)
5692{
5693 int el = arm_current_el(env);
5694
5695 if (el < 2 &&
5696 arm_feature(env, ARM_FEATURE_EL2) &&
5697 !(arm_hcr_el2_eff(env) & HCR_APK)) {
5698 return CP_ACCESS_TRAP_EL2;
5699 }
5700 if (el < 3 &&
5701 arm_feature(env, ARM_FEATURE_EL3) &&
5702 !(env->cp15.scr_el3 & SCR_APK)) {
5703 return CP_ACCESS_TRAP_EL3;
5704 }
5705 return CP_ACCESS_OK;
5706}
5707
5708static const ARMCPRegInfo pauth_reginfo[] = {
5709 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5710 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5711 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5712 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
967aa94f
RH
5713 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5714 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5715 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5716 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
967aa94f
RH
5717 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5718 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5719 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5720 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
967aa94f
RH
5721 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5722 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5723 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5724 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
967aa94f
RH
5725 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5726 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5727 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5728 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
967aa94f
RH
5729 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5730 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5731 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5732 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
967aa94f
RH
5733 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5734 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5735 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5736 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
967aa94f
RH
5737 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5738 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5739 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5740 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
967aa94f
RH
5741 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5742 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5743 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5744 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
967aa94f
RH
5745 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5746 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5747 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5748 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
967aa94f
RH
5749 REGINFO_SENTINEL
5750};
de390645
RH
5751
5752static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
5753{
5754 Error *err = NULL;
5755 uint64_t ret;
5756
5757 /* Success sets NZCV = 0000. */
5758 env->NF = env->CF = env->VF = 0, env->ZF = 1;
5759
5760 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
5761 /*
5762 * ??? Failed, for unknown reasons in the crypto subsystem.
5763 * The best we can do is log the reason and return the
5764 * timed-out indication to the guest. There is no reason
5765 * we know to expect this failure to be transitory, so the
5766 * guest may well hang retrying the operation.
5767 */
5768 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
5769 ri->name, error_get_pretty(err));
5770 error_free(err);
5771
5772 env->ZF = 0; /* NZCF = 0100 */
5773 return 0;
5774 }
5775 return ret;
5776}
5777
5778/* We do not support re-seeding, so the two registers operate the same. */
5779static const ARMCPRegInfo rndr_reginfo[] = {
5780 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
5781 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5782 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
5783 .access = PL0_R, .readfn = rndr_readfn },
5784 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
5785 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5786 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
5787 .access = PL0_R, .readfn = rndr_readfn },
5788 REGINFO_SENTINEL
5789};
967aa94f
RH
5790#endif
5791
cb570bd3
RH
5792static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
5793 bool isread)
5794{
5795 int el = arm_current_el(env);
5796
5797 if (el == 0) {
5798 uint64_t sctlr = arm_sctlr(env, el);
5799 if (!(sctlr & SCTLR_EnRCTX)) {
5800 return CP_ACCESS_TRAP;
5801 }
5802 } else if (el == 1) {
5803 uint64_t hcr = arm_hcr_el2_eff(env);
5804 if (hcr & HCR_NV) {
5805 return CP_ACCESS_TRAP_EL2;
5806 }
5807 }
5808 return CP_ACCESS_OK;
5809}
5810
5811static const ARMCPRegInfo predinv_reginfo[] = {
5812 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
5813 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
5814 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5815 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
5816 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
5817 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5818 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
5819 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
5820 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5821 /*
5822 * Note the AArch32 opcodes have a different OPC1.
5823 */
5824 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
5825 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
5826 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5827 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
5828 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
5829 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5830 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
5831 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
5832 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5833 REGINFO_SENTINEL
5834};
5835
2ceb98c0
PM
5836void register_cp_regs_for_features(ARMCPU *cpu)
5837{
5838 /* Register all the coprocessor registers based on feature bits */
5839 CPUARMState *env = &cpu->env;
5840 if (arm_feature(env, ARM_FEATURE_M)) {
5841 /* M profile has no coprocessor registers */
5842 return;
5843 }
5844
e9aa6c21 5845 define_arm_cp_regs(cpu, cp_reginfo);
9449fdf6
PM
5846 if (!arm_feature(env, ARM_FEATURE_V8)) {
5847 /* Must go early as it is full of wildcards that may be
5848 * overridden by later definitions.
5849 */
5850 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5851 }
5852
7d57f408 5853 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
5854 /* The ID registers all have impdef reset values */
5855 ARMCPRegInfo v6_idregs[] = {
0ff644a7
PM
5856 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5857 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5858 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 5859 .resetvalue = cpu->id_pfr0 },
96a8b92e
PM
5860 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5861 * the value of the GIC field until after we define these regs.
5862 */
0ff644a7
PM
5863 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
96a8b92e
PM
5865 .access = PL1_R, .type = ARM_CP_NO_RAW,
5866 .readfn = id_pfr1_read,
5867 .writefn = arm_cp_write_ignore },
0ff644a7
PM
5868 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5869 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5870 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 5871 .resetvalue = cpu->id_dfr0 },
0ff644a7
PM
5872 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5873 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5874 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 5875 .resetvalue = cpu->id_afr0 },
0ff644a7
PM
5876 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5877 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5878 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 5879 .resetvalue = cpu->id_mmfr0 },
0ff644a7
PM
5880 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5881 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5882 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 5883 .resetvalue = cpu->id_mmfr1 },
0ff644a7
PM
5884 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5885 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5886 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 5887 .resetvalue = cpu->id_mmfr2 },
0ff644a7
PM
5888 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5889 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5890 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 5891 .resetvalue = cpu->id_mmfr3 },
0ff644a7
PM
5892 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5893 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5894 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5895 .resetvalue = cpu->isar.id_isar0 },
0ff644a7
PM
5896 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5898 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5899 .resetvalue = cpu->isar.id_isar1 },
0ff644a7
PM
5900 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5901 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5902 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5903 .resetvalue = cpu->isar.id_isar2 },
0ff644a7
PM
5904 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5905 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5906 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5907 .resetvalue = cpu->isar.id_isar3 },
0ff644a7
PM
5908 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5909 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5910 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5911 .resetvalue = cpu->isar.id_isar4 },
0ff644a7
PM
5912 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5913 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5914 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5915 .resetvalue = cpu->isar.id_isar5 },
e20d84c1
PM
5916 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5917 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5918 .access = PL1_R, .type = ARM_CP_CONST,
5919 .resetvalue = cpu->id_mmfr4 },
802abf40 5920 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
e20d84c1
PM
5921 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5922 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5923 .resetvalue = cpu->isar.id_isar6 },
8515a092
PM
5924 REGINFO_SENTINEL
5925 };
5926 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
5927 define_arm_cp_regs(cpu, v6_cp_reginfo);
5928 } else {
5929 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5930 }
4d31c596
PM
5931 if (arm_feature(env, ARM_FEATURE_V6K)) {
5932 define_arm_cp_regs(cpu, v6k_cp_reginfo);
5933 }
5e5cf9e3 5934 if (arm_feature(env, ARM_FEATURE_V7MP) &&
452a0955 5935 !arm_feature(env, ARM_FEATURE_PMSA)) {
995939a6
PM
5936 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5937 }
327dd510
AL
5938 if (arm_feature(env, ARM_FEATURE_V7VE)) {
5939 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
5940 }
e9aa6c21 5941 if (arm_feature(env, ARM_FEATURE_V7)) {
200ac0ef 5942 /* v7 performance monitor control register: same implementor
ac689a2e
AL
5943 * field as main ID register, and we implement four counters in
5944 * addition to the cycle count register.
200ac0ef 5945 */
ac689a2e 5946 unsigned int i, pmcrn = 4;
200ac0ef
PM
5947 ARMCPRegInfo pmcr = {
5948 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
8521466b 5949 .access = PL0_RW,
7a0e58fa 5950 .type = ARM_CP_IO | ARM_CP_ALIAS,
8521466b 5951 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
fcd25206
PM
5952 .accessfn = pmreg_access, .writefn = pmcr_write,
5953 .raw_writefn = raw_write,
200ac0ef 5954 };
8521466b
AF
5955 ARMCPRegInfo pmcr64 = {
5956 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5957 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5958 .access = PL0_RW, .accessfn = pmreg_access,
5959 .type = ARM_CP_IO,
5960 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
ac689a2e 5961 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
8521466b
AF
5962 .writefn = pmcr_write, .raw_writefn = raw_write,
5963 };
7c2cb42b 5964 define_one_arm_cp_reg(cpu, &pmcr);
8521466b 5965 define_one_arm_cp_reg(cpu, &pmcr64);
5ecdd3e4
AL
5966 for (i = 0; i < pmcrn; i++) {
5967 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
5968 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
5969 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
5970 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
5971 ARMCPRegInfo pmev_regs[] = {
62c7ec34 5972 { .name = pmevcntr_name, .cp = 15, .crn = 14,
5ecdd3e4
AL
5973 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5974 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5975 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5976 .accessfn = pmreg_access },
5977 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
62c7ec34 5978 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
5ecdd3e4
AL
5979 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5980 .type = ARM_CP_IO,
5981 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5982 .raw_readfn = pmevcntr_rawread,
5983 .raw_writefn = pmevcntr_rawwrite },
62c7ec34 5984 { .name = pmevtyper_name, .cp = 15, .crn = 14,
5ecdd3e4
AL
5985 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5986 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5987 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5988 .accessfn = pmreg_access },
5989 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
62c7ec34 5990 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
5ecdd3e4
AL
5991 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5992 .type = ARM_CP_IO,
5993 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5994 .raw_writefn = pmevtyper_rawwrite },
5995 REGINFO_SENTINEL
5996 };
5997 define_arm_cp_regs(cpu, pmev_regs);
5998 g_free(pmevcntr_name);
5999 g_free(pmevcntr_el0_name);
6000 g_free(pmevtyper_name);
6001 g_free(pmevtyper_el0_name);
6002 }
776d4e5c 6003 ARMCPRegInfo clidr = {
7da845b0
PM
6004 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
6005 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
776d4e5c
PM
6006 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
6007 };
776d4e5c 6008 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 6009 define_arm_cp_regs(cpu, v7_cp_reginfo);
50300698 6010 define_debug_regs(cpu);
7d57f408
PM
6011 } else {
6012 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 6013 }
cad86737
AL
6014 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
6015 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
6016 ARMCPRegInfo v81_pmu_regs[] = {
6017 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6018 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6019 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6020 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6021 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6022 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6023 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6024 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6025 REGINFO_SENTINEL
6026 };
6027 define_arm_cp_regs(cpu, v81_pmu_regs);
6028 }
b0d2b7d0 6029 if (arm_feature(env, ARM_FEATURE_V8)) {
e20d84c1
PM
6030 /* AArch64 ID registers, which all have impdef reset values.
6031 * Note that within the ID register ranges the unused slots
6032 * must all RAZ, not UNDEF; future architecture versions may
6033 * define new registers here.
6034 */
e60cef86 6035 ARMCPRegInfo v8_idregs[] = {
96a8b92e
PM
6036 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
6037 * know the right value for the GIC field until after we
6038 * define these regs.
6039 */
e60cef86
PM
6040 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
6041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
96a8b92e
PM
6042 .access = PL1_R, .type = ARM_CP_NO_RAW,
6043 .readfn = id_aa64pfr0_read,
6044 .writefn = arm_cp_write_ignore },
e60cef86
PM
6045 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
6046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
6047 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 6048 .resetvalue = cpu->isar.id_aa64pfr1},
e20d84c1
PM
6049 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
6051 .access = PL1_R, .type = ARM_CP_CONST,
6052 .resetvalue = 0 },
6053 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
6055 .access = PL1_R, .type = ARM_CP_CONST,
6056 .resetvalue = 0 },
9516d772 6057 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
e20d84c1
PM
6058 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
6059 .access = PL1_R, .type = ARM_CP_CONST,
9516d772 6060 /* At present, only SVEver == 0 is defined anyway. */
e20d84c1
PM
6061 .resetvalue = 0 },
6062 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6063 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
6064 .access = PL1_R, .type = ARM_CP_CONST,
6065 .resetvalue = 0 },
6066 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6067 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6068 .access = PL1_R, .type = ARM_CP_CONST,
6069 .resetvalue = 0 },
6070 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6071 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6072 .access = PL1_R, .type = ARM_CP_CONST,
6073 .resetvalue = 0 },
e60cef86
PM
6074 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6075 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6076 .access = PL1_R, .type = ARM_CP_CONST,
d6f02ce3 6077 .resetvalue = cpu->id_aa64dfr0 },
e60cef86
PM
6078 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6079 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6080 .access = PL1_R, .type = ARM_CP_CONST,
6081 .resetvalue = cpu->id_aa64dfr1 },
e20d84c1
PM
6082 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6083 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6084 .access = PL1_R, .type = ARM_CP_CONST,
6085 .resetvalue = 0 },
6086 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6087 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6088 .access = PL1_R, .type = ARM_CP_CONST,
6089 .resetvalue = 0 },
e60cef86
PM
6090 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6091 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6092 .access = PL1_R, .type = ARM_CP_CONST,
6093 .resetvalue = cpu->id_aa64afr0 },
6094 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6095 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6096 .access = PL1_R, .type = ARM_CP_CONST,
6097 .resetvalue = cpu->id_aa64afr1 },
e20d84c1
PM
6098 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6099 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6100 .access = PL1_R, .type = ARM_CP_CONST,
6101 .resetvalue = 0 },
6102 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6103 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6104 .access = PL1_R, .type = ARM_CP_CONST,
6105 .resetvalue = 0 },
e60cef86
PM
6106 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6107 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6108 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 6109 .resetvalue = cpu->isar.id_aa64isar0 },
e60cef86
PM
6110 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6111 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6112 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 6113 .resetvalue = cpu->isar.id_aa64isar1 },
e20d84c1
PM
6114 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6115 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6116 .access = PL1_R, .type = ARM_CP_CONST,
6117 .resetvalue = 0 },
6118 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6119 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6120 .access = PL1_R, .type = ARM_CP_CONST,
6121 .resetvalue = 0 },
6122 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6123 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6124 .access = PL1_R, .type = ARM_CP_CONST,
6125 .resetvalue = 0 },
6126 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6127 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6128 .access = PL1_R, .type = ARM_CP_CONST,
6129 .resetvalue = 0 },
6130 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6131 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6132 .access = PL1_R, .type = ARM_CP_CONST,
6133 .resetvalue = 0 },
6134 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6135 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6136 .access = PL1_R, .type = ARM_CP_CONST,
6137 .resetvalue = 0 },
e60cef86
PM
6138 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6139 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6140 .access = PL1_R, .type = ARM_CP_CONST,
3dc91ddb 6141 .resetvalue = cpu->isar.id_aa64mmfr0 },
e60cef86
PM
6142 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6143 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6144 .access = PL1_R, .type = ARM_CP_CONST,
3dc91ddb 6145 .resetvalue = cpu->isar.id_aa64mmfr1 },
e20d84c1
PM
6146 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6147 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6148 .access = PL1_R, .type = ARM_CP_CONST,
6149 .resetvalue = 0 },
6150 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6151 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6152 .access = PL1_R, .type = ARM_CP_CONST,
6153 .resetvalue = 0 },
6154 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6155 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6156 .access = PL1_R, .type = ARM_CP_CONST,
6157 .resetvalue = 0 },
6158 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6159 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6160 .access = PL1_R, .type = ARM_CP_CONST,
6161 .resetvalue = 0 },
6162 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6163 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6164 .access = PL1_R, .type = ARM_CP_CONST,
6165 .resetvalue = 0 },
6166 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6167 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6168 .access = PL1_R, .type = ARM_CP_CONST,
6169 .resetvalue = 0 },
a50c0f51
PM
6170 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6171 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6172 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 6173 .resetvalue = cpu->isar.mvfr0 },
a50c0f51
PM
6174 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6175 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6176 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 6177 .resetvalue = cpu->isar.mvfr1 },
a50c0f51
PM
6178 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6179 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6180 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 6181 .resetvalue = cpu->isar.mvfr2 },
e20d84c1
PM
6182 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6183 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6184 .access = PL1_R, .type = ARM_CP_CONST,
6185 .resetvalue = 0 },
6186 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6187 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6188 .access = PL1_R, .type = ARM_CP_CONST,
6189 .resetvalue = 0 },
6190 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6191 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6192 .access = PL1_R, .type = ARM_CP_CONST,
6193 .resetvalue = 0 },
6194 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6195 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6196 .access = PL1_R, .type = ARM_CP_CONST,
6197 .resetvalue = 0 },
6198 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6199 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6200 .access = PL1_R, .type = ARM_CP_CONST,
6201 .resetvalue = 0 },
4054bfa9
AF
6202 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6203 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6204 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
cad86737 6205 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
4054bfa9
AF
6206 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6207 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6208 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6209 .resetvalue = cpu->pmceid0 },
6210 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6211 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6212 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
cad86737 6213 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
4054bfa9
AF
6214 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6215 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6216 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6217 .resetvalue = cpu->pmceid1 },
e60cef86
PM
6218 REGINFO_SENTINEL
6219 };
6c5c0fec
AB
6220#ifdef CONFIG_USER_ONLY
6221 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6222 { .name = "ID_AA64PFR0_EL1",
6223 .exported_bits = 0x000f000f00ff0000,
6224 .fixed_bits = 0x0000000000000011 },
6225 { .name = "ID_AA64PFR1_EL1",
6226 .exported_bits = 0x00000000000000f0 },
d040242e
AB
6227 { .name = "ID_AA64PFR*_EL1_RESERVED",
6228 .is_glob = true },
6c5c0fec
AB
6229 { .name = "ID_AA64ZFR0_EL1" },
6230 { .name = "ID_AA64MMFR0_EL1",
6231 .fixed_bits = 0x00000000ff000000 },
6232 { .name = "ID_AA64MMFR1_EL1" },
d040242e
AB
6233 { .name = "ID_AA64MMFR*_EL1_RESERVED",
6234 .is_glob = true },
6c5c0fec
AB
6235 { .name = "ID_AA64DFR0_EL1",
6236 .fixed_bits = 0x0000000000000006 },
6237 { .name = "ID_AA64DFR1_EL1" },
d040242e
AB
6238 { .name = "ID_AA64DFR*_EL1_RESERVED",
6239 .is_glob = true },
6240 { .name = "ID_AA64AFR*",
6241 .is_glob = true },
6c5c0fec
AB
6242 { .name = "ID_AA64ISAR0_EL1",
6243 .exported_bits = 0x00fffffff0fffff0 },
6244 { .name = "ID_AA64ISAR1_EL1",
6245 .exported_bits = 0x000000f0ffffffff },
d040242e
AB
6246 { .name = "ID_AA64ISAR*_EL1_RESERVED",
6247 .is_glob = true },
6c5c0fec
AB
6248 REGUSERINFO_SENTINEL
6249 };
6250 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6251#endif
be8e8128
GB
6252 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6253 if (!arm_feature(env, ARM_FEATURE_EL3) &&
6254 !arm_feature(env, ARM_FEATURE_EL2)) {
6255 ARMCPRegInfo rvbar = {
6256 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6257 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6258 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6259 };
6260 define_one_arm_cp_reg(cpu, &rvbar);
6261 }
e60cef86 6262 define_arm_cp_regs(cpu, v8_idregs);
b0d2b7d0
PM
6263 define_arm_cp_regs(cpu, v8_cp_reginfo);
6264 }
3b685ba7 6265 if (arm_feature(env, ARM_FEATURE_EL2)) {
f0d574d6 6266 uint64_t vmpidr_def = mpidr_read_val(env);
731de9e6
EI
6267 ARMCPRegInfo vpidr_regs[] = {
6268 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6269 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6270 .access = PL2_RW, .accessfn = access_el3_aa32ns,
36476562
PM
6271 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6272 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
731de9e6
EI
6273 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6274 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6275 .access = PL2_RW, .resetvalue = cpu->midr,
6276 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
6277 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6278 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6279 .access = PL2_RW, .accessfn = access_el3_aa32ns,
36476562
PM
6280 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6281 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
f0d574d6
EI
6282 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6283 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6284 .access = PL2_RW,
6285 .resetvalue = vmpidr_def,
6286 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
731de9e6
EI
6287 REGINFO_SENTINEL
6288 };
6289 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 6290 define_arm_cp_regs(cpu, el2_cp_reginfo);
ce4afed8
PM
6291 if (arm_feature(env, ARM_FEATURE_V8)) {
6292 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6293 }
be8e8128
GB
6294 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6295 if (!arm_feature(env, ARM_FEATURE_EL3)) {
6296 ARMCPRegInfo rvbar = {
6297 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6298 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6299 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6300 };
6301 define_one_arm_cp_reg(cpu, &rvbar);
6302 }
d42e3c26
EI
6303 } else {
6304 /* If EL2 is missing but higher ELs are enabled, we need to
6305 * register the no_el2 reginfos.
6306 */
6307 if (arm_feature(env, ARM_FEATURE_EL3)) {
f0d574d6
EI
6308 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6309 * of MIDR_EL1 and MPIDR_EL1.
731de9e6
EI
6310 */
6311 ARMCPRegInfo vpidr_regs[] = {
6312 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6313 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6314 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6315 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6316 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
6317 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6318 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6319 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6320 .type = ARM_CP_NO_RAW,
6321 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
731de9e6
EI
6322 REGINFO_SENTINEL
6323 };
6324 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 6325 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
ce4afed8
PM
6326 if (arm_feature(env, ARM_FEATURE_V8)) {
6327 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6328 }
d42e3c26 6329 }
3b685ba7 6330 }
81547d66 6331 if (arm_feature(env, ARM_FEATURE_EL3)) {
0f1a3b24 6332 define_arm_cp_regs(cpu, el3_cp_reginfo);
e24fdd23
PM
6333 ARMCPRegInfo el3_regs[] = {
6334 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6335 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6336 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6337 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6338 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6339 .access = PL3_RW,
6340 .raw_writefn = raw_write, .writefn = sctlr_write,
6341 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6342 .resetvalue = cpu->reset_sctlr },
6343 REGINFO_SENTINEL
be8e8128 6344 };
e24fdd23
PM
6345
6346 define_arm_cp_regs(cpu, el3_regs);
81547d66 6347 }
2f027fc5
PM
6348 /* The behaviour of NSACR is sufficiently various that we don't
6349 * try to describe it in a single reginfo:
6350 * if EL3 is 64 bit, then trap to EL3 from S EL1,
6351 * reads as constant 0xc00 from NS EL1 and NS EL2
6352 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6353 * if v7 without EL3, register doesn't exist
6354 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6355 */
6356 if (arm_feature(env, ARM_FEATURE_EL3)) {
6357 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6358 ARMCPRegInfo nsacr = {
6359 .name = "NSACR", .type = ARM_CP_CONST,
6360 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6361 .access = PL1_RW, .accessfn = nsacr_access,
6362 .resetvalue = 0xc00
6363 };
6364 define_one_arm_cp_reg(cpu, &nsacr);
6365 } else {
6366 ARMCPRegInfo nsacr = {
6367 .name = "NSACR",
6368 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6369 .access = PL3_RW | PL1_R,
6370 .resetvalue = 0,
6371 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6372 };
6373 define_one_arm_cp_reg(cpu, &nsacr);
6374 }
6375 } else {
6376 if (arm_feature(env, ARM_FEATURE_V8)) {
6377 ARMCPRegInfo nsacr = {
6378 .name = "NSACR", .type = ARM_CP_CONST,
6379 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6380 .access = PL1_R,
6381 .resetvalue = 0xc00
6382 };
6383 define_one_arm_cp_reg(cpu, &nsacr);
6384 }
6385 }
6386
452a0955 6387 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6cb0b013
PC
6388 if (arm_feature(env, ARM_FEATURE_V6)) {
6389 /* PMSAv6 not implemented */
6390 assert(arm_feature(env, ARM_FEATURE_V7));
6391 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6392 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6393 } else {
6394 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6395 }
18032bec 6396 } else {
8e5d75c9 6397 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
18032bec 6398 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
ab638a32
RH
6399 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
6400 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6401 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6402 }
18032bec 6403 }
c326b979
PM
6404 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6405 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6406 }
6cc7a3ae
PM
6407 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6408 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6409 }
4a501606
PM
6410 if (arm_feature(env, ARM_FEATURE_VAPA)) {
6411 define_arm_cp_regs(cpu, vapa_cp_reginfo);
6412 }
c4804214
PM
6413 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6414 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6415 }
6416 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6417 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6418 }
6419 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6420 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6421 }
18032bec
PM
6422 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6423 define_arm_cp_regs(cpu, omap_cp_reginfo);
6424 }
34f90529
PM
6425 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6426 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6427 }
1047b9d7
PM
6428 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6429 define_arm_cp_regs(cpu, xscale_cp_reginfo);
6430 }
6431 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6432 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6433 }
7ac681cf
PM
6434 if (arm_feature(env, ARM_FEATURE_LPAE)) {
6435 define_arm_cp_regs(cpu, lpae_cp_reginfo);
6436 }
7884849c
PM
6437 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6438 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6439 * be read-only (ie write causes UNDEF exception).
6440 */
6441 {
00a29f3d
PM
6442 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6443 /* Pre-v8 MIDR space.
6444 * Note that the MIDR isn't a simple constant register because
7884849c
PM
6445 * of the TI925 behaviour where writes to another register can
6446 * cause the MIDR value to change.
97ce8d61
PC
6447 *
6448 * Unimplemented registers in the c15 0 0 0 space default to
6449 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6450 * and friends override accordingly.
7884849c
PM
6451 */
6452 { .name = "MIDR",
97ce8d61 6453 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7884849c 6454 .access = PL1_R, .resetvalue = cpu->midr,
d4e6df63 6455 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
731de9e6 6456 .readfn = midr_read,
97ce8d61
PC
6457 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6458 .type = ARM_CP_OVERRIDE },
7884849c
PM
6459 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6460 { .name = "DUMMY",
6461 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6462 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6463 { .name = "DUMMY",
6464 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6465 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6466 { .name = "DUMMY",
6467 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6468 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6469 { .name = "DUMMY",
6470 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6471 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6472 { .name = "DUMMY",
6473 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6474 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6475 REGINFO_SENTINEL
6476 };
00a29f3d 6477 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
00a29f3d
PM
6478 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6479 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
731de9e6
EI
6480 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6481 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6482 .readfn = midr_read },
ac00c79f
SF
6483 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6484 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6485 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6486 .access = PL1_R, .resetvalue = cpu->midr },
6487 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6488 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6489 .access = PL1_R, .resetvalue = cpu->midr },
00a29f3d
PM
6490 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6491 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
13b72b2b 6492 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
00a29f3d
PM
6493 REGINFO_SENTINEL
6494 };
6495 ARMCPRegInfo id_cp_reginfo[] = {
6496 /* These are common to v8 and pre-v8 */
6497 { .name = "CTR",
6498 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6499 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6500 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6501 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6502 .access = PL0_R, .accessfn = ctr_el0_access,
6503 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6504 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6505 { .name = "TCMTR",
6506 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6507 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
00a29f3d
PM
6508 REGINFO_SENTINEL
6509 };
8085ce63
PC
6510 /* TLBTR is specific to VMSA */
6511 ARMCPRegInfo id_tlbtr_reginfo = {
6512 .name = "TLBTR",
6513 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6514 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6515 };
3281af81
PC
6516 /* MPUIR is specific to PMSA V6+ */
6517 ARMCPRegInfo id_mpuir_reginfo = {
6518 .name = "MPUIR",
6519 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6520 .access = PL1_R, .type = ARM_CP_CONST,
6521 .resetvalue = cpu->pmsav7_dregion << 8
6522 };
7884849c
PM
6523 ARMCPRegInfo crn0_wi_reginfo = {
6524 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6525 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6526 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6527 };
6c5c0fec
AB
6528#ifdef CONFIG_USER_ONLY
6529 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6530 { .name = "MIDR_EL1",
6531 .exported_bits = 0x00000000ffffffff },
6532 { .name = "REVIDR_EL1" },
6533 REGUSERINFO_SENTINEL
6534 };
6535 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6536#endif
7884849c
PM
6537 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6538 arm_feature(env, ARM_FEATURE_STRONGARM)) {
6539 ARMCPRegInfo *r;
6540 /* Register the blanket "writes ignored" value first to cover the
a703eda1
PC
6541 * whole space. Then update the specific ID registers to allow write
6542 * access, so that they ignore writes rather than causing them to
6543 * UNDEF.
7884849c
PM
6544 */
6545 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
00a29f3d
PM
6546 for (r = id_pre_v8_midr_cp_reginfo;
6547 r->type != ARM_CP_SENTINEL; r++) {
6548 r->access = PL1_RW;
6549 }
7884849c
PM
6550 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6551 r->access = PL1_RW;
7884849c 6552 }
10006112 6553 id_mpuir_reginfo.access = PL1_RW;
3281af81 6554 id_tlbtr_reginfo.access = PL1_RW;
7884849c 6555 }
00a29f3d
PM
6556 if (arm_feature(env, ARM_FEATURE_V8)) {
6557 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6558 } else {
6559 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6560 }
a703eda1 6561 define_arm_cp_regs(cpu, id_cp_reginfo);
452a0955 6562 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8085ce63 6563 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
3281af81
PC
6564 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6565 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8085ce63 6566 }
7884849c
PM
6567 }
6568
97ce8d61 6569 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
52264166
AB
6570 ARMCPRegInfo mpidr_cp_reginfo[] = {
6571 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6572 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6573 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6574 REGINFO_SENTINEL
6575 };
6576#ifdef CONFIG_USER_ONLY
6577 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6578 { .name = "MPIDR_EL1",
6579 .fixed_bits = 0x0000000080000000 },
6580 REGUSERINFO_SENTINEL
6581 };
6582 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6583#endif
97ce8d61
PC
6584 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6585 }
6586
2771db27 6587 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
834a6c69
PM
6588 ARMCPRegInfo auxcr_reginfo[] = {
6589 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6590 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6591 .access = PL1_RW, .type = ARM_CP_CONST,
6592 .resetvalue = cpu->reset_auxcr },
6593 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6594 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6595 .access = PL2_RW, .type = ARM_CP_CONST,
6596 .resetvalue = 0 },
6597 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6598 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6599 .access = PL3_RW, .type = ARM_CP_CONST,
6600 .resetvalue = 0 },
6601 REGINFO_SENTINEL
2771db27 6602 };
834a6c69 6603 define_arm_cp_regs(cpu, auxcr_reginfo);
0e0456ab
PM
6604 if (arm_feature(env, ARM_FEATURE_V8)) {
6605 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6606 ARMCPRegInfo hactlr2_reginfo = {
6607 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6608 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6609 .access = PL2_RW, .type = ARM_CP_CONST,
6610 .resetvalue = 0
6611 };
6612 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6613 }
2771db27
PM
6614 }
6615
d8ba780b 6616 if (arm_feature(env, ARM_FEATURE_CBAR)) {
f318cec6
PM
6617 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6618 /* 32 bit view is [31:18] 0...0 [43:32]. */
6619 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6620 | extract64(cpu->reset_cbar, 32, 12);
6621 ARMCPRegInfo cbar_reginfo[] = {
6622 { .name = "CBAR",
6623 .type = ARM_CP_CONST,
6624 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6625 .access = PL1_R, .resetvalue = cpu->reset_cbar },
6626 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6627 .type = ARM_CP_CONST,
6628 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6629 .access = PL1_R, .resetvalue = cbar32 },
6630 REGINFO_SENTINEL
6631 };
6632 /* We don't implement a r/w 64 bit CBAR currently */
6633 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6634 define_arm_cp_regs(cpu, cbar_reginfo);
6635 } else {
6636 ARMCPRegInfo cbar = {
6637 .name = "CBAR",
6638 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6639 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6640 .fieldoffset = offsetof(CPUARMState,
6641 cp15.c15_config_base_address)
6642 };
6643 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6644 cbar.access = PL1_R;
6645 cbar.fieldoffset = 0;
6646 cbar.type = ARM_CP_CONST;
6647 }
6648 define_one_arm_cp_reg(cpu, &cbar);
6649 }
d8ba780b
PC
6650 }
6651
91db4642
CLG
6652 if (arm_feature(env, ARM_FEATURE_VBAR)) {
6653 ARMCPRegInfo vbar_cp_reginfo[] = {
6654 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6655 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6656 .access = PL1_RW, .writefn = vbar_write,
6657 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6658 offsetof(CPUARMState, cp15.vbar_ns) },
6659 .resetvalue = 0 },
6660 REGINFO_SENTINEL
6661 };
6662 define_arm_cp_regs(cpu, vbar_cp_reginfo);
6663 }
6664
2771db27
PM
6665 /* Generic registers whose values depend on the implementation */
6666 {
6667 ARMCPRegInfo sctlr = {
5ebafdf3 6668 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
137feaa9
FA
6669 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6670 .access = PL1_RW,
6671 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6672 offsetof(CPUARMState, cp15.sctlr_ns) },
d4e6df63
PM
6673 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6674 .raw_writefn = raw_write,
2771db27
PM
6675 };
6676 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6677 /* Normally we would always end the TB on an SCTLR write, but Linux
6678 * arch/arm/mach-pxa/sleep.S expects two instructions following
6679 * an MMU enable to execute from cache. Imitate this behaviour.
6680 */
6681 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6682 }
6683 define_one_arm_cp_reg(cpu, &sctlr);
6684 }
5be5e8ed 6685
2d7137c1
RH
6686 if (cpu_isar_feature(aa64_lor, cpu)) {
6687 /*
6688 * A trivial implementation of ARMv8.1-LOR leaves all of these
6689 * registers fixed at 0, which indicates that there are zero
6690 * supported Limited Ordering regions.
6691 */
6692 static const ARMCPRegInfo lor_reginfo[] = {
6693 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6694 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6695 .access = PL1_RW, .accessfn = access_lor_other,
6696 .type = ARM_CP_CONST, .resetvalue = 0 },
6697 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6698 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6699 .access = PL1_RW, .accessfn = access_lor_other,
6700 .type = ARM_CP_CONST, .resetvalue = 0 },
6701 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6702 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6703 .access = PL1_RW, .accessfn = access_lor_other,
6704 .type = ARM_CP_CONST, .resetvalue = 0 },
6705 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6706 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6707 .access = PL1_RW, .accessfn = access_lor_other,
6708 .type = ARM_CP_CONST, .resetvalue = 0 },
6709 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6710 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6711 .access = PL1_R, .accessfn = access_lorid,
6712 .type = ARM_CP_CONST, .resetvalue = 0 },
6713 REGINFO_SENTINEL
6714 };
6715 define_arm_cp_regs(cpu, lor_reginfo);
6716 }
6717
cd208a1c 6718 if (cpu_isar_feature(aa64_sve, cpu)) {
5be5e8ed
RH
6719 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6720 if (arm_feature(env, ARM_FEATURE_EL2)) {
6721 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6722 } else {
6723 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6724 }
6725 if (arm_feature(env, ARM_FEATURE_EL3)) {
6726 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6727 }
6728 }
967aa94f
RH
6729
6730#ifdef TARGET_AARCH64
6731 if (cpu_isar_feature(aa64_pauth, cpu)) {
6732 define_arm_cp_regs(cpu, pauth_reginfo);
6733 }
de390645
RH
6734 if (cpu_isar_feature(aa64_rndr, cpu)) {
6735 define_arm_cp_regs(cpu, rndr_reginfo);
6736 }
967aa94f 6737#endif
cb570bd3
RH
6738
6739 /*
6740 * While all v8.0 cpus support aarch64, QEMU does have configurations
6741 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
6742 * which will set ID_ISAR6.
6743 */
6744 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
6745 ? cpu_isar_feature(aa64_predinv, cpu)
6746 : cpu_isar_feature(aa32_predinv, cpu)) {
6747 define_arm_cp_regs(cpu, predinv_reginfo);
6748 }
2ceb98c0
PM
6749}
6750
14969266
AF
6751void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6752{
22169d41 6753 CPUState *cs = CPU(cpu);
14969266
AF
6754 CPUARMState *env = &cpu->env;
6755
6a669427
PM
6756 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6757 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6758 aarch64_fpu_gdb_set_reg,
6759 34, "aarch64-fpu.xml", 0);
6760 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
22169d41 6761 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
6762 51, "arm-neon.xml", 0);
6763 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
22169d41 6764 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
6765 35, "arm-vfp3.xml", 0);
6766 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
22169d41 6767 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
6768 19, "arm-vfp.xml", 0);
6769 }
200bf5b7
AB
6770 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6771 arm_gen_dynamic_xml(cs),
6772 "system-registers.xml", 0);
40f137e1
PB
6773}
6774
777dc784
PM
6775/* Sort alphabetically by type name, except for "any". */
6776static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 6777{
777dc784
PM
6778 ObjectClass *class_a = (ObjectClass *)a;
6779 ObjectClass *class_b = (ObjectClass *)b;
6780 const char *name_a, *name_b;
5adb4839 6781
777dc784
PM
6782 name_a = object_class_get_name(class_a);
6783 name_b = object_class_get_name(class_b);
51492fd1 6784 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 6785 return 1;
51492fd1 6786 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
6787 return -1;
6788 } else {
6789 return strcmp(name_a, name_b);
5adb4839
PB
6790 }
6791}
6792
777dc784 6793static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 6794{
777dc784 6795 ObjectClass *oc = data;
51492fd1
AF
6796 const char *typename;
6797 char *name;
3371d272 6798
51492fd1
AF
6799 typename = object_class_get_name(oc);
6800 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
0442428a 6801 qemu_printf(" %s\n", name);
51492fd1 6802 g_free(name);
777dc784
PM
6803}
6804
0442428a 6805void arm_cpu_list(void)
777dc784 6806{
777dc784
PM
6807 GSList *list;
6808
6809 list = object_class_get_list(TYPE_ARM_CPU, false);
6810 list = g_slist_sort(list, arm_cpu_list_compare);
0442428a
MA
6811 qemu_printf("Available CPUs:\n");
6812 g_slist_foreach(list, arm_cpu_list_entry, NULL);
777dc784 6813 g_slist_free(list);
40f137e1
PB
6814}
6815
78027bb6
CR
6816static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6817{
6818 ObjectClass *oc = data;
6819 CpuDefinitionInfoList **cpu_list = user_data;
6820 CpuDefinitionInfoList *entry;
6821 CpuDefinitionInfo *info;
6822 const char *typename;
6823
6824 typename = object_class_get_name(oc);
6825 info = g_malloc0(sizeof(*info));
6826 info->name = g_strndup(typename,
6827 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8ed877b7 6828 info->q_typename = g_strdup(typename);
78027bb6
CR
6829
6830 entry = g_malloc0(sizeof(*entry));
6831 entry->value = info;
6832 entry->next = *cpu_list;
6833 *cpu_list = entry;
6834}
6835
25a9d6ca 6836CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
78027bb6
CR
6837{
6838 CpuDefinitionInfoList *cpu_list = NULL;
6839 GSList *list;
6840
6841 list = object_class_get_list(TYPE_ARM_CPU, false);
6842 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6843 g_slist_free(list);
6844
6845 return cpu_list;
6846}
6847
6e6efd61 6848static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
51a79b03 6849 void *opaque, int state, int secstate,
9c513e78
AB
6850 int crm, int opc1, int opc2,
6851 const char *name)
6e6efd61
PM
6852{
6853 /* Private utility function for define_one_arm_cp_reg_with_opaque():
6854 * add a single reginfo struct to the hash table.
6855 */
6856 uint32_t *key = g_new(uint32_t, 1);
6857 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
6858 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3f3c82a5
FA
6859 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
6860
9c513e78 6861 r2->name = g_strdup(name);
3f3c82a5
FA
6862 /* Reset the secure state to the specific incoming state. This is
6863 * necessary as the register may have been defined with both states.
6864 */
6865 r2->secure = secstate;
6866
6867 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6868 /* Register is banked (using both entries in array).
6869 * Overwriting fieldoffset as the array is only used to define
6870 * banked registers but later only fieldoffset is used.
f5a0a5a5 6871 */
3f3c82a5
FA
6872 r2->fieldoffset = r->bank_fieldoffsets[ns];
6873 }
6874
6875 if (state == ARM_CP_STATE_AA32) {
6876 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6877 /* If the register is banked then we don't need to migrate or
6878 * reset the 32-bit instance in certain cases:
6879 *
6880 * 1) If the register has both 32-bit and 64-bit instances then we
6881 * can count on the 64-bit instance taking care of the
6882 * non-secure bank.
6883 * 2) If ARMv8 is enabled then we can count on a 64-bit version
6884 * taking care of the secure bank. This requires that separate
6885 * 32 and 64-bit definitions are provided.
6886 */
6887 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
6888 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7a0e58fa 6889 r2->type |= ARM_CP_ALIAS;
3f3c82a5
FA
6890 }
6891 } else if ((secstate != r->secure) && !ns) {
6892 /* The register is not banked so we only want to allow migration of
6893 * the non-secure instance.
6894 */
7a0e58fa 6895 r2->type |= ARM_CP_ALIAS;
58a1d8ce 6896 }
3f3c82a5
FA
6897
6898 if (r->state == ARM_CP_STATE_BOTH) {
6899 /* We assume it is a cp15 register if the .cp field is left unset.
6900 */
6901 if (r2->cp == 0) {
6902 r2->cp = 15;
6903 }
6904
f5a0a5a5 6905#ifdef HOST_WORDS_BIGENDIAN
3f3c82a5
FA
6906 if (r2->fieldoffset) {
6907 r2->fieldoffset += sizeof(uint32_t);
6908 }
f5a0a5a5 6909#endif
3f3c82a5 6910 }
f5a0a5a5
PM
6911 }
6912 if (state == ARM_CP_STATE_AA64) {
6913 /* To allow abbreviation of ARMCPRegInfo
6914 * definitions, we treat cp == 0 as equivalent to
6915 * the value for "standard guest-visible sysreg".
58a1d8ce
PM
6916 * STATE_BOTH definitions are also always "standard
6917 * sysreg" in their AArch64 view (the .cp value may
6918 * be non-zero for the benefit of the AArch32 view).
f5a0a5a5 6919 */
58a1d8ce 6920 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
f5a0a5a5
PM
6921 r2->cp = CP_REG_ARM64_SYSREG_CP;
6922 }
6923 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
6924 r2->opc0, opc1, opc2);
6925 } else {
51a79b03 6926 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
f5a0a5a5 6927 }
6e6efd61
PM
6928 if (opaque) {
6929 r2->opaque = opaque;
6930 }
67ed771d
PM
6931 /* reginfo passed to helpers is correct for the actual access,
6932 * and is never ARM_CP_STATE_BOTH:
6933 */
6934 r2->state = state;
6e6efd61
PM
6935 /* Make sure reginfo passed to helpers for wildcarded regs
6936 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6937 */
6938 r2->crm = crm;
6939 r2->opc1 = opc1;
6940 r2->opc2 = opc2;
6941 /* By convention, for wildcarded registers only the first
6942 * entry is used for migration; the others are marked as
7a0e58fa 6943 * ALIAS so we don't try to transfer the register
6e6efd61 6944 * multiple times. Special registers (ie NOP/WFI) are
7a0e58fa 6945 * never migratable and not even raw-accessible.
6e6efd61 6946 */
7a0e58fa
PM
6947 if ((r->type & ARM_CP_SPECIAL)) {
6948 r2->type |= ARM_CP_NO_RAW;
6949 }
6950 if (((r->crm == CP_ANY) && crm != 0) ||
6e6efd61
PM
6951 ((r->opc1 == CP_ANY) && opc1 != 0) ||
6952 ((r->opc2 == CP_ANY) && opc2 != 0)) {
1f163787 6953 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6e6efd61
PM
6954 }
6955
375421cc
PM
6956 /* Check that raw accesses are either forbidden or handled. Note that
6957 * we can't assert this earlier because the setup of fieldoffset for
6958 * banked registers has to be done first.
6959 */
6960 if (!(r2->type & ARM_CP_NO_RAW)) {
6961 assert(!raw_accessors_invalid(r2));
6962 }
6963
6e6efd61
PM
6964 /* Overriding of an existing definition must be explicitly
6965 * requested.
6966 */
6967 if (!(r->type & ARM_CP_OVERRIDE)) {
6968 ARMCPRegInfo *oldreg;
6969 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
6970 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
6971 fprintf(stderr, "Register redefined: cp=%d %d bit "
6972 "crn=%d crm=%d opc1=%d opc2=%d, "
6973 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
6974 r2->crn, r2->crm, r2->opc1, r2->opc2,
6975 oldreg->name, r2->name);
6976 g_assert_not_reached();
6977 }
6978 }
6979 g_hash_table_insert(cpu->cp_regs, key, r2);
6980}
6981
6982
4b6a83fb
PM
6983void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
6984 const ARMCPRegInfo *r, void *opaque)
6985{
6986 /* Define implementations of coprocessor registers.
6987 * We store these in a hashtable because typically
6988 * there are less than 150 registers in a space which
6989 * is 16*16*16*8*8 = 262144 in size.
6990 * Wildcarding is supported for the crm, opc1 and opc2 fields.
6991 * If a register is defined twice then the second definition is
6992 * used, so this can be used to define some generic registers and
6993 * then override them with implementation specific variations.
6994 * At least one of the original and the second definition should
6995 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
6996 * against accidental use.
f5a0a5a5
PM
6997 *
6998 * The state field defines whether the register is to be
6999 * visible in the AArch32 or AArch64 execution state. If the
7000 * state is set to ARM_CP_STATE_BOTH then we synthesise a
7001 * reginfo structure for the AArch32 view, which sees the lower
7002 * 32 bits of the 64 bit register.
7003 *
7004 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
7005 * be wildcarded. AArch64 registers are always considered to be 64
7006 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
7007 * the register, if any.
4b6a83fb 7008 */
f5a0a5a5 7009 int crm, opc1, opc2, state;
4b6a83fb
PM
7010 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
7011 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
7012 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
7013 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
7014 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
7015 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
7016 /* 64 bit registers have only CRm and Opc1 fields */
7017 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
f5a0a5a5
PM
7018 /* op0 only exists in the AArch64 encodings */
7019 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
7020 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
7021 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
7022 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
7023 * encodes a minimum access level for the register. We roll this
7024 * runtime check into our general permission check code, so check
7025 * here that the reginfo's specified permissions are strict enough
7026 * to encompass the generic architectural permission check.
7027 */
7028 if (r->state != ARM_CP_STATE_AA32) {
7029 int mask = 0;
7030 switch (r->opc1) {
b5bd7440
AB
7031 case 0:
7032 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
7033 mask = PL0U_R | PL1_RW;
7034 break;
7035 case 1: case 2:
f5a0a5a5
PM
7036 /* min_EL EL1 */
7037 mask = PL1_RW;
7038 break;
7039 case 3:
7040 /* min_EL EL0 */
7041 mask = PL0_RW;
7042 break;
7043 case 4:
7044 /* min_EL EL2 */
7045 mask = PL2_RW;
7046 break;
7047 case 5:
7048 /* unallocated encoding, so not possible */
7049 assert(false);
7050 break;
7051 case 6:
7052 /* min_EL EL3 */
7053 mask = PL3_RW;
7054 break;
7055 case 7:
7056 /* min_EL EL1, secure mode only (we don't check the latter) */
7057 mask = PL1_RW;
7058 break;
7059 default:
7060 /* broken reginfo with out-of-range opc1 */
7061 assert(false);
7062 break;
7063 }
7064 /* assert our permissions are not too lax (stricter is fine) */
7065 assert((r->access & ~mask) == 0);
7066 }
7067
4b6a83fb
PM
7068 /* Check that the register definition has enough info to handle
7069 * reads and writes if they are permitted.
7070 */
7071 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7072 if (r->access & PL3_R) {
3f3c82a5
FA
7073 assert((r->fieldoffset ||
7074 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7075 r->readfn);
4b6a83fb
PM
7076 }
7077 if (r->access & PL3_W) {
3f3c82a5
FA
7078 assert((r->fieldoffset ||
7079 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7080 r->writefn);
4b6a83fb
PM
7081 }
7082 }
7083 /* Bad type field probably means missing sentinel at end of reg list */
7084 assert(cptype_valid(r->type));
7085 for (crm = crmmin; crm <= crmmax; crm++) {
7086 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7087 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
f5a0a5a5
PM
7088 for (state = ARM_CP_STATE_AA32;
7089 state <= ARM_CP_STATE_AA64; state++) {
7090 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7091 continue;
7092 }
3f3c82a5
FA
7093 if (state == ARM_CP_STATE_AA32) {
7094 /* Under AArch32 CP registers can be common
7095 * (same for secure and non-secure world) or banked.
7096 */
9c513e78
AB
7097 char *name;
7098
3f3c82a5
FA
7099 switch (r->secure) {
7100 case ARM_CP_SECSTATE_S:
7101 case ARM_CP_SECSTATE_NS:
7102 add_cpreg_to_hashtable(cpu, r, opaque, state,
9c513e78
AB
7103 r->secure, crm, opc1, opc2,
7104 r->name);
3f3c82a5
FA
7105 break;
7106 default:
9c513e78 7107 name = g_strdup_printf("%s_S", r->name);
3f3c82a5
FA
7108 add_cpreg_to_hashtable(cpu, r, opaque, state,
7109 ARM_CP_SECSTATE_S,
9c513e78
AB
7110 crm, opc1, opc2, name);
7111 g_free(name);
3f3c82a5
FA
7112 add_cpreg_to_hashtable(cpu, r, opaque, state,
7113 ARM_CP_SECSTATE_NS,
9c513e78 7114 crm, opc1, opc2, r->name);
3f3c82a5
FA
7115 break;
7116 }
7117 } else {
7118 /* AArch64 registers get mapped to non-secure instance
7119 * of AArch32 */
7120 add_cpreg_to_hashtable(cpu, r, opaque, state,
7121 ARM_CP_SECSTATE_NS,
9c513e78 7122 crm, opc1, opc2, r->name);
3f3c82a5 7123 }
f5a0a5a5 7124 }
4b6a83fb
PM
7125 }
7126 }
7127 }
7128}
7129
7130void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7131 const ARMCPRegInfo *regs, void *opaque)
7132{
7133 /* Define a whole list of registers */
7134 const ARMCPRegInfo *r;
7135 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7136 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7137 }
7138}
7139
6c5c0fec
AB
7140/*
7141 * Modify ARMCPRegInfo for access from userspace.
7142 *
7143 * This is a data driven modification directed by
7144 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7145 * user-space cannot alter any values and dynamic values pertaining to
7146 * execution state are hidden from user space view anyway.
7147 */
7148void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7149{
7150 const ARMCPRegUserSpaceInfo *m;
7151 ARMCPRegInfo *r;
7152
7153 for (m = mods; m->name; m++) {
d040242e
AB
7154 GPatternSpec *pat = NULL;
7155 if (m->is_glob) {
7156 pat = g_pattern_spec_new(m->name);
7157 }
6c5c0fec 7158 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
d040242e
AB
7159 if (pat && g_pattern_match_string(pat, r->name)) {
7160 r->type = ARM_CP_CONST;
7161 r->access = PL0U_R;
7162 r->resetvalue = 0;
7163 /* continue */
7164 } else if (strcmp(r->name, m->name) == 0) {
6c5c0fec
AB
7165 r->type = ARM_CP_CONST;
7166 r->access = PL0U_R;
7167 r->resetvalue &= m->exported_bits;
7168 r->resetvalue |= m->fixed_bits;
7169 break;
7170 }
7171 }
d040242e
AB
7172 if (pat) {
7173 g_pattern_spec_free(pat);
7174 }
6c5c0fec
AB
7175 }
7176}
7177
60322b39 7178const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4b6a83fb 7179{
60322b39 7180 return g_hash_table_lookup(cpregs, &encoded_cp);
4b6a83fb
PM
7181}
7182
c4241c7d
PM
7183void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7184 uint64_t value)
4b6a83fb
PM
7185{
7186 /* Helper coprocessor write function for write-ignore registers */
4b6a83fb
PM
7187}
7188
c4241c7d 7189uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4b6a83fb
PM
7190{
7191 /* Helper coprocessor write function for read-as-zero registers */
4b6a83fb
PM
7192 return 0;
7193}
7194
f5a0a5a5
PM
7195void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7196{
7197 /* Helper coprocessor reset function for do-nothing-on-reset registers */
7198}
7199
af393ffc 7200static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
37064a8b
PM
7201{
7202 /* Return true if it is not valid for us to switch to
7203 * this CPU mode (ie all the UNPREDICTABLE cases in
7204 * the ARM ARM CPSRWriteByInstr pseudocode).
7205 */
af393ffc
PM
7206
7207 /* Changes to or from Hyp via MSR and CPS are illegal. */
7208 if (write_type == CPSRWriteByInstr &&
7209 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7210 mode == ARM_CPU_MODE_HYP)) {
7211 return 1;
7212 }
7213
37064a8b
PM
7214 switch (mode) {
7215 case ARM_CPU_MODE_USR:
10eacda7 7216 return 0;
37064a8b
PM
7217 case ARM_CPU_MODE_SYS:
7218 case ARM_CPU_MODE_SVC:
7219 case ARM_CPU_MODE_ABT:
7220 case ARM_CPU_MODE_UND:
7221 case ARM_CPU_MODE_IRQ:
7222 case ARM_CPU_MODE_FIQ:
52ff951b
PM
7223 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7224 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7225 */
10eacda7
PM
7226 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7227 * and CPS are treated as illegal mode changes.
7228 */
7229 if (write_type == CPSRWriteByInstr &&
10eacda7 7230 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7c208e0f 7231 (arm_hcr_el2_eff(env) & HCR_TGE)) {
10eacda7
PM
7232 return 1;
7233 }
37064a8b 7234 return 0;
e6c8fc07
PM
7235 case ARM_CPU_MODE_HYP:
7236 return !arm_feature(env, ARM_FEATURE_EL2)
2d2a4549 7237 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
027fc527 7238 case ARM_CPU_MODE_MON:
58ae2d1f 7239 return arm_current_el(env) < 3;
37064a8b
PM
7240 default:
7241 return 1;
7242 }
7243}
7244
2f4a40e5
AZ
7245uint32_t cpsr_read(CPUARMState *env)
7246{
7247 int ZF;
6fbe23d5
PB
7248 ZF = (env->ZF == 0);
7249 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
7250 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7251 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7252 | ((env->condexec_bits & 0xfc) << 8)
af519934 7253 | (env->GE << 16) | (env->daif & CPSR_AIF);
2f4a40e5
AZ
7254}
7255
50866ba5
PM
7256void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7257 CPSRWriteType write_type)
2f4a40e5 7258{
6e8801f9
FA
7259 uint32_t changed_daif;
7260
2f4a40e5 7261 if (mask & CPSR_NZCV) {
6fbe23d5
PB
7262 env->ZF = (~val) & CPSR_Z;
7263 env->NF = val;
2f4a40e5
AZ
7264 env->CF = (val >> 29) & 1;
7265 env->VF = (val << 3) & 0x80000000;
7266 }
7267 if (mask & CPSR_Q)
7268 env->QF = ((val & CPSR_Q) != 0);
7269 if (mask & CPSR_T)
7270 env->thumb = ((val & CPSR_T) != 0);
7271 if (mask & CPSR_IT_0_1) {
7272 env->condexec_bits &= ~3;
7273 env->condexec_bits |= (val >> 25) & 3;
7274 }
7275 if (mask & CPSR_IT_2_7) {
7276 env->condexec_bits &= 3;
7277 env->condexec_bits |= (val >> 8) & 0xfc;
7278 }
7279 if (mask & CPSR_GE) {
7280 env->GE = (val >> 16) & 0xf;
7281 }
7282
6e8801f9
FA
7283 /* In a V7 implementation that includes the security extensions but does
7284 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7285 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7286 * bits respectively.
7287 *
7288 * In a V8 implementation, it is permitted for privileged software to
7289 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7290 */
f8c88bbc 7291 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6e8801f9
FA
7292 arm_feature(env, ARM_FEATURE_EL3) &&
7293 !arm_feature(env, ARM_FEATURE_EL2) &&
7294 !arm_is_secure(env)) {
7295
7296 changed_daif = (env->daif ^ val) & mask;
7297
7298 if (changed_daif & CPSR_A) {
7299 /* Check to see if we are allowed to change the masking of async
7300 * abort exceptions from a non-secure state.
7301 */
7302 if (!(env->cp15.scr_el3 & SCR_AW)) {
7303 qemu_log_mask(LOG_GUEST_ERROR,
7304 "Ignoring attempt to switch CPSR_A flag from "
7305 "non-secure world with SCR.AW bit clear\n");
7306 mask &= ~CPSR_A;
7307 }
7308 }
7309
7310 if (changed_daif & CPSR_F) {
7311 /* Check to see if we are allowed to change the masking of FIQ
7312 * exceptions from a non-secure state.
7313 */
7314 if (!(env->cp15.scr_el3 & SCR_FW)) {
7315 qemu_log_mask(LOG_GUEST_ERROR,
7316 "Ignoring attempt to switch CPSR_F flag from "
7317 "non-secure world with SCR.FW bit clear\n");
7318 mask &= ~CPSR_F;
7319 }
7320
7321 /* Check whether non-maskable FIQ (NMFI) support is enabled.
7322 * If this bit is set software is not allowed to mask
7323 * FIQs, but is allowed to set CPSR_F to 0.
7324 */
7325 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7326 (val & CPSR_F)) {
7327 qemu_log_mask(LOG_GUEST_ERROR,
7328 "Ignoring attempt to enable CPSR_F flag "
7329 "(non-maskable FIQ [NMFI] support enabled)\n");
7330 mask &= ~CPSR_F;
7331 }
7332 }
7333 }
7334
4cc35614
PM
7335 env->daif &= ~(CPSR_AIF & mask);
7336 env->daif |= val & CPSR_AIF & mask;
7337
f8c88bbc
PM
7338 if (write_type != CPSRWriteRaw &&
7339 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8c4f0eb9
PM
7340 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7341 /* Note that we can only get here in USR mode if this is a
7342 * gdb stub write; for this case we follow the architectural
7343 * behaviour for guest writes in USR mode of ignoring an attempt
7344 * to switch mode. (Those are caught by translate.c for writes
7345 * triggered by guest instructions.)
7346 */
7347 mask &= ~CPSR_M;
7348 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
81907a58
PM
7349 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7350 * v7, and has defined behaviour in v8:
7351 * + leave CPSR.M untouched
7352 * + allow changes to the other CPSR fields
7353 * + set PSTATE.IL
7354 * For user changes via the GDB stub, we don't set PSTATE.IL,
7355 * as this would be unnecessarily harsh for a user error.
37064a8b
PM
7356 */
7357 mask &= ~CPSR_M;
81907a58
PM
7358 if (write_type != CPSRWriteByGDBStub &&
7359 arm_feature(env, ARM_FEATURE_V8)) {
7360 mask |= CPSR_IL;
7361 val |= CPSR_IL;
7362 }
81e37284
PM
7363 qemu_log_mask(LOG_GUEST_ERROR,
7364 "Illegal AArch32 mode switch attempt from %s to %s\n",
7365 aarch32_mode_name(env->uncached_cpsr),
7366 aarch32_mode_name(val));
37064a8b 7367 } else {
81e37284
PM
7368 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7369 write_type == CPSRWriteExceptionReturn ?
7370 "Exception return from AArch32" :
7371 "AArch32 mode switch from",
7372 aarch32_mode_name(env->uncached_cpsr),
7373 aarch32_mode_name(val), env->regs[15]);
37064a8b
PM
7374 switch_mode(env, val & CPSR_M);
7375 }
2f4a40e5
AZ
7376 }
7377 mask &= ~CACHED_CPSR_BITS;
7378 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7379}
7380
b26eefb6
PB
7381/* Sign/zero extend */
7382uint32_t HELPER(sxtb16)(uint32_t x)
7383{
7384 uint32_t res;
7385 res = (uint16_t)(int8_t)x;
7386 res |= (uint32_t)(int8_t)(x >> 16) << 16;
7387 return res;
7388}
7389
7390uint32_t HELPER(uxtb16)(uint32_t x)
7391{
7392 uint32_t res;
7393 res = (uint16_t)(uint8_t)x;
7394 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7395 return res;
7396}
7397
3670669c
PB
7398int32_t HELPER(sdiv)(int32_t num, int32_t den)
7399{
7400 if (den == 0)
7401 return 0;
686eeb93
AJ
7402 if (num == INT_MIN && den == -1)
7403 return INT_MIN;
3670669c
PB
7404 return num / den;
7405}
7406
7407uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7408{
7409 if (den == 0)
7410 return 0;
7411 return num / den;
7412}
7413
7414uint32_t HELPER(rbit)(uint32_t x)
7415{
42fedbca 7416 return revbit32(x);
3670669c
PB
7417}
7418
c47eaf9f 7419#ifdef CONFIG_USER_ONLY
b5ff1b31 7420
9ee6e8bb 7421/* These should probably raise undefined insn exceptions. */
0ecb72a5 7422void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 7423{
a47dddd7
AF
7424 ARMCPU *cpu = arm_env_get_cpu(env);
7425
7426 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
9ee6e8bb
PB
7427}
7428
0ecb72a5 7429uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 7430{
a47dddd7
AF
7431 ARMCPU *cpu = arm_env_get_cpu(env);
7432
7433 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
9ee6e8bb
PB
7434 return 0;
7435}
7436
fb602cb7
PM
7437void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7438{
7439 /* translate.c should never generate calls here in user-only mode */
7440 g_assert_not_reached();
7441}
7442
3e3fa230
PM
7443void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7444{
7445 /* translate.c should never generate calls here in user-only mode */
7446 g_assert_not_reached();
7447}
7448
e33cf0f8
PM
7449void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
7450{
7451 /* translate.c should never generate calls here in user-only mode */
7452 g_assert_not_reached();
7453}
7454
019076b0
PM
7455void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
7456{
7457 /* translate.c should never generate calls here in user-only mode */
7458 g_assert_not_reached();
7459}
7460
956fe143
PM
7461void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
7462{
7463 /* translate.c should never generate calls here in user-only mode */
7464 g_assert_not_reached();
7465}
7466
5158de24
PM
7467uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
7468{
7469 /* The TT instructions can be used by unprivileged code, but in
7470 * user-only emulation we don't have the MPU.
7471 * Luckily since we know we are NonSecure unprivileged (and that in
7472 * turn means that the A flag wasn't specified), all the bits in the
7473 * register must be zero:
7474 * IREGION: 0 because IRVALID is 0
7475 * IRVALID: 0 because NS
7476 * S: 0 because NS
7477 * NSRW: 0 because NS
7478 * NSR: 0 because NS
7479 * RW: 0 because unpriv and A flag not set
7480 * R: 0 because unpriv and A flag not set
7481 * SRVALID: 0 because NS
7482 * MRVALID: 0 because unpriv and A flag not set
7483 * SREGION: 0 becaus SRVALID is 0
7484 * MREGION: 0 because MRVALID is 0
7485 */
7486 return 0;
7487}
7488
affdb64d 7489static void switch_mode(CPUARMState *env, int mode)
b5ff1b31 7490{
a47dddd7
AF
7491 ARMCPU *cpu = arm_env_get_cpu(env);
7492
7493 if (mode != ARM_CPU_MODE_USR) {
7494 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7495 }
b5ff1b31
FB
7496}
7497
012a906b
GB
7498uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7499 uint32_t cur_el, bool secure)
9e729b57
EI
7500{
7501 return 1;
7502}
7503
ce02049d
GB
7504void aarch64_sync_64_to_32(CPUARMState *env)
7505{
7506 g_assert_not_reached();
7507}
7508
b5ff1b31
FB
7509#else
7510
affdb64d 7511static void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
7512{
7513 int old_mode;
7514 int i;
7515
7516 old_mode = env->uncached_cpsr & CPSR_M;
7517 if (mode == old_mode)
7518 return;
7519
7520 if (old_mode == ARM_CPU_MODE_FIQ) {
7521 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 7522 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
7523 } else if (mode == ARM_CPU_MODE_FIQ) {
7524 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 7525 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
7526 }
7527
f5206413 7528 i = bank_number(old_mode);
b5ff1b31 7529 env->banked_r13[i] = env->regs[13];
b5ff1b31
FB
7530 env->banked_spsr[i] = env->spsr;
7531
f5206413 7532 i = bank_number(mode);
b5ff1b31 7533 env->regs[13] = env->banked_r13[i];
b5ff1b31 7534 env->spsr = env->banked_spsr[i];
593cfa2b
PM
7535
7536 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7537 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
b5ff1b31
FB
7538}
7539
0eeb17d6
GB
7540/* Physical Interrupt Target EL Lookup Table
7541 *
7542 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7543 *
7544 * The below multi-dimensional table is used for looking up the target
7545 * exception level given numerous condition criteria. Specifically, the
7546 * target EL is based on SCR and HCR routing controls as well as the
7547 * currently executing EL and secure state.
7548 *
7549 * Dimensions:
7550 * target_el_table[2][2][2][2][2][4]
7551 * | | | | | +--- Current EL
7552 * | | | | +------ Non-secure(0)/Secure(1)
7553 * | | | +--------- HCR mask override
7554 * | | +------------ SCR exec state control
7555 * | +--------------- SCR mask override
7556 * +------------------ 32-bit(0)/64-bit(1) EL3
7557 *
7558 * The table values are as such:
7559 * 0-3 = EL0-EL3
7560 * -1 = Cannot occur
7561 *
7562 * The ARM ARM target EL table includes entries indicating that an "exception
7563 * is not taken". The two cases where this is applicable are:
7564 * 1) An exception is taken from EL3 but the SCR does not have the exception
7565 * routed to EL3.
7566 * 2) An exception is taken from EL2 but the HCR does not have the exception
7567 * routed to EL2.
7568 * In these two cases, the below table contain a target of EL1. This value is
7569 * returned as it is expected that the consumer of the table data will check
7570 * for "target EL >= current EL" to ensure the exception is not taken.
7571 *
7572 * SCR HCR
7573 * 64 EA AMO From
7574 * BIT IRQ IMO Non-secure Secure
7575 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
7576 */
82c39f6a 7577static const int8_t target_el_table[2][2][2][2][2][4] = {
0eeb17d6
GB
7578 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7579 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
7580 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7581 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
7582 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7583 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
7584 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7585 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
7586 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
7587 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
7588 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
7589 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
7590 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7591 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
7592 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7593 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
7594};
7595
7596/*
7597 * Determine the target EL for physical exceptions
7598 */
012a906b
GB
7599uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7600 uint32_t cur_el, bool secure)
0eeb17d6
GB
7601{
7602 CPUARMState *env = cs->env_ptr;
f7778444
RH
7603 bool rw;
7604 bool scr;
7605 bool hcr;
0eeb17d6 7606 int target_el;
2cde031f 7607 /* Is the highest EL AArch64? */
f7778444
RH
7608 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7609 uint64_t hcr_el2;
2cde031f
SS
7610
7611 if (arm_feature(env, ARM_FEATURE_EL3)) {
7612 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7613 } else {
7614 /* Either EL2 is the highest EL (and so the EL2 register width
7615 * is given by is64); or there is no EL2 or EL3, in which case
7616 * the value of 'rw' does not affect the table lookup anyway.
7617 */
7618 rw = is64;
7619 }
0eeb17d6 7620
f7778444 7621 hcr_el2 = arm_hcr_el2_eff(env);
0eeb17d6
GB
7622 switch (excp_idx) {
7623 case EXCP_IRQ:
7624 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
f7778444 7625 hcr = hcr_el2 & HCR_IMO;
0eeb17d6
GB
7626 break;
7627 case EXCP_FIQ:
7628 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
f7778444 7629 hcr = hcr_el2 & HCR_FMO;
0eeb17d6
GB
7630 break;
7631 default:
7632 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
f7778444 7633 hcr = hcr_el2 & HCR_AMO;
0eeb17d6
GB
7634 break;
7635 };
7636
0eeb17d6
GB
7637 /* Perform a table-lookup for the target EL given the current state */
7638 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7639
7640 assert(target_el > 0);
7641
7642 return target_el;
7643}
7644
d87513c0
PM
7645/*
7646 * Return true if the v7M CPACR permits access to the FPU for the specified
7647 * security state and privilege level.
7648 */
7649static bool v7m_cpacr_pass(CPUARMState *env, bool is_secure, bool is_priv)
7650{
7651 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
7652 case 0:
7653 case 2: /* UNPREDICTABLE: we treat like 0 */
7654 return false;
7655 case 1:
7656 return is_priv;
7657 case 3:
7658 return true;
7659 default:
7660 g_assert_not_reached();
7661 }
7662}
7663
a356dacf
PM
7664/*
7665 * What kind of stack write are we doing? This affects how exceptions
7666 * generated during the stacking are treated.
7667 */
7668typedef enum StackingMode {
7669 STACK_NORMAL,
7670 STACK_IGNFAULTS,
7671 STACK_LAZYFP,
7672} StackingMode;
7673
fd592d89 7674static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
a356dacf 7675 ARMMMUIdx mmu_idx, StackingMode mode)
9ee6e8bb 7676{
fd592d89
PM
7677 CPUState *cs = CPU(cpu);
7678 CPUARMState *env = &cpu->env;
7679 MemTxAttrs attrs = {};
7680 MemTxResult txres;
7681 target_ulong page_size;
7682 hwaddr physaddr;
7683 int prot;
ab44c7b7 7684 ARMMMUFaultInfo fi = {};
fd592d89
PM
7685 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7686 int exc;
7687 bool exc_secure;
7688
7689 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
7690 &attrs, &prot, &page_size, &fi, NULL)) {
7691 /* MPU/SAU lookup failed */
7692 if (fi.type == ARMFault_QEMU_SFault) {
a356dacf
PM
7693 if (mode == STACK_LAZYFP) {
7694 qemu_log_mask(CPU_LOG_INT,
7695 "...SecureFault with SFSR.LSPERR "
7696 "during lazy stacking\n");
7697 env->v7m.sfsr |= R_V7M_SFSR_LSPERR_MASK;
7698 } else {
7699 qemu_log_mask(CPU_LOG_INT,
7700 "...SecureFault with SFSR.AUVIOL "
7701 "during stacking\n");
7702 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7703 }
7704 env->v7m.sfsr |= R_V7M_SFSR_SFARVALID_MASK;
fd592d89
PM
7705 env->v7m.sfar = addr;
7706 exc = ARMV7M_EXCP_SECURE;
7707 exc_secure = false;
7708 } else {
a356dacf
PM
7709 if (mode == STACK_LAZYFP) {
7710 qemu_log_mask(CPU_LOG_INT,
7711 "...MemManageFault with CFSR.MLSPERR\n");
7712 env->v7m.cfsr[secure] |= R_V7M_CFSR_MLSPERR_MASK;
7713 } else {
7714 qemu_log_mask(CPU_LOG_INT,
7715 "...MemManageFault with CFSR.MSTKERR\n");
7716 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
7717 }
fd592d89
PM
7718 exc = ARMV7M_EXCP_MEM;
7719 exc_secure = secure;
7720 }
7721 goto pend_fault;
7722 }
7723 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
7724 attrs, &txres);
7725 if (txres != MEMTX_OK) {
7726 /* BusFault trying to write the data */
a356dacf
PM
7727 if (mode == STACK_LAZYFP) {
7728 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.LSPERR\n");
7729 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_LSPERR_MASK;
7730 } else {
7731 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
7732 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
7733 }
fd592d89
PM
7734 exc = ARMV7M_EXCP_BUS;
7735 exc_secure = false;
7736 goto pend_fault;
7737 }
7738 return true;
70d74660 7739
fd592d89
PM
7740pend_fault:
7741 /* By pending the exception at this point we are making
7742 * the IMPDEF choice "overridden exceptions pended" (see the
7743 * MergeExcInfo() pseudocode). The other choice would be to not
7744 * pend them now and then make a choice about which to throw away
7745 * later if we have two derived exceptions.
7746 * The only case when we must not pend the exception but instead
7747 * throw it away is if we are doing the push of the callee registers
a356dacf
PM
7748 * and we've already generated a derived exception (this is indicated
7749 * by the caller passing STACK_IGNFAULTS). Even in this case we will
7750 * still update the fault status registers.
fd592d89 7751 */
a356dacf
PM
7752 switch (mode) {
7753 case STACK_NORMAL:
fd592d89 7754 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
a356dacf
PM
7755 break;
7756 case STACK_LAZYFP:
7757 armv7m_nvic_set_pending_lazyfp(env->nvic, exc, exc_secure);
7758 break;
7759 case STACK_IGNFAULTS:
7760 break;
fd592d89
PM
7761 }
7762 return false;
9ee6e8bb
PB
7763}
7764
95695eff
PM
7765static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
7766 ARMMMUIdx mmu_idx)
7767{
7768 CPUState *cs = CPU(cpu);
7769 CPUARMState *env = &cpu->env;
7770 MemTxAttrs attrs = {};
7771 MemTxResult txres;
7772 target_ulong page_size;
7773 hwaddr physaddr;
7774 int prot;
ab44c7b7 7775 ARMMMUFaultInfo fi = {};
95695eff
PM
7776 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7777 int exc;
7778 bool exc_secure;
7779 uint32_t value;
7780
7781 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
7782 &attrs, &prot, &page_size, &fi, NULL)) {
7783 /* MPU/SAU lookup failed */
7784 if (fi.type == ARMFault_QEMU_SFault) {
7785 qemu_log_mask(CPU_LOG_INT,
7786 "...SecureFault with SFSR.AUVIOL during unstack\n");
7787 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7788 env->v7m.sfar = addr;
7789 exc = ARMV7M_EXCP_SECURE;
7790 exc_secure = false;
7791 } else {
7792 qemu_log_mask(CPU_LOG_INT,
7793 "...MemManageFault with CFSR.MUNSTKERR\n");
7794 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
7795 exc = ARMV7M_EXCP_MEM;
7796 exc_secure = secure;
7797 }
7798 goto pend_fault;
7799 }
7800
7801 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
7802 attrs, &txres);
7803 if (txres != MEMTX_OK) {
7804 /* BusFault trying to read the data */
7805 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
7806 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
7807 exc = ARMV7M_EXCP_BUS;
7808 exc_secure = false;
7809 goto pend_fault;
7810 }
7811
7812 *dest = value;
7813 return true;
7814
7815pend_fault:
7816 /* By pending the exception at this point we are making
7817 * the IMPDEF choice "overridden exceptions pended" (see the
7818 * MergeExcInfo() pseudocode). The other choice would be to not
7819 * pend them now and then make a choice about which to throw away
7820 * later if we have two derived exceptions.
7821 */
7822 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
7823 return false;
7824}
7825
e33cf0f8
PM
7826void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
7827{
7828 /*
7829 * Preserve FP state (because LSPACT was set and we are about
7830 * to execute an FP instruction). This corresponds to the
7831 * PreserveFPState() pseudocode.
7832 * We may throw an exception if the stacking fails.
7833 */
7834 ARMCPU *cpu = arm_env_get_cpu(env);
7835 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
7836 bool negpri = !(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_HFRDY_MASK);
7837 bool is_priv = !(env->v7m.fpccr[is_secure] & R_V7M_FPCCR_USER_MASK);
7838 bool splimviol = env->v7m.fpccr[is_secure] & R_V7M_FPCCR_SPLIMVIOL_MASK;
7839 uint32_t fpcar = env->v7m.fpcar[is_secure];
7840 bool stacked_ok = true;
7841 bool ts = is_secure && (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
7842 bool take_exception;
7843
7844 /* Take the iothread lock as we are going to touch the NVIC */
7845 qemu_mutex_lock_iothread();
7846
7847 /* Check the background context had access to the FPU */
7848 if (!v7m_cpacr_pass(env, is_secure, is_priv)) {
7849 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, is_secure);
7850 env->v7m.cfsr[is_secure] |= R_V7M_CFSR_NOCP_MASK;
7851 stacked_ok = false;
7852 } else if (!is_secure && !extract32(env->v7m.nsacr, 10, 1)) {
7853 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
7854 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
7855 stacked_ok = false;
7856 }
7857
7858 if (!splimviol && stacked_ok) {
7859 /* We only stack if the stack limit wasn't violated */
7860 int i;
7861 ARMMMUIdx mmu_idx;
7862
7863 mmu_idx = arm_v7m_mmu_idx_all(env, is_secure, is_priv, negpri);
7864 for (i = 0; i < (ts ? 32 : 16); i += 2) {
7865 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
7866 uint32_t faddr = fpcar + 4 * i;
7867 uint32_t slo = extract64(dn, 0, 32);
7868 uint32_t shi = extract64(dn, 32, 32);
7869
7870 if (i >= 16) {
7871 faddr += 8; /* skip the slot for the FPSCR */
7872 }
7873 stacked_ok = stacked_ok &&
7874 v7m_stack_write(cpu, faddr, slo, mmu_idx, STACK_LAZYFP) &&
7875 v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, STACK_LAZYFP);
7876 }
7877
7878 stacked_ok = stacked_ok &&
7879 v7m_stack_write(cpu, fpcar + 0x40,
7880 vfp_get_fpscr(env), mmu_idx, STACK_LAZYFP);
7881 }
7882
7883 /*
7884 * We definitely pended an exception, but it's possible that it
7885 * might not be able to be taken now. If its priority permits us
7886 * to take it now, then we must not update the LSPACT or FP regs,
7887 * but instead jump out to take the exception immediately.
7888 * If it's just pending and won't be taken until the current
7889 * handler exits, then we do update LSPACT and the FP regs.
7890 */
7891 take_exception = !stacked_ok &&
7892 armv7m_nvic_can_take_pending_exception(env->nvic);
7893
7894 qemu_mutex_unlock_iothread();
7895
7896 if (take_exception) {
7897 raise_exception_ra(env, EXCP_LAZYFP, 0, 1, GETPC());
7898 }
7899
7900 env->v7m.fpccr[is_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
7901
7902 if (ts) {
7903 /* Clear s0 to s31 and the FPSCR */
7904 int i;
7905
7906 for (i = 0; i < 32; i += 2) {
7907 *aa32_vfp_dreg(env, i / 2) = 0;
7908 }
7909 vfp_set_fpscr(env, 0);
7910 }
7911 /*
7912 * Otherwise s0 to s15 and FPSCR are UNKNOWN; we choose to leave them
7913 * unchanged.
7914 */
7915}
7916
3f0cddee
PM
7917/* Write to v7M CONTROL.SPSEL bit for the specified security bank.
7918 * This may change the current stack pointer between Main and Process
7919 * stack pointers if it is done for the CONTROL register for the current
7920 * security state.
de2db7ec 7921 */
3f0cddee
PM
7922static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
7923 bool new_spsel,
7924 bool secstate)
9ee6e8bb 7925{
3f0cddee 7926 bool old_is_psp = v7m_using_psp(env);
de2db7ec 7927
3f0cddee
PM
7928 env->v7m.control[secstate] =
7929 deposit32(env->v7m.control[secstate],
de2db7ec
PM
7930 R_V7M_CONTROL_SPSEL_SHIFT,
7931 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
7932
3f0cddee
PM
7933 if (secstate == env->v7m.secure) {
7934 bool new_is_psp = v7m_using_psp(env);
7935 uint32_t tmp;
abc24d86 7936
3f0cddee
PM
7937 if (old_is_psp != new_is_psp) {
7938 tmp = env->v7m.other_sp;
7939 env->v7m.other_sp = env->regs[13];
7940 env->regs[13] = tmp;
7941 }
de2db7ec
PM
7942 }
7943}
7944
3f0cddee
PM
7945/* Write to v7M CONTROL.SPSEL bit. This may change the current
7946 * stack pointer between Main and Process stack pointers.
7947 */
7948static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
7949{
7950 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
7951}
7952
de2db7ec
PM
7953void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
7954{
7955 /* Write a new value to v7m.exception, thus transitioning into or out
7956 * of Handler mode; this may result in a change of active stack pointer.
7957 */
7958 bool new_is_psp, old_is_psp = v7m_using_psp(env);
7959 uint32_t tmp;
abc24d86 7960
de2db7ec
PM
7961 env->v7m.exception = new_exc;
7962
7963 new_is_psp = v7m_using_psp(env);
7964
7965 if (old_is_psp != new_is_psp) {
7966 tmp = env->v7m.other_sp;
7967 env->v7m.other_sp = env->regs[13];
7968 env->regs[13] = tmp;
9ee6e8bb
PB
7969 }
7970}
7971
fb602cb7
PM
7972/* Switch M profile security state between NS and S */
7973static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
7974{
7975 uint32_t new_ss_msp, new_ss_psp;
7976
7977 if (env->v7m.secure == new_secstate) {
7978 return;
7979 }
7980
7981 /* All the banked state is accessed by looking at env->v7m.secure
7982 * except for the stack pointer; rearrange the SP appropriately.
7983 */
7984 new_ss_msp = env->v7m.other_ss_msp;
7985 new_ss_psp = env->v7m.other_ss_psp;
7986
7987 if (v7m_using_psp(env)) {
7988 env->v7m.other_ss_psp = env->regs[13];
7989 env->v7m.other_ss_msp = env->v7m.other_sp;
7990 } else {
7991 env->v7m.other_ss_msp = env->regs[13];
7992 env->v7m.other_ss_psp = env->v7m.other_sp;
7993 }
7994
7995 env->v7m.secure = new_secstate;
7996
7997 if (v7m_using_psp(env)) {
7998 env->regs[13] = new_ss_psp;
7999 env->v7m.other_sp = new_ss_msp;
8000 } else {
8001 env->regs[13] = new_ss_msp;
8002 env->v7m.other_sp = new_ss_psp;
8003 }
8004}
8005
8006void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
8007{
8008 /* Handle v7M BXNS:
8009 * - if the return value is a magic value, do exception return (like BX)
8010 * - otherwise bit 0 of the return value is the target security state
8011 */
d02a8698
PM
8012 uint32_t min_magic;
8013
8014 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8015 /* Covers FNC_RETURN and EXC_RETURN magic */
8016 min_magic = FNC_RETURN_MIN_MAGIC;
8017 } else {
8018 /* EXC_RETURN magic only */
8019 min_magic = EXC_RETURN_MIN_MAGIC;
8020 }
8021
8022 if (dest >= min_magic) {
fb602cb7
PM
8023 /* This is an exception return magic value; put it where
8024 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
8025 * Note that if we ever add gen_ss_advance() singlestep support to
8026 * M profile this should count as an "instruction execution complete"
8027 * event (compare gen_bx_excret_final_code()).
8028 */
8029 env->regs[15] = dest & ~1;
8030 env->thumb = dest & 1;
8031 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
8032 /* notreached */
8033 }
8034
8035 /* translate.c should have made BXNS UNDEF unless we're secure */
8036 assert(env->v7m.secure);
8037
3cd6726f
PM
8038 if (!(dest & 1)) {
8039 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8040 }
fb602cb7
PM
8041 switch_v7m_security_state(env, dest & 1);
8042 env->thumb = 1;
8043 env->regs[15] = dest & ~1;
8044}
8045
3e3fa230
PM
8046void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
8047{
8048 /* Handle v7M BLXNS:
8049 * - bit 0 of the destination address is the target security state
8050 */
8051
8052 /* At this point regs[15] is the address just after the BLXNS */
8053 uint32_t nextinst = env->regs[15] | 1;
8054 uint32_t sp = env->regs[13] - 8;
8055 uint32_t saved_psr;
8056
8057 /* translate.c will have made BLXNS UNDEF unless we're secure */
8058 assert(env->v7m.secure);
8059
8060 if (dest & 1) {
8061 /* target is Secure, so this is just a normal BLX,
8062 * except that the low bit doesn't indicate Thumb/not.
8063 */
8064 env->regs[14] = nextinst;
8065 env->thumb = 1;
8066 env->regs[15] = dest & ~1;
8067 return;
8068 }
8069
8070 /* Target is non-secure: first push a stack frame */
8071 if (!QEMU_IS_ALIGNED(sp, 8)) {
8072 qemu_log_mask(LOG_GUEST_ERROR,
8073 "BLXNS with misaligned SP is UNPREDICTABLE\n");
8074 }
8075
597610eb
PM
8076 if (sp < v7m_sp_limit(env)) {
8077 raise_exception(env, EXCP_STKOF, 0, 1);
8078 }
8079
3e3fa230
PM
8080 saved_psr = env->v7m.exception;
8081 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
8082 saved_psr |= XPSR_SFPA;
8083 }
8084
8085 /* Note that these stores can throw exceptions on MPU faults */
8086 cpu_stl_data(env, sp, nextinst);
8087 cpu_stl_data(env, sp + 4, saved_psr);
8088
8089 env->regs[13] = sp;
8090 env->regs[14] = 0xfeffffff;
8091 if (arm_v7m_is_handler_mode(env)) {
8092 /* Write a dummy value to IPSR, to avoid leaking the current secure
8093 * exception number to non-secure code. This is guaranteed not
8094 * to cause write_v7m_exception() to actually change stacks.
8095 */
8096 write_v7m_exception(env, 1);
8097 }
3cd6726f 8098 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
3e3fa230
PM
8099 switch_v7m_security_state(env, 0);
8100 env->thumb = 1;
8101 env->regs[15] = dest;
8102}
8103
5b522399
PM
8104static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
8105 bool spsel)
8106{
8107 /* Return a pointer to the location where we currently store the
8108 * stack pointer for the requested security state and thread mode.
8109 * This pointer will become invalid if the CPU state is updated
8110 * such that the stack pointers are switched around (eg changing
8111 * the SPSEL control bit).
8112 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
8113 * Unlike that pseudocode, we require the caller to pass us in the
8114 * SPSEL control bit value; this is because we also use this
8115 * function in handling of pushing of the callee-saves registers
8116 * part of the v8M stack frame (pseudocode PushCalleeStack()),
8117 * and in the tailchain codepath the SPSEL bit comes from the exception
8118 * return magic LR value from the previous exception. The pseudocode
8119 * opencodes the stack-selection in PushCalleeStack(), but we prefer
8120 * to make this utility function generic enough to do the job.
8121 */
8122 bool want_psp = threadmode && spsel;
8123
8124 if (secure == env->v7m.secure) {
de2db7ec
PM
8125 if (want_psp == v7m_using_psp(env)) {
8126 return &env->regs[13];
8127 } else {
8128 return &env->v7m.other_sp;
8129 }
5b522399
PM
8130 } else {
8131 if (want_psp) {
8132 return &env->v7m.other_ss_psp;
8133 } else {
8134 return &env->v7m.other_ss_msp;
8135 }
8136 }
8137}
8138
600c33f2
PM
8139static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
8140 uint32_t *pvec)
39ae2474
PM
8141{
8142 CPUState *cs = CPU(cpu);
8143 CPUARMState *env = &cpu->env;
8144 MemTxResult result;
600c33f2
PM
8145 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
8146 uint32_t vector_entry;
8147 MemTxAttrs attrs = {};
8148 ARMMMUIdx mmu_idx;
8149 bool exc_secure;
8150
8151 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
39ae2474 8152
600c33f2
PM
8153 /* We don't do a get_phys_addr() here because the rules for vector
8154 * loads are special: they always use the default memory map, and
8155 * the default memory map permits reads from all addresses.
8156 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
8157 * that we want this special case which would always say "yes",
8158 * we just do the SAU lookup here followed by a direct physical load.
8159 */
8160 attrs.secure = targets_secure;
8161 attrs.user = false;
8162
8163 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8164 V8M_SAttributes sattrs = {};
8165
8166 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
8167 if (sattrs.ns) {
8168 attrs.secure = false;
8169 } else if (!targets_secure) {
8170 /* NS access to S memory */
8171 goto load_fail;
8172 }
8173 }
8174
8175 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
8176 attrs, &result);
39ae2474 8177 if (result != MEMTX_OK) {
600c33f2 8178 goto load_fail;
39ae2474 8179 }
600c33f2
PM
8180 *pvec = vector_entry;
8181 return true;
8182
8183load_fail:
8184 /* All vector table fetch fails are reported as HardFault, with
8185 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
8186 * technically the underlying exception is a MemManage or BusFault
8187 * that is escalated to HardFault.) This is a terminal exception,
8188 * so we will either take the HardFault immediately or else enter
8189 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
8190 */
8191 exc_secure = targets_secure ||
8192 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
8193 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
8194 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
8195 return false;
39ae2474
PM
8196}
8197
0dc51d66
PM
8198static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr)
8199{
8200 /*
8201 * Return the integrity signature value for the callee-saves
8202 * stack frame section. @lr is the exception return payload/LR value
8203 * whose FType bit forms bit 0 of the signature if FP is present.
8204 */
8205 uint32_t sig = 0xfefa125a;
8206
8207 if (!arm_feature(env, ARM_FEATURE_VFP) || (lr & R_V7M_EXCRET_FTYPE_MASK)) {
8208 sig |= 1;
8209 }
8210 return sig;
8211}
8212
65b4234f 8213static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
0094ca70 8214 bool ignore_faults)
d3392718
PM
8215{
8216 /* For v8M, push the callee-saves register part of the stack frame.
8217 * Compare the v8M pseudocode PushCalleeStack().
8218 * In the tailchaining case this may not be the current stack.
8219 */
8220 CPUARMState *env = &cpu->env;
d3392718
PM
8221 uint32_t *frame_sp_p;
8222 uint32_t frameptr;
65b4234f
PM
8223 ARMMMUIdx mmu_idx;
8224 bool stacked_ok;
c32da7aa
PM
8225 uint32_t limit;
8226 bool want_psp;
0dc51d66 8227 uint32_t sig;
a356dacf 8228 StackingMode smode = ignore_faults ? STACK_IGNFAULTS : STACK_NORMAL;
d3392718
PM
8229
8230 if (dotailchain) {
65b4234f
PM
8231 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
8232 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
8233 !mode;
8234
8235 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
8236 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
d3392718 8237 lr & R_V7M_EXCRET_SPSEL_MASK);
c32da7aa
PM
8238 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
8239 if (want_psp) {
8240 limit = env->v7m.psplim[M_REG_S];
8241 } else {
8242 limit = env->v7m.msplim[M_REG_S];
8243 }
d3392718 8244 } else {
50494a27 8245 mmu_idx = arm_mmu_idx(env);
d3392718 8246 frame_sp_p = &env->regs[13];
c32da7aa 8247 limit = v7m_sp_limit(env);
d3392718
PM
8248 }
8249
8250 frameptr = *frame_sp_p - 0x28;
c32da7aa
PM
8251 if (frameptr < limit) {
8252 /*
8253 * Stack limit failure: set SP to the limit value, and generate
8254 * STKOF UsageFault. Stack pushes below the limit must not be
8255 * performed. It is IMPDEF whether pushes above the limit are
8256 * performed; we choose not to.
8257 */
8258 qemu_log_mask(CPU_LOG_INT,
8259 "...STKOF during callee-saves register stacking\n");
8260 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8261 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8262 env->v7m.secure);
8263 *frame_sp_p = limit;
8264 return true;
8265 }
d3392718 8266
65b4234f
PM
8267 /* Write as much of the stack frame as we can. A write failure may
8268 * cause us to pend a derived exception.
8269 */
0dc51d66 8270 sig = v7m_integrity_sig(env, lr);
65b4234f 8271 stacked_ok =
a356dacf
PM
8272 v7m_stack_write(cpu, frameptr, sig, mmu_idx, smode) &&
8273 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, smode) &&
8274 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, smode) &&
8275 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, smode) &&
8276 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, smode) &&
8277 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, smode) &&
8278 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, smode) &&
8279 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, smode) &&
8280 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, smode);
65b4234f 8281
c32da7aa 8282 /* Update SP regardless of whether any of the stack accesses failed. */
d3392718 8283 *frame_sp_p = frameptr;
65b4234f
PM
8284
8285 return !stacked_ok;
d3392718
PM
8286}
8287
0094ca70
PM
8288static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
8289 bool ignore_stackfaults)
39ae2474
PM
8290{
8291 /* Do the "take the exception" parts of exception entry,
8292 * but not the pushing of state to the stack. This is
8293 * similar to the pseudocode ExceptionTaken() function.
8294 */
8295 CPUARMState *env = &cpu->env;
8296 uint32_t addr;
d3392718 8297 bool targets_secure;
6c948518 8298 int exc;
65b4234f 8299 bool push_failed = false;
d3392718 8300
6c948518 8301 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
a9074977
PM
8302 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
8303 targets_secure ? "secure" : "nonsecure", exc);
d3392718 8304
60fba59a
PM
8305 if (dotailchain) {
8306 /* Sanitize LR FType and PREFIX bits */
8307 if (!arm_feature(env, ARM_FEATURE_VFP)) {
8308 lr |= R_V7M_EXCRET_FTYPE_MASK;
8309 }
8310 lr = deposit32(lr, 24, 8, 0xff);
8311 }
8312
d3392718
PM
8313 if (arm_feature(env, ARM_FEATURE_V8)) {
8314 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8315 (lr & R_V7M_EXCRET_S_MASK)) {
8316 /* The background code (the owner of the registers in the
8317 * exception frame) is Secure. This means it may either already
8318 * have or now needs to push callee-saves registers.
8319 */
8320 if (targets_secure) {
8321 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
8322 /* We took an exception from Secure to NonSecure
8323 * (which means the callee-saved registers got stacked)
8324 * and are now tailchaining to a Secure exception.
8325 * Clear DCRS so eventual return from this Secure
8326 * exception unstacks the callee-saved registers.
8327 */
8328 lr &= ~R_V7M_EXCRET_DCRS_MASK;
8329 }
8330 } else {
8331 /* We're going to a non-secure exception; push the
8332 * callee-saves registers to the stack now, if they're
8333 * not already saved.
8334 */
8335 if (lr & R_V7M_EXCRET_DCRS_MASK &&
7b73a1ca 8336 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
65b4234f
PM
8337 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
8338 ignore_stackfaults);
d3392718
PM
8339 }
8340 lr |= R_V7M_EXCRET_DCRS_MASK;
8341 }
8342 }
8343
8344 lr &= ~R_V7M_EXCRET_ES_MASK;
8345 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8346 lr |= R_V7M_EXCRET_ES_MASK;
8347 }
8348 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
8349 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
8350 lr |= R_V7M_EXCRET_SPSEL_MASK;
8351 }
8352
8353 /* Clear registers if necessary to prevent non-secure exception
8354 * code being able to see register values from secure code.
8355 * Where register values become architecturally UNKNOWN we leave
8356 * them with their previous values.
8357 */
8358 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8359 if (!targets_secure) {
8360 /* Always clear the caller-saved registers (they have been
8361 * pushed to the stack earlier in v7m_push_stack()).
8362 * Clear callee-saved registers if the background code is
8363 * Secure (in which case these regs were saved in
8364 * v7m_push_callee_stack()).
8365 */
8366 int i;
8367
8368 for (i = 0; i < 13; i++) {
8369 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
8370 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
8371 env->regs[i] = 0;
8372 }
8373 }
8374 /* Clear EAPSR */
8375 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
8376 }
8377 }
8378 }
39ae2474 8379
65b4234f
PM
8380 if (push_failed && !ignore_stackfaults) {
8381 /* Derived exception on callee-saves register stacking:
8382 * we might now want to take a different exception which
8383 * targets a different security state, so try again from the top.
8384 */
a9074977
PM
8385 qemu_log_mask(CPU_LOG_INT,
8386 "...derived exception on callee-saves register stacking");
65b4234f
PM
8387 v7m_exception_taken(cpu, lr, true, true);
8388 return;
8389 }
8390
600c33f2
PM
8391 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
8392 /* Vector load failed: derived exception */
a9074977 8393 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
600c33f2
PM
8394 v7m_exception_taken(cpu, lr, true, true);
8395 return;
8396 }
6c948518
PM
8397
8398 /* Now we've done everything that might cause a derived exception
8399 * we can go ahead and activate whichever exception we're going to
8400 * take (which might now be the derived exception).
8401 */
8402 armv7m_nvic_acknowledge_irq(env->nvic);
8403
d3392718
PM
8404 /* Switch to target security state -- must do this before writing SPSEL */
8405 switch_v7m_security_state(env, targets_secure);
de2db7ec 8406 write_v7m_control_spsel(env, 0);
dc3c4c14 8407 arm_clear_exclusive(env);
0ed377a8
PM
8408 /* Clear SFPA and FPCA (has no effect if no FPU) */
8409 env->v7m.control[M_REG_S] &=
8410 ~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK);
39ae2474
PM
8411 /* Clear IT bits */
8412 env->condexec_bits = 0;
8413 env->regs[14] = lr;
39ae2474
PM
8414 env->regs[15] = addr & 0xfffffffe;
8415 env->thumb = addr & 1;
8416}
8417
b593c2b8
PM
8418static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr,
8419 bool apply_splim)
8420{
8421 /*
8422 * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
8423 * that we will need later in order to do lazy FP reg stacking.
8424 */
8425 bool is_secure = env->v7m.secure;
8426 void *nvic = env->nvic;
8427 /*
8428 * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
8429 * are banked and we want to update the bit in the bank for the
8430 * current security state; and in one case we want to specifically
8431 * update the NS banked version of a bit even if we are secure.
8432 */
8433 uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S];
8434 uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS];
8435 uint32_t *fpccr = &env->v7m.fpccr[is_secure];
8436 bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy;
8437
8438 env->v7m.fpcar[is_secure] = frameptr & ~0x7;
8439
8440 if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) {
8441 bool splimviol;
8442 uint32_t splim = v7m_sp_limit(env);
8443 bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) &&
8444 (env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK);
8445
8446 splimviol = !ign && frameptr < splim;
8447 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol);
8448 }
8449
8450 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1);
8451
8452 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure);
8453
8454 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0);
8455
8456 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD,
8457 !arm_v7m_is_handler_mode(env));
8458
8459 hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false);
8460 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
8461
8462 bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false);
8463 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
8464
8465 mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure);
8466 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy);
8467
8468 ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false);
8469 *fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy);
8470
8471 monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false);
8472 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy);
8473
8474 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8475 s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true);
8476 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy);
8477
8478 sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false);
8479 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy);
8480 }
8481}
8482
019076b0
PM
8483void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
8484{
8485 /* fptr is the value of Rn, the frame pointer we store the FP regs to */
8486 bool s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
8487 bool lspact = env->v7m.fpccr[s] & R_V7M_FPCCR_LSPACT_MASK;
8488
8489 assert(env->v7m.secure);
8490
8491 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
8492 return;
8493 }
8494
8495 /* Check access to the coprocessor is permitted */
8496 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
8497 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
8498 }
8499
8500 if (lspact) {
8501 /* LSPACT should not be active when there is active FP state */
8502 raise_exception_ra(env, EXCP_LSERR, 0, 1, GETPC());
8503 }
8504
8505 if (fptr & 7) {
8506 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
8507 }
8508
8509 /*
8510 * Note that we do not use v7m_stack_write() here, because the
8511 * accesses should not set the FSR bits for stacking errors if they
8512 * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK
8513 * or AccType_LAZYFP). Faults in cpu_stl_data() will throw exceptions
8514 * and longjmp out.
8515 */
8516 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
8517 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
8518 int i;
8519
8520 for (i = 0; i < (ts ? 32 : 16); i += 2) {
8521 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
8522 uint32_t faddr = fptr + 4 * i;
8523 uint32_t slo = extract64(dn, 0, 32);
8524 uint32_t shi = extract64(dn, 32, 32);
8525
8526 if (i >= 16) {
8527 faddr += 8; /* skip the slot for the FPSCR */
8528 }
8529 cpu_stl_data(env, faddr, slo);
8530 cpu_stl_data(env, faddr + 4, shi);
8531 }
8532 cpu_stl_data(env, fptr + 0x40, vfp_get_fpscr(env));
8533
8534 /*
8535 * If TS is 0 then s0 to s15 and FPSCR are UNKNOWN; we choose to
8536 * leave them unchanged, matching our choice in v7m_preserve_fp_state.
8537 */
8538 if (ts) {
8539 for (i = 0; i < 32; i += 2) {
8540 *aa32_vfp_dreg(env, i / 2) = 0;
8541 }
8542 vfp_set_fpscr(env, 0);
8543 }
8544 } else {
8545 v7m_update_fpccr(env, fptr, false);
8546 }
8547
8548 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
8549}
8550
956fe143
PM
8551void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
8552{
8553 /* fptr is the value of Rn, the frame pointer we load the FP regs from */
8554 assert(env->v7m.secure);
8555
8556 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
8557 return;
8558 }
8559
8560 /* Check access to the coprocessor is permitted */
8561 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
8562 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
8563 }
8564
8565 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
8566 /* State in FP is still valid */
8567 env->v7m.fpccr[M_REG_S] &= ~R_V7M_FPCCR_LSPACT_MASK;
8568 } else {
8569 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
8570 int i;
8571 uint32_t fpscr;
8572
8573 if (fptr & 7) {
8574 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
8575 }
8576
8577 for (i = 0; i < (ts ? 32 : 16); i += 2) {
8578 uint32_t slo, shi;
8579 uint64_t dn;
8580 uint32_t faddr = fptr + 4 * i;
8581
8582 if (i >= 16) {
8583 faddr += 8; /* skip the slot for the FPSCR */
8584 }
8585
8586 slo = cpu_ldl_data(env, faddr);
8587 shi = cpu_ldl_data(env, faddr + 4);
8588
8589 dn = (uint64_t) shi << 32 | slo;
8590 *aa32_vfp_dreg(env, i / 2) = dn;
8591 }
8592 fpscr = cpu_ldl_data(env, fptr + 0x40);
8593 vfp_set_fpscr(env, fpscr);
8594 }
8595
8596 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
8597}
8598
0094ca70 8599static bool v7m_push_stack(ARMCPU *cpu)
39ae2474
PM
8600{
8601 /* Do the "set up stack frame" part of exception entry,
8602 * similar to pseudocode PushStack().
0094ca70
PM
8603 * Return true if we generate a derived exception (and so
8604 * should ignore further stack faults trying to process
8605 * that derived exception.)
39ae2474 8606 */
3432c79a 8607 bool stacked_ok = true, limitviol = false;
39ae2474
PM
8608 CPUARMState *env = &cpu->env;
8609 uint32_t xpsr = xpsr_read(env);
fd592d89 8610 uint32_t frameptr = env->regs[13];
50494a27 8611 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
0ed377a8
PM
8612 uint32_t framesize;
8613 bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1);
8614
8615 if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) &&
8616 (env->v7m.secure || nsacr_cp10)) {
8617 if (env->v7m.secure &&
8618 env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) {
8619 framesize = 0xa8;
8620 } else {
8621 framesize = 0x68;
8622 }
8623 } else {
8624 framesize = 0x20;
8625 }
39ae2474
PM
8626
8627 /* Align stack pointer if the guest wants that */
fd592d89 8628 if ((frameptr & 4) &&
9d40cd8a 8629 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
fd592d89 8630 frameptr -= 4;
987ab45e 8631 xpsr |= XPSR_SPREALIGN;
39ae2474 8632 }
0094ca70 8633
0ed377a8
PM
8634 xpsr &= ~XPSR_SFPA;
8635 if (env->v7m.secure &&
8636 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
8637 xpsr |= XPSR_SFPA;
8638 }
8639
8640 frameptr -= framesize;
fd592d89 8641
c32da7aa
PM
8642 if (arm_feature(env, ARM_FEATURE_V8)) {
8643 uint32_t limit = v7m_sp_limit(env);
8644
8645 if (frameptr < limit) {
8646 /*
8647 * Stack limit failure: set SP to the limit value, and generate
8648 * STKOF UsageFault. Stack pushes below the limit must not be
8649 * performed. It is IMPDEF whether pushes above the limit are
8650 * performed; we choose not to.
8651 */
8652 qemu_log_mask(CPU_LOG_INT,
8653 "...STKOF during stacking\n");
8654 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8655 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8656 env->v7m.secure);
8657 env->regs[13] = limit;
3432c79a
PM
8658 /*
8659 * We won't try to perform any further memory accesses but
8660 * we must continue through the following code to check for
8661 * permission faults during FPU state preservation, and we
8662 * must update FPCCR if lazy stacking is enabled.
8663 */
8664 limitviol = true;
8665 stacked_ok = false;
c32da7aa
PM
8666 }
8667 }
8668
fd592d89
PM
8669 /* Write as much of the stack frame as we can. If we fail a stack
8670 * write this will result in a derived exception being pended
8671 * (which may be taken in preference to the one we started with
8672 * if it has higher priority).
8673 */
3432c79a 8674 stacked_ok = stacked_ok &&
a356dacf
PM
8675 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, STACK_NORMAL) &&
8676 v7m_stack_write(cpu, frameptr + 4, env->regs[1],
8677 mmu_idx, STACK_NORMAL) &&
8678 v7m_stack_write(cpu, frameptr + 8, env->regs[2],
8679 mmu_idx, STACK_NORMAL) &&
8680 v7m_stack_write(cpu, frameptr + 12, env->regs[3],
8681 mmu_idx, STACK_NORMAL) &&
8682 v7m_stack_write(cpu, frameptr + 16, env->regs[12],
8683 mmu_idx, STACK_NORMAL) &&
8684 v7m_stack_write(cpu, frameptr + 20, env->regs[14],
8685 mmu_idx, STACK_NORMAL) &&
8686 v7m_stack_write(cpu, frameptr + 24, env->regs[15],
8687 mmu_idx, STACK_NORMAL) &&
8688 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, STACK_NORMAL);
fd592d89 8689
0ed377a8
PM
8690 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) {
8691 /* FPU is active, try to save its registers */
8692 bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
8693 bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK;
8694
8695 if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8696 qemu_log_mask(CPU_LOG_INT,
8697 "...SecureFault because LSPACT and FPCA both set\n");
8698 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
8699 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8700 } else if (!env->v7m.secure && !nsacr_cp10) {
8701 qemu_log_mask(CPU_LOG_INT,
8702 "...Secure UsageFault with CFSR.NOCP because "
8703 "NSACR.CP10 prevents stacking FP regs\n");
8704 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
8705 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
8706 } else {
8707 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
8708 /* Lazy stacking disabled, save registers now */
8709 int i;
8710 bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure,
8711 arm_current_el(env) != 0);
8712
8713 if (stacked_ok && !cpacr_pass) {
8714 /*
8715 * Take UsageFault if CPACR forbids access. The pseudocode
8716 * here does a full CheckCPEnabled() but we know the NSACR
8717 * check can never fail as we have already handled that.
8718 */
8719 qemu_log_mask(CPU_LOG_INT,
8720 "...UsageFault with CFSR.NOCP because "
8721 "CPACR.CP10 prevents stacking FP regs\n");
8722 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8723 env->v7m.secure);
8724 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
8725 stacked_ok = false;
8726 }
8727
8728 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
8729 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
8730 uint32_t faddr = frameptr + 0x20 + 4 * i;
8731 uint32_t slo = extract64(dn, 0, 32);
8732 uint32_t shi = extract64(dn, 32, 32);
8733
8734 if (i >= 16) {
8735 faddr += 8; /* skip the slot for the FPSCR */
8736 }
8737 stacked_ok = stacked_ok &&
a356dacf
PM
8738 v7m_stack_write(cpu, faddr, slo,
8739 mmu_idx, STACK_NORMAL) &&
8740 v7m_stack_write(cpu, faddr + 4, shi,
8741 mmu_idx, STACK_NORMAL);
0ed377a8
PM
8742 }
8743 stacked_ok = stacked_ok &&
8744 v7m_stack_write(cpu, frameptr + 0x60,
a356dacf 8745 vfp_get_fpscr(env), mmu_idx, STACK_NORMAL);
0ed377a8
PM
8746 if (cpacr_pass) {
8747 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
8748 *aa32_vfp_dreg(env, i / 2) = 0;
8749 }
8750 vfp_set_fpscr(env, 0);
8751 }
8752 } else {
8753 /* Lazy stacking enabled, save necessary info to stack later */
b593c2b8 8754 v7m_update_fpccr(env, frameptr + 0x20, true);
0ed377a8
PM
8755 }
8756 }
8757 }
8758
3432c79a
PM
8759 /*
8760 * If we broke a stack limit then SP was already updated earlier;
8761 * otherwise we update SP regardless of whether any of the stack
8762 * accesses failed or we took some other kind of fault.
8763 */
8764 if (!limitviol) {
8765 env->regs[13] = frameptr;
8766 }
fd592d89
PM
8767
8768 return !stacked_ok;
39ae2474
PM
8769}
8770
aa488fe3 8771static void do_v7m_exception_exit(ARMCPU *cpu)
9ee6e8bb 8772{
aa488fe3 8773 CPUARMState *env = &cpu->env;
351e527a 8774 uint32_t excret;
f1e2598c 8775 uint32_t xpsr, xpsr_mask;
aa488fe3 8776 bool ufault = false;
bfb2eb52
PM
8777 bool sfault = false;
8778 bool return_to_sp_process;
8779 bool return_to_handler;
aa488fe3 8780 bool rettobase = false;
5cb18069 8781 bool exc_secure = false;
5b522399 8782 bool return_to_secure;
6808c4d2
PM
8783 bool ftype;
8784 bool restore_s16_s31;
aa488fe3 8785
d02a8698
PM
8786 /* If we're not in Handler mode then jumps to magic exception-exit
8787 * addresses don't have magic behaviour. However for the v8M
8788 * security extensions the magic secure-function-return has to
8789 * work in thread mode too, so to avoid doing an extra check in
8790 * the generated code we allow exception-exit magic to also cause the
8791 * internal exception and bring us here in thread mode. Correct code
8792 * will never try to do this (the following insn fetch will always
8793 * fault) so we the overhead of having taken an unnecessary exception
8794 * doesn't matter.
aa488fe3 8795 */
d02a8698
PM
8796 if (!arm_v7m_is_handler_mode(env)) {
8797 return;
8798 }
aa488fe3
PM
8799
8800 /* In the spec pseudocode ExceptionReturn() is called directly
8801 * from BXWritePC() and gets the full target PC value including
8802 * bit zero. In QEMU's implementation we treat it as a normal
8803 * jump-to-register (which is then caught later on), and so split
8804 * the target value up between env->regs[15] and env->thumb in
8805 * gen_bx(). Reconstitute it.
8806 */
351e527a 8807 excret = env->regs[15];
aa488fe3 8808 if (env->thumb) {
351e527a 8809 excret |= 1;
aa488fe3
PM
8810 }
8811
8812 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
8813 " previous exception %d\n",
351e527a 8814 excret, env->v7m.exception);
aa488fe3 8815
351e527a 8816 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
aa488fe3 8817 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
351e527a
PM
8818 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
8819 excret);
aa488fe3
PM
8820 }
8821
6808c4d2
PM
8822 ftype = excret & R_V7M_EXCRET_FTYPE_MASK;
8823
8824 if (!arm_feature(env, ARM_FEATURE_VFP) && !ftype) {
8825 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero FTYPE in exception "
8826 "exit PC value 0x%" PRIx32 " is UNPREDICTABLE "
8827 "if FPU not present\n",
8828 excret);
8829 ftype = true;
8830 }
8831
bfb2eb52
PM
8832 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8833 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
8834 * we pick which FAULTMASK to clear.
8835 */
8836 if (!env->v7m.secure &&
8837 ((excret & R_V7M_EXCRET_ES_MASK) ||
8838 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
8839 sfault = 1;
8840 /* For all other purposes, treat ES as 0 (R_HXSR) */
8841 excret &= ~R_V7M_EXCRET_ES_MASK;
8842 }
b8109608 8843 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
bfb2eb52
PM
8844 }
8845
a20ee600 8846 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
42a6686b
PM
8847 /* Auto-clear FAULTMASK on return from other than NMI.
8848 * If the security extension is implemented then this only
8849 * happens if the raw execution priority is >= 0; the
8850 * value of the ES bit in the exception return value indicates
8851 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
8852 */
8853 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
42a6686b 8854 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
5cb18069 8855 env->v7m.faultmask[exc_secure] = 0;
42a6686b
PM
8856 }
8857 } else {
8858 env->v7m.faultmask[M_REG_NS] = 0;
8859 }
a20ee600 8860 }
aa488fe3 8861
5cb18069
PM
8862 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
8863 exc_secure)) {
aa488fe3
PM
8864 case -1:
8865 /* attempt to exit an exception that isn't active */
8866 ufault = true;
8867 break;
8868 case 0:
8869 /* still an irq active now */
8870 break;
8871 case 1:
8872 /* we returned to base exception level, no nesting.
8873 * (In the pseudocode this is written using "NestedActivation != 1"
8874 * where we have 'rettobase == false'.)
8875 */
8876 rettobase = true;
8877 break;
8878 default:
8879 g_assert_not_reached();
8880 }
8881
bfb2eb52
PM
8882 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
8883 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
5b522399
PM
8884 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8885 (excret & R_V7M_EXCRET_S_MASK);
8886
bfb2eb52
PM
8887 if (arm_feature(env, ARM_FEATURE_V8)) {
8888 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8889 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
8890 * we choose to take the UsageFault.
8891 */
8892 if ((excret & R_V7M_EXCRET_S_MASK) ||
8893 (excret & R_V7M_EXCRET_ES_MASK) ||
8894 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
8895 ufault = true;
8896 }
8897 }
8898 if (excret & R_V7M_EXCRET_RES0_MASK) {
aa488fe3
PM
8899 ufault = true;
8900 }
bfb2eb52
PM
8901 } else {
8902 /* For v7M we only recognize certain combinations of the low bits */
8903 switch (excret & 0xf) {
8904 case 1: /* Return to Handler */
8905 break;
8906 case 13: /* Return to Thread using Process stack */
8907 case 9: /* Return to Thread using Main stack */
8908 /* We only need to check NONBASETHRDENA for v7M, because in
8909 * v8M this bit does not exist (it is RES1).
8910 */
8911 if (!rettobase &&
8912 !(env->v7m.ccr[env->v7m.secure] &
8913 R_V7M_CCR_NONBASETHRDENA_MASK)) {
8914 ufault = true;
8915 }
8916 break;
8917 default:
8918 ufault = true;
8919 }
8920 }
8921
89b1fec1
PM
8922 /*
8923 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
8924 * Handler mode (and will be until we write the new XPSR.Interrupt
8925 * field) this does not switch around the current stack pointer.
8926 * We must do this before we do any kind of tailchaining, including
8927 * for the derived exceptions on integrity check failures, or we will
8928 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
8929 */
8930 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
8931
6808c4d2
PM
8932 /*
8933 * Clear scratch FP values left in caller saved registers; this
8934 * must happen before any kind of tail chaining.
8935 */
8936 if ((env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_CLRONRET_MASK) &&
8937 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
8938 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
8939 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
8940 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8941 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8942 "stackframe: error during lazy state deactivation\n");
8943 v7m_exception_taken(cpu, excret, true, false);
8944 return;
8945 } else {
8946 /* Clear s0..s15 and FPSCR */
8947 int i;
8948
8949 for (i = 0; i < 16; i += 2) {
8950 *aa32_vfp_dreg(env, i / 2) = 0;
8951 }
8952 vfp_set_fpscr(env, 0);
8953 }
8954 }
8955
bfb2eb52
PM
8956 if (sfault) {
8957 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
8958 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
bfb2eb52
PM
8959 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8960 "stackframe: failed EXC_RETURN.ES validity check\n");
a9074977 8961 v7m_exception_taken(cpu, excret, true, false);
bfb2eb52 8962 return;
aa488fe3
PM
8963 }
8964
8965 if (ufault) {
8966 /* Bad exception return: instead of popping the exception
8967 * stack, directly take a usage fault on the current stack.
8968 */
334e8dad 8969 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
2fb50a33 8970 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
aa488fe3
PM
8971 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8972 "stackframe: failed exception return integrity check\n");
a9074977 8973 v7m_exception_taken(cpu, excret, true, false);
aa488fe3 8974 return;
a20ee600 8975 }
9ee6e8bb 8976
5f62d3b9
PM
8977 /*
8978 * Tailchaining: if there is currently a pending exception that
8979 * is high enough priority to preempt execution at the level we're
8980 * about to return to, then just directly take that exception now,
8981 * avoiding an unstack-and-then-stack. Note that now we have
8982 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
8983 * our current execution priority is already the execution priority we are
8984 * returning to -- none of the state we would unstack or set based on
8985 * the EXCRET value affects it.
8986 */
8987 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
8988 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
8989 v7m_exception_taken(cpu, excret, true, false);
8990 return;
8991 }
8992
3919e60b
PM
8993 switch_v7m_security_state(env, return_to_secure);
8994
5b522399
PM
8995 {
8996 /* The stack pointer we should be reading the exception frame from
8997 * depends on bits in the magic exception return type value (and
8998 * for v8M isn't necessarily the stack pointer we will eventually
8999 * end up resuming execution with). Get a pointer to the location
9000 * in the CPU state struct where the SP we need is currently being
9001 * stored; we will use and modify it in place.
9002 * We use this limited C variable scope so we don't accidentally
9003 * use 'frame_sp_p' after we do something that makes it invalid.
fcf83ab1 9004 */
5b522399
PM
9005 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
9006 return_to_secure,
9007 !return_to_handler,
9008 return_to_sp_process);
9009 uint32_t frameptr = *frame_sp_p;
95695eff
PM
9010 bool pop_ok = true;
9011 ARMMMUIdx mmu_idx;
2b83714d
PM
9012 bool return_to_priv = return_to_handler ||
9013 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
95695eff
PM
9014
9015 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
2b83714d 9016 return_to_priv);
5b522399 9017
cb484f9a
PM
9018 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
9019 arm_feature(env, ARM_FEATURE_V8)) {
9020 qemu_log_mask(LOG_GUEST_ERROR,
9021 "M profile exception return with non-8-aligned SP "
9022 "for destination state is UNPREDICTABLE\n");
9023 }
9024
907bedb3
PM
9025 /* Do we need to pop callee-saved registers? */
9026 if (return_to_secure &&
9027 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
9028 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
4818bad9
PM
9029 uint32_t actual_sig;
9030
9031 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
907bedb3 9032
0dc51d66 9033 if (pop_ok && v7m_integrity_sig(env, excret) != actual_sig) {
907bedb3
PM
9034 /* Take a SecureFault on the current stack */
9035 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
9036 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
907bedb3
PM
9037 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
9038 "stackframe: failed exception return integrity "
9039 "signature check\n");
a9074977 9040 v7m_exception_taken(cpu, excret, true, false);
907bedb3
PM
9041 return;
9042 }
9043
4818bad9 9044 pop_ok = pop_ok &&
95695eff
PM
9045 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
9046 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
9047 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
9048 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
9049 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
9050 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
9051 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
9052 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
907bedb3
PM
9053
9054 frameptr += 0x28;
9055 }
9056
95695eff
PM
9057 /* Pop registers */
9058 pop_ok = pop_ok &&
9059 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
9060 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
9061 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
9062 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
9063 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
9064 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
9065 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
9066 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
9067
9068 if (!pop_ok) {
9069 /* v7m_stack_read() pended a fault, so take it (as a tail
9070 * chained exception on the same stack frame)
9071 */
a9074977 9072 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
95695eff
PM
9073 v7m_exception_taken(cpu, excret, true, false);
9074 return;
9075 }
4e4259d3
PM
9076
9077 /* Returning from an exception with a PC with bit 0 set is defined
9078 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
9079 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
9080 * the lsbit, and there are several RTOSes out there which incorrectly
9081 * assume the r15 in the stack frame should be a Thumb-style "lsbit
9082 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
9083 * complain about the badly behaved guest.
9084 */
5b522399 9085 if (env->regs[15] & 1) {
5b522399 9086 env->regs[15] &= ~1U;
4e4259d3
PM
9087 if (!arm_feature(env, ARM_FEATURE_V8)) {
9088 qemu_log_mask(LOG_GUEST_ERROR,
9089 "M profile return from interrupt with misaligned "
9090 "PC is UNPREDICTABLE on v7M\n");
9091 }
5b522399 9092 }
4e4259d3 9093
224e0c30
PM
9094 if (arm_feature(env, ARM_FEATURE_V8)) {
9095 /* For v8M we have to check whether the xPSR exception field
9096 * matches the EXCRET value for return to handler/thread
9097 * before we commit to changing the SP and xPSR.
9098 */
9099 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
9100 if (return_to_handler != will_be_handler) {
9101 /* Take an INVPC UsageFault on the current stack.
9102 * By this point we will have switched to the security state
9103 * for the background state, so this UsageFault will target
9104 * that state.
9105 */
9106 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
9107 env->v7m.secure);
9108 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
224e0c30
PM
9109 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
9110 "stackframe: failed exception return integrity "
9111 "check\n");
a9074977 9112 v7m_exception_taken(cpu, excret, true, false);
224e0c30
PM
9113 return;
9114 }
9115 }
9116
6808c4d2
PM
9117 if (!ftype) {
9118 /* FP present and we need to handle it */
9119 if (!return_to_secure &&
9120 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK)) {
9121 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9122 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
9123 qemu_log_mask(CPU_LOG_INT,
9124 "...taking SecureFault on existing stackframe: "
9125 "Secure LSPACT set but exception return is "
9126 "not to secure state\n");
9127 v7m_exception_taken(cpu, excret, true, false);
9128 return;
9129 }
9130
9131 restore_s16_s31 = return_to_secure &&
9132 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
9133
9134 if (env->v7m.fpccr[return_to_secure] & R_V7M_FPCCR_LSPACT_MASK) {
9135 /* State in FPU is still valid, just clear LSPACT */
9136 env->v7m.fpccr[return_to_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
9137 } else {
9138 int i;
9139 uint32_t fpscr;
9140 bool cpacr_pass, nsacr_pass;
9141
9142 cpacr_pass = v7m_cpacr_pass(env, return_to_secure,
9143 return_to_priv);
9144 nsacr_pass = return_to_secure ||
9145 extract32(env->v7m.nsacr, 10, 1);
9146
9147 if (!cpacr_pass) {
9148 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
9149 return_to_secure);
9150 env->v7m.cfsr[return_to_secure] |= R_V7M_CFSR_NOCP_MASK;
9151 qemu_log_mask(CPU_LOG_INT,
9152 "...taking UsageFault on existing "
9153 "stackframe: CPACR.CP10 prevents unstacking "
9154 "FP regs\n");
9155 v7m_exception_taken(cpu, excret, true, false);
9156 return;
9157 } else if (!nsacr_pass) {
9158 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
9159 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_INVPC_MASK;
9160 qemu_log_mask(CPU_LOG_INT,
9161 "...taking Secure UsageFault on existing "
9162 "stackframe: NSACR.CP10 prevents unstacking "
9163 "FP regs\n");
9164 v7m_exception_taken(cpu, excret, true, false);
9165 return;
9166 }
9167
9168 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
9169 uint32_t slo, shi;
9170 uint64_t dn;
9171 uint32_t faddr = frameptr + 0x20 + 4 * i;
9172
9173 if (i >= 16) {
9174 faddr += 8; /* Skip the slot for the FPSCR */
9175 }
9176
9177 pop_ok = pop_ok &&
9178 v7m_stack_read(cpu, &slo, faddr, mmu_idx) &&
9179 v7m_stack_read(cpu, &shi, faddr + 4, mmu_idx);
9180
9181 if (!pop_ok) {
9182 break;
9183 }
9184
9185 dn = (uint64_t)shi << 32 | slo;
9186 *aa32_vfp_dreg(env, i / 2) = dn;
9187 }
9188 pop_ok = pop_ok &&
9189 v7m_stack_read(cpu, &fpscr, frameptr + 0x60, mmu_idx);
9190 if (pop_ok) {
9191 vfp_set_fpscr(env, fpscr);
9192 }
9193 if (!pop_ok) {
9194 /*
9195 * These regs are 0 if security extension present;
9196 * otherwise merely UNKNOWN. We zero always.
9197 */
9198 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
9199 *aa32_vfp_dreg(env, i / 2) = 0;
9200 }
9201 vfp_set_fpscr(env, 0);
9202 }
9203 }
9204 }
9205 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
9206 V7M_CONTROL, FPCA, !ftype);
9207
5b522399
PM
9208 /* Commit to consuming the stack frame */
9209 frameptr += 0x20;
6808c4d2
PM
9210 if (!ftype) {
9211 frameptr += 0x48;
9212 if (restore_s16_s31) {
9213 frameptr += 0x40;
9214 }
9215 }
5b522399
PM
9216 /* Undo stack alignment (the SPREALIGN bit indicates that the original
9217 * pre-exception SP was not 8-aligned and we added a padding word to
9218 * align it, so we undo this by ORing in the bit that increases it
9219 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
9220 * would work too but a logical OR is how the pseudocode specifies it.)
9221 */
9222 if (xpsr & XPSR_SPREALIGN) {
9223 frameptr |= 4;
9224 }
9225 *frame_sp_p = frameptr;
fcf83ab1 9226 }
f1e2598c
PM
9227
9228 xpsr_mask = ~(XPSR_SPREALIGN | XPSR_SFPA);
9229 if (!arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
9230 xpsr_mask &= ~XPSR_GE;
9231 }
5b522399 9232 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
f1e2598c 9233 xpsr_write(env, xpsr, xpsr_mask);
6808c4d2
PM
9234
9235 if (env->v7m.secure) {
9236 bool sfpa = xpsr & XPSR_SFPA;
9237
9238 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
9239 V7M_CONTROL, SFPA, sfpa);
9240 }
aa488fe3
PM
9241
9242 /* The restored xPSR exception field will be zero if we're
9243 * resuming in Thread mode. If that doesn't match what the
351e527a 9244 * exception return excret specified then this is a UsageFault.
224e0c30 9245 * v7M requires we make this check here; v8M did it earlier.
aa488fe3 9246 */
15b3f556 9247 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
224e0c30
PM
9248 /* Take an INVPC UsageFault by pushing the stack again;
9249 * we know we're v7M so this is never a Secure UsageFault.
2fb50a33 9250 */
0094ca70
PM
9251 bool ignore_stackfaults;
9252
224e0c30 9253 assert(!arm_feature(env, ARM_FEATURE_V8));
2fb50a33 9254 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
334e8dad 9255 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
0094ca70 9256 ignore_stackfaults = v7m_push_stack(cpu);
aa488fe3
PM
9257 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
9258 "failed exception return integrity check\n");
a9074977 9259 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
aa488fe3
PM
9260 return;
9261 }
9262
9263 /* Otherwise, we have a successful exception exit. */
dc3c4c14 9264 arm_clear_exclusive(env);
aa488fe3 9265 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
9ee6e8bb
PB
9266}
9267
d02a8698
PM
9268static bool do_v7m_function_return(ARMCPU *cpu)
9269{
9270 /* v8M security extensions magic function return.
9271 * We may either:
9272 * (1) throw an exception (longjump)
9273 * (2) return true if we successfully handled the function return
9274 * (3) return false if we failed a consistency check and have
9275 * pended a UsageFault that needs to be taken now
9276 *
9277 * At this point the magic return value is split between env->regs[15]
9278 * and env->thumb. We don't bother to reconstitute it because we don't
9279 * need it (all values are handled the same way).
9280 */
9281 CPUARMState *env = &cpu->env;
9282 uint32_t newpc, newpsr, newpsr_exc;
9283
9284 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
9285
9286 {
9287 bool threadmode, spsel;
9288 TCGMemOpIdx oi;
9289 ARMMMUIdx mmu_idx;
9290 uint32_t *frame_sp_p;
9291 uint32_t frameptr;
9292
9293 /* Pull the return address and IPSR from the Secure stack */
9294 threadmode = !arm_v7m_is_handler_mode(env);
9295 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
9296
9297 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
9298 frameptr = *frame_sp_p;
9299
9300 /* These loads may throw an exception (for MPU faults). We want to
9301 * do them as secure, so work out what MMU index that is.
9302 */
9303 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
9304 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
9305 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
9306 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
9307
9308 /* Consistency checks on new IPSR */
9309 newpsr_exc = newpsr & XPSR_EXCP;
9310 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
9311 (env->v7m.exception == 1 && newpsr_exc != 0))) {
9312 /* Pend the fault and tell our caller to take it */
9313 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
9314 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
9315 env->v7m.secure);
9316 qemu_log_mask(CPU_LOG_INT,
9317 "...taking INVPC UsageFault: "
9318 "IPSR consistency check failed\n");
9319 return false;
9320 }
9321
9322 *frame_sp_p = frameptr + 8;
9323 }
9324
9325 /* This invalidates frame_sp_p */
9326 switch_v7m_security_state(env, true);
9327 env->v7m.exception = newpsr_exc;
9328 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
9329 if (newpsr & XPSR_SFPA) {
9330 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
9331 }
9332 xpsr_write(env, 0, XPSR_IT);
9333 env->thumb = newpc & 1;
9334 env->regs[15] = newpc & ~1;
9335
9336 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
9337 return true;
9338}
9339
27a7ea8a
PB
9340static void arm_log_exception(int idx)
9341{
9342 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9343 const char *exc = NULL;
2c4a7cc5
PM
9344 static const char * const excnames[] = {
9345 [EXCP_UDEF] = "Undefined Instruction",
9346 [EXCP_SWI] = "SVC",
9347 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9348 [EXCP_DATA_ABORT] = "Data Abort",
9349 [EXCP_IRQ] = "IRQ",
9350 [EXCP_FIQ] = "FIQ",
9351 [EXCP_BKPT] = "Breakpoint",
9352 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9353 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9354 [EXCP_HVC] = "Hypervisor Call",
9355 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9356 [EXCP_SMC] = "Secure Monitor Call",
9357 [EXCP_VIRQ] = "Virtual IRQ",
9358 [EXCP_VFIQ] = "Virtual FIQ",
9359 [EXCP_SEMIHOST] = "Semihosting call",
9360 [EXCP_NOCP] = "v7M NOCP UsageFault",
9361 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
86f026de 9362 [EXCP_STKOF] = "v8M STKOF UsageFault",
e33cf0f8 9363 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
019076b0
PM
9364 [EXCP_LSERR] = "v8M LSERR UsageFault",
9365 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
2c4a7cc5 9366 };
27a7ea8a
PB
9367
9368 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9369 exc = excnames[idx];
9370 }
9371 if (!exc) {
9372 exc = "unknown";
9373 }
9374 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9375 }
9376}
9377
333e10c5
PM
9378static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
9379 uint32_t addr, uint16_t *insn)
9380{
9381 /* Load a 16-bit portion of a v7M instruction, returning true on success,
9382 * or false on failure (in which case we will have pended the appropriate
9383 * exception).
9384 * We need to do the instruction fetch's MPU and SAU checks
9385 * like this because there is no MMU index that would allow
9386 * doing the load with a single function call. Instead we must
9387 * first check that the security attributes permit the load
9388 * and that they don't mismatch on the two halves of the instruction,
9389 * and then we do the load as a secure load (ie using the security
9390 * attributes of the address, not the CPU, as architecturally required).
9391 */
9392 CPUState *cs = CPU(cpu);
9393 CPUARMState *env = &cpu->env;
9394 V8M_SAttributes sattrs = {};
9395 MemTxAttrs attrs = {};
9396 ARMMMUFaultInfo fi = {};
9397 MemTxResult txres;
9398 target_ulong page_size;
9399 hwaddr physaddr;
9400 int prot;
333e10c5
PM
9401
9402 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
9403 if (!sattrs.nsc || sattrs.ns) {
9404 /* This must be the second half of the insn, and it straddles a
9405 * region boundary with the second half not being S&NSC.
9406 */
9407 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
9408 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9409 qemu_log_mask(CPU_LOG_INT,
9410 "...really SecureFault with SFSR.INVEP\n");
9411 return false;
9412 }
9413 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
bc52bfeb 9414 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
333e10c5
PM
9415 /* the MPU lookup failed */
9416 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
9417 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
9418 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
9419 return false;
9420 }
9421 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
9422 attrs, &txres);
9423 if (txres != MEMTX_OK) {
9424 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
9425 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
9426 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
9427 return false;
9428 }
9429 return true;
9430}
9431
9432static bool v7m_handle_execute_nsc(ARMCPU *cpu)
9433{
9434 /* Check whether this attempt to execute code in a Secure & NS-Callable
9435 * memory region is for an SG instruction; if so, then emulate the
9436 * effect of the SG instruction and return true. Otherwise pend
9437 * the correct kind of exception and return false.
9438 */
9439 CPUARMState *env = &cpu->env;
9440 ARMMMUIdx mmu_idx;
9441 uint16_t insn;
9442
9443 /* We should never get here unless get_phys_addr_pmsav8() caused
9444 * an exception for NS executing in S&NSC memory.
9445 */
9446 assert(!env->v7m.secure);
9447 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
9448
9449 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
9450 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
9451
9452 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
9453 return false;
9454 }
9455
9456 if (!env->thumb) {
9457 goto gen_invep;
9458 }
9459
9460 if (insn != 0xe97f) {
9461 /* Not an SG instruction first half (we choose the IMPDEF
9462 * early-SG-check option).
9463 */
9464 goto gen_invep;
9465 }
9466
9467 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
9468 return false;
9469 }
9470
9471 if (insn != 0xe97f) {
9472 /* Not an SG instruction second half (yes, both halves of the SG
9473 * insn have the same hex value)
9474 */
9475 goto gen_invep;
9476 }
9477
9478 /* OK, we have confirmed that we really have an SG instruction.
9479 * We know we're NS in S memory so don't need to repeat those checks.
9480 */
9481 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
9482 ", executing it\n", env->regs[15]);
9483 env->regs[14] &= ~1;
17020713 9484 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
333e10c5
PM
9485 switch_v7m_security_state(env, true);
9486 xpsr_write(env, 0, XPSR_IT);
9487 env->regs[15] += 4;
9488 return true;
9489
9490gen_invep:
9491 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
9492 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9493 qemu_log_mask(CPU_LOG_INT,
9494 "...really SecureFault with SFSR.INVEP\n");
9495 return false;
9496}
9497
e6f010cc 9498void arm_v7m_cpu_do_interrupt(CPUState *cs)
9ee6e8bb 9499{
e6f010cc
AF
9500 ARMCPU *cpu = ARM_CPU(cs);
9501 CPUARMState *env = &cpu->env;
9ee6e8bb 9502 uint32_t lr;
0094ca70 9503 bool ignore_stackfaults;
9ee6e8bb 9504
27103424 9505 arm_log_exception(cs->exception_index);
3f1beaca 9506
9ee6e8bb
PB
9507 /* For exceptions we just mark as pending on the NVIC, and let that
9508 handle it. */
27103424 9509 switch (cs->exception_index) {
9ee6e8bb 9510 case EXCP_UDEF:
2fb50a33 9511 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
334e8dad 9512 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
a25dc805 9513 break;
7517748e 9514 case EXCP_NOCP:
d87513c0
PM
9515 {
9516 /*
9517 * NOCP might be directed to something other than the current
9518 * security state if this fault is because of NSACR; we indicate
9519 * the target security state using exception.target_el.
9520 */
9521 int target_secstate;
9522
9523 if (env->exception.target_el == 3) {
9524 target_secstate = M_REG_S;
9525 } else {
9526 target_secstate = env->v7m.secure;
9527 }
9528 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate);
9529 env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK;
a25dc805 9530 break;
d87513c0 9531 }
e13886e3 9532 case EXCP_INVSTATE:
2fb50a33 9533 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
334e8dad 9534 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
e13886e3 9535 break;
86f026de
PM
9536 case EXCP_STKOF:
9537 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9538 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
9539 break;
019076b0
PM
9540 case EXCP_LSERR:
9541 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9542 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
9543 break;
9544 case EXCP_UNALIGNED:
9545 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9546 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK;
9547 break;
9ee6e8bb 9548 case EXCP_SWI:
314e2296 9549 /* The PC already points to the next instruction. */
2fb50a33 9550 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
a25dc805 9551 break;
9ee6e8bb
PB
9552 case EXCP_PREFETCH_ABORT:
9553 case EXCP_DATA_ABORT:
5dd0641d
MD
9554 /* Note that for M profile we don't have a guest facing FSR, but
9555 * the env->exception.fsr will be populated by the code that
9556 * raises the fault, in the A profile short-descriptor format.
abf1172f 9557 */
5dd0641d 9558 switch (env->exception.fsr & 0xf) {
35337cc3
PM
9559 case M_FAKE_FSR_NSC_EXEC:
9560 /* Exception generated when we try to execute code at an address
9561 * which is marked as Secure & Non-Secure Callable and the CPU
9562 * is in the Non-Secure state. The only instruction which can
9563 * be executed like this is SG (and that only if both halves of
9564 * the SG instruction have the same security attributes.)
9565 * Everything else must generate an INVEP SecureFault, so we
9566 * emulate the SG instruction here.
35337cc3 9567 */
333e10c5
PM
9568 if (v7m_handle_execute_nsc(cpu)) {
9569 return;
9570 }
35337cc3
PM
9571 break;
9572 case M_FAKE_FSR_SFAULT:
9573 /* Various flavours of SecureFault for attempts to execute or
9574 * access data in the wrong security state.
9575 */
9576 switch (cs->exception_index) {
9577 case EXCP_PREFETCH_ABORT:
9578 if (env->v7m.secure) {
9579 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
9580 qemu_log_mask(CPU_LOG_INT,
9581 "...really SecureFault with SFSR.INVTRAN\n");
9582 } else {
9583 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
9584 qemu_log_mask(CPU_LOG_INT,
9585 "...really SecureFault with SFSR.INVEP\n");
9586 }
9587 break;
9588 case EXCP_DATA_ABORT:
9589 /* This must be an NS access to S memory */
9590 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
9591 qemu_log_mask(CPU_LOG_INT,
9592 "...really SecureFault with SFSR.AUVIOL\n");
9593 break;
9594 }
9595 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9596 break;
5dd0641d
MD
9597 case 0x8: /* External Abort */
9598 switch (cs->exception_index) {
9599 case EXCP_PREFETCH_ABORT:
c6158878
PM
9600 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
9601 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
5dd0641d
MD
9602 break;
9603 case EXCP_DATA_ABORT:
334e8dad 9604 env->v7m.cfsr[M_REG_NS] |=
c6158878 9605 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
5dd0641d
MD
9606 env->v7m.bfar = env->exception.vaddress;
9607 qemu_log_mask(CPU_LOG_INT,
c6158878 9608 "...with CFSR.PRECISERR and BFAR 0x%x\n",
5dd0641d
MD
9609 env->v7m.bfar);
9610 break;
9611 }
2fb50a33 9612 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
5dd0641d
MD
9613 break;
9614 default:
9615 /* All other FSR values are either MPU faults or "can't happen
9616 * for M profile" cases.
9617 */
9618 switch (cs->exception_index) {
9619 case EXCP_PREFETCH_ABORT:
334e8dad 9620 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
5dd0641d
MD
9621 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
9622 break;
9623 case EXCP_DATA_ABORT:
334e8dad 9624 env->v7m.cfsr[env->v7m.secure] |=
5dd0641d 9625 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
c51a5cfc 9626 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
5dd0641d
MD
9627 qemu_log_mask(CPU_LOG_INT,
9628 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
c51a5cfc 9629 env->v7m.mmfar[env->v7m.secure]);
5dd0641d
MD
9630 break;
9631 }
2fb50a33
PM
9632 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
9633 env->v7m.secure);
5dd0641d
MD
9634 break;
9635 }
a25dc805 9636 break;
9ee6e8bb 9637 case EXCP_BKPT:
cfe67cef 9638 if (semihosting_enabled()) {
2ad207d4 9639 int nr;
f9fd40eb 9640 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
2ad207d4
PB
9641 if (nr == 0xab) {
9642 env->regs[15] += 2;
205ace55
CC
9643 qemu_log_mask(CPU_LOG_INT,
9644 "...handling as semihosting call 0x%x\n",
9645 env->regs[0]);
2ad207d4
PB
9646 env->regs[0] = do_arm_semihosting(env);
9647 return;
9648 }
9649 }
2fb50a33 9650 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
a25dc805 9651 break;
9ee6e8bb 9652 case EXCP_IRQ:
9ee6e8bb
PB
9653 break;
9654 case EXCP_EXCEPTION_EXIT:
d02a8698
PM
9655 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
9656 /* Must be v8M security extension function return */
9657 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
9658 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
9659 if (do_v7m_function_return(cpu)) {
9660 return;
9661 }
9662 } else {
9663 do_v7m_exception_exit(cpu);
9664 return;
9665 }
9666 break;
e33cf0f8
PM
9667 case EXCP_LAZYFP:
9668 /*
9669 * We already pended the specific exception in the NVIC in the
9670 * v7m_preserve_fp_state() helper function.
9671 */
9672 break;
9ee6e8bb 9673 default:
a47dddd7 9674 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9ee6e8bb
PB
9675 return; /* Never happens. Keep compiler happy. */
9676 }
9677
d3392718
PM
9678 if (arm_feature(env, ARM_FEATURE_V8)) {
9679 lr = R_V7M_EXCRET_RES1_MASK |
0ed377a8 9680 R_V7M_EXCRET_DCRS_MASK;
d3392718
PM
9681 /* The S bit indicates whether we should return to Secure
9682 * or NonSecure (ie our current state).
9683 * The ES bit indicates whether we're taking this exception
9684 * to Secure or NonSecure (ie our target state). We set it
9685 * later, in v7m_exception_taken().
9686 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
9687 * This corresponds to the ARM ARM pseudocode for v8M setting
9688 * some LR bits in PushStack() and some in ExceptionTaken();
9689 * the distinction matters for the tailchain cases where we
9690 * can take an exception without pushing the stack.
9691 */
9692 if (env->v7m.secure) {
9693 lr |= R_V7M_EXCRET_S_MASK;
9694 }
0ed377a8
PM
9695 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
9696 lr |= R_V7M_EXCRET_FTYPE_MASK;
9697 }
d3392718
PM
9698 } else {
9699 lr = R_V7M_EXCRET_RES1_MASK |
9700 R_V7M_EXCRET_S_MASK |
9701 R_V7M_EXCRET_DCRS_MASK |
9702 R_V7M_EXCRET_FTYPE_MASK |
9703 R_V7M_EXCRET_ES_MASK;
9704 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
9705 lr |= R_V7M_EXCRET_SPSEL_MASK;
9706 }
bd70b29b 9707 }
15b3f556 9708 if (!arm_v7m_is_handler_mode(env)) {
4d1e7a47 9709 lr |= R_V7M_EXCRET_MODE_MASK;
bd70b29b
PM
9710 }
9711
0094ca70
PM
9712 ignore_stackfaults = v7m_push_stack(cpu);
9713 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
9ee6e8bb
PB
9714}
9715
ce02049d
GB
9716/* Function used to synchronize QEMU's AArch64 register set with AArch32
9717 * register set. This is necessary when switching between AArch32 and AArch64
9718 * execution state.
9719 */
9720void aarch64_sync_32_to_64(CPUARMState *env)
9721{
9722 int i;
9723 uint32_t mode = env->uncached_cpsr & CPSR_M;
9724
9725 /* We can blanket copy R[0:7] to X[0:7] */
9726 for (i = 0; i < 8; i++) {
9727 env->xregs[i] = env->regs[i];
9728 }
9729
9730 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9731 * Otherwise, they come from the banked user regs.
9732 */
9733 if (mode == ARM_CPU_MODE_FIQ) {
9734 for (i = 8; i < 13; i++) {
9735 env->xregs[i] = env->usr_regs[i - 8];
9736 }
9737 } else {
9738 for (i = 8; i < 13; i++) {
9739 env->xregs[i] = env->regs[i];
9740 }
9741 }
9742
9743 /* Registers x13-x23 are the various mode SP and FP registers. Registers
9744 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9745 * from the mode banked register.
9746 */
9747 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9748 env->xregs[13] = env->regs[13];
9749 env->xregs[14] = env->regs[14];
9750 } else {
9751 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9752 /* HYP is an exception in that it is copied from r14 */
9753 if (mode == ARM_CPU_MODE_HYP) {
9754 env->xregs[14] = env->regs[14];
9755 } else {
593cfa2b 9756 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
ce02049d
GB
9757 }
9758 }
9759
9760 if (mode == ARM_CPU_MODE_HYP) {
9761 env->xregs[15] = env->regs[13];
9762 } else {
9763 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9764 }
9765
9766 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
9767 env->xregs[16] = env->regs[14];
9768 env->xregs[17] = env->regs[13];
ce02049d 9769 } else {
593cfa2b 9770 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
3a9148d0 9771 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
ce02049d
GB
9772 }
9773
9774 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
9775 env->xregs[18] = env->regs[14];
9776 env->xregs[19] = env->regs[13];
ce02049d 9777 } else {
593cfa2b 9778 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
3a9148d0 9779 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
ce02049d
GB
9780 }
9781
9782 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
9783 env->xregs[20] = env->regs[14];
9784 env->xregs[21] = env->regs[13];
ce02049d 9785 } else {
593cfa2b 9786 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
3a9148d0 9787 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
ce02049d
GB
9788 }
9789
9790 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
9791 env->xregs[22] = env->regs[14];
9792 env->xregs[23] = env->regs[13];
ce02049d 9793 } else {
593cfa2b 9794 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
3a9148d0 9795 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
ce02049d
GB
9796 }
9797
9798 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9799 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9800 * FIQ bank for r8-r14.
9801 */
9802 if (mode == ARM_CPU_MODE_FIQ) {
9803 for (i = 24; i < 31; i++) {
9804 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9805 }
9806 } else {
9807 for (i = 24; i < 29; i++) {
9808 env->xregs[i] = env->fiq_regs[i - 24];
9809 }
9810 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
593cfa2b 9811 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
ce02049d
GB
9812 }
9813
9814 env->pc = env->regs[15];
9815}
9816
9817/* Function used to synchronize QEMU's AArch32 register set with AArch64
9818 * register set. This is necessary when switching between AArch32 and AArch64
9819 * execution state.
9820 */
9821void aarch64_sync_64_to_32(CPUARMState *env)
9822{
9823 int i;
9824 uint32_t mode = env->uncached_cpsr & CPSR_M;
9825
9826 /* We can blanket copy X[0:7] to R[0:7] */
9827 for (i = 0; i < 8; i++) {
9828 env->regs[i] = env->xregs[i];
9829 }
9830
9831 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9832 * Otherwise, we copy x8-x12 into the banked user regs.
9833 */
9834 if (mode == ARM_CPU_MODE_FIQ) {
9835 for (i = 8; i < 13; i++) {
9836 env->usr_regs[i - 8] = env->xregs[i];
9837 }
9838 } else {
9839 for (i = 8; i < 13; i++) {
9840 env->regs[i] = env->xregs[i];
9841 }
9842 }
9843
9844 /* Registers r13 & r14 depend on the current mode.
9845 * If we are in a given mode, we copy the corresponding x registers to r13
9846 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9847 * for the mode.
9848 */
9849 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9850 env->regs[13] = env->xregs[13];
9851 env->regs[14] = env->xregs[14];
9852 } else {
9853 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9854
9855 /* HYP is an exception in that it does not have its own banked r14 but
9856 * shares the USR r14
9857 */
9858 if (mode == ARM_CPU_MODE_HYP) {
9859 env->regs[14] = env->xregs[14];
9860 } else {
593cfa2b 9861 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
ce02049d
GB
9862 }
9863 }
9864
9865 if (mode == ARM_CPU_MODE_HYP) {
9866 env->regs[13] = env->xregs[15];
9867 } else {
9868 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9869 }
9870
9871 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
9872 env->regs[14] = env->xregs[16];
9873 env->regs[13] = env->xregs[17];
ce02049d 9874 } else {
593cfa2b 9875 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
3a9148d0 9876 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
ce02049d
GB
9877 }
9878
9879 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
9880 env->regs[14] = env->xregs[18];
9881 env->regs[13] = env->xregs[19];
ce02049d 9882 } else {
593cfa2b 9883 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
3a9148d0 9884 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
ce02049d
GB
9885 }
9886
9887 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
9888 env->regs[14] = env->xregs[20];
9889 env->regs[13] = env->xregs[21];
ce02049d 9890 } else {
593cfa2b 9891 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
3a9148d0 9892 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
ce02049d
GB
9893 }
9894
9895 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
9896 env->regs[14] = env->xregs[22];
9897 env->regs[13] = env->xregs[23];
ce02049d 9898 } else {
593cfa2b 9899 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
3a9148d0 9900 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
ce02049d
GB
9901 }
9902
9903 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9904 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9905 * FIQ bank for r8-r14.
9906 */
9907 if (mode == ARM_CPU_MODE_FIQ) {
9908 for (i = 24; i < 31; i++) {
9909 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9910 }
9911 } else {
9912 for (i = 24; i < 29; i++) {
9913 env->fiq_regs[i - 24] = env->xregs[i];
9914 }
9915 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
593cfa2b 9916 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
ce02049d
GB
9917 }
9918
9919 env->regs[15] = env->pc;
9920}
9921
dea8378b
PM
9922static void take_aarch32_exception(CPUARMState *env, int new_mode,
9923 uint32_t mask, uint32_t offset,
9924 uint32_t newpc)
9925{
9926 /* Change the CPU state so as to actually take the exception. */
9927 switch_mode(env, new_mode);
9928 /*
9929 * For exceptions taken to AArch32 we must clear the SS bit in both
9930 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9931 */
9932 env->uncached_cpsr &= ~PSTATE_SS;
9933 env->spsr = cpsr_read(env);
9934 /* Clear IT bits. */
9935 env->condexec_bits = 0;
9936 /* Switch to the new mode, and to the correct instruction set. */
9937 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9938 /* Set new mode endianness */
9939 env->uncached_cpsr &= ~CPSR_E;
9940 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
9941 env->uncached_cpsr |= CPSR_E;
9942 }
829f9fd3
PM
9943 /* J and IL must always be cleared for exception entry */
9944 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
dea8378b
PM
9945 env->daif |= mask;
9946
9947 if (new_mode == ARM_CPU_MODE_HYP) {
9948 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9949 env->elr_el[2] = env->regs[15];
9950 } else {
9951 /*
9952 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9953 * and we should just guard the thumb mode on V4
9954 */
9955 if (arm_feature(env, ARM_FEATURE_V4T)) {
9956 env->thumb =
9957 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9958 }
9959 env->regs[14] = env->regs[15] + offset;
9960 }
9961 env->regs[15] = newpc;
9962}
9963
b9bc21ff
PM
9964static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9965{
9966 /*
9967 * Handle exception entry to Hyp mode; this is sufficiently
9968 * different to entry to other AArch32 modes that we handle it
9969 * separately here.
9970 *
9971 * The vector table entry used is always the 0x14 Hyp mode entry point,
9972 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9973 * The offset applied to the preferred return address is always zero
9974 * (see DDI0487C.a section G1.12.3).
9975 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9976 */
9977 uint32_t addr, mask;
9978 ARMCPU *cpu = ARM_CPU(cs);
9979 CPUARMState *env = &cpu->env;
9980
9981 switch (cs->exception_index) {
9982 case EXCP_UDEF:
9983 addr = 0x04;
9984 break;
9985 case EXCP_SWI:
9986 addr = 0x14;
9987 break;
9988 case EXCP_BKPT:
9989 /* Fall through to prefetch abort. */
9990 case EXCP_PREFETCH_ABORT:
9991 env->cp15.ifar_s = env->exception.vaddress;
9992 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9993 (uint32_t)env->exception.vaddress);
9994 addr = 0x0c;
9995 break;
9996 case EXCP_DATA_ABORT:
9997 env->cp15.dfar_s = env->exception.vaddress;
9998 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9999 (uint32_t)env->exception.vaddress);
10000 addr = 0x10;
10001 break;
10002 case EXCP_IRQ:
10003 addr = 0x18;
10004 break;
10005 case EXCP_FIQ:
10006 addr = 0x1c;
10007 break;
10008 case EXCP_HVC:
10009 addr = 0x08;
10010 break;
10011 case EXCP_HYP_TRAP:
10012 addr = 0x14;
10013 default:
10014 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10015 }
10016
10017 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
2ed08180
PM
10018 if (!arm_feature(env, ARM_FEATURE_V8)) {
10019 /*
10020 * QEMU syndrome values are v8-style. v7 has the IL bit
10021 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10022 * If this is a v7 CPU, squash the IL bit in those cases.
10023 */
10024 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10025 (cs->exception_index == EXCP_DATA_ABORT &&
10026 !(env->exception.syndrome & ARM_EL_ISV)) ||
10027 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10028 env->exception.syndrome &= ~ARM_EL_IL;
10029 }
10030 }
b9bc21ff
PM
10031 env->cp15.esr_el[2] = env->exception.syndrome;
10032 }
10033
10034 if (arm_current_el(env) != 2 && addr < 0x14) {
10035 addr = 0x14;
10036 }
10037
10038 mask = 0;
10039 if (!(env->cp15.scr_el3 & SCR_EA)) {
10040 mask |= CPSR_A;
10041 }
10042 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10043 mask |= CPSR_I;
10044 }
10045 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10046 mask |= CPSR_F;
10047 }
10048
10049 addr += env->cp15.hvbar;
10050
10051 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10052}
10053
966f758c 10054static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
b5ff1b31 10055{
97a8ea5a
AF
10056 ARMCPU *cpu = ARM_CPU(cs);
10057 CPUARMState *env = &cpu->env;
b5ff1b31
FB
10058 uint32_t addr;
10059 uint32_t mask;
10060 int new_mode;
10061 uint32_t offset;
16a906fd 10062 uint32_t moe;
b5ff1b31 10063
16a906fd 10064 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
64b91e3f 10065 switch (syn_get_ec(env->exception.syndrome)) {
16a906fd
PM
10066 case EC_BREAKPOINT:
10067 case EC_BREAKPOINT_SAME_EL:
10068 moe = 1;
10069 break;
10070 case EC_WATCHPOINT:
10071 case EC_WATCHPOINT_SAME_EL:
10072 moe = 10;
10073 break;
10074 case EC_AA32_BKPT:
10075 moe = 3;
10076 break;
10077 case EC_VECTORCATCH:
10078 moe = 5;
10079 break;
10080 default:
10081 moe = 0;
10082 break;
10083 }
10084
10085 if (moe) {
10086 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10087 }
10088
b9bc21ff
PM
10089 if (env->exception.target_el == 2) {
10090 arm_cpu_do_interrupt_aarch32_hyp(cs);
10091 return;
10092 }
10093
27103424 10094 switch (cs->exception_index) {
b5ff1b31
FB
10095 case EXCP_UDEF:
10096 new_mode = ARM_CPU_MODE_UND;
10097 addr = 0x04;
10098 mask = CPSR_I;
10099 if (env->thumb)
10100 offset = 2;
10101 else
10102 offset = 4;
10103 break;
10104 case EXCP_SWI:
10105 new_mode = ARM_CPU_MODE_SVC;
10106 addr = 0x08;
10107 mask = CPSR_I;
601d70b9 10108 /* The PC already points to the next instruction. */
b5ff1b31
FB
10109 offset = 0;
10110 break;
06c949e6 10111 case EXCP_BKPT:
9ee6e8bb
PB
10112 /* Fall through to prefetch abort. */
10113 case EXCP_PREFETCH_ABORT:
88ca1c2d 10114 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
b848ce2b 10115 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
3f1beaca 10116 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
88ca1c2d 10117 env->exception.fsr, (uint32_t)env->exception.vaddress);
b5ff1b31
FB
10118 new_mode = ARM_CPU_MODE_ABT;
10119 addr = 0x0c;
10120 mask = CPSR_A | CPSR_I;
10121 offset = 4;
10122 break;
10123 case EXCP_DATA_ABORT:
4a7e2d73 10124 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
b848ce2b 10125 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
3f1beaca 10126 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4a7e2d73 10127 env->exception.fsr,
6cd8a264 10128 (uint32_t)env->exception.vaddress);
b5ff1b31
FB
10129 new_mode = ARM_CPU_MODE_ABT;
10130 addr = 0x10;
10131 mask = CPSR_A | CPSR_I;
10132 offset = 8;
10133 break;
10134 case EXCP_IRQ:
10135 new_mode = ARM_CPU_MODE_IRQ;
10136 addr = 0x18;
10137 /* Disable IRQ and imprecise data aborts. */
10138 mask = CPSR_A | CPSR_I;
10139 offset = 4;
de38d23b
FA
10140 if (env->cp15.scr_el3 & SCR_IRQ) {
10141 /* IRQ routed to monitor mode */
10142 new_mode = ARM_CPU_MODE_MON;
10143 mask |= CPSR_F;
10144 }
b5ff1b31
FB
10145 break;
10146 case EXCP_FIQ:
10147 new_mode = ARM_CPU_MODE_FIQ;
10148 addr = 0x1c;
10149 /* Disable FIQ, IRQ and imprecise data aborts. */
10150 mask = CPSR_A | CPSR_I | CPSR_F;
de38d23b
FA
10151 if (env->cp15.scr_el3 & SCR_FIQ) {
10152 /* FIQ routed to monitor mode */
10153 new_mode = ARM_CPU_MODE_MON;
10154 }
b5ff1b31
FB
10155 offset = 4;
10156 break;
87a4b270
PM
10157 case EXCP_VIRQ:
10158 new_mode = ARM_CPU_MODE_IRQ;
10159 addr = 0x18;
10160 /* Disable IRQ and imprecise data aborts. */
10161 mask = CPSR_A | CPSR_I;
10162 offset = 4;
10163 break;
10164 case EXCP_VFIQ:
10165 new_mode = ARM_CPU_MODE_FIQ;
10166 addr = 0x1c;
10167 /* Disable FIQ, IRQ and imprecise data aborts. */
10168 mask = CPSR_A | CPSR_I | CPSR_F;
10169 offset = 4;
10170 break;
dbe9d163
FA
10171 case EXCP_SMC:
10172 new_mode = ARM_CPU_MODE_MON;
10173 addr = 0x08;
10174 mask = CPSR_A | CPSR_I | CPSR_F;
10175 offset = 0;
10176 break;
b5ff1b31 10177 default:
a47dddd7 10178 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
b5ff1b31
FB
10179 return; /* Never happens. Keep compiler happy. */
10180 }
e89e51a1
FA
10181
10182 if (new_mode == ARM_CPU_MODE_MON) {
10183 addr += env->cp15.mvbar;
137feaa9 10184 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
e89e51a1 10185 /* High vectors. When enabled, base address cannot be remapped. */
b5ff1b31 10186 addr += 0xffff0000;
8641136c
NR
10187 } else {
10188 /* ARM v7 architectures provide a vector base address register to remap
10189 * the interrupt vector table.
e89e51a1 10190 * This register is only followed in non-monitor mode, and is banked.
8641136c
NR
10191 * Note: only bits 31:5 are valid.
10192 */
fb6c91ba 10193 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
b5ff1b31 10194 }
dbe9d163
FA
10195
10196 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10197 env->cp15.scr_el3 &= ~SCR_NS;
10198 }
10199
dea8378b 10200 take_aarch32_exception(env, new_mode, mask, offset, addr);
b5ff1b31
FB
10201}
10202
966f758c
PM
10203/* Handle exception entry to a target EL which is using AArch64 */
10204static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
f3a9b694
PM
10205{
10206 ARMCPU *cpu = ARM_CPU(cs);
10207 CPUARMState *env = &cpu->env;
10208 unsigned int new_el = env->exception.target_el;
10209 target_ulong addr = env->cp15.vbar_el[new_el];
10210 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
0ab5953b
RH
10211 unsigned int cur_el = arm_current_el(env);
10212
9a05f7b6
RH
10213 /*
10214 * Note that new_el can never be 0. If cur_el is 0, then
10215 * el0_a64 is is_a64(), else el0_a64 is ignored.
10216 */
10217 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
f3a9b694 10218
0ab5953b 10219 if (cur_el < new_el) {
3d6f7617
PM
10220 /* Entry vector offset depends on whether the implemented EL
10221 * immediately lower than the target level is using AArch32 or AArch64
10222 */
10223 bool is_aa64;
10224
10225 switch (new_el) {
10226 case 3:
10227 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10228 break;
10229 case 2:
10230 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
10231 break;
10232 case 1:
10233 is_aa64 = is_a64(env);
10234 break;
10235 default:
10236 g_assert_not_reached();
10237 }
10238
10239 if (is_aa64) {
f3a9b694
PM
10240 addr += 0x400;
10241 } else {
10242 addr += 0x600;
10243 }
10244 } else if (pstate_read(env) & PSTATE_SP) {
10245 addr += 0x200;
10246 }
10247
f3a9b694
PM
10248 switch (cs->exception_index) {
10249 case EXCP_PREFETCH_ABORT:
10250 case EXCP_DATA_ABORT:
10251 env->cp15.far_el[new_el] = env->exception.vaddress;
10252 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10253 env->cp15.far_el[new_el]);
10254 /* fall through */
10255 case EXCP_BKPT:
10256 case EXCP_UDEF:
10257 case EXCP_SWI:
10258 case EXCP_HVC:
10259 case EXCP_HYP_TRAP:
10260 case EXCP_SMC:
4be42f40
PM
10261 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
10262 /*
10263 * QEMU internal FP/SIMD syndromes from AArch32 include the
10264 * TA and coproc fields which are only exposed if the exception
10265 * is taken to AArch32 Hyp mode. Mask them out to get a valid
10266 * AArch64 format syndrome.
10267 */
10268 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10269 }
f3a9b694
PM
10270 env->cp15.esr_el[new_el] = env->exception.syndrome;
10271 break;
10272 case EXCP_IRQ:
10273 case EXCP_VIRQ:
10274 addr += 0x80;
10275 break;
10276 case EXCP_FIQ:
10277 case EXCP_VFIQ:
10278 addr += 0x100;
10279 break;
10280 case EXCP_SEMIHOST:
10281 qemu_log_mask(CPU_LOG_INT,
10282 "...handling as semihosting call 0x%" PRIx64 "\n",
10283 env->xregs[0]);
10284 env->xregs[0] = do_arm_semihosting(env);
10285 return;
10286 default:
10287 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10288 }
10289
10290 if (is_a64(env)) {
10291 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
10292 aarch64_save_sp(env, arm_current_el(env));
10293 env->elr_el[new_el] = env->pc;
10294 } else {
10295 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
f3a9b694
PM
10296 env->elr_el[new_el] = env->regs[15];
10297
10298 aarch64_sync_32_to_64(env);
10299
10300 env->condexec_bits = 0;
10301 }
10302 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10303 env->elr_el[new_el]);
10304
10305 pstate_write(env, PSTATE_DAIF | new_mode);
10306 env->aarch64 = 1;
10307 aarch64_restore_sp(env, new_el);
10308
10309 env->pc = addr;
10310
10311 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10312 new_el, env->pc, pstate_read(env));
966f758c
PM
10313}
10314
904c04de
PM
10315static inline bool check_for_semihosting(CPUState *cs)
10316{
10317 /* Check whether this exception is a semihosting call; if so
10318 * then handle it and return true; otherwise return false.
10319 */
10320 ARMCPU *cpu = ARM_CPU(cs);
10321 CPUARMState *env = &cpu->env;
10322
10323 if (is_a64(env)) {
10324 if (cs->exception_index == EXCP_SEMIHOST) {
10325 /* This is always the 64-bit semihosting exception.
10326 * The "is this usermode" and "is semihosting enabled"
10327 * checks have been done at translate time.
10328 */
10329 qemu_log_mask(CPU_LOG_INT,
10330 "...handling as semihosting call 0x%" PRIx64 "\n",
10331 env->xregs[0]);
10332 env->xregs[0] = do_arm_semihosting(env);
10333 return true;
10334 }
10335 return false;
10336 } else {
10337 uint32_t imm;
10338
10339 /* Only intercept calls from privileged modes, to provide some
10340 * semblance of security.
10341 */
19a6e31c
PM
10342 if (cs->exception_index != EXCP_SEMIHOST &&
10343 (!semihosting_enabled() ||
10344 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
904c04de
PM
10345 return false;
10346 }
10347
10348 switch (cs->exception_index) {
19a6e31c
PM
10349 case EXCP_SEMIHOST:
10350 /* This is always a semihosting call; the "is this usermode"
10351 * and "is semihosting enabled" checks have been done at
10352 * translate time.
10353 */
10354 break;
904c04de
PM
10355 case EXCP_SWI:
10356 /* Check for semihosting interrupt. */
10357 if (env->thumb) {
f9fd40eb 10358 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
904c04de
PM
10359 & 0xff;
10360 if (imm == 0xab) {
10361 break;
10362 }
10363 } else {
f9fd40eb 10364 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
904c04de
PM
10365 & 0xffffff;
10366 if (imm == 0x123456) {
10367 break;
10368 }
10369 }
10370 return false;
10371 case EXCP_BKPT:
10372 /* See if this is a semihosting syscall. */
10373 if (env->thumb) {
f9fd40eb 10374 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
904c04de
PM
10375 & 0xff;
10376 if (imm == 0xab) {
10377 env->regs[15] += 2;
10378 break;
10379 }
10380 }
10381 return false;
10382 default:
10383 return false;
10384 }
10385
10386 qemu_log_mask(CPU_LOG_INT,
10387 "...handling as semihosting call 0x%x\n",
10388 env->regs[0]);
10389 env->regs[0] = do_arm_semihosting(env);
10390 return true;
10391 }
10392}
10393
966f758c
PM
10394/* Handle a CPU exception for A and R profile CPUs.
10395 * Do any appropriate logging, handle PSCI calls, and then hand off
10396 * to the AArch64-entry or AArch32-entry function depending on the
10397 * target exception level's register width.
10398 */
10399void arm_cpu_do_interrupt(CPUState *cs)
10400{
10401 ARMCPU *cpu = ARM_CPU(cs);
10402 CPUARMState *env = &cpu->env;
10403 unsigned int new_el = env->exception.target_el;
10404
531c60a9 10405 assert(!arm_feature(env, ARM_FEATURE_M));
966f758c
PM
10406
10407 arm_log_exception(cs->exception_index);
10408 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10409 new_el);
10410 if (qemu_loglevel_mask(CPU_LOG_INT)
10411 && !excp_is_internal(cs->exception_index)) {
6568da45 10412 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
64b91e3f 10413 syn_get_ec(env->exception.syndrome),
966f758c
PM
10414 env->exception.syndrome);
10415 }
10416
10417 if (arm_is_psci_call(cpu, cs->exception_index)) {
10418 arm_handle_psci_call(cpu);
10419 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10420 return;
10421 }
10422
904c04de
PM
10423 /* Semihosting semantics depend on the register width of the
10424 * code that caused the exception, not the target exception level,
10425 * so must be handled here.
966f758c 10426 */
904c04de
PM
10427 if (check_for_semihosting(cs)) {
10428 return;
10429 }
10430
b5c53d1b
AL
10431 /* Hooks may change global state so BQL should be held, also the
10432 * BQL needs to be held for any modification of
10433 * cs->interrupt_request.
10434 */
10435 g_assert(qemu_mutex_iothread_locked());
10436
10437 arm_call_pre_el_change_hook(cpu);
10438
904c04de
PM
10439 assert(!excp_is_internal(cs->exception_index));
10440 if (arm_el_is_aa64(env, new_el)) {
966f758c
PM
10441 arm_cpu_do_interrupt_aarch64(cs);
10442 } else {
10443 arm_cpu_do_interrupt_aarch32(cs);
10444 }
f3a9b694 10445
bd7d00fc
PM
10446 arm_call_el_change_hook(cpu);
10447
f3a9b694
PM
10448 if (!kvm_enabled()) {
10449 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10450 }
10451}
c47eaf9f 10452#endif /* !CONFIG_USER_ONLY */
0480f69a
PM
10453
10454/* Return the exception level which controls this address translation regime */
10455static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
10456{
10457 switch (mmu_idx) {
10458 case ARMMMUIdx_S2NS:
10459 case ARMMMUIdx_S1E2:
10460 return 2;
10461 case ARMMMUIdx_S1E3:
10462 return 3;
10463 case ARMMMUIdx_S1SE0:
10464 return arm_el_is_aa64(env, 3) ? 1 : 3;
10465 case ARMMMUIdx_S1SE1:
10466 case ARMMMUIdx_S1NSE0:
10467 case ARMMMUIdx_S1NSE1:
62593718
PM
10468 case ARMMMUIdx_MPrivNegPri:
10469 case ARMMMUIdx_MUserNegPri:
e7b921c2
PM
10470 case ARMMMUIdx_MPriv:
10471 case ARMMMUIdx_MUser:
62593718
PM
10472 case ARMMMUIdx_MSPrivNegPri:
10473 case ARMMMUIdx_MSUserNegPri:
66787c78 10474 case ARMMMUIdx_MSPriv:
66787c78 10475 case ARMMMUIdx_MSUser:
0480f69a
PM
10476 return 1;
10477 default:
10478 g_assert_not_reached();
10479 }
10480}
10481
c47eaf9f
PM
10482#ifndef CONFIG_USER_ONLY
10483
0480f69a
PM
10484/* Return the SCTLR value which controls this address translation regime */
10485static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10486{
10487 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10488}
10489
10490/* Return true if the specified stage of address translation is disabled */
10491static inline bool regime_translation_disabled(CPUARMState *env,
10492 ARMMMUIdx mmu_idx)
10493{
29c483a5 10494 if (arm_feature(env, ARM_FEATURE_M)) {
ecf5e8ea 10495 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
3bef7012
PM
10496 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10497 case R_V7M_MPU_CTRL_ENABLE_MASK:
10498 /* Enabled, but not for HardFault and NMI */
62593718 10499 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
3bef7012
PM
10500 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10501 /* Enabled for all cases */
10502 return false;
10503 case 0:
10504 default:
10505 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10506 * we warned about that in armv7m_nvic.c when the guest set it.
10507 */
10508 return true;
10509 }
29c483a5
MD
10510 }
10511
0480f69a 10512 if (mmu_idx == ARMMMUIdx_S2NS) {
9d1bab33
PM
10513 /* HCR.DC means HCR.VM behaves as 1 */
10514 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
0480f69a 10515 }
3d0e3080
PM
10516
10517 if (env->cp15.hcr_el2 & HCR_TGE) {
10518 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10519 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10520 return true;
10521 }
10522 }
10523
9d1bab33
PM
10524 if ((env->cp15.hcr_el2 & HCR_DC) &&
10525 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
10526 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10527 return true;
10528 }
10529
0480f69a
PM
10530 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10531}
10532
73462ddd
PC
10533static inline bool regime_translation_big_endian(CPUARMState *env,
10534 ARMMMUIdx mmu_idx)
10535{
10536 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10537}
10538
c47eaf9f
PM
10539/* Return the TTBR associated with this translation regime */
10540static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10541 int ttbrn)
10542{
10543 if (mmu_idx == ARMMMUIdx_S2NS) {
10544 return env->cp15.vttbr_el2;
10545 }
10546 if (ttbrn == 0) {
10547 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10548 } else {
10549 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10550 }
10551}
10552
10553#endif /* !CONFIG_USER_ONLY */
10554
0480f69a
PM
10555/* Return the TCR controlling this translation regime */
10556static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
10557{
10558 if (mmu_idx == ARMMMUIdx_S2NS) {
68e9c2fe 10559 return &env->cp15.vtcr_el2;
0480f69a
PM
10560 }
10561 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
10562}
10563
8bd5c820
PM
10564/* Convert a possible stage1+2 MMU index into the appropriate
10565 * stage 1 MMU index
10566 */
10567static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10568{
10569 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10570 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
10571 }
10572 return mmu_idx;
10573}
10574
0480f69a
PM
10575/* Return true if the translation regime is using LPAE format page tables */
10576static inline bool regime_using_lpae_format(CPUARMState *env,
10577 ARMMMUIdx mmu_idx)
10578{
10579 int el = regime_el(env, mmu_idx);
10580 if (el == 2 || arm_el_is_aa64(env, el)) {
10581 return true;
10582 }
10583 if (arm_feature(env, ARM_FEATURE_LPAE)
10584 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10585 return true;
10586 }
10587 return false;
10588}
10589
deb2db99
AR
10590/* Returns true if the stage 1 translation regime is using LPAE format page
10591 * tables. Used when raising alignment exceptions, whose FSR changes depending
10592 * on whether the long or short descriptor format is in use. */
10593bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
30901475 10594{
8bd5c820 10595 mmu_idx = stage_1_mmu_idx(mmu_idx);
deb2db99 10596
30901475
AB
10597 return regime_using_lpae_format(env, mmu_idx);
10598}
10599
c47eaf9f 10600#ifndef CONFIG_USER_ONLY
0480f69a
PM
10601static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10602{
10603 switch (mmu_idx) {
10604 case ARMMMUIdx_S1SE0:
10605 case ARMMMUIdx_S1NSE0:
e7b921c2 10606 case ARMMMUIdx_MUser:
871bec7c 10607 case ARMMMUIdx_MSUser:
62593718
PM
10608 case ARMMMUIdx_MUserNegPri:
10609 case ARMMMUIdx_MSUserNegPri:
0480f69a
PM
10610 return true;
10611 default:
10612 return false;
10613 case ARMMMUIdx_S12NSE0:
10614 case ARMMMUIdx_S12NSE1:
10615 g_assert_not_reached();
10616 }
10617}
10618
0fbf5238
AJ
10619/* Translate section/page access permissions to page
10620 * R/W protection flags
d76951b6
AJ
10621 *
10622 * @env: CPUARMState
10623 * @mmu_idx: MMU index indicating required translation regime
10624 * @ap: The 3-bit access permissions (AP[2:0])
10625 * @domain_prot: The 2-bit domain access permissions
0fbf5238
AJ
10626 */
10627static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10628 int ap, int domain_prot)
10629{
554b0b09
PM
10630 bool is_user = regime_is_user(env, mmu_idx);
10631
10632 if (domain_prot == 3) {
10633 return PAGE_READ | PAGE_WRITE;
10634 }
10635
554b0b09
PM
10636 switch (ap) {
10637 case 0:
10638 if (arm_feature(env, ARM_FEATURE_V7)) {
10639 return 0;
10640 }
554b0b09
PM
10641 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10642 case SCTLR_S:
10643 return is_user ? 0 : PAGE_READ;
10644 case SCTLR_R:
10645 return PAGE_READ;
10646 default:
10647 return 0;
10648 }
10649 case 1:
10650 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10651 case 2:
87c3d486 10652 if (is_user) {
0fbf5238 10653 return PAGE_READ;
87c3d486 10654 } else {
554b0b09 10655 return PAGE_READ | PAGE_WRITE;
87c3d486 10656 }
554b0b09
PM
10657 case 3:
10658 return PAGE_READ | PAGE_WRITE;
10659 case 4: /* Reserved. */
10660 return 0;
10661 case 5:
0fbf5238 10662 return is_user ? 0 : PAGE_READ;
554b0b09 10663 case 6:
0fbf5238 10664 return PAGE_READ;
554b0b09 10665 case 7:
87c3d486 10666 if (!arm_feature(env, ARM_FEATURE_V6K)) {
554b0b09 10667 return 0;
87c3d486 10668 }
0fbf5238 10669 return PAGE_READ;
554b0b09 10670 default:
0fbf5238 10671 g_assert_not_reached();
554b0b09 10672 }
b5ff1b31
FB
10673}
10674
d76951b6
AJ
10675/* Translate section/page access permissions to page
10676 * R/W protection flags.
10677 *
d76951b6 10678 * @ap: The 2-bit simple AP (AP[2:1])
d8e052b3 10679 * @is_user: TRUE if accessing from PL0
d76951b6 10680 */
d8e052b3 10681static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
d76951b6 10682{
d76951b6
AJ
10683 switch (ap) {
10684 case 0:
10685 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10686 case 1:
10687 return PAGE_READ | PAGE_WRITE;
10688 case 2:
10689 return is_user ? 0 : PAGE_READ;
10690 case 3:
10691 return PAGE_READ;
10692 default:
10693 g_assert_not_reached();
10694 }
10695}
10696
d8e052b3
AJ
10697static inline int
10698simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10699{
10700 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10701}
10702
6ab1a5ee
EI
10703/* Translate S2 section/page access permissions to protection flags
10704 *
10705 * @env: CPUARMState
10706 * @s2ap: The 2-bit stage2 access permissions (S2AP)
10707 * @xn: XN (execute-never) bit
10708 */
10709static int get_S2prot(CPUARMState *env, int s2ap, int xn)
10710{
10711 int prot = 0;
10712
10713 if (s2ap & 1) {
10714 prot |= PAGE_READ;
10715 }
10716 if (s2ap & 2) {
10717 prot |= PAGE_WRITE;
10718 }
10719 if (!xn) {
dfda6837
SS
10720 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10721 prot |= PAGE_EXEC;
10722 }
6ab1a5ee
EI
10723 }
10724 return prot;
10725}
10726
d8e052b3
AJ
10727/* Translate section/page access permissions to protection flags
10728 *
10729 * @env: CPUARMState
10730 * @mmu_idx: MMU index indicating required translation regime
10731 * @is_aa64: TRUE if AArch64
10732 * @ap: The 2-bit simple AP (AP[2:1])
10733 * @ns: NS (non-secure) bit
10734 * @xn: XN (execute-never) bit
10735 * @pxn: PXN (privileged execute-never) bit
10736 */
10737static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10738 int ap, int ns, int xn, int pxn)
10739{
10740 bool is_user = regime_is_user(env, mmu_idx);
10741 int prot_rw, user_rw;
10742 bool have_wxn;
10743 int wxn = 0;
10744
10745 assert(mmu_idx != ARMMMUIdx_S2NS);
10746
10747 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10748 if (is_user) {
10749 prot_rw = user_rw;
10750 } else {
10751 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10752 }
10753
10754 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10755 return prot_rw;
10756 }
10757
10758 /* TODO have_wxn should be replaced with
10759 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10760 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10761 * compatible processors have EL2, which is required for [U]WXN.
10762 */
10763 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10764
10765 if (have_wxn) {
10766 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10767 }
10768
10769 if (is_aa64) {
10770 switch (regime_el(env, mmu_idx)) {
10771 case 1:
10772 if (!is_user) {
10773 xn = pxn || (user_rw & PAGE_WRITE);
10774 }
10775 break;
10776 case 2:
10777 case 3:
10778 break;
10779 }
10780 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10781 switch (regime_el(env, mmu_idx)) {
10782 case 1:
10783 case 3:
10784 if (is_user) {
10785 xn = xn || !(user_rw & PAGE_READ);
10786 } else {
10787 int uwxn = 0;
10788 if (have_wxn) {
10789 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10790 }
10791 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10792 (uwxn && (user_rw & PAGE_WRITE));
10793 }
10794 break;
10795 case 2:
10796 break;
10797 }
10798 } else {
10799 xn = wxn = 0;
10800 }
10801
10802 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10803 return prot_rw;
10804 }
10805 return prot_rw | PAGE_EXEC;
10806}
10807
0480f69a
PM
10808static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10809 uint32_t *table, uint32_t address)
b2fa1797 10810{
0480f69a 10811 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
0480f69a 10812 TCR *tcr = regime_tcr(env, mmu_idx);
11f136ee 10813
11f136ee
FA
10814 if (address & tcr->mask) {
10815 if (tcr->raw_tcr & TTBCR_PD1) {
e389be16
FA
10816 /* Translation table walk disabled for TTBR1 */
10817 return false;
10818 }
aef878be 10819 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
e389be16 10820 } else {
11f136ee 10821 if (tcr->raw_tcr & TTBCR_PD0) {
e389be16
FA
10822 /* Translation table walk disabled for TTBR0 */
10823 return false;
10824 }
aef878be 10825 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
e389be16
FA
10826 }
10827 *table |= (address >> 18) & 0x3ffc;
10828 return true;
b2fa1797
PB
10829}
10830
37785977
EI
10831/* Translate a S1 pagetable walk through S2 if needed. */
10832static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10833 hwaddr addr, MemTxAttrs txattrs,
37785977
EI
10834 ARMMMUFaultInfo *fi)
10835{
10836 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
10837 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10838 target_ulong s2size;
10839 hwaddr s2pa;
10840 int s2prot;
10841 int ret;
eadb2feb
PM
10842 ARMCacheAttrs cacheattrs = {};
10843 ARMCacheAttrs *pcacheattrs = NULL;
10844
10845 if (env->cp15.hcr_el2 & HCR_PTW) {
10846 /*
10847 * PTW means we must fault if this S1 walk touches S2 Device
10848 * memory; otherwise we don't care about the attributes and can
10849 * save the S2 translation the effort of computing them.
10850 */
10851 pcacheattrs = &cacheattrs;
10852 }
37785977
EI
10853
10854 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
eadb2feb 10855 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
37785977 10856 if (ret) {
3b39d734 10857 assert(fi->type != ARMFault_None);
37785977
EI
10858 fi->s2addr = addr;
10859 fi->stage2 = true;
10860 fi->s1ptw = true;
10861 return ~0;
10862 }
eadb2feb
PM
10863 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
10864 /* Access was to Device memory: generate Permission fault */
10865 fi->type = ARMFault_Permission;
10866 fi->s2addr = addr;
10867 fi->stage2 = true;
10868 fi->s1ptw = true;
10869 return ~0;
10870 }
37785977
EI
10871 addr = s2pa;
10872 }
10873 return addr;
10874}
10875
14577270 10876/* All loads done in the course of a page table walk go through here. */
a614e698 10877static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
3795a6de 10878 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
ebca90e4 10879{
a614e698
EI
10880 ARMCPU *cpu = ARM_CPU(cs);
10881 CPUARMState *env = &cpu->env;
ebca90e4 10882 MemTxAttrs attrs = {};
3b39d734 10883 MemTxResult result = MEMTX_OK;
5ce4ff65 10884 AddressSpace *as;
3b39d734 10885 uint32_t data;
ebca90e4
PM
10886
10887 attrs.secure = is_secure;
5ce4ff65 10888 as = arm_addressspace(cs, attrs);
3795a6de 10889 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
a614e698
EI
10890 if (fi->s1ptw) {
10891 return 0;
10892 }
73462ddd 10893 if (regime_translation_big_endian(env, mmu_idx)) {
3b39d734 10894 data = address_space_ldl_be(as, addr, attrs, &result);
73462ddd 10895 } else {
3b39d734 10896 data = address_space_ldl_le(as, addr, attrs, &result);
73462ddd 10897 }
3b39d734
PM
10898 if (result == MEMTX_OK) {
10899 return data;
10900 }
10901 fi->type = ARMFault_SyncExternalOnWalk;
10902 fi->ea = arm_extabort_type(result);
10903 return 0;
ebca90e4
PM
10904}
10905
37785977 10906static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
3795a6de 10907 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
ebca90e4 10908{
37785977
EI
10909 ARMCPU *cpu = ARM_CPU(cs);
10910 CPUARMState *env = &cpu->env;
ebca90e4 10911 MemTxAttrs attrs = {};
3b39d734 10912 MemTxResult result = MEMTX_OK;
5ce4ff65 10913 AddressSpace *as;
9aea1ea3 10914 uint64_t data;
ebca90e4
PM
10915
10916 attrs.secure = is_secure;
5ce4ff65 10917 as = arm_addressspace(cs, attrs);
3795a6de 10918 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
37785977
EI
10919 if (fi->s1ptw) {
10920 return 0;
10921 }
73462ddd 10922 if (regime_translation_big_endian(env, mmu_idx)) {
3b39d734 10923 data = address_space_ldq_be(as, addr, attrs, &result);
73462ddd 10924 } else {
3b39d734
PM
10925 data = address_space_ldq_le(as, addr, attrs, &result);
10926 }
10927 if (result == MEMTX_OK) {
10928 return data;
73462ddd 10929 }
3b39d734
PM
10930 fi->type = ARMFault_SyncExternalOnWalk;
10931 fi->ea = arm_extabort_type(result);
10932 return 0;
ebca90e4
PM
10933}
10934
b7cc4e82 10935static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
03ae85f8 10936 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 10937 hwaddr *phys_ptr, int *prot,
f989983e 10938 target_ulong *page_size,
e14b5a23 10939 ARMMMUFaultInfo *fi)
b5ff1b31 10940{
70d74660 10941 CPUState *cs = CPU(arm_env_get_cpu(env));
f989983e 10942 int level = 1;
b5ff1b31
FB
10943 uint32_t table;
10944 uint32_t desc;
10945 int type;
10946 int ap;
e389be16 10947 int domain = 0;
dd4ebc2e 10948 int domain_prot;
a8170e5e 10949 hwaddr phys_addr;
0480f69a 10950 uint32_t dacr;
b5ff1b31 10951
9ee6e8bb
PB
10952 /* Pagetable walk. */
10953 /* Lookup l1 descriptor. */
0480f69a 10954 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16 10955 /* Section translation fault if page walk is disabled by PD0 or PD1 */
f989983e 10956 fi->type = ARMFault_Translation;
e389be16
FA
10957 goto do_fault;
10958 }
a614e698 10959 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
3795a6de 10960 mmu_idx, fi);
3b39d734
PM
10961 if (fi->type != ARMFault_None) {
10962 goto do_fault;
10963 }
9ee6e8bb 10964 type = (desc & 3);
dd4ebc2e 10965 domain = (desc >> 5) & 0x0f;
0480f69a
PM
10966 if (regime_el(env, mmu_idx) == 1) {
10967 dacr = env->cp15.dacr_ns;
10968 } else {
10969 dacr = env->cp15.dacr_s;
10970 }
10971 domain_prot = (dacr >> (domain * 2)) & 3;
9ee6e8bb 10972 if (type == 0) {
601d70b9 10973 /* Section translation fault. */
f989983e 10974 fi->type = ARMFault_Translation;
9ee6e8bb
PB
10975 goto do_fault;
10976 }
f989983e
PM
10977 if (type != 2) {
10978 level = 2;
10979 }
dd4ebc2e 10980 if (domain_prot == 0 || domain_prot == 2) {
f989983e 10981 fi->type = ARMFault_Domain;
9ee6e8bb
PB
10982 goto do_fault;
10983 }
10984 if (type == 2) {
10985 /* 1Mb section. */
10986 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10987 ap = (desc >> 10) & 3;
d4c430a8 10988 *page_size = 1024 * 1024;
9ee6e8bb
PB
10989 } else {
10990 /* Lookup l2 entry. */
554b0b09
PM
10991 if (type == 1) {
10992 /* Coarse pagetable. */
10993 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10994 } else {
10995 /* Fine pagetable. */
10996 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10997 }
a614e698 10998 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
3795a6de 10999 mmu_idx, fi);
3b39d734
PM
11000 if (fi->type != ARMFault_None) {
11001 goto do_fault;
11002 }
9ee6e8bb
PB
11003 switch (desc & 3) {
11004 case 0: /* Page translation fault. */
f989983e 11005 fi->type = ARMFault_Translation;
9ee6e8bb
PB
11006 goto do_fault;
11007 case 1: /* 64k page. */
11008 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11009 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 11010 *page_size = 0x10000;
ce819861 11011 break;
9ee6e8bb
PB
11012 case 2: /* 4k page. */
11013 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
c10f7fc3 11014 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
d4c430a8 11015 *page_size = 0x1000;
ce819861 11016 break;
fc1891c7 11017 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
554b0b09 11018 if (type == 1) {
fc1891c7
PM
11019 /* ARMv6/XScale extended small page format */
11020 if (arm_feature(env, ARM_FEATURE_XSCALE)
11021 || arm_feature(env, ARM_FEATURE_V6)) {
554b0b09 11022 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
fc1891c7 11023 *page_size = 0x1000;
554b0b09 11024 } else {
fc1891c7
PM
11025 /* UNPREDICTABLE in ARMv5; we choose to take a
11026 * page translation fault.
11027 */
f989983e 11028 fi->type = ARMFault_Translation;
554b0b09
PM
11029 goto do_fault;
11030 }
11031 } else {
11032 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
fc1891c7 11033 *page_size = 0x400;
554b0b09 11034 }
9ee6e8bb 11035 ap = (desc >> 4) & 3;
ce819861
PB
11036 break;
11037 default:
9ee6e8bb
PB
11038 /* Never happens, but compiler isn't smart enough to tell. */
11039 abort();
ce819861 11040 }
9ee6e8bb 11041 }
0fbf5238
AJ
11042 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11043 *prot |= *prot ? PAGE_EXEC : 0;
11044 if (!(*prot & (1 << access_type))) {
9ee6e8bb 11045 /* Access permission fault. */
f989983e 11046 fi->type = ARMFault_Permission;
9ee6e8bb
PB
11047 goto do_fault;
11048 }
11049 *phys_ptr = phys_addr;
b7cc4e82 11050 return false;
9ee6e8bb 11051do_fault:
f989983e
PM
11052 fi->domain = domain;
11053 fi->level = level;
b7cc4e82 11054 return true;
9ee6e8bb
PB
11055}
11056
b7cc4e82 11057static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
03ae85f8 11058 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 11059 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
f06cf243 11060 target_ulong *page_size, ARMMMUFaultInfo *fi)
9ee6e8bb 11061{
70d74660 11062 CPUState *cs = CPU(arm_env_get_cpu(env));
f06cf243 11063 int level = 1;
9ee6e8bb
PB
11064 uint32_t table;
11065 uint32_t desc;
11066 uint32_t xn;
de9b05b8 11067 uint32_t pxn = 0;
9ee6e8bb
PB
11068 int type;
11069 int ap;
de9b05b8 11070 int domain = 0;
dd4ebc2e 11071 int domain_prot;
a8170e5e 11072 hwaddr phys_addr;
0480f69a 11073 uint32_t dacr;
8bf5b6a9 11074 bool ns;
9ee6e8bb
PB
11075
11076 /* Pagetable walk. */
11077 /* Lookup l1 descriptor. */
0480f69a 11078 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16 11079 /* Section translation fault if page walk is disabled by PD0 or PD1 */
f06cf243 11080 fi->type = ARMFault_Translation;
e389be16
FA
11081 goto do_fault;
11082 }
a614e698 11083 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
3795a6de 11084 mmu_idx, fi);
3b39d734
PM
11085 if (fi->type != ARMFault_None) {
11086 goto do_fault;
11087 }
9ee6e8bb 11088 type = (desc & 3);
de9b05b8
PM
11089 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
11090 /* Section translation fault, or attempt to use the encoding
11091 * which is Reserved on implementations without PXN.
11092 */
f06cf243 11093 fi->type = ARMFault_Translation;
9ee6e8bb 11094 goto do_fault;
de9b05b8
PM
11095 }
11096 if ((type == 1) || !(desc & (1 << 18))) {
11097 /* Page or Section. */
dd4ebc2e 11098 domain = (desc >> 5) & 0x0f;
9ee6e8bb 11099 }
0480f69a
PM
11100 if (regime_el(env, mmu_idx) == 1) {
11101 dacr = env->cp15.dacr_ns;
11102 } else {
11103 dacr = env->cp15.dacr_s;
11104 }
f06cf243
PM
11105 if (type == 1) {
11106 level = 2;
11107 }
0480f69a 11108 domain_prot = (dacr >> (domain * 2)) & 3;
dd4ebc2e 11109 if (domain_prot == 0 || domain_prot == 2) {
f06cf243
PM
11110 /* Section or Page domain fault */
11111 fi->type = ARMFault_Domain;
9ee6e8bb
PB
11112 goto do_fault;
11113 }
de9b05b8 11114 if (type != 1) {
9ee6e8bb
PB
11115 if (desc & (1 << 18)) {
11116 /* Supersection. */
11117 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
4e42a6ca
SF
11118 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
11119 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
d4c430a8 11120 *page_size = 0x1000000;
b5ff1b31 11121 } else {
9ee6e8bb
PB
11122 /* Section. */
11123 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 11124 *page_size = 0x100000;
b5ff1b31 11125 }
9ee6e8bb
PB
11126 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
11127 xn = desc & (1 << 4);
de9b05b8 11128 pxn = desc & 1;
8bf5b6a9 11129 ns = extract32(desc, 19, 1);
9ee6e8bb 11130 } else {
de9b05b8
PM
11131 if (arm_feature(env, ARM_FEATURE_PXN)) {
11132 pxn = (desc >> 2) & 1;
11133 }
8bf5b6a9 11134 ns = extract32(desc, 3, 1);
9ee6e8bb
PB
11135 /* Lookup l2 entry. */
11136 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
a614e698 11137 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
3795a6de 11138 mmu_idx, fi);
3b39d734
PM
11139 if (fi->type != ARMFault_None) {
11140 goto do_fault;
11141 }
9ee6e8bb
PB
11142 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11143 switch (desc & 3) {
11144 case 0: /* Page translation fault. */
f06cf243 11145 fi->type = ARMFault_Translation;
b5ff1b31 11146 goto do_fault;
9ee6e8bb
PB
11147 case 1: /* 64k page. */
11148 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11149 xn = desc & (1 << 15);
d4c430a8 11150 *page_size = 0x10000;
9ee6e8bb
PB
11151 break;
11152 case 2: case 3: /* 4k page. */
11153 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11154 xn = desc & 1;
d4c430a8 11155 *page_size = 0x1000;
9ee6e8bb
PB
11156 break;
11157 default:
11158 /* Never happens, but compiler isn't smart enough to tell. */
11159 abort();
b5ff1b31 11160 }
9ee6e8bb 11161 }
dd4ebc2e 11162 if (domain_prot == 3) {
c0034328
JR
11163 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11164 } else {
0480f69a 11165 if (pxn && !regime_is_user(env, mmu_idx)) {
de9b05b8
PM
11166 xn = 1;
11167 }
f06cf243
PM
11168 if (xn && access_type == MMU_INST_FETCH) {
11169 fi->type = ARMFault_Permission;
c0034328 11170 goto do_fault;
f06cf243 11171 }
9ee6e8bb 11172
d76951b6
AJ
11173 if (arm_feature(env, ARM_FEATURE_V6K) &&
11174 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11175 /* The simplified model uses AP[0] as an access control bit. */
11176 if ((ap & 1) == 0) {
11177 /* Access flag fault. */
f06cf243 11178 fi->type = ARMFault_AccessFlag;
d76951b6
AJ
11179 goto do_fault;
11180 }
11181 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11182 } else {
11183 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
c0034328 11184 }
0fbf5238
AJ
11185 if (*prot && !xn) {
11186 *prot |= PAGE_EXEC;
11187 }
11188 if (!(*prot & (1 << access_type))) {
c0034328 11189 /* Access permission fault. */
f06cf243 11190 fi->type = ARMFault_Permission;
c0034328
JR
11191 goto do_fault;
11192 }
3ad493fc 11193 }
8bf5b6a9
PM
11194 if (ns) {
11195 /* The NS bit will (as required by the architecture) have no effect if
11196 * the CPU doesn't support TZ or this is a non-secure translation
11197 * regime, because the attribute will already be non-secure.
11198 */
11199 attrs->secure = false;
11200 }
9ee6e8bb 11201 *phys_ptr = phys_addr;
b7cc4e82 11202 return false;
b5ff1b31 11203do_fault:
f06cf243
PM
11204 fi->domain = domain;
11205 fi->level = level;
b7cc4e82 11206 return true;
b5ff1b31
FB
11207}
11208
1853d5a9 11209/*
a0e966c9 11210 * check_s2_mmu_setup
1853d5a9
EI
11211 * @cpu: ARMCPU
11212 * @is_aa64: True if the translation regime is in AArch64 state
11213 * @startlevel: Suggested starting level
11214 * @inputsize: Bitsize of IPAs
11215 * @stride: Page-table stride (See the ARM ARM)
11216 *
a0e966c9
EI
11217 * Returns true if the suggested S2 translation parameters are OK and
11218 * false otherwise.
1853d5a9 11219 */
a0e966c9
EI
11220static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11221 int inputsize, int stride)
1853d5a9 11222{
98d68ec2
EI
11223 const int grainsize = stride + 3;
11224 int startsizecheck;
11225
1853d5a9
EI
11226 /* Negative levels are never allowed. */
11227 if (level < 0) {
11228 return false;
11229 }
11230
98d68ec2
EI
11231 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11232 if (startsizecheck < 1 || startsizecheck > stride + 4) {
11233 return false;
11234 }
11235
1853d5a9 11236 if (is_aa64) {
3526423e 11237 CPUARMState *env = &cpu->env;
1853d5a9
EI
11238 unsigned int pamax = arm_pamax(cpu);
11239
11240 switch (stride) {
11241 case 13: /* 64KB Pages. */
11242 if (level == 0 || (level == 1 && pamax <= 42)) {
11243 return false;
11244 }
11245 break;
11246 case 11: /* 16KB Pages. */
11247 if (level == 0 || (level == 1 && pamax <= 40)) {
11248 return false;
11249 }
11250 break;
11251 case 9: /* 4KB Pages. */
11252 if (level == 0 && pamax <= 42) {
11253 return false;
11254 }
11255 break;
11256 default:
11257 g_assert_not_reached();
11258 }
3526423e
EI
11259
11260 /* Inputsize checks. */
11261 if (inputsize > pamax &&
11262 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
11263 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
11264 return false;
11265 }
1853d5a9 11266 } else {
1853d5a9
EI
11267 /* AArch32 only supports 4KB pages. Assert on that. */
11268 assert(stride == 9);
11269
11270 if (level == 0) {
11271 return false;
11272 }
1853d5a9
EI
11273 }
11274 return true;
11275}
11276
5b2d261d
AB
11277/* Translate from the 4-bit stage 2 representation of
11278 * memory attributes (without cache-allocation hints) to
11279 * the 8-bit representation of the stage 1 MAIR registers
11280 * (which includes allocation hints).
11281 *
11282 * ref: shared/translation/attrs/S2AttrDecode()
11283 * .../S2ConvertAttrsHints()
11284 */
11285static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11286{
11287 uint8_t hiattr = extract32(s2attrs, 2, 2);
11288 uint8_t loattr = extract32(s2attrs, 0, 2);
11289 uint8_t hihint = 0, lohint = 0;
11290
11291 if (hiattr != 0) { /* normal memory */
11292 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
11293 hiattr = loattr = 1; /* non-cacheable */
11294 } else {
11295 if (hiattr != 1) { /* Write-through or write-back */
11296 hihint = 3; /* RW allocate */
11297 }
11298 if (loattr != 1) { /* Write-through or write-back */
11299 lohint = 3; /* RW allocate */
11300 }
11301 }
11302 }
11303
11304 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11305}
c47eaf9f 11306#endif /* !CONFIG_USER_ONLY */
5b2d261d 11307
e737ed2a
RH
11308ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
11309 ARMMMUIdx mmu_idx)
ba97be9f
RH
11310{
11311 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11312 uint32_t el = regime_el(env, mmu_idx);
8220af7e 11313 bool tbi, tbid, epd, hpd, using16k, using64k;
ba97be9f
RH
11314 int select, tsz;
11315
11316 /*
11317 * Bit 55 is always between the two regions, and is canonical for
11318 * determining if address tagging is enabled.
11319 */
11320 select = extract64(va, 55, 1);
11321
11322 if (el > 1) {
11323 tsz = extract32(tcr, 0, 6);
11324 using64k = extract32(tcr, 14, 1);
11325 using16k = extract32(tcr, 15, 1);
11326 if (mmu_idx == ARMMMUIdx_S2NS) {
11327 /* VTCR_EL2 */
8220af7e 11328 tbi = tbid = hpd = false;
ba97be9f
RH
11329 } else {
11330 tbi = extract32(tcr, 20, 1);
11331 hpd = extract32(tcr, 24, 1);
8220af7e 11332 tbid = extract32(tcr, 29, 1);
ba97be9f
RH
11333 }
11334 epd = false;
11335 } else if (!select) {
11336 tsz = extract32(tcr, 0, 6);
11337 epd = extract32(tcr, 7, 1);
11338 using64k = extract32(tcr, 14, 1);
11339 using16k = extract32(tcr, 15, 1);
11340 tbi = extract64(tcr, 37, 1);
11341 hpd = extract64(tcr, 41, 1);
8220af7e 11342 tbid = extract64(tcr, 51, 1);
ba97be9f
RH
11343 } else {
11344 int tg = extract32(tcr, 30, 2);
11345 using16k = tg == 1;
11346 using64k = tg == 3;
11347 tsz = extract32(tcr, 16, 6);
11348 epd = extract32(tcr, 23, 1);
11349 tbi = extract64(tcr, 38, 1);
11350 hpd = extract64(tcr, 42, 1);
8220af7e 11351 tbid = extract64(tcr, 52, 1);
ba97be9f
RH
11352 }
11353 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
11354 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
11355
11356 return (ARMVAParameters) {
11357 .tsz = tsz,
11358 .select = select,
11359 .tbi = tbi,
8220af7e 11360 .tbid = tbid,
ba97be9f
RH
11361 .epd = epd,
11362 .hpd = hpd,
11363 .using16k = using16k,
11364 .using64k = using64k,
11365 };
11366}
11367
e737ed2a
RH
11368ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11369 ARMMMUIdx mmu_idx, bool data)
11370{
8220af7e
RH
11371 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
11372
11373 /* Present TBI as a composite with TBID. */
11374 ret.tbi &= (data || !ret.tbid);
11375 return ret;
e737ed2a
RH
11376}
11377
c47eaf9f 11378#ifndef CONFIG_USER_ONLY
ba97be9f
RH
11379static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11380 ARMMMUIdx mmu_idx)
11381{
11382 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11383 uint32_t el = regime_el(env, mmu_idx);
11384 int select, tsz;
11385 bool epd, hpd;
11386
11387 if (mmu_idx == ARMMMUIdx_S2NS) {
11388 /* VTCR */
11389 bool sext = extract32(tcr, 4, 1);
11390 bool sign = extract32(tcr, 3, 1);
11391
11392 /*
11393 * If the sign-extend bit is not the same as t0sz[3], the result
11394 * is unpredictable. Flag this as a guest error.
11395 */
11396 if (sign != sext) {
11397 qemu_log_mask(LOG_GUEST_ERROR,
11398 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11399 }
11400 tsz = sextract32(tcr, 0, 4) + 8;
11401 select = 0;
11402 hpd = false;
11403 epd = false;
11404 } else if (el == 2) {
11405 /* HTCR */
11406 tsz = extract32(tcr, 0, 3);
11407 select = 0;
11408 hpd = extract64(tcr, 24, 1);
11409 epd = false;
11410 } else {
11411 int t0sz = extract32(tcr, 0, 3);
11412 int t1sz = extract32(tcr, 16, 3);
11413
11414 if (t1sz == 0) {
11415 select = va > (0xffffffffu >> t0sz);
11416 } else {
11417 /* Note that we will detect errors later. */
11418 select = va >= ~(0xffffffffu >> t1sz);
11419 }
11420 if (!select) {
11421 tsz = t0sz;
11422 epd = extract32(tcr, 7, 1);
11423 hpd = extract64(tcr, 41, 1);
11424 } else {
11425 tsz = t1sz;
11426 epd = extract32(tcr, 23, 1);
11427 hpd = extract64(tcr, 42, 1);
11428 }
11429 /* For aarch32, hpd0 is not enabled without t2e as well. */
11430 hpd &= extract32(tcr, 6, 1);
11431 }
11432
11433 return (ARMVAParameters) {
11434 .tsz = tsz,
11435 .select = select,
11436 .epd = epd,
11437 .hpd = hpd,
11438 };
11439}
11440
b7cc4e82 11441static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
03ae85f8 11442 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 11443 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
da909b2c 11444 target_ulong *page_size_ptr,
5b2d261d 11445 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
3dde962f 11446{
1853d5a9
EI
11447 ARMCPU *cpu = arm_env_get_cpu(env);
11448 CPUState *cs = CPU(cpu);
3dde962f 11449 /* Read an LPAE long-descriptor translation table. */
da909b2c 11450 ARMFaultType fault_type = ARMFault_Translation;
1b4093ea 11451 uint32_t level;
ba97be9f 11452 ARMVAParameters param;
3dde962f 11453 uint64_t ttbr;
dddb5223 11454 hwaddr descaddr, indexmask, indexmask_grainsize;
3dde962f 11455 uint32_t tableattrs;
36d820af 11456 target_ulong page_size;
3dde962f 11457 uint32_t attrs;
ba97be9f
RH
11458 int32_t stride;
11459 int addrsize, inputsize;
0480f69a 11460 TCR *tcr = regime_tcr(env, mmu_idx);
d8e052b3 11461 int ap, ns, xn, pxn;
88e8add8 11462 uint32_t el = regime_el(env, mmu_idx);
ba97be9f 11463 bool ttbr1_valid;
6109769a 11464 uint64_t descaddrmask;
6e99f762 11465 bool aarch64 = arm_el_is_aa64(env, el);
1bafc2ba 11466 bool guarded = false;
0480f69a
PM
11467
11468 /* TODO:
88e8add8
GB
11469 * This code does not handle the different format TCR for VTCR_EL2.
11470 * This code also does not support shareability levels.
11471 * Attribute and permission bit handling should also be checked when adding
11472 * support for those page table walks.
0480f69a 11473 */
6e99f762 11474 if (aarch64) {
ba97be9f
RH
11475 param = aa64_va_parameters(env, address, mmu_idx,
11476 access_type != MMU_INST_FETCH);
1b4093ea 11477 level = 0;
88e8add8
GB
11478 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
11479 * invalid.
11480 */
ba97be9f
RH
11481 ttbr1_valid = (el < 2);
11482 addrsize = 64 - 8 * param.tbi;
11483 inputsize = 64 - param.tsz;
d0a2cbce 11484 } else {
ba97be9f 11485 param = aa32_va_parameters(env, address, mmu_idx);
1b4093ea 11486 level = 1;
d0a2cbce 11487 /* There is no TTBR1 for EL2 */
ba97be9f
RH
11488 ttbr1_valid = (el != 2);
11489 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
11490 inputsize = addrsize - param.tsz;
2c8dd318 11491 }
3dde962f 11492
ba97be9f
RH
11493 /*
11494 * We determined the region when collecting the parameters, but we
11495 * have not yet validated that the address is valid for the region.
11496 * Extract the top bits and verify that they all match select.
36d820af
RH
11497 *
11498 * For aa32, if inputsize == addrsize, then we have selected the
11499 * region by exclusion in aa32_va_parameters and there is no more
11500 * validation to do here.
11501 */
11502 if (inputsize < addrsize) {
11503 target_ulong top_bits = sextract64(address, inputsize,
11504 addrsize - inputsize);
11505 if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
11506 /* The gap between the two regions is a Translation fault */
11507 fault_type = ARMFault_Translation;
11508 goto do_fault;
11509 }
3dde962f
PM
11510 }
11511
ba97be9f
RH
11512 if (param.using64k) {
11513 stride = 13;
11514 } else if (param.using16k) {
11515 stride = 11;
11516 } else {
11517 stride = 9;
11518 }
11519
3dde962f
PM
11520 /* Note that QEMU ignores shareability and cacheability attributes,
11521 * so we don't need to do anything with the SH, ORGN, IRGN fields
11522 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
11523 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11524 * implement any ASID-like capability so we can ignore it (instead
11525 * we will always flush the TLB any time the ASID is changed).
11526 */
ba97be9f 11527 ttbr = regime_ttbr(env, mmu_idx, param.select);
3dde962f 11528
0480f69a 11529 /* Here we should have set up all the parameters for the translation:
6e99f762 11530 * inputsize, ttbr, epd, stride, tbi
0480f69a
PM
11531 */
11532
ba97be9f 11533 if (param.epd) {
88e8add8
GB
11534 /* Translation table walk disabled => Translation fault on TLB miss
11535 * Note: This is always 0 on 64-bit EL2 and EL3.
11536 */
3dde962f
PM
11537 goto do_fault;
11538 }
11539
1853d5a9
EI
11540 if (mmu_idx != ARMMMUIdx_S2NS) {
11541 /* The starting level depends on the virtual address size (which can
11542 * be up to 48 bits) and the translation granule size. It indicates
11543 * the number of strides (stride bits at a time) needed to
11544 * consume the bits of the input address. In the pseudocode this is:
11545 * level = 4 - RoundUp((inputsize - grainsize) / stride)
11546 * where their 'inputsize' is our 'inputsize', 'grainsize' is
11547 * our 'stride + 3' and 'stride' is our 'stride'.
11548 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11549 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11550 * = 4 - (inputsize - 4) / stride;
11551 */
11552 level = 4 - (inputsize - 4) / stride;
11553 } else {
11554 /* For stage 2 translations the starting level is specified by the
11555 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11556 */
1b4093ea
SS
11557 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11558 uint32_t startlevel;
1853d5a9
EI
11559 bool ok;
11560
6e99f762 11561 if (!aarch64 || stride == 9) {
1853d5a9 11562 /* AArch32 or 4KB pages */
1b4093ea 11563 startlevel = 2 - sl0;
1853d5a9
EI
11564 } else {
11565 /* 16KB or 64KB pages */
1b4093ea 11566 startlevel = 3 - sl0;
1853d5a9
EI
11567 }
11568
11569 /* Check that the starting level is valid. */
6e99f762 11570 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1b4093ea 11571 inputsize, stride);
1853d5a9 11572 if (!ok) {
da909b2c 11573 fault_type = ARMFault_Translation;
1853d5a9
EI
11574 goto do_fault;
11575 }
1b4093ea 11576 level = startlevel;
1853d5a9 11577 }
3dde962f 11578
dddb5223
SS
11579 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11580 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
3dde962f
PM
11581
11582 /* Now we can extract the actual base address from the TTBR */
2c8dd318 11583 descaddr = extract64(ttbr, 0, 48);
dddb5223 11584 descaddr &= ~indexmask;
3dde962f 11585
6109769a 11586 /* The address field in the descriptor goes up to bit 39 for ARMv7
dddb5223
SS
11587 * but up to bit 47 for ARMv8, but we use the descaddrmask
11588 * up to bit 39 for AArch32, because we don't need other bits in that case
11589 * to construct next descriptor address (anyway they should be all zeroes).
6109769a 11590 */
6e99f762 11591 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
dddb5223 11592 ~indexmask_grainsize;
6109769a 11593
ebca90e4
PM
11594 /* Secure accesses start with the page table in secure memory and
11595 * can be downgraded to non-secure at any step. Non-secure accesses
11596 * remain non-secure. We implement this by just ORing in the NSTable/NS
11597 * bits at each step.
11598 */
11599 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
3dde962f
PM
11600 for (;;) {
11601 uint64_t descriptor;
ebca90e4 11602 bool nstable;
3dde962f 11603
dddb5223 11604 descaddr |= (address >> (stride * (4 - level))) & indexmask;
2c8dd318 11605 descaddr &= ~7ULL;
ebca90e4 11606 nstable = extract32(tableattrs, 4, 1);
3795a6de 11607 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
3b39d734 11608 if (fi->type != ARMFault_None) {
37785977
EI
11609 goto do_fault;
11610 }
11611
3dde962f
PM
11612 if (!(descriptor & 1) ||
11613 (!(descriptor & 2) && (level == 3))) {
11614 /* Invalid, or the Reserved level 3 encoding */
11615 goto do_fault;
11616 }
6109769a 11617 descaddr = descriptor & descaddrmask;
3dde962f
PM
11618
11619 if ((descriptor & 2) && (level < 3)) {
037c13c5 11620 /* Table entry. The top five bits are attributes which may
3dde962f
PM
11621 * propagate down through lower levels of the table (and
11622 * which are all arranged so that 0 means "no effect", so
11623 * we can gather them up by ORing in the bits at each level).
11624 */
11625 tableattrs |= extract64(descriptor, 59, 5);
11626 level++;
dddb5223 11627 indexmask = indexmask_grainsize;
3dde962f
PM
11628 continue;
11629 }
11630 /* Block entry at level 1 or 2, or page entry at level 3.
11631 * These are basically the same thing, although the number
11632 * of bits we pull in from the vaddr varies.
11633 */
973a5434 11634 page_size = (1ULL << ((stride * (4 - level)) + 3));
3dde962f 11635 descaddr |= (address & (page_size - 1));
6ab1a5ee 11636 /* Extract attributes from the descriptor */
d615efac
IC
11637 attrs = extract64(descriptor, 2, 10)
11638 | (extract64(descriptor, 52, 12) << 10);
6ab1a5ee
EI
11639
11640 if (mmu_idx == ARMMMUIdx_S2NS) {
11641 /* Stage 2 table descriptors do not include any attribute fields */
11642 break;
11643 }
11644 /* Merge in attributes from table descriptors */
037c13c5 11645 attrs |= nstable << 3; /* NS */
1bafc2ba 11646 guarded = extract64(descriptor, 50, 1); /* GP */
ba97be9f 11647 if (param.hpd) {
037c13c5
RH
11648 /* HPD disables all the table attributes except NSTable. */
11649 break;
11650 }
11651 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
3dde962f
PM
11652 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11653 * means "force PL1 access only", which means forcing AP[1] to 0.
11654 */
037c13c5
RH
11655 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
11656 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
3dde962f
PM
11657 break;
11658 }
11659 /* Here descaddr is the final physical address, and attributes
11660 * are all in attrs.
11661 */
da909b2c 11662 fault_type = ARMFault_AccessFlag;
3dde962f
PM
11663 if ((attrs & (1 << 8)) == 0) {
11664 /* Access flag */
11665 goto do_fault;
11666 }
d8e052b3
AJ
11667
11668 ap = extract32(attrs, 4, 2);
d8e052b3 11669 xn = extract32(attrs, 12, 1);
d8e052b3 11670
6ab1a5ee
EI
11671 if (mmu_idx == ARMMMUIdx_S2NS) {
11672 ns = true;
11673 *prot = get_S2prot(env, ap, xn);
11674 } else {
11675 ns = extract32(attrs, 3, 1);
11676 pxn = extract32(attrs, 11, 1);
6e99f762 11677 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
6ab1a5ee 11678 }
d8e052b3 11679
da909b2c 11680 fault_type = ARMFault_Permission;
d8e052b3 11681 if (!(*prot & (1 << access_type))) {
3dde962f
PM
11682 goto do_fault;
11683 }
3dde962f 11684
8bf5b6a9
PM
11685 if (ns) {
11686 /* The NS bit will (as required by the architecture) have no effect if
11687 * the CPU doesn't support TZ or this is a non-secure translation
11688 * regime, because the attribute will already be non-secure.
11689 */
11690 txattrs->secure = false;
11691 }
1bafc2ba
RH
11692 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
11693 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11694 txattrs->target_tlb_bit0 = true;
11695 }
5b2d261d
AB
11696
11697 if (cacheattrs != NULL) {
11698 if (mmu_idx == ARMMMUIdx_S2NS) {
11699 cacheattrs->attrs = convert_stage2_attrs(env,
11700 extract32(attrs, 0, 4));
11701 } else {
11702 /* Index into MAIR registers for cache attributes */
11703 uint8_t attrindx = extract32(attrs, 0, 3);
11704 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11705 assert(attrindx <= 7);
11706 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11707 }
11708 cacheattrs->shareability = extract32(attrs, 6, 2);
11709 }
11710
3dde962f
PM
11711 *phys_ptr = descaddr;
11712 *page_size_ptr = page_size;
b7cc4e82 11713 return false;
3dde962f
PM
11714
11715do_fault:
da909b2c
PM
11716 fi->type = fault_type;
11717 fi->level = level;
37785977
EI
11718 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
11719 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
b7cc4e82 11720 return true;
3dde962f
PM
11721}
11722
f6bda88f
PC
11723static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11724 ARMMMUIdx mmu_idx,
11725 int32_t address, int *prot)
11726{
3a00d560
MD
11727 if (!arm_feature(env, ARM_FEATURE_M)) {
11728 *prot = PAGE_READ | PAGE_WRITE;
11729 switch (address) {
11730 case 0xF0000000 ... 0xFFFFFFFF:
11731 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11732 /* hivecs execing is ok */
11733 *prot |= PAGE_EXEC;
11734 }
11735 break;
11736 case 0x00000000 ... 0x7FFFFFFF:
f6bda88f 11737 *prot |= PAGE_EXEC;
3a00d560
MD
11738 break;
11739 }
11740 } else {
11741 /* Default system address map for M profile cores.
11742 * The architecture specifies which regions are execute-never;
11743 * at the MPU level no other checks are defined.
11744 */
11745 switch (address) {
11746 case 0x00000000 ... 0x1fffffff: /* ROM */
11747 case 0x20000000 ... 0x3fffffff: /* SRAM */
11748 case 0x60000000 ... 0x7fffffff: /* RAM */
11749 case 0x80000000 ... 0x9fffffff: /* RAM */
11750 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11751 break;
11752 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11753 case 0xa0000000 ... 0xbfffffff: /* Device */
11754 case 0xc0000000 ... 0xdfffffff: /* Device */
11755 case 0xe0000000 ... 0xffffffff: /* System */
11756 *prot = PAGE_READ | PAGE_WRITE;
11757 break;
11758 default:
11759 g_assert_not_reached();
f6bda88f 11760 }
f6bda88f 11761 }
f6bda88f
PC
11762}
11763
29c483a5
MD
11764static bool pmsav7_use_background_region(ARMCPU *cpu,
11765 ARMMMUIdx mmu_idx, bool is_user)
11766{
11767 /* Return true if we should use the default memory map as a
11768 * "background" region if there are no hits against any MPU regions.
11769 */
11770 CPUARMState *env = &cpu->env;
11771
11772 if (is_user) {
11773 return false;
11774 }
11775
11776 if (arm_feature(env, ARM_FEATURE_M)) {
ecf5e8ea
PM
11777 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11778 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
29c483a5
MD
11779 } else {
11780 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11781 }
11782}
11783
38aaa60c
PM
11784static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11785{
11786 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11787 return arm_feature(env, ARM_FEATURE_M) &&
11788 extract32(address, 20, 12) == 0xe00;
11789}
11790
bf446a11
PM
11791static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11792{
11793 /* True if address is in the M profile system region
11794 * 0xe0000000 - 0xffffffff
11795 */
11796 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11797}
11798
f6bda88f 11799static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
03ae85f8 11800 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9375ad15 11801 hwaddr *phys_ptr, int *prot,
e5e40999 11802 target_ulong *page_size,
9375ad15 11803 ARMMMUFaultInfo *fi)
f6bda88f
PC
11804{
11805 ARMCPU *cpu = arm_env_get_cpu(env);
11806 int n;
11807 bool is_user = regime_is_user(env, mmu_idx);
11808
11809 *phys_ptr = address;
e5e40999 11810 *page_size = TARGET_PAGE_SIZE;
f6bda88f
PC
11811 *prot = 0;
11812
38aaa60c
PM
11813 if (regime_translation_disabled(env, mmu_idx) ||
11814 m_is_ppb_region(env, address)) {
11815 /* MPU disabled or M profile PPB access: use default memory map.
11816 * The other case which uses the default memory map in the
11817 * v7M ARM ARM pseudocode is exception vector reads from the vector
11818 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11819 * which always does a direct read using address_space_ldl(), rather
11820 * than going via this function, so we don't need to check that here.
11821 */
f6bda88f
PC
11822 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11823 } else { /* MPU enabled */
11824 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11825 /* region search */
11826 uint32_t base = env->pmsav7.drbar[n];
11827 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11828 uint32_t rmask;
11829 bool srdis = false;
11830
11831 if (!(env->pmsav7.drsr[n] & 0x1)) {
11832 continue;
11833 }
11834
11835 if (!rsize) {
c9f9f124
MD
11836 qemu_log_mask(LOG_GUEST_ERROR,
11837 "DRSR[%d]: Rsize field cannot be 0\n", n);
f6bda88f
PC
11838 continue;
11839 }
11840 rsize++;
11841 rmask = (1ull << rsize) - 1;
11842
11843 if (base & rmask) {
c9f9f124
MD
11844 qemu_log_mask(LOG_GUEST_ERROR,
11845 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11846 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11847 n, base, rmask);
f6bda88f
PC
11848 continue;
11849 }
11850
11851 if (address < base || address > base + rmask) {
9d2b5a58
PM
11852 /*
11853 * Address not in this region. We must check whether the
11854 * region covers addresses in the same page as our address.
11855 * In that case we must not report a size that covers the
11856 * whole page for a subsequent hit against a different MPU
11857 * region or the background region, because it would result in
11858 * incorrect TLB hits for subsequent accesses to addresses that
11859 * are in this MPU region.
11860 */
11861 if (ranges_overlap(base, rmask,
11862 address & TARGET_PAGE_MASK,
11863 TARGET_PAGE_SIZE)) {
11864 *page_size = 1;
11865 }
f6bda88f
PC
11866 continue;
11867 }
11868
11869 /* Region matched */
11870
11871 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11872 int i, snd;
11873 uint32_t srdis_mask;
11874
11875 rsize -= 3; /* sub region size (power of 2) */
11876 snd = ((address - base) >> rsize) & 0x7;
11877 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11878
11879 srdis_mask = srdis ? 0x3 : 0x0;
11880 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11881 /* This will check in groups of 2, 4 and then 8, whether
11882 * the subregion bits are consistent. rsize is incremented
11883 * back up to give the region size, considering consistent
11884 * adjacent subregions as one region. Stop testing if rsize
11885 * is already big enough for an entire QEMU page.
11886 */
11887 int snd_rounded = snd & ~(i - 1);
11888 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11889 snd_rounded + 8, i);
11890 if (srdis_mask ^ srdis_multi) {
11891 break;
11892 }
11893 srdis_mask = (srdis_mask << i) | srdis_mask;
11894 rsize++;
11895 }
11896 }
f6bda88f
PC
11897 if (srdis) {
11898 continue;
11899 }
e5e40999
PM
11900 if (rsize < TARGET_PAGE_BITS) {
11901 *page_size = 1 << rsize;
11902 }
f6bda88f
PC
11903 break;
11904 }
11905
11906 if (n == -1) { /* no hits */
29c483a5 11907 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
f6bda88f 11908 /* background fault */
9375ad15 11909 fi->type = ARMFault_Background;
f6bda88f
PC
11910 return true;
11911 }
11912 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11913 } else { /* a MPU hit! */
11914 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
bf446a11
PM
11915 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11916
11917 if (m_is_system_region(env, address)) {
11918 /* System space is always execute never */
11919 xn = 1;
11920 }
f6bda88f
PC
11921
11922 if (is_user) { /* User mode AP bit decoding */
11923 switch (ap) {
11924 case 0:
11925 case 1:
11926 case 5:
11927 break; /* no access */
11928 case 3:
11929 *prot |= PAGE_WRITE;
11930 /* fall through */
11931 case 2:
11932 case 6:
11933 *prot |= PAGE_READ | PAGE_EXEC;
11934 break;
8638f1ad
PM
11935 case 7:
11936 /* for v7M, same as 6; for R profile a reserved value */
11937 if (arm_feature(env, ARM_FEATURE_M)) {
11938 *prot |= PAGE_READ | PAGE_EXEC;
11939 break;
11940 }
11941 /* fall through */
f6bda88f
PC
11942 default:
11943 qemu_log_mask(LOG_GUEST_ERROR,
c9f9f124
MD
11944 "DRACR[%d]: Bad value for AP bits: 0x%"
11945 PRIx32 "\n", n, ap);
f6bda88f
PC
11946 }
11947 } else { /* Priv. mode AP bits decoding */
11948 switch (ap) {
11949 case 0:
11950 break; /* no access */
11951 case 1:
11952 case 2:
11953 case 3:
11954 *prot |= PAGE_WRITE;
11955 /* fall through */
11956 case 5:
11957 case 6:
11958 *prot |= PAGE_READ | PAGE_EXEC;
11959 break;
8638f1ad
PM
11960 case 7:
11961 /* for v7M, same as 6; for R profile a reserved value */
11962 if (arm_feature(env, ARM_FEATURE_M)) {
11963 *prot |= PAGE_READ | PAGE_EXEC;
11964 break;
11965 }
11966 /* fall through */
f6bda88f
PC
11967 default:
11968 qemu_log_mask(LOG_GUEST_ERROR,
c9f9f124
MD
11969 "DRACR[%d]: Bad value for AP bits: 0x%"
11970 PRIx32 "\n", n, ap);
f6bda88f
PC
11971 }
11972 }
11973
11974 /* execute never */
bf446a11 11975 if (xn) {
f6bda88f
PC
11976 *prot &= ~PAGE_EXEC;
11977 }
11978 }
11979 }
11980
9375ad15
PM
11981 fi->type = ARMFault_Permission;
11982 fi->level = 1;
f6bda88f
PC
11983 return !(*prot & (1 << access_type));
11984}
11985
35337cc3
PM
11986static bool v8m_is_sau_exempt(CPUARMState *env,
11987 uint32_t address, MMUAccessType access_type)
11988{
11989 /* The architecture specifies that certain address ranges are
11990 * exempt from v8M SAU/IDAU checks.
11991 */
11992 return
11993 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11994 (address >= 0xe0000000 && address <= 0xe0002fff) ||
11995 (address >= 0xe000e000 && address <= 0xe000efff) ||
11996 (address >= 0xe002e000 && address <= 0xe002efff) ||
11997 (address >= 0xe0040000 && address <= 0xe0041fff) ||
11998 (address >= 0xe00ff000 && address <= 0xe00fffff);
11999}
12000
12001static void v8m_security_lookup(CPUARMState *env, uint32_t address,
12002 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12003 V8M_SAttributes *sattrs)
12004{
12005 /* Look up the security attributes for this address. Compare the
12006 * pseudocode SecurityCheck() function.
12007 * We assume the caller has zero-initialized *sattrs.
12008 */
12009 ARMCPU *cpu = arm_env_get_cpu(env);
12010 int r;
181962fd
PM
12011 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
12012 int idau_region = IREGION_NOTVALID;
72042435
PM
12013 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12014 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
35337cc3 12015
181962fd
PM
12016 if (cpu->idau) {
12017 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
12018 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
12019
12020 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
12021 &idau_nsc);
12022 }
35337cc3
PM
12023
12024 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
12025 /* 0xf0000000..0xffffffff is always S for insn fetches */
12026 return;
12027 }
12028
181962fd 12029 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
35337cc3
PM
12030 sattrs->ns = !regime_is_secure(env, mmu_idx);
12031 return;
12032 }
12033
181962fd
PM
12034 if (idau_region != IREGION_NOTVALID) {
12035 sattrs->irvalid = true;
12036 sattrs->iregion = idau_region;
12037 }
12038
35337cc3
PM
12039 switch (env->sau.ctrl & 3) {
12040 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
12041 break;
12042 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12043 sattrs->ns = true;
12044 break;
12045 default: /* SAU.ENABLE == 1 */
12046 for (r = 0; r < cpu->sau_sregion; r++) {
12047 if (env->sau.rlar[r] & 1) {
12048 uint32_t base = env->sau.rbar[r] & ~0x1f;
12049 uint32_t limit = env->sau.rlar[r] | 0x1f;
12050
12051 if (base <= address && limit >= address) {
72042435
PM
12052 if (base > addr_page_base || limit < addr_page_limit) {
12053 sattrs->subpage = true;
12054 }
35337cc3
PM
12055 if (sattrs->srvalid) {
12056 /* If we hit in more than one region then we must report
12057 * as Secure, not NS-Callable, with no valid region
12058 * number info.
12059 */
12060 sattrs->ns = false;
12061 sattrs->nsc = false;
12062 sattrs->sregion = 0;
12063 sattrs->srvalid = false;
12064 break;
12065 } else {
12066 if (env->sau.rlar[r] & 2) {
12067 sattrs->nsc = true;
12068 } else {
12069 sattrs->ns = true;
12070 }
12071 sattrs->srvalid = true;
12072 sattrs->sregion = r;
12073 }
9d2b5a58
PM
12074 } else {
12075 /*
12076 * Address not in this region. We must check whether the
12077 * region covers addresses in the same page as our address.
12078 * In that case we must not report a size that covers the
12079 * whole page for a subsequent hit against a different MPU
12080 * region or the background region, because it would result
12081 * in incorrect TLB hits for subsequent accesses to
12082 * addresses that are in this MPU region.
12083 */
12084 if (limit >= base &&
12085 ranges_overlap(base, limit - base + 1,
12086 addr_page_base,
12087 TARGET_PAGE_SIZE)) {
12088 sattrs->subpage = true;
12089 }
35337cc3
PM
12090 }
12091 }
12092 }
7e3f1223
TR
12093 break;
12094 }
35337cc3 12095
7e3f1223
TR
12096 /*
12097 * The IDAU will override the SAU lookup results if it specifies
12098 * higher security than the SAU does.
12099 */
12100 if (!idau_ns) {
12101 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12102 sattrs->ns = false;
12103 sattrs->nsc = idau_nsc;
181962fd 12104 }
35337cc3
PM
12105 }
12106}
12107
54317c0f
PM
12108static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12109 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12110 hwaddr *phys_ptr, MemTxAttrs *txattrs,
72042435
PM
12111 int *prot, bool *is_subpage,
12112 ARMMMUFaultInfo *fi, uint32_t *mregion)
54317c0f
PM
12113{
12114 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12115 * that a full phys-to-virt translation does).
12116 * mregion is (if not NULL) set to the region number which matched,
12117 * or -1 if no region number is returned (MPU off, address did not
12118 * hit a region, address hit in multiple regions).
72042435
PM
12119 * We set is_subpage to true if the region hit doesn't cover the
12120 * entire TARGET_PAGE the address is within.
54317c0f 12121 */
504e3cc3
PM
12122 ARMCPU *cpu = arm_env_get_cpu(env);
12123 bool is_user = regime_is_user(env, mmu_idx);
62c58ee0 12124 uint32_t secure = regime_is_secure(env, mmu_idx);
504e3cc3
PM
12125 int n;
12126 int matchregion = -1;
12127 bool hit = false;
72042435
PM
12128 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12129 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
504e3cc3 12130
72042435 12131 *is_subpage = false;
504e3cc3
PM
12132 *phys_ptr = address;
12133 *prot = 0;
54317c0f
PM
12134 if (mregion) {
12135 *mregion = -1;
35337cc3
PM
12136 }
12137
504e3cc3
PM
12138 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12139 * was an exception vector read from the vector table (which is always
12140 * done using the default system address map), because those accesses
12141 * are done in arm_v7m_load_vector(), which always does a direct
12142 * read using address_space_ldl(), rather than going via this function.
12143 */
12144 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12145 hit = true;
12146 } else if (m_is_ppb_region(env, address)) {
12147 hit = true;
504e3cc3 12148 } else {
cff21316
PM
12149 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12150 hit = true;
12151 }
12152
504e3cc3
PM
12153 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12154 /* region search */
12155 /* Note that the base address is bits [31:5] from the register
12156 * with bits [4:0] all zeroes, but the limit address is bits
12157 * [31:5] from the register with bits [4:0] all ones.
12158 */
62c58ee0
PM
12159 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12160 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
504e3cc3 12161
62c58ee0 12162 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
504e3cc3
PM
12163 /* Region disabled */
12164 continue;
12165 }
12166
12167 if (address < base || address > limit) {
9d2b5a58
PM
12168 /*
12169 * Address not in this region. We must check whether the
12170 * region covers addresses in the same page as our address.
12171 * In that case we must not report a size that covers the
12172 * whole page for a subsequent hit against a different MPU
12173 * region or the background region, because it would result in
12174 * incorrect TLB hits for subsequent accesses to addresses that
12175 * are in this MPU region.
12176 */
12177 if (limit >= base &&
12178 ranges_overlap(base, limit - base + 1,
12179 addr_page_base,
12180 TARGET_PAGE_SIZE)) {
12181 *is_subpage = true;
12182 }
504e3cc3
PM
12183 continue;
12184 }
12185
72042435
PM
12186 if (base > addr_page_base || limit < addr_page_limit) {
12187 *is_subpage = true;
12188 }
12189
cff21316 12190 if (matchregion != -1) {
504e3cc3
PM
12191 /* Multiple regions match -- always a failure (unlike
12192 * PMSAv7 where highest-numbered-region wins)
12193 */
3f551b5b
PM
12194 fi->type = ARMFault_Permission;
12195 fi->level = 1;
504e3cc3
PM
12196 return true;
12197 }
12198
12199 matchregion = n;
12200 hit = true;
504e3cc3
PM
12201 }
12202 }
12203
12204 if (!hit) {
12205 /* background fault */
3f551b5b 12206 fi->type = ARMFault_Background;
504e3cc3
PM
12207 return true;
12208 }
12209
12210 if (matchregion == -1) {
12211 /* hit using the background region */
12212 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12213 } else {
62c58ee0
PM
12214 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12215 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
504e3cc3
PM
12216
12217 if (m_is_system_region(env, address)) {
12218 /* System space is always execute never */
12219 xn = 1;
12220 }
12221
12222 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12223 if (*prot && !xn) {
12224 *prot |= PAGE_EXEC;
12225 }
12226 /* We don't need to look the attribute up in the MAIR0/MAIR1
12227 * registers because that only tells us about cacheability.
12228 */
54317c0f
PM
12229 if (mregion) {
12230 *mregion = matchregion;
12231 }
504e3cc3
PM
12232 }
12233
3f551b5b
PM
12234 fi->type = ARMFault_Permission;
12235 fi->level = 1;
504e3cc3
PM
12236 return !(*prot & (1 << access_type));
12237}
12238
54317c0f
PM
12239
12240static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12241 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12242 hwaddr *phys_ptr, MemTxAttrs *txattrs,
72042435
PM
12243 int *prot, target_ulong *page_size,
12244 ARMMMUFaultInfo *fi)
54317c0f
PM
12245{
12246 uint32_t secure = regime_is_secure(env, mmu_idx);
12247 V8M_SAttributes sattrs = {};
72042435
PM
12248 bool ret;
12249 bool mpu_is_subpage;
54317c0f
PM
12250
12251 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12252 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12253 if (access_type == MMU_INST_FETCH) {
12254 /* Instruction fetches always use the MMU bank and the
12255 * transaction attribute determined by the fetch address,
12256 * regardless of CPU state. This is painful for QEMU
12257 * to handle, because it would mean we need to encode
12258 * into the mmu_idx not just the (user, negpri) information
12259 * for the current security state but also that for the
12260 * other security state, which would balloon the number
12261 * of mmu_idx values needed alarmingly.
12262 * Fortunately we can avoid this because it's not actually
12263 * possible to arbitrarily execute code from memory with
12264 * the wrong security attribute: it will always generate
12265 * an exception of some kind or another, apart from the
12266 * special case of an NS CPU executing an SG instruction
12267 * in S&NSC memory. So we always just fail the translation
12268 * here and sort things out in the exception handler
12269 * (including possibly emulating an SG instruction).
12270 */
12271 if (sattrs.ns != !secure) {
3f551b5b
PM
12272 if (sattrs.nsc) {
12273 fi->type = ARMFault_QEMU_NSCExec;
12274 } else {
12275 fi->type = ARMFault_QEMU_SFault;
12276 }
72042435 12277 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
54317c0f
PM
12278 *phys_ptr = address;
12279 *prot = 0;
12280 return true;
12281 }
12282 } else {
12283 /* For data accesses we always use the MMU bank indicated
12284 * by the current CPU state, but the security attributes
12285 * might downgrade a secure access to nonsecure.
12286 */
12287 if (sattrs.ns) {
12288 txattrs->secure = false;
12289 } else if (!secure) {
12290 /* NS access to S memory must fault.
12291 * Architecturally we should first check whether the
12292 * MPU information for this address indicates that we
12293 * are doing an unaligned access to Device memory, which
12294 * should generate a UsageFault instead. QEMU does not
12295 * currently check for that kind of unaligned access though.
12296 * If we added it we would need to do so as a special case
12297 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12298 */
3f551b5b 12299 fi->type = ARMFault_QEMU_SFault;
72042435 12300 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
54317c0f
PM
12301 *phys_ptr = address;
12302 *prot = 0;
12303 return true;
12304 }
12305 }
12306 }
12307
72042435
PM
12308 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12309 txattrs, prot, &mpu_is_subpage, fi, NULL);
72042435
PM
12310 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12311 return ret;
54317c0f
PM
12312}
12313
13689d43 12314static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
03ae85f8 12315 MMUAccessType access_type, ARMMMUIdx mmu_idx,
53a4e5c5
PM
12316 hwaddr *phys_ptr, int *prot,
12317 ARMMMUFaultInfo *fi)
9ee6e8bb
PB
12318{
12319 int n;
12320 uint32_t mask;
12321 uint32_t base;
0480f69a 12322 bool is_user = regime_is_user(env, mmu_idx);
9ee6e8bb 12323
3279adb9
PM
12324 if (regime_translation_disabled(env, mmu_idx)) {
12325 /* MPU disabled. */
12326 *phys_ptr = address;
12327 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12328 return false;
12329 }
12330
9ee6e8bb
PB
12331 *phys_ptr = address;
12332 for (n = 7; n >= 0; n--) {
554b0b09 12333 base = env->cp15.c6_region[n];
87c3d486 12334 if ((base & 1) == 0) {
554b0b09 12335 continue;
87c3d486 12336 }
554b0b09
PM
12337 mask = 1 << ((base >> 1) & 0x1f);
12338 /* Keep this shift separate from the above to avoid an
12339 (undefined) << 32. */
12340 mask = (mask << 1) - 1;
87c3d486 12341 if (((base ^ address) & ~mask) == 0) {
554b0b09 12342 break;
87c3d486 12343 }
9ee6e8bb 12344 }
87c3d486 12345 if (n < 0) {
53a4e5c5 12346 fi->type = ARMFault_Background;
b7cc4e82 12347 return true;
87c3d486 12348 }
9ee6e8bb 12349
03ae85f8 12350 if (access_type == MMU_INST_FETCH) {
7e09797c 12351 mask = env->cp15.pmsav5_insn_ap;
9ee6e8bb 12352 } else {
7e09797c 12353 mask = env->cp15.pmsav5_data_ap;
9ee6e8bb
PB
12354 }
12355 mask = (mask >> (n * 4)) & 0xf;
12356 switch (mask) {
12357 case 0:
53a4e5c5
PM
12358 fi->type = ARMFault_Permission;
12359 fi->level = 1;
b7cc4e82 12360 return true;
9ee6e8bb 12361 case 1:
87c3d486 12362 if (is_user) {
53a4e5c5
PM
12363 fi->type = ARMFault_Permission;
12364 fi->level = 1;
b7cc4e82 12365 return true;
87c3d486 12366 }
554b0b09
PM
12367 *prot = PAGE_READ | PAGE_WRITE;
12368 break;
9ee6e8bb 12369 case 2:
554b0b09 12370 *prot = PAGE_READ;
87c3d486 12371 if (!is_user) {
554b0b09 12372 *prot |= PAGE_WRITE;
87c3d486 12373 }
554b0b09 12374 break;
9ee6e8bb 12375 case 3:
554b0b09
PM
12376 *prot = PAGE_READ | PAGE_WRITE;
12377 break;
9ee6e8bb 12378 case 5:
87c3d486 12379 if (is_user) {
53a4e5c5
PM
12380 fi->type = ARMFault_Permission;
12381 fi->level = 1;
b7cc4e82 12382 return true;
87c3d486 12383 }
554b0b09
PM
12384 *prot = PAGE_READ;
12385 break;
9ee6e8bb 12386 case 6:
554b0b09
PM
12387 *prot = PAGE_READ;
12388 break;
9ee6e8bb 12389 default:
554b0b09 12390 /* Bad permission. */
53a4e5c5
PM
12391 fi->type = ARMFault_Permission;
12392 fi->level = 1;
b7cc4e82 12393 return true;
9ee6e8bb 12394 }
3ad493fc 12395 *prot |= PAGE_EXEC;
b7cc4e82 12396 return false;
9ee6e8bb
PB
12397}
12398
5b2d261d
AB
12399/* Combine either inner or outer cacheability attributes for normal
12400 * memory, according to table D4-42 and pseudocode procedure
12401 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12402 *
12403 * NB: only stage 1 includes allocation hints (RW bits), leading to
12404 * some asymmetry.
12405 */
12406static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12407{
12408 if (s1 == 4 || s2 == 4) {
12409 /* non-cacheable has precedence */
12410 return 4;
12411 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12412 /* stage 1 write-through takes precedence */
12413 return s1;
12414 } else if (extract32(s2, 2, 2) == 2) {
12415 /* stage 2 write-through takes precedence, but the allocation hint
12416 * is still taken from stage 1
12417 */
12418 return (2 << 2) | extract32(s1, 0, 2);
12419 } else { /* write-back */
12420 return s1;
12421 }
12422}
12423
12424/* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12425 * and CombineS1S2Desc()
12426 *
12427 * @s1: Attributes from stage 1 walk
12428 * @s2: Attributes from stage 2 walk
12429 */
12430static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12431{
12432 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
12433 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
12434 ARMCacheAttrs ret;
12435
12436 /* Combine shareability attributes (table D4-43) */
12437 if (s1.shareability == 2 || s2.shareability == 2) {
12438 /* if either are outer-shareable, the result is outer-shareable */
12439 ret.shareability = 2;
12440 } else if (s1.shareability == 3 || s2.shareability == 3) {
12441 /* if either are inner-shareable, the result is inner-shareable */
12442 ret.shareability = 3;
12443 } else {
12444 /* both non-shareable */
12445 ret.shareability = 0;
12446 }
12447
12448 /* Combine memory type and cacheability attributes */
12449 if (s1hi == 0 || s2hi == 0) {
12450 /* Device has precedence over normal */
12451 if (s1lo == 0 || s2lo == 0) {
12452 /* nGnRnE has precedence over anything */
12453 ret.attrs = 0;
12454 } else if (s1lo == 4 || s2lo == 4) {
12455 /* non-Reordering has precedence over Reordering */
12456 ret.attrs = 4; /* nGnRE */
12457 } else if (s1lo == 8 || s2lo == 8) {
12458 /* non-Gathering has precedence over Gathering */
12459 ret.attrs = 8; /* nGRE */
12460 } else {
12461 ret.attrs = 0xc; /* GRE */
12462 }
12463
12464 /* Any location for which the resultant memory type is any
12465 * type of Device memory is always treated as Outer Shareable.
12466 */
12467 ret.shareability = 2;
12468 } else { /* Normal memory */
12469 /* Outer/inner cacheability combine independently */
12470 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12471 | combine_cacheattr_nibble(s1lo, s2lo);
12472
12473 if (ret.attrs == 0x44) {
12474 /* Any location for which the resultant memory type is Normal
12475 * Inner Non-cacheable, Outer Non-cacheable is always treated
12476 * as Outer Shareable.
12477 */
12478 ret.shareability = 2;
12479 }
12480 }
12481
12482 return ret;
12483}
12484
12485
702a9357
PM
12486/* get_phys_addr - get the physical address for this virtual address
12487 *
12488 * Find the physical address corresponding to the given virtual address,
12489 * by doing a translation table walk on MMU based systems or using the
12490 * MPU state on MPU based systems.
12491 *
b7cc4e82
PC
12492 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12493 * prot and page_size may not be filled in, and the populated fsr value provides
702a9357
PM
12494 * information on why the translation aborted, in the format of a
12495 * DFSR/IFSR fault register, with the following caveats:
12496 * * we honour the short vs long DFSR format differences.
12497 * * the WnR bit is never set (the caller must do this).
f6bda88f 12498 * * for PSMAv5 based systems we don't bother to return a full FSR format
702a9357
PM
12499 * value.
12500 *
12501 * @env: CPUARMState
12502 * @address: virtual address to get physical address for
12503 * @access_type: 0 for read, 1 for write, 2 for execute
d3649702 12504 * @mmu_idx: MMU index indicating required translation regime
702a9357 12505 * @phys_ptr: set to the physical address corresponding to the virtual address
8bf5b6a9 12506 * @attrs: set to the memory transaction attributes to use
702a9357
PM
12507 * @prot: set to the permissions for the page containing phys_ptr
12508 * @page_size: set to the size of the page containing phys_ptr
5b2d261d
AB
12509 * @fi: set to fault info if the translation fails
12510 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
702a9357 12511 */
af51f566 12512static bool get_phys_addr(CPUARMState *env, target_ulong address,
03ae85f8 12513 MMUAccessType access_type, ARMMMUIdx mmu_idx,
af51f566 12514 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
bc52bfeb 12515 target_ulong *page_size,
5b2d261d 12516 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9ee6e8bb 12517{
0480f69a 12518 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9b539263
EI
12519 /* Call ourselves recursively to do the stage 1 and then stage 2
12520 * translations.
0480f69a 12521 */
9b539263
EI
12522 if (arm_feature(env, ARM_FEATURE_EL2)) {
12523 hwaddr ipa;
12524 int s2_prot;
12525 int ret;
5b2d261d 12526 ARMCacheAttrs cacheattrs2 = {};
9b539263
EI
12527
12528 ret = get_phys_addr(env, address, access_type,
8bd5c820 12529 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
bc52bfeb 12530 prot, page_size, fi, cacheattrs);
9b539263
EI
12531
12532 /* If S1 fails or S2 is disabled, return early. */
12533 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
12534 *phys_ptr = ipa;
12535 return ret;
12536 }
12537
12538 /* S1 is done. Now do S2 translation. */
12539 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
12540 phys_ptr, attrs, &s2_prot,
da909b2c 12541 page_size, fi,
5b2d261d 12542 cacheattrs != NULL ? &cacheattrs2 : NULL);
9b539263
EI
12543 fi->s2addr = ipa;
12544 /* Combine the S1 and S2 perms. */
12545 *prot &= s2_prot;
5b2d261d
AB
12546
12547 /* Combine the S1 and S2 cache attributes, if needed */
12548 if (!ret && cacheattrs != NULL) {
9d1bab33
PM
12549 if (env->cp15.hcr_el2 & HCR_DC) {
12550 /*
12551 * HCR.DC forces the first stage attributes to
12552 * Normal Non-Shareable,
12553 * Inner Write-Back Read-Allocate Write-Allocate,
12554 * Outer Write-Back Read-Allocate Write-Allocate.
12555 */
12556 cacheattrs->attrs = 0xff;
12557 cacheattrs->shareability = 0;
12558 }
5b2d261d
AB
12559 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12560 }
12561
9b539263
EI
12562 return ret;
12563 } else {
12564 /*
12565 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12566 */
8bd5c820 12567 mmu_idx = stage_1_mmu_idx(mmu_idx);
9b539263 12568 }
0480f69a 12569 }
d3649702 12570
8bf5b6a9
PM
12571 /* The page table entries may downgrade secure to non-secure, but
12572 * cannot upgrade an non-secure translation regime's attributes
12573 * to secure.
12574 */
12575 attrs->secure = regime_is_secure(env, mmu_idx);
0995bf8c 12576 attrs->user = regime_is_user(env, mmu_idx);
8bf5b6a9 12577
0480f69a
PM
12578 /* Fast Context Switch Extension. This doesn't exist at all in v8.
12579 * In v7 and earlier it affects all stage 1 translations.
12580 */
12581 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
12582 && !arm_feature(env, ARM_FEATURE_V8)) {
12583 if (regime_el(env, mmu_idx) == 3) {
12584 address += env->cp15.fcseidr_s;
12585 } else {
12586 address += env->cp15.fcseidr_ns;
12587 }
54bf36ed 12588 }
9ee6e8bb 12589
3279adb9 12590 if (arm_feature(env, ARM_FEATURE_PMSA)) {
c9f9f124 12591 bool ret;
f6bda88f 12592 *page_size = TARGET_PAGE_SIZE;
3279adb9 12593
504e3cc3
PM
12594 if (arm_feature(env, ARM_FEATURE_V8)) {
12595 /* PMSAv8 */
12596 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
72042435 12597 phys_ptr, attrs, prot, page_size, fi);
504e3cc3 12598 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3279adb9
PM
12599 /* PMSAv7 */
12600 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
e5e40999 12601 phys_ptr, prot, page_size, fi);
3279adb9
PM
12602 } else {
12603 /* Pre-v7 MPU */
12604 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
53a4e5c5 12605 phys_ptr, prot, fi);
3279adb9
PM
12606 }
12607 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
c9f9f124 12608 " mmu_idx %u -> %s (prot %c%c%c)\n",
709e4407
PM
12609 access_type == MMU_DATA_LOAD ? "reading" :
12610 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
c9f9f124
MD
12611 (uint32_t)address, mmu_idx,
12612 ret ? "Miss" : "Hit",
12613 *prot & PAGE_READ ? 'r' : '-',
12614 *prot & PAGE_WRITE ? 'w' : '-',
12615 *prot & PAGE_EXEC ? 'x' : '-');
12616
12617 return ret;
f6bda88f
PC
12618 }
12619
3279adb9
PM
12620 /* Definitely a real MMU, not an MPU */
12621
0480f69a 12622 if (regime_translation_disabled(env, mmu_idx)) {
3279adb9 12623 /* MMU disabled. */
9ee6e8bb 12624 *phys_ptr = address;
3ad493fc 12625 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 12626 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb 12627 return 0;
0480f69a
PM
12628 }
12629
0480f69a 12630 if (regime_using_lpae_format(env, mmu_idx)) {
bc52bfeb
PM
12631 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
12632 phys_ptr, attrs, prot, page_size,
12633 fi, cacheattrs);
0480f69a 12634 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
bc52bfeb
PM
12635 return get_phys_addr_v6(env, address, access_type, mmu_idx,
12636 phys_ptr, attrs, prot, page_size, fi);
9ee6e8bb 12637 } else {
bc52bfeb 12638 return get_phys_addr_v5(env, address, access_type, mmu_idx,
f989983e 12639 phys_ptr, prot, page_size, fi);
9ee6e8bb
PB
12640 }
12641}
12642
0faea0c7
PM
12643hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12644 MemTxAttrs *attrs)
b5ff1b31 12645{
00b941e5 12646 ARMCPU *cpu = ARM_CPU(cs);
d3649702 12647 CPUARMState *env = &cpu->env;
a8170e5e 12648 hwaddr phys_addr;
d4c430a8 12649 target_ulong page_size;
b5ff1b31 12650 int prot;
b7cc4e82 12651 bool ret;
e14b5a23 12652 ARMMMUFaultInfo fi = {};
50494a27 12653 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
b5ff1b31 12654
0faea0c7
PM
12655 *attrs = (MemTxAttrs) {};
12656
8bd5c820 12657 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
bc52bfeb 12658 attrs, &prot, &page_size, &fi, NULL);
b5ff1b31 12659
b7cc4e82 12660 if (ret) {
b5ff1b31 12661 return -1;
00b941e5 12662 }
b5ff1b31
FB
12663 return phys_addr;
12664}
12665
0ecb72a5 12666uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 12667{
58117c9b
MD
12668 uint32_t mask;
12669 unsigned el = arm_current_el(env);
12670
12671 /* First handle registers which unprivileged can read */
12672
12673 switch (reg) {
12674 case 0 ... 7: /* xPSR sub-fields */
12675 mask = 0;
12676 if ((reg & 1) && el) {
987ab45e 12677 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
58117c9b
MD
12678 }
12679 if (!(reg & 4)) {
987ab45e 12680 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
f1e2598c
PM
12681 if (arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
12682 mask |= XPSR_GE;
12683 }
58117c9b
MD
12684 }
12685 /* EPSR reads as zero */
12686 return xpsr_read(env) & mask;
12687 break;
12688 case 20: /* CONTROL */
2e1c5bcd
PM
12689 {
12690 uint32_t value = env->v7m.control[env->v7m.secure];
12691 if (!env->v7m.secure) {
12692 /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
12693 value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK;
12694 }
12695 return value;
12696 }
50f11062
PM
12697 case 0x94: /* CONTROL_NS */
12698 /* We have to handle this here because unprivileged Secure code
12699 * can read the NS CONTROL register.
12700 */
12701 if (!env->v7m.secure) {
12702 return 0;
12703 }
2e1c5bcd
PM
12704 return env->v7m.control[M_REG_NS] |
12705 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK);
58117c9b
MD
12706 }
12707
12708 if (el == 0) {
12709 return 0; /* unprivileged reads others as zero */
12710 }
a47dddd7 12711
50f11062
PM
12712 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12713 switch (reg) {
12714 case 0x88: /* MSP_NS */
12715 if (!env->v7m.secure) {
12716 return 0;
12717 }
12718 return env->v7m.other_ss_msp;
12719 case 0x89: /* PSP_NS */
12720 if (!env->v7m.secure) {
12721 return 0;
12722 }
12723 return env->v7m.other_ss_psp;
57bb3156
PM
12724 case 0x8a: /* MSPLIM_NS */
12725 if (!env->v7m.secure) {
12726 return 0;
12727 }
12728 return env->v7m.msplim[M_REG_NS];
12729 case 0x8b: /* PSPLIM_NS */
12730 if (!env->v7m.secure) {
12731 return 0;
12732 }
12733 return env->v7m.psplim[M_REG_NS];
50f11062
PM
12734 case 0x90: /* PRIMASK_NS */
12735 if (!env->v7m.secure) {
12736 return 0;
12737 }
12738 return env->v7m.primask[M_REG_NS];
12739 case 0x91: /* BASEPRI_NS */
12740 if (!env->v7m.secure) {
12741 return 0;
12742 }
12743 return env->v7m.basepri[M_REG_NS];
12744 case 0x93: /* FAULTMASK_NS */
12745 if (!env->v7m.secure) {
12746 return 0;
12747 }
12748 return env->v7m.faultmask[M_REG_NS];
12749 case 0x98: /* SP_NS */
12750 {
12751 /* This gives the non-secure SP selected based on whether we're
12752 * currently in handler mode or not, using the NS CONTROL.SPSEL.
12753 */
12754 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12755
12756 if (!env->v7m.secure) {
12757 return 0;
12758 }
12759 if (!arm_v7m_is_handler_mode(env) && spsel) {
12760 return env->v7m.other_ss_psp;
12761 } else {
12762 return env->v7m.other_ss_msp;
12763 }
12764 }
12765 default:
12766 break;
12767 }
12768 }
12769
9ee6e8bb 12770 switch (reg) {
9ee6e8bb 12771 case 8: /* MSP */
1169d3aa 12772 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
9ee6e8bb 12773 case 9: /* PSP */
1169d3aa 12774 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
57bb3156
PM
12775 case 10: /* MSPLIM */
12776 if (!arm_feature(env, ARM_FEATURE_V8)) {
12777 goto bad_reg;
12778 }
12779 return env->v7m.msplim[env->v7m.secure];
12780 case 11: /* PSPLIM */
12781 if (!arm_feature(env, ARM_FEATURE_V8)) {
12782 goto bad_reg;
12783 }
12784 return env->v7m.psplim[env->v7m.secure];
9ee6e8bb 12785 case 16: /* PRIMASK */
6d804834 12786 return env->v7m.primask[env->v7m.secure];
82845826
SH
12787 case 17: /* BASEPRI */
12788 case 18: /* BASEPRI_MAX */
acf94941 12789 return env->v7m.basepri[env->v7m.secure];
82845826 12790 case 19: /* FAULTMASK */
42a6686b 12791 return env->v7m.faultmask[env->v7m.secure];
9ee6e8bb 12792 default:
57bb3156 12793 bad_reg:
58117c9b
MD
12794 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
12795 " register %d\n", reg);
9ee6e8bb
PB
12796 return 0;
12797 }
12798}
12799
b28b3377
PM
12800void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
12801{
12802 /* We're passed bits [11..0] of the instruction; extract
12803 * SYSm and the mask bits.
12804 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
12805 * we choose to treat them as if the mask bits were valid.
12806 * NB that the pseudocode 'mask' variable is bits [11..10],
12807 * whereas ours is [11..8].
12808 */
12809 uint32_t mask = extract32(maskreg, 8, 4);
12810 uint32_t reg = extract32(maskreg, 0, 8);
2e1c5bcd 12811 int cur_el = arm_current_el(env);
b28b3377 12812
2e1c5bcd
PM
12813 if (cur_el == 0 && reg > 7 && reg != 20) {
12814 /*
12815 * only xPSR sub-fields and CONTROL.SFPA may be written by
12816 * unprivileged code
12817 */
58117c9b
MD
12818 return;
12819 }
a47dddd7 12820
50f11062
PM
12821 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12822 switch (reg) {
12823 case 0x88: /* MSP_NS */
12824 if (!env->v7m.secure) {
12825 return;
12826 }
12827 env->v7m.other_ss_msp = val;
12828 return;
12829 case 0x89: /* PSP_NS */
12830 if (!env->v7m.secure) {
12831 return;
12832 }
12833 env->v7m.other_ss_psp = val;
12834 return;
57bb3156
PM
12835 case 0x8a: /* MSPLIM_NS */
12836 if (!env->v7m.secure) {
12837 return;
12838 }
12839 env->v7m.msplim[M_REG_NS] = val & ~7;
12840 return;
12841 case 0x8b: /* PSPLIM_NS */
12842 if (!env->v7m.secure) {
12843 return;
12844 }
12845 env->v7m.psplim[M_REG_NS] = val & ~7;
12846 return;
50f11062
PM
12847 case 0x90: /* PRIMASK_NS */
12848 if (!env->v7m.secure) {
12849 return;
12850 }
12851 env->v7m.primask[M_REG_NS] = val & 1;
12852 return;
12853 case 0x91: /* BASEPRI_NS */
22ab3460 12854 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
50f11062
PM
12855 return;
12856 }
12857 env->v7m.basepri[M_REG_NS] = val & 0xff;
12858 return;
12859 case 0x93: /* FAULTMASK_NS */
22ab3460 12860 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
50f11062
PM
12861 return;
12862 }
12863 env->v7m.faultmask[M_REG_NS] = val & 1;
12864 return;
6eb3a64e
PM
12865 case 0x94: /* CONTROL_NS */
12866 if (!env->v7m.secure) {
12867 return;
12868 }
12869 write_v7m_control_spsel_for_secstate(env,
12870 val & R_V7M_CONTROL_SPSEL_MASK,
12871 M_REG_NS);
def18344
JS
12872 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12873 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
12874 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
12875 }
2e1c5bcd
PM
12876 /*
12877 * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
12878 * RES0 if the FPU is not present, and is stored in the S bank
12879 */
12880 if (arm_feature(env, ARM_FEATURE_VFP) &&
12881 extract32(env->v7m.nsacr, 10, 1)) {
12882 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
12883 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
12884 }
6eb3a64e 12885 return;
50f11062
PM
12886 case 0x98: /* SP_NS */
12887 {
12888 /* This gives the non-secure SP selected based on whether we're
12889 * currently in handler mode or not, using the NS CONTROL.SPSEL.
12890 */
12891 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
167765f0
PM
12892 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
12893 uint32_t limit;
50f11062
PM
12894
12895 if (!env->v7m.secure) {
12896 return;
12897 }
167765f0
PM
12898
12899 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
12900
12901 if (val < limit) {
12902 CPUState *cs = CPU(arm_env_get_cpu(env));
12903
12904 cpu_restore_state(cs, GETPC(), true);
12905 raise_exception(env, EXCP_STKOF, 0, 1);
12906 }
12907
12908 if (is_psp) {
50f11062
PM
12909 env->v7m.other_ss_psp = val;
12910 } else {
12911 env->v7m.other_ss_msp = val;
12912 }
12913 return;
12914 }
12915 default:
12916 break;
12917 }
12918 }
12919
9ee6e8bb 12920 switch (reg) {
58117c9b
MD
12921 case 0 ... 7: /* xPSR sub-fields */
12922 /* only APSR is actually writable */
b28b3377
PM
12923 if (!(reg & 4)) {
12924 uint32_t apsrmask = 0;
12925
12926 if (mask & 8) {
987ab45e 12927 apsrmask |= XPSR_NZCV | XPSR_Q;
b28b3377
PM
12928 }
12929 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
987ab45e 12930 apsrmask |= XPSR_GE;
b28b3377
PM
12931 }
12932 xpsr_write(env, val, apsrmask);
58117c9b 12933 }
9ee6e8bb
PB
12934 break;
12935 case 8: /* MSP */
1169d3aa 12936 if (v7m_using_psp(env)) {
9ee6e8bb 12937 env->v7m.other_sp = val;
abc24d86 12938 } else {
9ee6e8bb 12939 env->regs[13] = val;
abc24d86 12940 }
9ee6e8bb
PB
12941 break;
12942 case 9: /* PSP */
1169d3aa 12943 if (v7m_using_psp(env)) {
9ee6e8bb 12944 env->regs[13] = val;
abc24d86 12945 } else {
9ee6e8bb 12946 env->v7m.other_sp = val;
abc24d86 12947 }
9ee6e8bb 12948 break;
57bb3156
PM
12949 case 10: /* MSPLIM */
12950 if (!arm_feature(env, ARM_FEATURE_V8)) {
12951 goto bad_reg;
12952 }
12953 env->v7m.msplim[env->v7m.secure] = val & ~7;
12954 break;
12955 case 11: /* PSPLIM */
12956 if (!arm_feature(env, ARM_FEATURE_V8)) {
12957 goto bad_reg;
12958 }
12959 env->v7m.psplim[env->v7m.secure] = val & ~7;
12960 break;
9ee6e8bb 12961 case 16: /* PRIMASK */
6d804834 12962 env->v7m.primask[env->v7m.secure] = val & 1;
9ee6e8bb 12963 break;
82845826 12964 case 17: /* BASEPRI */
22ab3460
JS
12965 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12966 goto bad_reg;
12967 }
acf94941 12968 env->v7m.basepri[env->v7m.secure] = val & 0xff;
9ee6e8bb 12969 break;
82845826 12970 case 18: /* BASEPRI_MAX */
22ab3460
JS
12971 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12972 goto bad_reg;
12973 }
9ee6e8bb 12974 val &= 0xff;
acf94941
PM
12975 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
12976 || env->v7m.basepri[env->v7m.secure] == 0)) {
12977 env->v7m.basepri[env->v7m.secure] = val;
12978 }
9ee6e8bb 12979 break;
82845826 12980 case 19: /* FAULTMASK */
22ab3460
JS
12981 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12982 goto bad_reg;
12983 }
42a6686b 12984 env->v7m.faultmask[env->v7m.secure] = val & 1;
82845826 12985 break;
9ee6e8bb 12986 case 20: /* CONTROL */
2e1c5bcd
PM
12987 /*
12988 * Writing to the SPSEL bit only has an effect if we are in
792dac30 12989 * thread mode; other bits can be updated by any privileged code.
de2db7ec 12990 * write_v7m_control_spsel() deals with updating the SPSEL bit in
792dac30 12991 * env->v7m.control, so we only need update the others.
83d7f86d
PM
12992 * For v7M, we must just ignore explicit writes to SPSEL in handler
12993 * mode; for v8M the write is permitted but will have no effect.
2e1c5bcd
PM
12994 * All these bits are writes-ignored from non-privileged code,
12995 * except for SFPA.
792dac30 12996 */
2e1c5bcd
PM
12997 if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) ||
12998 !arm_v7m_is_handler_mode(env))) {
de2db7ec 12999 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
792dac30 13000 }
2e1c5bcd 13001 if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) {
def18344
JS
13002 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
13003 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
13004 }
2e1c5bcd
PM
13005 if (arm_feature(env, ARM_FEATURE_VFP)) {
13006 /*
13007 * SFPA is RAZ/WI from NS or if no FPU.
13008 * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
13009 * Both are stored in the S bank.
13010 */
13011 if (env->v7m.secure) {
13012 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
13013 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK;
13014 }
13015 if (cur_el > 0 &&
13016 (env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) ||
13017 extract32(env->v7m.nsacr, 10, 1))) {
13018 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
13019 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
13020 }
13021 }
9ee6e8bb
PB
13022 break;
13023 default:
57bb3156 13024 bad_reg:
58117c9b
MD
13025 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
13026 " register %d\n", reg);
9ee6e8bb
PB
13027 return;
13028 }
13029}
13030
5158de24
PM
13031uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
13032{
13033 /* Implement the TT instruction. op is bits [7:6] of the insn. */
13034 bool forceunpriv = op & 1;
13035 bool alt = op & 2;
13036 V8M_SAttributes sattrs = {};
13037 uint32_t tt_resp;
13038 bool r, rw, nsr, nsrw, mrvalid;
13039 int prot;
3f551b5b 13040 ARMMMUFaultInfo fi = {};
5158de24
PM
13041 MemTxAttrs attrs = {};
13042 hwaddr phys_addr;
5158de24
PM
13043 ARMMMUIdx mmu_idx;
13044 uint32_t mregion;
13045 bool targetpriv;
13046 bool targetsec = env->v7m.secure;
72042435 13047 bool is_subpage;
5158de24
PM
13048
13049 /* Work out what the security state and privilege level we're
13050 * interested in is...
13051 */
13052 if (alt) {
13053 targetsec = !targetsec;
13054 }
13055
13056 if (forceunpriv) {
13057 targetpriv = false;
13058 } else {
13059 targetpriv = arm_v7m_is_handler_mode(env) ||
13060 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
13061 }
13062
13063 /* ...and then figure out which MMU index this is */
13064 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
13065
13066 /* We know that the MPU and SAU don't care about the access type
13067 * for our purposes beyond that we don't want to claim to be
13068 * an insn fetch, so we arbitrarily call this a read.
13069 */
13070
13071 /* MPU region info only available for privileged or if
13072 * inspecting the other MPU state.
13073 */
13074 if (arm_current_el(env) != 0 || alt) {
13075 /* We can ignore the return value as prot is always set */
13076 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
72042435
PM
13077 &phys_addr, &attrs, &prot, &is_subpage,
13078 &fi, &mregion);
5158de24
PM
13079 if (mregion == -1) {
13080 mrvalid = false;
13081 mregion = 0;
13082 } else {
13083 mrvalid = true;
13084 }
13085 r = prot & PAGE_READ;
13086 rw = prot & PAGE_WRITE;
13087 } else {
13088 r = false;
13089 rw = false;
13090 mrvalid = false;
13091 mregion = 0;
13092 }
13093
13094 if (env->v7m.secure) {
13095 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
13096 nsr = sattrs.ns && r;
13097 nsrw = sattrs.ns && rw;
13098 } else {
13099 sattrs.ns = true;
13100 nsr = false;
13101 nsrw = false;
13102 }
13103
13104 tt_resp = (sattrs.iregion << 24) |
13105 (sattrs.irvalid << 23) |
13106 ((!sattrs.ns) << 22) |
13107 (nsrw << 21) |
13108 (nsr << 20) |
13109 (rw << 19) |
13110 (r << 18) |
13111 (sattrs.srvalid << 17) |
13112 (mrvalid << 16) |
13113 (sattrs.sregion << 8) |
13114 mregion;
13115
13116 return tt_resp;
13117}
13118
b5ff1b31 13119#endif
6ddbc6e4 13120
7350d553
RH
13121bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
13122 MMUAccessType access_type, int mmu_idx,
13123 bool probe, uintptr_t retaddr)
13124{
13125 ARMCPU *cpu = ARM_CPU(cs);
13126
13127#ifdef CONFIG_USER_ONLY
13128 cpu->env.exception.vaddress = address;
13129 if (access_type == MMU_INST_FETCH) {
13130 cs->exception_index = EXCP_PREFETCH_ABORT;
13131 } else {
13132 cs->exception_index = EXCP_DATA_ABORT;
13133 }
13134 cpu_loop_exit_restore(cs, retaddr);
13135#else
13136 hwaddr phys_addr;
13137 target_ulong page_size;
13138 int prot, ret;
13139 MemTxAttrs attrs = {};
13140 ARMMMUFaultInfo fi = {};
13141
13142 /*
13143 * Walk the page table and (if the mapping exists) add the page
13144 * to the TLB. On success, return true. Otherwise, if probing,
13145 * return false. Otherwise populate fsr with ARM DFSR/IFSR fault
13146 * register format, and signal the fault.
13147 */
13148 ret = get_phys_addr(&cpu->env, address, access_type,
13149 core_to_arm_mmu_idx(&cpu->env, mmu_idx),
13150 &phys_addr, &attrs, &prot, &page_size, &fi, NULL);
13151 if (likely(!ret)) {
13152 /*
13153 * Map a single [sub]page. Regions smaller than our declared
13154 * target page size are handled specially, so for those we
13155 * pass in the exact addresses.
13156 */
13157 if (page_size >= TARGET_PAGE_SIZE) {
13158 phys_addr &= TARGET_PAGE_MASK;
13159 address &= TARGET_PAGE_MASK;
13160 }
13161 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
13162 prot, mmu_idx, page_size);
13163 return true;
13164 } else if (probe) {
13165 return false;
13166 } else {
13167 /* now we have a real cpu fault */
13168 cpu_restore_state(cs, retaddr, true);
13169 arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi);
13170 }
13171#endif
13172}
13173
aca3f40b
PM
13174void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
13175{
13176 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
13177 * Note that we do not implement the (architecturally mandated)
13178 * alignment fault for attempts to use this on Device memory
13179 * (which matches the usual QEMU behaviour of not implementing either
13180 * alignment faults or any memory attribute handling).
13181 */
13182
13183 ARMCPU *cpu = arm_env_get_cpu(env);
13184 uint64_t blocklen = 4 << cpu->dcz_blocksize;
13185 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
13186
13187#ifndef CONFIG_USER_ONLY
13188 {
13189 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
13190 * the block size so we might have to do more than one TLB lookup.
13191 * We know that in fact for any v8 CPU the page size is at least 4K
13192 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
13193 * 1K as an artefact of legacy v5 subpage support being present in the
63159601
PM
13194 * same QEMU executable. So in practice the hostaddr[] array has
13195 * two entries, given the current setting of TARGET_PAGE_BITS_MIN.
aca3f40b
PM
13196 */
13197 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
63159601 13198 void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)];
aca3f40b 13199 int try, i;
97ed5ccd 13200 unsigned mmu_idx = cpu_mmu_index(env, false);
3972ef6f 13201 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
aca3f40b 13202
63159601
PM
13203 assert(maxidx <= ARRAY_SIZE(hostaddr));
13204
aca3f40b
PM
13205 for (try = 0; try < 2; try++) {
13206
13207 for (i = 0; i < maxidx; i++) {
13208 hostaddr[i] = tlb_vaddr_to_host(env,
13209 vaddr + TARGET_PAGE_SIZE * i,
3972ef6f 13210 1, mmu_idx);
aca3f40b
PM
13211 if (!hostaddr[i]) {
13212 break;
13213 }
13214 }
13215 if (i == maxidx) {
13216 /* If it's all in the TLB it's fair game for just writing to;
13217 * we know we don't need to update dirty status, etc.
13218 */
13219 for (i = 0; i < maxidx - 1; i++) {
13220 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
13221 }
13222 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
13223 return;
13224 }
13225 /* OK, try a store and see if we can populate the tlb. This
13226 * might cause an exception if the memory isn't writable,
13227 * in which case we will longjmp out of here. We must for
13228 * this purpose use the actual register value passed to us
13229 * so that we get the fault address right.
13230 */
01ecaf43 13231 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
aca3f40b
PM
13232 /* Now we can populate the other TLB entries, if any */
13233 for (i = 0; i < maxidx; i++) {
13234 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
13235 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
01ecaf43 13236 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
aca3f40b
PM
13237 }
13238 }
13239 }
13240
13241 /* Slow path (probably attempt to do this to an I/O device or
13242 * similar, or clearing of a block of code we have translations
13243 * cached for). Just do a series of byte writes as the architecture
13244 * demands. It's not worth trying to use a cpu_physical_memory_map(),
13245 * memset(), unmap() sequence here because:
13246 * + we'd need to account for the blocksize being larger than a page
13247 * + the direct-RAM access case is almost always going to be dealt
13248 * with in the fastpath code above, so there's no speed benefit
13249 * + we would have to deal with the map returning NULL because the
13250 * bounce buffer was in use
13251 */
13252 for (i = 0; i < blocklen; i++) {
01ecaf43 13253 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
aca3f40b
PM
13254 }
13255 }
13256#else
13257 memset(g2h(vaddr), 0, blocklen);
13258#endif
13259}
13260
6ddbc6e4
PB
13261/* Note that signed overflow is undefined in C. The following routines are
13262 careful to use unsigned types where modulo arithmetic is required.
13263 Failure to do so _will_ break on newer gcc. */
13264
13265/* Signed saturating arithmetic. */
13266
1654b2d6 13267/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
13268static inline uint16_t add16_sat(uint16_t a, uint16_t b)
13269{
13270 uint16_t res;
13271
13272 res = a + b;
13273 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
13274 if (a & 0x8000)
13275 res = 0x8000;
13276 else
13277 res = 0x7fff;
13278 }
13279 return res;
13280}
13281
1654b2d6 13282/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
13283static inline uint8_t add8_sat(uint8_t a, uint8_t b)
13284{
13285 uint8_t res;
13286
13287 res = a + b;
13288 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
13289 if (a & 0x80)
13290 res = 0x80;
13291 else
13292 res = 0x7f;
13293 }
13294 return res;
13295}
13296
1654b2d6 13297/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
13298static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
13299{
13300 uint16_t res;
13301
13302 res = a - b;
13303 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
13304 if (a & 0x8000)
13305 res = 0x8000;
13306 else
13307 res = 0x7fff;
13308 }
13309 return res;
13310}
13311
1654b2d6 13312/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
13313static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
13314{
13315 uint8_t res;
13316
13317 res = a - b;
13318 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
13319 if (a & 0x80)
13320 res = 0x80;
13321 else
13322 res = 0x7f;
13323 }
13324 return res;
13325}
13326
13327#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
13328#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
13329#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
13330#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
13331#define PFX q
13332
13333#include "op_addsub.h"
13334
13335/* Unsigned saturating arithmetic. */
460a09c1 13336static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
13337{
13338 uint16_t res;
13339 res = a + b;
13340 if (res < a)
13341 res = 0xffff;
13342 return res;
13343}
13344
460a09c1 13345static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 13346{
4c4fd3f8 13347 if (a > b)
6ddbc6e4
PB
13348 return a - b;
13349 else
13350 return 0;
13351}
13352
13353static inline uint8_t add8_usat(uint8_t a, uint8_t b)
13354{
13355 uint8_t res;
13356 res = a + b;
13357 if (res < a)
13358 res = 0xff;
13359 return res;
13360}
13361
13362static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
13363{
4c4fd3f8 13364 if (a > b)
6ddbc6e4
PB
13365 return a - b;
13366 else
13367 return 0;
13368}
13369
13370#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
13371#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
13372#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
13373#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
13374#define PFX uq
13375
13376#include "op_addsub.h"
13377
13378/* Signed modulo arithmetic. */
13379#define SARITH16(a, b, n, op) do { \
13380 int32_t sum; \
db6e2e65 13381 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
13382 RESULT(sum, n, 16); \
13383 if (sum >= 0) \
13384 ge |= 3 << (n * 2); \
13385 } while(0)
13386
13387#define SARITH8(a, b, n, op) do { \
13388 int32_t sum; \
db6e2e65 13389 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
13390 RESULT(sum, n, 8); \
13391 if (sum >= 0) \
13392 ge |= 1 << n; \
13393 } while(0)
13394
13395
13396#define ADD16(a, b, n) SARITH16(a, b, n, +)
13397#define SUB16(a, b, n) SARITH16(a, b, n, -)
13398#define ADD8(a, b, n) SARITH8(a, b, n, +)
13399#define SUB8(a, b, n) SARITH8(a, b, n, -)
13400#define PFX s
13401#define ARITH_GE
13402
13403#include "op_addsub.h"
13404
13405/* Unsigned modulo arithmetic. */
13406#define ADD16(a, b, n) do { \
13407 uint32_t sum; \
13408 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
13409 RESULT(sum, n, 16); \
a87aa10b 13410 if ((sum >> 16) == 1) \
6ddbc6e4
PB
13411 ge |= 3 << (n * 2); \
13412 } while(0)
13413
13414#define ADD8(a, b, n) do { \
13415 uint32_t sum; \
13416 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13417 RESULT(sum, n, 8); \
a87aa10b
AZ
13418 if ((sum >> 8) == 1) \
13419 ge |= 1 << n; \
6ddbc6e4
PB
13420 } while(0)
13421
13422#define SUB16(a, b, n) do { \
13423 uint32_t sum; \
13424 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13425 RESULT(sum, n, 16); \
13426 if ((sum >> 16) == 0) \
13427 ge |= 3 << (n * 2); \
13428 } while(0)
13429
13430#define SUB8(a, b, n) do { \
13431 uint32_t sum; \
13432 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13433 RESULT(sum, n, 8); \
13434 if ((sum >> 8) == 0) \
a87aa10b 13435 ge |= 1 << n; \
6ddbc6e4
PB
13436 } while(0)
13437
13438#define PFX u
13439#define ARITH_GE
13440
13441#include "op_addsub.h"
13442
13443/* Halved signed arithmetic. */
13444#define ADD16(a, b, n) \
13445 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13446#define SUB16(a, b, n) \
13447 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13448#define ADD8(a, b, n) \
13449 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13450#define SUB8(a, b, n) \
13451 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13452#define PFX sh
13453
13454#include "op_addsub.h"
13455
13456/* Halved unsigned arithmetic. */
13457#define ADD16(a, b, n) \
13458 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13459#define SUB16(a, b, n) \
13460 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13461#define ADD8(a, b, n) \
13462 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13463#define SUB8(a, b, n) \
13464 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13465#define PFX uh
13466
13467#include "op_addsub.h"
13468
13469static inline uint8_t do_usad(uint8_t a, uint8_t b)
13470{
13471 if (a > b)
13472 return a - b;
13473 else
13474 return b - a;
13475}
13476
13477/* Unsigned sum of absolute byte differences. */
13478uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13479{
13480 uint32_t sum;
13481 sum = do_usad(a, b);
13482 sum += do_usad(a >> 8, b >> 8);
13483 sum += do_usad(a >> 16, b >>16);
13484 sum += do_usad(a >> 24, b >> 24);
13485 return sum;
13486}
13487
13488/* For ARMv6 SEL instruction. */
13489uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13490{
13491 uint32_t mask;
13492
13493 mask = 0;
13494 if (flags & 1)
13495 mask |= 0xff;
13496 if (flags & 2)
13497 mask |= 0xff00;
13498 if (flags & 4)
13499 mask |= 0xff0000;
13500 if (flags & 8)
13501 mask |= 0xff000000;
13502 return (a & mask) | (b & ~mask);
13503}
13504
aa633469
PM
13505/* CRC helpers.
13506 * The upper bytes of val (above the number specified by 'bytes') must have
13507 * been zeroed out by the caller.
13508 */
eb0ecd5a
WN
13509uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13510{
13511 uint8_t buf[4];
13512
aa633469 13513 stl_le_p(buf, val);
eb0ecd5a
WN
13514
13515 /* zlib crc32 converts the accumulator and output to one's complement. */
13516 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13517}
13518
13519uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13520{
13521 uint8_t buf[4];
13522
aa633469 13523 stl_le_p(buf, val);
eb0ecd5a
WN
13524
13525 /* Linux crc32c converts the output to one's complement. */
13526 return crc32c(acc, buf, bytes) ^ 0xffffffff;
13527}
a9e01311
RH
13528
13529/* Return the exception level to which FP-disabled exceptions should
13530 * be taken, or 0 if FP is enabled.
13531 */
ced31551 13532int fp_exception_el(CPUARMState *env, int cur_el)
a9e01311 13533{
55faa212 13534#ifndef CONFIG_USER_ONLY
a9e01311 13535 int fpen;
a9e01311
RH
13536
13537 /* CPACR and the CPTR registers don't exist before v6, so FP is
13538 * always accessible
13539 */
13540 if (!arm_feature(env, ARM_FEATURE_V6)) {
13541 return 0;
13542 }
13543
d87513c0
PM
13544 if (arm_feature(env, ARM_FEATURE_M)) {
13545 /* CPACR can cause a NOCP UsageFault taken to current security state */
13546 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13547 return 1;
13548 }
13549
13550 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13551 if (!extract32(env->v7m.nsacr, 10, 1)) {
13552 /* FP insns cause a NOCP UsageFault taken to Secure */
13553 return 3;
13554 }
13555 }
13556
13557 return 0;
13558 }
13559
a9e01311
RH
13560 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13561 * 0, 2 : trap EL0 and EL1/PL1 accesses
13562 * 1 : trap only EL0 accesses
13563 * 3 : trap no accesses
13564 */
13565 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13566 switch (fpen) {
13567 case 0:
13568 case 2:
13569 if (cur_el == 0 || cur_el == 1) {
13570 /* Trap to PL1, which might be EL1 or EL3 */
13571 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13572 return 3;
13573 }
13574 return 1;
13575 }
13576 if (cur_el == 3 && !is_a64(env)) {
13577 /* Secure PL1 running at EL3 */
13578 return 3;
13579 }
13580 break;
13581 case 1:
13582 if (cur_el == 0) {
13583 return 1;
13584 }
13585 break;
13586 case 3:
13587 break;
13588 }
13589
13590 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13591 * check because zero bits in the registers mean "don't trap".
13592 */
13593
13594 /* CPTR_EL2 : present in v7VE or v8 */
13595 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13596 && !arm_is_secure_below_el3(env)) {
13597 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13598 return 2;
13599 }
13600
13601 /* CPTR_EL3 : present in v8 */
13602 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13603 /* Trap all FP ops to EL3 */
13604 return 3;
13605 }
55faa212 13606#endif
a9e01311
RH
13607 return 0;
13608}
13609
fa6252a9
PM
13610ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
13611 bool secstate, bool priv, bool negpri)
65e4655c
RH
13612{
13613 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
13614
13615 if (priv) {
13616 mmu_idx |= ARM_MMU_IDX_M_PRIV;
13617 }
13618
fa6252a9 13619 if (negpri) {
65e4655c
RH
13620 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
13621 }
13622
13623 if (secstate) {
13624 mmu_idx |= ARM_MMU_IDX_M_S;
13625 }
13626
13627 return mmu_idx;
13628}
13629
fa6252a9
PM
13630ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
13631 bool secstate, bool priv)
13632{
13633 bool negpri = armv7m_nvic_neg_prio_requested(env->nvic, secstate);
13634
13635 return arm_v7m_mmu_idx_all(env, secstate, priv, negpri);
13636}
13637
65e4655c
RH
13638/* Return the MMU index for a v7M CPU in the specified security state */
13639ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13640{
13641 bool priv = arm_current_el(env) != 0;
13642
13643 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
13644}
13645
50494a27 13646ARMMMUIdx arm_mmu_idx(CPUARMState *env)
65e4655c 13647{
50494a27 13648 int el;
65e4655c
RH
13649
13650 if (arm_feature(env, ARM_FEATURE_M)) {
50494a27 13651 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
65e4655c
RH
13652 }
13653
50494a27 13654 el = arm_current_el(env);
65e4655c 13655 if (el < 2 && arm_is_secure_below_el3(env)) {
50494a27
RH
13656 return ARMMMUIdx_S1SE0 + el;
13657 } else {
13658 return ARMMMUIdx_S12NSE0 + el;
65e4655c 13659 }
50494a27
RH
13660}
13661
13662int cpu_mmu_index(CPUARMState *env, bool ifetch)
13663{
13664 return arm_to_core_mmu_idx(arm_mmu_idx(env));
65e4655c
RH
13665}
13666
64be86ab
RH
13667#ifndef CONFIG_USER_ONLY
13668ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13669{
13670 return stage_1_mmu_idx(arm_mmu_idx(env));
13671}
13672#endif
13673
a9e01311 13674void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
b9adaa70 13675 target_ulong *cs_base, uint32_t *pflags)
a9e01311 13676{
50494a27 13677 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
2de7ace2
RH
13678 int current_el = arm_current_el(env);
13679 int fp_el = fp_exception_el(env, current_el);
aad821ac 13680 uint32_t flags = 0;
b9adaa70 13681
a9e01311 13682 if (is_a64(env)) {
cd208a1c 13683 ARMCPU *cpu = arm_env_get_cpu(env);
08f1434a 13684 uint64_t sctlr;
cd208a1c 13685
a9e01311 13686 *pc = env->pc;
aad821ac 13687 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
5d8634f5 13688
c47eaf9f 13689 /* Get control bits for tagged addresses. */
5d8634f5
RH
13690 {
13691 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13692 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
13693 int tbii, tbid;
13694
13695 /* FIXME: ARMv8.1-VHE S2 translation regime. */
13696 if (regime_el(env, stage1) < 2) {
13697 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
13698 tbid = (p1.tbi << 1) | p0.tbi;
13699 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
13700 } else {
13701 tbid = p0.tbi;
13702 tbii = tbid & !p0.tbid;
13703 }
13704
13705 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
4a9ee99d 13706 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
5d8634f5 13707 }
1db5e96c 13708
cd208a1c 13709 if (cpu_isar_feature(aa64_sve, cpu)) {
2de7ace2 13710 int sve_el = sve_exception_el(env, current_el);
e79b445d 13711 uint32_t zcr_len;
1db5e96c 13712
e79b445d
RH
13713 /* If SVE is disabled, but FP is enabled,
13714 * then the effective len is 0.
13715 */
13716 if (sve_el != 0 && fp_el == 0) {
13717 zcr_len = 0;
13718 } else {
0ab5953b 13719 zcr_len = sve_zcr_len_for_el(env, current_el);
1db5e96c 13720 }
aad821ac
RH
13721 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
13722 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
1db5e96c 13723 }
0816ef1b 13724
64e40755
RH
13725 sctlr = arm_sctlr(env, current_el);
13726
0816ef1b
RH
13727 if (cpu_isar_feature(aa64_pauth, cpu)) {
13728 /*
13729 * In order to save space in flags, we record only whether
13730 * pauth is "inactive", meaning all insns are implemented as
13731 * a nop, or "active" when some action must be performed.
13732 * The decision of which action to take is left to a helper.
13733 */
0816ef1b
RH
13734 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13735 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
13736 }
13737 }
08f1434a
RH
13738
13739 if (cpu_isar_feature(aa64_bti, cpu)) {
13740 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
13741 if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13742 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
13743 }
13744 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13745 }
a9e01311
RH
13746 } else {
13747 *pc = env->regs[15];
aad821ac
RH
13748 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
13749 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
13750 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
13751 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
13752 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
13753 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
a9e01311 13754 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
d87513c0 13755 || arm_el_is_aa64(env, 1) || arm_feature(env, ARM_FEATURE_M)) {
aad821ac 13756 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
a9e01311 13757 }
ea7ac69d
PM
13758 /* Note that XSCALE_CPAR shares bits with VECSTRIDE */
13759 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13760 flags = FIELD_DP32(flags, TBFLAG_A32,
13761 XSCALE_CPAR, env->cp15.c15_cpar);
13762 }
a9e01311
RH
13763 }
13764
aad821ac 13765 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
a9e01311
RH
13766
13767 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13768 * states defined in the ARM ARM for software singlestep:
13769 * SS_ACTIVE PSTATE.SS State
13770 * 0 x Inactive (the TB flag for SS is always 0)
13771 * 1 0 Active-pending
13772 * 1 1 Active-not-pending
13773 */
13774 if (arm_singlestep_active(env)) {
aad821ac 13775 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
a9e01311
RH
13776 if (is_a64(env)) {
13777 if (env->pstate & PSTATE_SS) {
aad821ac 13778 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
a9e01311
RH
13779 }
13780 } else {
13781 if (env->uncached_cpsr & PSTATE_SS) {
aad821ac 13782 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
a9e01311
RH
13783 }
13784 }
13785 }
13786 if (arm_cpu_data_is_big_endian(env)) {
aad821ac 13787 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
a9e01311 13788 }
aad821ac 13789 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
a9e01311
RH
13790
13791 if (arm_v7m_is_handler_mode(env)) {
aad821ac 13792 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
a9e01311
RH
13793 }
13794
4730fb85
PM
13795 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
13796 * suppressing them because the requested execution priority is less than 0.
13797 */
13798 if (arm_feature(env, ARM_FEATURE_V8) &&
13799 arm_feature(env, ARM_FEATURE_M) &&
13800 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13801 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
aad821ac 13802 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
4730fb85
PM
13803 }
13804
6d60c67a
PM
13805 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13806 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) != env->v7m.secure) {
13807 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1);
13808 }
13809
6000531e
PM
13810 if (arm_feature(env, ARM_FEATURE_M) &&
13811 (env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13812 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13813 (env->v7m.secure &&
13814 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13815 /*
13816 * ASPEN is set, but FPCA/SFPA indicate that there is no active
13817 * FP context; we must create a new FP context before executing
13818 * any FP insn.
13819 */
13820 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1);
13821 }
13822
e33cf0f8
PM
13823 if (arm_feature(env, ARM_FEATURE_M)) {
13824 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13825
13826 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13827 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1);
13828 }
13829 }
13830
b9adaa70 13831 *pflags = flags;
a9e01311
RH
13832 *cs_base = 0;
13833}
0ab5953b
RH
13834
13835#ifdef TARGET_AARCH64
13836/*
13837 * The manual says that when SVE is enabled and VQ is widened the
13838 * implementation is allowed to zero the previously inaccessible
13839 * portion of the registers. The corollary to that is that when
13840 * SVE is enabled and VQ is narrowed we are also allowed to zero
13841 * the now inaccessible portion of the registers.
13842 *
13843 * The intent of this is that no predicate bit beyond VQ is ever set.
13844 * Which means that some operations on predicate registers themselves
13845 * may operate on full uint64_t or even unrolled across the maximum
13846 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13847 * may well be cheaper than conditionals to restrict the operation
13848 * to the relevant portion of a uint16_t[16].
13849 */
13850void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13851{
13852 int i, j;
13853 uint64_t pmask;
13854
13855 assert(vq >= 1 && vq <= ARM_MAX_VQ);
13856 assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
13857
13858 /* Zap the high bits of the zregs. */
13859 for (i = 0; i < 32; i++) {
13860 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13861 }
13862
13863 /* Zap the high bits of the pregs and ffr. */
13864 pmask = 0;
13865 if (vq & 3) {
13866 pmask = ~(-1ULL << (16 * (vq & 3)));
13867 }
13868 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13869 for (i = 0; i < 17; ++i) {
13870 env->vfp.pregs[i].p[j] &= pmask;
13871 }
13872 pmask = 0;
13873 }
13874}
13875
13876/*
13877 * Notice a change in SVE vector size when changing EL.
13878 */
9a05f7b6
RH
13879void aarch64_sve_change_el(CPUARMState *env, int old_el,
13880 int new_el, bool el0_a64)
0ab5953b 13881{
cd208a1c 13882 ARMCPU *cpu = arm_env_get_cpu(env);
0ab5953b 13883 int old_len, new_len;
9a05f7b6 13884 bool old_a64, new_a64;
0ab5953b
RH
13885
13886 /* Nothing to do if no SVE. */
cd208a1c 13887 if (!cpu_isar_feature(aa64_sve, cpu)) {
0ab5953b
RH
13888 return;
13889 }
13890
13891 /* Nothing to do if FP is disabled in either EL. */
13892 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13893 return;
13894 }
13895
13896 /*
13897 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13898 * at ELx, or not available because the EL is in AArch32 state, then
13899 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13900 * has an effective value of 0".
13901 *
13902 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13903 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13904 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13905 * we already have the correct register contents when encountering the
13906 * vq0->vq0 transition between EL0->EL1.
13907 */
9a05f7b6
RH
13908 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13909 old_len = (old_a64 && !sve_exception_el(env, old_el)
0ab5953b 13910 ? sve_zcr_len_for_el(env, old_el) : 0);
9a05f7b6
RH
13911 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13912 new_len = (new_a64 && !sve_exception_el(env, new_el)
0ab5953b
RH
13913 ? sve_zcr_len_for_el(env, new_el) : 0);
13914
13915 /* When changing vector length, clear inaccessible state. */
13916 if (new_len < old_len) {
13917 aarch64_sve_narrow_vq(env, new_len + 1);
13918 }
13919}
13920#endif