]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/helper.c
arm: add MPU support to M profile CPUs
[mirror_qemu.git] / target / arm / helper.c
CommitLineData
74c21bd0 1#include "qemu/osdep.h"
194cbc49 2#include "trace.h"
b5ff1b31 3#include "cpu.h"
ccd38087 4#include "internals.h"
022c62cb 5#include "exec/gdbstub.h"
2ef6175a 6#include "exec/helper-proto.h"
1de7afc9 7#include "qemu/host-utils.h"
78027bb6 8#include "sysemu/arch_init.h"
9c17d615 9#include "sysemu/sysemu.h"
1de7afc9 10#include "qemu/bitops.h"
eb0ecd5a 11#include "qemu/crc32c.h"
63c91552 12#include "exec/exec-all.h"
f08b6170 13#include "exec/cpu_ldst.h"
1d854765 14#include "arm_ldst.h"
eb0ecd5a 15#include <zlib.h> /* For crc32 */
cfe67cef 16#include "exec/semihost.h"
f3a9b694 17#include "sysemu/kvm.h"
0b03bdfc 18
352c98e5
LV
19#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20
4a501606 21#ifndef CONFIG_USER_ONLY
af51f566
EI
22static bool get_phys_addr(CPUARMState *env, target_ulong address,
23 int access_type, ARMMMUIdx mmu_idx,
24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
25 target_ulong *page_size, uint32_t *fsr,
26 ARMMMUFaultInfo *fi);
7c2cb42b 27
37785977
EI
28static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
29 int access_type, ARMMMUIdx mmu_idx,
30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31 target_ulong *page_size_ptr, uint32_t *fsr,
32 ARMMMUFaultInfo *fi);
33
7c2cb42b
AF
34/* Definitions for the PMCCNTR and PMCR registers */
35#define PMCRD 0x8
36#define PMCRC 0x4
37#define PMCRE 0x1
4a501606
PM
38#endif
39
0ecb72a5 40static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
41{
42 int nregs;
43
44 /* VFP data registers are always little-endian. */
45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46 if (reg < nregs) {
47 stfq_le_p(buf, env->vfp.regs[reg]);
48 return 8;
49 }
50 if (arm_feature(env, ARM_FEATURE_NEON)) {
51 /* Aliases for Q regs. */
52 nregs += 16;
53 if (reg < nregs) {
54 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
55 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
56 return 16;
57 }
58 }
59 switch (reg - nregs) {
60 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
61 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
62 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
63 }
64 return 0;
65}
66
0ecb72a5 67static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
68{
69 int nregs;
70
71 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
72 if (reg < nregs) {
73 env->vfp.regs[reg] = ldfq_le_p(buf);
74 return 8;
75 }
76 if (arm_feature(env, ARM_FEATURE_NEON)) {
77 nregs += 16;
78 if (reg < nregs) {
79 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
80 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
81 return 16;
82 }
83 }
84 switch (reg - nregs) {
85 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
86 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 87 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
88 }
89 return 0;
90}
91
6a669427
PM
92static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
93{
94 switch (reg) {
95 case 0 ... 31:
96 /* 128 bit FP register */
97 stfq_le_p(buf, env->vfp.regs[reg * 2]);
98 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
99 return 16;
100 case 32:
101 /* FPSR */
102 stl_p(buf, vfp_get_fpsr(env));
103 return 4;
104 case 33:
105 /* FPCR */
106 stl_p(buf, vfp_get_fpcr(env));
107 return 4;
108 default:
109 return 0;
110 }
111}
112
113static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
114{
115 switch (reg) {
116 case 0 ... 31:
117 /* 128 bit FP register */
118 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
119 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
120 return 16;
121 case 32:
122 /* FPSR */
123 vfp_set_fpsr(env, ldl_p(buf));
124 return 4;
125 case 33:
126 /* FPCR */
127 vfp_set_fpcr(env, ldl_p(buf));
128 return 4;
129 default:
130 return 0;
131 }
132}
133
c4241c7d 134static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
d4e6df63 135{
375421cc 136 assert(ri->fieldoffset);
67ed771d 137 if (cpreg_field_is_64bit(ri)) {
c4241c7d 138 return CPREG_FIELD64(env, ri);
22d9e1a9 139 } else {
c4241c7d 140 return CPREG_FIELD32(env, ri);
22d9e1a9 141 }
d4e6df63
PM
142}
143
c4241c7d
PM
144static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
145 uint64_t value)
d4e6df63 146{
375421cc 147 assert(ri->fieldoffset);
67ed771d 148 if (cpreg_field_is_64bit(ri)) {
22d9e1a9
PM
149 CPREG_FIELD64(env, ri) = value;
150 } else {
151 CPREG_FIELD32(env, ri) = value;
152 }
d4e6df63
PM
153}
154
11f136ee
FA
155static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
156{
157 return (char *)env + ri->fieldoffset;
158}
159
49a66191 160uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
721fae12 161{
59a1c327 162 /* Raw read of a coprocessor register (as needed for migration, etc). */
721fae12 163 if (ri->type & ARM_CP_CONST) {
59a1c327 164 return ri->resetvalue;
721fae12 165 } else if (ri->raw_readfn) {
59a1c327 166 return ri->raw_readfn(env, ri);
721fae12 167 } else if (ri->readfn) {
59a1c327 168 return ri->readfn(env, ri);
721fae12 169 } else {
59a1c327 170 return raw_read(env, ri);
721fae12 171 }
721fae12
PM
172}
173
59a1c327 174static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
7900e9f1 175 uint64_t v)
721fae12
PM
176{
177 /* Raw write of a coprocessor register (as needed for migration, etc).
721fae12
PM
178 * Note that constant registers are treated as write-ignored; the
179 * caller should check for success by whether a readback gives the
180 * value written.
181 */
182 if (ri->type & ARM_CP_CONST) {
59a1c327 183 return;
721fae12 184 } else if (ri->raw_writefn) {
c4241c7d 185 ri->raw_writefn(env, ri, v);
721fae12 186 } else if (ri->writefn) {
c4241c7d 187 ri->writefn(env, ri, v);
721fae12 188 } else {
afb2530f 189 raw_write(env, ri, v);
721fae12 190 }
721fae12
PM
191}
192
375421cc
PM
193static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
194{
195 /* Return true if the regdef would cause an assertion if you called
196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197 * program bug for it not to have the NO_RAW flag).
198 * NB that returning false here doesn't necessarily mean that calling
199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200 * read/write access functions which are safe for raw use" from "has
201 * read/write access functions which have side effects but has forgotten
202 * to provide raw access functions".
203 * The tests here line up with the conditions in read/write_raw_cp_reg()
204 * and assertions in raw_read()/raw_write().
205 */
206 if ((ri->type & ARM_CP_CONST) ||
207 ri->fieldoffset ||
208 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
209 return false;
210 }
211 return true;
212}
213
721fae12
PM
214bool write_cpustate_to_list(ARMCPU *cpu)
215{
216 /* Write the coprocessor state from cpu->env to the (index,value) list. */
217 int i;
218 bool ok = true;
219
220 for (i = 0; i < cpu->cpreg_array_len; i++) {
221 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
222 const ARMCPRegInfo *ri;
59a1c327 223
60322b39 224 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
225 if (!ri) {
226 ok = false;
227 continue;
228 }
7a0e58fa 229 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
230 continue;
231 }
59a1c327 232 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
721fae12
PM
233 }
234 return ok;
235}
236
237bool write_list_to_cpustate(ARMCPU *cpu)
238{
239 int i;
240 bool ok = true;
241
242 for (i = 0; i < cpu->cpreg_array_len; i++) {
243 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
244 uint64_t v = cpu->cpreg_values[i];
721fae12
PM
245 const ARMCPRegInfo *ri;
246
60322b39 247 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
248 if (!ri) {
249 ok = false;
250 continue;
251 }
7a0e58fa 252 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
253 continue;
254 }
255 /* Write value and confirm it reads back as written
256 * (to catch read-only registers and partially read-only
257 * registers where the incoming migration value doesn't match)
258 */
59a1c327
PM
259 write_raw_cp_reg(&cpu->env, ri, v);
260 if (read_raw_cp_reg(&cpu->env, ri) != v) {
721fae12
PM
261 ok = false;
262 }
263 }
264 return ok;
265}
266
267static void add_cpreg_to_list(gpointer key, gpointer opaque)
268{
269 ARMCPU *cpu = opaque;
270 uint64_t regidx;
271 const ARMCPRegInfo *ri;
272
273 regidx = *(uint32_t *)key;
60322b39 274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 275
7a0e58fa 276 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
277 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
278 /* The value array need not be initialized at this point */
279 cpu->cpreg_array_len++;
280 }
281}
282
283static void count_cpreg(gpointer key, gpointer opaque)
284{
285 ARMCPU *cpu = opaque;
286 uint64_t regidx;
287 const ARMCPRegInfo *ri;
288
289 regidx = *(uint32_t *)key;
60322b39 290 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 291
7a0e58fa 292 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
293 cpu->cpreg_array_len++;
294 }
295}
296
297static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
298{
cbf239b7
AR
299 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
300 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
721fae12 301
cbf239b7
AR
302 if (aidx > bidx) {
303 return 1;
304 }
305 if (aidx < bidx) {
306 return -1;
307 }
308 return 0;
721fae12
PM
309}
310
311void init_cpreg_list(ARMCPU *cpu)
312{
313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314 * Note that we require cpreg_tuples[] to be sorted by key ID.
315 */
57b6d95e 316 GList *keys;
721fae12
PM
317 int arraylen;
318
57b6d95e 319 keys = g_hash_table_get_keys(cpu->cp_regs);
721fae12
PM
320 keys = g_list_sort(keys, cpreg_key_compare);
321
322 cpu->cpreg_array_len = 0;
323
324 g_list_foreach(keys, count_cpreg, cpu);
325
326 arraylen = cpu->cpreg_array_len;
327 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
330 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
331 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
332 cpu->cpreg_array_len = 0;
333
334 g_list_foreach(keys, add_cpreg_to_list, cpu);
335
336 assert(cpu->cpreg_array_len == arraylen);
337
338 g_list_free(keys);
339}
340
68e9c2fe
EI
341/*
342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
344 *
345 * access_el3_aa32ns: Used to check AArch32 register views.
346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
347 */
348static CPAccessResult access_el3_aa32ns(CPUARMState *env,
3f208fd7
PM
349 const ARMCPRegInfo *ri,
350 bool isread)
68e9c2fe
EI
351{
352 bool secure = arm_is_secure_below_el3(env);
353
354 assert(!arm_el_is_aa64(env, 3));
355 if (secure) {
356 return CP_ACCESS_TRAP_UNCATEGORIZED;
357 }
358 return CP_ACCESS_OK;
359}
360
361static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
3f208fd7
PM
362 const ARMCPRegInfo *ri,
363 bool isread)
68e9c2fe
EI
364{
365 if (!arm_el_is_aa64(env, 3)) {
3f208fd7 366 return access_el3_aa32ns(env, ri, isread);
68e9c2fe
EI
367 }
368 return CP_ACCESS_OK;
369}
370
5513c3ab
PM
371/* Some secure-only AArch32 registers trap to EL3 if used from
372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374 * We assume that the .access field is set to PL1_RW.
375 */
376static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
3f208fd7
PM
377 const ARMCPRegInfo *ri,
378 bool isread)
5513c3ab
PM
379{
380 if (arm_current_el(env) == 3) {
381 return CP_ACCESS_OK;
382 }
383 if (arm_is_secure_below_el3(env)) {
384 return CP_ACCESS_TRAP_EL3;
385 }
386 /* This will be EL1 NS and EL2 NS, which just UNDEF */
387 return CP_ACCESS_TRAP_UNCATEGORIZED;
388}
389
187f678d
PM
390/* Check for traps to "powerdown debug" registers, which are controlled
391 * by MDCR.TDOSA
392 */
393static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
394 bool isread)
395{
396 int el = arm_current_el(env);
397
398 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
399 && !arm_is_secure_below_el3(env)) {
400 return CP_ACCESS_TRAP_EL2;
401 }
402 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
403 return CP_ACCESS_TRAP_EL3;
404 }
405 return CP_ACCESS_OK;
406}
407
91b0a238
PM
408/* Check for traps to "debug ROM" registers, which are controlled
409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
410 */
411static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
412 bool isread)
413{
414 int el = arm_current_el(env);
415
416 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
417 && !arm_is_secure_below_el3(env)) {
418 return CP_ACCESS_TRAP_EL2;
419 }
420 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
421 return CP_ACCESS_TRAP_EL3;
422 }
423 return CP_ACCESS_OK;
424}
425
d6c8cf81
PM
426/* Check for traps to general debug registers, which are controlled
427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
428 */
429static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
430 bool isread)
431{
432 int el = arm_current_el(env);
433
434 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
435 && !arm_is_secure_below_el3(env)) {
436 return CP_ACCESS_TRAP_EL2;
437 }
438 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
439 return CP_ACCESS_TRAP_EL3;
440 }
441 return CP_ACCESS_OK;
442}
443
1fce1ba9
PM
444/* Check for traps to performance monitor registers, which are controlled
445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
446 */
447static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
448 bool isread)
449{
450 int el = arm_current_el(env);
451
452 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
453 && !arm_is_secure_below_el3(env)) {
454 return CP_ACCESS_TRAP_EL2;
455 }
456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
457 return CP_ACCESS_TRAP_EL3;
458 }
459 return CP_ACCESS_OK;
460}
461
c4241c7d 462static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
c983fe6c 463{
00c8cb0a
AF
464 ARMCPU *cpu = arm_env_get_cpu(env);
465
8d5c773e 466 raw_write(env, ri, value);
d10eb08f 467 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
c983fe6c
PM
468}
469
c4241c7d 470static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
08de207b 471{
00c8cb0a
AF
472 ARMCPU *cpu = arm_env_get_cpu(env);
473
8d5c773e 474 if (raw_read(env, ri) != value) {
08de207b
PM
475 /* Unlike real hardware the qemu TLB uses virtual addresses,
476 * not modified virtual addresses, so this causes a TLB flush.
477 */
d10eb08f 478 tlb_flush(CPU(cpu));
8d5c773e 479 raw_write(env, ri, value);
08de207b 480 }
08de207b 481}
c4241c7d
PM
482
483static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484 uint64_t value)
08de207b 485{
00c8cb0a
AF
486 ARMCPU *cpu = arm_env_get_cpu(env);
487
452a0955 488 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
014406b5 489 && !extended_addresses_enabled(env)) {
08de207b
PM
490 /* For VMSA (when not using the LPAE long descriptor page table
491 * format) this register includes the ASID, so do a TLB flush.
492 * For PMSA it is purely a process ID and no action is needed.
493 */
d10eb08f 494 tlb_flush(CPU(cpu));
08de207b 495 }
8d5c773e 496 raw_write(env, ri, value);
08de207b
PM
497}
498
c4241c7d
PM
499static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
d929823f
PM
501{
502 /* Invalidate all (TLBIALL) */
00c8cb0a
AF
503 ARMCPU *cpu = arm_env_get_cpu(env);
504
d10eb08f 505 tlb_flush(CPU(cpu));
d929823f
PM
506}
507
c4241c7d
PM
508static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
509 uint64_t value)
d929823f
PM
510{
511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
31b030d4
AF
512 ARMCPU *cpu = arm_env_get_cpu(env);
513
514 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
515}
516
c4241c7d
PM
517static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
518 uint64_t value)
d929823f
PM
519{
520 /* Invalidate by ASID (TLBIASID) */
00c8cb0a
AF
521 ARMCPU *cpu = arm_env_get_cpu(env);
522
d10eb08f 523 tlb_flush(CPU(cpu));
d929823f
PM
524}
525
c4241c7d
PM
526static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
d929823f
PM
528{
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
31b030d4
AF
530 ARMCPU *cpu = arm_env_get_cpu(env);
531
532 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
533}
534
fa439fc5
PM
535/* IS variants of TLB operations must affect all cores */
536static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
537 uint64_t value)
538{
a67cf277 539 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 540
a67cf277 541 tlb_flush_all_cpus_synced(cs);
fa439fc5
PM
542}
543
544static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
545 uint64_t value)
546{
a67cf277 547 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 548
a67cf277 549 tlb_flush_all_cpus_synced(cs);
fa439fc5
PM
550}
551
552static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
553 uint64_t value)
554{
a67cf277 555 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 556
a67cf277 557 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
fa439fc5
PM
558}
559
560static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
561 uint64_t value)
562{
a67cf277 563 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 564
a67cf277 565 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
fa439fc5
PM
566}
567
541ef8c2
SS
568static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
569 uint64_t value)
570{
571 CPUState *cs = ENV_GET_CPU(env);
572
0336cbf8 573 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
574 ARMMMUIdxBit_S12NSE1 |
575 ARMMMUIdxBit_S12NSE0 |
576 ARMMMUIdxBit_S2NS);
541ef8c2
SS
577}
578
579static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
580 uint64_t value)
581{
a67cf277 582 CPUState *cs = ENV_GET_CPU(env);
541ef8c2 583
a67cf277 584 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
585 ARMMMUIdxBit_S12NSE1 |
586 ARMMMUIdxBit_S12NSE0 |
587 ARMMMUIdxBit_S2NS);
541ef8c2
SS
588}
589
590static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
591 uint64_t value)
592{
593 /* Invalidate by IPA. This has to invalidate any structures that
594 * contain only stage 2 translation information, but does not need
595 * to apply to structures that contain combined stage 1 and stage 2
596 * translation information.
597 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
598 */
599 CPUState *cs = ENV_GET_CPU(env);
600 uint64_t pageaddr;
601
602 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
603 return;
604 }
605
606 pageaddr = sextract64(value << 12, 0, 40);
607
8bd5c820 608 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
541ef8c2
SS
609}
610
611static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
612 uint64_t value)
613{
a67cf277 614 CPUState *cs = ENV_GET_CPU(env);
541ef8c2
SS
615 uint64_t pageaddr;
616
617 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
618 return;
619 }
620
621 pageaddr = sextract64(value << 12, 0, 40);
622
a67cf277 623 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 624 ARMMMUIdxBit_S2NS);
541ef8c2
SS
625}
626
627static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
628 uint64_t value)
629{
630 CPUState *cs = ENV_GET_CPU(env);
631
8bd5c820 632 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
541ef8c2
SS
633}
634
635static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
636 uint64_t value)
637{
a67cf277 638 CPUState *cs = ENV_GET_CPU(env);
541ef8c2 639
8bd5c820 640 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
541ef8c2
SS
641}
642
643static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
644 uint64_t value)
645{
646 CPUState *cs = ENV_GET_CPU(env);
647 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
648
8bd5c820 649 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
541ef8c2
SS
650}
651
652static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
653 uint64_t value)
654{
a67cf277 655 CPUState *cs = ENV_GET_CPU(env);
541ef8c2
SS
656 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
657
a67cf277 658 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 659 ARMMMUIdxBit_S1E2);
541ef8c2
SS
660}
661
e9aa6c21 662static const ARMCPRegInfo cp_reginfo[] = {
54bf36ed
FA
663 /* Define the secure and non-secure FCSE identifier CP registers
664 * separately because there is no secure bank in V8 (no _EL3). This allows
665 * the secure register to be properly reset and migrated. There is also no
666 * v8 EL1 version of the register so the non-secure instance stands alone.
667 */
668 { .name = "FCSEIDR(NS)",
669 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
670 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
671 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
672 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
673 { .name = "FCSEIDR(S)",
674 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
675 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
676 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
d4e6df63 677 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
54bf36ed
FA
678 /* Define the secure and non-secure context identifier CP registers
679 * separately because there is no secure bank in V8 (no _EL3). This allows
680 * the secure register to be properly reset and migrated. In the
681 * non-secure case, the 32-bit register will have reset and migration
682 * disabled during registration as it is handled by the 64-bit instance.
683 */
684 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
014406b5 685 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
54bf36ed
FA
686 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
687 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
688 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
689 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
690 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
691 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
692 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
d4e6df63 693 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9449fdf6
PM
694 REGINFO_SENTINEL
695};
696
697static const ARMCPRegInfo not_v8_cp_reginfo[] = {
698 /* NB: Some of these registers exist in v8 but with more precise
699 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
700 */
701 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
702 { .name = "DACR",
703 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
704 .access = PL1_RW, .resetvalue = 0,
705 .writefn = dacr_write, .raw_writefn = raw_write,
706 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
707 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a903c449
EI
708 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
709 * For v6 and v5, these mappings are overly broad.
4fdd17dd 710 */
a903c449
EI
711 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
712 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
713 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
714 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
715 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
716 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
717 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
4fdd17dd 718 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
c4804214
PM
719 /* Cache maintenance ops; some of this space may be overridden later. */
720 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
721 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
722 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
723 REGINFO_SENTINEL
724};
725
7d57f408
PM
726static const ARMCPRegInfo not_v6_cp_reginfo[] = {
727 /* Not all pre-v6 cores implemented this WFI, so this is slightly
728 * over-broad.
729 */
730 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
731 .access = PL1_W, .type = ARM_CP_WFI },
732 REGINFO_SENTINEL
733};
734
735static const ARMCPRegInfo not_v7_cp_reginfo[] = {
736 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
737 * is UNPREDICTABLE; we choose to NOP as most implementations do).
738 */
739 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
740 .access = PL1_W, .type = ARM_CP_WFI },
34f90529
PM
741 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
742 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
743 * OMAPCP will override this space.
744 */
745 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
746 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
747 .resetvalue = 0 },
748 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
749 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
750 .resetvalue = 0 },
776d4e5c
PM
751 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
752 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
7a0e58fa 753 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 754 .resetvalue = 0 },
50300698
PM
755 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
756 * implementing it as RAZ means the "debug architecture version" bits
757 * will read as a reserved value, which should cause Linux to not try
758 * to use the debug hardware.
759 */
760 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
761 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
995939a6
PM
762 /* MMU TLB control. Note that the wildcarding means we cover not just
763 * the unified TLB ops but also the dside/iside/inner-shareable variants.
764 */
765 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
766 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
7a0e58fa 767 .type = ARM_CP_NO_RAW },
995939a6
PM
768 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
769 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
7a0e58fa 770 .type = ARM_CP_NO_RAW },
995939a6
PM
771 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
772 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
7a0e58fa 773 .type = ARM_CP_NO_RAW },
995939a6
PM
774 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
775 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
7a0e58fa 776 .type = ARM_CP_NO_RAW },
a903c449
EI
777 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
778 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
779 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
780 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
7d57f408
PM
781 REGINFO_SENTINEL
782};
783
c4241c7d
PM
784static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
785 uint64_t value)
2771db27 786{
f0aff255
FA
787 uint32_t mask = 0;
788
789 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
790 if (!arm_feature(env, ARM_FEATURE_V8)) {
791 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
792 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
793 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
794 */
795 if (arm_feature(env, ARM_FEATURE_VFP)) {
796 /* VFP coprocessor: cp10 & cp11 [23:20] */
797 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
798
799 if (!arm_feature(env, ARM_FEATURE_NEON)) {
800 /* ASEDIS [31] bit is RAO/WI */
801 value |= (1 << 31);
802 }
803
804 /* VFPv3 and upwards with NEON implement 32 double precision
805 * registers (D0-D31).
806 */
807 if (!arm_feature(env, ARM_FEATURE_NEON) ||
808 !arm_feature(env, ARM_FEATURE_VFP3)) {
809 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
810 value |= (1 << 30);
811 }
812 }
813 value &= mask;
2771db27 814 }
7ebd5f2e 815 env->cp15.cpacr_el1 = value;
2771db27
PM
816}
817
3f208fd7
PM
818static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
819 bool isread)
c6f19164
GB
820{
821 if (arm_feature(env, ARM_FEATURE_V8)) {
822 /* Check if CPACR accesses are to be trapped to EL2 */
823 if (arm_current_el(env) == 1 &&
824 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
825 return CP_ACCESS_TRAP_EL2;
826 /* Check if CPACR accesses are to be trapped to EL3 */
827 } else if (arm_current_el(env) < 3 &&
828 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
829 return CP_ACCESS_TRAP_EL3;
830 }
831 }
832
833 return CP_ACCESS_OK;
834}
835
3f208fd7
PM
836static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
837 bool isread)
c6f19164
GB
838{
839 /* Check if CPTR accesses are set to trap to EL3 */
840 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
841 return CP_ACCESS_TRAP_EL3;
842 }
843
844 return CP_ACCESS_OK;
845}
846
7d57f408
PM
847static const ARMCPRegInfo v6_cp_reginfo[] = {
848 /* prefetch by MVA in v6, NOP in v7 */
849 { .name = "MVA_prefetch",
850 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
851 .access = PL1_W, .type = ARM_CP_NOP },
6df99dec
SS
852 /* We need to break the TB after ISB to execute self-modifying code
853 * correctly and also to take any pending interrupts immediately.
854 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
855 */
7d57f408 856 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
6df99dec 857 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
091fd17c 858 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 859 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 860 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 861 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31 862 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
6cd8a264 863 .access = PL1_RW,
b848ce2b
FA
864 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
865 offsetof(CPUARMState, cp15.ifar_ns) },
06d76f31
PM
866 .resetvalue = 0, },
867 /* Watchpoint Fault Address Register : should actually only be present
868 * for 1136, 1176, 11MPCore.
869 */
870 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
871 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
34222fb8 872 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
c6f19164 873 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
7ebd5f2e 874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
2771db27 875 .resetvalue = 0, .writefn = cpacr_write },
7d57f408
PM
876 REGINFO_SENTINEL
877};
878
3f208fd7
PM
879static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
880 bool isread)
200ac0ef 881{
3b163b01 882 /* Performance monitor registers user accessibility is controlled
1fce1ba9
PM
883 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
884 * trapping to EL2 or EL3 for other accesses.
200ac0ef 885 */
1fce1ba9
PM
886 int el = arm_current_el(env);
887
6ecd0b6b 888 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
fcd25206 889 return CP_ACCESS_TRAP;
200ac0ef 890 }
1fce1ba9
PM
891 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
892 && !arm_is_secure_below_el3(env)) {
893 return CP_ACCESS_TRAP_EL2;
894 }
895 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
896 return CP_ACCESS_TRAP_EL3;
897 }
898
fcd25206 899 return CP_ACCESS_OK;
200ac0ef
PM
900}
901
6ecd0b6b
AB
902static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
903 const ARMCPRegInfo *ri,
904 bool isread)
905{
906 /* ER: event counter read trap control */
907 if (arm_feature(env, ARM_FEATURE_V8)
908 && arm_current_el(env) == 0
909 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
910 && isread) {
911 return CP_ACCESS_OK;
912 }
913
914 return pmreg_access(env, ri, isread);
915}
916
917static CPAccessResult pmreg_access_swinc(CPUARMState *env,
918 const ARMCPRegInfo *ri,
919 bool isread)
920{
921 /* SW: software increment write trap control */
922 if (arm_feature(env, ARM_FEATURE_V8)
923 && arm_current_el(env) == 0
924 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
925 && !isread) {
926 return CP_ACCESS_OK;
927 }
928
929 return pmreg_access(env, ri, isread);
930}
931
7c2cb42b 932#ifndef CONFIG_USER_ONLY
87124fde 933
6ecd0b6b
AB
934static CPAccessResult pmreg_access_selr(CPUARMState *env,
935 const ARMCPRegInfo *ri,
936 bool isread)
937{
938 /* ER: event counter read trap control */
939 if (arm_feature(env, ARM_FEATURE_V8)
940 && arm_current_el(env) == 0
941 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
942 return CP_ACCESS_OK;
943 }
944
945 return pmreg_access(env, ri, isread);
946}
947
948static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
949 const ARMCPRegInfo *ri,
950 bool isread)
951{
952 /* CR: cycle counter read trap control */
953 if (arm_feature(env, ARM_FEATURE_V8)
954 && arm_current_el(env) == 0
955 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
956 && isread) {
957 return CP_ACCESS_OK;
958 }
959
960 return pmreg_access(env, ri, isread);
961}
962
87124fde
AF
963static inline bool arm_ccnt_enabled(CPUARMState *env)
964{
965 /* This does not support checking PMCCFILTR_EL0 register */
966
967 if (!(env->cp15.c9_pmcr & PMCRE)) {
968 return false;
969 }
970
971 return true;
972}
973
ec7b4ce4
AF
974void pmccntr_sync(CPUARMState *env)
975{
976 uint64_t temp_ticks;
977
352c98e5
LV
978 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
979 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
ec7b4ce4
AF
980
981 if (env->cp15.c9_pmcr & PMCRD) {
982 /* Increment once every 64 processor clock cycles */
983 temp_ticks /= 64;
984 }
985
986 if (arm_ccnt_enabled(env)) {
987 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
988 }
989}
990
c4241c7d
PM
991static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
992 uint64_t value)
200ac0ef 993{
942a155b 994 pmccntr_sync(env);
7c2cb42b
AF
995
996 if (value & PMCRC) {
997 /* The counter has been reset */
998 env->cp15.c15_ccnt = 0;
999 }
1000
200ac0ef
PM
1001 /* only the DP, X, D and E bits are writable */
1002 env->cp15.c9_pmcr &= ~0x39;
1003 env->cp15.c9_pmcr |= (value & 0x39);
7c2cb42b 1004
942a155b 1005 pmccntr_sync(env);
7c2cb42b
AF
1006}
1007
1008static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1009{
c92c0687 1010 uint64_t total_ticks;
7c2cb42b 1011
942a155b 1012 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
1013 /* Counter is disabled, do not change value */
1014 return env->cp15.c15_ccnt;
1015 }
1016
352c98e5
LV
1017 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1018 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
7c2cb42b
AF
1019
1020 if (env->cp15.c9_pmcr & PMCRD) {
1021 /* Increment once every 64 processor clock cycles */
1022 total_ticks /= 64;
1023 }
1024 return total_ticks - env->cp15.c15_ccnt;
1025}
1026
6b040780
WH
1027static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1028 uint64_t value)
1029{
1030 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1031 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1032 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1033 * accessed.
1034 */
1035 env->cp15.c9_pmselr = value & 0x1f;
1036}
1037
7c2cb42b
AF
1038static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1039 uint64_t value)
1040{
c92c0687 1041 uint64_t total_ticks;
7c2cb42b 1042
942a155b 1043 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
1044 /* Counter is disabled, set the absolute value */
1045 env->cp15.c15_ccnt = value;
1046 return;
1047 }
1048
352c98e5
LV
1049 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1050 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
7c2cb42b
AF
1051
1052 if (env->cp15.c9_pmcr & PMCRD) {
1053 /* Increment once every 64 processor clock cycles */
1054 total_ticks /= 64;
1055 }
1056 env->cp15.c15_ccnt = total_ticks - value;
200ac0ef 1057}
421c7ebd
PC
1058
1059static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1060 uint64_t value)
1061{
1062 uint64_t cur_val = pmccntr_read(env, NULL);
1063
1064 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1065}
1066
ec7b4ce4
AF
1067#else /* CONFIG_USER_ONLY */
1068
1069void pmccntr_sync(CPUARMState *env)
1070{
1071}
1072
7c2cb42b 1073#endif
200ac0ef 1074
0614601c
AF
1075static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1076 uint64_t value)
1077{
1078 pmccntr_sync(env);
1079 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1080 pmccntr_sync(env);
1081}
1082
c4241c7d 1083static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1084 uint64_t value)
1085{
200ac0ef
PM
1086 value &= (1 << 31);
1087 env->cp15.c9_pmcnten |= value;
200ac0ef
PM
1088}
1089
c4241c7d
PM
1090static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1091 uint64_t value)
200ac0ef 1092{
200ac0ef
PM
1093 value &= (1 << 31);
1094 env->cp15.c9_pmcnten &= ~value;
200ac0ef
PM
1095}
1096
c4241c7d
PM
1097static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1098 uint64_t value)
200ac0ef 1099{
200ac0ef 1100 env->cp15.c9_pmovsr &= ~value;
200ac0ef
PM
1101}
1102
c4241c7d
PM
1103static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104 uint64_t value)
200ac0ef 1105{
fdb86656
WH
1106 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1107 * PMSELR value is equal to or greater than the number of implemented
1108 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1109 */
1110 if (env->cp15.c9_pmselr == 0x1f) {
1111 pmccfiltr_write(env, ri, value);
1112 }
1113}
1114
1115static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1116{
1117 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1118 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1119 */
1120 if (env->cp15.c9_pmselr == 0x1f) {
1121 return env->cp15.pmccfiltr_el0;
1122 } else {
1123 return 0;
1124 }
200ac0ef
PM
1125}
1126
c4241c7d 1127static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1128 uint64_t value)
1129{
6ecd0b6b
AB
1130 if (arm_feature(env, ARM_FEATURE_V8)) {
1131 env->cp15.c9_pmuserenr = value & 0xf;
1132 } else {
1133 env->cp15.c9_pmuserenr = value & 1;
1134 }
200ac0ef
PM
1135}
1136
c4241c7d
PM
1137static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1138 uint64_t value)
200ac0ef
PM
1139{
1140 /* We have no event counters so only the C bit can be changed */
1141 value &= (1 << 31);
1142 env->cp15.c9_pminten |= value;
200ac0ef
PM
1143}
1144
c4241c7d
PM
1145static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1146 uint64_t value)
200ac0ef
PM
1147{
1148 value &= (1 << 31);
1149 env->cp15.c9_pminten &= ~value;
200ac0ef
PM
1150}
1151
c4241c7d
PM
1152static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1153 uint64_t value)
8641136c 1154{
a505d7fe
PM
1155 /* Note that even though the AArch64 view of this register has bits
1156 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1157 * architectural requirements for bits which are RES0 only in some
1158 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1159 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1160 */
855ea66d 1161 raw_write(env, ri, value & ~0x1FULL);
8641136c
NR
1162}
1163
64e0e2de
EI
1164static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1165{
1166 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1167 * For bits that vary between AArch32/64, code needs to check the
1168 * current execution mode before directly using the feature bit.
1169 */
1170 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1171
1172 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1173 valid_mask &= ~SCR_HCE;
1174
1175 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1176 * supported if EL2 exists. The bit is UNK/SBZP when
1177 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1178 * when EL2 is unavailable.
4eb27640 1179 * On ARMv8, this bit is always available.
64e0e2de 1180 */
4eb27640
GB
1181 if (arm_feature(env, ARM_FEATURE_V7) &&
1182 !arm_feature(env, ARM_FEATURE_V8)) {
64e0e2de
EI
1183 valid_mask &= ~SCR_SMD;
1184 }
1185 }
1186
1187 /* Clear all-context RES0 bits. */
1188 value &= valid_mask;
1189 raw_write(env, ri, value);
1190}
1191
c4241c7d 1192static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
776d4e5c
PM
1193{
1194 ARMCPU *cpu = arm_env_get_cpu(env);
b85a1fd6
FA
1195
1196 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1197 * bank
1198 */
1199 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1200 ri->secure & ARM_CP_SECSTATE_S);
1201
1202 return cpu->ccsidr[index];
776d4e5c
PM
1203}
1204
c4241c7d
PM
1205static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1206 uint64_t value)
776d4e5c 1207{
8d5c773e 1208 raw_write(env, ri, value & 0xf);
776d4e5c
PM
1209}
1210
1090b9c6
PM
1211static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1212{
1213 CPUState *cs = ENV_GET_CPU(env);
1214 uint64_t ret = 0;
1215
1216 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1217 ret |= CPSR_I;
1218 }
1219 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1220 ret |= CPSR_F;
1221 }
1222 /* External aborts are not possible in QEMU so A bit is always clear */
1223 return ret;
1224}
1225
e9aa6c21 1226static const ARMCPRegInfo v7_cp_reginfo[] = {
7d57f408
PM
1227 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1228 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1229 .access = PL1_W, .type = ARM_CP_NOP },
200ac0ef
PM
1230 /* Performance monitors are implementation defined in v7,
1231 * but with an ARM recommended set of registers, which we
1232 * follow (although we don't actually implement any counters)
1233 *
1234 * Performance registers fall into three categories:
1235 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1236 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1237 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1238 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1239 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1240 */
1241 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
7a0e58fa 1242 .access = PL0_RW, .type = ARM_CP_ALIAS,
8521466b 1243 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1244 .writefn = pmcntenset_write,
1245 .accessfn = pmreg_access,
1246 .raw_writefn = raw_write },
8521466b
AF
1247 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1248 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1249 .access = PL0_RW, .accessfn = pmreg_access,
1250 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1251 .writefn = pmcntenset_write, .raw_writefn = raw_write },
200ac0ef 1252 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
8521466b
AF
1253 .access = PL0_RW,
1254 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1255 .accessfn = pmreg_access,
1256 .writefn = pmcntenclr_write,
7a0e58fa 1257 .type = ARM_CP_ALIAS },
8521466b
AF
1258 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1259 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1260 .access = PL0_RW, .accessfn = pmreg_access,
7a0e58fa 1261 .type = ARM_CP_ALIAS,
8521466b
AF
1262 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1263 .writefn = pmcntenclr_write },
200ac0ef
PM
1264 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1265 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
fcd25206
PM
1266 .accessfn = pmreg_access,
1267 .writefn = pmovsr_write,
1268 .raw_writefn = raw_write },
978364f1
AF
1269 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1270 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1271 .access = PL0_RW, .accessfn = pmreg_access,
1272 .type = ARM_CP_ALIAS,
1273 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1274 .writefn = pmovsr_write,
1275 .raw_writefn = raw_write },
fcd25206 1276 /* Unimplemented so WI. */
200ac0ef 1277 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
6ecd0b6b 1278 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
7c2cb42b 1279#ifndef CONFIG_USER_ONLY
6b040780
WH
1280 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1281 .access = PL0_RW, .type = ARM_CP_ALIAS,
1282 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
6ecd0b6b 1283 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
6b040780
WH
1284 .raw_writefn = raw_write},
1285 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1286 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
6ecd0b6b 1287 .access = PL0_RW, .accessfn = pmreg_access_selr,
6b040780
WH
1288 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1289 .writefn = pmselr_write, .raw_writefn = raw_write, },
200ac0ef 1290 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
7c2cb42b 1291 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
421c7ebd 1292 .readfn = pmccntr_read, .writefn = pmccntr_write32,
6ecd0b6b 1293 .accessfn = pmreg_access_ccntr },
8521466b
AF
1294 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1295 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
6ecd0b6b 1296 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
8521466b
AF
1297 .type = ARM_CP_IO,
1298 .readfn = pmccntr_read, .writefn = pmccntr_write, },
7c2cb42b 1299#endif
8521466b
AF
1300 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1301 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
0614601c 1302 .writefn = pmccfiltr_write,
8521466b
AF
1303 .access = PL0_RW, .accessfn = pmreg_access,
1304 .type = ARM_CP_IO,
1305 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1306 .resetvalue = 0, },
200ac0ef 1307 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
fdb86656
WH
1308 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1309 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1310 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1311 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1312 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1313 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
fcd25206 1314 /* Unimplemented, RAZ/WI. */
200ac0ef 1315 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
fcd25206 1316 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
6ecd0b6b 1317 .accessfn = pmreg_access_xevcntr },
200ac0ef 1318 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1fce1ba9 1319 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
200ac0ef
PM
1320 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1321 .resetvalue = 0,
d4e6df63 1322 .writefn = pmuserenr_write, .raw_writefn = raw_write },
8a83ffc2
AF
1323 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1324 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1fce1ba9 1325 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
8a83ffc2
AF
1326 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1327 .resetvalue = 0,
1328 .writefn = pmuserenr_write, .raw_writefn = raw_write },
200ac0ef 1329 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1fce1ba9 1330 .access = PL1_RW, .accessfn = access_tpm,
e6ec5457
WH
1331 .type = ARM_CP_ALIAS,
1332 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
200ac0ef 1333 .resetvalue = 0,
d4e6df63 1334 .writefn = pmintenset_write, .raw_writefn = raw_write },
e6ec5457
WH
1335 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1336 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1337 .access = PL1_RW, .accessfn = access_tpm,
1338 .type = ARM_CP_IO,
1339 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1340 .writefn = pmintenset_write, .raw_writefn = raw_write,
1341 .resetvalue = 0x0 },
200ac0ef 1342 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1fce1ba9 1343 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
200ac0ef 1344 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
b061a82b 1345 .writefn = pmintenclr_write, },
978364f1
AF
1346 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1347 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1fce1ba9 1348 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
978364f1
AF
1349 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1350 .writefn = pmintenclr_write },
7da845b0
PM
1351 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1352 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
7a0e58fa 1353 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
7da845b0
PM
1354 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1355 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
b85a1fd6
FA
1356 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1357 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1358 offsetof(CPUARMState, cp15.csselr_ns) } },
776d4e5c
PM
1359 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1360 * just RAZ for all cores:
1361 */
0ff644a7
PM
1362 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1363 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
776d4e5c 1364 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
f32cdad5
PM
1365 /* Auxiliary fault status registers: these also are IMPDEF, and we
1366 * choose to RAZ/WI for all cores.
1367 */
1368 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1369 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1370 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1371 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1372 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1373 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b0fe2427
PM
1374 /* MAIR can just read-as-written because we don't implement caches
1375 * and so don't need to care about memory attributes.
1376 */
1377 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1378 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
be693c87 1379 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
b0fe2427 1380 .resetvalue = 0 },
4cfb8ad8
PM
1381 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1382 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1383 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1384 .resetvalue = 0 },
b0fe2427
PM
1385 /* For non-long-descriptor page tables these are PRRR and NMRR;
1386 * regardless they still act as reads-as-written for QEMU.
b0fe2427 1387 */
1281f8e3 1388 /* MAIR0/1 are defined separately from their 64-bit counterpart which
be693c87
GB
1389 * allows them to assign the correct fieldoffset based on the endianness
1390 * handled in the field definitions.
1391 */
a903c449 1392 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
b0fe2427 1393 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
be693c87
GB
1394 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1395 offsetof(CPUARMState, cp15.mair0_ns) },
b0fe2427 1396 .resetfn = arm_cp_reset_ignore },
a903c449 1397 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
b0fe2427 1398 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
be693c87
GB
1399 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1400 offsetof(CPUARMState, cp15.mair1_ns) },
b0fe2427 1401 .resetfn = arm_cp_reset_ignore },
1090b9c6
PM
1402 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1403 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
7a0e58fa 1404 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
995939a6
PM
1405 /* 32 bit ITLB invalidates */
1406 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
7a0e58fa 1407 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1408 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7a0e58fa 1409 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1410 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
7a0e58fa 1411 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1412 /* 32 bit DTLB invalidates */
1413 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
7a0e58fa 1414 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1415 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7a0e58fa 1416 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1417 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
7a0e58fa 1418 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1419 /* 32 bit TLB invalidates */
1420 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 1421 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1422 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 1423 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1424 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 1425 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6 1426 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 1427 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
995939a6
PM
1428 REGINFO_SENTINEL
1429};
1430
1431static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1432 /* 32 bit TLB invalidates, Inner Shareable */
1433 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 1434 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
995939a6 1435 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 1436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
995939a6 1437 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 1438 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1439 .writefn = tlbiasid_is_write },
995939a6 1440 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 1441 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1442 .writefn = tlbimvaa_is_write },
e9aa6c21
PM
1443 REGINFO_SENTINEL
1444};
1445
c4241c7d
PM
1446static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1447 uint64_t value)
c326b979
PM
1448{
1449 value &= 1;
1450 env->teecr = value;
c326b979
PM
1451}
1452
3f208fd7
PM
1453static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1454 bool isread)
c326b979 1455{
dcbff19b 1456 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
92611c00 1457 return CP_ACCESS_TRAP;
c326b979 1458 }
92611c00 1459 return CP_ACCESS_OK;
c326b979
PM
1460}
1461
1462static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1463 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1464 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1465 .resetvalue = 0,
1466 .writefn = teecr_write },
1467 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1468 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
92611c00 1469 .accessfn = teehbr_access, .resetvalue = 0 },
c326b979
PM
1470 REGINFO_SENTINEL
1471};
1472
4d31c596 1473static const ARMCPRegInfo v6k_cp_reginfo[] = {
e4fe830b
PM
1474 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1475 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1476 .access = PL0_RW,
54bf36ed 1477 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
4d31c596
PM
1478 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1479 .access = PL0_RW,
54bf36ed
FA
1480 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1481 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
e4fe830b
PM
1482 .resetfn = arm_cp_reset_ignore },
1483 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1484 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1485 .access = PL0_R|PL1_W,
54bf36ed
FA
1486 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1487 .resetvalue = 0},
4d31c596
PM
1488 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1489 .access = PL0_R|PL1_W,
54bf36ed
FA
1490 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1491 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
e4fe830b 1492 .resetfn = arm_cp_reset_ignore },
54bf36ed 1493 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
e4fe830b 1494 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
4d31c596 1495 .access = PL1_RW,
54bf36ed
FA
1496 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1497 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1498 .access = PL1_RW,
1499 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1500 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1501 .resetvalue = 0 },
4d31c596
PM
1502 REGINFO_SENTINEL
1503};
1504
55d284af
PM
1505#ifndef CONFIG_USER_ONLY
1506
3f208fd7
PM
1507static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1508 bool isread)
00108f2d 1509{
75502672
PM
1510 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1511 * Writable only at the highest implemented exception level.
1512 */
1513 int el = arm_current_el(env);
1514
1515 switch (el) {
1516 case 0:
1517 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1518 return CP_ACCESS_TRAP;
1519 }
1520 break;
1521 case 1:
1522 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1523 arm_is_secure_below_el3(env)) {
1524 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1525 return CP_ACCESS_TRAP_UNCATEGORIZED;
1526 }
1527 break;
1528 case 2:
1529 case 3:
1530 break;
00108f2d 1531 }
75502672
PM
1532
1533 if (!isread && el < arm_highest_el(env)) {
1534 return CP_ACCESS_TRAP_UNCATEGORIZED;
1535 }
1536
00108f2d
PM
1537 return CP_ACCESS_OK;
1538}
1539
3f208fd7
PM
1540static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1541 bool isread)
00108f2d 1542{
0b6440af
EI
1543 unsigned int cur_el = arm_current_el(env);
1544 bool secure = arm_is_secure(env);
1545
00108f2d 1546 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
0b6440af 1547 if (cur_el == 0 &&
00108f2d
PM
1548 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1549 return CP_ACCESS_TRAP;
1550 }
0b6440af
EI
1551
1552 if (arm_feature(env, ARM_FEATURE_EL2) &&
1553 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1554 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1555 return CP_ACCESS_TRAP_EL2;
1556 }
00108f2d
PM
1557 return CP_ACCESS_OK;
1558}
1559
3f208fd7
PM
1560static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1561 bool isread)
00108f2d 1562{
0b6440af
EI
1563 unsigned int cur_el = arm_current_el(env);
1564 bool secure = arm_is_secure(env);
1565
00108f2d
PM
1566 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1567 * EL0[PV]TEN is zero.
1568 */
0b6440af 1569 if (cur_el == 0 &&
00108f2d
PM
1570 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1571 return CP_ACCESS_TRAP;
1572 }
0b6440af
EI
1573
1574 if (arm_feature(env, ARM_FEATURE_EL2) &&
1575 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1576 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1577 return CP_ACCESS_TRAP_EL2;
1578 }
00108f2d
PM
1579 return CP_ACCESS_OK;
1580}
1581
1582static CPAccessResult gt_pct_access(CPUARMState *env,
3f208fd7
PM
1583 const ARMCPRegInfo *ri,
1584 bool isread)
00108f2d 1585{
3f208fd7 1586 return gt_counter_access(env, GTIMER_PHYS, isread);
00108f2d
PM
1587}
1588
1589static CPAccessResult gt_vct_access(CPUARMState *env,
3f208fd7
PM
1590 const ARMCPRegInfo *ri,
1591 bool isread)
00108f2d 1592{
3f208fd7 1593 return gt_counter_access(env, GTIMER_VIRT, isread);
00108f2d
PM
1594}
1595
3f208fd7
PM
1596static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1597 bool isread)
00108f2d 1598{
3f208fd7 1599 return gt_timer_access(env, GTIMER_PHYS, isread);
00108f2d
PM
1600}
1601
3f208fd7
PM
1602static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1603 bool isread)
00108f2d 1604{
3f208fd7 1605 return gt_timer_access(env, GTIMER_VIRT, isread);
00108f2d
PM
1606}
1607
b4d3978c 1608static CPAccessResult gt_stimer_access(CPUARMState *env,
3f208fd7
PM
1609 const ARMCPRegInfo *ri,
1610 bool isread)
b4d3978c
PM
1611{
1612 /* The AArch64 register view of the secure physical timer is
1613 * always accessible from EL3, and configurably accessible from
1614 * Secure EL1.
1615 */
1616 switch (arm_current_el(env)) {
1617 case 1:
1618 if (!arm_is_secure(env)) {
1619 return CP_ACCESS_TRAP;
1620 }
1621 if (!(env->cp15.scr_el3 & SCR_ST)) {
1622 return CP_ACCESS_TRAP_EL3;
1623 }
1624 return CP_ACCESS_OK;
1625 case 0:
1626 case 2:
1627 return CP_ACCESS_TRAP;
1628 case 3:
1629 return CP_ACCESS_OK;
1630 default:
1631 g_assert_not_reached();
1632 }
1633}
1634
55d284af
PM
1635static uint64_t gt_get_countervalue(CPUARMState *env)
1636{
bc72ad67 1637 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
55d284af
PM
1638}
1639
1640static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1641{
1642 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1643
1644 if (gt->ctl & 1) {
1645 /* Timer enabled: calculate and set current ISTATUS, irq, and
1646 * reset timer to when ISTATUS next has to change
1647 */
edac4d8a
EI
1648 uint64_t offset = timeridx == GTIMER_VIRT ?
1649 cpu->env.cp15.cntvoff_el2 : 0;
55d284af
PM
1650 uint64_t count = gt_get_countervalue(&cpu->env);
1651 /* Note that this must be unsigned 64 bit arithmetic: */
edac4d8a 1652 int istatus = count - offset >= gt->cval;
55d284af 1653 uint64_t nexttick;
194cbc49 1654 int irqstate;
55d284af
PM
1655
1656 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
194cbc49
PM
1657
1658 irqstate = (istatus && !(gt->ctl & 2));
1659 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1660
55d284af
PM
1661 if (istatus) {
1662 /* Next transition is when count rolls back over to zero */
1663 nexttick = UINT64_MAX;
1664 } else {
1665 /* Next transition is when we hit cval */
edac4d8a 1666 nexttick = gt->cval + offset;
55d284af
PM
1667 }
1668 /* Note that the desired next expiry time might be beyond the
1669 * signed-64-bit range of a QEMUTimer -- in this case we just
1670 * set the timer for as far in the future as possible. When the
1671 * timer expires we will reset the timer for any remaining period.
1672 */
1673 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1674 nexttick = INT64_MAX / GTIMER_SCALE;
1675 }
bc72ad67 1676 timer_mod(cpu->gt_timer[timeridx], nexttick);
194cbc49 1677 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
55d284af
PM
1678 } else {
1679 /* Timer disabled: ISTATUS and timer output always clear */
1680 gt->ctl &= ~4;
1681 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
bc72ad67 1682 timer_del(cpu->gt_timer[timeridx]);
194cbc49 1683 trace_arm_gt_recalc_disabled(timeridx);
55d284af
PM
1684 }
1685}
1686
0e3eca4c
EI
1687static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1688 int timeridx)
55d284af
PM
1689{
1690 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af 1691
bc72ad67 1692 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
1693}
1694
c4241c7d 1695static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af 1696{
c4241c7d 1697 return gt_get_countervalue(env);
55d284af
PM
1698}
1699
edac4d8a
EI
1700static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1701{
1702 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1703}
1704
c4241c7d 1705static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1706 int timeridx,
c4241c7d 1707 uint64_t value)
55d284af 1708{
194cbc49 1709 trace_arm_gt_cval_write(timeridx, value);
55d284af
PM
1710 env->cp15.c14_timer[timeridx].cval = value;
1711 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af 1712}
c4241c7d 1713
0e3eca4c
EI
1714static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1715 int timeridx)
55d284af 1716{
edac4d8a 1717 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1718
c4241c7d 1719 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
edac4d8a 1720 (gt_get_countervalue(env) - offset));
55d284af
PM
1721}
1722
c4241c7d 1723static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1724 int timeridx,
c4241c7d 1725 uint64_t value)
55d284af 1726{
edac4d8a 1727 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1728
194cbc49 1729 trace_arm_gt_tval_write(timeridx, value);
edac4d8a 1730 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
18084b2f 1731 sextract64(value, 0, 32);
55d284af 1732 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af
PM
1733}
1734
c4241c7d 1735static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1736 int timeridx,
c4241c7d 1737 uint64_t value)
55d284af
PM
1738{
1739 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af
PM
1740 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1741
194cbc49 1742 trace_arm_gt_ctl_write(timeridx, value);
d3afacc7 1743 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
55d284af
PM
1744 if ((oldval ^ value) & 1) {
1745 /* Enable toggled */
1746 gt_recalc_timer(cpu, timeridx);
d3afacc7 1747 } else if ((oldval ^ value) & 2) {
55d284af
PM
1748 /* IMASK toggled: don't need to recalculate,
1749 * just set the interrupt line based on ISTATUS
1750 */
194cbc49
PM
1751 int irqstate = (oldval & 4) && !(value & 2);
1752
1753 trace_arm_gt_imask_toggle(timeridx, irqstate);
1754 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
55d284af 1755 }
55d284af
PM
1756}
1757
0e3eca4c
EI
1758static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1759{
1760 gt_timer_reset(env, ri, GTIMER_PHYS);
1761}
1762
1763static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764 uint64_t value)
1765{
1766 gt_cval_write(env, ri, GTIMER_PHYS, value);
1767}
1768
1769static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1770{
1771 return gt_tval_read(env, ri, GTIMER_PHYS);
1772}
1773
1774static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1775 uint64_t value)
1776{
1777 gt_tval_write(env, ri, GTIMER_PHYS, value);
1778}
1779
1780static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1781 uint64_t value)
1782{
1783 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1784}
1785
1786static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1787{
1788 gt_timer_reset(env, ri, GTIMER_VIRT);
1789}
1790
1791static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792 uint64_t value)
1793{
1794 gt_cval_write(env, ri, GTIMER_VIRT, value);
1795}
1796
1797static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1798{
1799 return gt_tval_read(env, ri, GTIMER_VIRT);
1800}
1801
1802static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1803 uint64_t value)
1804{
1805 gt_tval_write(env, ri, GTIMER_VIRT, value);
1806}
1807
1808static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1809 uint64_t value)
1810{
1811 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1812}
1813
edac4d8a
EI
1814static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value)
1816{
1817 ARMCPU *cpu = arm_env_get_cpu(env);
1818
194cbc49 1819 trace_arm_gt_cntvoff_write(value);
edac4d8a
EI
1820 raw_write(env, ri, value);
1821 gt_recalc_timer(cpu, GTIMER_VIRT);
1822}
1823
b0e66d95
EI
1824static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1825{
1826 gt_timer_reset(env, ri, GTIMER_HYP);
1827}
1828
1829static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1830 uint64_t value)
1831{
1832 gt_cval_write(env, ri, GTIMER_HYP, value);
1833}
1834
1835static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1836{
1837 return gt_tval_read(env, ri, GTIMER_HYP);
1838}
1839
1840static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841 uint64_t value)
1842{
1843 gt_tval_write(env, ri, GTIMER_HYP, value);
1844}
1845
1846static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847 uint64_t value)
1848{
1849 gt_ctl_write(env, ri, GTIMER_HYP, value);
1850}
1851
b4d3978c
PM
1852static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1853{
1854 gt_timer_reset(env, ri, GTIMER_SEC);
1855}
1856
1857static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858 uint64_t value)
1859{
1860 gt_cval_write(env, ri, GTIMER_SEC, value);
1861}
1862
1863static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1864{
1865 return gt_tval_read(env, ri, GTIMER_SEC);
1866}
1867
1868static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1869 uint64_t value)
1870{
1871 gt_tval_write(env, ri, GTIMER_SEC, value);
1872}
1873
1874static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875 uint64_t value)
1876{
1877 gt_ctl_write(env, ri, GTIMER_SEC, value);
1878}
1879
55d284af
PM
1880void arm_gt_ptimer_cb(void *opaque)
1881{
1882 ARMCPU *cpu = opaque;
1883
1884 gt_recalc_timer(cpu, GTIMER_PHYS);
1885}
1886
1887void arm_gt_vtimer_cb(void *opaque)
1888{
1889 ARMCPU *cpu = opaque;
1890
1891 gt_recalc_timer(cpu, GTIMER_VIRT);
1892}
1893
b0e66d95
EI
1894void arm_gt_htimer_cb(void *opaque)
1895{
1896 ARMCPU *cpu = opaque;
1897
1898 gt_recalc_timer(cpu, GTIMER_HYP);
1899}
1900
b4d3978c
PM
1901void arm_gt_stimer_cb(void *opaque)
1902{
1903 ARMCPU *cpu = opaque;
1904
1905 gt_recalc_timer(cpu, GTIMER_SEC);
1906}
1907
55d284af
PM
1908static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1909 /* Note that CNTFRQ is purely reads-as-written for the benefit
1910 * of software; writing it doesn't actually change the timer frequency.
1911 * Our reset value matches the fixed frequency we implement the timer at.
1912 */
1913 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 1914 .type = ARM_CP_ALIAS,
a7adc4b7
PM
1915 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1916 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
a7adc4b7
PM
1917 },
1918 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1919 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1920 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
55d284af
PM
1921 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1922 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
55d284af
PM
1923 },
1924 /* overall control: mostly access permissions */
a7adc4b7
PM
1925 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1926 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
55d284af
PM
1927 .access = PL1_RW,
1928 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1929 .resetvalue = 0,
1930 },
1931 /* per-timer control */
1932 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
9ff9dd3c 1933 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1934 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1935 .accessfn = gt_ptimer_access,
1936 .fieldoffset = offsetoflow32(CPUARMState,
1937 cp15.c14_timer[GTIMER_PHYS].ctl),
0e3eca4c 1938 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
a7adc4b7 1939 },
9ff9dd3c
PM
1940 { .name = "CNTP_CTL(S)",
1941 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1942 .secure = ARM_CP_SECSTATE_S,
1943 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1944 .accessfn = gt_ptimer_access,
1945 .fieldoffset = offsetoflow32(CPUARMState,
1946 cp15.c14_timer[GTIMER_SEC].ctl),
1947 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1948 },
a7adc4b7
PM
1949 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1950 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
55d284af 1951 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1952 .accessfn = gt_ptimer_access,
55d284af
PM
1953 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1954 .resetvalue = 0,
0e3eca4c 1955 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1956 },
1957 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
7a0e58fa 1958 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1959 .accessfn = gt_vtimer_access,
1960 .fieldoffset = offsetoflow32(CPUARMState,
1961 cp15.c14_timer[GTIMER_VIRT].ctl),
0e3eca4c 1962 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
a7adc4b7
PM
1963 },
1964 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1965 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
55d284af 1966 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1967 .accessfn = gt_vtimer_access,
55d284af
PM
1968 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1969 .resetvalue = 0,
0e3eca4c 1970 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1971 },
1972 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1973 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
9ff9dd3c 1974 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1975 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1976 .accessfn = gt_ptimer_access,
0e3eca4c 1977 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
55d284af 1978 },
9ff9dd3c
PM
1979 { .name = "CNTP_TVAL(S)",
1980 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1981 .secure = ARM_CP_SECSTATE_S,
1982 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1983 .accessfn = gt_ptimer_access,
1984 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1985 },
a7adc4b7
PM
1986 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1987 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
7a0e58fa 1988 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
1989 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1990 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
a7adc4b7 1991 },
55d284af 1992 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
7a0e58fa 1993 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1994 .accessfn = gt_vtimer_access,
0e3eca4c 1995 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
55d284af 1996 },
a7adc4b7
PM
1997 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1998 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
7a0e58fa 1999 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
2000 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2001 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
a7adc4b7 2002 },
55d284af
PM
2003 /* The counter itself */
2004 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
7a0e58fa 2005 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 2006 .accessfn = gt_pct_access,
a7adc4b7
PM
2007 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2008 },
2009 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2010 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
7a0e58fa 2011 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 2012 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
55d284af
PM
2013 },
2014 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
7a0e58fa 2015 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 2016 .accessfn = gt_vct_access,
edac4d8a 2017 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
a7adc4b7
PM
2018 },
2019 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2020 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
7a0e58fa 2021 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 2022 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
55d284af
PM
2023 },
2024 /* Comparison value, indicating when the timer goes off */
2025 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 2026 .secure = ARM_CP_SECSTATE_NS,
55d284af 2027 .access = PL1_RW | PL0_R,
7a0e58fa 2028 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 2029 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
b061a82b 2030 .accessfn = gt_ptimer_access,
0e3eca4c 2031 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
a7adc4b7 2032 },
9ff9dd3c
PM
2033 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2034 .secure = ARM_CP_SECSTATE_S,
2035 .access = PL1_RW | PL0_R,
2036 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2037 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2038 .accessfn = gt_ptimer_access,
2039 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2040 },
a7adc4b7
PM
2041 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2043 .access = PL1_RW | PL0_R,
2044 .type = ARM_CP_IO,
2045 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
12cde08a 2046 .resetvalue = 0, .accessfn = gt_ptimer_access,
0e3eca4c 2047 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
55d284af
PM
2048 },
2049 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2050 .access = PL1_RW | PL0_R,
7a0e58fa 2051 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 2052 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
b061a82b 2053 .accessfn = gt_vtimer_access,
0e3eca4c 2054 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
a7adc4b7
PM
2055 },
2056 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2057 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2058 .access = PL1_RW | PL0_R,
2059 .type = ARM_CP_IO,
2060 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2061 .resetvalue = 0, .accessfn = gt_vtimer_access,
0e3eca4c 2062 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
55d284af 2063 },
b4d3978c
PM
2064 /* Secure timer -- this is actually restricted to only EL3
2065 * and configurably Secure-EL1 via the accessfn.
2066 */
2067 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2068 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2069 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2070 .accessfn = gt_stimer_access,
2071 .readfn = gt_sec_tval_read,
2072 .writefn = gt_sec_tval_write,
2073 .resetfn = gt_sec_timer_reset,
2074 },
2075 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2076 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2077 .type = ARM_CP_IO, .access = PL1_RW,
2078 .accessfn = gt_stimer_access,
2079 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2080 .resetvalue = 0,
2081 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2082 },
2083 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2084 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2085 .type = ARM_CP_IO, .access = PL1_RW,
2086 .accessfn = gt_stimer_access,
2087 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2088 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2089 },
55d284af
PM
2090 REGINFO_SENTINEL
2091};
2092
2093#else
2094/* In user-mode none of the generic timer registers are accessible,
bc72ad67 2095 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
55d284af
PM
2096 * so instead just don't register any of them.
2097 */
6cc7a3ae 2098static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
6cc7a3ae
PM
2099 REGINFO_SENTINEL
2100};
2101
55d284af
PM
2102#endif
2103
c4241c7d 2104static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 2105{
891a2fe7 2106 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8d5c773e 2107 raw_write(env, ri, value);
891a2fe7 2108 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8d5c773e 2109 raw_write(env, ri, value & 0xfffff6ff);
4a501606 2110 } else {
8d5c773e 2111 raw_write(env, ri, value & 0xfffff1ff);
4a501606 2112 }
4a501606
PM
2113}
2114
2115#ifndef CONFIG_USER_ONLY
2116/* get_phys_addr() isn't present for user-mode-only targets */
702a9357 2117
3f208fd7
PM
2118static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2119 bool isread)
92611c00
PM
2120{
2121 if (ri->opc2 & 4) {
87562e4f
PM
2122 /* The ATS12NSO* operations must trap to EL3 if executed in
2123 * Secure EL1 (which can only happen if EL3 is AArch64).
2124 * They are simply UNDEF if executed from NS EL1.
2125 * They function normally from EL2 or EL3.
92611c00 2126 */
87562e4f
PM
2127 if (arm_current_el(env) == 1) {
2128 if (arm_is_secure_below_el3(env)) {
2129 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2130 }
2131 return CP_ACCESS_TRAP_UNCATEGORIZED;
2132 }
92611c00
PM
2133 }
2134 return CP_ACCESS_OK;
2135}
2136
060e8a48 2137static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
d3649702 2138 int access_type, ARMMMUIdx mmu_idx)
4a501606 2139{
a8170e5e 2140 hwaddr phys_addr;
4a501606
PM
2141 target_ulong page_size;
2142 int prot;
b7cc4e82
PC
2143 uint32_t fsr;
2144 bool ret;
01c097f7 2145 uint64_t par64;
8bf5b6a9 2146 MemTxAttrs attrs = {};
e14b5a23 2147 ARMMMUFaultInfo fi = {};
4a501606 2148
d3649702 2149 ret = get_phys_addr(env, value, access_type, mmu_idx,
e14b5a23 2150 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
702a9357 2151 if (extended_addresses_enabled(env)) {
b7cc4e82 2152 /* fsr is a DFSR/IFSR value for the long descriptor
702a9357
PM
2153 * translation table format, but with WnR always clear.
2154 * Convert it to a 64-bit PAR.
2155 */
01c097f7 2156 par64 = (1 << 11); /* LPAE bit always set */
b7cc4e82 2157 if (!ret) {
702a9357 2158 par64 |= phys_addr & ~0xfffULL;
8bf5b6a9
PM
2159 if (!attrs.secure) {
2160 par64 |= (1 << 9); /* NS */
2161 }
702a9357 2162 /* We don't set the ATTR or SH fields in the PAR. */
4a501606 2163 } else {
702a9357 2164 par64 |= 1; /* F */
b7cc4e82 2165 par64 |= (fsr & 0x3f) << 1; /* FS */
702a9357
PM
2166 /* Note that S2WLK and FSTAGE are always zero, because we don't
2167 * implement virtualization and therefore there can't be a stage 2
2168 * fault.
2169 */
4a501606
PM
2170 }
2171 } else {
b7cc4e82 2172 /* fsr is a DFSR/IFSR value for the short descriptor
702a9357
PM
2173 * translation table format (with WnR always clear).
2174 * Convert it to a 32-bit PAR.
2175 */
b7cc4e82 2176 if (!ret) {
702a9357
PM
2177 /* We do not set any attribute bits in the PAR */
2178 if (page_size == (1 << 24)
2179 && arm_feature(env, ARM_FEATURE_V7)) {
01c097f7 2180 par64 = (phys_addr & 0xff000000) | (1 << 1);
702a9357 2181 } else {
01c097f7 2182 par64 = phys_addr & 0xfffff000;
702a9357 2183 }
8bf5b6a9
PM
2184 if (!attrs.secure) {
2185 par64 |= (1 << 9); /* NS */
2186 }
702a9357 2187 } else {
b7cc4e82
PC
2188 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2189 ((fsr & 0xf) << 1) | 1;
702a9357 2190 }
4a501606 2191 }
060e8a48
PM
2192 return par64;
2193}
2194
2195static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2196{
060e8a48
PM
2197 int access_type = ri->opc2 & 1;
2198 uint64_t par64;
d3649702
PM
2199 ARMMMUIdx mmu_idx;
2200 int el = arm_current_el(env);
2201 bool secure = arm_is_secure_below_el3(env);
060e8a48 2202
d3649702
PM
2203 switch (ri->opc2 & 6) {
2204 case 0:
2205 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2206 switch (el) {
2207 case 3:
2208 mmu_idx = ARMMMUIdx_S1E3;
2209 break;
2210 case 2:
2211 mmu_idx = ARMMMUIdx_S1NSE1;
2212 break;
2213 case 1:
2214 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2215 break;
2216 default:
2217 g_assert_not_reached();
2218 }
2219 break;
2220 case 2:
2221 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2222 switch (el) {
2223 case 3:
2224 mmu_idx = ARMMMUIdx_S1SE0;
2225 break;
2226 case 2:
2227 mmu_idx = ARMMMUIdx_S1NSE0;
2228 break;
2229 case 1:
2230 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2231 break;
2232 default:
2233 g_assert_not_reached();
2234 }
2235 break;
2236 case 4:
2237 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2238 mmu_idx = ARMMMUIdx_S12NSE1;
2239 break;
2240 case 6:
2241 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2242 mmu_idx = ARMMMUIdx_S12NSE0;
2243 break;
2244 default:
2245 g_assert_not_reached();
2246 }
2247
2248 par64 = do_ats_write(env, value, access_type, mmu_idx);
01c097f7
FA
2249
2250 A32_BANKED_CURRENT_REG_SET(env, par, par64);
4a501606 2251}
060e8a48 2252
14db7fe0
PM
2253static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2254 uint64_t value)
2255{
2256 int access_type = ri->opc2 & 1;
2257 uint64_t par64;
2258
2259 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2260
2261 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2262}
2263
3f208fd7
PM
2264static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2265 bool isread)
2a47df95
PM
2266{
2267 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2268 return CP_ACCESS_TRAP;
2269 }
2270 return CP_ACCESS_OK;
2271}
2272
060e8a48
PM
2273static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2274 uint64_t value)
2275{
060e8a48 2276 int access_type = ri->opc2 & 1;
d3649702
PM
2277 ARMMMUIdx mmu_idx;
2278 int secure = arm_is_secure_below_el3(env);
2279
2280 switch (ri->opc2 & 6) {
2281 case 0:
2282 switch (ri->opc1) {
2283 case 0: /* AT S1E1R, AT S1E1W */
2284 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2285 break;
2286 case 4: /* AT S1E2R, AT S1E2W */
2287 mmu_idx = ARMMMUIdx_S1E2;
2288 break;
2289 case 6: /* AT S1E3R, AT S1E3W */
2290 mmu_idx = ARMMMUIdx_S1E3;
2291 break;
2292 default:
2293 g_assert_not_reached();
2294 }
2295 break;
2296 case 2: /* AT S1E0R, AT S1E0W */
2297 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2298 break;
2299 case 4: /* AT S12E1R, AT S12E1W */
2a47df95 2300 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
d3649702
PM
2301 break;
2302 case 6: /* AT S12E0R, AT S12E0W */
2a47df95 2303 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
d3649702
PM
2304 break;
2305 default:
2306 g_assert_not_reached();
2307 }
060e8a48 2308
d3649702 2309 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
060e8a48 2310}
4a501606
PM
2311#endif
2312
2313static const ARMCPRegInfo vapa_cp_reginfo[] = {
2314 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2315 .access = PL1_RW, .resetvalue = 0,
01c097f7
FA
2316 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2317 offsetoflow32(CPUARMState, cp15.par_ns) },
4a501606
PM
2318 .writefn = par_write },
2319#ifndef CONFIG_USER_ONLY
87562e4f 2320 /* This underdecoding is safe because the reginfo is NO_RAW. */
4a501606 2321 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
92611c00 2322 .access = PL1_W, .accessfn = ats_access,
7a0e58fa 2323 .writefn = ats_write, .type = ARM_CP_NO_RAW },
4a501606
PM
2324#endif
2325 REGINFO_SENTINEL
2326};
2327
18032bec
PM
2328/* Return basic MPU access permission bits. */
2329static uint32_t simple_mpu_ap_bits(uint32_t val)
2330{
2331 uint32_t ret;
2332 uint32_t mask;
2333 int i;
2334 ret = 0;
2335 mask = 3;
2336 for (i = 0; i < 16; i += 2) {
2337 ret |= (val >> i) & mask;
2338 mask <<= 2;
2339 }
2340 return ret;
2341}
2342
2343/* Pad basic MPU access permission bits to extended format. */
2344static uint32_t extended_mpu_ap_bits(uint32_t val)
2345{
2346 uint32_t ret;
2347 uint32_t mask;
2348 int i;
2349 ret = 0;
2350 mask = 3;
2351 for (i = 0; i < 16; i += 2) {
2352 ret |= (val & mask) << i;
2353 mask <<= 2;
2354 }
2355 return ret;
2356}
2357
c4241c7d
PM
2358static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2359 uint64_t value)
18032bec 2360{
7e09797c 2361 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
18032bec
PM
2362}
2363
c4241c7d 2364static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 2365{
7e09797c 2366 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
18032bec
PM
2367}
2368
c4241c7d
PM
2369static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2370 uint64_t value)
18032bec 2371{
7e09797c 2372 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
18032bec
PM
2373}
2374
c4241c7d 2375static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 2376{
7e09797c 2377 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
18032bec
PM
2378}
2379
6cb0b013
PC
2380static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2381{
2382 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2383
2384 if (!u32p) {
2385 return 0;
2386 }
2387
2388 u32p += env->cp15.c6_rgnr;
2389 return *u32p;
2390}
2391
2392static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2393 uint64_t value)
2394{
2395 ARMCPU *cpu = arm_env_get_cpu(env);
2396 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2397
2398 if (!u32p) {
2399 return;
2400 }
2401
2402 u32p += env->cp15.c6_rgnr;
d10eb08f 2403 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
6cb0b013
PC
2404 *u32p = value;
2405}
2406
2407static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2408{
2409 ARMCPU *cpu = arm_env_get_cpu(env);
2410 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2411
2412 if (!u32p) {
2413 return;
2414 }
2415
2416 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2417}
2418
2419static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2420 uint64_t value)
2421{
2422 ARMCPU *cpu = arm_env_get_cpu(env);
2423 uint32_t nrgs = cpu->pmsav7_dregion;
2424
2425 if (value >= nrgs) {
2426 qemu_log_mask(LOG_GUEST_ERROR,
2427 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2428 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2429 return;
2430 }
2431
2432 raw_write(env, ri, value);
2433}
2434
2435static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2436 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2437 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2438 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2439 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2440 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2441 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2442 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2443 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2444 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2445 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2446 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2447 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2448 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2449 .access = PL1_RW,
2450 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2451 .writefn = pmsav7_rgnr_write },
2452 REGINFO_SENTINEL
2453};
2454
18032bec
PM
2455static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2456 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2457 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2458 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
18032bec
PM
2459 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2460 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
7a0e58fa 2461 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2462 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
18032bec
PM
2463 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2464 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2465 .access = PL1_RW,
7e09797c
PM
2466 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2467 .resetvalue = 0, },
18032bec
PM
2468 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2469 .access = PL1_RW,
7e09797c
PM
2470 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2471 .resetvalue = 0, },
ecce5c3c
PM
2472 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2473 .access = PL1_RW,
2474 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2475 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2476 .access = PL1_RW,
2477 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31 2478 /* Protection region base and size registers */
e508a92b
PM
2479 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2480 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2481 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2482 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2483 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2484 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2485 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2486 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2487 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2488 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2489 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2490 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2491 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2492 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2493 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2494 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2495 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2496 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2497 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2498 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2499 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2500 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2501 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2502 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
18032bec
PM
2503 REGINFO_SENTINEL
2504};
2505
c4241c7d
PM
2506static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2507 uint64_t value)
ecce5c3c 2508{
11f136ee 2509 TCR *tcr = raw_ptr(env, ri);
2ebcebe2
PM
2510 int maskshift = extract32(value, 0, 3);
2511
e389be16
FA
2512 if (!arm_feature(env, ARM_FEATURE_V8)) {
2513 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2514 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2515 * using Long-desciptor translation table format */
2516 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2517 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2518 /* In an implementation that includes the Security Extensions
2519 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2520 * Short-descriptor translation table format.
2521 */
2522 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2523 } else {
2524 value &= TTBCR_N;
2525 }
e42c4db3 2526 }
e389be16 2527
b6af0975 2528 /* Update the masks corresponding to the TCR bank being written
11f136ee 2529 * Note that we always calculate mask and base_mask, but
e42c4db3 2530 * they are only used for short-descriptor tables (ie if EAE is 0);
11f136ee
FA
2531 * for long-descriptor tables the TCR fields are used differently
2532 * and the mask and base_mask values are meaningless.
e42c4db3 2533 */
11f136ee
FA
2534 tcr->raw_tcr = value;
2535 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2536 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
ecce5c3c
PM
2537}
2538
c4241c7d
PM
2539static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2540 uint64_t value)
d4e6df63 2541{
00c8cb0a
AF
2542 ARMCPU *cpu = arm_env_get_cpu(env);
2543
d4e6df63
PM
2544 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2545 /* With LPAE the TTBCR could result in a change of ASID
2546 * via the TTBCR.A1 bit, so do a TLB flush.
2547 */
d10eb08f 2548 tlb_flush(CPU(cpu));
d4e6df63 2549 }
c4241c7d 2550 vmsa_ttbcr_raw_write(env, ri, value);
d4e6df63
PM
2551}
2552
ecce5c3c
PM
2553static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2554{
11f136ee
FA
2555 TCR *tcr = raw_ptr(env, ri);
2556
2557 /* Reset both the TCR as well as the masks corresponding to the bank of
2558 * the TCR being reset.
2559 */
2560 tcr->raw_tcr = 0;
2561 tcr->mask = 0;
2562 tcr->base_mask = 0xffffc000u;
ecce5c3c
PM
2563}
2564
cb2e37df
PM
2565static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2566 uint64_t value)
2567{
00c8cb0a 2568 ARMCPU *cpu = arm_env_get_cpu(env);
11f136ee 2569 TCR *tcr = raw_ptr(env, ri);
00c8cb0a 2570
cb2e37df 2571 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
d10eb08f 2572 tlb_flush(CPU(cpu));
11f136ee 2573 tcr->raw_tcr = value;
cb2e37df
PM
2574}
2575
327ed10f
PM
2576static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2577 uint64_t value)
2578{
2579 /* 64 bit accesses to the TTBRs can change the ASID and so we
2580 * must flush the TLB.
2581 */
2582 if (cpreg_field_is_64bit(ri)) {
00c8cb0a
AF
2583 ARMCPU *cpu = arm_env_get_cpu(env);
2584
d10eb08f 2585 tlb_flush(CPU(cpu));
327ed10f
PM
2586 }
2587 raw_write(env, ri, value);
2588}
2589
b698e9cf
EI
2590static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2591 uint64_t value)
2592{
2593 ARMCPU *cpu = arm_env_get_cpu(env);
2594 CPUState *cs = CPU(cpu);
2595
2596 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2597 if (raw_read(env, ri) != value) {
0336cbf8 2598 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2599 ARMMMUIdxBit_S12NSE1 |
2600 ARMMMUIdxBit_S12NSE0 |
2601 ARMMMUIdxBit_S2NS);
b698e9cf
EI
2602 raw_write(env, ri, value);
2603 }
2604}
2605
8e5d75c9 2606static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
18032bec 2607 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2608 .access = PL1_RW, .type = ARM_CP_ALIAS,
4a7e2d73 2609 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
b061a82b 2610 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
18032bec 2611 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
88ca1c2d
FA
2612 .access = PL1_RW, .resetvalue = 0,
2613 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2614 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
8e5d75c9
PC
2615 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2616 .access = PL1_RW, .resetvalue = 0,
2617 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2618 offsetof(CPUARMState, cp15.dfar_ns) } },
2619 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2620 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2621 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2622 .resetvalue = 0, },
2623 REGINFO_SENTINEL
2624};
2625
2626static const ARMCPRegInfo vmsa_cp_reginfo[] = {
6cd8a264
RH
2627 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2628 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2629 .access = PL1_RW,
d81c519c 2630 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
327ed10f 2631 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2632 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2633 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2634 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2635 offsetof(CPUARMState, cp15.ttbr0_ns) } },
327ed10f 2636 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2637 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2638 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2639 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2640 offsetof(CPUARMState, cp15.ttbr1_ns) } },
cb2e37df
PM
2641 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2642 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2643 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2644 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
11f136ee 2645 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
cb2e37df 2646 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
7a0e58fa 2647 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
b061a82b 2648 .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee
FA
2649 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2650 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
18032bec
PM
2651 REGINFO_SENTINEL
2652};
2653
c4241c7d
PM
2654static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2655 uint64_t value)
1047b9d7
PM
2656{
2657 env->cp15.c15_ticonfig = value & 0xe7;
2658 /* The OS_TYPE bit in this register changes the reported CPUID! */
2659 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2660 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1047b9d7
PM
2661}
2662
c4241c7d
PM
2663static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2664 uint64_t value)
1047b9d7
PM
2665{
2666 env->cp15.c15_threadid = value & 0xffff;
1047b9d7
PM
2667}
2668
c4241c7d
PM
2669static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2670 uint64_t value)
1047b9d7
PM
2671{
2672 /* Wait-for-interrupt (deprecated) */
c3affe56 2673 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1047b9d7
PM
2674}
2675
c4241c7d
PM
2676static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2677 uint64_t value)
c4804214
PM
2678{
2679 /* On OMAP there are registers indicating the max/min index of dcache lines
2680 * containing a dirty line; cache flush operations have to reset these.
2681 */
2682 env->cp15.c15_i_max = 0x000;
2683 env->cp15.c15_i_min = 0xff0;
c4804214
PM
2684}
2685
18032bec
PM
2686static const ARMCPRegInfo omap_cp_reginfo[] = {
2687 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2688 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
d81c519c 2689 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
6cd8a264 2690 .resetvalue = 0, },
1047b9d7
PM
2691 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2692 .access = PL1_RW, .type = ARM_CP_NOP },
2693 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2694 .access = PL1_RW,
2695 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2696 .writefn = omap_ticonfig_write },
2697 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2698 .access = PL1_RW,
2699 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2700 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2701 .access = PL1_RW, .resetvalue = 0xff0,
2702 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2703 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2704 .access = PL1_RW,
2705 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2706 .writefn = omap_threadid_write },
2707 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2708 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
7a0e58fa 2709 .type = ARM_CP_NO_RAW,
1047b9d7
PM
2710 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2711 /* TODO: Peripheral port remap register:
2712 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2713 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2714 * when MMU is off.
2715 */
c4804214 2716 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
d4e6df63 2717 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
7a0e58fa 2718 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
c4804214 2719 .writefn = omap_cachemaint_write },
34f90529
PM
2720 { .name = "C9", .cp = 15, .crn = 9,
2721 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2722 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
2723 REGINFO_SENTINEL
2724};
2725
c4241c7d
PM
2726static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2727 uint64_t value)
1047b9d7 2728{
c0f4af17 2729 env->cp15.c15_cpar = value & 0x3fff;
1047b9d7
PM
2730}
2731
2732static const ARMCPRegInfo xscale_cp_reginfo[] = {
2733 { .name = "XSCALE_CPAR",
2734 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2735 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2736 .writefn = xscale_cpar_write, },
2771db27
PM
2737 { .name = "XSCALE_AUXCR",
2738 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2739 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2740 .resetvalue = 0, },
3b771579
PM
2741 /* XScale specific cache-lockdown: since we have no cache we NOP these
2742 * and hope the guest does not really rely on cache behaviour.
2743 */
2744 { .name = "XSCALE_LOCK_ICACHE_LINE",
2745 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2746 .access = PL1_W, .type = ARM_CP_NOP },
2747 { .name = "XSCALE_UNLOCK_ICACHE",
2748 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2749 .access = PL1_W, .type = ARM_CP_NOP },
2750 { .name = "XSCALE_DCACHE_LOCK",
2751 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2752 .access = PL1_RW, .type = ARM_CP_NOP },
2753 { .name = "XSCALE_UNLOCK_DCACHE",
2754 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2755 .access = PL1_W, .type = ARM_CP_NOP },
1047b9d7
PM
2756 REGINFO_SENTINEL
2757};
2758
2759static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2760 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2761 * implementation of this implementation-defined space.
2762 * Ideally this should eventually disappear in favour of actually
2763 * implementing the correct behaviour for all cores.
2764 */
2765 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2766 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671cd87 2767 .access = PL1_RW,
7a0e58fa 2768 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
d4e6df63 2769 .resetvalue = 0 },
18032bec
PM
2770 REGINFO_SENTINEL
2771};
2772
c4804214
PM
2773static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2774 /* Cache status: RAZ because we have no cache so it's always clean */
2775 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
7a0e58fa 2776 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2777 .resetvalue = 0 },
c4804214
PM
2778 REGINFO_SENTINEL
2779};
2780
2781static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2782 /* We never have a a block transfer operation in progress */
2783 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
7a0e58fa 2784 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2785 .resetvalue = 0 },
30b05bba
PM
2786 /* The cache ops themselves: these all NOP for QEMU */
2787 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2788 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2789 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2790 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2791 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2792 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2793 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2794 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2795 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2796 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2797 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2798 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
c4804214
PM
2799 REGINFO_SENTINEL
2800};
2801
2802static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2803 /* The cache test-and-clean instructions always return (1 << 30)
2804 * to indicate that there are no dirty cache lines.
2805 */
2806 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
7a0e58fa 2807 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2808 .resetvalue = (1 << 30) },
c4804214 2809 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
7a0e58fa 2810 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2811 .resetvalue = (1 << 30) },
c4804214
PM
2812 REGINFO_SENTINEL
2813};
2814
34f90529
PM
2815static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2816 /* Ignore ReadBuffer accesses */
2817 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2818 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
d4e6df63 2819 .access = PL1_RW, .resetvalue = 0,
7a0e58fa 2820 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
34f90529
PM
2821 REGINFO_SENTINEL
2822};
2823
731de9e6
EI
2824static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2825{
2826 ARMCPU *cpu = arm_env_get_cpu(env);
2827 unsigned int cur_el = arm_current_el(env);
2828 bool secure = arm_is_secure(env);
2829
2830 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2831 return env->cp15.vpidr_el2;
2832 }
2833 return raw_read(env, ri);
2834}
2835
06a7e647 2836static uint64_t mpidr_read_val(CPUARMState *env)
81bdde9d 2837{
eb5e1d3c
PF
2838 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2839 uint64_t mpidr = cpu->mp_affinity;
2840
81bdde9d 2841 if (arm_feature(env, ARM_FEATURE_V7MP)) {
78dbbbe4 2842 mpidr |= (1U << 31);
81bdde9d
PM
2843 /* Cores which are uniprocessor (non-coherent)
2844 * but still implement the MP extensions set
a8e81b31 2845 * bit 30. (For instance, Cortex-R5).
81bdde9d 2846 */
a8e81b31
PC
2847 if (cpu->mp_is_up) {
2848 mpidr |= (1u << 30);
2849 }
81bdde9d 2850 }
c4241c7d 2851 return mpidr;
81bdde9d
PM
2852}
2853
06a7e647
EI
2854static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2855{
f0d574d6
EI
2856 unsigned int cur_el = arm_current_el(env);
2857 bool secure = arm_is_secure(env);
2858
2859 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2860 return env->cp15.vmpidr_el2;
2861 }
06a7e647
EI
2862 return mpidr_read_val(env);
2863}
2864
81bdde9d 2865static const ARMCPRegInfo mpidr_cp_reginfo[] = {
4b7fff2f
PM
2866 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2867 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7a0e58fa 2868 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
81bdde9d
PM
2869 REGINFO_SENTINEL
2870};
2871
7ac681cf 2872static const ARMCPRegInfo lpae_cp_reginfo[] = {
a903c449 2873 /* NOP AMAIR0/1 */
b0fe2427
PM
2874 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2875 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
a903c449 2876 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2877 .resetvalue = 0 },
b0fe2427 2878 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
7ac681cf 2879 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
a903c449 2880 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2881 .resetvalue = 0 },
891a2fe7 2882 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
01c097f7
FA
2883 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2884 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2885 offsetof(CPUARMState, cp15.par_ns)} },
891a2fe7 2886 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
7a0e58fa 2887 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2888 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2889 offsetof(CPUARMState, cp15.ttbr0_ns) },
b061a82b 2890 .writefn = vmsa_ttbr_write, },
891a2fe7 2891 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
7a0e58fa 2892 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2893 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2894 offsetof(CPUARMState, cp15.ttbr1_ns) },
b061a82b 2895 .writefn = vmsa_ttbr_write, },
7ac681cf
PM
2896 REGINFO_SENTINEL
2897};
2898
c4241c7d 2899static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2900{
c4241c7d 2901 return vfp_get_fpcr(env);
b0d2b7d0
PM
2902}
2903
c4241c7d
PM
2904static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2905 uint64_t value)
b0d2b7d0
PM
2906{
2907 vfp_set_fpcr(env, value);
b0d2b7d0
PM
2908}
2909
c4241c7d 2910static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2911{
c4241c7d 2912 return vfp_get_fpsr(env);
b0d2b7d0
PM
2913}
2914
c4241c7d
PM
2915static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916 uint64_t value)
b0d2b7d0
PM
2917{
2918 vfp_set_fpsr(env, value);
b0d2b7d0
PM
2919}
2920
3f208fd7
PM
2921static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2922 bool isread)
c2b820fe 2923{
137feaa9 2924 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
c2b820fe
PM
2925 return CP_ACCESS_TRAP;
2926 }
2927 return CP_ACCESS_OK;
2928}
2929
2930static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2931 uint64_t value)
2932{
2933 env->daif = value & PSTATE_DAIF;
2934}
2935
8af35c37 2936static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3f208fd7
PM
2937 const ARMCPRegInfo *ri,
2938 bool isread)
8af35c37
PM
2939{
2940 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2941 * SCTLR_EL1.UCI is set.
2942 */
137feaa9 2943 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
8af35c37
PM
2944 return CP_ACCESS_TRAP;
2945 }
2946 return CP_ACCESS_OK;
2947}
2948
dbb1fb27
AB
2949/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2950 * Page D4-1736 (DDI0487A.b)
2951 */
2952
fd3ed969
PM
2953static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2954 uint64_t value)
168aa23b 2955{
a67cf277 2956 CPUState *cs = ENV_GET_CPU(env);
dbb1fb27 2957
fd3ed969 2958 if (arm_is_secure_below_el3(env)) {
0336cbf8 2959 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2960 ARMMMUIdxBit_S1SE1 |
2961 ARMMMUIdxBit_S1SE0);
fd3ed969 2962 } else {
0336cbf8 2963 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2964 ARMMMUIdxBit_S12NSE1 |
2965 ARMMMUIdxBit_S12NSE0);
fd3ed969 2966 }
168aa23b
PM
2967}
2968
fd3ed969
PM
2969static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2970 uint64_t value)
168aa23b 2971{
a67cf277 2972 CPUState *cs = ENV_GET_CPU(env);
fd3ed969 2973 bool sec = arm_is_secure_below_el3(env);
dbb1fb27 2974
a67cf277
AB
2975 if (sec) {
2976 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
2977 ARMMMUIdxBit_S1SE1 |
2978 ARMMMUIdxBit_S1SE0);
a67cf277
AB
2979 } else {
2980 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
2981 ARMMMUIdxBit_S12NSE1 |
2982 ARMMMUIdxBit_S12NSE0);
fd3ed969 2983 }
168aa23b
PM
2984}
2985
fd3ed969
PM
2986static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2987 uint64_t value)
168aa23b 2988{
fd3ed969
PM
2989 /* Note that the 'ALL' scope must invalidate both stage 1 and
2990 * stage 2 translations, whereas most other scopes only invalidate
2991 * stage 1 translations.
2992 */
00c8cb0a 2993 ARMCPU *cpu = arm_env_get_cpu(env);
fd3ed969
PM
2994 CPUState *cs = CPU(cpu);
2995
2996 if (arm_is_secure_below_el3(env)) {
0336cbf8 2997 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2998 ARMMMUIdxBit_S1SE1 |
2999 ARMMMUIdxBit_S1SE0);
fd3ed969
PM
3000 } else {
3001 if (arm_feature(env, ARM_FEATURE_EL2)) {
0336cbf8 3002 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3003 ARMMMUIdxBit_S12NSE1 |
3004 ARMMMUIdxBit_S12NSE0 |
3005 ARMMMUIdxBit_S2NS);
fd3ed969 3006 } else {
0336cbf8 3007 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3008 ARMMMUIdxBit_S12NSE1 |
3009 ARMMMUIdxBit_S12NSE0);
fd3ed969
PM
3010 }
3011 }
168aa23b
PM
3012}
3013
fd3ed969 3014static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
fa439fc5
PM
3015 uint64_t value)
3016{
fd3ed969
PM
3017 ARMCPU *cpu = arm_env_get_cpu(env);
3018 CPUState *cs = CPU(cpu);
3019
8bd5c820 3020 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
fd3ed969
PM
3021}
3022
43efaa33
PM
3023static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024 uint64_t value)
3025{
3026 ARMCPU *cpu = arm_env_get_cpu(env);
3027 CPUState *cs = CPU(cpu);
3028
8bd5c820 3029 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
43efaa33
PM
3030}
3031
fd3ed969
PM
3032static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3033 uint64_t value)
3034{
3035 /* Note that the 'ALL' scope must invalidate both stage 1 and
3036 * stage 2 translations, whereas most other scopes only invalidate
3037 * stage 1 translations.
3038 */
a67cf277 3039 CPUState *cs = ENV_GET_CPU(env);
fd3ed969
PM
3040 bool sec = arm_is_secure_below_el3(env);
3041 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
a67cf277
AB
3042
3043 if (sec) {
3044 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3045 ARMMMUIdxBit_S1SE1 |
3046 ARMMMUIdxBit_S1SE0);
a67cf277
AB
3047 } else if (has_el2) {
3048 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3049 ARMMMUIdxBit_S12NSE1 |
3050 ARMMMUIdxBit_S12NSE0 |
3051 ARMMMUIdxBit_S2NS);
a67cf277
AB
3052 } else {
3053 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3054 ARMMMUIdxBit_S12NSE1 |
3055 ARMMMUIdxBit_S12NSE0);
fa439fc5
PM
3056 }
3057}
3058
2bfb9d75
PM
3059static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3060 uint64_t value)
3061{
a67cf277 3062 CPUState *cs = ENV_GET_CPU(env);
2bfb9d75 3063
8bd5c820 3064 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
2bfb9d75
PM
3065}
3066
43efaa33
PM
3067static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3068 uint64_t value)
3069{
a67cf277 3070 CPUState *cs = ENV_GET_CPU(env);
43efaa33 3071
8bd5c820 3072 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
43efaa33
PM
3073}
3074
fd3ed969
PM
3075static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3076 uint64_t value)
3077{
3078 /* Invalidate by VA, EL1&0 (AArch64 version).
3079 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3080 * since we don't support flush-for-specific-ASID-only or
3081 * flush-last-level-only.
3082 */
3083 ARMCPU *cpu = arm_env_get_cpu(env);
3084 CPUState *cs = CPU(cpu);
3085 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3086
3087 if (arm_is_secure_below_el3(env)) {
0336cbf8 3088 tlb_flush_page_by_mmuidx(cs, pageaddr,
8bd5c820
PM
3089 ARMMMUIdxBit_S1SE1 |
3090 ARMMMUIdxBit_S1SE0);
fd3ed969 3091 } else {
0336cbf8 3092 tlb_flush_page_by_mmuidx(cs, pageaddr,
8bd5c820
PM
3093 ARMMMUIdxBit_S12NSE1 |
3094 ARMMMUIdxBit_S12NSE0);
fd3ed969
PM
3095 }
3096}
3097
3098static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3099 uint64_t value)
fa439fc5 3100{
fd3ed969
PM
3101 /* Invalidate by VA, EL2
3102 * Currently handles both VAE2 and VALE2, since we don't support
3103 * flush-last-level-only.
3104 */
3105 ARMCPU *cpu = arm_env_get_cpu(env);
3106 CPUState *cs = CPU(cpu);
3107 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3108
8bd5c820 3109 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
fd3ed969
PM
3110}
3111
43efaa33
PM
3112static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3113 uint64_t value)
3114{
3115 /* Invalidate by VA, EL3
3116 * Currently handles both VAE3 and VALE3, since we don't support
3117 * flush-last-level-only.
3118 */
3119 ARMCPU *cpu = arm_env_get_cpu(env);
3120 CPUState *cs = CPU(cpu);
3121 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3122
8bd5c820 3123 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
43efaa33
PM
3124}
3125
fd3ed969
PM
3126static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3127 uint64_t value)
3128{
a67cf277
AB
3129 ARMCPU *cpu = arm_env_get_cpu(env);
3130 CPUState *cs = CPU(cpu);
fd3ed969 3131 bool sec = arm_is_secure_below_el3(env);
fa439fc5
PM
3132 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3133
a67cf277
AB
3134 if (sec) {
3135 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820
PM
3136 ARMMMUIdxBit_S1SE1 |
3137 ARMMMUIdxBit_S1SE0);
a67cf277
AB
3138 } else {
3139 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820
PM
3140 ARMMMUIdxBit_S12NSE1 |
3141 ARMMMUIdxBit_S12NSE0);
fa439fc5
PM
3142 }
3143}
3144
fd3ed969
PM
3145static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3146 uint64_t value)
fa439fc5 3147{
a67cf277 3148 CPUState *cs = ENV_GET_CPU(env);
fd3ed969 3149 uint64_t pageaddr = sextract64(value << 12, 0, 56);
fa439fc5 3150
a67cf277 3151 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3152 ARMMMUIdxBit_S1E2);
fa439fc5
PM
3153}
3154
43efaa33
PM
3155static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3156 uint64_t value)
3157{
a67cf277 3158 CPUState *cs = ENV_GET_CPU(env);
43efaa33
PM
3159 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3160
a67cf277 3161 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3162 ARMMMUIdxBit_S1E3);
43efaa33
PM
3163}
3164
cea66e91
PM
3165static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3166 uint64_t value)
3167{
3168 /* Invalidate by IPA. This has to invalidate any structures that
3169 * contain only stage 2 translation information, but does not need
3170 * to apply to structures that contain combined stage 1 and stage 2
3171 * translation information.
3172 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3173 */
3174 ARMCPU *cpu = arm_env_get_cpu(env);
3175 CPUState *cs = CPU(cpu);
3176 uint64_t pageaddr;
3177
3178 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3179 return;
3180 }
3181
3182 pageaddr = sextract64(value << 12, 0, 48);
3183
8bd5c820 3184 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
cea66e91
PM
3185}
3186
3187static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3188 uint64_t value)
3189{
a67cf277 3190 CPUState *cs = ENV_GET_CPU(env);
cea66e91
PM
3191 uint64_t pageaddr;
3192
3193 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3194 return;
3195 }
3196
3197 pageaddr = sextract64(value << 12, 0, 48);
3198
a67cf277 3199 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3200 ARMMMUIdxBit_S2NS);
cea66e91
PM
3201}
3202
3f208fd7
PM
3203static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3204 bool isread)
aca3f40b
PM
3205{
3206 /* We don't implement EL2, so the only control on DC ZVA is the
3207 * bit in the SCTLR which can prohibit access for EL0.
3208 */
137feaa9 3209 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
aca3f40b
PM
3210 return CP_ACCESS_TRAP;
3211 }
3212 return CP_ACCESS_OK;
3213}
3214
3215static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3216{
3217 ARMCPU *cpu = arm_env_get_cpu(env);
3218 int dzp_bit = 1 << 4;
3219
3220 /* DZP indicates whether DC ZVA access is allowed */
3f208fd7 3221 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
aca3f40b
PM
3222 dzp_bit = 0;
3223 }
3224 return cpu->dcz_blocksize | dzp_bit;
3225}
3226
3f208fd7
PM
3227static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3228 bool isread)
f502cfc2 3229{
cdcf1405 3230 if (!(env->pstate & PSTATE_SP)) {
f502cfc2
PM
3231 /* Access to SP_EL0 is undefined if it's being used as
3232 * the stack pointer.
3233 */
3234 return CP_ACCESS_TRAP_UNCATEGORIZED;
3235 }
3236 return CP_ACCESS_OK;
3237}
3238
3239static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3240{
3241 return env->pstate & PSTATE_SP;
3242}
3243
3244static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3245{
3246 update_spsel(env, val);
3247}
3248
137feaa9
FA
3249static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3250 uint64_t value)
3251{
3252 ARMCPU *cpu = arm_env_get_cpu(env);
3253
3254 if (raw_read(env, ri) == value) {
3255 /* Skip the TLB flush if nothing actually changed; Linux likes
3256 * to do a lot of pointless SCTLR writes.
3257 */
3258 return;
3259 }
3260
06312feb
PM
3261 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3262 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3263 value &= ~SCTLR_M;
3264 }
3265
137feaa9
FA
3266 raw_write(env, ri, value);
3267 /* ??? Lots of these bits are not implemented. */
3268 /* This may enable/disable the MMU, so do a TLB flush. */
d10eb08f 3269 tlb_flush(CPU(cpu));
137feaa9
FA
3270}
3271
3f208fd7
PM
3272static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3273 bool isread)
03fbf20f
PM
3274{
3275 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
f2cae609 3276 return CP_ACCESS_TRAP_FP_EL2;
03fbf20f
PM
3277 }
3278 if (env->cp15.cptr_el[3] & CPTR_TFP) {
f2cae609 3279 return CP_ACCESS_TRAP_FP_EL3;
03fbf20f
PM
3280 }
3281 return CP_ACCESS_OK;
3282}
3283
a8d64e73
PM
3284static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3285 uint64_t value)
3286{
3287 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3288}
3289
b0d2b7d0
PM
3290static const ARMCPRegInfo v8_cp_reginfo[] = {
3291 /* Minimal set of EL0-visible registers. This will need to be expanded
3292 * significantly for system emulation of AArch64 CPUs.
3293 */
3294 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3295 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3296 .access = PL0_RW, .type = ARM_CP_NZCV },
c2b820fe
PM
3297 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3298 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
7a0e58fa 3299 .type = ARM_CP_NO_RAW,
c2b820fe
PM
3300 .access = PL0_RW, .accessfn = aa64_daif_access,
3301 .fieldoffset = offsetof(CPUARMState, daif),
3302 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
b0d2b7d0
PM
3303 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3304 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3305 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3306 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3307 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3308 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
b0d2b7d0
PM
3309 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3310 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
7a0e58fa 3311 .access = PL0_R, .type = ARM_CP_NO_RAW,
aca3f40b
PM
3312 .readfn = aa64_dczid_read },
3313 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3314 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3315 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3316#ifndef CONFIG_USER_ONLY
3317 /* Avoid overhead of an access check that always passes in user-mode */
3318 .accessfn = aa64_zva_access,
3319#endif
3320 },
0eef9d98
PM
3321 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3322 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3323 .access = PL1_R, .type = ARM_CP_CURRENTEL },
8af35c37
PM
3324 /* Cache ops: all NOPs since we don't emulate caches */
3325 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3326 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3327 .access = PL1_W, .type = ARM_CP_NOP },
3328 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3329 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3330 .access = PL1_W, .type = ARM_CP_NOP },
3331 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3333 .access = PL0_W, .type = ARM_CP_NOP,
3334 .accessfn = aa64_cacheop_access },
3335 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3336 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3337 .access = PL1_W, .type = ARM_CP_NOP },
3338 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3339 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3340 .access = PL1_W, .type = ARM_CP_NOP },
3341 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3342 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3343 .access = PL0_W, .type = ARM_CP_NOP,
3344 .accessfn = aa64_cacheop_access },
3345 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3346 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3347 .access = PL1_W, .type = ARM_CP_NOP },
3348 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3349 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3350 .access = PL0_W, .type = ARM_CP_NOP,
3351 .accessfn = aa64_cacheop_access },
3352 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3353 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3354 .access = PL0_W, .type = ARM_CP_NOP,
3355 .accessfn = aa64_cacheop_access },
3356 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3357 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3358 .access = PL1_W, .type = ARM_CP_NOP },
168aa23b
PM
3359 /* TLBI operations */
3360 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3361 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 3362 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3363 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 3364 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3365 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 3366 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3367 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3368 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3369 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 3370 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3371 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 3372 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3373 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 3374 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3375 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3376 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3377 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 3378 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3379 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3380 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3381 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 3382 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3383 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3384 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3385 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 3386 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3387 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 3388 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3389 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 3390 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3391 .writefn = tlbi_aa64_vae1_write },
168aa23b 3392 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3393 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 3394 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3395 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 3396 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3397 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 3398 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3399 .writefn = tlbi_aa64_vae1_write },
168aa23b 3400 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3401 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 3402 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3403 .writefn = tlbi_aa64_vae1_write },
168aa23b 3404 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3405 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 3406 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3407 .writefn = tlbi_aa64_vae1_write },
cea66e91
PM
3408 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3409 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3410 .access = PL2_W, .type = ARM_CP_NO_RAW,
3411 .writefn = tlbi_aa64_ipas2e1is_write },
3412 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3413 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3414 .access = PL2_W, .type = ARM_CP_NO_RAW,
3415 .writefn = tlbi_aa64_ipas2e1is_write },
83ddf975
PM
3416 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3417 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3418 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 3419 .writefn = tlbi_aa64_alle1is_write },
43efaa33
PM
3420 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3421 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3422 .access = PL2_W, .type = ARM_CP_NO_RAW,
3423 .writefn = tlbi_aa64_alle1is_write },
cea66e91
PM
3424 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3425 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3426 .access = PL2_W, .type = ARM_CP_NO_RAW,
3427 .writefn = tlbi_aa64_ipas2e1_write },
3428 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3429 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3430 .access = PL2_W, .type = ARM_CP_NO_RAW,
3431 .writefn = tlbi_aa64_ipas2e1_write },
83ddf975
PM
3432 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3433 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3434 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 3435 .writefn = tlbi_aa64_alle1_write },
43efaa33
PM
3436 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3437 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3438 .access = PL2_W, .type = ARM_CP_NO_RAW,
3439 .writefn = tlbi_aa64_alle1is_write },
19525524
PM
3440#ifndef CONFIG_USER_ONLY
3441 /* 64 bit address translation operations */
3442 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3443 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
060e8a48 3444 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3445 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3446 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
060e8a48 3447 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3448 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3449 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
060e8a48 3450 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3451 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3452 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
060e8a48 3453 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2a47df95 3454 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
7a379c7e 3455 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
2a47df95
PM
3456 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3457 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
7a379c7e 3458 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
2a47df95
PM
3459 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3460 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
7a379c7e 3461 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
2a47df95
PM
3462 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3463 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
7a379c7e 3464 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
2a47df95
PM
3465 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3466 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3467 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3468 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3469 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3470 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3471 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3472 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
c96fc9b5
EI
3473 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3474 .type = ARM_CP_ALIAS,
3475 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3476 .access = PL1_RW, .resetvalue = 0,
3477 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3478 .writefn = par_write },
19525524 3479#endif
995939a6 3480 /* TLB invalidate last level of translation table walk */
9449fdf6 3481 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 3482 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
9449fdf6 3483 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 3484 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 3485 .writefn = tlbimvaa_is_write },
9449fdf6 3486 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 3487 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
9449fdf6 3488 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 3489 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
541ef8c2
SS
3490 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3491 .type = ARM_CP_NO_RAW, .access = PL2_W,
3492 .writefn = tlbimva_hyp_write },
3493 { .name = "TLBIMVALHIS",
3494 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3495 .type = ARM_CP_NO_RAW, .access = PL2_W,
3496 .writefn = tlbimva_hyp_is_write },
3497 { .name = "TLBIIPAS2",
3498 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3499 .type = ARM_CP_NO_RAW, .access = PL2_W,
3500 .writefn = tlbiipas2_write },
3501 { .name = "TLBIIPAS2IS",
3502 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3503 .type = ARM_CP_NO_RAW, .access = PL2_W,
3504 .writefn = tlbiipas2_is_write },
3505 { .name = "TLBIIPAS2L",
3506 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3507 .type = ARM_CP_NO_RAW, .access = PL2_W,
3508 .writefn = tlbiipas2_write },
3509 { .name = "TLBIIPAS2LIS",
3510 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3511 .type = ARM_CP_NO_RAW, .access = PL2_W,
3512 .writefn = tlbiipas2_is_write },
9449fdf6
PM
3513 /* 32 bit cache operations */
3514 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3515 .type = ARM_CP_NOP, .access = PL1_W },
3516 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3517 .type = ARM_CP_NOP, .access = PL1_W },
3518 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3519 .type = ARM_CP_NOP, .access = PL1_W },
3520 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3521 .type = ARM_CP_NOP, .access = PL1_W },
3522 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3523 .type = ARM_CP_NOP, .access = PL1_W },
3524 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3525 .type = ARM_CP_NOP, .access = PL1_W },
3526 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3527 .type = ARM_CP_NOP, .access = PL1_W },
3528 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3529 .type = ARM_CP_NOP, .access = PL1_W },
3530 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3531 .type = ARM_CP_NOP, .access = PL1_W },
3532 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3533 .type = ARM_CP_NOP, .access = PL1_W },
3534 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3535 .type = ARM_CP_NOP, .access = PL1_W },
3536 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3537 .type = ARM_CP_NOP, .access = PL1_W },
3538 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3539 .type = ARM_CP_NOP, .access = PL1_W },
3540 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
3541 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3542 .access = PL1_RW, .resetvalue = 0,
3543 .writefn = dacr_write, .raw_writefn = raw_write,
3544 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3545 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a0618a19 3546 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3547 .type = ARM_CP_ALIAS,
a0618a19 3548 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
6947f059
EI
3549 .access = PL1_RW,
3550 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
a65f1de9 3551 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3552 .type = ARM_CP_ALIAS,
a65f1de9 3553 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3554 .access = PL1_RW,
3555 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
f502cfc2
PM
3556 /* We rely on the access checks not allowing the guest to write to the
3557 * state field when SPSel indicates that it's being used as the stack
3558 * pointer.
3559 */
3560 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3561 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3562 .access = PL1_RW, .accessfn = sp_el0_access,
7a0e58fa 3563 .type = ARM_CP_ALIAS,
f502cfc2 3564 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
884b4dee
GB
3565 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3566 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3567 .access = PL2_RW, .type = ARM_CP_ALIAS,
884b4dee 3568 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
f502cfc2
PM
3569 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3570 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
7a0e58fa 3571 .type = ARM_CP_NO_RAW,
f502cfc2 3572 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
03fbf20f
PM
3573 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3574 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3575 .type = ARM_CP_ALIAS,
3576 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3577 .access = PL2_RW, .accessfn = fpexc32_access },
6a43e0b6
PM
3578 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3579 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3580 .access = PL2_RW, .resetvalue = 0,
3581 .writefn = dacr_write, .raw_writefn = raw_write,
3582 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3583 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3584 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3585 .access = PL2_RW, .resetvalue = 0,
3586 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3587 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3588 .type = ARM_CP_ALIAS,
3589 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3590 .access = PL2_RW,
3591 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3592 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3593 .type = ARM_CP_ALIAS,
3594 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3595 .access = PL2_RW,
3596 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3597 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3598 .type = ARM_CP_ALIAS,
3599 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3600 .access = PL2_RW,
3601 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3602 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3603 .type = ARM_CP_ALIAS,
3604 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3605 .access = PL2_RW,
3606 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
a8d64e73
PM
3607 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3608 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3609 .resetvalue = 0,
3610 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3611 { .name = "SDCR", .type = ARM_CP_ALIAS,
3612 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3613 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3614 .writefn = sdcr_write,
3615 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
b0d2b7d0
PM
3616 REGINFO_SENTINEL
3617};
3618
d42e3c26 3619/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4771cd01 3620static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
d42e3c26
EI
3621 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3622 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3623 .access = PL2_RW,
3624 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
f149e3e8 3625 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3626 .type = ARM_CP_NO_RAW,
f149e3e8
EI
3627 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3628 .access = PL2_RW,
3629 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
c6f19164
GB
3630 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3631 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3632 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
95f949ac
EI
3633 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3634 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3635 .access = PL2_RW, .type = ARM_CP_CONST,
3636 .resetvalue = 0 },
3637 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3638 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3639 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2179ef95
PM
3640 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3641 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3642 .access = PL2_RW, .type = ARM_CP_CONST,
3643 .resetvalue = 0 },
3644 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3645 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3646 .access = PL2_RW, .type = ARM_CP_CONST,
3647 .resetvalue = 0 },
37cd6c24
PM
3648 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3649 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3650 .access = PL2_RW, .type = ARM_CP_CONST,
3651 .resetvalue = 0 },
3652 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3653 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3654 .access = PL2_RW, .type = ARM_CP_CONST,
3655 .resetvalue = 0 },
06ec4c8c
EI
3656 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3657 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3658 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
68e9c2fe
EI
3659 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3660 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3661 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3662 .type = ARM_CP_CONST, .resetvalue = 0 },
b698e9cf
EI
3663 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3664 .cp = 15, .opc1 = 6, .crm = 2,
3665 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3666 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3667 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3668 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3669 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b9cb5323
EI
3670 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3671 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3672 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
ff05f37b
EI
3673 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3674 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3675 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
a57633c0
EI
3676 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3677 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3678 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3679 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3680 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3681 .resetvalue = 0 },
0b6440af
EI
3682 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3683 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3684 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
edac4d8a
EI
3685 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3686 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3687 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3688 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3689 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3690 .resetvalue = 0 },
b0e66d95
EI
3691 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3692 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3693 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3694 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3695 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3696 .resetvalue = 0 },
3697 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3698 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3699 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3700 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3701 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3702 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
14cc7b54
SF
3703 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3704 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
d6c8cf81
PM
3705 .access = PL2_RW, .accessfn = access_tda,
3706 .type = ARM_CP_CONST, .resetvalue = 0 },
59e05530
EI
3707 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3708 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3709 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3710 .type = ARM_CP_CONST, .resetvalue = 0 },
2a5a9abd
AF
3711 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3712 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3713 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
d42e3c26
EI
3714 REGINFO_SENTINEL
3715};
3716
f149e3e8
EI
3717static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3718{
3719 ARMCPU *cpu = arm_env_get_cpu(env);
3720 uint64_t valid_mask = HCR_MASK;
3721
3722 if (arm_feature(env, ARM_FEATURE_EL3)) {
3723 valid_mask &= ~HCR_HCD;
3724 } else {
3725 valid_mask &= ~HCR_TSC;
3726 }
3727
3728 /* Clear RES0 bits. */
3729 value &= valid_mask;
3730
3731 /* These bits change the MMU setup:
3732 * HCR_VM enables stage 2 translation
3733 * HCR_PTW forbids certain page-table setups
3734 * HCR_DC Disables stage1 and enables stage2 translation
3735 */
3736 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
d10eb08f 3737 tlb_flush(CPU(cpu));
f149e3e8
EI
3738 }
3739 raw_write(env, ri, value);
3740}
3741
4771cd01 3742static const ARMCPRegInfo el2_cp_reginfo[] = {
f149e3e8
EI
3743 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3744 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3745 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3746 .writefn = hcr_write },
3b685ba7 3747 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3748 .type = ARM_CP_ALIAS,
3b685ba7
EI
3749 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3750 .access = PL2_RW,
3751 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
f2c30f42 3752 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
3753 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3754 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
63b60551
EI
3755 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3756 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3757 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3b685ba7 3758 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3759 .type = ARM_CP_ALIAS,
3b685ba7 3760 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3761 .access = PL2_RW,
3762 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
d42e3c26
EI
3763 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3764 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3765 .access = PL2_RW, .writefn = vbar_write,
3766 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3767 .resetvalue = 0 },
884b4dee
GB
3768 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3769 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3770 .access = PL3_RW, .type = ARM_CP_ALIAS,
884b4dee 3771 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
c6f19164
GB
3772 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3773 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3774 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3775 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
95f949ac
EI
3776 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3777 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3778 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3779 .resetvalue = 0 },
3780 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3781 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3782 .access = PL2_RW, .type = ARM_CP_ALIAS,
3783 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2179ef95
PM
3784 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3785 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3786 .access = PL2_RW, .type = ARM_CP_CONST,
3787 .resetvalue = 0 },
3788 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3789 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3790 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3791 .access = PL2_RW, .type = ARM_CP_CONST,
3792 .resetvalue = 0 },
37cd6c24
PM
3793 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3794 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3795 .access = PL2_RW, .type = ARM_CP_CONST,
3796 .resetvalue = 0 },
3797 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3798 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3799 .access = PL2_RW, .type = ARM_CP_CONST,
3800 .resetvalue = 0 },
06ec4c8c
EI
3801 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3802 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
3803 .access = PL2_RW,
3804 /* no .writefn needed as this can't cause an ASID change;
3805 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3806 */
06ec4c8c 3807 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
68e9c2fe
EI
3808 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3809 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112 3810 .type = ARM_CP_ALIAS,
68e9c2fe
EI
3811 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3812 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3813 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3814 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112
PM
3815 .access = PL2_RW,
3816 /* no .writefn needed as this can't cause an ASID change;
3817 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3818 */
68e9c2fe 3819 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
b698e9cf
EI
3820 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3821 .cp = 15, .opc1 = 6, .crm = 2,
3822 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3823 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3824 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3825 .writefn = vttbr_write },
3826 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3827 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3828 .access = PL2_RW, .writefn = vttbr_write,
3829 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
b9cb5323
EI
3830 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3831 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3832 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3833 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
ff05f37b
EI
3834 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3835 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3836 .access = PL2_RW, .resetvalue = 0,
3837 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
a57633c0
EI
3838 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3839 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3840 .access = PL2_RW, .resetvalue = 0,
3841 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3842 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3843 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
a57633c0 3844 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
541ef8c2
SS
3845 { .name = "TLBIALLNSNH",
3846 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3847 .type = ARM_CP_NO_RAW, .access = PL2_W,
3848 .writefn = tlbiall_nsnh_write },
3849 { .name = "TLBIALLNSNHIS",
3850 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3851 .type = ARM_CP_NO_RAW, .access = PL2_W,
3852 .writefn = tlbiall_nsnh_is_write },
3853 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3854 .type = ARM_CP_NO_RAW, .access = PL2_W,
3855 .writefn = tlbiall_hyp_write },
3856 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3857 .type = ARM_CP_NO_RAW, .access = PL2_W,
3858 .writefn = tlbiall_hyp_is_write },
3859 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3860 .type = ARM_CP_NO_RAW, .access = PL2_W,
3861 .writefn = tlbimva_hyp_write },
3862 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3863 .type = ARM_CP_NO_RAW, .access = PL2_W,
3864 .writefn = tlbimva_hyp_is_write },
51da9014
EI
3865 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3866 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3867 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3868 .writefn = tlbi_aa64_alle2_write },
8742d49d
EI
3869 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3870 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3871 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3872 .writefn = tlbi_aa64_vae2_write },
2bfb9d75
PM
3873 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3874 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3875 .access = PL2_W, .type = ARM_CP_NO_RAW,
3876 .writefn = tlbi_aa64_vae2_write },
3877 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3878 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3879 .access = PL2_W, .type = ARM_CP_NO_RAW,
3880 .writefn = tlbi_aa64_alle2is_write },
8742d49d
EI
3881 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3882 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3883 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3884 .writefn = tlbi_aa64_vae2is_write },
2bfb9d75
PM
3885 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3886 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3887 .access = PL2_W, .type = ARM_CP_NO_RAW,
3888 .writefn = tlbi_aa64_vae2is_write },
edac4d8a 3889#ifndef CONFIG_USER_ONLY
2a47df95
PM
3890 /* Unlike the other EL2-related AT operations, these must
3891 * UNDEF from EL3 if EL2 is not implemented, which is why we
3892 * define them here rather than with the rest of the AT ops.
3893 */
3894 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3895 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3896 .access = PL2_W, .accessfn = at_s1e2_access,
3897 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3898 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3899 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3900 .access = PL2_W, .accessfn = at_s1e2_access,
3901 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
14db7fe0
PM
3902 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3903 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3904 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3905 * to behave as if SCR.NS was 1.
3906 */
3907 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3908 .access = PL2_W,
3909 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3910 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3911 .access = PL2_W,
3912 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
0b6440af
EI
3913 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3914 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3915 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3916 * reset values as IMPDEF. We choose to reset to 3 to comply with
3917 * both ARMv7 and ARMv8.
3918 */
3919 .access = PL2_RW, .resetvalue = 3,
3920 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
edac4d8a
EI
3921 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3922 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3923 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3924 .writefn = gt_cntvoff_write,
3925 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3926 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3927 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3928 .writefn = gt_cntvoff_write,
3929 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
b0e66d95
EI
3930 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3931 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3932 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3933 .type = ARM_CP_IO, .access = PL2_RW,
3934 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3935 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3936 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3937 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3938 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3939 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3940 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
d44ec156 3941 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
b0e66d95
EI
3942 .resetfn = gt_hyp_timer_reset,
3943 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3944 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3945 .type = ARM_CP_IO,
3946 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3947 .access = PL2_RW,
3948 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3949 .resetvalue = 0,
3950 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
edac4d8a 3951#endif
14cc7b54
SF
3952 /* The only field of MDCR_EL2 that has a defined architectural reset value
3953 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3954 * don't impelment any PMU event counters, so using zero as a reset
3955 * value for MDCR_EL2 is okay
3956 */
3957 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3958 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3959 .access = PL2_RW, .resetvalue = 0,
3960 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
59e05530
EI
3961 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3962 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3963 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3964 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3965 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3966 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3967 .access = PL2_RW,
3968 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
2a5a9abd
AF
3969 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3970 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3971 .access = PL2_RW,
3972 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3b685ba7
EI
3973 REGINFO_SENTINEL
3974};
3975
2f027fc5
PM
3976static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3977 bool isread)
3978{
3979 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3980 * At Secure EL1 it traps to EL3.
3981 */
3982 if (arm_current_el(env) == 3) {
3983 return CP_ACCESS_OK;
3984 }
3985 if (arm_is_secure_below_el3(env)) {
3986 return CP_ACCESS_TRAP_EL3;
3987 }
3988 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3989 if (isread) {
3990 return CP_ACCESS_OK;
3991 }
3992 return CP_ACCESS_TRAP_UNCATEGORIZED;
3993}
3994
60fb1a87
GB
3995static const ARMCPRegInfo el3_cp_reginfo[] = {
3996 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3997 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3998 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3999 .resetvalue = 0, .writefn = scr_write },
7a0e58fa 4000 { .name = "SCR", .type = ARM_CP_ALIAS,
60fb1a87 4001 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
efe4a274
PM
4002 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4003 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
b061a82b 4004 .writefn = scr_write },
60fb1a87
GB
4005 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4006 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4007 .access = PL3_RW, .resetvalue = 0,
4008 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4009 { .name = "SDER",
4010 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4011 .access = PL3_RW, .resetvalue = 0,
4012 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
60fb1a87 4013 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
efe4a274
PM
4014 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4015 .writefn = vbar_write, .resetvalue = 0,
60fb1a87 4016 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
7dd8c9af
FA
4017 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4018 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4019 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4020 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
11f136ee
FA
4021 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4022 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
4023 .access = PL3_RW,
4024 /* no .writefn needed as this can't cause an ASID change;
811595a2
PM
4025 * we must provide a .raw_writefn and .resetfn because we handle
4026 * reset and migration for the AArch32 TTBCR(S), which might be
4027 * using mask and base_mask.
6459b94c 4028 */
811595a2 4029 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee 4030 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
81547d66 4031 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 4032 .type = ARM_CP_ALIAS,
81547d66
EI
4033 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4034 .access = PL3_RW,
4035 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
f2c30f42 4036 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
4037 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4038 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
63b60551
EI
4039 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4040 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4041 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
81547d66 4042 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 4043 .type = ARM_CP_ALIAS,
81547d66 4044 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
4045 .access = PL3_RW,
4046 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
a1ba125c
EI
4047 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4048 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4049 .access = PL3_RW, .writefn = vbar_write,
4050 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4051 .resetvalue = 0 },
c6f19164
GB
4052 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4053 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4054 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4055 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4cfb8ad8
PM
4056 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4057 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4058 .access = PL3_RW, .resetvalue = 0,
4059 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
2179ef95
PM
4060 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4061 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4062 .access = PL3_RW, .type = ARM_CP_CONST,
4063 .resetvalue = 0 },
37cd6c24
PM
4064 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4065 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4066 .access = PL3_RW, .type = ARM_CP_CONST,
4067 .resetvalue = 0 },
4068 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4069 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4070 .access = PL3_RW, .type = ARM_CP_CONST,
4071 .resetvalue = 0 },
43efaa33
PM
4072 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4073 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4074 .access = PL3_W, .type = ARM_CP_NO_RAW,
4075 .writefn = tlbi_aa64_alle3is_write },
4076 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4077 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4078 .access = PL3_W, .type = ARM_CP_NO_RAW,
4079 .writefn = tlbi_aa64_vae3is_write },
4080 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4081 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4082 .access = PL3_W, .type = ARM_CP_NO_RAW,
4083 .writefn = tlbi_aa64_vae3is_write },
4084 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4085 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4086 .access = PL3_W, .type = ARM_CP_NO_RAW,
4087 .writefn = tlbi_aa64_alle3_write },
4088 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4089 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4090 .access = PL3_W, .type = ARM_CP_NO_RAW,
4091 .writefn = tlbi_aa64_vae3_write },
4092 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4093 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4094 .access = PL3_W, .type = ARM_CP_NO_RAW,
4095 .writefn = tlbi_aa64_vae3_write },
0f1a3b24
FA
4096 REGINFO_SENTINEL
4097};
4098
3f208fd7
PM
4099static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4100 bool isread)
7da845b0
PM
4101{
4102 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4103 * but the AArch32 CTR has its own reginfo struct)
4104 */
137feaa9 4105 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7da845b0
PM
4106 return CP_ACCESS_TRAP;
4107 }
4108 return CP_ACCESS_OK;
4109}
4110
1424ca8d
DM
4111static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4112 uint64_t value)
4113{
4114 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4115 * read via a bit in OSLSR_EL1.
4116 */
4117 int oslock;
4118
4119 if (ri->state == ARM_CP_STATE_AA32) {
4120 oslock = (value == 0xC5ACCE55);
4121 } else {
4122 oslock = value & 1;
4123 }
4124
4125 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4126}
4127
50300698 4128static const ARMCPRegInfo debug_cp_reginfo[] = {
50300698 4129 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
10aae104
PM
4130 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4131 * unlike DBGDRAR it is never accessible from EL0.
4132 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4133 * accessor.
50300698
PM
4134 */
4135 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
4136 .access = PL0_R, .accessfn = access_tdra,
4137 .type = ARM_CP_CONST, .resetvalue = 0 },
10aae104
PM
4138 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4139 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
91b0a238
PM
4140 .access = PL1_R, .accessfn = access_tdra,
4141 .type = ARM_CP_CONST, .resetvalue = 0 },
50300698 4142 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
4143 .access = PL0_R, .accessfn = access_tdra,
4144 .type = ARM_CP_CONST, .resetvalue = 0 },
17a9eb53 4145 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
10aae104
PM
4146 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4147 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
d6c8cf81 4148 .access = PL1_RW, .accessfn = access_tda,
0e5e8935
PM
4149 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4150 .resetvalue = 0 },
5e8b12ff
PM
4151 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4152 * We don't implement the configurable EL0 access.
4153 */
4154 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4155 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7a0e58fa 4156 .type = ARM_CP_ALIAS,
d6c8cf81 4157 .access = PL1_R, .accessfn = access_tda,
b061a82b 4158 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
10aae104
PM
4159 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4160 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1424ca8d 4161 .access = PL1_W, .type = ARM_CP_NO_RAW,
187f678d 4162 .accessfn = access_tdosa,
1424ca8d
DM
4163 .writefn = oslar_write },
4164 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4165 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4166 .access = PL1_R, .resetvalue = 10,
187f678d 4167 .accessfn = access_tdosa,
1424ca8d 4168 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5e8b12ff
PM
4169 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4170 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4171 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
187f678d
PM
4172 .access = PL1_RW, .accessfn = access_tdosa,
4173 .type = ARM_CP_NOP },
5e8b12ff
PM
4174 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4175 * implement vector catch debug events yet.
4176 */
4177 { .name = "DBGVCR",
4178 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
d6c8cf81
PM
4179 .access = PL1_RW, .accessfn = access_tda,
4180 .type = ARM_CP_NOP },
4d2ec4da
PM
4181 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4182 * to save and restore a 32-bit guest's DBGVCR)
4183 */
4184 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4185 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4186 .access = PL2_RW, .accessfn = access_tda,
4187 .type = ARM_CP_NOP },
5dbdc434
PM
4188 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4189 * Channel but Linux may try to access this register. The 32-bit
4190 * alias is DBGDCCINT.
4191 */
4192 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4193 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4194 .access = PL1_RW, .accessfn = access_tda,
4195 .type = ARM_CP_NOP },
50300698
PM
4196 REGINFO_SENTINEL
4197};
4198
4199static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4200 /* 64 bit access versions of the (dummy) debug registers */
4201 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4202 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4203 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4204 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4205 REGINFO_SENTINEL
4206};
4207
9ee98ce8
PM
4208void hw_watchpoint_update(ARMCPU *cpu, int n)
4209{
4210 CPUARMState *env = &cpu->env;
4211 vaddr len = 0;
4212 vaddr wvr = env->cp15.dbgwvr[n];
4213 uint64_t wcr = env->cp15.dbgwcr[n];
4214 int mask;
4215 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4216
4217 if (env->cpu_watchpoint[n]) {
4218 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4219 env->cpu_watchpoint[n] = NULL;
4220 }
4221
4222 if (!extract64(wcr, 0, 1)) {
4223 /* E bit clear : watchpoint disabled */
4224 return;
4225 }
4226
4227 switch (extract64(wcr, 3, 2)) {
4228 case 0:
4229 /* LSC 00 is reserved and must behave as if the wp is disabled */
4230 return;
4231 case 1:
4232 flags |= BP_MEM_READ;
4233 break;
4234 case 2:
4235 flags |= BP_MEM_WRITE;
4236 break;
4237 case 3:
4238 flags |= BP_MEM_ACCESS;
4239 break;
4240 }
4241
4242 /* Attempts to use both MASK and BAS fields simultaneously are
4243 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4244 * thus generating a watchpoint for every byte in the masked region.
4245 */
4246 mask = extract64(wcr, 24, 4);
4247 if (mask == 1 || mask == 2) {
4248 /* Reserved values of MASK; we must act as if the mask value was
4249 * some non-reserved value, or as if the watchpoint were disabled.
4250 * We choose the latter.
4251 */
4252 return;
4253 } else if (mask) {
4254 /* Watchpoint covers an aligned area up to 2GB in size */
4255 len = 1ULL << mask;
4256 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4257 * whether the watchpoint fires when the unmasked bits match; we opt
4258 * to generate the exceptions.
4259 */
4260 wvr &= ~(len - 1);
4261 } else {
4262 /* Watchpoint covers bytes defined by the byte address select bits */
4263 int bas = extract64(wcr, 5, 8);
4264 int basstart;
4265
4266 if (bas == 0) {
4267 /* This must act as if the watchpoint is disabled */
4268 return;
4269 }
4270
4271 if (extract64(wvr, 2, 1)) {
4272 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4273 * ignored, and BAS[3:0] define which bytes to watch.
4274 */
4275 bas &= 0xf;
4276 }
4277 /* The BAS bits are supposed to be programmed to indicate a contiguous
4278 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4279 * we fire for each byte in the word/doubleword addressed by the WVR.
4280 * We choose to ignore any non-zero bits after the first range of 1s.
4281 */
4282 basstart = ctz32(bas);
4283 len = cto32(bas >> basstart);
4284 wvr += basstart;
4285 }
4286
4287 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4288 &env->cpu_watchpoint[n]);
4289}
4290
4291void hw_watchpoint_update_all(ARMCPU *cpu)
4292{
4293 int i;
4294 CPUARMState *env = &cpu->env;
4295
4296 /* Completely clear out existing QEMU watchpoints and our array, to
4297 * avoid possible stale entries following migration load.
4298 */
4299 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4300 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4301
4302 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4303 hw_watchpoint_update(cpu, i);
4304 }
4305}
4306
4307static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4308 uint64_t value)
4309{
4310 ARMCPU *cpu = arm_env_get_cpu(env);
4311 int i = ri->crm;
4312
4313 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4314 * register reads and behaves as if values written are sign extended.
4315 * Bits [1:0] are RES0.
4316 */
4317 value = sextract64(value, 0, 49) & ~3ULL;
4318
4319 raw_write(env, ri, value);
4320 hw_watchpoint_update(cpu, i);
4321}
4322
4323static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4324 uint64_t value)
4325{
4326 ARMCPU *cpu = arm_env_get_cpu(env);
4327 int i = ri->crm;
4328
4329 raw_write(env, ri, value);
4330 hw_watchpoint_update(cpu, i);
4331}
4332
46747d15
PM
4333void hw_breakpoint_update(ARMCPU *cpu, int n)
4334{
4335 CPUARMState *env = &cpu->env;
4336 uint64_t bvr = env->cp15.dbgbvr[n];
4337 uint64_t bcr = env->cp15.dbgbcr[n];
4338 vaddr addr;
4339 int bt;
4340 int flags = BP_CPU;
4341
4342 if (env->cpu_breakpoint[n]) {
4343 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4344 env->cpu_breakpoint[n] = NULL;
4345 }
4346
4347 if (!extract64(bcr, 0, 1)) {
4348 /* E bit clear : watchpoint disabled */
4349 return;
4350 }
4351
4352 bt = extract64(bcr, 20, 4);
4353
4354 switch (bt) {
4355 case 4: /* unlinked address mismatch (reserved if AArch64) */
4356 case 5: /* linked address mismatch (reserved if AArch64) */
4357 qemu_log_mask(LOG_UNIMP,
4358 "arm: address mismatch breakpoint types not implemented");
4359 return;
4360 case 0: /* unlinked address match */
4361 case 1: /* linked address match */
4362 {
4363 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4364 * we behave as if the register was sign extended. Bits [1:0] are
4365 * RES0. The BAS field is used to allow setting breakpoints on 16
4366 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4367 * a bp will fire if the addresses covered by the bp and the addresses
4368 * covered by the insn overlap but the insn doesn't start at the
4369 * start of the bp address range. We choose to require the insn and
4370 * the bp to have the same address. The constraints on writing to
4371 * BAS enforced in dbgbcr_write mean we have only four cases:
4372 * 0b0000 => no breakpoint
4373 * 0b0011 => breakpoint on addr
4374 * 0b1100 => breakpoint on addr + 2
4375 * 0b1111 => breakpoint on addr
4376 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4377 */
4378 int bas = extract64(bcr, 5, 4);
4379 addr = sextract64(bvr, 0, 49) & ~3ULL;
4380 if (bas == 0) {
4381 return;
4382 }
4383 if (bas == 0xc) {
4384 addr += 2;
4385 }
4386 break;
4387 }
4388 case 2: /* unlinked context ID match */
4389 case 8: /* unlinked VMID match (reserved if no EL2) */
4390 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4391 qemu_log_mask(LOG_UNIMP,
4392 "arm: unlinked context breakpoint types not implemented");
4393 return;
4394 case 9: /* linked VMID match (reserved if no EL2) */
4395 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4396 case 3: /* linked context ID match */
4397 default:
4398 /* We must generate no events for Linked context matches (unless
4399 * they are linked to by some other bp/wp, which is handled in
4400 * updates for the linking bp/wp). We choose to also generate no events
4401 * for reserved values.
4402 */
4403 return;
4404 }
4405
4406 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4407}
4408
4409void hw_breakpoint_update_all(ARMCPU *cpu)
4410{
4411 int i;
4412 CPUARMState *env = &cpu->env;
4413
4414 /* Completely clear out existing QEMU breakpoints and our array, to
4415 * avoid possible stale entries following migration load.
4416 */
4417 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4418 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4419
4420 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4421 hw_breakpoint_update(cpu, i);
4422 }
4423}
4424
4425static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4426 uint64_t value)
4427{
4428 ARMCPU *cpu = arm_env_get_cpu(env);
4429 int i = ri->crm;
4430
4431 raw_write(env, ri, value);
4432 hw_breakpoint_update(cpu, i);
4433}
4434
4435static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4436 uint64_t value)
4437{
4438 ARMCPU *cpu = arm_env_get_cpu(env);
4439 int i = ri->crm;
4440
4441 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4442 * copy of BAS[0].
4443 */
4444 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4445 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4446
4447 raw_write(env, ri, value);
4448 hw_breakpoint_update(cpu, i);
4449}
4450
50300698 4451static void define_debug_regs(ARMCPU *cpu)
0b45451e 4452{
50300698
PM
4453 /* Define v7 and v8 architectural debug registers.
4454 * These are just dummy implementations for now.
0b45451e
PM
4455 */
4456 int i;
3ff6fc91 4457 int wrps, brps, ctx_cmps;
48eb3ae6
PM
4458 ARMCPRegInfo dbgdidr = {
4459 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
d6c8cf81
PM
4460 .access = PL0_R, .accessfn = access_tda,
4461 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
48eb3ae6
PM
4462 };
4463
3ff6fc91 4464 /* Note that all these register fields hold "number of Xs minus 1". */
48eb3ae6
PM
4465 brps = extract32(cpu->dbgdidr, 24, 4);
4466 wrps = extract32(cpu->dbgdidr, 28, 4);
3ff6fc91
PM
4467 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4468
4469 assert(ctx_cmps <= brps);
48eb3ae6
PM
4470
4471 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4472 * of the debug registers such as number of breakpoints;
4473 * check that if they both exist then they agree.
4474 */
4475 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4476 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4477 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3ff6fc91 4478 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
48eb3ae6 4479 }
0b45451e 4480
48eb3ae6 4481 define_one_arm_cp_reg(cpu, &dbgdidr);
50300698
PM
4482 define_arm_cp_regs(cpu, debug_cp_reginfo);
4483
4484 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4485 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4486 }
4487
48eb3ae6 4488 for (i = 0; i < brps + 1; i++) {
0b45451e 4489 ARMCPRegInfo dbgregs[] = {
10aae104
PM
4490 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4491 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
d6c8cf81 4492 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
4493 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4494 .writefn = dbgbvr_write, .raw_writefn = raw_write
4495 },
10aae104
PM
4496 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4497 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
d6c8cf81 4498 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
4499 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4500 .writefn = dbgbcr_write, .raw_writefn = raw_write
4501 },
48eb3ae6
PM
4502 REGINFO_SENTINEL
4503 };
4504 define_arm_cp_regs(cpu, dbgregs);
4505 }
4506
4507 for (i = 0; i < wrps + 1; i++) {
4508 ARMCPRegInfo dbgregs[] = {
10aae104
PM
4509 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4510 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
d6c8cf81 4511 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
4512 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4513 .writefn = dbgwvr_write, .raw_writefn = raw_write
4514 },
10aae104
PM
4515 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4516 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
d6c8cf81 4517 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
4518 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4519 .writefn = dbgwcr_write, .raw_writefn = raw_write
4520 },
4521 REGINFO_SENTINEL
0b45451e
PM
4522 };
4523 define_arm_cp_regs(cpu, dbgregs);
4524 }
4525}
4526
2ceb98c0
PM
4527void register_cp_regs_for_features(ARMCPU *cpu)
4528{
4529 /* Register all the coprocessor registers based on feature bits */
4530 CPUARMState *env = &cpu->env;
4531 if (arm_feature(env, ARM_FEATURE_M)) {
4532 /* M profile has no coprocessor registers */
4533 return;
4534 }
4535
e9aa6c21 4536 define_arm_cp_regs(cpu, cp_reginfo);
9449fdf6
PM
4537 if (!arm_feature(env, ARM_FEATURE_V8)) {
4538 /* Must go early as it is full of wildcards that may be
4539 * overridden by later definitions.
4540 */
4541 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4542 }
4543
7d57f408 4544 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
4545 /* The ID registers all have impdef reset values */
4546 ARMCPRegInfo v6_idregs[] = {
0ff644a7
PM
4547 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4548 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4549 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4550 .resetvalue = cpu->id_pfr0 },
0ff644a7
PM
4551 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4552 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4553 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4554 .resetvalue = cpu->id_pfr1 },
0ff644a7
PM
4555 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4557 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4558 .resetvalue = cpu->id_dfr0 },
0ff644a7
PM
4559 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4561 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4562 .resetvalue = cpu->id_afr0 },
0ff644a7
PM
4563 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4564 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4565 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4566 .resetvalue = cpu->id_mmfr0 },
0ff644a7
PM
4567 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4568 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4569 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4570 .resetvalue = cpu->id_mmfr1 },
0ff644a7
PM
4571 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4572 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4573 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4574 .resetvalue = cpu->id_mmfr2 },
0ff644a7
PM
4575 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4576 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4577 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4578 .resetvalue = cpu->id_mmfr3 },
0ff644a7
PM
4579 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4580 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4581 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4582 .resetvalue = cpu->id_isar0 },
0ff644a7
PM
4583 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4584 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4585 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4586 .resetvalue = cpu->id_isar1 },
0ff644a7
PM
4587 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4588 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4589 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4590 .resetvalue = cpu->id_isar2 },
0ff644a7
PM
4591 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4592 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4593 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4594 .resetvalue = cpu->id_isar3 },
0ff644a7
PM
4595 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4596 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4597 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4598 .resetvalue = cpu->id_isar4 },
0ff644a7
PM
4599 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4601 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4602 .resetvalue = cpu->id_isar5 },
e20d84c1
PM
4603 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4604 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4605 .access = PL1_R, .type = ARM_CP_CONST,
4606 .resetvalue = cpu->id_mmfr4 },
4607 /* 7 is as yet unallocated and must RAZ */
4608 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4609 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4610 .access = PL1_R, .type = ARM_CP_CONST,
8515a092
PM
4611 .resetvalue = 0 },
4612 REGINFO_SENTINEL
4613 };
4614 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
4615 define_arm_cp_regs(cpu, v6_cp_reginfo);
4616 } else {
4617 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4618 }
4d31c596
PM
4619 if (arm_feature(env, ARM_FEATURE_V6K)) {
4620 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4621 }
5e5cf9e3 4622 if (arm_feature(env, ARM_FEATURE_V7MP) &&
452a0955 4623 !arm_feature(env, ARM_FEATURE_PMSA)) {
995939a6
PM
4624 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4625 }
e9aa6c21 4626 if (arm_feature(env, ARM_FEATURE_V7)) {
200ac0ef 4627 /* v7 performance monitor control register: same implementor
7c2cb42b
AF
4628 * field as main ID register, and we implement only the cycle
4629 * count register.
200ac0ef 4630 */
7c2cb42b 4631#ifndef CONFIG_USER_ONLY
200ac0ef
PM
4632 ARMCPRegInfo pmcr = {
4633 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
8521466b 4634 .access = PL0_RW,
7a0e58fa 4635 .type = ARM_CP_IO | ARM_CP_ALIAS,
8521466b 4636 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
fcd25206
PM
4637 .accessfn = pmreg_access, .writefn = pmcr_write,
4638 .raw_writefn = raw_write,
200ac0ef 4639 };
8521466b
AF
4640 ARMCPRegInfo pmcr64 = {
4641 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4642 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4643 .access = PL0_RW, .accessfn = pmreg_access,
4644 .type = ARM_CP_IO,
4645 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4646 .resetvalue = cpu->midr & 0xff000000,
4647 .writefn = pmcr_write, .raw_writefn = raw_write,
4648 };
7c2cb42b 4649 define_one_arm_cp_reg(cpu, &pmcr);
8521466b 4650 define_one_arm_cp_reg(cpu, &pmcr64);
7c2cb42b 4651#endif
776d4e5c 4652 ARMCPRegInfo clidr = {
7da845b0
PM
4653 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4654 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
776d4e5c
PM
4655 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4656 };
776d4e5c 4657 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 4658 define_arm_cp_regs(cpu, v7_cp_reginfo);
50300698 4659 define_debug_regs(cpu);
7d57f408
PM
4660 } else {
4661 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 4662 }
b0d2b7d0 4663 if (arm_feature(env, ARM_FEATURE_V8)) {
e20d84c1
PM
4664 /* AArch64 ID registers, which all have impdef reset values.
4665 * Note that within the ID register ranges the unused slots
4666 * must all RAZ, not UNDEF; future architecture versions may
4667 * define new registers here.
4668 */
e60cef86
PM
4669 ARMCPRegInfo v8_idregs[] = {
4670 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4672 .access = PL1_R, .type = ARM_CP_CONST,
4673 .resetvalue = cpu->id_aa64pfr0 },
4674 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4675 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4676 .access = PL1_R, .type = ARM_CP_CONST,
4677 .resetvalue = cpu->id_aa64pfr1},
e20d84c1
PM
4678 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4679 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4680 .access = PL1_R, .type = ARM_CP_CONST,
4681 .resetvalue = 0 },
4682 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4683 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4684 .access = PL1_R, .type = ARM_CP_CONST,
4685 .resetvalue = 0 },
4686 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4688 .access = PL1_R, .type = ARM_CP_CONST,
4689 .resetvalue = 0 },
4690 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4691 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4692 .access = PL1_R, .type = ARM_CP_CONST,
4693 .resetvalue = 0 },
4694 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4696 .access = PL1_R, .type = ARM_CP_CONST,
4697 .resetvalue = 0 },
4698 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4699 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4700 .access = PL1_R, .type = ARM_CP_CONST,
4701 .resetvalue = 0 },
e60cef86
PM
4702 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4703 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4704 .access = PL1_R, .type = ARM_CP_CONST,
d6f02ce3 4705 .resetvalue = cpu->id_aa64dfr0 },
e60cef86
PM
4706 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4708 .access = PL1_R, .type = ARM_CP_CONST,
4709 .resetvalue = cpu->id_aa64dfr1 },
e20d84c1
PM
4710 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4711 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4712 .access = PL1_R, .type = ARM_CP_CONST,
4713 .resetvalue = 0 },
4714 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4715 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4716 .access = PL1_R, .type = ARM_CP_CONST,
4717 .resetvalue = 0 },
e60cef86
PM
4718 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4719 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4720 .access = PL1_R, .type = ARM_CP_CONST,
4721 .resetvalue = cpu->id_aa64afr0 },
4722 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4723 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4724 .access = PL1_R, .type = ARM_CP_CONST,
4725 .resetvalue = cpu->id_aa64afr1 },
e20d84c1
PM
4726 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4727 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4728 .access = PL1_R, .type = ARM_CP_CONST,
4729 .resetvalue = 0 },
4730 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4732 .access = PL1_R, .type = ARM_CP_CONST,
4733 .resetvalue = 0 },
e60cef86
PM
4734 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4735 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4736 .access = PL1_R, .type = ARM_CP_CONST,
4737 .resetvalue = cpu->id_aa64isar0 },
4738 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4739 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4740 .access = PL1_R, .type = ARM_CP_CONST,
4741 .resetvalue = cpu->id_aa64isar1 },
e20d84c1
PM
4742 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4743 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4744 .access = PL1_R, .type = ARM_CP_CONST,
4745 .resetvalue = 0 },
4746 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4748 .access = PL1_R, .type = ARM_CP_CONST,
4749 .resetvalue = 0 },
4750 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4751 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4752 .access = PL1_R, .type = ARM_CP_CONST,
4753 .resetvalue = 0 },
4754 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4756 .access = PL1_R, .type = ARM_CP_CONST,
4757 .resetvalue = 0 },
4758 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4760 .access = PL1_R, .type = ARM_CP_CONST,
4761 .resetvalue = 0 },
4762 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4763 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4764 .access = PL1_R, .type = ARM_CP_CONST,
4765 .resetvalue = 0 },
e60cef86
PM
4766 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4768 .access = PL1_R, .type = ARM_CP_CONST,
4769 .resetvalue = cpu->id_aa64mmfr0 },
4770 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4771 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4772 .access = PL1_R, .type = ARM_CP_CONST,
4773 .resetvalue = cpu->id_aa64mmfr1 },
e20d84c1
PM
4774 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4776 .access = PL1_R, .type = ARM_CP_CONST,
4777 .resetvalue = 0 },
4778 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4780 .access = PL1_R, .type = ARM_CP_CONST,
4781 .resetvalue = 0 },
4782 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4783 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4784 .access = PL1_R, .type = ARM_CP_CONST,
4785 .resetvalue = 0 },
4786 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4788 .access = PL1_R, .type = ARM_CP_CONST,
4789 .resetvalue = 0 },
4790 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4791 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4792 .access = PL1_R, .type = ARM_CP_CONST,
4793 .resetvalue = 0 },
4794 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4796 .access = PL1_R, .type = ARM_CP_CONST,
4797 .resetvalue = 0 },
a50c0f51
PM
4798 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4800 .access = PL1_R, .type = ARM_CP_CONST,
4801 .resetvalue = cpu->mvfr0 },
4802 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4803 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4804 .access = PL1_R, .type = ARM_CP_CONST,
4805 .resetvalue = cpu->mvfr1 },
4806 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4808 .access = PL1_R, .type = ARM_CP_CONST,
4809 .resetvalue = cpu->mvfr2 },
e20d84c1
PM
4810 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4811 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4812 .access = PL1_R, .type = ARM_CP_CONST,
4813 .resetvalue = 0 },
4814 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4815 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4816 .access = PL1_R, .type = ARM_CP_CONST,
4817 .resetvalue = 0 },
4818 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4819 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4820 .access = PL1_R, .type = ARM_CP_CONST,
4821 .resetvalue = 0 },
4822 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4823 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4824 .access = PL1_R, .type = ARM_CP_CONST,
4825 .resetvalue = 0 },
4826 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4827 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4828 .access = PL1_R, .type = ARM_CP_CONST,
4829 .resetvalue = 0 },
4054bfa9
AF
4830 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4831 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4832 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4833 .resetvalue = cpu->pmceid0 },
4834 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4835 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4836 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4837 .resetvalue = cpu->pmceid0 },
4838 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4839 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4840 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4841 .resetvalue = cpu->pmceid1 },
4842 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4843 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4844 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4845 .resetvalue = cpu->pmceid1 },
e60cef86
PM
4846 REGINFO_SENTINEL
4847 };
be8e8128
GB
4848 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4849 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4850 !arm_feature(env, ARM_FEATURE_EL2)) {
4851 ARMCPRegInfo rvbar = {
4852 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4853 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4854 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4855 };
4856 define_one_arm_cp_reg(cpu, &rvbar);
4857 }
e60cef86 4858 define_arm_cp_regs(cpu, v8_idregs);
b0d2b7d0
PM
4859 define_arm_cp_regs(cpu, v8_cp_reginfo);
4860 }
3b685ba7 4861 if (arm_feature(env, ARM_FEATURE_EL2)) {
f0d574d6 4862 uint64_t vmpidr_def = mpidr_read_val(env);
731de9e6
EI
4863 ARMCPRegInfo vpidr_regs[] = {
4864 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4865 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4866 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4867 .resetvalue = cpu->midr,
4868 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4869 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4870 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4871 .access = PL2_RW, .resetvalue = cpu->midr,
4872 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
4873 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4874 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4875 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4876 .resetvalue = vmpidr_def,
4877 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4878 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4879 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4880 .access = PL2_RW,
4881 .resetvalue = vmpidr_def,
4882 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
731de9e6
EI
4883 REGINFO_SENTINEL
4884 };
4885 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 4886 define_arm_cp_regs(cpu, el2_cp_reginfo);
be8e8128
GB
4887 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4888 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4889 ARMCPRegInfo rvbar = {
4890 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4891 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4892 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4893 };
4894 define_one_arm_cp_reg(cpu, &rvbar);
4895 }
d42e3c26
EI
4896 } else {
4897 /* If EL2 is missing but higher ELs are enabled, we need to
4898 * register the no_el2 reginfos.
4899 */
4900 if (arm_feature(env, ARM_FEATURE_EL3)) {
f0d574d6
EI
4901 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4902 * of MIDR_EL1 and MPIDR_EL1.
731de9e6
EI
4903 */
4904 ARMCPRegInfo vpidr_regs[] = {
4905 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4906 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4907 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4908 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4909 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
4910 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4911 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4912 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4913 .type = ARM_CP_NO_RAW,
4914 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
731de9e6
EI
4915 REGINFO_SENTINEL
4916 };
4917 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 4918 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
d42e3c26 4919 }
3b685ba7 4920 }
81547d66 4921 if (arm_feature(env, ARM_FEATURE_EL3)) {
0f1a3b24 4922 define_arm_cp_regs(cpu, el3_cp_reginfo);
e24fdd23
PM
4923 ARMCPRegInfo el3_regs[] = {
4924 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4925 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4926 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4927 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4928 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4929 .access = PL3_RW,
4930 .raw_writefn = raw_write, .writefn = sctlr_write,
4931 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4932 .resetvalue = cpu->reset_sctlr },
4933 REGINFO_SENTINEL
be8e8128 4934 };
e24fdd23
PM
4935
4936 define_arm_cp_regs(cpu, el3_regs);
81547d66 4937 }
2f027fc5
PM
4938 /* The behaviour of NSACR is sufficiently various that we don't
4939 * try to describe it in a single reginfo:
4940 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4941 * reads as constant 0xc00 from NS EL1 and NS EL2
4942 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4943 * if v7 without EL3, register doesn't exist
4944 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4945 */
4946 if (arm_feature(env, ARM_FEATURE_EL3)) {
4947 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4948 ARMCPRegInfo nsacr = {
4949 .name = "NSACR", .type = ARM_CP_CONST,
4950 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4951 .access = PL1_RW, .accessfn = nsacr_access,
4952 .resetvalue = 0xc00
4953 };
4954 define_one_arm_cp_reg(cpu, &nsacr);
4955 } else {
4956 ARMCPRegInfo nsacr = {
4957 .name = "NSACR",
4958 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4959 .access = PL3_RW | PL1_R,
4960 .resetvalue = 0,
4961 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4962 };
4963 define_one_arm_cp_reg(cpu, &nsacr);
4964 }
4965 } else {
4966 if (arm_feature(env, ARM_FEATURE_V8)) {
4967 ARMCPRegInfo nsacr = {
4968 .name = "NSACR", .type = ARM_CP_CONST,
4969 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4970 .access = PL1_R,
4971 .resetvalue = 0xc00
4972 };
4973 define_one_arm_cp_reg(cpu, &nsacr);
4974 }
4975 }
4976
452a0955 4977 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6cb0b013
PC
4978 if (arm_feature(env, ARM_FEATURE_V6)) {
4979 /* PMSAv6 not implemented */
4980 assert(arm_feature(env, ARM_FEATURE_V7));
4981 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4982 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4983 } else {
4984 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4985 }
18032bec 4986 } else {
8e5d75c9 4987 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
18032bec
PM
4988 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4989 }
c326b979
PM
4990 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4991 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4992 }
6cc7a3ae
PM
4993 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4994 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4995 }
4a501606
PM
4996 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4997 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4998 }
c4804214
PM
4999 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5000 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5001 }
5002 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5003 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5004 }
5005 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5006 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5007 }
18032bec
PM
5008 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5009 define_arm_cp_regs(cpu, omap_cp_reginfo);
5010 }
34f90529
PM
5011 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5012 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5013 }
1047b9d7
PM
5014 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5015 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5016 }
5017 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5018 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5019 }
7ac681cf
PM
5020 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5021 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5022 }
7884849c
PM
5023 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5024 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5025 * be read-only (ie write causes UNDEF exception).
5026 */
5027 {
00a29f3d
PM
5028 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5029 /* Pre-v8 MIDR space.
5030 * Note that the MIDR isn't a simple constant register because
7884849c
PM
5031 * of the TI925 behaviour where writes to another register can
5032 * cause the MIDR value to change.
97ce8d61
PC
5033 *
5034 * Unimplemented registers in the c15 0 0 0 space default to
5035 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5036 * and friends override accordingly.
7884849c
PM
5037 */
5038 { .name = "MIDR",
97ce8d61 5039 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7884849c 5040 .access = PL1_R, .resetvalue = cpu->midr,
d4e6df63 5041 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
731de9e6 5042 .readfn = midr_read,
97ce8d61
PC
5043 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5044 .type = ARM_CP_OVERRIDE },
7884849c
PM
5045 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5046 { .name = "DUMMY",
5047 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5048 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5049 { .name = "DUMMY",
5050 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5051 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5052 { .name = "DUMMY",
5053 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5054 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5055 { .name = "DUMMY",
5056 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5057 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5058 { .name = "DUMMY",
5059 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5060 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5061 REGINFO_SENTINEL
5062 };
00a29f3d 5063 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
00a29f3d
PM
5064 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5065 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
731de9e6
EI
5066 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5067 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5068 .readfn = midr_read },
ac00c79f
SF
5069 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5070 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5071 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5072 .access = PL1_R, .resetvalue = cpu->midr },
5073 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5074 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5075 .access = PL1_R, .resetvalue = cpu->midr },
00a29f3d
PM
5076 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5077 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
13b72b2b 5078 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
00a29f3d
PM
5079 REGINFO_SENTINEL
5080 };
5081 ARMCPRegInfo id_cp_reginfo[] = {
5082 /* These are common to v8 and pre-v8 */
5083 { .name = "CTR",
5084 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5085 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5086 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5087 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5088 .access = PL0_R, .accessfn = ctr_el0_access,
5089 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5090 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5091 { .name = "TCMTR",
5092 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5093 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
00a29f3d
PM
5094 REGINFO_SENTINEL
5095 };
8085ce63
PC
5096 /* TLBTR is specific to VMSA */
5097 ARMCPRegInfo id_tlbtr_reginfo = {
5098 .name = "TLBTR",
5099 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5100 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5101 };
3281af81
PC
5102 /* MPUIR is specific to PMSA V6+ */
5103 ARMCPRegInfo id_mpuir_reginfo = {
5104 .name = "MPUIR",
5105 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5106 .access = PL1_R, .type = ARM_CP_CONST,
5107 .resetvalue = cpu->pmsav7_dregion << 8
5108 };
7884849c
PM
5109 ARMCPRegInfo crn0_wi_reginfo = {
5110 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5111 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5112 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5113 };
5114 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5115 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5116 ARMCPRegInfo *r;
5117 /* Register the blanket "writes ignored" value first to cover the
a703eda1
PC
5118 * whole space. Then update the specific ID registers to allow write
5119 * access, so that they ignore writes rather than causing them to
5120 * UNDEF.
7884849c
PM
5121 */
5122 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
00a29f3d
PM
5123 for (r = id_pre_v8_midr_cp_reginfo;
5124 r->type != ARM_CP_SENTINEL; r++) {
5125 r->access = PL1_RW;
5126 }
7884849c
PM
5127 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5128 r->access = PL1_RW;
7884849c 5129 }
8085ce63 5130 id_tlbtr_reginfo.access = PL1_RW;
3281af81 5131 id_tlbtr_reginfo.access = PL1_RW;
7884849c 5132 }
00a29f3d
PM
5133 if (arm_feature(env, ARM_FEATURE_V8)) {
5134 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5135 } else {
5136 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5137 }
a703eda1 5138 define_arm_cp_regs(cpu, id_cp_reginfo);
452a0955 5139 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8085ce63 5140 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
3281af81
PC
5141 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5142 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8085ce63 5143 }
7884849c
PM
5144 }
5145
97ce8d61
PC
5146 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5147 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5148 }
5149
2771db27 5150 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
834a6c69
PM
5151 ARMCPRegInfo auxcr_reginfo[] = {
5152 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5153 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5154 .access = PL1_RW, .type = ARM_CP_CONST,
5155 .resetvalue = cpu->reset_auxcr },
5156 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5157 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5158 .access = PL2_RW, .type = ARM_CP_CONST,
5159 .resetvalue = 0 },
5160 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5161 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5162 .access = PL3_RW, .type = ARM_CP_CONST,
5163 .resetvalue = 0 },
5164 REGINFO_SENTINEL
2771db27 5165 };
834a6c69 5166 define_arm_cp_regs(cpu, auxcr_reginfo);
2771db27
PM
5167 }
5168
d8ba780b 5169 if (arm_feature(env, ARM_FEATURE_CBAR)) {
f318cec6
PM
5170 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5171 /* 32 bit view is [31:18] 0...0 [43:32]. */
5172 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5173 | extract64(cpu->reset_cbar, 32, 12);
5174 ARMCPRegInfo cbar_reginfo[] = {
5175 { .name = "CBAR",
5176 .type = ARM_CP_CONST,
5177 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5178 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5179 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5180 .type = ARM_CP_CONST,
5181 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5182 .access = PL1_R, .resetvalue = cbar32 },
5183 REGINFO_SENTINEL
5184 };
5185 /* We don't implement a r/w 64 bit CBAR currently */
5186 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5187 define_arm_cp_regs(cpu, cbar_reginfo);
5188 } else {
5189 ARMCPRegInfo cbar = {
5190 .name = "CBAR",
5191 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5192 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5193 .fieldoffset = offsetof(CPUARMState,
5194 cp15.c15_config_base_address)
5195 };
5196 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5197 cbar.access = PL1_R;
5198 cbar.fieldoffset = 0;
5199 cbar.type = ARM_CP_CONST;
5200 }
5201 define_one_arm_cp_reg(cpu, &cbar);
5202 }
d8ba780b
PC
5203 }
5204
91db4642
CLG
5205 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5206 ARMCPRegInfo vbar_cp_reginfo[] = {
5207 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5208 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5209 .access = PL1_RW, .writefn = vbar_write,
5210 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5211 offsetof(CPUARMState, cp15.vbar_ns) },
5212 .resetvalue = 0 },
5213 REGINFO_SENTINEL
5214 };
5215 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5216 }
5217
2771db27
PM
5218 /* Generic registers whose values depend on the implementation */
5219 {
5220 ARMCPRegInfo sctlr = {
5ebafdf3 5221 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
137feaa9
FA
5222 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5223 .access = PL1_RW,
5224 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5225 offsetof(CPUARMState, cp15.sctlr_ns) },
d4e6df63
PM
5226 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5227 .raw_writefn = raw_write,
2771db27
PM
5228 };
5229 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5230 /* Normally we would always end the TB on an SCTLR write, but Linux
5231 * arch/arm/mach-pxa/sleep.S expects two instructions following
5232 * an MMU enable to execute from cache. Imitate this behaviour.
5233 */
5234 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5235 }
5236 define_one_arm_cp_reg(cpu, &sctlr);
5237 }
2ceb98c0
PM
5238}
5239
778c3a06 5240ARMCPU *cpu_arm_init(const char *cpu_model)
40f137e1 5241{
9262685b 5242 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
14969266
AF
5243}
5244
5245void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5246{
22169d41 5247 CPUState *cs = CPU(cpu);
14969266
AF
5248 CPUARMState *env = &cpu->env;
5249
6a669427
PM
5250 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5251 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5252 aarch64_fpu_gdb_set_reg,
5253 34, "aarch64-fpu.xml", 0);
5254 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
22169d41 5255 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
5256 51, "arm-neon.xml", 0);
5257 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
22169d41 5258 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
5259 35, "arm-vfp3.xml", 0);
5260 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
22169d41 5261 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
5262 19, "arm-vfp.xml", 0);
5263 }
40f137e1
PB
5264}
5265
777dc784
PM
5266/* Sort alphabetically by type name, except for "any". */
5267static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 5268{
777dc784
PM
5269 ObjectClass *class_a = (ObjectClass *)a;
5270 ObjectClass *class_b = (ObjectClass *)b;
5271 const char *name_a, *name_b;
5adb4839 5272
777dc784
PM
5273 name_a = object_class_get_name(class_a);
5274 name_b = object_class_get_name(class_b);
51492fd1 5275 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 5276 return 1;
51492fd1 5277 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
5278 return -1;
5279 } else {
5280 return strcmp(name_a, name_b);
5adb4839
PB
5281 }
5282}
5283
777dc784 5284static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 5285{
777dc784 5286 ObjectClass *oc = data;
92a31361 5287 CPUListState *s = user_data;
51492fd1
AF
5288 const char *typename;
5289 char *name;
3371d272 5290
51492fd1
AF
5291 typename = object_class_get_name(oc);
5292 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
777dc784 5293 (*s->cpu_fprintf)(s->file, " %s\n",
51492fd1
AF
5294 name);
5295 g_free(name);
777dc784
PM
5296}
5297
5298void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5299{
92a31361 5300 CPUListState s = {
777dc784
PM
5301 .file = f,
5302 .cpu_fprintf = cpu_fprintf,
5303 };
5304 GSList *list;
5305
5306 list = object_class_get_list(TYPE_ARM_CPU, false);
5307 list = g_slist_sort(list, arm_cpu_list_compare);
5308 (*cpu_fprintf)(f, "Available CPUs:\n");
5309 g_slist_foreach(list, arm_cpu_list_entry, &s);
5310 g_slist_free(list);
a96c0514
PM
5311#ifdef CONFIG_KVM
5312 /* The 'host' CPU type is dynamically registered only if KVM is
5313 * enabled, so we have to special-case it here:
5314 */
5315 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5316#endif
40f137e1
PB
5317}
5318
78027bb6
CR
5319static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5320{
5321 ObjectClass *oc = data;
5322 CpuDefinitionInfoList **cpu_list = user_data;
5323 CpuDefinitionInfoList *entry;
5324 CpuDefinitionInfo *info;
5325 const char *typename;
5326
5327 typename = object_class_get_name(oc);
5328 info = g_malloc0(sizeof(*info));
5329 info->name = g_strndup(typename,
5330 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8ed877b7 5331 info->q_typename = g_strdup(typename);
78027bb6
CR
5332
5333 entry = g_malloc0(sizeof(*entry));
5334 entry->value = info;
5335 entry->next = *cpu_list;
5336 *cpu_list = entry;
5337}
5338
5339CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5340{
5341 CpuDefinitionInfoList *cpu_list = NULL;
5342 GSList *list;
5343
5344 list = object_class_get_list(TYPE_ARM_CPU, false);
5345 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5346 g_slist_free(list);
5347
5348 return cpu_list;
5349}
5350
6e6efd61 5351static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
51a79b03 5352 void *opaque, int state, int secstate,
f5a0a5a5 5353 int crm, int opc1, int opc2)
6e6efd61
PM
5354{
5355 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5356 * add a single reginfo struct to the hash table.
5357 */
5358 uint32_t *key = g_new(uint32_t, 1);
5359 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5360 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3f3c82a5
FA
5361 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5362
5363 /* Reset the secure state to the specific incoming state. This is
5364 * necessary as the register may have been defined with both states.
5365 */
5366 r2->secure = secstate;
5367
5368 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5369 /* Register is banked (using both entries in array).
5370 * Overwriting fieldoffset as the array is only used to define
5371 * banked registers but later only fieldoffset is used.
f5a0a5a5 5372 */
3f3c82a5
FA
5373 r2->fieldoffset = r->bank_fieldoffsets[ns];
5374 }
5375
5376 if (state == ARM_CP_STATE_AA32) {
5377 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5378 /* If the register is banked then we don't need to migrate or
5379 * reset the 32-bit instance in certain cases:
5380 *
5381 * 1) If the register has both 32-bit and 64-bit instances then we
5382 * can count on the 64-bit instance taking care of the
5383 * non-secure bank.
5384 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5385 * taking care of the secure bank. This requires that separate
5386 * 32 and 64-bit definitions are provided.
5387 */
5388 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5389 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7a0e58fa 5390 r2->type |= ARM_CP_ALIAS;
3f3c82a5
FA
5391 }
5392 } else if ((secstate != r->secure) && !ns) {
5393 /* The register is not banked so we only want to allow migration of
5394 * the non-secure instance.
5395 */
7a0e58fa 5396 r2->type |= ARM_CP_ALIAS;
58a1d8ce 5397 }
3f3c82a5
FA
5398
5399 if (r->state == ARM_CP_STATE_BOTH) {
5400 /* We assume it is a cp15 register if the .cp field is left unset.
5401 */
5402 if (r2->cp == 0) {
5403 r2->cp = 15;
5404 }
5405
f5a0a5a5 5406#ifdef HOST_WORDS_BIGENDIAN
3f3c82a5
FA
5407 if (r2->fieldoffset) {
5408 r2->fieldoffset += sizeof(uint32_t);
5409 }
f5a0a5a5 5410#endif
3f3c82a5 5411 }
f5a0a5a5
PM
5412 }
5413 if (state == ARM_CP_STATE_AA64) {
5414 /* To allow abbreviation of ARMCPRegInfo
5415 * definitions, we treat cp == 0 as equivalent to
5416 * the value for "standard guest-visible sysreg".
58a1d8ce
PM
5417 * STATE_BOTH definitions are also always "standard
5418 * sysreg" in their AArch64 view (the .cp value may
5419 * be non-zero for the benefit of the AArch32 view).
f5a0a5a5 5420 */
58a1d8ce 5421 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
f5a0a5a5
PM
5422 r2->cp = CP_REG_ARM64_SYSREG_CP;
5423 }
5424 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5425 r2->opc0, opc1, opc2);
5426 } else {
51a79b03 5427 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
f5a0a5a5 5428 }
6e6efd61
PM
5429 if (opaque) {
5430 r2->opaque = opaque;
5431 }
67ed771d
PM
5432 /* reginfo passed to helpers is correct for the actual access,
5433 * and is never ARM_CP_STATE_BOTH:
5434 */
5435 r2->state = state;
6e6efd61
PM
5436 /* Make sure reginfo passed to helpers for wildcarded regs
5437 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5438 */
5439 r2->crm = crm;
5440 r2->opc1 = opc1;
5441 r2->opc2 = opc2;
5442 /* By convention, for wildcarded registers only the first
5443 * entry is used for migration; the others are marked as
7a0e58fa 5444 * ALIAS so we don't try to transfer the register
6e6efd61 5445 * multiple times. Special registers (ie NOP/WFI) are
7a0e58fa 5446 * never migratable and not even raw-accessible.
6e6efd61 5447 */
7a0e58fa
PM
5448 if ((r->type & ARM_CP_SPECIAL)) {
5449 r2->type |= ARM_CP_NO_RAW;
5450 }
5451 if (((r->crm == CP_ANY) && crm != 0) ||
6e6efd61
PM
5452 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5453 ((r->opc2 == CP_ANY) && opc2 != 0)) {
7a0e58fa 5454 r2->type |= ARM_CP_ALIAS;
6e6efd61
PM
5455 }
5456
375421cc
PM
5457 /* Check that raw accesses are either forbidden or handled. Note that
5458 * we can't assert this earlier because the setup of fieldoffset for
5459 * banked registers has to be done first.
5460 */
5461 if (!(r2->type & ARM_CP_NO_RAW)) {
5462 assert(!raw_accessors_invalid(r2));
5463 }
5464
6e6efd61
PM
5465 /* Overriding of an existing definition must be explicitly
5466 * requested.
5467 */
5468 if (!(r->type & ARM_CP_OVERRIDE)) {
5469 ARMCPRegInfo *oldreg;
5470 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5471 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5472 fprintf(stderr, "Register redefined: cp=%d %d bit "
5473 "crn=%d crm=%d opc1=%d opc2=%d, "
5474 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5475 r2->crn, r2->crm, r2->opc1, r2->opc2,
5476 oldreg->name, r2->name);
5477 g_assert_not_reached();
5478 }
5479 }
5480 g_hash_table_insert(cpu->cp_regs, key, r2);
5481}
5482
5483
4b6a83fb
PM
5484void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5485 const ARMCPRegInfo *r, void *opaque)
5486{
5487 /* Define implementations of coprocessor registers.
5488 * We store these in a hashtable because typically
5489 * there are less than 150 registers in a space which
5490 * is 16*16*16*8*8 = 262144 in size.
5491 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5492 * If a register is defined twice then the second definition is
5493 * used, so this can be used to define some generic registers and
5494 * then override them with implementation specific variations.
5495 * At least one of the original and the second definition should
5496 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5497 * against accidental use.
f5a0a5a5
PM
5498 *
5499 * The state field defines whether the register is to be
5500 * visible in the AArch32 or AArch64 execution state. If the
5501 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5502 * reginfo structure for the AArch32 view, which sees the lower
5503 * 32 bits of the 64 bit register.
5504 *
5505 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5506 * be wildcarded. AArch64 registers are always considered to be 64
5507 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5508 * the register, if any.
4b6a83fb 5509 */
f5a0a5a5 5510 int crm, opc1, opc2, state;
4b6a83fb
PM
5511 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5512 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5513 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5514 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5515 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5516 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5517 /* 64 bit registers have only CRm and Opc1 fields */
5518 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
f5a0a5a5
PM
5519 /* op0 only exists in the AArch64 encodings */
5520 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5521 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5522 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5523 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5524 * encodes a minimum access level for the register. We roll this
5525 * runtime check into our general permission check code, so check
5526 * here that the reginfo's specified permissions are strict enough
5527 * to encompass the generic architectural permission check.
5528 */
5529 if (r->state != ARM_CP_STATE_AA32) {
5530 int mask = 0;
5531 switch (r->opc1) {
5532 case 0: case 1: case 2:
5533 /* min_EL EL1 */
5534 mask = PL1_RW;
5535 break;
5536 case 3:
5537 /* min_EL EL0 */
5538 mask = PL0_RW;
5539 break;
5540 case 4:
5541 /* min_EL EL2 */
5542 mask = PL2_RW;
5543 break;
5544 case 5:
5545 /* unallocated encoding, so not possible */
5546 assert(false);
5547 break;
5548 case 6:
5549 /* min_EL EL3 */
5550 mask = PL3_RW;
5551 break;
5552 case 7:
5553 /* min_EL EL1, secure mode only (we don't check the latter) */
5554 mask = PL1_RW;
5555 break;
5556 default:
5557 /* broken reginfo with out-of-range opc1 */
5558 assert(false);
5559 break;
5560 }
5561 /* assert our permissions are not too lax (stricter is fine) */
5562 assert((r->access & ~mask) == 0);
5563 }
5564
4b6a83fb
PM
5565 /* Check that the register definition has enough info to handle
5566 * reads and writes if they are permitted.
5567 */
5568 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5569 if (r->access & PL3_R) {
3f3c82a5
FA
5570 assert((r->fieldoffset ||
5571 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5572 r->readfn);
4b6a83fb
PM
5573 }
5574 if (r->access & PL3_W) {
3f3c82a5
FA
5575 assert((r->fieldoffset ||
5576 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5577 r->writefn);
4b6a83fb
PM
5578 }
5579 }
5580 /* Bad type field probably means missing sentinel at end of reg list */
5581 assert(cptype_valid(r->type));
5582 for (crm = crmmin; crm <= crmmax; crm++) {
5583 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5584 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
f5a0a5a5
PM
5585 for (state = ARM_CP_STATE_AA32;
5586 state <= ARM_CP_STATE_AA64; state++) {
5587 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5588 continue;
5589 }
3f3c82a5
FA
5590 if (state == ARM_CP_STATE_AA32) {
5591 /* Under AArch32 CP registers can be common
5592 * (same for secure and non-secure world) or banked.
5593 */
5594 switch (r->secure) {
5595 case ARM_CP_SECSTATE_S:
5596 case ARM_CP_SECSTATE_NS:
5597 add_cpreg_to_hashtable(cpu, r, opaque, state,
5598 r->secure, crm, opc1, opc2);
5599 break;
5600 default:
5601 add_cpreg_to_hashtable(cpu, r, opaque, state,
5602 ARM_CP_SECSTATE_S,
5603 crm, opc1, opc2);
5604 add_cpreg_to_hashtable(cpu, r, opaque, state,
5605 ARM_CP_SECSTATE_NS,
5606 crm, opc1, opc2);
5607 break;
5608 }
5609 } else {
5610 /* AArch64 registers get mapped to non-secure instance
5611 * of AArch32 */
5612 add_cpreg_to_hashtable(cpu, r, opaque, state,
5613 ARM_CP_SECSTATE_NS,
5614 crm, opc1, opc2);
5615 }
f5a0a5a5 5616 }
4b6a83fb
PM
5617 }
5618 }
5619 }
5620}
5621
5622void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5623 const ARMCPRegInfo *regs, void *opaque)
5624{
5625 /* Define a whole list of registers */
5626 const ARMCPRegInfo *r;
5627 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5628 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5629 }
5630}
5631
60322b39 5632const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4b6a83fb 5633{
60322b39 5634 return g_hash_table_lookup(cpregs, &encoded_cp);
4b6a83fb
PM
5635}
5636
c4241c7d
PM
5637void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5638 uint64_t value)
4b6a83fb
PM
5639{
5640 /* Helper coprocessor write function for write-ignore registers */
4b6a83fb
PM
5641}
5642
c4241c7d 5643uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4b6a83fb
PM
5644{
5645 /* Helper coprocessor write function for read-as-zero registers */
4b6a83fb
PM
5646 return 0;
5647}
5648
f5a0a5a5
PM
5649void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5650{
5651 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5652}
5653
af393ffc 5654static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
37064a8b
PM
5655{
5656 /* Return true if it is not valid for us to switch to
5657 * this CPU mode (ie all the UNPREDICTABLE cases in
5658 * the ARM ARM CPSRWriteByInstr pseudocode).
5659 */
af393ffc
PM
5660
5661 /* Changes to or from Hyp via MSR and CPS are illegal. */
5662 if (write_type == CPSRWriteByInstr &&
5663 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5664 mode == ARM_CPU_MODE_HYP)) {
5665 return 1;
5666 }
5667
37064a8b
PM
5668 switch (mode) {
5669 case ARM_CPU_MODE_USR:
10eacda7 5670 return 0;
37064a8b
PM
5671 case ARM_CPU_MODE_SYS:
5672 case ARM_CPU_MODE_SVC:
5673 case ARM_CPU_MODE_ABT:
5674 case ARM_CPU_MODE_UND:
5675 case ARM_CPU_MODE_IRQ:
5676 case ARM_CPU_MODE_FIQ:
52ff951b
PM
5677 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5678 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5679 */
10eacda7
PM
5680 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5681 * and CPS are treated as illegal mode changes.
5682 */
5683 if (write_type == CPSRWriteByInstr &&
5684 (env->cp15.hcr_el2 & HCR_TGE) &&
5685 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5686 !arm_is_secure_below_el3(env)) {
5687 return 1;
5688 }
37064a8b 5689 return 0;
e6c8fc07
PM
5690 case ARM_CPU_MODE_HYP:
5691 return !arm_feature(env, ARM_FEATURE_EL2)
5692 || arm_current_el(env) < 2 || arm_is_secure(env);
027fc527 5693 case ARM_CPU_MODE_MON:
58ae2d1f 5694 return arm_current_el(env) < 3;
37064a8b
PM
5695 default:
5696 return 1;
5697 }
5698}
5699
2f4a40e5
AZ
5700uint32_t cpsr_read(CPUARMState *env)
5701{
5702 int ZF;
6fbe23d5
PB
5703 ZF = (env->ZF == 0);
5704 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
5705 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5706 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5707 | ((env->condexec_bits & 0xfc) << 8)
af519934 5708 | (env->GE << 16) | (env->daif & CPSR_AIF);
2f4a40e5
AZ
5709}
5710
50866ba5
PM
5711void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5712 CPSRWriteType write_type)
2f4a40e5 5713{
6e8801f9
FA
5714 uint32_t changed_daif;
5715
2f4a40e5 5716 if (mask & CPSR_NZCV) {
6fbe23d5
PB
5717 env->ZF = (~val) & CPSR_Z;
5718 env->NF = val;
2f4a40e5
AZ
5719 env->CF = (val >> 29) & 1;
5720 env->VF = (val << 3) & 0x80000000;
5721 }
5722 if (mask & CPSR_Q)
5723 env->QF = ((val & CPSR_Q) != 0);
5724 if (mask & CPSR_T)
5725 env->thumb = ((val & CPSR_T) != 0);
5726 if (mask & CPSR_IT_0_1) {
5727 env->condexec_bits &= ~3;
5728 env->condexec_bits |= (val >> 25) & 3;
5729 }
5730 if (mask & CPSR_IT_2_7) {
5731 env->condexec_bits &= 3;
5732 env->condexec_bits |= (val >> 8) & 0xfc;
5733 }
5734 if (mask & CPSR_GE) {
5735 env->GE = (val >> 16) & 0xf;
5736 }
5737
6e8801f9
FA
5738 /* In a V7 implementation that includes the security extensions but does
5739 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5740 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5741 * bits respectively.
5742 *
5743 * In a V8 implementation, it is permitted for privileged software to
5744 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5745 */
f8c88bbc 5746 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6e8801f9
FA
5747 arm_feature(env, ARM_FEATURE_EL3) &&
5748 !arm_feature(env, ARM_FEATURE_EL2) &&
5749 !arm_is_secure(env)) {
5750
5751 changed_daif = (env->daif ^ val) & mask;
5752
5753 if (changed_daif & CPSR_A) {
5754 /* Check to see if we are allowed to change the masking of async
5755 * abort exceptions from a non-secure state.
5756 */
5757 if (!(env->cp15.scr_el3 & SCR_AW)) {
5758 qemu_log_mask(LOG_GUEST_ERROR,
5759 "Ignoring attempt to switch CPSR_A flag from "
5760 "non-secure world with SCR.AW bit clear\n");
5761 mask &= ~CPSR_A;
5762 }
5763 }
5764
5765 if (changed_daif & CPSR_F) {
5766 /* Check to see if we are allowed to change the masking of FIQ
5767 * exceptions from a non-secure state.
5768 */
5769 if (!(env->cp15.scr_el3 & SCR_FW)) {
5770 qemu_log_mask(LOG_GUEST_ERROR,
5771 "Ignoring attempt to switch CPSR_F flag from "
5772 "non-secure world with SCR.FW bit clear\n");
5773 mask &= ~CPSR_F;
5774 }
5775
5776 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5777 * If this bit is set software is not allowed to mask
5778 * FIQs, but is allowed to set CPSR_F to 0.
5779 */
5780 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5781 (val & CPSR_F)) {
5782 qemu_log_mask(LOG_GUEST_ERROR,
5783 "Ignoring attempt to enable CPSR_F flag "
5784 "(non-maskable FIQ [NMFI] support enabled)\n");
5785 mask &= ~CPSR_F;
5786 }
5787 }
5788 }
5789
4cc35614
PM
5790 env->daif &= ~(CPSR_AIF & mask);
5791 env->daif |= val & CPSR_AIF & mask;
5792
f8c88bbc
PM
5793 if (write_type != CPSRWriteRaw &&
5794 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8c4f0eb9
PM
5795 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5796 /* Note that we can only get here in USR mode if this is a
5797 * gdb stub write; for this case we follow the architectural
5798 * behaviour for guest writes in USR mode of ignoring an attempt
5799 * to switch mode. (Those are caught by translate.c for writes
5800 * triggered by guest instructions.)
5801 */
5802 mask &= ~CPSR_M;
5803 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
81907a58
PM
5804 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5805 * v7, and has defined behaviour in v8:
5806 * + leave CPSR.M untouched
5807 * + allow changes to the other CPSR fields
5808 * + set PSTATE.IL
5809 * For user changes via the GDB stub, we don't set PSTATE.IL,
5810 * as this would be unnecessarily harsh for a user error.
37064a8b
PM
5811 */
5812 mask &= ~CPSR_M;
81907a58
PM
5813 if (write_type != CPSRWriteByGDBStub &&
5814 arm_feature(env, ARM_FEATURE_V8)) {
5815 mask |= CPSR_IL;
5816 val |= CPSR_IL;
5817 }
37064a8b
PM
5818 } else {
5819 switch_mode(env, val & CPSR_M);
5820 }
2f4a40e5
AZ
5821 }
5822 mask &= ~CACHED_CPSR_BITS;
5823 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5824}
5825
b26eefb6
PB
5826/* Sign/zero extend */
5827uint32_t HELPER(sxtb16)(uint32_t x)
5828{
5829 uint32_t res;
5830 res = (uint16_t)(int8_t)x;
5831 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5832 return res;
5833}
5834
5835uint32_t HELPER(uxtb16)(uint32_t x)
5836{
5837 uint32_t res;
5838 res = (uint16_t)(uint8_t)x;
5839 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5840 return res;
5841}
5842
3670669c
PB
5843int32_t HELPER(sdiv)(int32_t num, int32_t den)
5844{
5845 if (den == 0)
5846 return 0;
686eeb93
AJ
5847 if (num == INT_MIN && den == -1)
5848 return INT_MIN;
3670669c
PB
5849 return num / den;
5850}
5851
5852uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5853{
5854 if (den == 0)
5855 return 0;
5856 return num / den;
5857}
5858
5859uint32_t HELPER(rbit)(uint32_t x)
5860{
42fedbca 5861 return revbit32(x);
3670669c
PB
5862}
5863
5fafdf24 5864#if defined(CONFIG_USER_ONLY)
b5ff1b31 5865
9ee6e8bb 5866/* These should probably raise undefined insn exceptions. */
0ecb72a5 5867void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 5868{
a47dddd7
AF
5869 ARMCPU *cpu = arm_env_get_cpu(env);
5870
5871 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
9ee6e8bb
PB
5872}
5873
0ecb72a5 5874uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 5875{
a47dddd7
AF
5876 ARMCPU *cpu = arm_env_get_cpu(env);
5877
5878 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
9ee6e8bb
PB
5879 return 0;
5880}
5881
0ecb72a5 5882void switch_mode(CPUARMState *env, int mode)
b5ff1b31 5883{
a47dddd7
AF
5884 ARMCPU *cpu = arm_env_get_cpu(env);
5885
5886 if (mode != ARM_CPU_MODE_USR) {
5887 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5888 }
b5ff1b31
FB
5889}
5890
012a906b
GB
5891uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5892 uint32_t cur_el, bool secure)
9e729b57
EI
5893{
5894 return 1;
5895}
5896
ce02049d
GB
5897void aarch64_sync_64_to_32(CPUARMState *env)
5898{
5899 g_assert_not_reached();
5900}
5901
b5ff1b31
FB
5902#else
5903
0ecb72a5 5904void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
5905{
5906 int old_mode;
5907 int i;
5908
5909 old_mode = env->uncached_cpsr & CPSR_M;
5910 if (mode == old_mode)
5911 return;
5912
5913 if (old_mode == ARM_CPU_MODE_FIQ) {
5914 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5915 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5916 } else if (mode == ARM_CPU_MODE_FIQ) {
5917 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5918 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5919 }
5920
f5206413 5921 i = bank_number(old_mode);
b5ff1b31
FB
5922 env->banked_r13[i] = env->regs[13];
5923 env->banked_r14[i] = env->regs[14];
5924 env->banked_spsr[i] = env->spsr;
5925
f5206413 5926 i = bank_number(mode);
b5ff1b31
FB
5927 env->regs[13] = env->banked_r13[i];
5928 env->regs[14] = env->banked_r14[i];
5929 env->spsr = env->banked_spsr[i];
5930}
5931
0eeb17d6
GB
5932/* Physical Interrupt Target EL Lookup Table
5933 *
5934 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5935 *
5936 * The below multi-dimensional table is used for looking up the target
5937 * exception level given numerous condition criteria. Specifically, the
5938 * target EL is based on SCR and HCR routing controls as well as the
5939 * currently executing EL and secure state.
5940 *
5941 * Dimensions:
5942 * target_el_table[2][2][2][2][2][4]
5943 * | | | | | +--- Current EL
5944 * | | | | +------ Non-secure(0)/Secure(1)
5945 * | | | +--------- HCR mask override
5946 * | | +------------ SCR exec state control
5947 * | +--------------- SCR mask override
5948 * +------------------ 32-bit(0)/64-bit(1) EL3
5949 *
5950 * The table values are as such:
5951 * 0-3 = EL0-EL3
5952 * -1 = Cannot occur
5953 *
5954 * The ARM ARM target EL table includes entries indicating that an "exception
5955 * is not taken". The two cases where this is applicable are:
5956 * 1) An exception is taken from EL3 but the SCR does not have the exception
5957 * routed to EL3.
5958 * 2) An exception is taken from EL2 but the HCR does not have the exception
5959 * routed to EL2.
5960 * In these two cases, the below table contain a target of EL1. This value is
5961 * returned as it is expected that the consumer of the table data will check
5962 * for "target EL >= current EL" to ensure the exception is not taken.
5963 *
5964 * SCR HCR
5965 * 64 EA AMO From
5966 * BIT IRQ IMO Non-secure Secure
5967 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5968 */
82c39f6a 5969static const int8_t target_el_table[2][2][2][2][2][4] = {
0eeb17d6
GB
5970 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5971 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5972 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5973 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5974 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5975 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5976 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5977 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5978 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5979 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5980 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5981 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5982 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5983 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5984 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5985 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5986};
5987
5988/*
5989 * Determine the target EL for physical exceptions
5990 */
012a906b
GB
5991uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5992 uint32_t cur_el, bool secure)
0eeb17d6
GB
5993{
5994 CPUARMState *env = cs->env_ptr;
2cde031f 5995 int rw;
0eeb17d6
GB
5996 int scr;
5997 int hcr;
5998 int target_el;
2cde031f
SS
5999 /* Is the highest EL AArch64? */
6000 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6001
6002 if (arm_feature(env, ARM_FEATURE_EL3)) {
6003 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6004 } else {
6005 /* Either EL2 is the highest EL (and so the EL2 register width
6006 * is given by is64); or there is no EL2 or EL3, in which case
6007 * the value of 'rw' does not affect the table lookup anyway.
6008 */
6009 rw = is64;
6010 }
0eeb17d6
GB
6011
6012 switch (excp_idx) {
6013 case EXCP_IRQ:
6014 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6015 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6016 break;
6017 case EXCP_FIQ:
6018 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6019 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6020 break;
6021 default:
6022 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6023 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6024 break;
6025 };
6026
6027 /* If HCR.TGE is set then HCR is treated as being 1 */
6028 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6029
6030 /* Perform a table-lookup for the target EL given the current state */
6031 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6032
6033 assert(target_el > 0);
6034
6035 return target_el;
6036}
6037
9ee6e8bb
PB
6038static void v7m_push(CPUARMState *env, uint32_t val)
6039{
70d74660
AF
6040 CPUState *cs = CPU(arm_env_get_cpu(env));
6041
9ee6e8bb 6042 env->regs[13] -= 4;
ab1da857 6043 stl_phys(cs->as, env->regs[13], val);
9ee6e8bb
PB
6044}
6045
6046static uint32_t v7m_pop(CPUARMState *env)
6047{
70d74660 6048 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb 6049 uint32_t val;
70d74660 6050
fdfba1a2 6051 val = ldl_phys(cs->as, env->regs[13]);
9ee6e8bb
PB
6052 env->regs[13] += 4;
6053 return val;
6054}
6055
6056/* Switch to V7M main or process stack pointer. */
abc24d86 6057static void switch_v7m_sp(CPUARMState *env, bool new_spsel)
9ee6e8bb
PB
6058{
6059 uint32_t tmp;
abc24d86
MD
6060 bool old_spsel = env->v7m.control & R_V7M_CONTROL_SPSEL_MASK;
6061
6062 if (old_spsel != new_spsel) {
9ee6e8bb
PB
6063 tmp = env->v7m.other_sp;
6064 env->v7m.other_sp = env->regs[13];
6065 env->regs[13] = tmp;
abc24d86
MD
6066
6067 env->v7m.control = deposit32(env->v7m.control,
6068 R_V7M_CONTROL_SPSEL_SHIFT,
6069 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
9ee6e8bb
PB
6070 }
6071}
6072
39ae2474
PM
6073static uint32_t arm_v7m_load_vector(ARMCPU *cpu)
6074{
6075 CPUState *cs = CPU(cpu);
6076 CPUARMState *env = &cpu->env;
6077 MemTxResult result;
6078 hwaddr vec = env->v7m.vecbase + env->v7m.exception * 4;
6079 uint32_t addr;
6080
6081 addr = address_space_ldl(cs->as, vec,
6082 MEMTXATTRS_UNSPECIFIED, &result);
6083 if (result != MEMTX_OK) {
6084 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6085 * which would then be immediately followed by our failing to load
6086 * the entry vector for that HardFault, which is a Lockup case.
6087 * Since we don't model Lockup, we just report this guest error
6088 * via cpu_abort().
6089 */
6090 cpu_abort(cs, "Failed to read from exception vector table "
6091 "entry %08x\n", (unsigned)vec);
6092 }
6093 return addr;
6094}
6095
6096static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr)
6097{
6098 /* Do the "take the exception" parts of exception entry,
6099 * but not the pushing of state to the stack. This is
6100 * similar to the pseudocode ExceptionTaken() function.
6101 */
6102 CPUARMState *env = &cpu->env;
6103 uint32_t addr;
6104
6105 armv7m_nvic_acknowledge_irq(env->nvic);
6106 switch_v7m_sp(env, 0);
6107 /* Clear IT bits */
6108 env->condexec_bits = 0;
6109 env->regs[14] = lr;
6110 addr = arm_v7m_load_vector(cpu);
6111 env->regs[15] = addr & 0xfffffffe;
6112 env->thumb = addr & 1;
6113}
6114
6115static void v7m_push_stack(ARMCPU *cpu)
6116{
6117 /* Do the "set up stack frame" part of exception entry,
6118 * similar to pseudocode PushStack().
6119 */
6120 CPUARMState *env = &cpu->env;
6121 uint32_t xpsr = xpsr_read(env);
6122
6123 /* Align stack pointer if the guest wants that */
6124 if ((env->regs[13] & 4) && (env->v7m.ccr & R_V7M_CCR_STKALIGN_MASK)) {
6125 env->regs[13] -= 4;
6126 xpsr |= 0x200;
6127 }
6128 /* Switch to the handler mode. */
6129 v7m_push(env, xpsr);
6130 v7m_push(env, env->regs[15]);
6131 v7m_push(env, env->regs[14]);
6132 v7m_push(env, env->regs[12]);
6133 v7m_push(env, env->regs[3]);
6134 v7m_push(env, env->regs[2]);
6135 v7m_push(env, env->regs[1]);
6136 v7m_push(env, env->regs[0]);
6137}
6138
aa488fe3 6139static void do_v7m_exception_exit(ARMCPU *cpu)
9ee6e8bb 6140{
aa488fe3 6141 CPUARMState *env = &cpu->env;
9ee6e8bb
PB
6142 uint32_t type;
6143 uint32_t xpsr;
aa488fe3
PM
6144 bool ufault = false;
6145 bool return_to_sp_process = false;
6146 bool return_to_handler = false;
6147 bool rettobase = false;
6148
6149 /* We can only get here from an EXCP_EXCEPTION_EXIT, and
6150 * arm_v7m_do_unassigned_access() enforces the architectural rule
6151 * that jumps to magic addresses don't have magic behaviour unless
6152 * we're in Handler mode (compare pseudocode BXWritePC()).
6153 */
6154 assert(env->v7m.exception != 0);
6155
6156 /* In the spec pseudocode ExceptionReturn() is called directly
6157 * from BXWritePC() and gets the full target PC value including
6158 * bit zero. In QEMU's implementation we treat it as a normal
6159 * jump-to-register (which is then caught later on), and so split
6160 * the target value up between env->regs[15] and env->thumb in
6161 * gen_bx(). Reconstitute it.
6162 */
9ee6e8bb 6163 type = env->regs[15];
aa488fe3
PM
6164 if (env->thumb) {
6165 type |= 1;
6166 }
6167
6168 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6169 " previous exception %d\n",
6170 type, env->v7m.exception);
6171
6172 if (extract32(type, 5, 23) != extract32(-1, 5, 23)) {
6173 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6174 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", type);
6175 }
6176
a20ee600
MD
6177 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6178 /* Auto-clear FAULTMASK on return from other than NMI */
6179 env->daif &= ~PSTATE_F;
6180 }
aa488fe3
PM
6181
6182 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception)) {
6183 case -1:
6184 /* attempt to exit an exception that isn't active */
6185 ufault = true;
6186 break;
6187 case 0:
6188 /* still an irq active now */
6189 break;
6190 case 1:
6191 /* we returned to base exception level, no nesting.
6192 * (In the pseudocode this is written using "NestedActivation != 1"
6193 * where we have 'rettobase == false'.)
6194 */
6195 rettobase = true;
6196 break;
6197 default:
6198 g_assert_not_reached();
6199 }
6200
6201 switch (type & 0xf) {
6202 case 1: /* Return to Handler */
6203 return_to_handler = true;
6204 break;
6205 case 13: /* Return to Thread using Process stack */
6206 return_to_sp_process = true;
6207 /* fall through */
6208 case 9: /* Return to Thread using Main stack */
6209 if (!rettobase &&
6210 !(env->v7m.ccr & R_V7M_CCR_NONBASETHRDENA_MASK)) {
6211 ufault = true;
6212 }
6213 break;
6214 default:
6215 ufault = true;
6216 }
6217
6218 if (ufault) {
6219 /* Bad exception return: instead of popping the exception
6220 * stack, directly take a usage fault on the current stack.
6221 */
6222 env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
6223 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6224 v7m_exception_taken(cpu, type | 0xf0000000);
6225 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6226 "stackframe: failed exception return integrity check\n");
6227 return;
a20ee600 6228 }
9ee6e8bb
PB
6229
6230 /* Switch to the target stack. */
aa488fe3 6231 switch_v7m_sp(env, return_to_sp_process);
9ee6e8bb
PB
6232 /* Pop registers. */
6233 env->regs[0] = v7m_pop(env);
6234 env->regs[1] = v7m_pop(env);
6235 env->regs[2] = v7m_pop(env);
6236 env->regs[3] = v7m_pop(env);
6237 env->regs[12] = v7m_pop(env);
6238 env->regs[14] = v7m_pop(env);
6239 env->regs[15] = v7m_pop(env);
fcf83ab1
PM
6240 if (env->regs[15] & 1) {
6241 qemu_log_mask(LOG_GUEST_ERROR,
6242 "M profile return from interrupt with misaligned "
6243 "PC is UNPREDICTABLE\n");
6244 /* Actual hardware seems to ignore the lsbit, and there are several
6245 * RTOSes out there which incorrectly assume the r15 in the stack
6246 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
6247 */
6248 env->regs[15] &= ~1U;
6249 }
9ee6e8bb
PB
6250 xpsr = v7m_pop(env);
6251 xpsr_write(env, xpsr, 0xfffffdff);
6252 /* Undo stack alignment. */
6253 if (xpsr & 0x200)
6254 env->regs[13] |= 4;
aa488fe3
PM
6255
6256 /* The restored xPSR exception field will be zero if we're
6257 * resuming in Thread mode. If that doesn't match what the
6258 * exception return type specified then this is a UsageFault.
6259 */
6260 if (return_to_handler == (env->v7m.exception == 0)) {
6261 /* Take an INVPC UsageFault by pushing the stack again. */
6262 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6263 env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
6264 v7m_push_stack(cpu);
6265 v7m_exception_taken(cpu, type | 0xf0000000);
6266 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6267 "failed exception return integrity check\n");
6268 return;
6269 }
6270
6271 /* Otherwise, we have a successful exception exit. */
6272 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
9ee6e8bb
PB
6273}
6274
27a7ea8a
PB
6275static void arm_log_exception(int idx)
6276{
6277 if (qemu_loglevel_mask(CPU_LOG_INT)) {
6278 const char *exc = NULL;
2c4a7cc5
PM
6279 static const char * const excnames[] = {
6280 [EXCP_UDEF] = "Undefined Instruction",
6281 [EXCP_SWI] = "SVC",
6282 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6283 [EXCP_DATA_ABORT] = "Data Abort",
6284 [EXCP_IRQ] = "IRQ",
6285 [EXCP_FIQ] = "FIQ",
6286 [EXCP_BKPT] = "Breakpoint",
6287 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6288 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6289 [EXCP_HVC] = "Hypervisor Call",
6290 [EXCP_HYP_TRAP] = "Hypervisor Trap",
6291 [EXCP_SMC] = "Secure Monitor Call",
6292 [EXCP_VIRQ] = "Virtual IRQ",
6293 [EXCP_VFIQ] = "Virtual FIQ",
6294 [EXCP_SEMIHOST] = "Semihosting call",
6295 [EXCP_NOCP] = "v7M NOCP UsageFault",
6296 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6297 };
27a7ea8a
PB
6298
6299 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6300 exc = excnames[idx];
6301 }
6302 if (!exc) {
6303 exc = "unknown";
6304 }
6305 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6306 }
6307}
6308
e6f010cc 6309void arm_v7m_cpu_do_interrupt(CPUState *cs)
9ee6e8bb 6310{
e6f010cc
AF
6311 ARMCPU *cpu = ARM_CPU(cs);
6312 CPUARMState *env = &cpu->env;
9ee6e8bb 6313 uint32_t lr;
9ee6e8bb 6314
27103424 6315 arm_log_exception(cs->exception_index);
3f1beaca 6316
9ee6e8bb 6317 lr = 0xfffffff1;
abc24d86 6318 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
9ee6e8bb 6319 lr |= 4;
abc24d86 6320 }
9ee6e8bb
PB
6321 if (env->v7m.exception == 0)
6322 lr |= 8;
6323
6324 /* For exceptions we just mark as pending on the NVIC, and let that
6325 handle it. */
27103424 6326 switch (cs->exception_index) {
9ee6e8bb 6327 case EXCP_UDEF:
983fe826 6328 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
81dd9648 6329 env->v7m.cfsr |= R_V7M_CFSR_UNDEFINSTR_MASK;
a25dc805 6330 break;
7517748e
PM
6331 case EXCP_NOCP:
6332 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6333 env->v7m.cfsr |= R_V7M_CFSR_NOCP_MASK;
a25dc805 6334 break;
e13886e3
PM
6335 case EXCP_INVSTATE:
6336 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6337 env->v7m.cfsr |= R_V7M_CFSR_INVSTATE_MASK;
6338 break;
9ee6e8bb 6339 case EXCP_SWI:
314e2296 6340 /* The PC already points to the next instruction. */
983fe826 6341 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
a25dc805 6342 break;
9ee6e8bb
PB
6343 case EXCP_PREFETCH_ABORT:
6344 case EXCP_DATA_ABORT:
5dd0641d
MD
6345 /* Note that for M profile we don't have a guest facing FSR, but
6346 * the env->exception.fsr will be populated by the code that
6347 * raises the fault, in the A profile short-descriptor format.
abf1172f 6348 */
5dd0641d
MD
6349 switch (env->exception.fsr & 0xf) {
6350 case 0x8: /* External Abort */
6351 switch (cs->exception_index) {
6352 case EXCP_PREFETCH_ABORT:
6353 env->v7m.cfsr |= R_V7M_CFSR_PRECISERR_MASK;
6354 qemu_log_mask(CPU_LOG_INT, "...with CFSR.PRECISERR\n");
6355 break;
6356 case EXCP_DATA_ABORT:
6357 env->v7m.cfsr |=
6358 (R_V7M_CFSR_IBUSERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
6359 env->v7m.bfar = env->exception.vaddress;
6360 qemu_log_mask(CPU_LOG_INT,
6361 "...with CFSR.IBUSERR and BFAR 0x%x\n",
6362 env->v7m.bfar);
6363 break;
6364 }
6365 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS);
6366 break;
6367 default:
6368 /* All other FSR values are either MPU faults or "can't happen
6369 * for M profile" cases.
6370 */
6371 switch (cs->exception_index) {
6372 case EXCP_PREFETCH_ABORT:
6373 env->v7m.cfsr |= R_V7M_CFSR_IACCVIOL_MASK;
6374 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
6375 break;
6376 case EXCP_DATA_ABORT:
6377 env->v7m.cfsr |=
6378 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
6379 env->v7m.mmfar = env->exception.vaddress;
6380 qemu_log_mask(CPU_LOG_INT,
6381 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
6382 env->v7m.mmfar);
6383 break;
6384 }
6385 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
6386 break;
6387 }
a25dc805 6388 break;
9ee6e8bb 6389 case EXCP_BKPT:
cfe67cef 6390 if (semihosting_enabled()) {
2ad207d4 6391 int nr;
f9fd40eb 6392 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
2ad207d4
PB
6393 if (nr == 0xab) {
6394 env->regs[15] += 2;
205ace55
CC
6395 qemu_log_mask(CPU_LOG_INT,
6396 "...handling as semihosting call 0x%x\n",
6397 env->regs[0]);
2ad207d4
PB
6398 env->regs[0] = do_arm_semihosting(env);
6399 return;
6400 }
6401 }
983fe826 6402 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
a25dc805 6403 break;
9ee6e8bb 6404 case EXCP_IRQ:
9ee6e8bb
PB
6405 break;
6406 case EXCP_EXCEPTION_EXIT:
aa488fe3 6407 do_v7m_exception_exit(cpu);
9ee6e8bb
PB
6408 return;
6409 default:
a47dddd7 6410 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9ee6e8bb
PB
6411 return; /* Never happens. Keep compiler happy. */
6412 }
6413
39ae2474
PM
6414 v7m_push_stack(cpu);
6415 v7m_exception_taken(cpu, lr);
a25dc805 6416 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
9ee6e8bb
PB
6417}
6418
ce02049d
GB
6419/* Function used to synchronize QEMU's AArch64 register set with AArch32
6420 * register set. This is necessary when switching between AArch32 and AArch64
6421 * execution state.
6422 */
6423void aarch64_sync_32_to_64(CPUARMState *env)
6424{
6425 int i;
6426 uint32_t mode = env->uncached_cpsr & CPSR_M;
6427
6428 /* We can blanket copy R[0:7] to X[0:7] */
6429 for (i = 0; i < 8; i++) {
6430 env->xregs[i] = env->regs[i];
6431 }
6432
6433 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6434 * Otherwise, they come from the banked user regs.
6435 */
6436 if (mode == ARM_CPU_MODE_FIQ) {
6437 for (i = 8; i < 13; i++) {
6438 env->xregs[i] = env->usr_regs[i - 8];
6439 }
6440 } else {
6441 for (i = 8; i < 13; i++) {
6442 env->xregs[i] = env->regs[i];
6443 }
6444 }
6445
6446 /* Registers x13-x23 are the various mode SP and FP registers. Registers
6447 * r13 and r14 are only copied if we are in that mode, otherwise we copy
6448 * from the mode banked register.
6449 */
6450 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6451 env->xregs[13] = env->regs[13];
6452 env->xregs[14] = env->regs[14];
6453 } else {
6454 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6455 /* HYP is an exception in that it is copied from r14 */
6456 if (mode == ARM_CPU_MODE_HYP) {
6457 env->xregs[14] = env->regs[14];
6458 } else {
6459 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6460 }
6461 }
6462
6463 if (mode == ARM_CPU_MODE_HYP) {
6464 env->xregs[15] = env->regs[13];
6465 } else {
6466 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6467 }
6468
6469 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
6470 env->xregs[16] = env->regs[14];
6471 env->xregs[17] = env->regs[13];
ce02049d 6472 } else {
3a9148d0
SS
6473 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6474 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
ce02049d
GB
6475 }
6476
6477 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
6478 env->xregs[18] = env->regs[14];
6479 env->xregs[19] = env->regs[13];
ce02049d 6480 } else {
3a9148d0
SS
6481 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6482 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
ce02049d
GB
6483 }
6484
6485 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
6486 env->xregs[20] = env->regs[14];
6487 env->xregs[21] = env->regs[13];
ce02049d 6488 } else {
3a9148d0
SS
6489 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6490 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
ce02049d
GB
6491 }
6492
6493 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
6494 env->xregs[22] = env->regs[14];
6495 env->xregs[23] = env->regs[13];
ce02049d 6496 } else {
3a9148d0
SS
6497 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6498 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
ce02049d
GB
6499 }
6500
6501 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6502 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6503 * FIQ bank for r8-r14.
6504 */
6505 if (mode == ARM_CPU_MODE_FIQ) {
6506 for (i = 24; i < 31; i++) {
6507 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
6508 }
6509 } else {
6510 for (i = 24; i < 29; i++) {
6511 env->xregs[i] = env->fiq_regs[i - 24];
6512 }
6513 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6514 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6515 }
6516
6517 env->pc = env->regs[15];
6518}
6519
6520/* Function used to synchronize QEMU's AArch32 register set with AArch64
6521 * register set. This is necessary when switching between AArch32 and AArch64
6522 * execution state.
6523 */
6524void aarch64_sync_64_to_32(CPUARMState *env)
6525{
6526 int i;
6527 uint32_t mode = env->uncached_cpsr & CPSR_M;
6528
6529 /* We can blanket copy X[0:7] to R[0:7] */
6530 for (i = 0; i < 8; i++) {
6531 env->regs[i] = env->xregs[i];
6532 }
6533
6534 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6535 * Otherwise, we copy x8-x12 into the banked user regs.
6536 */
6537 if (mode == ARM_CPU_MODE_FIQ) {
6538 for (i = 8; i < 13; i++) {
6539 env->usr_regs[i - 8] = env->xregs[i];
6540 }
6541 } else {
6542 for (i = 8; i < 13; i++) {
6543 env->regs[i] = env->xregs[i];
6544 }
6545 }
6546
6547 /* Registers r13 & r14 depend on the current mode.
6548 * If we are in a given mode, we copy the corresponding x registers to r13
6549 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6550 * for the mode.
6551 */
6552 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6553 env->regs[13] = env->xregs[13];
6554 env->regs[14] = env->xregs[14];
6555 } else {
6556 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6557
6558 /* HYP is an exception in that it does not have its own banked r14 but
6559 * shares the USR r14
6560 */
6561 if (mode == ARM_CPU_MODE_HYP) {
6562 env->regs[14] = env->xregs[14];
6563 } else {
6564 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6565 }
6566 }
6567
6568 if (mode == ARM_CPU_MODE_HYP) {
6569 env->regs[13] = env->xregs[15];
6570 } else {
6571 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6572 }
6573
6574 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
6575 env->regs[14] = env->xregs[16];
6576 env->regs[13] = env->xregs[17];
ce02049d 6577 } else {
3a9148d0
SS
6578 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6579 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
ce02049d
GB
6580 }
6581
6582 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
6583 env->regs[14] = env->xregs[18];
6584 env->regs[13] = env->xregs[19];
ce02049d 6585 } else {
3a9148d0
SS
6586 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6587 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
ce02049d
GB
6588 }
6589
6590 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
6591 env->regs[14] = env->xregs[20];
6592 env->regs[13] = env->xregs[21];
ce02049d 6593 } else {
3a9148d0
SS
6594 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6595 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
ce02049d
GB
6596 }
6597
6598 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
6599 env->regs[14] = env->xregs[22];
6600 env->regs[13] = env->xregs[23];
ce02049d 6601 } else {
3a9148d0
SS
6602 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6603 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
ce02049d
GB
6604 }
6605
6606 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6607 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6608 * FIQ bank for r8-r14.
6609 */
6610 if (mode == ARM_CPU_MODE_FIQ) {
6611 for (i = 24; i < 31; i++) {
6612 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6613 }
6614 } else {
6615 for (i = 24; i < 29; i++) {
6616 env->fiq_regs[i - 24] = env->xregs[i];
6617 }
6618 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6619 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6620 }
6621
6622 env->regs[15] = env->pc;
6623}
6624
966f758c 6625static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
b5ff1b31 6626{
97a8ea5a
AF
6627 ARMCPU *cpu = ARM_CPU(cs);
6628 CPUARMState *env = &cpu->env;
b5ff1b31
FB
6629 uint32_t addr;
6630 uint32_t mask;
6631 int new_mode;
6632 uint32_t offset;
16a906fd 6633 uint32_t moe;
b5ff1b31 6634
16a906fd
PM
6635 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6636 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6637 case EC_BREAKPOINT:
6638 case EC_BREAKPOINT_SAME_EL:
6639 moe = 1;
6640 break;
6641 case EC_WATCHPOINT:
6642 case EC_WATCHPOINT_SAME_EL:
6643 moe = 10;
6644 break;
6645 case EC_AA32_BKPT:
6646 moe = 3;
6647 break;
6648 case EC_VECTORCATCH:
6649 moe = 5;
6650 break;
6651 default:
6652 moe = 0;
6653 break;
6654 }
6655
6656 if (moe) {
6657 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6658 }
6659
b5ff1b31 6660 /* TODO: Vectored interrupt controller. */
27103424 6661 switch (cs->exception_index) {
b5ff1b31
FB
6662 case EXCP_UDEF:
6663 new_mode = ARM_CPU_MODE_UND;
6664 addr = 0x04;
6665 mask = CPSR_I;
6666 if (env->thumb)
6667 offset = 2;
6668 else
6669 offset = 4;
6670 break;
6671 case EXCP_SWI:
6672 new_mode = ARM_CPU_MODE_SVC;
6673 addr = 0x08;
6674 mask = CPSR_I;
601d70b9 6675 /* The PC already points to the next instruction. */
b5ff1b31
FB
6676 offset = 0;
6677 break;
06c949e6 6678 case EXCP_BKPT:
abf1172f 6679 env->exception.fsr = 2;
9ee6e8bb
PB
6680 /* Fall through to prefetch abort. */
6681 case EXCP_PREFETCH_ABORT:
88ca1c2d 6682 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
b848ce2b 6683 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
3f1beaca 6684 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
88ca1c2d 6685 env->exception.fsr, (uint32_t)env->exception.vaddress);
b5ff1b31
FB
6686 new_mode = ARM_CPU_MODE_ABT;
6687 addr = 0x0c;
6688 mask = CPSR_A | CPSR_I;
6689 offset = 4;
6690 break;
6691 case EXCP_DATA_ABORT:
4a7e2d73 6692 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
b848ce2b 6693 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
3f1beaca 6694 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4a7e2d73 6695 env->exception.fsr,
6cd8a264 6696 (uint32_t)env->exception.vaddress);
b5ff1b31
FB
6697 new_mode = ARM_CPU_MODE_ABT;
6698 addr = 0x10;
6699 mask = CPSR_A | CPSR_I;
6700 offset = 8;
6701 break;
6702 case EXCP_IRQ:
6703 new_mode = ARM_CPU_MODE_IRQ;
6704 addr = 0x18;
6705 /* Disable IRQ and imprecise data aborts. */
6706 mask = CPSR_A | CPSR_I;
6707 offset = 4;
de38d23b
FA
6708 if (env->cp15.scr_el3 & SCR_IRQ) {
6709 /* IRQ routed to monitor mode */
6710 new_mode = ARM_CPU_MODE_MON;
6711 mask |= CPSR_F;
6712 }
b5ff1b31
FB
6713 break;
6714 case EXCP_FIQ:
6715 new_mode = ARM_CPU_MODE_FIQ;
6716 addr = 0x1c;
6717 /* Disable FIQ, IRQ and imprecise data aborts. */
6718 mask = CPSR_A | CPSR_I | CPSR_F;
de38d23b
FA
6719 if (env->cp15.scr_el3 & SCR_FIQ) {
6720 /* FIQ routed to monitor mode */
6721 new_mode = ARM_CPU_MODE_MON;
6722 }
b5ff1b31
FB
6723 offset = 4;
6724 break;
87a4b270
PM
6725 case EXCP_VIRQ:
6726 new_mode = ARM_CPU_MODE_IRQ;
6727 addr = 0x18;
6728 /* Disable IRQ and imprecise data aborts. */
6729 mask = CPSR_A | CPSR_I;
6730 offset = 4;
6731 break;
6732 case EXCP_VFIQ:
6733 new_mode = ARM_CPU_MODE_FIQ;
6734 addr = 0x1c;
6735 /* Disable FIQ, IRQ and imprecise data aborts. */
6736 mask = CPSR_A | CPSR_I | CPSR_F;
6737 offset = 4;
6738 break;
dbe9d163
FA
6739 case EXCP_SMC:
6740 new_mode = ARM_CPU_MODE_MON;
6741 addr = 0x08;
6742 mask = CPSR_A | CPSR_I | CPSR_F;
6743 offset = 0;
6744 break;
b5ff1b31 6745 default:
a47dddd7 6746 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
b5ff1b31
FB
6747 return; /* Never happens. Keep compiler happy. */
6748 }
e89e51a1
FA
6749
6750 if (new_mode == ARM_CPU_MODE_MON) {
6751 addr += env->cp15.mvbar;
137feaa9 6752 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
e89e51a1 6753 /* High vectors. When enabled, base address cannot be remapped. */
b5ff1b31 6754 addr += 0xffff0000;
8641136c
NR
6755 } else {
6756 /* ARM v7 architectures provide a vector base address register to remap
6757 * the interrupt vector table.
e89e51a1 6758 * This register is only followed in non-monitor mode, and is banked.
8641136c
NR
6759 * Note: only bits 31:5 are valid.
6760 */
fb6c91ba 6761 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
b5ff1b31 6762 }
dbe9d163
FA
6763
6764 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6765 env->cp15.scr_el3 &= ~SCR_NS;
6766 }
6767
b5ff1b31 6768 switch_mode (env, new_mode);
662cefb7
PM
6769 /* For exceptions taken to AArch32 we must clear the SS bit in both
6770 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6771 */
6772 env->uncached_cpsr &= ~PSTATE_SS;
b5ff1b31 6773 env->spsr = cpsr_read(env);
9ee6e8bb
PB
6774 /* Clear IT bits. */
6775 env->condexec_bits = 0;
30a8cac1 6776 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 6777 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
73462ddd
PC
6778 /* Set new mode endianness */
6779 env->uncached_cpsr &= ~CPSR_E;
6780 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
3823b9db 6781 env->uncached_cpsr |= CPSR_E;
73462ddd 6782 }
4cc35614 6783 env->daif |= mask;
be5e7a76
DES
6784 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6785 * and we should just guard the thumb mode on V4 */
6786 if (arm_feature(env, ARM_FEATURE_V4T)) {
137feaa9 6787 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
be5e7a76 6788 }
b5ff1b31
FB
6789 env->regs[14] = env->regs[15] + offset;
6790 env->regs[15] = addr;
b5ff1b31
FB
6791}
6792
966f758c
PM
6793/* Handle exception entry to a target EL which is using AArch64 */
6794static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
f3a9b694
PM
6795{
6796 ARMCPU *cpu = ARM_CPU(cs);
6797 CPUARMState *env = &cpu->env;
6798 unsigned int new_el = env->exception.target_el;
6799 target_ulong addr = env->cp15.vbar_el[new_el];
6800 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6801
6802 if (arm_current_el(env) < new_el) {
3d6f7617
PM
6803 /* Entry vector offset depends on whether the implemented EL
6804 * immediately lower than the target level is using AArch32 or AArch64
6805 */
6806 bool is_aa64;
6807
6808 switch (new_el) {
6809 case 3:
6810 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6811 break;
6812 case 2:
6813 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6814 break;
6815 case 1:
6816 is_aa64 = is_a64(env);
6817 break;
6818 default:
6819 g_assert_not_reached();
6820 }
6821
6822 if (is_aa64) {
f3a9b694
PM
6823 addr += 0x400;
6824 } else {
6825 addr += 0x600;
6826 }
6827 } else if (pstate_read(env) & PSTATE_SP) {
6828 addr += 0x200;
6829 }
6830
f3a9b694
PM
6831 switch (cs->exception_index) {
6832 case EXCP_PREFETCH_ABORT:
6833 case EXCP_DATA_ABORT:
6834 env->cp15.far_el[new_el] = env->exception.vaddress;
6835 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6836 env->cp15.far_el[new_el]);
6837 /* fall through */
6838 case EXCP_BKPT:
6839 case EXCP_UDEF:
6840 case EXCP_SWI:
6841 case EXCP_HVC:
6842 case EXCP_HYP_TRAP:
6843 case EXCP_SMC:
6844 env->cp15.esr_el[new_el] = env->exception.syndrome;
6845 break;
6846 case EXCP_IRQ:
6847 case EXCP_VIRQ:
6848 addr += 0x80;
6849 break;
6850 case EXCP_FIQ:
6851 case EXCP_VFIQ:
6852 addr += 0x100;
6853 break;
6854 case EXCP_SEMIHOST:
6855 qemu_log_mask(CPU_LOG_INT,
6856 "...handling as semihosting call 0x%" PRIx64 "\n",
6857 env->xregs[0]);
6858 env->xregs[0] = do_arm_semihosting(env);
6859 return;
6860 default:
6861 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6862 }
6863
6864 if (is_a64(env)) {
6865 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6866 aarch64_save_sp(env, arm_current_el(env));
6867 env->elr_el[new_el] = env->pc;
6868 } else {
6869 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
f3a9b694
PM
6870 env->elr_el[new_el] = env->regs[15];
6871
6872 aarch64_sync_32_to_64(env);
6873
6874 env->condexec_bits = 0;
6875 }
6876 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6877 env->elr_el[new_el]);
6878
6879 pstate_write(env, PSTATE_DAIF | new_mode);
6880 env->aarch64 = 1;
6881 aarch64_restore_sp(env, new_el);
6882
6883 env->pc = addr;
6884
6885 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6886 new_el, env->pc, pstate_read(env));
966f758c
PM
6887}
6888
904c04de
PM
6889static inline bool check_for_semihosting(CPUState *cs)
6890{
6891 /* Check whether this exception is a semihosting call; if so
6892 * then handle it and return true; otherwise return false.
6893 */
6894 ARMCPU *cpu = ARM_CPU(cs);
6895 CPUARMState *env = &cpu->env;
6896
6897 if (is_a64(env)) {
6898 if (cs->exception_index == EXCP_SEMIHOST) {
6899 /* This is always the 64-bit semihosting exception.
6900 * The "is this usermode" and "is semihosting enabled"
6901 * checks have been done at translate time.
6902 */
6903 qemu_log_mask(CPU_LOG_INT,
6904 "...handling as semihosting call 0x%" PRIx64 "\n",
6905 env->xregs[0]);
6906 env->xregs[0] = do_arm_semihosting(env);
6907 return true;
6908 }
6909 return false;
6910 } else {
6911 uint32_t imm;
6912
6913 /* Only intercept calls from privileged modes, to provide some
6914 * semblance of security.
6915 */
19a6e31c
PM
6916 if (cs->exception_index != EXCP_SEMIHOST &&
6917 (!semihosting_enabled() ||
6918 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
904c04de
PM
6919 return false;
6920 }
6921
6922 switch (cs->exception_index) {
19a6e31c
PM
6923 case EXCP_SEMIHOST:
6924 /* This is always a semihosting call; the "is this usermode"
6925 * and "is semihosting enabled" checks have been done at
6926 * translate time.
6927 */
6928 break;
904c04de
PM
6929 case EXCP_SWI:
6930 /* Check for semihosting interrupt. */
6931 if (env->thumb) {
f9fd40eb 6932 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
904c04de
PM
6933 & 0xff;
6934 if (imm == 0xab) {
6935 break;
6936 }
6937 } else {
f9fd40eb 6938 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
904c04de
PM
6939 & 0xffffff;
6940 if (imm == 0x123456) {
6941 break;
6942 }
6943 }
6944 return false;
6945 case EXCP_BKPT:
6946 /* See if this is a semihosting syscall. */
6947 if (env->thumb) {
f9fd40eb 6948 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
904c04de
PM
6949 & 0xff;
6950 if (imm == 0xab) {
6951 env->regs[15] += 2;
6952 break;
6953 }
6954 }
6955 return false;
6956 default:
6957 return false;
6958 }
6959
6960 qemu_log_mask(CPU_LOG_INT,
6961 "...handling as semihosting call 0x%x\n",
6962 env->regs[0]);
6963 env->regs[0] = do_arm_semihosting(env);
6964 return true;
6965 }
6966}
6967
966f758c
PM
6968/* Handle a CPU exception for A and R profile CPUs.
6969 * Do any appropriate logging, handle PSCI calls, and then hand off
6970 * to the AArch64-entry or AArch32-entry function depending on the
6971 * target exception level's register width.
6972 */
6973void arm_cpu_do_interrupt(CPUState *cs)
6974{
6975 ARMCPU *cpu = ARM_CPU(cs);
6976 CPUARMState *env = &cpu->env;
6977 unsigned int new_el = env->exception.target_el;
6978
531c60a9 6979 assert(!arm_feature(env, ARM_FEATURE_M));
966f758c
PM
6980
6981 arm_log_exception(cs->exception_index);
6982 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6983 new_el);
6984 if (qemu_loglevel_mask(CPU_LOG_INT)
6985 && !excp_is_internal(cs->exception_index)) {
6568da45 6986 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
966f758c
PM
6987 env->exception.syndrome >> ARM_EL_EC_SHIFT,
6988 env->exception.syndrome);
6989 }
6990
6991 if (arm_is_psci_call(cpu, cs->exception_index)) {
6992 arm_handle_psci_call(cpu);
6993 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6994 return;
6995 }
6996
904c04de
PM
6997 /* Semihosting semantics depend on the register width of the
6998 * code that caused the exception, not the target exception level,
6999 * so must be handled here.
966f758c 7000 */
904c04de
PM
7001 if (check_for_semihosting(cs)) {
7002 return;
7003 }
7004
7005 assert(!excp_is_internal(cs->exception_index));
7006 if (arm_el_is_aa64(env, new_el)) {
966f758c
PM
7007 arm_cpu_do_interrupt_aarch64(cs);
7008 } else {
7009 arm_cpu_do_interrupt_aarch32(cs);
7010 }
f3a9b694 7011
8d04fb55
JK
7012 /* Hooks may change global state so BQL should be held, also the
7013 * BQL needs to be held for any modification of
7014 * cs->interrupt_request.
7015 */
7016 g_assert(qemu_mutex_iothread_locked());
7017
bd7d00fc
PM
7018 arm_call_el_change_hook(cpu);
7019
f3a9b694
PM
7020 if (!kvm_enabled()) {
7021 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7022 }
7023}
0480f69a
PM
7024
7025/* Return the exception level which controls this address translation regime */
7026static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7027{
7028 switch (mmu_idx) {
7029 case ARMMMUIdx_S2NS:
7030 case ARMMMUIdx_S1E2:
7031 return 2;
7032 case ARMMMUIdx_S1E3:
7033 return 3;
7034 case ARMMMUIdx_S1SE0:
7035 return arm_el_is_aa64(env, 3) ? 1 : 3;
7036 case ARMMMUIdx_S1SE1:
7037 case ARMMMUIdx_S1NSE0:
7038 case ARMMMUIdx_S1NSE1:
e7b921c2
PM
7039 case ARMMMUIdx_MPriv:
7040 case ARMMMUIdx_MUser:
0480f69a
PM
7041 return 1;
7042 default:
7043 g_assert_not_reached();
7044 }
7045}
7046
8bf5b6a9
PM
7047/* Return true if this address translation regime is secure */
7048static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
7049{
7050 switch (mmu_idx) {
7051 case ARMMMUIdx_S12NSE0:
7052 case ARMMMUIdx_S12NSE1:
7053 case ARMMMUIdx_S1NSE0:
7054 case ARMMMUIdx_S1NSE1:
7055 case ARMMMUIdx_S1E2:
7056 case ARMMMUIdx_S2NS:
e7b921c2
PM
7057 case ARMMMUIdx_MPriv:
7058 case ARMMMUIdx_MUser:
8bf5b6a9
PM
7059 return false;
7060 case ARMMMUIdx_S1E3:
7061 case ARMMMUIdx_S1SE0:
7062 case ARMMMUIdx_S1SE1:
7063 return true;
7064 default:
7065 g_assert_not_reached();
7066 }
7067}
7068
0480f69a
PM
7069/* Return the SCTLR value which controls this address translation regime */
7070static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7071{
7072 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7073}
7074
7075/* Return true if the specified stage of address translation is disabled */
7076static inline bool regime_translation_disabled(CPUARMState *env,
7077 ARMMMUIdx mmu_idx)
7078{
29c483a5
MD
7079 if (arm_feature(env, ARM_FEATURE_M)) {
7080 return !(env->v7m.mpu_ctrl & R_V7M_MPU_CTRL_ENABLE_MASK);
7081 }
7082
0480f69a
PM
7083 if (mmu_idx == ARMMMUIdx_S2NS) {
7084 return (env->cp15.hcr_el2 & HCR_VM) == 0;
7085 }
7086 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7087}
7088
73462ddd
PC
7089static inline bool regime_translation_big_endian(CPUARMState *env,
7090 ARMMMUIdx mmu_idx)
7091{
7092 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7093}
7094
0480f69a
PM
7095/* Return the TCR controlling this translation regime */
7096static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7097{
7098 if (mmu_idx == ARMMMUIdx_S2NS) {
68e9c2fe 7099 return &env->cp15.vtcr_el2;
0480f69a
PM
7100 }
7101 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7102}
7103
8bd5c820
PM
7104/* Convert a possible stage1+2 MMU index into the appropriate
7105 * stage 1 MMU index
7106 */
7107static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7108{
7109 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7110 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7111 }
7112 return mmu_idx;
7113}
7114
86fb3fa4
TH
7115/* Returns TBI0 value for current regime el */
7116uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7117{
7118 TCR *tcr;
7119 uint32_t el;
7120
7121 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8bd5c820
PM
7122 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7123 */
7124 mmu_idx = stage_1_mmu_idx(mmu_idx);
86fb3fa4
TH
7125
7126 tcr = regime_tcr(env, mmu_idx);
7127 el = regime_el(env, mmu_idx);
7128
7129 if (el > 1) {
7130 return extract64(tcr->raw_tcr, 20, 1);
7131 } else {
7132 return extract64(tcr->raw_tcr, 37, 1);
7133 }
7134}
7135
7136/* Returns TBI1 value for current regime el */
7137uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7138{
7139 TCR *tcr;
7140 uint32_t el;
7141
7142 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8bd5c820
PM
7143 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7144 */
7145 mmu_idx = stage_1_mmu_idx(mmu_idx);
86fb3fa4
TH
7146
7147 tcr = regime_tcr(env, mmu_idx);
7148 el = regime_el(env, mmu_idx);
7149
7150 if (el > 1) {
7151 return 0;
7152 } else {
7153 return extract64(tcr->raw_tcr, 38, 1);
7154 }
7155}
7156
aef878be
GB
7157/* Return the TTBR associated with this translation regime */
7158static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7159 int ttbrn)
7160{
7161 if (mmu_idx == ARMMMUIdx_S2NS) {
b698e9cf 7162 return env->cp15.vttbr_el2;
aef878be
GB
7163 }
7164 if (ttbrn == 0) {
7165 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7166 } else {
7167 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7168 }
7169}
7170
0480f69a
PM
7171/* Return true if the translation regime is using LPAE format page tables */
7172static inline bool regime_using_lpae_format(CPUARMState *env,
7173 ARMMMUIdx mmu_idx)
7174{
7175 int el = regime_el(env, mmu_idx);
7176 if (el == 2 || arm_el_is_aa64(env, el)) {
7177 return true;
7178 }
7179 if (arm_feature(env, ARM_FEATURE_LPAE)
7180 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7181 return true;
7182 }
7183 return false;
7184}
7185
deb2db99
AR
7186/* Returns true if the stage 1 translation regime is using LPAE format page
7187 * tables. Used when raising alignment exceptions, whose FSR changes depending
7188 * on whether the long or short descriptor format is in use. */
7189bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
30901475 7190{
8bd5c820 7191 mmu_idx = stage_1_mmu_idx(mmu_idx);
deb2db99 7192
30901475
AB
7193 return regime_using_lpae_format(env, mmu_idx);
7194}
7195
0480f69a
PM
7196static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
7197{
7198 switch (mmu_idx) {
7199 case ARMMMUIdx_S1SE0:
7200 case ARMMMUIdx_S1NSE0:
e7b921c2 7201 case ARMMMUIdx_MUser:
0480f69a
PM
7202 return true;
7203 default:
7204 return false;
7205 case ARMMMUIdx_S12NSE0:
7206 case ARMMMUIdx_S12NSE1:
7207 g_assert_not_reached();
7208 }
7209}
7210
0fbf5238
AJ
7211/* Translate section/page access permissions to page
7212 * R/W protection flags
d76951b6
AJ
7213 *
7214 * @env: CPUARMState
7215 * @mmu_idx: MMU index indicating required translation regime
7216 * @ap: The 3-bit access permissions (AP[2:0])
7217 * @domain_prot: The 2-bit domain access permissions
0fbf5238
AJ
7218 */
7219static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
7220 int ap, int domain_prot)
7221{
554b0b09
PM
7222 bool is_user = regime_is_user(env, mmu_idx);
7223
7224 if (domain_prot == 3) {
7225 return PAGE_READ | PAGE_WRITE;
7226 }
7227
554b0b09
PM
7228 switch (ap) {
7229 case 0:
7230 if (arm_feature(env, ARM_FEATURE_V7)) {
7231 return 0;
7232 }
554b0b09
PM
7233 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
7234 case SCTLR_S:
7235 return is_user ? 0 : PAGE_READ;
7236 case SCTLR_R:
7237 return PAGE_READ;
7238 default:
7239 return 0;
7240 }
7241 case 1:
7242 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7243 case 2:
87c3d486 7244 if (is_user) {
0fbf5238 7245 return PAGE_READ;
87c3d486 7246 } else {
554b0b09 7247 return PAGE_READ | PAGE_WRITE;
87c3d486 7248 }
554b0b09
PM
7249 case 3:
7250 return PAGE_READ | PAGE_WRITE;
7251 case 4: /* Reserved. */
7252 return 0;
7253 case 5:
0fbf5238 7254 return is_user ? 0 : PAGE_READ;
554b0b09 7255 case 6:
0fbf5238 7256 return PAGE_READ;
554b0b09 7257 case 7:
87c3d486 7258 if (!arm_feature(env, ARM_FEATURE_V6K)) {
554b0b09 7259 return 0;
87c3d486 7260 }
0fbf5238 7261 return PAGE_READ;
554b0b09 7262 default:
0fbf5238 7263 g_assert_not_reached();
554b0b09 7264 }
b5ff1b31
FB
7265}
7266
d76951b6
AJ
7267/* Translate section/page access permissions to page
7268 * R/W protection flags.
7269 *
d76951b6 7270 * @ap: The 2-bit simple AP (AP[2:1])
d8e052b3 7271 * @is_user: TRUE if accessing from PL0
d76951b6 7272 */
d8e052b3 7273static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
d76951b6 7274{
d76951b6
AJ
7275 switch (ap) {
7276 case 0:
7277 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7278 case 1:
7279 return PAGE_READ | PAGE_WRITE;
7280 case 2:
7281 return is_user ? 0 : PAGE_READ;
7282 case 3:
7283 return PAGE_READ;
7284 default:
7285 g_assert_not_reached();
7286 }
7287}
7288
d8e052b3
AJ
7289static inline int
7290simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
7291{
7292 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
7293}
7294
6ab1a5ee
EI
7295/* Translate S2 section/page access permissions to protection flags
7296 *
7297 * @env: CPUARMState
7298 * @s2ap: The 2-bit stage2 access permissions (S2AP)
7299 * @xn: XN (execute-never) bit
7300 */
7301static int get_S2prot(CPUARMState *env, int s2ap, int xn)
7302{
7303 int prot = 0;
7304
7305 if (s2ap & 1) {
7306 prot |= PAGE_READ;
7307 }
7308 if (s2ap & 2) {
7309 prot |= PAGE_WRITE;
7310 }
7311 if (!xn) {
dfda6837
SS
7312 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
7313 prot |= PAGE_EXEC;
7314 }
6ab1a5ee
EI
7315 }
7316 return prot;
7317}
7318
d8e052b3
AJ
7319/* Translate section/page access permissions to protection flags
7320 *
7321 * @env: CPUARMState
7322 * @mmu_idx: MMU index indicating required translation regime
7323 * @is_aa64: TRUE if AArch64
7324 * @ap: The 2-bit simple AP (AP[2:1])
7325 * @ns: NS (non-secure) bit
7326 * @xn: XN (execute-never) bit
7327 * @pxn: PXN (privileged execute-never) bit
7328 */
7329static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
7330 int ap, int ns, int xn, int pxn)
7331{
7332 bool is_user = regime_is_user(env, mmu_idx);
7333 int prot_rw, user_rw;
7334 bool have_wxn;
7335 int wxn = 0;
7336
7337 assert(mmu_idx != ARMMMUIdx_S2NS);
7338
7339 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
7340 if (is_user) {
7341 prot_rw = user_rw;
7342 } else {
7343 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
7344 }
7345
7346 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
7347 return prot_rw;
7348 }
7349
7350 /* TODO have_wxn should be replaced with
7351 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7352 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7353 * compatible processors have EL2, which is required for [U]WXN.
7354 */
7355 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
7356
7357 if (have_wxn) {
7358 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7359 }
7360
7361 if (is_aa64) {
7362 switch (regime_el(env, mmu_idx)) {
7363 case 1:
7364 if (!is_user) {
7365 xn = pxn || (user_rw & PAGE_WRITE);
7366 }
7367 break;
7368 case 2:
7369 case 3:
7370 break;
7371 }
7372 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7373 switch (regime_el(env, mmu_idx)) {
7374 case 1:
7375 case 3:
7376 if (is_user) {
7377 xn = xn || !(user_rw & PAGE_READ);
7378 } else {
7379 int uwxn = 0;
7380 if (have_wxn) {
7381 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7382 }
7383 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7384 (uwxn && (user_rw & PAGE_WRITE));
7385 }
7386 break;
7387 case 2:
7388 break;
7389 }
7390 } else {
7391 xn = wxn = 0;
7392 }
7393
7394 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7395 return prot_rw;
7396 }
7397 return prot_rw | PAGE_EXEC;
7398}
7399
0480f69a
PM
7400static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7401 uint32_t *table, uint32_t address)
b2fa1797 7402{
0480f69a 7403 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
0480f69a 7404 TCR *tcr = regime_tcr(env, mmu_idx);
11f136ee 7405
11f136ee
FA
7406 if (address & tcr->mask) {
7407 if (tcr->raw_tcr & TTBCR_PD1) {
e389be16
FA
7408 /* Translation table walk disabled for TTBR1 */
7409 return false;
7410 }
aef878be 7411 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
e389be16 7412 } else {
11f136ee 7413 if (tcr->raw_tcr & TTBCR_PD0) {
e389be16
FA
7414 /* Translation table walk disabled for TTBR0 */
7415 return false;
7416 }
aef878be 7417 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
e389be16
FA
7418 }
7419 *table |= (address >> 18) & 0x3ffc;
7420 return true;
b2fa1797
PB
7421}
7422
37785977
EI
7423/* Translate a S1 pagetable walk through S2 if needed. */
7424static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7425 hwaddr addr, MemTxAttrs txattrs,
7426 uint32_t *fsr,
7427 ARMMMUFaultInfo *fi)
7428{
7429 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7430 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7431 target_ulong s2size;
7432 hwaddr s2pa;
7433 int s2prot;
7434 int ret;
7435
7436 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7437 &txattrs, &s2prot, &s2size, fsr, fi);
7438 if (ret) {
7439 fi->s2addr = addr;
7440 fi->stage2 = true;
7441 fi->s1ptw = true;
7442 return ~0;
7443 }
7444 addr = s2pa;
7445 }
7446 return addr;
7447}
7448
ebca90e4
PM
7449/* All loads done in the course of a page table walk go through here.
7450 * TODO: rather than ignoring errors from physical memory reads (which
7451 * are external aborts in ARM terminology) we should propagate this
7452 * error out so that we can turn it into a Data Abort if this walk
7453 * was being done for a CPU load/store or an address translation instruction
7454 * (but not if it was for a debug access).
7455 */
a614e698
EI
7456static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7457 ARMMMUIdx mmu_idx, uint32_t *fsr,
7458 ARMMMUFaultInfo *fi)
ebca90e4 7459{
a614e698
EI
7460 ARMCPU *cpu = ARM_CPU(cs);
7461 CPUARMState *env = &cpu->env;
ebca90e4 7462 MemTxAttrs attrs = {};
5ce4ff65 7463 AddressSpace *as;
ebca90e4
PM
7464
7465 attrs.secure = is_secure;
5ce4ff65 7466 as = arm_addressspace(cs, attrs);
a614e698
EI
7467 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7468 if (fi->s1ptw) {
7469 return 0;
7470 }
73462ddd
PC
7471 if (regime_translation_big_endian(env, mmu_idx)) {
7472 return address_space_ldl_be(as, addr, attrs, NULL);
7473 } else {
7474 return address_space_ldl_le(as, addr, attrs, NULL);
7475 }
ebca90e4
PM
7476}
7477
37785977
EI
7478static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7479 ARMMMUIdx mmu_idx, uint32_t *fsr,
7480 ARMMMUFaultInfo *fi)
ebca90e4 7481{
37785977
EI
7482 ARMCPU *cpu = ARM_CPU(cs);
7483 CPUARMState *env = &cpu->env;
ebca90e4 7484 MemTxAttrs attrs = {};
5ce4ff65 7485 AddressSpace *as;
ebca90e4
PM
7486
7487 attrs.secure = is_secure;
5ce4ff65 7488 as = arm_addressspace(cs, attrs);
37785977
EI
7489 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7490 if (fi->s1ptw) {
7491 return 0;
7492 }
73462ddd
PC
7493 if (regime_translation_big_endian(env, mmu_idx)) {
7494 return address_space_ldq_be(as, addr, attrs, NULL);
7495 } else {
7496 return address_space_ldq_le(as, addr, attrs, NULL);
7497 }
ebca90e4
PM
7498}
7499
b7cc4e82
PC
7500static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
7501 int access_type, ARMMMUIdx mmu_idx,
7502 hwaddr *phys_ptr, int *prot,
e14b5a23
EI
7503 target_ulong *page_size, uint32_t *fsr,
7504 ARMMMUFaultInfo *fi)
b5ff1b31 7505{
70d74660 7506 CPUState *cs = CPU(arm_env_get_cpu(env));
b5ff1b31
FB
7507 int code;
7508 uint32_t table;
7509 uint32_t desc;
7510 int type;
7511 int ap;
e389be16 7512 int domain = 0;
dd4ebc2e 7513 int domain_prot;
a8170e5e 7514 hwaddr phys_addr;
0480f69a 7515 uint32_t dacr;
b5ff1b31 7516
9ee6e8bb
PB
7517 /* Pagetable walk. */
7518 /* Lookup l1 descriptor. */
0480f69a 7519 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
7520 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7521 code = 5;
7522 goto do_fault;
7523 }
a614e698
EI
7524 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7525 mmu_idx, fsr, fi);
9ee6e8bb 7526 type = (desc & 3);
dd4ebc2e 7527 domain = (desc >> 5) & 0x0f;
0480f69a
PM
7528 if (regime_el(env, mmu_idx) == 1) {
7529 dacr = env->cp15.dacr_ns;
7530 } else {
7531 dacr = env->cp15.dacr_s;
7532 }
7533 domain_prot = (dacr >> (domain * 2)) & 3;
9ee6e8bb 7534 if (type == 0) {
601d70b9 7535 /* Section translation fault. */
9ee6e8bb
PB
7536 code = 5;
7537 goto do_fault;
7538 }
dd4ebc2e 7539 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
7540 if (type == 2)
7541 code = 9; /* Section domain fault. */
7542 else
7543 code = 11; /* Page domain fault. */
7544 goto do_fault;
7545 }
7546 if (type == 2) {
7547 /* 1Mb section. */
7548 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7549 ap = (desc >> 10) & 3;
7550 code = 13;
d4c430a8 7551 *page_size = 1024 * 1024;
9ee6e8bb
PB
7552 } else {
7553 /* Lookup l2 entry. */
554b0b09
PM
7554 if (type == 1) {
7555 /* Coarse pagetable. */
7556 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7557 } else {
7558 /* Fine pagetable. */
7559 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7560 }
a614e698
EI
7561 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7562 mmu_idx, fsr, fi);
9ee6e8bb
PB
7563 switch (desc & 3) {
7564 case 0: /* Page translation fault. */
7565 code = 7;
7566 goto do_fault;
7567 case 1: /* 64k page. */
7568 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7569 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 7570 *page_size = 0x10000;
ce819861 7571 break;
9ee6e8bb
PB
7572 case 2: /* 4k page. */
7573 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
c10f7fc3 7574 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
d4c430a8 7575 *page_size = 0x1000;
ce819861 7576 break;
fc1891c7 7577 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
554b0b09 7578 if (type == 1) {
fc1891c7
PM
7579 /* ARMv6/XScale extended small page format */
7580 if (arm_feature(env, ARM_FEATURE_XSCALE)
7581 || arm_feature(env, ARM_FEATURE_V6)) {
554b0b09 7582 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
fc1891c7 7583 *page_size = 0x1000;
554b0b09 7584 } else {
fc1891c7
PM
7585 /* UNPREDICTABLE in ARMv5; we choose to take a
7586 * page translation fault.
7587 */
554b0b09
PM
7588 code = 7;
7589 goto do_fault;
7590 }
7591 } else {
7592 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
fc1891c7 7593 *page_size = 0x400;
554b0b09 7594 }
9ee6e8bb 7595 ap = (desc >> 4) & 3;
ce819861
PB
7596 break;
7597 default:
9ee6e8bb
PB
7598 /* Never happens, but compiler isn't smart enough to tell. */
7599 abort();
ce819861 7600 }
9ee6e8bb
PB
7601 code = 15;
7602 }
0fbf5238
AJ
7603 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7604 *prot |= *prot ? PAGE_EXEC : 0;
7605 if (!(*prot & (1 << access_type))) {
9ee6e8bb
PB
7606 /* Access permission fault. */
7607 goto do_fault;
7608 }
7609 *phys_ptr = phys_addr;
b7cc4e82 7610 return false;
9ee6e8bb 7611do_fault:
b7cc4e82
PC
7612 *fsr = code | (domain << 4);
7613 return true;
9ee6e8bb
PB
7614}
7615
b7cc4e82
PC
7616static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7617 int access_type, ARMMMUIdx mmu_idx,
7618 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
7619 target_ulong *page_size, uint32_t *fsr,
7620 ARMMMUFaultInfo *fi)
9ee6e8bb 7621{
70d74660 7622 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb
PB
7623 int code;
7624 uint32_t table;
7625 uint32_t desc;
7626 uint32_t xn;
de9b05b8 7627 uint32_t pxn = 0;
9ee6e8bb
PB
7628 int type;
7629 int ap;
de9b05b8 7630 int domain = 0;
dd4ebc2e 7631 int domain_prot;
a8170e5e 7632 hwaddr phys_addr;
0480f69a 7633 uint32_t dacr;
8bf5b6a9 7634 bool ns;
9ee6e8bb
PB
7635
7636 /* Pagetable walk. */
7637 /* Lookup l1 descriptor. */
0480f69a 7638 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
7639 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7640 code = 5;
7641 goto do_fault;
7642 }
a614e698
EI
7643 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7644 mmu_idx, fsr, fi);
9ee6e8bb 7645 type = (desc & 3);
de9b05b8
PM
7646 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7647 /* Section translation fault, or attempt to use the encoding
7648 * which is Reserved on implementations without PXN.
7649 */
9ee6e8bb 7650 code = 5;
9ee6e8bb 7651 goto do_fault;
de9b05b8
PM
7652 }
7653 if ((type == 1) || !(desc & (1 << 18))) {
7654 /* Page or Section. */
dd4ebc2e 7655 domain = (desc >> 5) & 0x0f;
9ee6e8bb 7656 }
0480f69a
PM
7657 if (regime_el(env, mmu_idx) == 1) {
7658 dacr = env->cp15.dacr_ns;
7659 } else {
7660 dacr = env->cp15.dacr_s;
7661 }
7662 domain_prot = (dacr >> (domain * 2)) & 3;
dd4ebc2e 7663 if (domain_prot == 0 || domain_prot == 2) {
de9b05b8 7664 if (type != 1) {
9ee6e8bb 7665 code = 9; /* Section domain fault. */
de9b05b8 7666 } else {
9ee6e8bb 7667 code = 11; /* Page domain fault. */
de9b05b8 7668 }
9ee6e8bb
PB
7669 goto do_fault;
7670 }
de9b05b8 7671 if (type != 1) {
9ee6e8bb
PB
7672 if (desc & (1 << 18)) {
7673 /* Supersection. */
7674 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
4e42a6ca
SF
7675 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7676 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
d4c430a8 7677 *page_size = 0x1000000;
b5ff1b31 7678 } else {
9ee6e8bb
PB
7679 /* Section. */
7680 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 7681 *page_size = 0x100000;
b5ff1b31 7682 }
9ee6e8bb
PB
7683 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7684 xn = desc & (1 << 4);
de9b05b8 7685 pxn = desc & 1;
9ee6e8bb 7686 code = 13;
8bf5b6a9 7687 ns = extract32(desc, 19, 1);
9ee6e8bb 7688 } else {
de9b05b8
PM
7689 if (arm_feature(env, ARM_FEATURE_PXN)) {
7690 pxn = (desc >> 2) & 1;
7691 }
8bf5b6a9 7692 ns = extract32(desc, 3, 1);
9ee6e8bb
PB
7693 /* Lookup l2 entry. */
7694 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
a614e698
EI
7695 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7696 mmu_idx, fsr, fi);
9ee6e8bb
PB
7697 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7698 switch (desc & 3) {
7699 case 0: /* Page translation fault. */
7700 code = 7;
b5ff1b31 7701 goto do_fault;
9ee6e8bb
PB
7702 case 1: /* 64k page. */
7703 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7704 xn = desc & (1 << 15);
d4c430a8 7705 *page_size = 0x10000;
9ee6e8bb
PB
7706 break;
7707 case 2: case 3: /* 4k page. */
7708 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7709 xn = desc & 1;
d4c430a8 7710 *page_size = 0x1000;
9ee6e8bb
PB
7711 break;
7712 default:
7713 /* Never happens, but compiler isn't smart enough to tell. */
7714 abort();
b5ff1b31 7715 }
9ee6e8bb
PB
7716 code = 15;
7717 }
dd4ebc2e 7718 if (domain_prot == 3) {
c0034328
JR
7719 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7720 } else {
0480f69a 7721 if (pxn && !regime_is_user(env, mmu_idx)) {
de9b05b8
PM
7722 xn = 1;
7723 }
c0034328
JR
7724 if (xn && access_type == 2)
7725 goto do_fault;
9ee6e8bb 7726
d76951b6
AJ
7727 if (arm_feature(env, ARM_FEATURE_V6K) &&
7728 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7729 /* The simplified model uses AP[0] as an access control bit. */
7730 if ((ap & 1) == 0) {
7731 /* Access flag fault. */
7732 code = (code == 15) ? 6 : 3;
7733 goto do_fault;
7734 }
7735 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7736 } else {
7737 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
c0034328 7738 }
0fbf5238
AJ
7739 if (*prot && !xn) {
7740 *prot |= PAGE_EXEC;
7741 }
7742 if (!(*prot & (1 << access_type))) {
c0034328
JR
7743 /* Access permission fault. */
7744 goto do_fault;
7745 }
3ad493fc 7746 }
8bf5b6a9
PM
7747 if (ns) {
7748 /* The NS bit will (as required by the architecture) have no effect if
7749 * the CPU doesn't support TZ or this is a non-secure translation
7750 * regime, because the attribute will already be non-secure.
7751 */
7752 attrs->secure = false;
7753 }
9ee6e8bb 7754 *phys_ptr = phys_addr;
b7cc4e82 7755 return false;
b5ff1b31 7756do_fault:
b7cc4e82
PC
7757 *fsr = code | (domain << 4);
7758 return true;
b5ff1b31
FB
7759}
7760
3dde962f
PM
7761/* Fault type for long-descriptor MMU fault reporting; this corresponds
7762 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7763 */
7764typedef enum {
7765 translation_fault = 1,
7766 access_fault = 2,
7767 permission_fault = 3,
7768} MMUFaultType;
7769
1853d5a9 7770/*
a0e966c9 7771 * check_s2_mmu_setup
1853d5a9
EI
7772 * @cpu: ARMCPU
7773 * @is_aa64: True if the translation regime is in AArch64 state
7774 * @startlevel: Suggested starting level
7775 * @inputsize: Bitsize of IPAs
7776 * @stride: Page-table stride (See the ARM ARM)
7777 *
a0e966c9
EI
7778 * Returns true if the suggested S2 translation parameters are OK and
7779 * false otherwise.
1853d5a9 7780 */
a0e966c9
EI
7781static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7782 int inputsize, int stride)
1853d5a9 7783{
98d68ec2
EI
7784 const int grainsize = stride + 3;
7785 int startsizecheck;
7786
1853d5a9
EI
7787 /* Negative levels are never allowed. */
7788 if (level < 0) {
7789 return false;
7790 }
7791
98d68ec2
EI
7792 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7793 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7794 return false;
7795 }
7796
1853d5a9 7797 if (is_aa64) {
3526423e 7798 CPUARMState *env = &cpu->env;
1853d5a9
EI
7799 unsigned int pamax = arm_pamax(cpu);
7800
7801 switch (stride) {
7802 case 13: /* 64KB Pages. */
7803 if (level == 0 || (level == 1 && pamax <= 42)) {
7804 return false;
7805 }
7806 break;
7807 case 11: /* 16KB Pages. */
7808 if (level == 0 || (level == 1 && pamax <= 40)) {
7809 return false;
7810 }
7811 break;
7812 case 9: /* 4KB Pages. */
7813 if (level == 0 && pamax <= 42) {
7814 return false;
7815 }
7816 break;
7817 default:
7818 g_assert_not_reached();
7819 }
3526423e
EI
7820
7821 /* Inputsize checks. */
7822 if (inputsize > pamax &&
7823 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7824 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7825 return false;
7826 }
1853d5a9 7827 } else {
1853d5a9
EI
7828 /* AArch32 only supports 4KB pages. Assert on that. */
7829 assert(stride == 9);
7830
7831 if (level == 0) {
7832 return false;
7833 }
1853d5a9
EI
7834 }
7835 return true;
7836}
7837
b7cc4e82
PC
7838static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7839 int access_type, ARMMMUIdx mmu_idx,
7840 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
e14b5a23
EI
7841 target_ulong *page_size_ptr, uint32_t *fsr,
7842 ARMMMUFaultInfo *fi)
3dde962f 7843{
1853d5a9
EI
7844 ARMCPU *cpu = arm_env_get_cpu(env);
7845 CPUState *cs = CPU(cpu);
3dde962f
PM
7846 /* Read an LPAE long-descriptor translation table. */
7847 MMUFaultType fault_type = translation_fault;
1b4093ea 7848 uint32_t level;
0c5fbf3b 7849 uint32_t epd = 0;
1f4c8c18 7850 int32_t t0sz, t1sz;
2c8dd318 7851 uint32_t tg;
3dde962f
PM
7852 uint64_t ttbr;
7853 int ttbr_select;
dddb5223 7854 hwaddr descaddr, indexmask, indexmask_grainsize;
3dde962f
PM
7855 uint32_t tableattrs;
7856 target_ulong page_size;
7857 uint32_t attrs;
973a5434 7858 int32_t stride = 9;
6e99f762 7859 int32_t addrsize;
4ca6a051 7860 int inputsize;
2c8dd318 7861 int32_t tbi = 0;
0480f69a 7862 TCR *tcr = regime_tcr(env, mmu_idx);
d8e052b3 7863 int ap, ns, xn, pxn;
88e8add8
GB
7864 uint32_t el = regime_el(env, mmu_idx);
7865 bool ttbr1_valid = true;
6109769a 7866 uint64_t descaddrmask;
6e99f762 7867 bool aarch64 = arm_el_is_aa64(env, el);
0480f69a
PM
7868
7869 /* TODO:
88e8add8
GB
7870 * This code does not handle the different format TCR for VTCR_EL2.
7871 * This code also does not support shareability levels.
7872 * Attribute and permission bit handling should also be checked when adding
7873 * support for those page table walks.
0480f69a 7874 */
6e99f762 7875 if (aarch64) {
1b4093ea 7876 level = 0;
6e99f762 7877 addrsize = 64;
88e8add8 7878 if (el > 1) {
1edee470
EI
7879 if (mmu_idx != ARMMMUIdx_S2NS) {
7880 tbi = extract64(tcr->raw_tcr, 20, 1);
7881 }
88e8add8
GB
7882 } else {
7883 if (extract64(address, 55, 1)) {
7884 tbi = extract64(tcr->raw_tcr, 38, 1);
7885 } else {
7886 tbi = extract64(tcr->raw_tcr, 37, 1);
7887 }
7888 }
2c8dd318 7889 tbi *= 8;
88e8add8
GB
7890
7891 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7892 * invalid.
7893 */
7894 if (el > 1) {
7895 ttbr1_valid = false;
7896 }
d0a2cbce 7897 } else {
1b4093ea 7898 level = 1;
6e99f762 7899 addrsize = 32;
d0a2cbce
PM
7900 /* There is no TTBR1 for EL2 */
7901 if (el == 2) {
7902 ttbr1_valid = false;
7903 }
2c8dd318 7904 }
3dde962f
PM
7905
7906 /* Determine whether this address is in the region controlled by
7907 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7908 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7909 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7910 */
6e99f762 7911 if (aarch64) {
4ee38098
EI
7912 /* AArch64 translation. */
7913 t0sz = extract32(tcr->raw_tcr, 0, 6);
2c8dd318
RH
7914 t0sz = MIN(t0sz, 39);
7915 t0sz = MAX(t0sz, 16);
4ee38098
EI
7916 } else if (mmu_idx != ARMMMUIdx_S2NS) {
7917 /* AArch32 stage 1 translation. */
7918 t0sz = extract32(tcr->raw_tcr, 0, 3);
7919 } else {
7920 /* AArch32 stage 2 translation. */
7921 bool sext = extract32(tcr->raw_tcr, 4, 1);
7922 bool sign = extract32(tcr->raw_tcr, 3, 1);
6e99f762
SS
7923 /* Address size is 40-bit for a stage 2 translation,
7924 * and t0sz can be negative (from -8 to 7),
7925 * so we need to adjust it to use the TTBR selecting logic below.
7926 */
7927 addrsize = 40;
7928 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
4ee38098
EI
7929
7930 /* If the sign-extend bit is not the same as t0sz[3], the result
7931 * is unpredictable. Flag this as a guest error. */
7932 if (sign != sext) {
7933 qemu_log_mask(LOG_GUEST_ERROR,
39cba610 7934 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
4ee38098 7935 }
2c8dd318 7936 }
1f4c8c18 7937 t1sz = extract32(tcr->raw_tcr, 16, 6);
6e99f762 7938 if (aarch64) {
2c8dd318
RH
7939 t1sz = MIN(t1sz, 39);
7940 t1sz = MAX(t1sz, 16);
7941 }
6e99f762 7942 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
3dde962f
PM
7943 /* there is a ttbr0 region and we are in it (high bits all zero) */
7944 ttbr_select = 0;
88e8add8 7945 } else if (ttbr1_valid && t1sz &&
6e99f762 7946 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
3dde962f
PM
7947 /* there is a ttbr1 region and we are in it (high bits all one) */
7948 ttbr_select = 1;
7949 } else if (!t0sz) {
7950 /* ttbr0 region is "everything not in the ttbr1 region" */
7951 ttbr_select = 0;
88e8add8 7952 } else if (!t1sz && ttbr1_valid) {
3dde962f
PM
7953 /* ttbr1 region is "everything not in the ttbr0 region" */
7954 ttbr_select = 1;
7955 } else {
7956 /* in the gap between the two regions, this is a Translation fault */
7957 fault_type = translation_fault;
7958 goto do_fault;
7959 }
7960
7961 /* Note that QEMU ignores shareability and cacheability attributes,
7962 * so we don't need to do anything with the SH, ORGN, IRGN fields
7963 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7964 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7965 * implement any ASID-like capability so we can ignore it (instead
7966 * we will always flush the TLB any time the ASID is changed).
7967 */
7968 if (ttbr_select == 0) {
aef878be 7969 ttbr = regime_ttbr(env, mmu_idx, 0);
0c5fbf3b
EI
7970 if (el < 2) {
7971 epd = extract32(tcr->raw_tcr, 7, 1);
7972 }
6e99f762 7973 inputsize = addrsize - t0sz;
2c8dd318 7974
11f136ee 7975 tg = extract32(tcr->raw_tcr, 14, 2);
2c8dd318 7976 if (tg == 1) { /* 64KB pages */
973a5434 7977 stride = 13;
2c8dd318
RH
7978 }
7979 if (tg == 2) { /* 16KB pages */
973a5434 7980 stride = 11;
2c8dd318 7981 }
3dde962f 7982 } else {
88e8add8
GB
7983 /* We should only be here if TTBR1 is valid */
7984 assert(ttbr1_valid);
7985
aef878be 7986 ttbr = regime_ttbr(env, mmu_idx, 1);
11f136ee 7987 epd = extract32(tcr->raw_tcr, 23, 1);
6e99f762 7988 inputsize = addrsize - t1sz;
2c8dd318 7989
11f136ee 7990 tg = extract32(tcr->raw_tcr, 30, 2);
2c8dd318 7991 if (tg == 3) { /* 64KB pages */
973a5434 7992 stride = 13;
2c8dd318
RH
7993 }
7994 if (tg == 1) { /* 16KB pages */
973a5434 7995 stride = 11;
2c8dd318 7996 }
3dde962f
PM
7997 }
7998
0480f69a 7999 /* Here we should have set up all the parameters for the translation:
6e99f762 8000 * inputsize, ttbr, epd, stride, tbi
0480f69a
PM
8001 */
8002
3dde962f 8003 if (epd) {
88e8add8
GB
8004 /* Translation table walk disabled => Translation fault on TLB miss
8005 * Note: This is always 0 on 64-bit EL2 and EL3.
8006 */
3dde962f
PM
8007 goto do_fault;
8008 }
8009
1853d5a9
EI
8010 if (mmu_idx != ARMMMUIdx_S2NS) {
8011 /* The starting level depends on the virtual address size (which can
8012 * be up to 48 bits) and the translation granule size. It indicates
8013 * the number of strides (stride bits at a time) needed to
8014 * consume the bits of the input address. In the pseudocode this is:
8015 * level = 4 - RoundUp((inputsize - grainsize) / stride)
8016 * where their 'inputsize' is our 'inputsize', 'grainsize' is
8017 * our 'stride + 3' and 'stride' is our 'stride'.
8018 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8019 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8020 * = 4 - (inputsize - 4) / stride;
8021 */
8022 level = 4 - (inputsize - 4) / stride;
8023 } else {
8024 /* For stage 2 translations the starting level is specified by the
8025 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8026 */
1b4093ea
SS
8027 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8028 uint32_t startlevel;
1853d5a9
EI
8029 bool ok;
8030
6e99f762 8031 if (!aarch64 || stride == 9) {
1853d5a9 8032 /* AArch32 or 4KB pages */
1b4093ea 8033 startlevel = 2 - sl0;
1853d5a9
EI
8034 } else {
8035 /* 16KB or 64KB pages */
1b4093ea 8036 startlevel = 3 - sl0;
1853d5a9
EI
8037 }
8038
8039 /* Check that the starting level is valid. */
6e99f762 8040 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1b4093ea 8041 inputsize, stride);
1853d5a9 8042 if (!ok) {
1853d5a9
EI
8043 fault_type = translation_fault;
8044 goto do_fault;
8045 }
1b4093ea 8046 level = startlevel;
1853d5a9 8047 }
3dde962f 8048
dddb5223
SS
8049 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8050 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
3dde962f
PM
8051
8052 /* Now we can extract the actual base address from the TTBR */
2c8dd318 8053 descaddr = extract64(ttbr, 0, 48);
dddb5223 8054 descaddr &= ~indexmask;
3dde962f 8055
6109769a 8056 /* The address field in the descriptor goes up to bit 39 for ARMv7
dddb5223
SS
8057 * but up to bit 47 for ARMv8, but we use the descaddrmask
8058 * up to bit 39 for AArch32, because we don't need other bits in that case
8059 * to construct next descriptor address (anyway they should be all zeroes).
6109769a 8060 */
6e99f762 8061 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
dddb5223 8062 ~indexmask_grainsize;
6109769a 8063
ebca90e4
PM
8064 /* Secure accesses start with the page table in secure memory and
8065 * can be downgraded to non-secure at any step. Non-secure accesses
8066 * remain non-secure. We implement this by just ORing in the NSTable/NS
8067 * bits at each step.
8068 */
8069 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
3dde962f
PM
8070 for (;;) {
8071 uint64_t descriptor;
ebca90e4 8072 bool nstable;
3dde962f 8073
dddb5223 8074 descaddr |= (address >> (stride * (4 - level))) & indexmask;
2c8dd318 8075 descaddr &= ~7ULL;
ebca90e4 8076 nstable = extract32(tableattrs, 4, 1);
37785977
EI
8077 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
8078 if (fi->s1ptw) {
8079 goto do_fault;
8080 }
8081
3dde962f
PM
8082 if (!(descriptor & 1) ||
8083 (!(descriptor & 2) && (level == 3))) {
8084 /* Invalid, or the Reserved level 3 encoding */
8085 goto do_fault;
8086 }
6109769a 8087 descaddr = descriptor & descaddrmask;
3dde962f
PM
8088
8089 if ((descriptor & 2) && (level < 3)) {
8090 /* Table entry. The top five bits are attributes which may
8091 * propagate down through lower levels of the table (and
8092 * which are all arranged so that 0 means "no effect", so
8093 * we can gather them up by ORing in the bits at each level).
8094 */
8095 tableattrs |= extract64(descriptor, 59, 5);
8096 level++;
dddb5223 8097 indexmask = indexmask_grainsize;
3dde962f
PM
8098 continue;
8099 }
8100 /* Block entry at level 1 or 2, or page entry at level 3.
8101 * These are basically the same thing, although the number
8102 * of bits we pull in from the vaddr varies.
8103 */
973a5434 8104 page_size = (1ULL << ((stride * (4 - level)) + 3));
3dde962f 8105 descaddr |= (address & (page_size - 1));
6ab1a5ee 8106 /* Extract attributes from the descriptor */
d615efac
IC
8107 attrs = extract64(descriptor, 2, 10)
8108 | (extract64(descriptor, 52, 12) << 10);
6ab1a5ee
EI
8109
8110 if (mmu_idx == ARMMMUIdx_S2NS) {
8111 /* Stage 2 table descriptors do not include any attribute fields */
8112 break;
8113 }
8114 /* Merge in attributes from table descriptors */
3dde962f
PM
8115 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8116 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8117 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8118 * means "force PL1 access only", which means forcing AP[1] to 0.
8119 */
8120 if (extract32(tableattrs, 2, 1)) {
8121 attrs &= ~(1 << 4);
8122 }
ebca90e4 8123 attrs |= nstable << 3; /* NS */
3dde962f
PM
8124 break;
8125 }
8126 /* Here descaddr is the final physical address, and attributes
8127 * are all in attrs.
8128 */
8129 fault_type = access_fault;
8130 if ((attrs & (1 << 8)) == 0) {
8131 /* Access flag */
8132 goto do_fault;
8133 }
d8e052b3
AJ
8134
8135 ap = extract32(attrs, 4, 2);
d8e052b3 8136 xn = extract32(attrs, 12, 1);
d8e052b3 8137
6ab1a5ee
EI
8138 if (mmu_idx == ARMMMUIdx_S2NS) {
8139 ns = true;
8140 *prot = get_S2prot(env, ap, xn);
8141 } else {
8142 ns = extract32(attrs, 3, 1);
8143 pxn = extract32(attrs, 11, 1);
6e99f762 8144 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
6ab1a5ee 8145 }
d8e052b3 8146
3dde962f 8147 fault_type = permission_fault;
d8e052b3 8148 if (!(*prot & (1 << access_type))) {
3dde962f
PM
8149 goto do_fault;
8150 }
3dde962f 8151
8bf5b6a9
PM
8152 if (ns) {
8153 /* The NS bit will (as required by the architecture) have no effect if
8154 * the CPU doesn't support TZ or this is a non-secure translation
8155 * regime, because the attribute will already be non-secure.
8156 */
8157 txattrs->secure = false;
8158 }
3dde962f
PM
8159 *phys_ptr = descaddr;
8160 *page_size_ptr = page_size;
b7cc4e82 8161 return false;
3dde962f
PM
8162
8163do_fault:
8164 /* Long-descriptor format IFSR/DFSR value */
b7cc4e82 8165 *fsr = (1 << 9) | (fault_type << 2) | level;
37785977
EI
8166 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
8167 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
b7cc4e82 8168 return true;
3dde962f
PM
8169}
8170
f6bda88f
PC
8171static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
8172 ARMMMUIdx mmu_idx,
8173 int32_t address, int *prot)
8174{
3a00d560
MD
8175 if (!arm_feature(env, ARM_FEATURE_M)) {
8176 *prot = PAGE_READ | PAGE_WRITE;
8177 switch (address) {
8178 case 0xF0000000 ... 0xFFFFFFFF:
8179 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
8180 /* hivecs execing is ok */
8181 *prot |= PAGE_EXEC;
8182 }
8183 break;
8184 case 0x00000000 ... 0x7FFFFFFF:
f6bda88f 8185 *prot |= PAGE_EXEC;
3a00d560
MD
8186 break;
8187 }
8188 } else {
8189 /* Default system address map for M profile cores.
8190 * The architecture specifies which regions are execute-never;
8191 * at the MPU level no other checks are defined.
8192 */
8193 switch (address) {
8194 case 0x00000000 ... 0x1fffffff: /* ROM */
8195 case 0x20000000 ... 0x3fffffff: /* SRAM */
8196 case 0x60000000 ... 0x7fffffff: /* RAM */
8197 case 0x80000000 ... 0x9fffffff: /* RAM */
8198 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8199 break;
8200 case 0x40000000 ... 0x5fffffff: /* Peripheral */
8201 case 0xa0000000 ... 0xbfffffff: /* Device */
8202 case 0xc0000000 ... 0xdfffffff: /* Device */
8203 case 0xe0000000 ... 0xffffffff: /* System */
8204 *prot = PAGE_READ | PAGE_WRITE;
8205 break;
8206 default:
8207 g_assert_not_reached();
f6bda88f 8208 }
f6bda88f 8209 }
f6bda88f
PC
8210}
8211
29c483a5
MD
8212static bool pmsav7_use_background_region(ARMCPU *cpu,
8213 ARMMMUIdx mmu_idx, bool is_user)
8214{
8215 /* Return true if we should use the default memory map as a
8216 * "background" region if there are no hits against any MPU regions.
8217 */
8218 CPUARMState *env = &cpu->env;
8219
8220 if (is_user) {
8221 return false;
8222 }
8223
8224 if (arm_feature(env, ARM_FEATURE_M)) {
8225 return env->v7m.mpu_ctrl & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
8226 } else {
8227 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
8228 }
8229}
8230
f6bda88f
PC
8231static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
8232 int access_type, ARMMMUIdx mmu_idx,
8233 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8234{
8235 ARMCPU *cpu = arm_env_get_cpu(env);
8236 int n;
8237 bool is_user = regime_is_user(env, mmu_idx);
8238
8239 *phys_ptr = address;
8240 *prot = 0;
8241
8242 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
8243 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8244 } else { /* MPU enabled */
8245 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8246 /* region search */
8247 uint32_t base = env->pmsav7.drbar[n];
8248 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
8249 uint32_t rmask;
8250 bool srdis = false;
8251
8252 if (!(env->pmsav7.drsr[n] & 0x1)) {
8253 continue;
8254 }
8255
8256 if (!rsize) {
c9f9f124
MD
8257 qemu_log_mask(LOG_GUEST_ERROR,
8258 "DRSR[%d]: Rsize field cannot be 0\n", n);
f6bda88f
PC
8259 continue;
8260 }
8261 rsize++;
8262 rmask = (1ull << rsize) - 1;
8263
8264 if (base & rmask) {
c9f9f124
MD
8265 qemu_log_mask(LOG_GUEST_ERROR,
8266 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
8267 "to DRSR region size, mask = 0x%" PRIx32 "\n",
8268 n, base, rmask);
f6bda88f
PC
8269 continue;
8270 }
8271
8272 if (address < base || address > base + rmask) {
8273 continue;
8274 }
8275
8276 /* Region matched */
8277
8278 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
8279 int i, snd;
8280 uint32_t srdis_mask;
8281
8282 rsize -= 3; /* sub region size (power of 2) */
8283 snd = ((address - base) >> rsize) & 0x7;
8284 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
8285
8286 srdis_mask = srdis ? 0x3 : 0x0;
8287 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
8288 /* This will check in groups of 2, 4 and then 8, whether
8289 * the subregion bits are consistent. rsize is incremented
8290 * back up to give the region size, considering consistent
8291 * adjacent subregions as one region. Stop testing if rsize
8292 * is already big enough for an entire QEMU page.
8293 */
8294 int snd_rounded = snd & ~(i - 1);
8295 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
8296 snd_rounded + 8, i);
8297 if (srdis_mask ^ srdis_multi) {
8298 break;
8299 }
8300 srdis_mask = (srdis_mask << i) | srdis_mask;
8301 rsize++;
8302 }
8303 }
8304 if (rsize < TARGET_PAGE_BITS) {
c9f9f124
MD
8305 qemu_log_mask(LOG_UNIMP,
8306 "DRSR[%d]: No support for MPU (sub)region "
f6bda88f 8307 "alignment of %" PRIu32 " bits. Minimum is %d\n",
c9f9f124 8308 n, rsize, TARGET_PAGE_BITS);
f6bda88f
PC
8309 continue;
8310 }
8311 if (srdis) {
8312 continue;
8313 }
8314 break;
8315 }
8316
8317 if (n == -1) { /* no hits */
29c483a5 8318 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
f6bda88f
PC
8319 /* background fault */
8320 *fsr = 0;
8321 return true;
8322 }
8323 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8324 } else { /* a MPU hit! */
8325 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
8326
8327 if (is_user) { /* User mode AP bit decoding */
8328 switch (ap) {
8329 case 0:
8330 case 1:
8331 case 5:
8332 break; /* no access */
8333 case 3:
8334 *prot |= PAGE_WRITE;
8335 /* fall through */
8336 case 2:
8337 case 6:
8338 *prot |= PAGE_READ | PAGE_EXEC;
8339 break;
8340 default:
8341 qemu_log_mask(LOG_GUEST_ERROR,
c9f9f124
MD
8342 "DRACR[%d]: Bad value for AP bits: 0x%"
8343 PRIx32 "\n", n, ap);
f6bda88f
PC
8344 }
8345 } else { /* Priv. mode AP bits decoding */
8346 switch (ap) {
8347 case 0:
8348 break; /* no access */
8349 case 1:
8350 case 2:
8351 case 3:
8352 *prot |= PAGE_WRITE;
8353 /* fall through */
8354 case 5:
8355 case 6:
8356 *prot |= PAGE_READ | PAGE_EXEC;
8357 break;
8358 default:
8359 qemu_log_mask(LOG_GUEST_ERROR,
c9f9f124
MD
8360 "DRACR[%d]: Bad value for AP bits: 0x%"
8361 PRIx32 "\n", n, ap);
f6bda88f
PC
8362 }
8363 }
8364
8365 /* execute never */
8366 if (env->pmsav7.dracr[n] & (1 << 12)) {
8367 *prot &= ~PAGE_EXEC;
8368 }
8369 }
8370 }
8371
8372 *fsr = 0x00d; /* Permission fault */
8373 return !(*prot & (1 << access_type));
8374}
8375
13689d43
PC
8376static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
8377 int access_type, ARMMMUIdx mmu_idx,
8378 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9ee6e8bb
PB
8379{
8380 int n;
8381 uint32_t mask;
8382 uint32_t base;
0480f69a 8383 bool is_user = regime_is_user(env, mmu_idx);
9ee6e8bb
PB
8384
8385 *phys_ptr = address;
8386 for (n = 7; n >= 0; n--) {
554b0b09 8387 base = env->cp15.c6_region[n];
87c3d486 8388 if ((base & 1) == 0) {
554b0b09 8389 continue;
87c3d486 8390 }
554b0b09
PM
8391 mask = 1 << ((base >> 1) & 0x1f);
8392 /* Keep this shift separate from the above to avoid an
8393 (undefined) << 32. */
8394 mask = (mask << 1) - 1;
87c3d486 8395 if (((base ^ address) & ~mask) == 0) {
554b0b09 8396 break;
87c3d486 8397 }
9ee6e8bb 8398 }
87c3d486 8399 if (n < 0) {
b7cc4e82
PC
8400 *fsr = 2;
8401 return true;
87c3d486 8402 }
9ee6e8bb
PB
8403
8404 if (access_type == 2) {
7e09797c 8405 mask = env->cp15.pmsav5_insn_ap;
9ee6e8bb 8406 } else {
7e09797c 8407 mask = env->cp15.pmsav5_data_ap;
9ee6e8bb
PB
8408 }
8409 mask = (mask >> (n * 4)) & 0xf;
8410 switch (mask) {
8411 case 0:
b7cc4e82
PC
8412 *fsr = 1;
8413 return true;
9ee6e8bb 8414 case 1:
87c3d486 8415 if (is_user) {
b7cc4e82
PC
8416 *fsr = 1;
8417 return true;
87c3d486 8418 }
554b0b09
PM
8419 *prot = PAGE_READ | PAGE_WRITE;
8420 break;
9ee6e8bb 8421 case 2:
554b0b09 8422 *prot = PAGE_READ;
87c3d486 8423 if (!is_user) {
554b0b09 8424 *prot |= PAGE_WRITE;
87c3d486 8425 }
554b0b09 8426 break;
9ee6e8bb 8427 case 3:
554b0b09
PM
8428 *prot = PAGE_READ | PAGE_WRITE;
8429 break;
9ee6e8bb 8430 case 5:
87c3d486 8431 if (is_user) {
b7cc4e82
PC
8432 *fsr = 1;
8433 return true;
87c3d486 8434 }
554b0b09
PM
8435 *prot = PAGE_READ;
8436 break;
9ee6e8bb 8437 case 6:
554b0b09
PM
8438 *prot = PAGE_READ;
8439 break;
9ee6e8bb 8440 default:
554b0b09 8441 /* Bad permission. */
b7cc4e82
PC
8442 *fsr = 1;
8443 return true;
9ee6e8bb 8444 }
3ad493fc 8445 *prot |= PAGE_EXEC;
b7cc4e82 8446 return false;
9ee6e8bb
PB
8447}
8448
702a9357
PM
8449/* get_phys_addr - get the physical address for this virtual address
8450 *
8451 * Find the physical address corresponding to the given virtual address,
8452 * by doing a translation table walk on MMU based systems or using the
8453 * MPU state on MPU based systems.
8454 *
b7cc4e82
PC
8455 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
8456 * prot and page_size may not be filled in, and the populated fsr value provides
702a9357
PM
8457 * information on why the translation aborted, in the format of a
8458 * DFSR/IFSR fault register, with the following caveats:
8459 * * we honour the short vs long DFSR format differences.
8460 * * the WnR bit is never set (the caller must do this).
f6bda88f 8461 * * for PSMAv5 based systems we don't bother to return a full FSR format
702a9357
PM
8462 * value.
8463 *
8464 * @env: CPUARMState
8465 * @address: virtual address to get physical address for
8466 * @access_type: 0 for read, 1 for write, 2 for execute
d3649702 8467 * @mmu_idx: MMU index indicating required translation regime
702a9357 8468 * @phys_ptr: set to the physical address corresponding to the virtual address
8bf5b6a9 8469 * @attrs: set to the memory transaction attributes to use
702a9357
PM
8470 * @prot: set to the permissions for the page containing phys_ptr
8471 * @page_size: set to the size of the page containing phys_ptr
b7cc4e82 8472 * @fsr: set to the DFSR/IFSR value on failure
702a9357 8473 */
af51f566
EI
8474static bool get_phys_addr(CPUARMState *env, target_ulong address,
8475 int access_type, ARMMMUIdx mmu_idx,
8476 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
8477 target_ulong *page_size, uint32_t *fsr,
8478 ARMMMUFaultInfo *fi)
9ee6e8bb 8479{
0480f69a 8480 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9b539263
EI
8481 /* Call ourselves recursively to do the stage 1 and then stage 2
8482 * translations.
0480f69a 8483 */
9b539263
EI
8484 if (arm_feature(env, ARM_FEATURE_EL2)) {
8485 hwaddr ipa;
8486 int s2_prot;
8487 int ret;
8488
8489 ret = get_phys_addr(env, address, access_type,
8bd5c820 8490 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
9b539263
EI
8491 prot, page_size, fsr, fi);
8492
8493 /* If S1 fails or S2 is disabled, return early. */
8494 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8495 *phys_ptr = ipa;
8496 return ret;
8497 }
8498
8499 /* S1 is done. Now do S2 translation. */
8500 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8501 phys_ptr, attrs, &s2_prot,
8502 page_size, fsr, fi);
8503 fi->s2addr = ipa;
8504 /* Combine the S1 and S2 perms. */
8505 *prot &= s2_prot;
8506 return ret;
8507 } else {
8508 /*
8509 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8510 */
8bd5c820 8511 mmu_idx = stage_1_mmu_idx(mmu_idx);
9b539263 8512 }
0480f69a 8513 }
d3649702 8514
8bf5b6a9
PM
8515 /* The page table entries may downgrade secure to non-secure, but
8516 * cannot upgrade an non-secure translation regime's attributes
8517 * to secure.
8518 */
8519 attrs->secure = regime_is_secure(env, mmu_idx);
0995bf8c 8520 attrs->user = regime_is_user(env, mmu_idx);
8bf5b6a9 8521
0480f69a
PM
8522 /* Fast Context Switch Extension. This doesn't exist at all in v8.
8523 * In v7 and earlier it affects all stage 1 translations.
8524 */
8525 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8526 && !arm_feature(env, ARM_FEATURE_V8)) {
8527 if (regime_el(env, mmu_idx) == 3) {
8528 address += env->cp15.fcseidr_s;
8529 } else {
8530 address += env->cp15.fcseidr_ns;
8531 }
54bf36ed 8532 }
9ee6e8bb 8533
f6bda88f
PC
8534 /* pmsav7 has special handling for when MPU is disabled so call it before
8535 * the common MMU/MPU disabled check below.
8536 */
452a0955 8537 if (arm_feature(env, ARM_FEATURE_PMSA) &&
f6bda88f 8538 arm_feature(env, ARM_FEATURE_V7)) {
c9f9f124 8539 bool ret;
f6bda88f 8540 *page_size = TARGET_PAGE_SIZE;
c9f9f124
MD
8541 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8542 phys_ptr, prot, fsr);
8543 qemu_log_mask(CPU_LOG_MMU, "PMSAv7 MPU lookup for %s at 0x%08" PRIx32
8544 " mmu_idx %u -> %s (prot %c%c%c)\n",
8545 access_type == 1 ? "reading" :
8546 (access_type == 2 ? "writing" : "execute"),
8547 (uint32_t)address, mmu_idx,
8548 ret ? "Miss" : "Hit",
8549 *prot & PAGE_READ ? 'r' : '-',
8550 *prot & PAGE_WRITE ? 'w' : '-',
8551 *prot & PAGE_EXEC ? 'x' : '-');
8552
8553 return ret;
f6bda88f
PC
8554 }
8555
0480f69a 8556 if (regime_translation_disabled(env, mmu_idx)) {
9ee6e8bb
PB
8557 /* MMU/MPU disabled. */
8558 *phys_ptr = address;
3ad493fc 8559 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 8560 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb 8561 return 0;
0480f69a
PM
8562 }
8563
452a0955 8564 if (arm_feature(env, ARM_FEATURE_PMSA)) {
f6bda88f 8565 /* Pre-v7 MPU */
d4c430a8 8566 *page_size = TARGET_PAGE_SIZE;
13689d43
PC
8567 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8568 phys_ptr, prot, fsr);
0480f69a
PM
8569 }
8570
8571 if (regime_using_lpae_format(env, mmu_idx)) {
8572 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 8573 attrs, prot, page_size, fsr, fi);
0480f69a
PM
8574 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8575 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 8576 attrs, prot, page_size, fsr, fi);
9ee6e8bb 8577 } else {
0480f69a 8578 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 8579 prot, page_size, fsr, fi);
9ee6e8bb
PB
8580 }
8581}
8582
8c6084bf 8583/* Walk the page table and (if the mapping exists) add the page
b7cc4e82
PC
8584 * to the TLB. Return false on success, or true on failure. Populate
8585 * fsr with ARM DFSR/IFSR fault register format value on failure.
8c6084bf 8586 */
b7cc4e82 8587bool arm_tlb_fill(CPUState *cs, vaddr address,
e14b5a23
EI
8588 int access_type, int mmu_idx, uint32_t *fsr,
8589 ARMMMUFaultInfo *fi)
b5ff1b31 8590{
7510454e
AF
8591 ARMCPU *cpu = ARM_CPU(cs);
8592 CPUARMState *env = &cpu->env;
a8170e5e 8593 hwaddr phys_addr;
d4c430a8 8594 target_ulong page_size;
b5ff1b31 8595 int prot;
d3649702 8596 int ret;
8bf5b6a9 8597 MemTxAttrs attrs = {};
b5ff1b31 8598
8bd5c820
PM
8599 ret = get_phys_addr(env, address, access_type,
8600 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
e14b5a23 8601 &attrs, &prot, &page_size, fsr, fi);
b7cc4e82 8602 if (!ret) {
b5ff1b31 8603 /* Map a single [sub]page. */
dcd82c11
AB
8604 phys_addr &= TARGET_PAGE_MASK;
8605 address &= TARGET_PAGE_MASK;
8bf5b6a9
PM
8606 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8607 prot, mmu_idx, page_size);
d4c430a8 8608 return 0;
b5ff1b31
FB
8609 }
8610
8c6084bf 8611 return ret;
b5ff1b31
FB
8612}
8613
0faea0c7
PM
8614hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8615 MemTxAttrs *attrs)
b5ff1b31 8616{
00b941e5 8617 ARMCPU *cpu = ARM_CPU(cs);
d3649702 8618 CPUARMState *env = &cpu->env;
a8170e5e 8619 hwaddr phys_addr;
d4c430a8 8620 target_ulong page_size;
b5ff1b31 8621 int prot;
b7cc4e82
PC
8622 bool ret;
8623 uint32_t fsr;
e14b5a23 8624 ARMMMUFaultInfo fi = {};
8bd5c820 8625 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
b5ff1b31 8626
0faea0c7
PM
8627 *attrs = (MemTxAttrs) {};
8628
8bd5c820 8629 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
0faea0c7 8630 attrs, &prot, &page_size, &fsr, &fi);
b5ff1b31 8631
b7cc4e82 8632 if (ret) {
b5ff1b31 8633 return -1;
00b941e5 8634 }
b5ff1b31
FB
8635 return phys_addr;
8636}
8637
0ecb72a5 8638uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 8639{
58117c9b
MD
8640 uint32_t mask;
8641 unsigned el = arm_current_el(env);
8642
8643 /* First handle registers which unprivileged can read */
8644
8645 switch (reg) {
8646 case 0 ... 7: /* xPSR sub-fields */
8647 mask = 0;
8648 if ((reg & 1) && el) {
8649 mask |= 0x000001ff; /* IPSR (unpriv. reads as zero) */
8650 }
8651 if (!(reg & 4)) {
8652 mask |= 0xf8000000; /* APSR */
8653 }
8654 /* EPSR reads as zero */
8655 return xpsr_read(env) & mask;
8656 break;
8657 case 20: /* CONTROL */
8658 return env->v7m.control;
8659 }
8660
8661 if (el == 0) {
8662 return 0; /* unprivileged reads others as zero */
8663 }
a47dddd7 8664
9ee6e8bb 8665 switch (reg) {
9ee6e8bb 8666 case 8: /* MSP */
abc24d86
MD
8667 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8668 env->v7m.other_sp : env->regs[13];
9ee6e8bb 8669 case 9: /* PSP */
abc24d86
MD
8670 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8671 env->regs[13] : env->v7m.other_sp;
9ee6e8bb 8672 case 16: /* PRIMASK */
4cc35614 8673 return (env->daif & PSTATE_I) != 0;
82845826
SH
8674 case 17: /* BASEPRI */
8675 case 18: /* BASEPRI_MAX */
9ee6e8bb 8676 return env->v7m.basepri;
82845826 8677 case 19: /* FAULTMASK */
4cc35614 8678 return (env->daif & PSTATE_F) != 0;
9ee6e8bb 8679 default:
58117c9b
MD
8680 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
8681 " register %d\n", reg);
9ee6e8bb
PB
8682 return 0;
8683 }
8684}
8685
b28b3377
PM
8686void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
8687{
8688 /* We're passed bits [11..0] of the instruction; extract
8689 * SYSm and the mask bits.
8690 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
8691 * we choose to treat them as if the mask bits were valid.
8692 * NB that the pseudocode 'mask' variable is bits [11..10],
8693 * whereas ours is [11..8].
8694 */
8695 uint32_t mask = extract32(maskreg, 8, 4);
8696 uint32_t reg = extract32(maskreg, 0, 8);
8697
58117c9b
MD
8698 if (arm_current_el(env) == 0 && reg > 7) {
8699 /* only xPSR sub-fields may be written by unprivileged */
8700 return;
8701 }
a47dddd7 8702
9ee6e8bb 8703 switch (reg) {
58117c9b
MD
8704 case 0 ... 7: /* xPSR sub-fields */
8705 /* only APSR is actually writable */
b28b3377
PM
8706 if (!(reg & 4)) {
8707 uint32_t apsrmask = 0;
8708
8709 if (mask & 8) {
8710 apsrmask |= 0xf8000000; /* APSR NZCVQ */
8711 }
8712 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
8713 apsrmask |= 0x000f0000; /* APSR GE[3:0] */
8714 }
8715 xpsr_write(env, val, apsrmask);
58117c9b 8716 }
9ee6e8bb
PB
8717 break;
8718 case 8: /* MSP */
abc24d86 8719 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
9ee6e8bb 8720 env->v7m.other_sp = val;
abc24d86 8721 } else {
9ee6e8bb 8722 env->regs[13] = val;
abc24d86 8723 }
9ee6e8bb
PB
8724 break;
8725 case 9: /* PSP */
abc24d86 8726 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
9ee6e8bb 8727 env->regs[13] = val;
abc24d86 8728 } else {
9ee6e8bb 8729 env->v7m.other_sp = val;
abc24d86 8730 }
9ee6e8bb
PB
8731 break;
8732 case 16: /* PRIMASK */
4cc35614
PM
8733 if (val & 1) {
8734 env->daif |= PSTATE_I;
8735 } else {
8736 env->daif &= ~PSTATE_I;
8737 }
9ee6e8bb 8738 break;
82845826 8739 case 17: /* BASEPRI */
9ee6e8bb
PB
8740 env->v7m.basepri = val & 0xff;
8741 break;
82845826 8742 case 18: /* BASEPRI_MAX */
9ee6e8bb
PB
8743 val &= 0xff;
8744 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
8745 env->v7m.basepri = val;
8746 break;
82845826 8747 case 19: /* FAULTMASK */
4cc35614
PM
8748 if (val & 1) {
8749 env->daif |= PSTATE_F;
8750 } else {
8751 env->daif &= ~PSTATE_F;
8752 }
82845826 8753 break;
9ee6e8bb 8754 case 20: /* CONTROL */
abc24d86
MD
8755 switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
8756 env->v7m.control = val & (R_V7M_CONTROL_SPSEL_MASK |
8757 R_V7M_CONTROL_NPRIV_MASK);
9ee6e8bb
PB
8758 break;
8759 default:
58117c9b
MD
8760 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
8761 " register %d\n", reg);
9ee6e8bb
PB
8762 return;
8763 }
8764}
8765
b5ff1b31 8766#endif
6ddbc6e4 8767
aca3f40b
PM
8768void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
8769{
8770 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8771 * Note that we do not implement the (architecturally mandated)
8772 * alignment fault for attempts to use this on Device memory
8773 * (which matches the usual QEMU behaviour of not implementing either
8774 * alignment faults or any memory attribute handling).
8775 */
8776
8777 ARMCPU *cpu = arm_env_get_cpu(env);
8778 uint64_t blocklen = 4 << cpu->dcz_blocksize;
8779 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
8780
8781#ifndef CONFIG_USER_ONLY
8782 {
8783 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8784 * the block size so we might have to do more than one TLB lookup.
8785 * We know that in fact for any v8 CPU the page size is at least 4K
8786 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8787 * 1K as an artefact of legacy v5 subpage support being present in the
8788 * same QEMU executable.
8789 */
8790 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
8791 void *hostaddr[maxidx];
8792 int try, i;
97ed5ccd 8793 unsigned mmu_idx = cpu_mmu_index(env, false);
3972ef6f 8794 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
aca3f40b
PM
8795
8796 for (try = 0; try < 2; try++) {
8797
8798 for (i = 0; i < maxidx; i++) {
8799 hostaddr[i] = tlb_vaddr_to_host(env,
8800 vaddr + TARGET_PAGE_SIZE * i,
3972ef6f 8801 1, mmu_idx);
aca3f40b
PM
8802 if (!hostaddr[i]) {
8803 break;
8804 }
8805 }
8806 if (i == maxidx) {
8807 /* If it's all in the TLB it's fair game for just writing to;
8808 * we know we don't need to update dirty status, etc.
8809 */
8810 for (i = 0; i < maxidx - 1; i++) {
8811 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
8812 }
8813 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
8814 return;
8815 }
8816 /* OK, try a store and see if we can populate the tlb. This
8817 * might cause an exception if the memory isn't writable,
8818 * in which case we will longjmp out of here. We must for
8819 * this purpose use the actual register value passed to us
8820 * so that we get the fault address right.
8821 */
01ecaf43 8822 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
aca3f40b
PM
8823 /* Now we can populate the other TLB entries, if any */
8824 for (i = 0; i < maxidx; i++) {
8825 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
8826 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
01ecaf43 8827 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
aca3f40b
PM
8828 }
8829 }
8830 }
8831
8832 /* Slow path (probably attempt to do this to an I/O device or
8833 * similar, or clearing of a block of code we have translations
8834 * cached for). Just do a series of byte writes as the architecture
8835 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8836 * memset(), unmap() sequence here because:
8837 * + we'd need to account for the blocksize being larger than a page
8838 * + the direct-RAM access case is almost always going to be dealt
8839 * with in the fastpath code above, so there's no speed benefit
8840 * + we would have to deal with the map returning NULL because the
8841 * bounce buffer was in use
8842 */
8843 for (i = 0; i < blocklen; i++) {
01ecaf43 8844 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
aca3f40b
PM
8845 }
8846 }
8847#else
8848 memset(g2h(vaddr), 0, blocklen);
8849#endif
8850}
8851
6ddbc6e4
PB
8852/* Note that signed overflow is undefined in C. The following routines are
8853 careful to use unsigned types where modulo arithmetic is required.
8854 Failure to do so _will_ break on newer gcc. */
8855
8856/* Signed saturating arithmetic. */
8857
1654b2d6 8858/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
8859static inline uint16_t add16_sat(uint16_t a, uint16_t b)
8860{
8861 uint16_t res;
8862
8863 res = a + b;
8864 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
8865 if (a & 0x8000)
8866 res = 0x8000;
8867 else
8868 res = 0x7fff;
8869 }
8870 return res;
8871}
8872
1654b2d6 8873/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
8874static inline uint8_t add8_sat(uint8_t a, uint8_t b)
8875{
8876 uint8_t res;
8877
8878 res = a + b;
8879 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
8880 if (a & 0x80)
8881 res = 0x80;
8882 else
8883 res = 0x7f;
8884 }
8885 return res;
8886}
8887
1654b2d6 8888/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
8889static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
8890{
8891 uint16_t res;
8892
8893 res = a - b;
8894 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
8895 if (a & 0x8000)
8896 res = 0x8000;
8897 else
8898 res = 0x7fff;
8899 }
8900 return res;
8901}
8902
1654b2d6 8903/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
8904static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
8905{
8906 uint8_t res;
8907
8908 res = a - b;
8909 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
8910 if (a & 0x80)
8911 res = 0x80;
8912 else
8913 res = 0x7f;
8914 }
8915 return res;
8916}
8917
8918#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8919#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8920#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8921#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8922#define PFX q
8923
8924#include "op_addsub.h"
8925
8926/* Unsigned saturating arithmetic. */
460a09c1 8927static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
8928{
8929 uint16_t res;
8930 res = a + b;
8931 if (res < a)
8932 res = 0xffff;
8933 return res;
8934}
8935
460a09c1 8936static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 8937{
4c4fd3f8 8938 if (a > b)
6ddbc6e4
PB
8939 return a - b;
8940 else
8941 return 0;
8942}
8943
8944static inline uint8_t add8_usat(uint8_t a, uint8_t b)
8945{
8946 uint8_t res;
8947 res = a + b;
8948 if (res < a)
8949 res = 0xff;
8950 return res;
8951}
8952
8953static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
8954{
4c4fd3f8 8955 if (a > b)
6ddbc6e4
PB
8956 return a - b;
8957 else
8958 return 0;
8959}
8960
8961#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8962#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8963#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8964#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8965#define PFX uq
8966
8967#include "op_addsub.h"
8968
8969/* Signed modulo arithmetic. */
8970#define SARITH16(a, b, n, op) do { \
8971 int32_t sum; \
db6e2e65 8972 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
8973 RESULT(sum, n, 16); \
8974 if (sum >= 0) \
8975 ge |= 3 << (n * 2); \
8976 } while(0)
8977
8978#define SARITH8(a, b, n, op) do { \
8979 int32_t sum; \
db6e2e65 8980 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
8981 RESULT(sum, n, 8); \
8982 if (sum >= 0) \
8983 ge |= 1 << n; \
8984 } while(0)
8985
8986
8987#define ADD16(a, b, n) SARITH16(a, b, n, +)
8988#define SUB16(a, b, n) SARITH16(a, b, n, -)
8989#define ADD8(a, b, n) SARITH8(a, b, n, +)
8990#define SUB8(a, b, n) SARITH8(a, b, n, -)
8991#define PFX s
8992#define ARITH_GE
8993
8994#include "op_addsub.h"
8995
8996/* Unsigned modulo arithmetic. */
8997#define ADD16(a, b, n) do { \
8998 uint32_t sum; \
8999 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
9000 RESULT(sum, n, 16); \
a87aa10b 9001 if ((sum >> 16) == 1) \
6ddbc6e4
PB
9002 ge |= 3 << (n * 2); \
9003 } while(0)
9004
9005#define ADD8(a, b, n) do { \
9006 uint32_t sum; \
9007 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
9008 RESULT(sum, n, 8); \
a87aa10b
AZ
9009 if ((sum >> 8) == 1) \
9010 ge |= 1 << n; \
6ddbc6e4
PB
9011 } while(0)
9012
9013#define SUB16(a, b, n) do { \
9014 uint32_t sum; \
9015 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
9016 RESULT(sum, n, 16); \
9017 if ((sum >> 16) == 0) \
9018 ge |= 3 << (n * 2); \
9019 } while(0)
9020
9021#define SUB8(a, b, n) do { \
9022 uint32_t sum; \
9023 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
9024 RESULT(sum, n, 8); \
9025 if ((sum >> 8) == 0) \
a87aa10b 9026 ge |= 1 << n; \
6ddbc6e4
PB
9027 } while(0)
9028
9029#define PFX u
9030#define ARITH_GE
9031
9032#include "op_addsub.h"
9033
9034/* Halved signed arithmetic. */
9035#define ADD16(a, b, n) \
9036 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
9037#define SUB16(a, b, n) \
9038 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
9039#define ADD8(a, b, n) \
9040 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
9041#define SUB8(a, b, n) \
9042 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
9043#define PFX sh
9044
9045#include "op_addsub.h"
9046
9047/* Halved unsigned arithmetic. */
9048#define ADD16(a, b, n) \
9049 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9050#define SUB16(a, b, n) \
9051 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9052#define ADD8(a, b, n) \
9053 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9054#define SUB8(a, b, n) \
9055 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9056#define PFX uh
9057
9058#include "op_addsub.h"
9059
9060static inline uint8_t do_usad(uint8_t a, uint8_t b)
9061{
9062 if (a > b)
9063 return a - b;
9064 else
9065 return b - a;
9066}
9067
9068/* Unsigned sum of absolute byte differences. */
9069uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
9070{
9071 uint32_t sum;
9072 sum = do_usad(a, b);
9073 sum += do_usad(a >> 8, b >> 8);
9074 sum += do_usad(a >> 16, b >>16);
9075 sum += do_usad(a >> 24, b >> 24);
9076 return sum;
9077}
9078
9079/* For ARMv6 SEL instruction. */
9080uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
9081{
9082 uint32_t mask;
9083
9084 mask = 0;
9085 if (flags & 1)
9086 mask |= 0xff;
9087 if (flags & 2)
9088 mask |= 0xff00;
9089 if (flags & 4)
9090 mask |= 0xff0000;
9091 if (flags & 8)
9092 mask |= 0xff000000;
9093 return (a & mask) | (b & ~mask);
9094}
9095
b90372ad
PM
9096/* VFP support. We follow the convention used for VFP instructions:
9097 Single precision routines have a "s" suffix, double precision a
4373f3ce
PB
9098 "d" suffix. */
9099
9100/* Convert host exception flags to vfp form. */
9101static inline int vfp_exceptbits_from_host(int host_bits)
9102{
9103 int target_bits = 0;
9104
9105 if (host_bits & float_flag_invalid)
9106 target_bits |= 1;
9107 if (host_bits & float_flag_divbyzero)
9108 target_bits |= 2;
9109 if (host_bits & float_flag_overflow)
9110 target_bits |= 4;
36802b6b 9111 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4373f3ce
PB
9112 target_bits |= 8;
9113 if (host_bits & float_flag_inexact)
9114 target_bits |= 0x10;
cecd8504
PM
9115 if (host_bits & float_flag_input_denormal)
9116 target_bits |= 0x80;
4373f3ce
PB
9117 return target_bits;
9118}
9119
0ecb72a5 9120uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4373f3ce
PB
9121{
9122 int i;
9123 uint32_t fpscr;
9124
9125 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
9126 | (env->vfp.vec_len << 16)
9127 | (env->vfp.vec_stride << 20);
9128 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 9129 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4373f3ce
PB
9130 fpscr |= vfp_exceptbits_from_host(i);
9131 return fpscr;
9132}
9133
0ecb72a5 9134uint32_t vfp_get_fpscr(CPUARMState *env)
01653295
PM
9135{
9136 return HELPER(vfp_get_fpscr)(env);
9137}
9138
4373f3ce
PB
9139/* Convert vfp exception flags to target form. */
9140static inline int vfp_exceptbits_to_host(int target_bits)
9141{
9142 int host_bits = 0;
9143
9144 if (target_bits & 1)
9145 host_bits |= float_flag_invalid;
9146 if (target_bits & 2)
9147 host_bits |= float_flag_divbyzero;
9148 if (target_bits & 4)
9149 host_bits |= float_flag_overflow;
9150 if (target_bits & 8)
9151 host_bits |= float_flag_underflow;
9152 if (target_bits & 0x10)
9153 host_bits |= float_flag_inexact;
cecd8504
PM
9154 if (target_bits & 0x80)
9155 host_bits |= float_flag_input_denormal;
4373f3ce
PB
9156 return host_bits;
9157}
9158
0ecb72a5 9159void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4373f3ce
PB
9160{
9161 int i;
9162 uint32_t changed;
9163
9164 changed = env->vfp.xregs[ARM_VFP_FPSCR];
9165 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
9166 env->vfp.vec_len = (val >> 16) & 7;
9167 env->vfp.vec_stride = (val >> 20) & 3;
9168
9169 changed ^= val;
9170 if (changed & (3 << 22)) {
9171 i = (val >> 22) & 3;
9172 switch (i) {
4d3da0f3 9173 case FPROUNDING_TIEEVEN:
4373f3ce
PB
9174 i = float_round_nearest_even;
9175 break;
4d3da0f3 9176 case FPROUNDING_POSINF:
4373f3ce
PB
9177 i = float_round_up;
9178 break;
4d3da0f3 9179 case FPROUNDING_NEGINF:
4373f3ce
PB
9180 i = float_round_down;
9181 break;
4d3da0f3 9182 case FPROUNDING_ZERO:
4373f3ce
PB
9183 i = float_round_to_zero;
9184 break;
9185 }
9186 set_float_rounding_mode(i, &env->vfp.fp_status);
9187 }
cecd8504 9188 if (changed & (1 << 24)) {
fe76d976 9189 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
cecd8504
PM
9190 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9191 }
5c7908ed
PB
9192 if (changed & (1 << 25))
9193 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce 9194
b12c390b 9195 i = vfp_exceptbits_to_host(val);
4373f3ce 9196 set_float_exception_flags(i, &env->vfp.fp_status);
3a492f3a 9197 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
9198}
9199
0ecb72a5 9200void vfp_set_fpscr(CPUARMState *env, uint32_t val)
01653295
PM
9201{
9202 HELPER(vfp_set_fpscr)(env, val);
9203}
9204
4373f3ce
PB
9205#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
9206
9207#define VFP_BINOP(name) \
ae1857ec 9208float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4373f3ce 9209{ \
ae1857ec
PM
9210 float_status *fpst = fpstp; \
9211 return float32_ ## name(a, b, fpst); \
4373f3ce 9212} \
ae1857ec 9213float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4373f3ce 9214{ \
ae1857ec
PM
9215 float_status *fpst = fpstp; \
9216 return float64_ ## name(a, b, fpst); \
4373f3ce
PB
9217}
9218VFP_BINOP(add)
9219VFP_BINOP(sub)
9220VFP_BINOP(mul)
9221VFP_BINOP(div)
f71a2ae5
PM
9222VFP_BINOP(min)
9223VFP_BINOP(max)
9224VFP_BINOP(minnum)
9225VFP_BINOP(maxnum)
4373f3ce
PB
9226#undef VFP_BINOP
9227
9228float32 VFP_HELPER(neg, s)(float32 a)
9229{
9230 return float32_chs(a);
9231}
9232
9233float64 VFP_HELPER(neg, d)(float64 a)
9234{
66230e0d 9235 return float64_chs(a);
4373f3ce
PB
9236}
9237
9238float32 VFP_HELPER(abs, s)(float32 a)
9239{
9240 return float32_abs(a);
9241}
9242
9243float64 VFP_HELPER(abs, d)(float64 a)
9244{
66230e0d 9245 return float64_abs(a);
4373f3ce
PB
9246}
9247
0ecb72a5 9248float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4373f3ce
PB
9249{
9250 return float32_sqrt(a, &env->vfp.fp_status);
9251}
9252
0ecb72a5 9253float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4373f3ce
PB
9254{
9255 return float64_sqrt(a, &env->vfp.fp_status);
9256}
9257
9258/* XXX: check quiet/signaling case */
9259#define DO_VFP_cmp(p, type) \
0ecb72a5 9260void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
9261{ \
9262 uint32_t flags; \
9263 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
9264 case 0: flags = 0x6; break; \
9265 case -1: flags = 0x8; break; \
9266 case 1: flags = 0x2; break; \
9267 default: case 2: flags = 0x3; break; \
9268 } \
9269 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9270 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9271} \
0ecb72a5 9272void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
9273{ \
9274 uint32_t flags; \
9275 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
9276 case 0: flags = 0x6; break; \
9277 case -1: flags = 0x8; break; \
9278 case 1: flags = 0x2; break; \
9279 default: case 2: flags = 0x3; break; \
9280 } \
9281 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9282 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9283}
9284DO_VFP_cmp(s, float32)
9285DO_VFP_cmp(d, float64)
9286#undef DO_VFP_cmp
9287
5500b06c 9288/* Integer to float and float to integer conversions */
4373f3ce 9289
5500b06c
PM
9290#define CONV_ITOF(name, fsz, sign) \
9291 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
9292{ \
9293 float_status *fpst = fpstp; \
85836979 9294 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4373f3ce
PB
9295}
9296
5500b06c
PM
9297#define CONV_FTOI(name, fsz, sign, round) \
9298uint32_t HELPER(name)(float##fsz x, void *fpstp) \
9299{ \
9300 float_status *fpst = fpstp; \
9301 if (float##fsz##_is_any_nan(x)) { \
9302 float_raise(float_flag_invalid, fpst); \
9303 return 0; \
9304 } \
9305 return float##fsz##_to_##sign##int32##round(x, fpst); \
4373f3ce
PB
9306}
9307
5500b06c
PM
9308#define FLOAT_CONVS(name, p, fsz, sign) \
9309CONV_ITOF(vfp_##name##to##p, fsz, sign) \
9310CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
9311CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4373f3ce 9312
5500b06c
PM
9313FLOAT_CONVS(si, s, 32, )
9314FLOAT_CONVS(si, d, 64, )
9315FLOAT_CONVS(ui, s, 32, u)
9316FLOAT_CONVS(ui, d, 64, u)
4373f3ce 9317
5500b06c
PM
9318#undef CONV_ITOF
9319#undef CONV_FTOI
9320#undef FLOAT_CONVS
4373f3ce
PB
9321
9322/* floating point conversion */
0ecb72a5 9323float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4373f3ce 9324{
2d627737
PM
9325 float64 r = float32_to_float64(x, &env->vfp.fp_status);
9326 /* ARM requires that S<->D conversion of any kind of NaN generates
9327 * a quiet NaN by forcing the most significant frac bit to 1.
9328 */
af39bc8c 9329 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
4373f3ce
PB
9330}
9331
0ecb72a5 9332float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4373f3ce 9333{
2d627737
PM
9334 float32 r = float64_to_float32(x, &env->vfp.fp_status);
9335 /* ARM requires that S<->D conversion of any kind of NaN generates
9336 * a quiet NaN by forcing the most significant frac bit to 1.
9337 */
af39bc8c 9338 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
4373f3ce
PB
9339}
9340
9341/* VFP3 fixed point conversion. */
16d5b3ca 9342#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8ed697e8
WN
9343float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
9344 void *fpstp) \
4373f3ce 9345{ \
5500b06c 9346 float_status *fpst = fpstp; \
622465e1 9347 float##fsz tmp; \
8ed697e8 9348 tmp = itype##_to_##float##fsz(x, fpst); \
5500b06c 9349 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
16d5b3ca
WN
9350}
9351
abe66f70
PM
9352/* Notice that we want only input-denormal exception flags from the
9353 * scalbn operation: the other possible flags (overflow+inexact if
9354 * we overflow to infinity, output-denormal) aren't correct for the
9355 * complete scale-and-convert operation.
9356 */
16d5b3ca
WN
9357#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
9358uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
9359 uint32_t shift, \
9360 void *fpstp) \
4373f3ce 9361{ \
5500b06c 9362 float_status *fpst = fpstp; \
abe66f70 9363 int old_exc_flags = get_float_exception_flags(fpst); \
622465e1
PM
9364 float##fsz tmp; \
9365 if (float##fsz##_is_any_nan(x)) { \
5500b06c 9366 float_raise(float_flag_invalid, fpst); \
622465e1 9367 return 0; \
09d9487f 9368 } \
5500b06c 9369 tmp = float##fsz##_scalbn(x, shift, fpst); \
abe66f70
PM
9370 old_exc_flags |= get_float_exception_flags(fpst) \
9371 & float_flag_input_denormal; \
9372 set_float_exception_flags(old_exc_flags, fpst); \
16d5b3ca 9373 return float##fsz##_to_##itype##round(tmp, fpst); \
622465e1
PM
9374}
9375
16d5b3ca
WN
9376#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
9377VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
3c6a074a
WN
9378VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
9379VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9380
9381#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
9382VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9383VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
16d5b3ca 9384
8ed697e8
WN
9385VFP_CONV_FIX(sh, d, 64, 64, int16)
9386VFP_CONV_FIX(sl, d, 64, 64, int32)
3c6a074a 9387VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8ed697e8
WN
9388VFP_CONV_FIX(uh, d, 64, 64, uint16)
9389VFP_CONV_FIX(ul, d, 64, 64, uint32)
3c6a074a 9390VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8ed697e8
WN
9391VFP_CONV_FIX(sh, s, 32, 32, int16)
9392VFP_CONV_FIX(sl, s, 32, 32, int32)
3c6a074a 9393VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8ed697e8
WN
9394VFP_CONV_FIX(uh, s, 32, 32, uint16)
9395VFP_CONV_FIX(ul, s, 32, 32, uint32)
3c6a074a 9396VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4373f3ce 9397#undef VFP_CONV_FIX
16d5b3ca
WN
9398#undef VFP_CONV_FIX_FLOAT
9399#undef VFP_CONV_FLOAT_FIX_ROUND
4373f3ce 9400
52a1f6a3
AG
9401/* Set the current fp rounding mode and return the old one.
9402 * The argument is a softfloat float_round_ value.
9403 */
9404uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
9405{
9406 float_status *fp_status = &env->vfp.fp_status;
9407
9408 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9409 set_float_rounding_mode(rmode, fp_status);
9410
9411 return prev_rmode;
9412}
9413
43630e58
WN
9414/* Set the current fp rounding mode in the standard fp status and return
9415 * the old one. This is for NEON instructions that need to change the
9416 * rounding mode but wish to use the standard FPSCR values for everything
9417 * else. Always set the rounding mode back to the correct value after
9418 * modifying it.
9419 * The argument is a softfloat float_round_ value.
9420 */
9421uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
9422{
9423 float_status *fp_status = &env->vfp.standard_fp_status;
9424
9425 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9426 set_float_rounding_mode(rmode, fp_status);
9427
9428 return prev_rmode;
9429}
9430
60011498 9431/* Half precision conversions. */
0ecb72a5 9432static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
60011498 9433{
60011498 9434 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
9435 float32 r = float16_to_float32(make_float16(a), ieee, s);
9436 if (ieee) {
af39bc8c 9437 return float32_maybe_silence_nan(r, s);
fb91678d
PM
9438 }
9439 return r;
60011498
PB
9440}
9441
0ecb72a5 9442static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
60011498 9443{
60011498 9444 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
9445 float16 r = float32_to_float16(a, ieee, s);
9446 if (ieee) {
af39bc8c 9447 r = float16_maybe_silence_nan(r, s);
fb91678d
PM
9448 }
9449 return float16_val(r);
60011498
PB
9450}
9451
0ecb72a5 9452float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
9453{
9454 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
9455}
9456
0ecb72a5 9457uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
9458{
9459 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
9460}
9461
0ecb72a5 9462float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
9463{
9464 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
9465}
9466
0ecb72a5 9467uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
9468{
9469 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
9470}
9471
8900aad2
PM
9472float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
9473{
9474 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9475 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
9476 if (ieee) {
af39bc8c 9477 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
8900aad2
PM
9478 }
9479 return r;
9480}
9481
9482uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
9483{
9484 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9485 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
9486 if (ieee) {
af39bc8c 9487 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
8900aad2
PM
9488 }
9489 return float16_val(r);
9490}
9491
dda3ec49 9492#define float32_two make_float32(0x40000000)
6aae3df1
PM
9493#define float32_three make_float32(0x40400000)
9494#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 9495
0ecb72a5 9496float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 9497{
dda3ec49
PM
9498 float_status *s = &env->vfp.standard_fp_status;
9499 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9500 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
9501 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9502 float_raise(float_flag_input_denormal, s);
9503 }
dda3ec49
PM
9504 return float32_two;
9505 }
9506 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
9507}
9508
0ecb72a5 9509float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 9510{
71826966 9511 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
9512 float32 product;
9513 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9514 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
9515 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9516 float_raise(float_flag_input_denormal, s);
9517 }
6aae3df1 9518 return float32_one_point_five;
9ea62f57 9519 }
6aae3df1
PM
9520 product = float32_mul(a, b, s);
9521 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
9522}
9523
8f8e3aa4
PB
9524/* NEON helpers. */
9525
56bf4fe2
CL
9526/* Constants 256 and 512 are used in some helpers; we avoid relying on
9527 * int->float conversions at run-time. */
9528#define float64_256 make_float64(0x4070000000000000LL)
9529#define float64_512 make_float64(0x4080000000000000LL)
b6d4443a
AB
9530#define float32_maxnorm make_float32(0x7f7fffff)
9531#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
56bf4fe2 9532
b6d4443a
AB
9533/* Reciprocal functions
9534 *
9535 * The algorithm that must be used to calculate the estimate
9536 * is specified by the ARM ARM, see FPRecipEstimate()
fe0e4872 9537 */
b6d4443a
AB
9538
9539static float64 recip_estimate(float64 a, float_status *real_fp_status)
fe0e4872 9540{
1146a817
PM
9541 /* These calculations mustn't set any fp exception flags,
9542 * so we use a local copy of the fp_status.
9543 */
b6d4443a 9544 float_status dummy_status = *real_fp_status;
1146a817 9545 float_status *s = &dummy_status;
fe0e4872
CL
9546 /* q = (int)(a * 512.0) */
9547 float64 q = float64_mul(float64_512, a, s);
9548 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9549
9550 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9551 q = int64_to_float64(q_int, s);
9552 q = float64_add(q, float64_half, s);
9553 q = float64_div(q, float64_512, s);
9554 q = float64_div(float64_one, q, s);
9555
9556 /* s = (int)(256.0 * r + 0.5) */
9557 q = float64_mul(q, float64_256, s);
9558 q = float64_add(q, float64_half, s);
9559 q_int = float64_to_int64_round_to_zero(q, s);
9560
9561 /* return (double)s / 256.0 */
9562 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9563}
9564
b6d4443a
AB
9565/* Common wrapper to call recip_estimate */
9566static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
4373f3ce 9567{
b6d4443a
AB
9568 uint64_t val64 = float64_val(num);
9569 uint64_t frac = extract64(val64, 0, 52);
9570 int64_t exp = extract64(val64, 52, 11);
9571 uint64_t sbit;
9572 float64 scaled, estimate;
fe0e4872 9573
b6d4443a
AB
9574 /* Generate the scaled number for the estimate function */
9575 if (exp == 0) {
9576 if (extract64(frac, 51, 1) == 0) {
9577 exp = -1;
9578 frac = extract64(frac, 0, 50) << 2;
9579 } else {
9580 frac = extract64(frac, 0, 51) << 1;
9581 }
9582 }
fe0e4872 9583
b6d4443a
AB
9584 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9585 scaled = make_float64((0x3feULL << 52)
9586 | extract64(frac, 44, 8) << 44);
9587
9588 estimate = recip_estimate(scaled, fpst);
9589
9590 /* Build new result */
9591 val64 = float64_val(estimate);
9592 sbit = 0x8000000000000000ULL & val64;
9593 exp = off - exp;
9594 frac = extract64(val64, 0, 52);
9595
9596 if (exp == 0) {
9597 frac = 1ULL << 51 | extract64(frac, 1, 51);
9598 } else if (exp == -1) {
9599 frac = 1ULL << 50 | extract64(frac, 2, 50);
9600 exp = 0;
9601 }
9602
9603 return make_float64(sbit | (exp << 52) | frac);
9604}
9605
9606static bool round_to_inf(float_status *fpst, bool sign_bit)
9607{
9608 switch (fpst->float_rounding_mode) {
9609 case float_round_nearest_even: /* Round to Nearest */
9610 return true;
9611 case float_round_up: /* Round to +Inf */
9612 return !sign_bit;
9613 case float_round_down: /* Round to -Inf */
9614 return sign_bit;
9615 case float_round_to_zero: /* Round to Zero */
9616 return false;
9617 }
9618
9619 g_assert_not_reached();
9620}
9621
9622float32 HELPER(recpe_f32)(float32 input, void *fpstp)
9623{
9624 float_status *fpst = fpstp;
9625 float32 f32 = float32_squash_input_denormal(input, fpst);
9626 uint32_t f32_val = float32_val(f32);
9627 uint32_t f32_sbit = 0x80000000ULL & f32_val;
9628 int32_t f32_exp = extract32(f32_val, 23, 8);
9629 uint32_t f32_frac = extract32(f32_val, 0, 23);
9630 float64 f64, r64;
9631 uint64_t r64_val;
9632 int64_t r64_exp;
9633 uint64_t r64_frac;
9634
9635 if (float32_is_any_nan(f32)) {
9636 float32 nan = f32;
af39bc8c 9637 if (float32_is_signaling_nan(f32, fpst)) {
b6d4443a 9638 float_raise(float_flag_invalid, fpst);
af39bc8c 9639 nan = float32_maybe_silence_nan(f32, fpst);
fe0e4872 9640 }
b6d4443a 9641 if (fpst->default_nan_mode) {
af39bc8c 9642 nan = float32_default_nan(fpst);
43fe9bdb 9643 }
b6d4443a
AB
9644 return nan;
9645 } else if (float32_is_infinity(f32)) {
9646 return float32_set_sign(float32_zero, float32_is_neg(f32));
9647 } else if (float32_is_zero(f32)) {
9648 float_raise(float_flag_divbyzero, fpst);
9649 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9650 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
9651 /* Abs(value) < 2.0^-128 */
9652 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9653 if (round_to_inf(fpst, f32_sbit)) {
9654 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9655 } else {
9656 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
9657 }
9658 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
9659 float_raise(float_flag_underflow, fpst);
9660 return float32_set_sign(float32_zero, float32_is_neg(f32));
fe0e4872
CL
9661 }
9662
fe0e4872 9663
b6d4443a
AB
9664 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
9665 r64 = call_recip_estimate(f64, 253, fpst);
9666 r64_val = float64_val(r64);
9667 r64_exp = extract64(r64_val, 52, 11);
9668 r64_frac = extract64(r64_val, 0, 52);
9669
9670 /* result = sign : result_exp<7:0> : fraction<51:29>; */
9671 return make_float32(f32_sbit |
9672 (r64_exp & 0xff) << 23 |
9673 extract64(r64_frac, 29, 24));
9674}
9675
9676float64 HELPER(recpe_f64)(float64 input, void *fpstp)
9677{
9678 float_status *fpst = fpstp;
9679 float64 f64 = float64_squash_input_denormal(input, fpst);
9680 uint64_t f64_val = float64_val(f64);
9681 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
9682 int64_t f64_exp = extract64(f64_val, 52, 11);
9683 float64 r64;
9684 uint64_t r64_val;
9685 int64_t r64_exp;
9686 uint64_t r64_frac;
9687
9688 /* Deal with any special cases */
9689 if (float64_is_any_nan(f64)) {
9690 float64 nan = f64;
af39bc8c 9691 if (float64_is_signaling_nan(f64, fpst)) {
b6d4443a 9692 float_raise(float_flag_invalid, fpst);
af39bc8c 9693 nan = float64_maybe_silence_nan(f64, fpst);
b6d4443a
AB
9694 }
9695 if (fpst->default_nan_mode) {
af39bc8c 9696 nan = float64_default_nan(fpst);
b6d4443a
AB
9697 }
9698 return nan;
9699 } else if (float64_is_infinity(f64)) {
9700 return float64_set_sign(float64_zero, float64_is_neg(f64));
9701 } else if (float64_is_zero(f64)) {
9702 float_raise(float_flag_divbyzero, fpst);
9703 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9704 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
9705 /* Abs(value) < 2.0^-1024 */
9706 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9707 if (round_to_inf(fpst, f64_sbit)) {
9708 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9709 } else {
9710 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9711 }
fc1792e9 9712 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
b6d4443a
AB
9713 float_raise(float_flag_underflow, fpst);
9714 return float64_set_sign(float64_zero, float64_is_neg(f64));
9715 }
fe0e4872 9716
b6d4443a
AB
9717 r64 = call_recip_estimate(f64, 2045, fpst);
9718 r64_val = float64_val(r64);
9719 r64_exp = extract64(r64_val, 52, 11);
9720 r64_frac = extract64(r64_val, 0, 52);
fe0e4872 9721
b6d4443a
AB
9722 /* result = sign : result_exp<10:0> : fraction<51:0> */
9723 return make_float64(f64_sbit |
9724 ((r64_exp & 0x7ff) << 52) |
9725 r64_frac);
4373f3ce
PB
9726}
9727
e07be5d2
CL
9728/* The algorithm that must be used to calculate the estimate
9729 * is specified by the ARM ARM.
9730 */
c2fb418e 9731static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
e07be5d2 9732{
1146a817
PM
9733 /* These calculations mustn't set any fp exception flags,
9734 * so we use a local copy of the fp_status.
9735 */
c2fb418e 9736 float_status dummy_status = *real_fp_status;
1146a817 9737 float_status *s = &dummy_status;
e07be5d2
CL
9738 float64 q;
9739 int64_t q_int;
9740
9741 if (float64_lt(a, float64_half, s)) {
9742 /* range 0.25 <= a < 0.5 */
9743
9744 /* a in units of 1/512 rounded down */
9745 /* q0 = (int)(a * 512.0); */
9746 q = float64_mul(float64_512, a, s);
9747 q_int = float64_to_int64_round_to_zero(q, s);
9748
9749 /* reciprocal root r */
9750 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9751 q = int64_to_float64(q_int, s);
9752 q = float64_add(q, float64_half, s);
9753 q = float64_div(q, float64_512, s);
9754 q = float64_sqrt(q, s);
9755 q = float64_div(float64_one, q, s);
9756 } else {
9757 /* range 0.5 <= a < 1.0 */
9758
9759 /* a in units of 1/256 rounded down */
9760 /* q1 = (int)(a * 256.0); */
9761 q = float64_mul(float64_256, a, s);
9762 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9763
9764 /* reciprocal root r */
9765 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9766 q = int64_to_float64(q_int, s);
9767 q = float64_add(q, float64_half, s);
9768 q = float64_div(q, float64_256, s);
9769 q = float64_sqrt(q, s);
9770 q = float64_div(float64_one, q, s);
9771 }
9772 /* r in units of 1/256 rounded to nearest */
9773 /* s = (int)(256.0 * r + 0.5); */
9774
9775 q = float64_mul(q, float64_256,s );
9776 q = float64_add(q, float64_half, s);
9777 q_int = float64_to_int64_round_to_zero(q, s);
9778
9779 /* return (double)s / 256.0;*/
9780 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9781}
9782
c2fb418e 9783float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
4373f3ce 9784{
c2fb418e
AB
9785 float_status *s = fpstp;
9786 float32 f32 = float32_squash_input_denormal(input, s);
9787 uint32_t val = float32_val(f32);
9788 uint32_t f32_sbit = 0x80000000 & val;
9789 int32_t f32_exp = extract32(val, 23, 8);
9790 uint32_t f32_frac = extract32(val, 0, 23);
9791 uint64_t f64_frac;
9792 uint64_t val64;
e07be5d2
CL
9793 int result_exp;
9794 float64 f64;
e07be5d2 9795
c2fb418e
AB
9796 if (float32_is_any_nan(f32)) {
9797 float32 nan = f32;
af39bc8c 9798 if (float32_is_signaling_nan(f32, s)) {
e07be5d2 9799 float_raise(float_flag_invalid, s);
af39bc8c 9800 nan = float32_maybe_silence_nan(f32, s);
e07be5d2 9801 }
c2fb418e 9802 if (s->default_nan_mode) {
af39bc8c 9803 nan = float32_default_nan(s);
43fe9bdb 9804 }
c2fb418e
AB
9805 return nan;
9806 } else if (float32_is_zero(f32)) {
e07be5d2 9807 float_raise(float_flag_divbyzero, s);
c2fb418e
AB
9808 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9809 } else if (float32_is_neg(f32)) {
e07be5d2 9810 float_raise(float_flag_invalid, s);
af39bc8c 9811 return float32_default_nan(s);
c2fb418e 9812 } else if (float32_is_infinity(f32)) {
e07be5d2
CL
9813 return float32_zero;
9814 }
9815
c2fb418e 9816 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
e07be5d2 9817 * preserving the parity of the exponent. */
c2fb418e
AB
9818
9819 f64_frac = ((uint64_t) f32_frac) << 29;
9820 if (f32_exp == 0) {
9821 while (extract64(f64_frac, 51, 1) == 0) {
9822 f64_frac = f64_frac << 1;
9823 f32_exp = f32_exp-1;
9824 }
9825 f64_frac = extract64(f64_frac, 0, 51) << 1;
9826 }
9827
9828 if (extract64(f32_exp, 0, 1) == 0) {
9829 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 9830 | (0x3feULL << 52)
c2fb418e 9831 | f64_frac);
e07be5d2 9832 } else {
c2fb418e 9833 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 9834 | (0x3fdULL << 52)
c2fb418e 9835 | f64_frac);
e07be5d2
CL
9836 }
9837
c2fb418e 9838 result_exp = (380 - f32_exp) / 2;
e07be5d2 9839
c2fb418e 9840 f64 = recip_sqrt_estimate(f64, s);
e07be5d2
CL
9841
9842 val64 = float64_val(f64);
9843
26cc6abf 9844 val = ((result_exp & 0xff) << 23)
e07be5d2
CL
9845 | ((val64 >> 29) & 0x7fffff);
9846 return make_float32(val);
4373f3ce
PB
9847}
9848
c2fb418e
AB
9849float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
9850{
9851 float_status *s = fpstp;
9852 float64 f64 = float64_squash_input_denormal(input, s);
9853 uint64_t val = float64_val(f64);
9854 uint64_t f64_sbit = 0x8000000000000000ULL & val;
9855 int64_t f64_exp = extract64(val, 52, 11);
9856 uint64_t f64_frac = extract64(val, 0, 52);
9857 int64_t result_exp;
9858 uint64_t result_frac;
9859
9860 if (float64_is_any_nan(f64)) {
9861 float64 nan = f64;
af39bc8c 9862 if (float64_is_signaling_nan(f64, s)) {
c2fb418e 9863 float_raise(float_flag_invalid, s);
af39bc8c 9864 nan = float64_maybe_silence_nan(f64, s);
c2fb418e
AB
9865 }
9866 if (s->default_nan_mode) {
af39bc8c 9867 nan = float64_default_nan(s);
c2fb418e
AB
9868 }
9869 return nan;
9870 } else if (float64_is_zero(f64)) {
9871 float_raise(float_flag_divbyzero, s);
9872 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9873 } else if (float64_is_neg(f64)) {
9874 float_raise(float_flag_invalid, s);
af39bc8c 9875 return float64_default_nan(s);
c2fb418e
AB
9876 } else if (float64_is_infinity(f64)) {
9877 return float64_zero;
9878 }
9879
9880 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9881 * preserving the parity of the exponent. */
9882
9883 if (f64_exp == 0) {
9884 while (extract64(f64_frac, 51, 1) == 0) {
9885 f64_frac = f64_frac << 1;
9886 f64_exp = f64_exp - 1;
9887 }
9888 f64_frac = extract64(f64_frac, 0, 51) << 1;
9889 }
9890
9891 if (extract64(f64_exp, 0, 1) == 0) {
9892 f64 = make_float64(f64_sbit
9893 | (0x3feULL << 52)
9894 | f64_frac);
9895 } else {
9896 f64 = make_float64(f64_sbit
9897 | (0x3fdULL << 52)
9898 | f64_frac);
9899 }
9900
9901 result_exp = (3068 - f64_exp) / 2;
9902
9903 f64 = recip_sqrt_estimate(f64, s);
9904
9905 result_frac = extract64(float64_val(f64), 0, 52);
9906
9907 return make_float64(f64_sbit |
9908 ((result_exp & 0x7ff) << 52) |
9909 result_frac);
9910}
9911
b6d4443a 9912uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
4373f3ce 9913{
b6d4443a 9914 float_status *s = fpstp;
fe0e4872
CL
9915 float64 f64;
9916
9917 if ((a & 0x80000000) == 0) {
9918 return 0xffffffff;
9919 }
9920
9921 f64 = make_float64((0x3feULL << 52)
9922 | ((int64_t)(a & 0x7fffffff) << 21));
9923
b6d4443a 9924 f64 = recip_estimate(f64, s);
fe0e4872
CL
9925
9926 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce
PB
9927}
9928
c2fb418e 9929uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
4373f3ce 9930{
c2fb418e 9931 float_status *fpst = fpstp;
e07be5d2
CL
9932 float64 f64;
9933
9934 if ((a & 0xc0000000) == 0) {
9935 return 0xffffffff;
9936 }
9937
9938 if (a & 0x80000000) {
9939 f64 = make_float64((0x3feULL << 52)
9940 | ((uint64_t)(a & 0x7fffffff) << 21));
9941 } else { /* bits 31-30 == '01' */
9942 f64 = make_float64((0x3fdULL << 52)
9943 | ((uint64_t)(a & 0x3fffffff) << 22));
9944 }
9945
c2fb418e 9946 f64 = recip_sqrt_estimate(f64, fpst);
e07be5d2
CL
9947
9948 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce 9949}
fe1479c3 9950
da97f52c
PM
9951/* VFPv4 fused multiply-accumulate */
9952float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
9953{
9954 float_status *fpst = fpstp;
9955 return float32_muladd(a, b, c, 0, fpst);
9956}
9957
9958float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
9959{
9960 float_status *fpst = fpstp;
9961 return float64_muladd(a, b, c, 0, fpst);
9962}
d9b0848d
PM
9963
9964/* ARMv8 round to integral */
9965float32 HELPER(rints_exact)(float32 x, void *fp_status)
9966{
9967 return float32_round_to_int(x, fp_status);
9968}
9969
9970float64 HELPER(rintd_exact)(float64 x, void *fp_status)
9971{
9972 return float64_round_to_int(x, fp_status);
9973}
9974
9975float32 HELPER(rints)(float32 x, void *fp_status)
9976{
9977 int old_flags = get_float_exception_flags(fp_status), new_flags;
9978 float32 ret;
9979
9980 ret = float32_round_to_int(x, fp_status);
9981
9982 /* Suppress any inexact exceptions the conversion produced */
9983 if (!(old_flags & float_flag_inexact)) {
9984 new_flags = get_float_exception_flags(fp_status);
9985 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9986 }
9987
9988 return ret;
9989}
9990
9991float64 HELPER(rintd)(float64 x, void *fp_status)
9992{
9993 int old_flags = get_float_exception_flags(fp_status), new_flags;
9994 float64 ret;
9995
9996 ret = float64_round_to_int(x, fp_status);
9997
9998 new_flags = get_float_exception_flags(fp_status);
9999
10000 /* Suppress any inexact exceptions the conversion produced */
10001 if (!(old_flags & float_flag_inexact)) {
10002 new_flags = get_float_exception_flags(fp_status);
10003 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10004 }
10005
10006 return ret;
10007}
9972da66
WN
10008
10009/* Convert ARM rounding mode to softfloat */
10010int arm_rmode_to_sf(int rmode)
10011{
10012 switch (rmode) {
10013 case FPROUNDING_TIEAWAY:
10014 rmode = float_round_ties_away;
10015 break;
10016 case FPROUNDING_ODD:
10017 /* FIXME: add support for TIEAWAY and ODD */
10018 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
10019 rmode);
10020 case FPROUNDING_TIEEVEN:
10021 default:
10022 rmode = float_round_nearest_even;
10023 break;
10024 case FPROUNDING_POSINF:
10025 rmode = float_round_up;
10026 break;
10027 case FPROUNDING_NEGINF:
10028 rmode = float_round_down;
10029 break;
10030 case FPROUNDING_ZERO:
10031 rmode = float_round_to_zero;
10032 break;
10033 }
10034 return rmode;
10035}
eb0ecd5a 10036
aa633469
PM
10037/* CRC helpers.
10038 * The upper bytes of val (above the number specified by 'bytes') must have
10039 * been zeroed out by the caller.
10040 */
eb0ecd5a
WN
10041uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10042{
10043 uint8_t buf[4];
10044
aa633469 10045 stl_le_p(buf, val);
eb0ecd5a
WN
10046
10047 /* zlib crc32 converts the accumulator and output to one's complement. */
10048 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10049}
10050
10051uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10052{
10053 uint8_t buf[4];
10054
aa633469 10055 stl_le_p(buf, val);
eb0ecd5a
WN
10056
10057 /* Linux crc32c converts the output to one's complement. */
10058 return crc32c(acc, buf, bytes) ^ 0xffffffff;
10059}