]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/helper.c
target/arm/tcg: Including missing 'exec/exec-all.h' header
[mirror_qemu.git] / target / arm / helper.c
CommitLineData
ed3baad1
PMD
1/*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
db725815 8
74c21bd0 9#include "qemu/osdep.h"
cd617484 10#include "qemu/log.h"
194cbc49 11#include "trace.h"
b5ff1b31 12#include "cpu.h"
ccd38087 13#include "internals.h"
5a534314 14#include "cpu-features.h"
2ef6175a 15#include "exec/helper-proto.h"
db725815 16#include "qemu/main-loop.h"
b8012ecf 17#include "qemu/timer.h"
1de7afc9 18#include "qemu/bitops.h"
eb0ecd5a 19#include "qemu/crc32c.h"
0442428a 20#include "qemu/qemu-print.h"
63c91552 21#include "exec/exec-all.h"
eb0ecd5a 22#include <zlib.h> /* For crc32 */
64552b6b 23#include "hw/irq.h"
740b1759 24#include "sysemu/cpu-timers.h"
f3a9b694 25#include "sysemu/kvm.h"
0c1aaa66 26#include "sysemu/tcg.h"
de390645
RH
27#include "qapi/error.h"
28#include "qemu/guest-random.h"
91f78c58 29#ifdef CONFIG_TCG
6b5fe137 30#include "semihosting/common-semi.h"
91f78c58 31#endif
cf7c6d10 32#include "cpregs.h"
0b03bdfc 33
352c98e5
LV
34#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
35
affdb64d
PM
36static void switch_mode(CPUARMState *env, int mode);
37
c4241c7d 38static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
d4e6df63 39{
375421cc 40 assert(ri->fieldoffset);
67ed771d 41 if (cpreg_field_is_64bit(ri)) {
c4241c7d 42 return CPREG_FIELD64(env, ri);
22d9e1a9 43 } else {
c4241c7d 44 return CPREG_FIELD32(env, ri);
22d9e1a9 45 }
d4e6df63
PM
46}
47
f43ee493 48void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
d4e6df63 49{
375421cc 50 assert(ri->fieldoffset);
67ed771d 51 if (cpreg_field_is_64bit(ri)) {
22d9e1a9
PM
52 CPREG_FIELD64(env, ri) = value;
53 } else {
54 CPREG_FIELD32(env, ri) = value;
55 }
d4e6df63
PM
56}
57
11f136ee
FA
58static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
59{
60 return (char *)env + ri->fieldoffset;
61}
62
49a66191 63uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
721fae12 64{
59a1c327 65 /* Raw read of a coprocessor register (as needed for migration, etc). */
721fae12 66 if (ri->type & ARM_CP_CONST) {
59a1c327 67 return ri->resetvalue;
721fae12 68 } else if (ri->raw_readfn) {
59a1c327 69 return ri->raw_readfn(env, ri);
721fae12 70 } else if (ri->readfn) {
59a1c327 71 return ri->readfn(env, ri);
721fae12 72 } else {
59a1c327 73 return raw_read(env, ri);
721fae12 74 }
721fae12
PM
75}
76
59a1c327 77static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
7900e9f1 78 uint64_t v)
721fae12 79{
9b37a28c
FR
80 /*
81 * Raw write of a coprocessor register (as needed for migration, etc).
721fae12
PM
82 * Note that constant registers are treated as write-ignored; the
83 * caller should check for success by whether a readback gives the
84 * value written.
85 */
86 if (ri->type & ARM_CP_CONST) {
59a1c327 87 return;
721fae12 88 } else if (ri->raw_writefn) {
c4241c7d 89 ri->raw_writefn(env, ri, v);
721fae12 90 } else if (ri->writefn) {
c4241c7d 91 ri->writefn(env, ri, v);
721fae12 92 } else {
afb2530f 93 raw_write(env, ri, v);
721fae12 94 }
721fae12
PM
95}
96
375421cc
PM
97static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
98{
9b37a28c
FR
99 /*
100 * Return true if the regdef would cause an assertion if you called
375421cc
PM
101 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
102 * program bug for it not to have the NO_RAW flag).
103 * NB that returning false here doesn't necessarily mean that calling
104 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
105 * read/write access functions which are safe for raw use" from "has
106 * read/write access functions which have side effects but has forgotten
107 * to provide raw access functions".
108 * The tests here line up with the conditions in read/write_raw_cp_reg()
109 * and assertions in raw_read()/raw_write().
110 */
111 if ((ri->type & ARM_CP_CONST) ||
112 ri->fieldoffset ||
113 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
114 return false;
115 }
116 return true;
117}
118
b698e4ee 119bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
721fae12
PM
120{
121 /* Write the coprocessor state from cpu->env to the (index,value) list. */
122 int i;
123 bool ok = true;
124
125 for (i = 0; i < cpu->cpreg_array_len; i++) {
126 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
127 const ARMCPRegInfo *ri;
b698e4ee 128 uint64_t newval;
59a1c327 129
60322b39 130 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
131 if (!ri) {
132 ok = false;
133 continue;
134 }
7a0e58fa 135 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
136 continue;
137 }
b698e4ee
PM
138
139 newval = read_raw_cp_reg(&cpu->env, ri);
140 if (kvm_sync) {
141 /*
142 * Only sync if the previous list->cpustate sync succeeded.
143 * Rather than tracking the success/failure state for every
144 * item in the list, we just recheck "does the raw write we must
145 * have made in write_list_to_cpustate() read back OK" here.
146 */
147 uint64_t oldval = cpu->cpreg_values[i];
148
149 if (oldval == newval) {
150 continue;
151 }
152
153 write_raw_cp_reg(&cpu->env, ri, oldval);
154 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
155 continue;
156 }
157
158 write_raw_cp_reg(&cpu->env, ri, newval);
159 }
160 cpu->cpreg_values[i] = newval;
721fae12
PM
161 }
162 return ok;
163}
164
165bool write_list_to_cpustate(ARMCPU *cpu)
166{
167 int i;
168 bool ok = true;
169
170 for (i = 0; i < cpu->cpreg_array_len; i++) {
171 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
172 uint64_t v = cpu->cpreg_values[i];
721fae12
PM
173 const ARMCPRegInfo *ri;
174
60322b39 175 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
176 if (!ri) {
177 ok = false;
178 continue;
179 }
7a0e58fa 180 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
181 continue;
182 }
9b37a28c
FR
183 /*
184 * Write value and confirm it reads back as written
721fae12
PM
185 * (to catch read-only registers and partially read-only
186 * registers where the incoming migration value doesn't match)
187 */
59a1c327
PM
188 write_raw_cp_reg(&cpu->env, ri, v);
189 if (read_raw_cp_reg(&cpu->env, ri) != v) {
721fae12
PM
190 ok = false;
191 }
192 }
193 return ok;
194}
195
196static void add_cpreg_to_list(gpointer key, gpointer opaque)
197{
198 ARMCPU *cpu = opaque;
5860362d
RH
199 uint32_t regidx = (uintptr_t)key;
200 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 201
04215eb1 202 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
721fae12
PM
203 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
204 /* The value array need not be initialized at this point */
205 cpu->cpreg_array_len++;
206 }
207}
208
209static void count_cpreg(gpointer key, gpointer opaque)
210{
211 ARMCPU *cpu = opaque;
721fae12
PM
212 const ARMCPRegInfo *ri;
213
5860362d 214 ri = g_hash_table_lookup(cpu->cp_regs, key);
721fae12 215
04215eb1 216 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
721fae12
PM
217 cpu->cpreg_array_len++;
218 }
219}
220
221static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
222{
5860362d
RH
223 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
224 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
721fae12 225
cbf239b7
AR
226 if (aidx > bidx) {
227 return 1;
228 }
229 if (aidx < bidx) {
230 return -1;
231 }
232 return 0;
721fae12
PM
233}
234
235void init_cpreg_list(ARMCPU *cpu)
236{
9b37a28c
FR
237 /*
238 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
721fae12
PM
239 * Note that we require cpreg_tuples[] to be sorted by key ID.
240 */
57b6d95e 241 GList *keys;
721fae12
PM
242 int arraylen;
243
57b6d95e 244 keys = g_hash_table_get_keys(cpu->cp_regs);
721fae12
PM
245 keys = g_list_sort(keys, cpreg_key_compare);
246
247 cpu->cpreg_array_len = 0;
248
249 g_list_foreach(keys, count_cpreg, cpu);
250
251 arraylen = cpu->cpreg_array_len;
252 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
253 cpu->cpreg_values = g_new(uint64_t, arraylen);
254 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
257 cpu->cpreg_array_len = 0;
258
259 g_list_foreach(keys, add_cpreg_to_list, cpu);
260
261 assert(cpu->cpreg_array_len == arraylen);
262
263 g_list_free(keys);
264}
265
68e9c2fe 266/*
93dd1e61 267 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
68e9c2fe
EI
268 */
269static CPAccessResult access_el3_aa32ns(CPUARMState *env,
3f208fd7
PM
270 const ARMCPRegInfo *ri,
271 bool isread)
68e9c2fe 272{
93dd1e61
EI
273 if (!is_a64(env) && arm_current_el(env) == 3 &&
274 arm_is_secure_below_el3(env)) {
68e9c2fe
EI
275 return CP_ACCESS_TRAP_UNCATEGORIZED;
276 }
277 return CP_ACCESS_OK;
278}
279
9b37a28c
FR
280/*
281 * Some secure-only AArch32 registers trap to EL3 if used from
5513c3ab
PM
282 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
283 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
284 * We assume that the .access field is set to PL1_RW.
285 */
286static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
3f208fd7
PM
287 const ARMCPRegInfo *ri,
288 bool isread)
5513c3ab
PM
289{
290 if (arm_current_el(env) == 3) {
291 return CP_ACCESS_OK;
292 }
293 if (arm_is_secure_below_el3(env)) {
926c1b97
RDC
294 if (env->cp15.scr_el3 & SCR_EEL2) {
295 return CP_ACCESS_TRAP_EL2;
296 }
5513c3ab
PM
297 return CP_ACCESS_TRAP_EL3;
298 }
299 /* This will be EL1 NS and EL2 NS, which just UNDEF */
300 return CP_ACCESS_TRAP_UNCATEGORIZED;
301}
302
9b37a28c
FR
303/*
304 * Check for traps to performance monitor registers, which are controlled
1fce1ba9
PM
305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
306 */
307static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
308 bool isread)
309{
310 int el = arm_current_el(env);
59dd089c 311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1fce1ba9 312
59dd089c 313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1fce1ba9
PM
314 return CP_ACCESS_TRAP_EL2;
315 }
316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
317 return CP_ACCESS_TRAP_EL3;
318 }
319 return CP_ACCESS_OK;
320}
321
84929218 322/* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
6d482423
RH
323CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
324 bool isread)
84929218
RH
325{
326 if (arm_current_el(env) == 1) {
327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
328 if (arm_hcr_el2_eff(env) & trap) {
329 return CP_ACCESS_TRAP_EL2;
330 }
331 }
332 return CP_ACCESS_OK;
333}
334
1803d271
RH
335/* Check for traps from EL1 due to HCR_EL2.TSW. */
336static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
337 bool isread)
338{
339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
340 return CP_ACCESS_TRAP_EL2;
341 }
342 return CP_ACCESS_OK;
343}
344
99602377
RH
345/* Check for traps from EL1 due to HCR_EL2.TACR. */
346static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
347 bool isread)
348{
349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
350 return CP_ACCESS_TRAP_EL2;
351 }
352 return CP_ACCESS_OK;
353}
354
30881b73
RH
355/* Check for traps from EL1 due to HCR_EL2.TTLB. */
356static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
357 bool isread)
358{
359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
360 return CP_ACCESS_TRAP_EL2;
361 }
362 return CP_ACCESS_OK;
363}
364
0f66d223
PM
365/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
366static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
367 bool isread)
368{
369 if (arm_current_el(env) == 1 &&
370 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
371 return CP_ACCESS_TRAP_EL2;
372 }
373 return CP_ACCESS_OK;
374}
375
fe3ca86c
PM
376#ifdef TARGET_AARCH64
377/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
378static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
379 bool isread)
380{
381 if (arm_current_el(env) == 1 &&
382 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
383 return CP_ACCESS_TRAP_EL2;
384 }
385 return CP_ACCESS_OK;
386}
387#endif
388
c4241c7d 389static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
c983fe6c 390{
2fc0cc0e 391 ARMCPU *cpu = env_archcpu(env);
00c8cb0a 392
8d5c773e 393 raw_write(env, ri, value);
d10eb08f 394 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
c983fe6c
PM
395}
396
c4241c7d 397static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
08de207b 398{
2fc0cc0e 399 ARMCPU *cpu = env_archcpu(env);
00c8cb0a 400
8d5c773e 401 if (raw_read(env, ri) != value) {
9b37a28c
FR
402 /*
403 * Unlike real hardware the qemu TLB uses virtual addresses,
08de207b
PM
404 * not modified virtual addresses, so this causes a TLB flush.
405 */
d10eb08f 406 tlb_flush(CPU(cpu));
8d5c773e 407 raw_write(env, ri, value);
08de207b 408 }
08de207b 409}
c4241c7d
PM
410
411static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
412 uint64_t value)
08de207b 413{
2fc0cc0e 414 ARMCPU *cpu = env_archcpu(env);
00c8cb0a 415
452a0955 416 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
014406b5 417 && !extended_addresses_enabled(env)) {
9b37a28c
FR
418 /*
419 * For VMSA (when not using the LPAE long descriptor page table
08de207b
PM
420 * format) this register includes the ASID, so do a TLB flush.
421 * For PMSA it is purely a process ID and no action is needed.
422 */
d10eb08f 423 tlb_flush(CPU(cpu));
08de207b 424 }
8d5c773e 425 raw_write(env, ri, value);
08de207b
PM
426}
427
575a94af
RH
428static int alle1_tlbmask(CPUARMState *env)
429{
430 /*
431 * Note that the 'ALL' scope must invalidate both stage 1 and
432 * stage 2 translations, whereas most other scopes only invalidate
433 * stage 1 translations.
434 */
435 return (ARMMMUIdxBit_E10_1 |
436 ARMMMUIdxBit_E10_1_PAN |
437 ARMMMUIdxBit_E10_0 |
438 ARMMMUIdxBit_Stage2 |
439 ARMMMUIdxBit_Stage2_S);
440}
441
442
b4ab8ce9
PM
443/* IS variants of TLB operations must affect all cores */
444static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
445 uint64_t value)
446{
29a0af61 447 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
448
449 tlb_flush_all_cpus_synced(cs);
450}
451
452static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
453 uint64_t value)
454{
29a0af61 455 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
456
457 tlb_flush_all_cpus_synced(cs);
458}
459
460static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
461 uint64_t value)
462{
29a0af61 463 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
464
465 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
466}
467
468static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
469 uint64_t value)
470{
29a0af61 471 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
472
473 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
474}
475
476/*
477 * Non-IS variants of TLB operations are upgraded to
373e7ffd 478 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
b4ab8ce9
PM
479 * force broadcast of these operations.
480 */
481static bool tlb_force_broadcast(CPUARMState *env)
482{
373e7ffd 483 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
b4ab8ce9
PM
484}
485
c4241c7d
PM
486static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
487 uint64_t value)
d929823f
PM
488{
489 /* Invalidate all (TLBIALL) */
527db2be 490 CPUState *cs = env_cpu(env);
00c8cb0a 491
b4ab8ce9 492 if (tlb_force_broadcast(env)) {
527db2be
RH
493 tlb_flush_all_cpus_synced(cs);
494 } else {
495 tlb_flush(cs);
b4ab8ce9 496 }
d929823f
PM
497}
498
c4241c7d
PM
499static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
d929823f
PM
501{
502 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
527db2be 503 CPUState *cs = env_cpu(env);
31b030d4 504
527db2be 505 value &= TARGET_PAGE_MASK;
b4ab8ce9 506 if (tlb_force_broadcast(env)) {
527db2be
RH
507 tlb_flush_page_all_cpus_synced(cs, value);
508 } else {
509 tlb_flush_page(cs, value);
b4ab8ce9 510 }
d929823f
PM
511}
512
c4241c7d
PM
513static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
514 uint64_t value)
d929823f
PM
515{
516 /* Invalidate by ASID (TLBIASID) */
527db2be 517 CPUState *cs = env_cpu(env);
00c8cb0a 518
b4ab8ce9 519 if (tlb_force_broadcast(env)) {
527db2be
RH
520 tlb_flush_all_cpus_synced(cs);
521 } else {
522 tlb_flush(cs);
b4ab8ce9 523 }
d929823f
PM
524}
525
c4241c7d
PM
526static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
d929823f
PM
528{
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
527db2be 530 CPUState *cs = env_cpu(env);
31b030d4 531
527db2be 532 value &= TARGET_PAGE_MASK;
b4ab8ce9 533 if (tlb_force_broadcast(env)) {
527db2be
RH
534 tlb_flush_page_all_cpus_synced(cs, value);
535 } else {
536 tlb_flush_page(cs, value);
b4ab8ce9 537 }
fa439fc5
PM
538}
539
541ef8c2
SS
540static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
541 uint64_t value)
542{
29a0af61 543 CPUState *cs = env_cpu(env);
541ef8c2 544
575a94af 545 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
541ef8c2
SS
546}
547
548static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
549 uint64_t value)
550{
29a0af61 551 CPUState *cs = env_cpu(env);
541ef8c2 552
575a94af 553 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
541ef8c2
SS
554}
555
541ef8c2
SS
556
557static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
558 uint64_t value)
559{
29a0af61 560 CPUState *cs = env_cpu(env);
541ef8c2 561
e013b741 562 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
541ef8c2
SS
563}
564
565static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
566 uint64_t value)
567{
29a0af61 568 CPUState *cs = env_cpu(env);
541ef8c2 569
e013b741 570 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
541ef8c2
SS
571}
572
573static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
574 uint64_t value)
575{
29a0af61 576 CPUState *cs = env_cpu(env);
541ef8c2
SS
577 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
578
e013b741 579 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
541ef8c2
SS
580}
581
582static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
583 uint64_t value)
584{
29a0af61 585 CPUState *cs = env_cpu(env);
541ef8c2
SS
586 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
587
a67cf277 588 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
e013b741 589 ARMMMUIdxBit_E2);
541ef8c2
SS
590}
591
575a94af
RH
592static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
593 uint64_t value)
594{
595 CPUState *cs = env_cpu(env);
596 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
597
598 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
599}
600
601static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
602 uint64_t value)
603{
604 CPUState *cs = env_cpu(env);
605 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
606
607 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
608}
609
e9aa6c21 610static const ARMCPRegInfo cp_reginfo[] = {
9b37a28c
FR
611 /*
612 * Define the secure and non-secure FCSE identifier CP registers
54bf36ed
FA
613 * separately because there is no secure bank in V8 (no _EL3). This allows
614 * the secure register to be properly reset and migrated. There is also no
615 * v8 EL1 version of the register so the non-secure instance stands alone.
616 */
9c513e78 617 { .name = "FCSEIDR",
54bf36ed
FA
618 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
619 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
620 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
621 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
9c513e78 622 { .name = "FCSEIDR_S",
54bf36ed
FA
623 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
624 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
625 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
d4e6df63 626 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
9b37a28c
FR
627 /*
628 * Define the secure and non-secure context identifier CP registers
54bf36ed
FA
629 * separately because there is no secure bank in V8 (no _EL3). This allows
630 * the secure register to be properly reset and migrated. In the
631 * non-secure case, the 32-bit register will have reset and migration
632 * disabled during registration as it is handled by the 64-bit instance.
633 */
634 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
014406b5 635 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
84929218 636 .access = PL1_RW, .accessfn = access_tvm_trvm,
158c276c 637 .fgt = FGT_CONTEXTIDR_EL1,
84929218 638 .secure = ARM_CP_SECSTATE_NS,
54bf36ed
FA
639 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
640 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9c513e78 641 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
54bf36ed 642 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
84929218
RH
643 .access = PL1_RW, .accessfn = access_tvm_trvm,
644 .secure = ARM_CP_SECSTATE_S,
54bf36ed 645 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
d4e6df63 646 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9449fdf6
PM
647};
648
649static const ARMCPRegInfo not_v8_cp_reginfo[] = {
9b37a28c
FR
650 /*
651 * NB: Some of these registers exist in v8 but with more precise
9449fdf6
PM
652 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
653 */
654 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
655 { .name = "DACR",
656 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
84929218 657 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
0c17d68c
FA
658 .writefn = dacr_write, .raw_writefn = raw_write,
659 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
660 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
9b37a28c
FR
661 /*
662 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
a903c449 663 * For v6 and v5, these mappings are overly broad.
4fdd17dd 664 */
a903c449
EI
665 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
666 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
667 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
668 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
669 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
670 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
671 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
4fdd17dd 672 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
c4804214
PM
673 /* Cache maintenance ops; some of this space may be overridden later. */
674 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
675 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
676 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
677};
678
7d57f408 679static const ARMCPRegInfo not_v6_cp_reginfo[] = {
9b37a28c
FR
680 /*
681 * Not all pre-v6 cores implemented this WFI, so this is slightly
7d57f408
PM
682 * over-broad.
683 */
684 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
685 .access = PL1_W, .type = ARM_CP_WFI },
7d57f408
PM
686};
687
688static const ARMCPRegInfo not_v7_cp_reginfo[] = {
9b37a28c
FR
689 /*
690 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
7d57f408
PM
691 * is UNPREDICTABLE; we choose to NOP as most implementations do).
692 */
693 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
694 .access = PL1_W, .type = ARM_CP_WFI },
9b37a28c
FR
695 /*
696 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
34f90529
PM
697 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
698 * OMAPCP will override this space.
699 */
700 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
701 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
702 .resetvalue = 0 },
703 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
704 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
705 .resetvalue = 0 },
776d4e5c
PM
706 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
707 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
7a0e58fa 708 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 709 .resetvalue = 0 },
9b37a28c
FR
710 /*
711 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
50300698
PM
712 * implementing it as RAZ means the "debug architecture version" bits
713 * will read as a reserved value, which should cause Linux to not try
714 * to use the debug hardware.
715 */
716 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
717 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9b37a28c
FR
718 /*
719 * MMU TLB control. Note that the wildcarding means we cover not just
995939a6
PM
720 * the unified TLB ops but also the dside/iside/inner-shareable variants.
721 */
722 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
723 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
7a0e58fa 724 .type = ARM_CP_NO_RAW },
995939a6
PM
725 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
726 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
7a0e58fa 727 .type = ARM_CP_NO_RAW },
995939a6
PM
728 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
729 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
7a0e58fa 730 .type = ARM_CP_NO_RAW },
995939a6
PM
731 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
732 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
7a0e58fa 733 .type = ARM_CP_NO_RAW },
a903c449
EI
734 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
735 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
736 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
737 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
7d57f408
PM
738};
739
c4241c7d
PM
740static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
741 uint64_t value)
2771db27 742{
f0aff255
FA
743 uint32_t mask = 0;
744
745 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
746 if (!arm_feature(env, ARM_FEATURE_V8)) {
9b37a28c
FR
747 /*
748 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
f0aff255
FA
749 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
750 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
751 */
7fbc6a40 752 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
f0aff255 753 /* VFP coprocessor: cp10 & cp11 [23:20] */
fab8ad39
RH
754 mask |= R_CPACR_ASEDIS_MASK |
755 R_CPACR_D32DIS_MASK |
756 R_CPACR_CP11_MASK |
757 R_CPACR_CP10_MASK;
f0aff255
FA
758
759 if (!arm_feature(env, ARM_FEATURE_NEON)) {
760 /* ASEDIS [31] bit is RAO/WI */
fab8ad39 761 value |= R_CPACR_ASEDIS_MASK;
f0aff255
FA
762 }
763
9b37a28c
FR
764 /*
765 * VFPv3 and upwards with NEON implement 32 double precision
f0aff255
FA
766 * registers (D0-D31).
767 */
a6627f5f 768 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
f0aff255 769 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
fab8ad39 770 value |= R_CPACR_D32DIS_MASK;
f0aff255
FA
771 }
772 }
773 value &= mask;
2771db27 774 }
fc1120a7
PM
775
776 /*
777 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
778 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
779 */
780 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
781 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
fab8ad39
RH
782 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
783 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
fc1120a7
PM
784 }
785
7ebd5f2e 786 env->cp15.cpacr_el1 = value;
2771db27
PM
787}
788
fc1120a7
PM
789static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
790{
791 /*
792 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
793 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
794 */
795 uint64_t value = env->cp15.cpacr_el1;
796
797 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
798 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
fab8ad39 799 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
fc1120a7
PM
800 }
801 return value;
802}
803
804
5deac39c
PM
805static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
806{
9b37a28c
FR
807 /*
808 * Call cpacr_write() so that we reset with the correct RAO bits set
5deac39c
PM
809 * for our CPU features.
810 */
811 cpacr_write(env, ri, 0);
812}
813
3f208fd7
PM
814static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
815 bool isread)
c6f19164
GB
816{
817 if (arm_feature(env, ARM_FEATURE_V8)) {
818 /* Check if CPACR accesses are to be trapped to EL2 */
e6ef0169 819 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
fab8ad39 820 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
c6f19164
GB
821 return CP_ACCESS_TRAP_EL2;
822 /* Check if CPACR accesses are to be trapped to EL3 */
823 } else if (arm_current_el(env) < 3 &&
fab8ad39 824 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
c6f19164
GB
825 return CP_ACCESS_TRAP_EL3;
826 }
827 }
828
829 return CP_ACCESS_OK;
830}
831
3f208fd7
PM
832static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
833 bool isread)
c6f19164
GB
834{
835 /* Check if CPTR accesses are set to trap to EL3 */
fab8ad39
RH
836 if (arm_current_el(env) == 2 &&
837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
c6f19164
GB
838 return CP_ACCESS_TRAP_EL3;
839 }
840
841 return CP_ACCESS_OK;
842}
843
7d57f408
PM
844static const ARMCPRegInfo v6_cp_reginfo[] = {
845 /* prefetch by MVA in v6, NOP in v7 */
846 { .name = "MVA_prefetch",
847 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
848 .access = PL1_W, .type = ARM_CP_NOP },
9b37a28c
FR
849 /*
850 * We need to break the TB after ISB to execute self-modifying code
6df99dec
SS
851 * correctly and also to take any pending interrupts immediately.
852 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
853 */
7d57f408 854 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
6df99dec 855 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
091fd17c 856 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 857 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 858 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 859 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31 860 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
84929218 861 .access = PL1_RW, .accessfn = access_tvm_trvm,
b848ce2b
FA
862 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
863 offsetof(CPUARMState, cp15.ifar_ns) },
06d76f31 864 .resetvalue = 0, },
9b37a28c
FR
865 /*
866 * Watchpoint Fault Address Register : should actually only be present
06d76f31
PM
867 * for 1136, 1176, 11MPCore.
868 */
869 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
870 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
34222fb8 871 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
c6f19164 872 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
b19ed03c 873 .fgt = FGT_CPACR_EL1,
7ebd5f2e 874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
fc1120a7 875 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
7d57f408
PM
876};
877
57a4a11b
AL
878typedef struct pm_event {
879 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
880 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
881 bool (*supported)(CPUARMState *);
882 /*
883 * Retrieve the current count of the underlying event. The programmed
884 * counters hold a difference from the return value from this function
885 */
886 uint64_t (*get_count)(CPUARMState *);
4e7beb0c
AL
887 /*
888 * Return how many nanoseconds it will take (at a minimum) for count events
889 * to occur. A negative value indicates the counter will never overflow, or
890 * that the counter has otherwise arranged for the overflow bit to be set
891 * and the PMU interrupt to be raised on overflow.
892 */
893 int64_t (*ns_per_count)(uint64_t);
57a4a11b
AL
894} pm_event;
895
b2e23725
AL
896static bool event_always_supported(CPUARMState *env)
897{
898 return true;
899}
900
0d4bfd7d
AL
901static uint64_t swinc_get_count(CPUARMState *env)
902{
903 /*
904 * SW_INCR events are written directly to the pmevcntr's by writes to
905 * PMSWINC, so there is no underlying count maintained by the PMU itself
906 */
907 return 0;
908}
909
4e7beb0c
AL
910static int64_t swinc_ns_per(uint64_t ignored)
911{
912 return -1;
913}
914
b2e23725
AL
915/*
916 * Return the underlying cycle count for the PMU cycle counters. If we're in
917 * usermode, simply return 0.
918 */
919static uint64_t cycles_get_count(CPUARMState *env)
920{
921#ifndef CONFIG_USER_ONLY
922 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
923 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
924#else
925 return cpu_get_host_ticks();
926#endif
927}
928
929#ifndef CONFIG_USER_ONLY
4e7beb0c
AL
930static int64_t cycles_ns_per(uint64_t cycles)
931{
932 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
933}
934
b2e23725
AL
935static bool instructions_supported(CPUARMState *env)
936{
740b1759 937 return icount_enabled() == 1; /* Precise instruction counting */
b2e23725
AL
938}
939
940static uint64_t instructions_get_count(CPUARMState *env)
941{
8191d368 942 return (uint64_t)icount_get_raw();
b2e23725 943}
4e7beb0c
AL
944
945static int64_t instructions_ns_per(uint64_t icount)
946{
8191d368 947 return icount_to_ns((int64_t)icount);
4e7beb0c 948}
b2e23725
AL
949#endif
950
a793bcd0 951static bool pmuv3p1_events_supported(CPUARMState *env)
0727f63b
PM
952{
953 /* For events which are supported in any v8.1 PMU */
a793bcd0 954 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
0727f63b
PM
955}
956
a793bcd0 957static bool pmuv3p4_events_supported(CPUARMState *env)
15dd1ebd
PM
958{
959 /* For events which are supported in any v8.1 PMU */
a793bcd0 960 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
15dd1ebd
PM
961}
962
0727f63b
PM
963static uint64_t zero_event_get_count(CPUARMState *env)
964{
965 /* For events which on QEMU never fire, so their count is always zero */
966 return 0;
967}
968
969static int64_t zero_event_ns_per(uint64_t cycles)
970{
971 /* An event which never fires can never overflow */
972 return -1;
973}
974
57a4a11b 975static const pm_event pm_events[] = {
0d4bfd7d
AL
976 { .number = 0x000, /* SW_INCR */
977 .supported = event_always_supported,
978 .get_count = swinc_get_count,
4e7beb0c 979 .ns_per_count = swinc_ns_per,
0d4bfd7d 980 },
b2e23725
AL
981#ifndef CONFIG_USER_ONLY
982 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
983 .supported = instructions_supported,
984 .get_count = instructions_get_count,
4e7beb0c 985 .ns_per_count = instructions_ns_per,
b2e23725
AL
986 },
987 { .number = 0x011, /* CPU_CYCLES, Cycle */
988 .supported = event_always_supported,
989 .get_count = cycles_get_count,
4e7beb0c 990 .ns_per_count = cycles_ns_per,
0727f63b 991 },
b2e23725 992#endif
0727f63b 993 { .number = 0x023, /* STALL_FRONTEND */
a793bcd0 994 .supported = pmuv3p1_events_supported,
0727f63b
PM
995 .get_count = zero_event_get_count,
996 .ns_per_count = zero_event_ns_per,
997 },
998 { .number = 0x024, /* STALL_BACKEND */
a793bcd0 999 .supported = pmuv3p1_events_supported,
0727f63b
PM
1000 .get_count = zero_event_get_count,
1001 .ns_per_count = zero_event_ns_per,
1002 },
15dd1ebd 1003 { .number = 0x03c, /* STALL */
a793bcd0 1004 .supported = pmuv3p4_events_supported,
15dd1ebd
PM
1005 .get_count = zero_event_get_count,
1006 .ns_per_count = zero_event_ns_per,
1007 },
57a4a11b
AL
1008};
1009
1010/*
1011 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1012 * events (i.e. the statistical profiling extension), this implementation
1013 * should first be updated to something sparse instead of the current
1014 * supported_event_map[] array.
1015 */
15dd1ebd 1016#define MAX_EVENT_ID 0x3c
57a4a11b
AL
1017#define UNSUPPORTED_EVENT UINT16_MAX
1018static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1019
1020/*
bf8d0969
AL
1021 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1022 * of ARM event numbers to indices in our pm_events array.
57a4a11b
AL
1023 *
1024 * Note: Events in the 0x40XX range are not currently supported.
1025 */
bf8d0969 1026void pmu_init(ARMCPU *cpu)
57a4a11b 1027{
57a4a11b
AL
1028 unsigned int i;
1029
bf8d0969
AL
1030 /*
1031 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1032 * events to them
1033 */
57a4a11b
AL
1034 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1035 supported_event_map[i] = UNSUPPORTED_EVENT;
1036 }
bf8d0969
AL
1037 cpu->pmceid0 = 0;
1038 cpu->pmceid1 = 0;
57a4a11b
AL
1039
1040 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1041 const pm_event *cnt = &pm_events[i];
1042 assert(cnt->number <= MAX_EVENT_ID);
1043 /* We do not currently support events in the 0x40xx range */
1044 assert(cnt->number <= 0x3f);
1045
bf8d0969 1046 if (cnt->supported(&cpu->env)) {
57a4a11b 1047 supported_event_map[cnt->number] = i;
67da43d6 1048 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
bf8d0969
AL
1049 if (cnt->number & 0x20) {
1050 cpu->pmceid1 |= event_mask;
1051 } else {
1052 cpu->pmceid0 |= event_mask;
1053 }
57a4a11b
AL
1054 }
1055 }
57a4a11b
AL
1056}
1057
5ecdd3e4
AL
1058/*
1059 * Check at runtime whether a PMU event is supported for the current machine
1060 */
1061static bool event_supported(uint16_t number)
1062{
1063 if (number > MAX_EVENT_ID) {
1064 return false;
1065 }
1066 return supported_event_map[number] != UNSUPPORTED_EVENT;
1067}
1068
3f208fd7
PM
1069static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1070 bool isread)
200ac0ef 1071{
9b37a28c
FR
1072 /*
1073 * Performance monitor registers user accessibility is controlled
1fce1ba9
PM
1074 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1075 * trapping to EL2 or EL3 for other accesses.
200ac0ef 1076 */
1fce1ba9 1077 int el = arm_current_el(env);
59dd089c 1078 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1fce1ba9 1079
6ecd0b6b 1080 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
fcd25206 1081 return CP_ACCESS_TRAP;
200ac0ef 1082 }
59dd089c 1083 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1fce1ba9
PM
1084 return CP_ACCESS_TRAP_EL2;
1085 }
1086 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1087 return CP_ACCESS_TRAP_EL3;
1088 }
1089
fcd25206 1090 return CP_ACCESS_OK;
200ac0ef
PM
1091}
1092
6ecd0b6b
AB
1093static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1094 const ARMCPRegInfo *ri,
1095 bool isread)
1096{
1097 /* ER: event counter read trap control */
1098 if (arm_feature(env, ARM_FEATURE_V8)
1099 && arm_current_el(env) == 0
1100 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1101 && isread) {
1102 return CP_ACCESS_OK;
1103 }
1104
1105 return pmreg_access(env, ri, isread);
1106}
1107
1108static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1109 const ARMCPRegInfo *ri,
1110 bool isread)
1111{
1112 /* SW: software increment write trap control */
1113 if (arm_feature(env, ARM_FEATURE_V8)
1114 && arm_current_el(env) == 0
1115 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1116 && !isread) {
1117 return CP_ACCESS_OK;
1118 }
1119
1120 return pmreg_access(env, ri, isread);
1121}
1122
6ecd0b6b
AB
1123static CPAccessResult pmreg_access_selr(CPUARMState *env,
1124 const ARMCPRegInfo *ri,
1125 bool isread)
1126{
1127 /* ER: event counter read trap control */
1128 if (arm_feature(env, ARM_FEATURE_V8)
1129 && arm_current_el(env) == 0
1130 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1131 return CP_ACCESS_OK;
1132 }
1133
1134 return pmreg_access(env, ri, isread);
1135}
1136
1137static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1138 const ARMCPRegInfo *ri,
1139 bool isread)
1140{
1141 /* CR: cycle counter read trap control */
1142 if (arm_feature(env, ARM_FEATURE_V8)
1143 && arm_current_el(env) == 0
1144 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1145 && isread) {
1146 return CP_ACCESS_OK;
1147 }
1148
1149 return pmreg_access(env, ri, isread);
1150}
1151
01765386
PM
1152/*
1153 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1154 * We use these to decide whether we need to wrap a write to MDCR_EL2
1155 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1156 */
47b385da
PM
1157#define MDCR_EL2_PMU_ENABLE_BITS \
1158 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
0b42f4fa 1159#define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
01765386 1160
9b37a28c
FR
1161/*
1162 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
033614c4
AL
1163 * the current EL, security state, and register configuration.
1164 */
1165static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
87124fde 1166{
033614c4
AL
1167 uint64_t filter;
1168 bool e, p, u, nsk, nsu, nsh, m;
872d2034 1169 bool enabled, prohibited = false, filtered;
033614c4
AL
1170 bool secure = arm_is_secure(env);
1171 int el = arm_current_el(env);
59dd089c
RDC
1172 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1173 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
87124fde 1174
cbbb3041
AJ
1175 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1176 return false;
1177 }
1178
033614c4
AL
1179 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1180 (counter < hpmn || counter == 31)) {
1181 e = env->cp15.c9_pmcr & PMCRE;
1182 } else {
59dd089c 1183 e = mdcr_el2 & MDCR_HPME;
87124fde 1184 }
033614c4 1185 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
87124fde 1186
872d2034
PM
1187 /* Is event counting prohibited? */
1188 if (el == 2 && (counter < hpmn || counter == 31)) {
1189 prohibited = mdcr_el2 & MDCR_HPMD;
1190 }
1191 if (secure) {
1192 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
033614c4
AL
1193 }
1194
0b42f4fa
PM
1195 if (counter == 31) {
1196 /*
1197 * The cycle counter defaults to running. PMCR.DP says "disable
1198 * the cycle counter when event counting is prohibited".
1199 * Some MDCR bits disable the cycle counter specifically.
1200 */
1201 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1202 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1203 if (secure) {
1204 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1205 }
1206 if (el == 2) {
1207 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1208 }
1209 }
033614c4
AL
1210 }
1211
5ecdd3e4
AL
1212 if (counter == 31) {
1213 filter = env->cp15.pmccfiltr_el0;
1214 } else {
1215 filter = env->cp15.c14_pmevtyper[counter];
1216 }
033614c4
AL
1217
1218 p = filter & PMXEVTYPER_P;
1219 u = filter & PMXEVTYPER_U;
1220 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1221 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1222 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1223 m = arm_el_is_aa64(env, 1) &&
1224 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1225
1226 if (el == 0) {
1227 filtered = secure ? u : u != nsu;
1228 } else if (el == 1) {
1229 filtered = secure ? p : p != nsk;
1230 } else if (el == 2) {
1231 filtered = !nsh;
1232 } else { /* EL3 */
1233 filtered = m != p;
1234 }
1235
5ecdd3e4
AL
1236 if (counter != 31) {
1237 /*
1238 * If not checking PMCCNTR, ensure the counter is setup to an event we
1239 * support
1240 */
1241 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1242 if (!event_supported(event)) {
1243 return false;
1244 }
1245 }
1246
033614c4 1247 return enabled && !prohibited && !filtered;
87124fde 1248}
033614c4 1249
f4efb4b2
AL
1250static void pmu_update_irq(CPUARMState *env)
1251{
2fc0cc0e 1252 ARMCPU *cpu = env_archcpu(env);
f4efb4b2
AL
1253 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1254 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1255}
1256
b57aa7bd
PM
1257static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1258{
1259 /*
1260 * Return true if the clock divider is enabled and the cycle counter
1261 * is supposed to tick only once every 64 clock cycles. This is
1262 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1263 * (64-bit) cycle counter PMCR.D has no effect.
1264 */
1265 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1266}
1267
47b385da
PM
1268static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1269{
1270 /* Return true if the specified event counter is configured to be 64 bit */
1271
1272 /* This isn't intended to be used with the cycle counter */
1273 assert(counter < 31);
1274
1275 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1276 return false;
1277 }
1278
1279 if (arm_feature(env, ARM_FEATURE_EL2)) {
1280 /*
1281 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1282 * current security state, so we don't use arm_mdcr_el2_eff() here.
1283 */
1284 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1285 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1286
3d80bbf1 1287 if (counter >= hpmn) {
47b385da
PM
1288 return hlp;
1289 }
1290 }
1291 return env->cp15.c9_pmcr & PMCRLP;
1292}
1293
5d05b9d4
AL
1294/*
1295 * Ensure c15_ccnt is the guest-visible count so that operations such as
1296 * enabling/disabling the counter or filtering, modifying the count itself,
1297 * etc. can be done logically. This is essentially a no-op if the counter is
1298 * not enabled at the time of the call.
1299 */
f2b2f53f 1300static void pmccntr_op_start(CPUARMState *env)
ec7b4ce4 1301{
b2e23725 1302 uint64_t cycles = cycles_get_count(env);
ec7b4ce4 1303
033614c4 1304 if (pmu_counter_enabled(env, 31)) {
5d05b9d4 1305 uint64_t eff_cycles = cycles;
b57aa7bd 1306 if (pmccntr_clockdiv_enabled(env)) {
5d05b9d4
AL
1307 eff_cycles /= 64;
1308 }
1309
f4efb4b2
AL
1310 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1311
1312 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1313 1ull << 63 : 1ull << 31;
1314 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
76e25d41 1315 env->cp15.c9_pmovsr |= (1ULL << 31);
f4efb4b2
AL
1316 pmu_update_irq(env);
1317 }
1318
1319 env->cp15.c15_ccnt = new_pmccntr;
ec7b4ce4 1320 }
5d05b9d4
AL
1321 env->cp15.c15_ccnt_delta = cycles;
1322}
ec7b4ce4 1323
5d05b9d4
AL
1324/*
1325 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1326 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1327 * pmccntr_op_start.
1328 */
f2b2f53f 1329static void pmccntr_op_finish(CPUARMState *env)
5d05b9d4 1330{
033614c4 1331 if (pmu_counter_enabled(env, 31)) {
4e7beb0c
AL
1332#ifndef CONFIG_USER_ONLY
1333 /* Calculate when the counter will next overflow */
1334 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1335 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1336 remaining_cycles = (uint32_t)remaining_cycles;
1337 }
1338 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1339
1340 if (overflow_in > 0) {
f1dd2506
PM
1341 int64_t overflow_at;
1342
1343 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1344 overflow_in, &overflow_at)) {
1345 ARMCPU *cpu = env_archcpu(env);
1346 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1347 }
4e7beb0c
AL
1348 }
1349#endif
5d05b9d4 1350
4e7beb0c 1351 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
b57aa7bd 1352 if (pmccntr_clockdiv_enabled(env)) {
5d05b9d4
AL
1353 prev_cycles /= 64;
1354 }
5d05b9d4 1355 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
ec7b4ce4
AF
1356 }
1357}
1358
5ecdd3e4
AL
1359static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1360{
1361
1362 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1363 uint64_t count = 0;
1364 if (event_supported(event)) {
1365 uint16_t event_idx = supported_event_map[event];
1366 count = pm_events[event_idx].get_count(env);
1367 }
1368
1369 if (pmu_counter_enabled(env, counter)) {
47b385da
PM
1370 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1371 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1372 1ULL << 63 : 1ULL << 31;
f4efb4b2 1373
47b385da 1374 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
f4efb4b2
AL
1375 env->cp15.c9_pmovsr |= (1 << counter);
1376 pmu_update_irq(env);
1377 }
1378 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
5ecdd3e4
AL
1379 }
1380 env->cp15.c14_pmevcntr_delta[counter] = count;
1381}
1382
1383static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1384{
1385 if (pmu_counter_enabled(env, counter)) {
4e7beb0c
AL
1386#ifndef CONFIG_USER_ONLY
1387 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1388 uint16_t event_idx = supported_event_map[event];
47b385da
PM
1389 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1390 int64_t overflow_in;
1391
1392 if (!pmevcntr_is_64_bit(env, counter)) {
1393 delta = (uint32_t)delta;
1394 }
1395 overflow_in = pm_events[event_idx].ns_per_count(delta);
4e7beb0c
AL
1396
1397 if (overflow_in > 0) {
f1dd2506
PM
1398 int64_t overflow_at;
1399
1400 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1401 overflow_in, &overflow_at)) {
1402 ARMCPU *cpu = env_archcpu(env);
1403 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1404 }
4e7beb0c
AL
1405 }
1406#endif
1407
5ecdd3e4
AL
1408 env->cp15.c14_pmevcntr_delta[counter] -=
1409 env->cp15.c14_pmevcntr[counter];
1410 }
1411}
1412
5d05b9d4
AL
1413void pmu_op_start(CPUARMState *env)
1414{
5ecdd3e4 1415 unsigned int i;
5d05b9d4 1416 pmccntr_op_start(env);
5ecdd3e4
AL
1417 for (i = 0; i < pmu_num_counters(env); i++) {
1418 pmevcntr_op_start(env, i);
1419 }
5d05b9d4
AL
1420}
1421
1422void pmu_op_finish(CPUARMState *env)
1423{
5ecdd3e4 1424 unsigned int i;
5d05b9d4 1425 pmccntr_op_finish(env);
5ecdd3e4
AL
1426 for (i = 0; i < pmu_num_counters(env); i++) {
1427 pmevcntr_op_finish(env, i);
1428 }
5d05b9d4
AL
1429}
1430
033614c4
AL
1431void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1432{
1433 pmu_op_start(&cpu->env);
1434}
1435
1436void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1437{
1438 pmu_op_finish(&cpu->env);
1439}
1440
4e7beb0c
AL
1441void arm_pmu_timer_cb(void *opaque)
1442{
1443 ARMCPU *cpu = opaque;
1444
1445 /*
1446 * Update all the counter values based on the current underlying counts,
1447 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1448 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1449 * counter may expire.
1450 */
1451 pmu_op_start(&cpu->env);
1452 pmu_op_finish(&cpu->env);
1453}
1454
c4241c7d
PM
1455static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1456 uint64_t value)
200ac0ef 1457{
5d05b9d4 1458 pmu_op_start(env);
7c2cb42b
AF
1459
1460 if (value & PMCRC) {
1461 /* The counter has been reset */
1462 env->cp15.c15_ccnt = 0;
1463 }
1464
5ecdd3e4
AL
1465 if (value & PMCRP) {
1466 unsigned int i;
1467 for (i = 0; i < pmu_num_counters(env); i++) {
1468 env->cp15.c14_pmevcntr[i] = 0;
1469 }
1470 }
1471
9323e79f
PM
1472 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1473 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
7c2cb42b 1474
5d05b9d4 1475 pmu_op_finish(env);
7c2cb42b
AF
1476}
1477
0d4bfd7d
AL
1478static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1479 uint64_t value)
1480{
1481 unsigned int i;
47b385da
PM
1482 uint64_t overflow_mask, new_pmswinc;
1483
0d4bfd7d
AL
1484 for (i = 0; i < pmu_num_counters(env); i++) {
1485 /* Increment a counter's count iff: */
1486 if ((value & (1 << i)) && /* counter's bit is set */
1487 /* counter is enabled and not filtered */
1488 pmu_counter_enabled(env, i) &&
1489 /* counter is SW_INCR */
1490 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1491 pmevcntr_op_start(env, i);
f4efb4b2
AL
1492
1493 /*
1494 * Detect if this write causes an overflow since we can't predict
1495 * PMSWINC overflows like we can for other events
1496 */
47b385da
PM
1497 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1498
1499 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1500 1ULL << 63 : 1ULL << 31;
f4efb4b2 1501
47b385da 1502 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
f4efb4b2
AL
1503 env->cp15.c9_pmovsr |= (1 << i);
1504 pmu_update_irq(env);
1505 }
1506
1507 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1508
0d4bfd7d
AL
1509 pmevcntr_op_finish(env, i);
1510 }
1511 }
1512}
1513
7c2cb42b
AF
1514static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1515{
5d05b9d4
AL
1516 uint64_t ret;
1517 pmccntr_op_start(env);
1518 ret = env->cp15.c15_ccnt;
1519 pmccntr_op_finish(env);
1520 return ret;
7c2cb42b
AF
1521}
1522
6b040780
WH
1523static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1524 uint64_t value)
1525{
9b37a28c
FR
1526 /*
1527 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
6b040780
WH
1528 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1529 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1530 * accessed.
1531 */
1532 env->cp15.c9_pmselr = value & 0x1f;
1533}
1534
7c2cb42b
AF
1535static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1536 uint64_t value)
1537{
5d05b9d4
AL
1538 pmccntr_op_start(env);
1539 env->cp15.c15_ccnt = value;
1540 pmccntr_op_finish(env);
200ac0ef 1541}
421c7ebd
PC
1542
1543static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1544 uint64_t value)
1545{
1546 uint64_t cur_val = pmccntr_read(env, NULL);
1547
1548 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1549}
1550
0614601c
AF
1551static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1552 uint64_t value)
1553{
5d05b9d4 1554 pmccntr_op_start(env);
4b8afa1f
AL
1555 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1556 pmccntr_op_finish(env);
1557}
1558
1559static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1560 uint64_t value)
1561{
1562 pmccntr_op_start(env);
1563 /* M is not accessible from AArch32 */
1564 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1565 (value & PMCCFILTR);
5d05b9d4 1566 pmccntr_op_finish(env);
0614601c
AF
1567}
1568
4b8afa1f
AL
1569static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1570{
1571 /* M is not visible in AArch32 */
1572 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1573}
1574
c4241c7d 1575static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1576 uint64_t value)
1577{
01765386 1578 pmu_op_start(env);
7ece99b1 1579 value &= pmu_counter_mask(env);
200ac0ef 1580 env->cp15.c9_pmcnten |= value;
01765386 1581 pmu_op_finish(env);
200ac0ef
PM
1582}
1583
c4241c7d
PM
1584static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1585 uint64_t value)
200ac0ef 1586{
01765386 1587 pmu_op_start(env);
7ece99b1 1588 value &= pmu_counter_mask(env);
200ac0ef 1589 env->cp15.c9_pmcnten &= ~value;
01765386 1590 pmu_op_finish(env);
200ac0ef
PM
1591}
1592
c4241c7d
PM
1593static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594 uint64_t value)
200ac0ef 1595{
599b71e2 1596 value &= pmu_counter_mask(env);
200ac0ef 1597 env->cp15.c9_pmovsr &= ~value;
f4efb4b2 1598 pmu_update_irq(env);
200ac0ef
PM
1599}
1600
327dd510
AL
1601static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1602 uint64_t value)
1603{
1604 value &= pmu_counter_mask(env);
1605 env->cp15.c9_pmovsr |= value;
f4efb4b2 1606 pmu_update_irq(env);
327dd510
AL
1607}
1608
5ecdd3e4
AL
1609static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1610 uint64_t value, const uint8_t counter)
200ac0ef 1611{
5ecdd3e4
AL
1612 if (counter == 31) {
1613 pmccfiltr_write(env, ri, value);
1614 } else if (counter < pmu_num_counters(env)) {
1615 pmevcntr_op_start(env, counter);
1616
1617 /*
1618 * If this counter's event type is changing, store the current
1619 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1620 * pmevcntr_op_finish has the correct baseline when it converts back to
1621 * a delta.
1622 */
1623 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1624 PMXEVTYPER_EVTCOUNT;
1625 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1626 if (old_event != new_event) {
1627 uint64_t count = 0;
1628 if (event_supported(new_event)) {
1629 uint16_t event_idx = supported_event_map[new_event];
1630 count = pm_events[event_idx].get_count(env);
1631 }
1632 env->cp15.c14_pmevcntr_delta[counter] = count;
1633 }
1634
1635 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1636 pmevcntr_op_finish(env, counter);
1637 }
9b37a28c
FR
1638 /*
1639 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
fdb86656
WH
1640 * PMSELR value is equal to or greater than the number of implemented
1641 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1642 */
5ecdd3e4
AL
1643}
1644
1645static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1646 const uint8_t counter)
1647{
1648 if (counter == 31) {
1649 return env->cp15.pmccfiltr_el0;
1650 } else if (counter < pmu_num_counters(env)) {
1651 return env->cp15.c14_pmevtyper[counter];
1652 } else {
1653 /*
1654 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1655 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1656 */
1657 return 0;
1658 }
1659}
1660
1661static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1662 uint64_t value)
1663{
1664 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1665 pmevtyper_write(env, ri, value, counter);
1666}
1667
1668static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1669 uint64_t value)
1670{
1671 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1672 env->cp15.c14_pmevtyper[counter] = value;
1673
1674 /*
1675 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1676 * pmu_op_finish calls when loading saved state for a migration. Because
1677 * we're potentially updating the type of event here, the value written to
673d8215 1678 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
5ecdd3e4
AL
1679 * different counter type. Therefore, we need to set this value to the
1680 * current count for the counter type we're writing so that pmu_op_finish
1681 * has the correct count for its calculation.
1682 */
1683 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1684 if (event_supported(event)) {
1685 uint16_t event_idx = supported_event_map[event];
1686 env->cp15.c14_pmevcntr_delta[counter] =
1687 pm_events[event_idx].get_count(env);
fdb86656
WH
1688 }
1689}
1690
5ecdd3e4
AL
1691static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1692{
1693 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1694 return pmevtyper_read(env, ri, counter);
1695}
1696
1697static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1698 uint64_t value)
1699{
1700 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1701}
1702
fdb86656
WH
1703static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1704{
5ecdd3e4
AL
1705 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1706}
1707
1708static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1709 uint64_t value, uint8_t counter)
1710{
47b385da
PM
1711 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1712 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1713 value &= MAKE_64BIT_MASK(0, 32);
1714 }
5ecdd3e4
AL
1715 if (counter < pmu_num_counters(env)) {
1716 pmevcntr_op_start(env, counter);
1717 env->cp15.c14_pmevcntr[counter] = value;
1718 pmevcntr_op_finish(env, counter);
1719 }
1720 /*
1721 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1722 * are CONSTRAINED UNPREDICTABLE.
fdb86656 1723 */
5ecdd3e4
AL
1724}
1725
1726static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1727 uint8_t counter)
1728{
1729 if (counter < pmu_num_counters(env)) {
1730 uint64_t ret;
1731 pmevcntr_op_start(env, counter);
1732 ret = env->cp15.c14_pmevcntr[counter];
1733 pmevcntr_op_finish(env, counter);
47b385da
PM
1734 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1735 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1736 ret &= MAKE_64BIT_MASK(0, 32);
1737 }
5ecdd3e4 1738 return ret;
fdb86656 1739 } else {
9b37a28c
FR
1740 /*
1741 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1742 * are CONSTRAINED UNPREDICTABLE.
1743 */
fdb86656
WH
1744 return 0;
1745 }
200ac0ef
PM
1746}
1747
5ecdd3e4
AL
1748static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1749 uint64_t value)
1750{
1751 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1752 pmevcntr_write(env, ri, value, counter);
1753}
1754
1755static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1756{
1757 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1758 return pmevcntr_read(env, ri, counter);
1759}
1760
1761static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1762 uint64_t value)
1763{
1764 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1765 assert(counter < pmu_num_counters(env));
1766 env->cp15.c14_pmevcntr[counter] = value;
1767 pmevcntr_write(env, ri, value, counter);
1768}
1769
1770static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1771{
1772 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1773 assert(counter < pmu_num_counters(env));
1774 return env->cp15.c14_pmevcntr[counter];
1775}
1776
1777static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1778 uint64_t value)
1779{
1780 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1781}
1782
1783static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1784{
1785 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1786}
1787
c4241c7d 1788static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1789 uint64_t value)
1790{
6ecd0b6b
AB
1791 if (arm_feature(env, ARM_FEATURE_V8)) {
1792 env->cp15.c9_pmuserenr = value & 0xf;
1793 } else {
1794 env->cp15.c9_pmuserenr = value & 1;
1795 }
200ac0ef
PM
1796}
1797
c4241c7d
PM
1798static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799 uint64_t value)
200ac0ef
PM
1800{
1801 /* We have no event counters so only the C bit can be changed */
7ece99b1 1802 value &= pmu_counter_mask(env);
200ac0ef 1803 env->cp15.c9_pminten |= value;
f4efb4b2 1804 pmu_update_irq(env);
200ac0ef
PM
1805}
1806
c4241c7d
PM
1807static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1808 uint64_t value)
200ac0ef 1809{
7ece99b1 1810 value &= pmu_counter_mask(env);
200ac0ef 1811 env->cp15.c9_pminten &= ~value;
f4efb4b2 1812 pmu_update_irq(env);
200ac0ef
PM
1813}
1814
c4241c7d
PM
1815static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1816 uint64_t value)
8641136c 1817{
9b37a28c
FR
1818 /*
1819 * Note that even though the AArch64 view of this register has bits
a505d7fe
PM
1820 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1821 * architectural requirements for bits which are RES0 only in some
1822 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1823 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1824 */
855ea66d 1825 raw_write(env, ri, value & ~0x1FULL);
8641136c
NR
1826}
1827
64e0e2de
EI
1828static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1829{
ea22747c 1830 /* Begin with base v8.0 state. */
06f2adcc 1831 uint64_t valid_mask = 0x3fff;
2fc0cc0e 1832 ARMCPU *cpu = env_archcpu(env);
d902ae75 1833 uint64_t changed;
ea22747c 1834
bfe43e3d
RH
1835 /*
1836 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1837 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1838 * Instead, choose the format based on the mode of EL3.
1839 */
1840 if (arm_el_is_aa64(env, 3)) {
1841 value |= SCR_FW | SCR_AW; /* RES1 */
1842 valid_mask &= ~SCR_NET; /* RES0 */
252e8c69 1843
6bcbb07a
RH
1844 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1845 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1846 value |= SCR_RW; /* RAO/WI */
1847 }
da3d8b13
RH
1848 if (cpu_isar_feature(aa64_ras, cpu)) {
1849 valid_mask |= SCR_TERR;
1850 }
252e8c69
RH
1851 if (cpu_isar_feature(aa64_lor, cpu)) {
1852 valid_mask |= SCR_TLOR;
1853 }
1854 if (cpu_isar_feature(aa64_pauth, cpu)) {
1855 valid_mask |= SCR_API | SCR_APK;
1856 }
926c1b97
RDC
1857 if (cpu_isar_feature(aa64_sel2, cpu)) {
1858 valid_mask |= SCR_EEL2;
87bfbfe7
RH
1859 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1860 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1861 value |= SCR_NS;
926c1b97 1862 }
8ddb300b
RH
1863 if (cpu_isar_feature(aa64_mte, cpu)) {
1864 valid_mask |= SCR_ATA;
1865 }
7cb1e618
RH
1866 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1867 valid_mask |= SCR_ENSCXT;
1868 }
7ac61020
PM
1869 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1870 valid_mask |= SCR_EASE | SCR_NMEA;
1871 }
06f2adcc
JF
1872 if (cpu_isar_feature(aa64_sme, cpu)) {
1873 valid_mask |= SCR_ENTP2;
1874 }
08899b5c
EI
1875 if (cpu_isar_feature(aa64_hcx, cpu)) {
1876 valid_mask |= SCR_HXEN;
1877 }
15126d9c
PM
1878 if (cpu_isar_feature(aa64_fgt, cpu)) {
1879 valid_mask |= SCR_FGTEN;
1880 }
aa3cc42c
RH
1881 if (cpu_isar_feature(aa64_rme, cpu)) {
1882 valid_mask |= SCR_NSE | SCR_GPF;
1883 }
ea22747c
RH
1884 } else {
1885 valid_mask &= ~(SCR_RW | SCR_ST);
da3d8b13
RH
1886 if (cpu_isar_feature(aa32_ras, cpu)) {
1887 valid_mask |= SCR_TERR;
1888 }
ea22747c 1889 }
64e0e2de
EI
1890
1891 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1892 valid_mask &= ~SCR_HCE;
1893
9b37a28c
FR
1894 /*
1895 * On ARMv7, SMD (or SCD as it is called in v7) is only
64e0e2de
EI
1896 * supported if EL2 exists. The bit is UNK/SBZP when
1897 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1898 * when EL2 is unavailable.
4eb27640 1899 * On ARMv8, this bit is always available.
64e0e2de 1900 */
4eb27640
GB
1901 if (arm_feature(env, ARM_FEATURE_V7) &&
1902 !arm_feature(env, ARM_FEATURE_V8)) {
64e0e2de
EI
1903 valid_mask &= ~SCR_SMD;
1904 }
1905 }
1906
1907 /* Clear all-context RES0 bits. */
1908 value &= valid_mask;
d902ae75
RH
1909 changed = env->cp15.scr_el3 ^ value;
1910 env->cp15.scr_el3 = value;
1911
1912 /*
aa3cc42c 1913 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
d902ae75
RH
1914 * we must invalidate all TLBs below EL3.
1915 */
aa3cc42c 1916 if (changed & (SCR_NS | SCR_NSE)) {
d902ae75
RH
1917 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1918 ARMMMUIdxBit_E20_0 |
1919 ARMMMUIdxBit_E10_1 |
1920 ARMMMUIdxBit_E20_2 |
1921 ARMMMUIdxBit_E10_1_PAN |
1922 ARMMMUIdxBit_E20_2_PAN |
1923 ARMMMUIdxBit_E2));
1924 }
64e0e2de
EI
1925}
1926
10d0ef3e
MN
1927static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1928{
1929 /*
1930 * scr_write will set the RES1 bits on an AArch64-only CPU.
1931 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1932 */
1933 scr_write(env, ri, 0);
1934}
1935
e2ce5fcd
PM
1936static CPAccessResult access_tid4(CPUARMState *env,
1937 const ARMCPRegInfo *ri,
1938 bool isread)
630fcd4d 1939{
e2ce5fcd
PM
1940 if (arm_current_el(env) == 1 &&
1941 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
630fcd4d
MZ
1942 return CP_ACCESS_TRAP_EL2;
1943 }
1944
1945 return CP_ACCESS_OK;
1946}
1947
c4241c7d 1948static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
776d4e5c 1949{
2fc0cc0e 1950 ARMCPU *cpu = env_archcpu(env);
b85a1fd6 1951
9b37a28c
FR
1952 /*
1953 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
b85a1fd6
FA
1954 * bank
1955 */
1956 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1957 ri->secure & ARM_CP_SECSTATE_S);
1958
1959 return cpu->ccsidr[index];
776d4e5c
PM
1960}
1961
c4241c7d
PM
1962static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1963 uint64_t value)
776d4e5c 1964{
8d5c773e 1965 raw_write(env, ri, value & 0xf);
776d4e5c
PM
1966}
1967
1090b9c6
PM
1968static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1969{
29a0af61 1970 CPUState *cs = env_cpu(env);
cc974d5c
RDC
1971 bool el1 = arm_current_el(env) == 1;
1972 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1090b9c6
PM
1973 uint64_t ret = 0;
1974
cc974d5c 1975 if (hcr_el2 & HCR_IMO) {
636540e9
PM
1976 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1977 ret |= CPSR_I;
1978 }
1979 } else {
1980 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1981 ret |= CPSR_I;
1982 }
1090b9c6 1983 }
636540e9 1984
cc974d5c 1985 if (hcr_el2 & HCR_FMO) {
636540e9
PM
1986 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1987 ret |= CPSR_F;
1988 }
1989 } else {
1990 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1991 ret |= CPSR_F;
1992 }
1090b9c6 1993 }
636540e9 1994
3c29632f
RH
1995 if (hcr_el2 & HCR_AMO) {
1996 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1997 ret |= CPSR_A;
1998 }
1999 }
2000
1090b9c6
PM
2001 return ret;
2002}
2003
93fbc983
MZ
2004static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2005 bool isread)
2006{
2007 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2008 return CP_ACCESS_TRAP_EL2;
2009 }
2010
2011 return CP_ACCESS_OK;
2012}
2013
2014static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2015 bool isread)
2016{
2017 if (arm_feature(env, ARM_FEATURE_V8)) {
2018 return access_aa64_tid1(env, ri, isread);
2019 }
2020
2021 return CP_ACCESS_OK;
2022}
2023
e9aa6c21 2024static const ARMCPRegInfo v7_cp_reginfo[] = {
7d57f408
PM
2025 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2026 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2027 .access = PL1_W, .type = ARM_CP_NOP },
9b37a28c
FR
2028 /*
2029 * Performance monitors are implementation defined in v7,
200ac0ef 2030 * but with an ARM recommended set of registers, which we
ac689a2e 2031 * follow.
200ac0ef
PM
2032 *
2033 * Performance registers fall into three categories:
2034 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2035 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2036 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2037 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2038 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2039 */
2040 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
7f4fbfb5 2041 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
8521466b 2042 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
2043 .writefn = pmcntenset_write,
2044 .accessfn = pmreg_access,
dc780233 2045 .fgt = FGT_PMCNTEN,
fcd25206 2046 .raw_writefn = raw_write },
7f4fbfb5 2047 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
8521466b
AF
2048 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2049 .access = PL0_RW, .accessfn = pmreg_access,
dc780233 2050 .fgt = FGT_PMCNTEN,
8521466b
AF
2051 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2052 .writefn = pmcntenset_write, .raw_writefn = raw_write },
200ac0ef 2053 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
8521466b
AF
2054 .access = PL0_RW,
2055 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206 2056 .accessfn = pmreg_access,
dc780233 2057 .fgt = FGT_PMCNTEN,
fcd25206 2058 .writefn = pmcntenclr_write,
7f4fbfb5 2059 .type = ARM_CP_ALIAS | ARM_CP_IO },
8521466b
AF
2060 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2061 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2062 .access = PL0_RW, .accessfn = pmreg_access,
dc780233 2063 .fgt = FGT_PMCNTEN,
7f4fbfb5 2064 .type = ARM_CP_ALIAS | ARM_CP_IO,
8521466b
AF
2065 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2066 .writefn = pmcntenclr_write },
200ac0ef 2067 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
f4efb4b2 2068 .access = PL0_RW, .type = ARM_CP_IO,
e4e91a21 2069 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
fcd25206 2070 .accessfn = pmreg_access,
dc780233 2071 .fgt = FGT_PMOVS,
fcd25206
PM
2072 .writefn = pmovsr_write,
2073 .raw_writefn = raw_write },
978364f1
AF
2074 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2075 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2076 .access = PL0_RW, .accessfn = pmreg_access,
dc780233 2077 .fgt = FGT_PMOVS,
f4efb4b2 2078 .type = ARM_CP_ALIAS | ARM_CP_IO,
978364f1
AF
2079 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2080 .writefn = pmovsr_write,
2081 .raw_writefn = raw_write },
200ac0ef 2082 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
f4efb4b2 2083 .access = PL0_W, .accessfn = pmreg_access_swinc,
dc780233 2084 .fgt = FGT_PMSWINC_EL0,
f4efb4b2 2085 .type = ARM_CP_NO_RAW | ARM_CP_IO,
0d4bfd7d
AL
2086 .writefn = pmswinc_write },
2087 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2088 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
f4efb4b2 2089 .access = PL0_W, .accessfn = pmreg_access_swinc,
dc780233 2090 .fgt = FGT_PMSWINC_EL0,
f4efb4b2 2091 .type = ARM_CP_NO_RAW | ARM_CP_IO,
0d4bfd7d 2092 .writefn = pmswinc_write },
6b040780
WH
2093 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2094 .access = PL0_RW, .type = ARM_CP_ALIAS,
dc780233 2095 .fgt = FGT_PMSELR_EL0,
6b040780 2096 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
6ecd0b6b 2097 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
6b040780
WH
2098 .raw_writefn = raw_write},
2099 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2100 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
6ecd0b6b 2101 .access = PL0_RW, .accessfn = pmreg_access_selr,
dc780233 2102 .fgt = FGT_PMSELR_EL0,
6b040780
WH
2103 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2104 .writefn = pmselr_write, .raw_writefn = raw_write, },
200ac0ef 2105 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
169c8938 2106 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
dc780233 2107 .fgt = FGT_PMCCNTR_EL0,
421c7ebd 2108 .readfn = pmccntr_read, .writefn = pmccntr_write32,
6ecd0b6b 2109 .accessfn = pmreg_access_ccntr },
8521466b
AF
2110 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2111 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
6ecd0b6b 2112 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
dc780233 2113 .fgt = FGT_PMCCNTR_EL0,
8521466b 2114 .type = ARM_CP_IO,
980ebe87
AL
2115 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2116 .readfn = pmccntr_read, .writefn = pmccntr_write,
2117 .raw_readfn = raw_read, .raw_writefn = raw_write, },
4b8afa1f
AL
2118 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2119 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2120 .access = PL0_RW, .accessfn = pmreg_access,
dc780233 2121 .fgt = FGT_PMCCFILTR_EL0,
4b8afa1f
AL
2122 .type = ARM_CP_ALIAS | ARM_CP_IO,
2123 .resetvalue = 0, },
8521466b
AF
2124 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
980ebe87 2126 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
8521466b 2127 .access = PL0_RW, .accessfn = pmreg_access,
dc780233 2128 .fgt = FGT_PMCCFILTR_EL0,
8521466b
AF
2129 .type = ARM_CP_IO,
2130 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2131 .resetvalue = 0, },
200ac0ef 2132 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
5ecdd3e4
AL
2133 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2134 .accessfn = pmreg_access,
dc780233 2135 .fgt = FGT_PMEVTYPERN_EL0,
fdb86656
WH
2136 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2137 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2138 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
5ecdd3e4
AL
2139 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2140 .accessfn = pmreg_access,
dc780233 2141 .fgt = FGT_PMEVTYPERN_EL0,
fdb86656 2142 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
200ac0ef 2143 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
5ecdd3e4
AL
2144 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2145 .accessfn = pmreg_access_xevcntr,
dc780233 2146 .fgt = FGT_PMEVCNTRN_EL0,
5ecdd3e4
AL
2147 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2148 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2149 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2150 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2151 .accessfn = pmreg_access_xevcntr,
dc780233 2152 .fgt = FGT_PMEVCNTRN_EL0,
5ecdd3e4 2153 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
200ac0ef 2154 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1fce1ba9 2155 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
e4e91a21 2156 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
200ac0ef 2157 .resetvalue = 0,
d4e6df63 2158 .writefn = pmuserenr_write, .raw_writefn = raw_write },
8a83ffc2
AF
2159 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2160 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1fce1ba9 2161 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
8a83ffc2
AF
2162 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2163 .resetvalue = 0,
2164 .writefn = pmuserenr_write, .raw_writefn = raw_write },
200ac0ef 2165 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1fce1ba9 2166 .access = PL1_RW, .accessfn = access_tpm,
dc780233 2167 .fgt = FGT_PMINTEN,
b7d793ad 2168 .type = ARM_CP_ALIAS | ARM_CP_IO,
e6ec5457 2169 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
200ac0ef 2170 .resetvalue = 0,
d4e6df63 2171 .writefn = pmintenset_write, .raw_writefn = raw_write },
e6ec5457
WH
2172 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2173 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2174 .access = PL1_RW, .accessfn = access_tpm,
dc780233 2175 .fgt = FGT_PMINTEN,
e6ec5457
WH
2176 .type = ARM_CP_IO,
2177 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2178 .writefn = pmintenset_write, .raw_writefn = raw_write,
2179 .resetvalue = 0x0 },
200ac0ef 2180 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
fc5f6856 2181 .access = PL1_RW, .accessfn = access_tpm,
dc780233 2182 .fgt = FGT_PMINTEN,
887c0f15 2183 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
200ac0ef 2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
b061a82b 2185 .writefn = pmintenclr_write, },
978364f1
AF
2186 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2187 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
fc5f6856 2188 .access = PL1_RW, .accessfn = access_tpm,
dc780233 2189 .fgt = FGT_PMINTEN,
887c0f15 2190 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
978364f1
AF
2191 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2192 .writefn = pmintenclr_write },
7da845b0
PM
2193 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2194 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
630fcd4d 2195 .access = PL1_R,
e2ce5fcd 2196 .accessfn = access_tid4,
158c276c 2197 .fgt = FGT_CCSIDR_EL1,
630fcd4d 2198 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
7da845b0
PM
2199 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2200 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
630fcd4d 2201 .access = PL1_RW,
e2ce5fcd 2202 .accessfn = access_tid4,
b19ed03c 2203 .fgt = FGT_CSSELR_EL1,
630fcd4d 2204 .writefn = csselr_write, .resetvalue = 0,
b85a1fd6
FA
2205 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2206 offsetof(CPUARMState, cp15.csselr_ns) } },
9b37a28c
FR
2207 /*
2208 * Auxiliary ID register: this actually has an IMPDEF value but for now
776d4e5c
PM
2209 * just RAZ for all cores:
2210 */
0ff644a7
PM
2211 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2212 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
93fbc983
MZ
2213 .access = PL1_R, .type = ARM_CP_CONST,
2214 .accessfn = access_aa64_tid1,
158c276c 2215 .fgt = FGT_AIDR_EL1,
93fbc983 2216 .resetvalue = 0 },
9b37a28c
FR
2217 /*
2218 * Auxiliary fault status registers: these also are IMPDEF, and we
f32cdad5
PM
2219 * choose to RAZ/WI for all cores.
2220 */
2221 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2222 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
84929218 2223 .access = PL1_RW, .accessfn = access_tvm_trvm,
158c276c 2224 .fgt = FGT_AFSR0_EL1,
84929218 2225 .type = ARM_CP_CONST, .resetvalue = 0 },
f32cdad5
PM
2226 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2227 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
84929218 2228 .access = PL1_RW, .accessfn = access_tvm_trvm,
158c276c 2229 .fgt = FGT_AFSR1_EL1,
84929218 2230 .type = ARM_CP_CONST, .resetvalue = 0 },
9b37a28c
FR
2231 /*
2232 * MAIR can just read-as-written because we don't implement caches
b0fe2427
PM
2233 * and so don't need to care about memory attributes.
2234 */
2235 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2236 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
84929218 2237 .access = PL1_RW, .accessfn = access_tvm_trvm,
67dd8030 2238 .fgt = FGT_MAIR_EL1,
84929218 2239 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
b0fe2427 2240 .resetvalue = 0 },
4cfb8ad8
PM
2241 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2242 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2243 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2244 .resetvalue = 0 },
9b37a28c
FR
2245 /*
2246 * For non-long-descriptor page tables these are PRRR and NMRR;
b0fe2427 2247 * regardless they still act as reads-as-written for QEMU.
b0fe2427 2248 */
9b37a28c
FR
2249 /*
2250 * MAIR0/1 are defined separately from their 64-bit counterpart which
be693c87
GB
2251 * allows them to assign the correct fieldoffset based on the endianness
2252 * handled in the field definitions.
2253 */
a903c449 2254 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
84929218
RH
2255 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2256 .access = PL1_RW, .accessfn = access_tvm_trvm,
be693c87
GB
2257 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2258 offsetof(CPUARMState, cp15.mair0_ns) },
b0fe2427 2259 .resetfn = arm_cp_reset_ignore },
a903c449 2260 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
84929218
RH
2261 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2262 .access = PL1_RW, .accessfn = access_tvm_trvm,
be693c87
GB
2263 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2264 offsetof(CPUARMState, cp15.mair1_ns) },
b0fe2427 2265 .resetfn = arm_cp_reset_ignore },
1090b9c6
PM
2266 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2267 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
b19ed03c 2268 .fgt = FGT_ISR_EL1,
7a0e58fa 2269 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
995939a6
PM
2270 /* 32 bit ITLB invalidates */
2271 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
30881b73
RH
2272 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2273 .writefn = tlbiall_write },
995939a6 2274 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
30881b73
RH
2275 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2276 .writefn = tlbimva_write },
995939a6 2277 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
30881b73
RH
2278 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2279 .writefn = tlbiasid_write },
995939a6
PM
2280 /* 32 bit DTLB invalidates */
2281 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
30881b73
RH
2282 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2283 .writefn = tlbiall_write },
995939a6 2284 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
30881b73
RH
2285 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2286 .writefn = tlbimva_write },
995939a6 2287 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
30881b73
RH
2288 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2289 .writefn = tlbiasid_write },
995939a6
PM
2290 /* 32 bit TLB invalidates */
2291 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
30881b73
RH
2292 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2293 .writefn = tlbiall_write },
995939a6 2294 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
30881b73
RH
2295 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2296 .writefn = tlbimva_write },
995939a6 2297 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
30881b73
RH
2298 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2299 .writefn = tlbiasid_write },
995939a6 2300 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
30881b73
RH
2301 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2302 .writefn = tlbimvaa_write },
995939a6
PM
2303};
2304
2305static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2306 /* 32 bit TLB invalidates, Inner Shareable */
2307 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
0f66d223 2308 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
30881b73 2309 .writefn = tlbiall_is_write },
995939a6 2310 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
0f66d223 2311 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
30881b73 2312 .writefn = tlbimva_is_write },
995939a6 2313 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
0f66d223 2314 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
fa439fc5 2315 .writefn = tlbiasid_is_write },
995939a6 2316 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
0f66d223 2317 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
fa439fc5 2318 .writefn = tlbimvaa_is_write },
e9aa6c21
PM
2319};
2320
327dd510
AL
2321static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2322 /* PMOVSSET is not implemented in v7 before v7ve */
2323 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2324 .access = PL0_RW, .accessfn = pmreg_access,
dc780233 2325 .fgt = FGT_PMOVS,
f4efb4b2 2326 .type = ARM_CP_ALIAS | ARM_CP_IO,
327dd510
AL
2327 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2328 .writefn = pmovsset_write,
2329 .raw_writefn = raw_write },
2330 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2331 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2332 .access = PL0_RW, .accessfn = pmreg_access,
dc780233 2333 .fgt = FGT_PMOVS,
f4efb4b2 2334 .type = ARM_CP_ALIAS | ARM_CP_IO,
327dd510
AL
2335 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2336 .writefn = pmovsset_write,
2337 .raw_writefn = raw_write },
327dd510
AL
2338};
2339
c4241c7d
PM
2340static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2341 uint64_t value)
c326b979
PM
2342{
2343 value &= 1;
2344 env->teecr = value;
c326b979
PM
2345}
2346
cc7613bf
PM
2347static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2348 bool isread)
2349{
2350 /*
2351 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2352 * at all, so we don't need to check whether we're v8A.
2353 */
2354 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2355 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2356 return CP_ACCESS_TRAP_EL2;
2357 }
2358 return CP_ACCESS_OK;
2359}
2360
3f208fd7
PM
2361static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2362 bool isread)
c326b979 2363{
dcbff19b 2364 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
92611c00 2365 return CP_ACCESS_TRAP;
c326b979 2366 }
cc7613bf 2367 return teecr_access(env, ri, isread);
c326b979
PM
2368}
2369
2370static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2371 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2372 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2373 .resetvalue = 0,
cc7613bf 2374 .writefn = teecr_write, .accessfn = teecr_access },
c326b979
PM
2375 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2376 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
92611c00 2377 .accessfn = teehbr_access, .resetvalue = 0 },
c326b979
PM
2378};
2379
4d31c596 2380static const ARMCPRegInfo v6k_cp_reginfo[] = {
e4fe830b
PM
2381 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2382 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2383 .access = PL0_RW,
67dd8030 2384 .fgt = FGT_TPIDR_EL0,
54bf36ed 2385 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
4d31c596
PM
2386 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2387 .access = PL0_RW,
67dd8030 2388 .fgt = FGT_TPIDR_EL0,
54bf36ed
FA
2389 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2390 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
e4fe830b
PM
2391 .resetfn = arm_cp_reset_ignore },
2392 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2393 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
04215eb1 2394 .access = PL0_R | PL1_W,
67dd8030 2395 .fgt = FGT_TPIDRRO_EL0,
54bf36ed
FA
2396 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2397 .resetvalue = 0},
4d31c596 2398 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
04215eb1 2399 .access = PL0_R | PL1_W,
67dd8030 2400 .fgt = FGT_TPIDRRO_EL0,
54bf36ed
FA
2401 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2402 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
e4fe830b 2403 .resetfn = arm_cp_reset_ignore },
54bf36ed 2404 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
e4fe830b 2405 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
4d31c596 2406 .access = PL1_RW,
67dd8030 2407 .fgt = FGT_TPIDR_EL1,
54bf36ed
FA
2408 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2409 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2410 .access = PL1_RW,
2411 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2412 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2413 .resetvalue = 0 },
4d31c596
PM
2414};
2415
55d284af
PM
2416#ifndef CONFIG_USER_ONLY
2417
3f208fd7
PM
2418static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2419 bool isread)
00108f2d 2420{
9b37a28c
FR
2421 /*
2422 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
75502672
PM
2423 * Writable only at the highest implemented exception level.
2424 */
2425 int el = arm_current_el(env);
5bc84371
RH
2426 uint64_t hcr;
2427 uint32_t cntkctl;
75502672
PM
2428
2429 switch (el) {
2430 case 0:
5bc84371
RH
2431 hcr = arm_hcr_el2_eff(env);
2432 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2433 cntkctl = env->cp15.cnthctl_el2;
2434 } else {
2435 cntkctl = env->cp15.c14_cntkctl;
2436 }
2437 if (!extract32(cntkctl, 0, 2)) {
75502672
PM
2438 return CP_ACCESS_TRAP;
2439 }
2440 break;
2441 case 1:
2442 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2443 arm_is_secure_below_el3(env)) {
2444 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2445 return CP_ACCESS_TRAP_UNCATEGORIZED;
2446 }
2447 break;
2448 case 2:
2449 case 3:
2450 break;
00108f2d 2451 }
75502672
PM
2452
2453 if (!isread && el < arm_highest_el(env)) {
2454 return CP_ACCESS_TRAP_UNCATEGORIZED;
2455 }
2456
00108f2d
PM
2457 return CP_ACCESS_OK;
2458}
2459
3f208fd7
PM
2460static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2461 bool isread)
00108f2d 2462{
0b6440af 2463 unsigned int cur_el = arm_current_el(env);
e6ef0169 2464 bool has_el2 = arm_is_el2_enabled(env);
5bc84371 2465 uint64_t hcr = arm_hcr_el2_eff(env);
0b6440af 2466
5bc84371
RH
2467 switch (cur_el) {
2468 case 0:
2469 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2470 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2471 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2472 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2473 }
0b6440af 2474
5bc84371
RH
2475 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2476 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2477 return CP_ACCESS_TRAP;
2478 }
d01448c7 2479 /* fall through */
5bc84371
RH
2480 case 1:
2481 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
e6ef0169 2482 if (has_el2 && timeridx == GTIMER_PHYS &&
5bc84371
RH
2483 (hcr & HCR_E2H
2484 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2485 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2486 return CP_ACCESS_TRAP_EL2;
2487 }
2488 break;
0b6440af 2489 }
00108f2d
PM
2490 return CP_ACCESS_OK;
2491}
2492
3f208fd7
PM
2493static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2494 bool isread)
00108f2d 2495{
0b6440af 2496 unsigned int cur_el = arm_current_el(env);
e6ef0169 2497 bool has_el2 = arm_is_el2_enabled(env);
5bc84371 2498 uint64_t hcr = arm_hcr_el2_eff(env);
0b6440af 2499
5bc84371
RH
2500 switch (cur_el) {
2501 case 0:
2502 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2503 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2504 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2505 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2506 }
0b6440af 2507
5bc84371
RH
2508 /*
2509 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2510 * EL0 if EL0[PV]TEN is zero.
2511 */
2512 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2513 return CP_ACCESS_TRAP;
2514 }
2515 /* fall through */
2516
2517 case 1:
e6ef0169 2518 if (has_el2 && timeridx == GTIMER_PHYS) {
5bc84371
RH
2519 if (hcr & HCR_E2H) {
2520 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2521 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2522 return CP_ACCESS_TRAP_EL2;
2523 }
2524 } else {
2525 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2526 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2527 return CP_ACCESS_TRAP_EL2;
2528 }
2529 }
2530 }
2531 break;
0b6440af 2532 }
00108f2d
PM
2533 return CP_ACCESS_OK;
2534}
2535
2536static CPAccessResult gt_pct_access(CPUARMState *env,
3f208fd7
PM
2537 const ARMCPRegInfo *ri,
2538 bool isread)
00108f2d 2539{
3f208fd7 2540 return gt_counter_access(env, GTIMER_PHYS, isread);
00108f2d
PM
2541}
2542
2543static CPAccessResult gt_vct_access(CPUARMState *env,
3f208fd7
PM
2544 const ARMCPRegInfo *ri,
2545 bool isread)
00108f2d 2546{
3f208fd7 2547 return gt_counter_access(env, GTIMER_VIRT, isread);
00108f2d
PM
2548}
2549
3f208fd7
PM
2550static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2551 bool isread)
00108f2d 2552{
3f208fd7 2553 return gt_timer_access(env, GTIMER_PHYS, isread);
00108f2d
PM
2554}
2555
3f208fd7
PM
2556static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2557 bool isread)
00108f2d 2558{
3f208fd7 2559 return gt_timer_access(env, GTIMER_VIRT, isread);
00108f2d
PM
2560}
2561
b4d3978c 2562static CPAccessResult gt_stimer_access(CPUARMState *env,
3f208fd7
PM
2563 const ARMCPRegInfo *ri,
2564 bool isread)
b4d3978c 2565{
9b37a28c
FR
2566 /*
2567 * The AArch64 register view of the secure physical timer is
b4d3978c
PM
2568 * always accessible from EL3, and configurably accessible from
2569 * Secure EL1.
2570 */
2571 switch (arm_current_el(env)) {
2572 case 1:
2573 if (!arm_is_secure(env)) {
2574 return CP_ACCESS_TRAP;
2575 }
2576 if (!(env->cp15.scr_el3 & SCR_ST)) {
2577 return CP_ACCESS_TRAP_EL3;
2578 }
2579 return CP_ACCESS_OK;
2580 case 0:
2581 case 2:
2582 return CP_ACCESS_TRAP;
2583 case 3:
2584 return CP_ACCESS_OK;
2585 default:
2586 g_assert_not_reached();
2587 }
2588}
2589
55d284af
PM
2590static uint64_t gt_get_countervalue(CPUARMState *env)
2591{
7def8754
AJ
2592 ARMCPU *cpu = env_archcpu(env);
2593
2594 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
55d284af
PM
2595}
2596
f6fc36de
JPB
2597static void gt_update_irq(ARMCPU *cpu, int timeridx)
2598{
2599 CPUARMState *env = &cpu->env;
2600 uint64_t cnthctl = env->cp15.cnthctl_el2;
2601 ARMSecuritySpace ss = arm_security_space(env);
2602 /* ISTATUS && !IMASK */
2603 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2604
2605 /*
2606 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2607 * It is RES0 in Secure and NonSecure state.
2608 */
2609 if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2610 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) ||
2611 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) {
2612 irqstate = 0;
2613 }
2614
2615 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2616 trace_arm_gt_update_irq(timeridx, irqstate);
2617}
2618
2619void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2620{
2621 /*
2622 * Changing security state between Root and Secure/NonSecure, which may
2623 * happen when switching EL, can change the effective value of CNTHCTL_EL2
2624 * mask bits. Update the IRQ state accordingly.
2625 */
2626 gt_update_irq(cpu, GTIMER_VIRT);
2627 gt_update_irq(cpu, GTIMER_PHYS);
2628}
2629
55d284af
PM
2630static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2631{
2632 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2633
2634 if (gt->ctl & 1) {
9b37a28c
FR
2635 /*
2636 * Timer enabled: calculate and set current ISTATUS, irq, and
55d284af
PM
2637 * reset timer to when ISTATUS next has to change
2638 */
edac4d8a
EI
2639 uint64_t offset = timeridx == GTIMER_VIRT ?
2640 cpu->env.cp15.cntvoff_el2 : 0;
55d284af
PM
2641 uint64_t count = gt_get_countervalue(&cpu->env);
2642 /* Note that this must be unsigned 64 bit arithmetic: */
edac4d8a 2643 int istatus = count - offset >= gt->cval;
55d284af
PM
2644 uint64_t nexttick;
2645
2646 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
194cbc49 2647
55d284af 2648 if (istatus) {
8d37a142
PM
2649 /*
2650 * Next transition is when (count - offset) rolls back over to 0.
2651 * If offset > count then this is when count == offset;
2652 * if offset <= count then this is when count == offset + 2^64
2653 * For the latter case we set nexttick to an "as far in future
2654 * as possible" value and let the code below handle it.
2655 */
2656 if (offset > count) {
2657 nexttick = offset;
2658 } else {
2659 nexttick = UINT64_MAX;
2660 }
55d284af 2661 } else {
8d37a142
PM
2662 /*
2663 * Next transition is when (count - offset) == cval, i.e.
2664 * when count == (cval + offset).
2665 * If that would overflow, then again we set up the next interrupt
2666 * for "as far in the future as possible" for the code below.
2667 */
2668 if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2669 nexttick = UINT64_MAX;
2670 }
55d284af 2671 }
9b37a28c
FR
2672 /*
2673 * Note that the desired next expiry time might be beyond the
55d284af
PM
2674 * signed-64-bit range of a QEMUTimer -- in this case we just
2675 * set the timer for as far in the future as possible. When the
2676 * timer expires we will reset the timer for any remaining period.
2677 */
7def8754 2678 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
4a0245b6
AJ
2679 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2680 } else {
2681 timer_mod(cpu->gt_timer[timeridx], nexttick);
55d284af 2682 }
f6fc36de 2683 trace_arm_gt_recalc(timeridx, nexttick);
55d284af
PM
2684 } else {
2685 /* Timer disabled: ISTATUS and timer output always clear */
2686 gt->ctl &= ~4;
bc72ad67 2687 timer_del(cpu->gt_timer[timeridx]);
194cbc49 2688 trace_arm_gt_recalc_disabled(timeridx);
55d284af 2689 }
f6fc36de 2690 gt_update_irq(cpu, timeridx);
55d284af
PM
2691}
2692
0e3eca4c
EI
2693static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2694 int timeridx)
55d284af 2695{
2fc0cc0e 2696 ARMCPU *cpu = env_archcpu(env);
55d284af 2697
bc72ad67 2698 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
2699}
2700
c4241c7d 2701static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af 2702{
c4241c7d 2703 return gt_get_countervalue(env);
55d284af
PM
2704}
2705
53d1f856
RH
2706static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2707{
2708 uint64_t hcr;
2709
2710 switch (arm_current_el(env)) {
2711 case 2:
2712 hcr = arm_hcr_el2_eff(env);
2713 if (hcr & HCR_E2H) {
2714 return 0;
2715 }
2716 break;
2717 case 0:
2718 hcr = arm_hcr_el2_eff(env);
2719 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2720 return 0;
2721 }
2722 break;
2723 }
2724
2725 return env->cp15.cntvoff_el2;
2726}
2727
edac4d8a
EI
2728static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2729{
53d1f856 2730 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
edac4d8a
EI
2731}
2732
c4241c7d 2733static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 2734 int timeridx,
c4241c7d 2735 uint64_t value)
55d284af 2736{
194cbc49 2737 trace_arm_gt_cval_write(timeridx, value);
55d284af 2738 env->cp15.c14_timer[timeridx].cval = value;
2fc0cc0e 2739 gt_recalc_timer(env_archcpu(env), timeridx);
55d284af 2740}
c4241c7d 2741
0e3eca4c
EI
2742static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2743 int timeridx)
55d284af 2744{
53d1f856
RH
2745 uint64_t offset = 0;
2746
2747 switch (timeridx) {
2748 case GTIMER_VIRT:
8c94b071 2749 case GTIMER_HYPVIRT:
53d1f856
RH
2750 offset = gt_virt_cnt_offset(env);
2751 break;
2752 }
55d284af 2753
c4241c7d 2754 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
edac4d8a 2755 (gt_get_countervalue(env) - offset));
55d284af
PM
2756}
2757
c4241c7d 2758static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 2759 int timeridx,
c4241c7d 2760 uint64_t value)
55d284af 2761{
53d1f856
RH
2762 uint64_t offset = 0;
2763
2764 switch (timeridx) {
2765 case GTIMER_VIRT:
8c94b071 2766 case GTIMER_HYPVIRT:
53d1f856
RH
2767 offset = gt_virt_cnt_offset(env);
2768 break;
2769 }
55d284af 2770
194cbc49 2771 trace_arm_gt_tval_write(timeridx, value);
edac4d8a 2772 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
18084b2f 2773 sextract64(value, 0, 32);
2fc0cc0e 2774 gt_recalc_timer(env_archcpu(env), timeridx);
55d284af
PM
2775}
2776
c4241c7d 2777static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 2778 int timeridx,
c4241c7d 2779 uint64_t value)
55d284af 2780{
2fc0cc0e 2781 ARMCPU *cpu = env_archcpu(env);
55d284af
PM
2782 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2783
194cbc49 2784 trace_arm_gt_ctl_write(timeridx, value);
d3afacc7 2785 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
55d284af
PM
2786 if ((oldval ^ value) & 1) {
2787 /* Enable toggled */
2788 gt_recalc_timer(cpu, timeridx);
d3afacc7 2789 } else if ((oldval ^ value) & 2) {
9b37a28c
FR
2790 /*
2791 * IMASK toggled: don't need to recalculate,
55d284af
PM
2792 * just set the interrupt line based on ISTATUS
2793 */
f6fc36de
JPB
2794 trace_arm_gt_imask_toggle(timeridx);
2795 gt_update_irq(cpu, timeridx);
55d284af 2796 }
55d284af
PM
2797}
2798
0e3eca4c
EI
2799static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2800{
2801 gt_timer_reset(env, ri, GTIMER_PHYS);
2802}
2803
2804static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2805 uint64_t value)
2806{
2807 gt_cval_write(env, ri, GTIMER_PHYS, value);
2808}
2809
2810static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2811{
2812 return gt_tval_read(env, ri, GTIMER_PHYS);
2813}
2814
2815static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2816 uint64_t value)
2817{
2818 gt_tval_write(env, ri, GTIMER_PHYS, value);
2819}
2820
2821static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2822 uint64_t value)
2823{
2824 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2825}
2826
bb5972e4
RH
2827static int gt_phys_redir_timeridx(CPUARMState *env)
2828{
2829 switch (arm_mmu_idx(env)) {
2830 case ARMMMUIdx_E20_0:
2831 case ARMMMUIdx_E20_2:
452ef8cb 2832 case ARMMMUIdx_E20_2_PAN:
bb5972e4
RH
2833 return GTIMER_HYP;
2834 default:
2835 return GTIMER_PHYS;
2836 }
2837}
2838
2839static int gt_virt_redir_timeridx(CPUARMState *env)
2840{
2841 switch (arm_mmu_idx(env)) {
2842 case ARMMMUIdx_E20_0:
2843 case ARMMMUIdx_E20_2:
452ef8cb 2844 case ARMMMUIdx_E20_2_PAN:
bb5972e4
RH
2845 return GTIMER_HYPVIRT;
2846 default:
2847 return GTIMER_VIRT;
2848 }
2849}
2850
2851static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2852 const ARMCPRegInfo *ri)
2853{
2854 int timeridx = gt_phys_redir_timeridx(env);
2855 return env->cp15.c14_timer[timeridx].cval;
2856}
2857
2858static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2859 uint64_t value)
2860{
2861 int timeridx = gt_phys_redir_timeridx(env);
2862 gt_cval_write(env, ri, timeridx, value);
2863}
2864
2865static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2866 const ARMCPRegInfo *ri)
2867{
2868 int timeridx = gt_phys_redir_timeridx(env);
2869 return gt_tval_read(env, ri, timeridx);
2870}
2871
2872static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2873 uint64_t value)
2874{
2875 int timeridx = gt_phys_redir_timeridx(env);
2876 gt_tval_write(env, ri, timeridx, value);
2877}
2878
2879static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2880 const ARMCPRegInfo *ri)
2881{
2882 int timeridx = gt_phys_redir_timeridx(env);
2883 return env->cp15.c14_timer[timeridx].ctl;
2884}
2885
2886static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2887 uint64_t value)
2888{
2889 int timeridx = gt_phys_redir_timeridx(env);
2890 gt_ctl_write(env, ri, timeridx, value);
2891}
2892
0e3eca4c
EI
2893static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2894{
2895 gt_timer_reset(env, ri, GTIMER_VIRT);
2896}
2897
2898static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2899 uint64_t value)
2900{
2901 gt_cval_write(env, ri, GTIMER_VIRT, value);
2902}
2903
2904static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2905{
2906 return gt_tval_read(env, ri, GTIMER_VIRT);
2907}
2908
2909static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2910 uint64_t value)
2911{
2912 gt_tval_write(env, ri, GTIMER_VIRT, value);
2913}
2914
2915static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916 uint64_t value)
2917{
2918 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2919}
2920
f6fc36de
JPB
2921static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2922 uint64_t value)
2923{
2924 ARMCPU *cpu = env_archcpu(env);
2925 uint32_t oldval = env->cp15.cnthctl_el2;
2926
2927 raw_write(env, ri, value);
2928
2929 if ((oldval ^ value) & CNTHCTL_CNTVMASK) {
2930 gt_update_irq(cpu, GTIMER_VIRT);
2931 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) {
2932 gt_update_irq(cpu, GTIMER_PHYS);
2933 }
2934}
2935
edac4d8a
EI
2936static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2937 uint64_t value)
2938{
2fc0cc0e 2939 ARMCPU *cpu = env_archcpu(env);
edac4d8a 2940
194cbc49 2941 trace_arm_gt_cntvoff_write(value);
edac4d8a
EI
2942 raw_write(env, ri, value);
2943 gt_recalc_timer(cpu, GTIMER_VIRT);
2944}
2945
bb5972e4
RH
2946static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2947 const ARMCPRegInfo *ri)
2948{
2949 int timeridx = gt_virt_redir_timeridx(env);
2950 return env->cp15.c14_timer[timeridx].cval;
2951}
2952
2953static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2954 uint64_t value)
2955{
2956 int timeridx = gt_virt_redir_timeridx(env);
2957 gt_cval_write(env, ri, timeridx, value);
2958}
2959
2960static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2961 const ARMCPRegInfo *ri)
2962{
2963 int timeridx = gt_virt_redir_timeridx(env);
2964 return gt_tval_read(env, ri, timeridx);
2965}
2966
2967static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2968 uint64_t value)
2969{
2970 int timeridx = gt_virt_redir_timeridx(env);
2971 gt_tval_write(env, ri, timeridx, value);
2972}
2973
2974static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2975 const ARMCPRegInfo *ri)
2976{
2977 int timeridx = gt_virt_redir_timeridx(env);
2978 return env->cp15.c14_timer[timeridx].ctl;
2979}
2980
2981static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2982 uint64_t value)
2983{
2984 int timeridx = gt_virt_redir_timeridx(env);
2985 gt_ctl_write(env, ri, timeridx, value);
2986}
2987
b0e66d95
EI
2988static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2989{
2990 gt_timer_reset(env, ri, GTIMER_HYP);
2991}
2992
2993static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2994 uint64_t value)
2995{
2996 gt_cval_write(env, ri, GTIMER_HYP, value);
2997}
2998
2999static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3000{
3001 return gt_tval_read(env, ri, GTIMER_HYP);
3002}
3003
3004static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005 uint64_t value)
3006{
3007 gt_tval_write(env, ri, GTIMER_HYP, value);
3008}
3009
3010static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3011 uint64_t value)
3012{
3013 gt_ctl_write(env, ri, GTIMER_HYP, value);
3014}
3015
b4d3978c
PM
3016static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3017{
3018 gt_timer_reset(env, ri, GTIMER_SEC);
3019}
3020
3021static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3022 uint64_t value)
3023{
3024 gt_cval_write(env, ri, GTIMER_SEC, value);
3025}
3026
3027static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3028{
3029 return gt_tval_read(env, ri, GTIMER_SEC);
3030}
3031
3032static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3033 uint64_t value)
3034{
3035 gt_tval_write(env, ri, GTIMER_SEC, value);
3036}
3037
3038static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3039 uint64_t value)
3040{
3041 gt_ctl_write(env, ri, GTIMER_SEC, value);
3042}
3043
8c94b071
RH
3044static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3045{
3046 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3047}
3048
3049static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3050 uint64_t value)
3051{
3052 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3053}
3054
3055static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3056{
3057 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3058}
3059
3060static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3061 uint64_t value)
3062{
3063 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3064}
3065
3066static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3067 uint64_t value)
3068{
3069 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3070}
3071
55d284af
PM
3072void arm_gt_ptimer_cb(void *opaque)
3073{
3074 ARMCPU *cpu = opaque;
3075
3076 gt_recalc_timer(cpu, GTIMER_PHYS);
3077}
3078
3079void arm_gt_vtimer_cb(void *opaque)
3080{
3081 ARMCPU *cpu = opaque;
3082
3083 gt_recalc_timer(cpu, GTIMER_VIRT);
3084}
3085
b0e66d95
EI
3086void arm_gt_htimer_cb(void *opaque)
3087{
3088 ARMCPU *cpu = opaque;
3089
3090 gt_recalc_timer(cpu, GTIMER_HYP);
3091}
3092
b4d3978c
PM
3093void arm_gt_stimer_cb(void *opaque)
3094{
3095 ARMCPU *cpu = opaque;
3096
3097 gt_recalc_timer(cpu, GTIMER_SEC);
3098}
3099
8c94b071
RH
3100void arm_gt_hvtimer_cb(void *opaque)
3101{
3102 ARMCPU *cpu = opaque;
3103
3104 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3105}
3106
96eec6b2
AJ
3107static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3108{
3109 ARMCPU *cpu = env_archcpu(env);
3110
3111 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3112}
3113
55d284af 3114static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
9b37a28c
FR
3115 /*
3116 * Note that CNTFRQ is purely reads-as-written for the benefit
55d284af
PM
3117 * of software; writing it doesn't actually change the timer frequency.
3118 * Our reset value matches the fixed frequency we implement the timer at.
3119 */
3120 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 3121 .type = ARM_CP_ALIAS,
a7adc4b7
PM
3122 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3123 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
a7adc4b7
PM
3124 },
3125 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3126 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3127 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
55d284af 3128 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
96eec6b2 3129 .resetfn = arm_gt_cntfrq_reset,
55d284af
PM
3130 },
3131 /* overall control: mostly access permissions */
a7adc4b7
PM
3132 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3133 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
55d284af
PM
3134 .access = PL1_RW,
3135 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3136 .resetvalue = 0,
3137 },
3138 /* per-timer control */
3139 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
9ff9dd3c 3140 .secure = ARM_CP_SECSTATE_NS,
daf1dc5f 3141 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
a7adc4b7
PM
3142 .accessfn = gt_ptimer_access,
3143 .fieldoffset = offsetoflow32(CPUARMState,
3144 cp15.c14_timer[GTIMER_PHYS].ctl),
bb5972e4
RH
3145 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3146 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
a7adc4b7 3147 },
9c513e78 3148 { .name = "CNTP_CTL_S",
9ff9dd3c
PM
3149 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3150 .secure = ARM_CP_SECSTATE_S,
daf1dc5f 3151 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
9ff9dd3c
PM
3152 .accessfn = gt_ptimer_access,
3153 .fieldoffset = offsetoflow32(CPUARMState,
3154 cp15.c14_timer[GTIMER_SEC].ctl),
3155 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3156 },
a7adc4b7
PM
3157 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3158 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
daf1dc5f 3159 .type = ARM_CP_IO, .access = PL0_RW,
a7adc4b7 3160 .accessfn = gt_ptimer_access,
55d284af
PM
3161 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3162 .resetvalue = 0,
bb5972e4
RH
3163 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3164 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
55d284af
PM
3165 },
3166 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
daf1dc5f 3167 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
a7adc4b7
PM
3168 .accessfn = gt_vtimer_access,
3169 .fieldoffset = offsetoflow32(CPUARMState,
3170 cp15.c14_timer[GTIMER_VIRT].ctl),
bb5972e4
RH
3171 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3172 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
a7adc4b7
PM
3173 },
3174 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3175 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
daf1dc5f 3176 .type = ARM_CP_IO, .access = PL0_RW,
a7adc4b7 3177 .accessfn = gt_vtimer_access,
55d284af
PM
3178 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3179 .resetvalue = 0,
bb5972e4
RH
3180 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3181 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
55d284af
PM
3182 },
3183 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3184 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
9ff9dd3c 3185 .secure = ARM_CP_SECSTATE_NS,
daf1dc5f 3186 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
00108f2d 3187 .accessfn = gt_ptimer_access,
bb5972e4 3188 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
55d284af 3189 },
9c513e78 3190 { .name = "CNTP_TVAL_S",
9ff9dd3c
PM
3191 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3192 .secure = ARM_CP_SECSTATE_S,
daf1dc5f 3193 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
9ff9dd3c
PM
3194 .accessfn = gt_ptimer_access,
3195 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3196 },
a7adc4b7
PM
3197 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3198 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
daf1dc5f 3199 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
0e3eca4c 3200 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
bb5972e4 3201 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
a7adc4b7 3202 },
55d284af 3203 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
daf1dc5f 3204 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
00108f2d 3205 .accessfn = gt_vtimer_access,
bb5972e4 3206 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
55d284af 3207 },
a7adc4b7
PM
3208 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3209 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
daf1dc5f 3210 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
0e3eca4c 3211 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
bb5972e4 3212 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
a7adc4b7 3213 },
55d284af
PM
3214 /* The counter itself */
3215 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
7a0e58fa 3216 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 3217 .accessfn = gt_pct_access,
a7adc4b7
PM
3218 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3219 },
3220 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3221 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
7a0e58fa 3222 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 3223 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
55d284af
PM
3224 },
3225 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
7a0e58fa 3226 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 3227 .accessfn = gt_vct_access,
edac4d8a 3228 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
a7adc4b7
PM
3229 },
3230 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3231 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
7a0e58fa 3232 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 3233 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
55d284af
PM
3234 },
3235 /* Comparison value, indicating when the timer goes off */
3236 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 3237 .secure = ARM_CP_SECSTATE_NS,
daf1dc5f 3238 .access = PL0_RW,
7a0e58fa 3239 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 3240 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
b061a82b 3241 .accessfn = gt_ptimer_access,
bb5972e4
RH
3242 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3243 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
a7adc4b7 3244 },
9c513e78 3245 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 3246 .secure = ARM_CP_SECSTATE_S,
daf1dc5f 3247 .access = PL0_RW,
9ff9dd3c
PM
3248 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3249 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3250 .accessfn = gt_ptimer_access,
3251 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3252 },
a7adc4b7
PM
3253 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3254 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
daf1dc5f 3255 .access = PL0_RW,
a7adc4b7
PM
3256 .type = ARM_CP_IO,
3257 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
12cde08a 3258 .resetvalue = 0, .accessfn = gt_ptimer_access,
bb5972e4
RH
3259 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3260 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
55d284af
PM
3261 },
3262 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
daf1dc5f 3263 .access = PL0_RW,
7a0e58fa 3264 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 3265 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
b061a82b 3266 .accessfn = gt_vtimer_access,
bb5972e4
RH
3267 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3268 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
a7adc4b7
PM
3269 },
3270 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3271 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
daf1dc5f 3272 .access = PL0_RW,
a7adc4b7
PM
3273 .type = ARM_CP_IO,
3274 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3275 .resetvalue = 0, .accessfn = gt_vtimer_access,
bb5972e4
RH
3276 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3277 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
55d284af 3278 },
9b37a28c
FR
3279 /*
3280 * Secure timer -- this is actually restricted to only EL3
b4d3978c
PM
3281 * and configurably Secure-EL1 via the accessfn.
3282 */
3283 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3284 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3285 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3286 .accessfn = gt_stimer_access,
3287 .readfn = gt_sec_tval_read,
3288 .writefn = gt_sec_tval_write,
3289 .resetfn = gt_sec_timer_reset,
3290 },
3291 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3292 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3293 .type = ARM_CP_IO, .access = PL1_RW,
3294 .accessfn = gt_stimer_access,
3295 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3296 .resetvalue = 0,
3297 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3298 },
3299 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3300 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3301 .type = ARM_CP_IO, .access = PL1_RW,
3302 .accessfn = gt_stimer_access,
3303 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3304 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3305 },
55d284af
PM
3306};
3307
bb5972e4
RH
3308static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3309 bool isread)
3310{
3311 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3312 return CP_ACCESS_TRAP;
3313 }
3314 return CP_ACCESS_OK;
3315}
3316
55d284af 3317#else
26c4a83b 3318
9b37a28c
FR
3319/*
3320 * In user-mode most of the generic timer registers are inaccessible
26c4a83b 3321 * however modern kernels (4.12+) allow access to cntvct_el0
55d284af 3322 */
26c4a83b
AB
3323
3324static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3325{
7def8754
AJ
3326 ARMCPU *cpu = env_archcpu(env);
3327
9b37a28c
FR
3328 /*
3329 * Currently we have no support for QEMUTimer in linux-user so we
26c4a83b
AB
3330 * can't call gt_get_countervalue(env), instead we directly
3331 * call the lower level functions.
3332 */
7def8754 3333 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
26c4a83b
AB
3334}
3335
6cc7a3ae 3336static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
26c4a83b
AB
3337 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3338 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3339 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3340 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3341 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3342 },
3343 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3344 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3345 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3346 .readfn = gt_virt_cnt_read,
3347 },
6cc7a3ae
PM
3348};
3349
55d284af
PM
3350#endif
3351
c4241c7d 3352static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 3353{
891a2fe7 3354 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8d5c773e 3355 raw_write(env, ri, value);
891a2fe7 3356 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8d5c773e 3357 raw_write(env, ri, value & 0xfffff6ff);
4a501606 3358 } else {
8d5c773e 3359 raw_write(env, ri, value & 0xfffff1ff);
4a501606 3360 }
4a501606
PM
3361}
3362
3363#ifndef CONFIG_USER_ONLY
3364/* get_phys_addr() isn't present for user-mode-only targets */
702a9357 3365
3f208fd7
PM
3366static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3367 bool isread)
92611c00
PM
3368{
3369 if (ri->opc2 & 4) {
9b37a28c
FR
3370 /*
3371 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
87562e4f
PM
3372 * Secure EL1 (which can only happen if EL3 is AArch64).
3373 * They are simply UNDEF if executed from NS EL1.
3374 * They function normally from EL2 or EL3.
92611c00 3375 */
87562e4f
PM
3376 if (arm_current_el(env) == 1) {
3377 if (arm_is_secure_below_el3(env)) {
926c1b97 3378 if (env->cp15.scr_el3 & SCR_EEL2) {
ce9a8863 3379 return CP_ACCESS_TRAP_EL2;
926c1b97 3380 }
ce9a8863 3381 return CP_ACCESS_TRAP_EL3;
87562e4f
PM
3382 }
3383 return CP_ACCESS_TRAP_UNCATEGORIZED;
3384 }
92611c00
PM
3385 }
3386 return CP_ACCESS_OK;
3387}
3388
9fb005b0 3389#ifdef CONFIG_TCG
b17d86eb
PM
3390static int par_el1_shareability(GetPhysAddrResult *res)
3391{
3392 /*
3393 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3394 * memory -- see pseudocode PAREncodeShareability().
3395 */
3396 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3397 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3398 return 2;
3399 }
3400 return res->cacheattrs.shareability;
3401}
3402
060e8a48 3403static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
7aee3cb9 3404 MMUAccessType access_type, ARMMMUIdx mmu_idx,
e1ee56ec 3405 ARMSecuritySpace ss)
4a501606 3406{
b7cc4e82 3407 bool ret;
01c097f7 3408 uint64_t par64;
1313e2d7 3409 bool format64 = false;
e14b5a23 3410 ARMMMUFaultInfo fi = {};
de05a709 3411 GetPhysAddrResult res = {};
4a501606 3412
f1269a98
JPB
3413 /*
3414 * I_MXTJT: Granule protection checks are not performed on the final address
3415 * of a successful translation.
3416 */
e1ee56ec
JPB
3417 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3418 &res, &fi);
1313e2d7 3419
9f225e60
PM
3420 /*
3421 * ATS operations only do S1 or S1+S2 translations, so we never
3422 * have to deal with the ARMCacheAttrs format for S2 only.
3423 */
de05a709 3424 assert(!res.cacheattrs.is_s2_format);
9f225e60 3425
0710b2fa
PM
3426 if (ret) {
3427 /*
3428 * Some kinds of translation fault must cause exceptions rather
3429 * than being reported in the PAR.
3430 */
3431 int current_el = arm_current_el(env);
3432 int target_el;
3433 uint32_t syn, fsr, fsc;
3434 bool take_exc = false;
3435
b1a10c86 3436 if (fi.s1ptw && current_el == 1
fee7aa46 3437 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
0710b2fa
PM
3438 /*
3439 * Synchronous stage 2 fault on an access made as part of the
3440 * translation table walk for AT S1E0* or AT S1E1* insn
3441 * executed from NS EL1. If this is a synchronous external abort
3442 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3443 * to EL3. Otherwise the fault is taken as an exception to EL2,
3444 * and HPFAR_EL2 holds the faulting IPA.
3445 */
3446 if (fi.type == ARMFault_SyncExternalOnWalk &&
3447 (env->cp15.scr_el3 & SCR_EA)) {
3448 target_el = 3;
3449 } else {
3450 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
9861248f
RDC
3451 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3452 env->cp15.hpfar_el2 |= HPFAR_NS;
3453 }
0710b2fa
PM
3454 target_el = 2;
3455 }
3456 take_exc = true;
3457 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3458 /*
3459 * Synchronous external aborts during a translation table walk
3460 * are taken as Data Abort exceptions.
3461 */
3462 if (fi.stage2) {
3463 if (current_el == 3) {
3464 target_el = 3;
3465 } else {
3466 target_el = 2;
3467 }
3468 } else {
3469 target_el = exception_target_el(env);
3470 }
3471 take_exc = true;
3472 }
3473
3474 if (take_exc) {
3475 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3476 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3477 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3478 fsr = arm_fi_to_lfsc(&fi);
3479 fsc = extract32(fsr, 0, 6);
3480 } else {
3481 fsr = arm_fi_to_sfsc(&fi);
3482 fsc = 0x3f;
3483 }
3484 /*
3485 * Report exception with ESR indicating a fault due to a
3486 * translation table walk for a cache maintenance instruction.
3487 */
e24fd076 3488 syn = syn_data_abort_no_iss(current_el == target_el, 0,
0710b2fa
PM
3489 fi.ea, 1, fi.s1ptw, 1, fsc);
3490 env->exception.vaddress = value;
3491 env->exception.fsr = fsr;
3492 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3493 }
3494 }
3495
1313e2d7
EI
3496 if (is_a64(env)) {
3497 format64 = true;
3498 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3499 /*
3500 * ATS1Cxx:
3501 * * TTBCR.EAE determines whether the result is returned using the
3502 * 32-bit or the 64-bit PAR format
3503 * * Instructions executed in Hyp mode always use the 64bit format
3504 *
3505 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3506 * * The Non-secure TTBCR.EAE bit is set to 1
3507 * * The implementation includes EL2, and the value of HCR.VM is 1
3508 *
9d1bab33
PM
3509 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3510 *
23463e0e 3511 * ATS1Hx always uses the 64bit format.
1313e2d7
EI
3512 */
3513 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3514
3515 if (arm_feature(env, ARM_FEATURE_EL2)) {
452ef8cb
RH
3516 if (mmu_idx == ARMMMUIdx_E10_0 ||
3517 mmu_idx == ARMMMUIdx_E10_1 ||
3518 mmu_idx == ARMMMUIdx_E10_1_PAN) {
9d1bab33 3519 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
1313e2d7
EI
3520 } else {
3521 format64 |= arm_current_el(env) == 2;
3522 }
3523 }
3524 }
3525
3526 if (format64) {
5efe9ed4 3527 /* Create a 64-bit PAR */
01c097f7 3528 par64 = (1 << 11); /* LPAE bit always set */
b7cc4e82 3529 if (!ret) {
7fa7ea8f
RH
3530 par64 |= res.f.phys_addr & ~0xfffULL;
3531 if (!res.f.attrs.secure) {
8bf5b6a9
PM
3532 par64 |= (1 << 9); /* NS */
3533 }
de05a709 3534 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
b17d86eb 3535 par64 |= par_el1_shareability(&res) << 7; /* SH */
4a501606 3536 } else {
5efe9ed4
PM
3537 uint32_t fsr = arm_fi_to_lfsc(&fi);
3538
702a9357 3539 par64 |= 1; /* F */
b7cc4e82 3540 par64 |= (fsr & 0x3f) << 1; /* FS */
0f7b791b
PM
3541 if (fi.stage2) {
3542 par64 |= (1 << 9); /* S */
3543 }
3544 if (fi.s1ptw) {
3545 par64 |= (1 << 8); /* PTW */
3546 }
4a501606
PM
3547 }
3548 } else {
9b37a28c
FR
3549 /*
3550 * fsr is a DFSR/IFSR value for the short descriptor
702a9357
PM
3551 * translation table format (with WnR always clear).
3552 * Convert it to a 32-bit PAR.
3553 */
b7cc4e82 3554 if (!ret) {
702a9357 3555 /* We do not set any attribute bits in the PAR */
7fa7ea8f 3556 if (res.f.lg_page_size == 24
702a9357 3557 && arm_feature(env, ARM_FEATURE_V7)) {
7fa7ea8f 3558 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
702a9357 3559 } else {
7fa7ea8f 3560 par64 = res.f.phys_addr & 0xfffff000;
702a9357 3561 }
7fa7ea8f 3562 if (!res.f.attrs.secure) {
8bf5b6a9
PM
3563 par64 |= (1 << 9); /* NS */
3564 }
702a9357 3565 } else {
5efe9ed4
PM
3566 uint32_t fsr = arm_fi_to_sfsc(&fi);
3567
b7cc4e82
PC
3568 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3569 ((fsr & 0xf) << 1) | 1;
702a9357 3570 }
4a501606 3571 }
060e8a48
PM
3572 return par64;
3573}
9fb005b0 3574#endif /* CONFIG_TCG */
060e8a48
PM
3575
3576static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3577{
9fb005b0 3578#ifdef CONFIG_TCG
03ae85f8 3579 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
060e8a48 3580 uint64_t par64;
d3649702
PM
3581 ARMMMUIdx mmu_idx;
3582 int el = arm_current_el(env);
e1ee56ec 3583 ARMSecuritySpace ss = arm_security_space(env);
060e8a48 3584
d3649702
PM
3585 switch (ri->opc2 & 6) {
3586 case 0:
04b07d29 3587 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
d3649702
PM
3588 switch (el) {
3589 case 3:
d902ae75 3590 mmu_idx = ARMMMUIdx_E3;
d3649702
PM
3591 break;
3592 case 2:
e1ee56ec 3593 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
04b07d29 3594 /* fall through */
d3649702 3595 case 1:
04b07d29 3596 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
d902ae75 3597 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
04b07d29 3598 } else {
d902ae75 3599 mmu_idx = ARMMMUIdx_Stage1_E1;
04b07d29 3600 }
d3649702
PM
3601 break;
3602 default:
3603 g_assert_not_reached();
3604 }
3605 break;
3606 case 2:
3607 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3608 switch (el) {
3609 case 3:
d902ae75 3610 mmu_idx = ARMMMUIdx_E10_0;
d3649702
PM
3611 break;
3612 case 2:
e1ee56ec 3613 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
2859d7b5 3614 mmu_idx = ARMMMUIdx_Stage1_E0;
d3649702
PM
3615 break;
3616 case 1:
d902ae75 3617 mmu_idx = ARMMMUIdx_Stage1_E0;
d3649702
PM
3618 break;
3619 default:
3620 g_assert_not_reached();
3621 }
3622 break;
3623 case 4:
3624 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
01b98b68 3625 mmu_idx = ARMMMUIdx_E10_1;
e1ee56ec 3626 ss = ARMSS_NonSecure;
d3649702
PM
3627 break;
3628 case 6:
3629 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
01b98b68 3630 mmu_idx = ARMMMUIdx_E10_0;
e1ee56ec 3631 ss = ARMSS_NonSecure;
d3649702
PM
3632 break;
3633 default:
3634 g_assert_not_reached();
3635 }
3636
e1ee56ec 3637 par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
01c097f7
FA
3638
3639 A32_BANKED_CURRENT_REG_SET(env, par, par64);
9fb005b0
PMD
3640#else
3641 /* Handled by hardware accelerator. */
3642 g_assert_not_reached();
3643#endif /* CONFIG_TCG */
4a501606 3644}
060e8a48 3645
14db7fe0
PM
3646static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3647 uint64_t value)
3648{
9fb005b0 3649#ifdef CONFIG_TCG
03ae85f8 3650 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
14db7fe0
PM
3651 uint64_t par64;
3652
7aee3cb9 3653 /* There is no SecureEL2 for AArch32. */
e1ee56ec
JPB
3654 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3655 ARMSS_NonSecure);
14db7fe0
PM
3656
3657 A32_BANKED_CURRENT_REG_SET(env, par, par64);
9fb005b0
PMD
3658#else
3659 /* Handled by hardware accelerator. */
3660 g_assert_not_reached();
3661#endif /* CONFIG_TCG */
14db7fe0
PM
3662}
3663
1acd00ef
JPB
3664static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3665 bool isread)
3666{
3667 /*
3668 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3669 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3670 * only happen when executing at EL3 because that combination also causes an
3671 * illegal exception return. We don't need to check FEAT_RME either, because
3672 * scr_write() ensures that the NSE bit is not set otherwise.
3673 */
3674 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3675 return CP_ACCESS_TRAP;
3676 }
3677 return CP_ACCESS_OK;
3678}
3679
3f208fd7
PM
3680static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3681 bool isread)
2a47df95 3682{
926c1b97
RDC
3683 if (arm_current_el(env) == 3 &&
3684 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
2a47df95
PM
3685 return CP_ACCESS_TRAP;
3686 }
1acd00ef 3687 return at_e012_access(env, ri, isread);
2a47df95
PM
3688}
3689
060e8a48
PM
3690static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3691 uint64_t value)
3692{
9fb005b0 3693#ifdef CONFIG_TCG
03ae85f8 3694 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
d3649702 3695 ARMMMUIdx mmu_idx;
638d5dbd
AK
3696 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3697 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
d3649702
PM
3698
3699 switch (ri->opc2 & 6) {
3700 case 0:
3701 switch (ri->opc1) {
04b07d29
RH
3702 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3703 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
638d5dbd
AK
3704 mmu_idx = regime_e20 ?
3705 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
04b07d29 3706 } else {
638d5dbd 3707 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
04b07d29 3708 }
d3649702
PM
3709 break;
3710 case 4: /* AT S1E2R, AT S1E2W */
638d5dbd 3711 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
d3649702
PM
3712 break;
3713 case 6: /* AT S1E3R, AT S1E3W */
d902ae75 3714 mmu_idx = ARMMMUIdx_E3;
d3649702
PM
3715 break;
3716 default:
3717 g_assert_not_reached();
3718 }
3719 break;
3720 case 2: /* AT S1E0R, AT S1E0W */
638d5dbd 3721 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
d3649702
PM
3722 break;
3723 case 4: /* AT S12E1R, AT S12E1W */
638d5dbd 3724 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
d3649702
PM
3725 break;
3726 case 6: /* AT S12E0R, AT S12E0W */
638d5dbd 3727 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
d3649702
PM
3728 break;
3729 default:
3730 g_assert_not_reached();
3731 }
060e8a48 3732
7aee3cb9 3733 env->cp15.par_el[1] = do_ats_write(env, value, access_type,
e1ee56ec 3734 mmu_idx, arm_security_space(env));
9fb005b0
PMD
3735#else
3736 /* Handled by hardware accelerator. */
3737 g_assert_not_reached();
3738#endif /* CONFIG_TCG */
060e8a48 3739}
4a501606
PM
3740#endif
3741
18032bec
PM
3742/* Return basic MPU access permission bits. */
3743static uint32_t simple_mpu_ap_bits(uint32_t val)
3744{
3745 uint32_t ret;
3746 uint32_t mask;
3747 int i;
3748 ret = 0;
3749 mask = 3;
3750 for (i = 0; i < 16; i += 2) {
3751 ret |= (val >> i) & mask;
3752 mask <<= 2;
3753 }
3754 return ret;
3755}
3756
3757/* Pad basic MPU access permission bits to extended format. */
3758static uint32_t extended_mpu_ap_bits(uint32_t val)
3759{
3760 uint32_t ret;
3761 uint32_t mask;
3762 int i;
3763 ret = 0;
3764 mask = 3;
3765 for (i = 0; i < 16; i += 2) {
3766 ret |= (val & mask) << i;
3767 mask <<= 2;
3768 }
3769 return ret;
3770}
3771
c4241c7d
PM
3772static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3773 uint64_t value)
18032bec 3774{
7e09797c 3775 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
18032bec
PM
3776}
3777
c4241c7d 3778static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 3779{
7e09797c 3780 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
18032bec
PM
3781}
3782
c4241c7d
PM
3783static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3784 uint64_t value)
18032bec 3785{
7e09797c 3786 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
18032bec
PM
3787}
3788
c4241c7d 3789static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 3790{
7e09797c 3791 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
18032bec
PM
3792}
3793
6cb0b013
PC
3794static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3795{
3796 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3797
3798 if (!u32p) {
3799 return 0;
3800 }
3801
1bc04a88 3802 u32p += env->pmsav7.rnr[M_REG_NS];
6cb0b013
PC
3803 return *u32p;
3804}
3805
3806static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3807 uint64_t value)
3808{
2fc0cc0e 3809 ARMCPU *cpu = env_archcpu(env);
6cb0b013
PC
3810 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3811
3812 if (!u32p) {
3813 return;
3814 }
3815
1bc04a88 3816 u32p += env->pmsav7.rnr[M_REG_NS];
d10eb08f 3817 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
6cb0b013
PC
3818 *u32p = value;
3819}
3820
6cb0b013
PC
3821static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3822 uint64_t value)
3823{
2fc0cc0e 3824 ARMCPU *cpu = env_archcpu(env);
6cb0b013
PC
3825 uint32_t nrgs = cpu->pmsav7_dregion;
3826
3827 if (value >= nrgs) {
3828 qemu_log_mask(LOG_GUEST_ERROR,
3829 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3830 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3831 return;
3832 }
3833
3834 raw_write(env, ri, value);
3835}
3836
761c4642
TR
3837static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3838 uint64_t value)
3839{
3840 ARMCPU *cpu = env_archcpu(env);
3841
3842 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3843 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3844}
3845
3846static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3847{
3848 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3849}
3850
3851static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3852 uint64_t value)
3853{
3854 ARMCPU *cpu = env_archcpu(env);
3855
3856 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3857 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3858}
3859
3860static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3861{
3862 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3863}
3864
3865static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3866 uint64_t value)
3867{
3868 ARMCPU *cpu = env_archcpu(env);
3869
3870 /*
3871 * Ignore writes that would select not implemented region.
3872 * This is architecturally UNPREDICTABLE.
3873 */
3874 if (value >= cpu->pmsav7_dregion) {
3875 return;
3876 }
3877
3878 env->pmsav7.rnr[M_REG_NS] = value;
3879}
3880
3881static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3882 uint64_t value)
3883{
3884 ARMCPU *cpu = env_archcpu(env);
3885
3886 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3887 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3888}
3889
3890static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3891{
3892 return env->pmsav8.hprbar[env->pmsav8.hprselr];
3893}
3894
3895static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3896 uint64_t value)
3897{
3898 ARMCPU *cpu = env_archcpu(env);
3899
3900 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3901 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3902}
3903
3904static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3905{
3906 return env->pmsav8.hprlar[env->pmsav8.hprselr];
3907}
3908
3909static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3910 uint64_t value)
3911{
3912 uint32_t n;
3913 uint32_t bit;
3914 ARMCPU *cpu = env_archcpu(env);
3915
3916 /* Ignore writes to unimplemented regions */
3917 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3918 value &= MAKE_64BIT_MASK(0, rmax);
3919
3920 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3921
3922 /* Register alias is only valid for first 32 indexes */
3923 for (n = 0; n < rmax; ++n) {
3924 bit = extract32(value, n, 1);
3925 env->pmsav8.hprlar[n] = deposit32(
3926 env->pmsav8.hprlar[n], 0, 1, bit);
3927 }
3928}
3929
3930static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3931{
3932 uint32_t n;
3933 uint32_t result = 0x0;
3934 ARMCPU *cpu = env_archcpu(env);
3935
3936 /* Register alias is only valid for first 32 indexes */
3937 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3938 if (env->pmsav8.hprlar[n] & 0x1) {
3939 result |= (0x1 << n);
3940 }
3941 }
3942 return result;
3943}
3944
3945static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3946 uint64_t value)
3947{
3948 ARMCPU *cpu = env_archcpu(env);
3949
3950 /*
3951 * Ignore writes that would select not implemented region.
3952 * This is architecturally UNPREDICTABLE.
3953 */
3954 if (value >= cpu->pmsav8r_hdregion) {
3955 return;
3956 }
3957
3958 env->pmsav8.hprselr = value;
3959}
3960
3961static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3962 uint64_t value)
3963{
3964 ARMCPU *cpu = env_archcpu(env);
3965 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3966 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3967
3968 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3969
3970 if (ri->opc1 & 4) {
3971 if (index >= cpu->pmsav8r_hdregion) {
3972 return;
3973 }
3974 if (ri->opc2 & 0x1) {
3975 env->pmsav8.hprlar[index] = value;
3976 } else {
3977 env->pmsav8.hprbar[index] = value;
3978 }
3979 } else {
3980 if (index >= cpu->pmsav7_dregion) {
3981 return;
3982 }
3983 if (ri->opc2 & 0x1) {
3984 env->pmsav8.rlar[M_REG_NS][index] = value;
3985 } else {
3986 env->pmsav8.rbar[M_REG_NS][index] = value;
3987 }
3988 }
3989}
3990
3991static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3992{
3993 ARMCPU *cpu = env_archcpu(env);
3994 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3995 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3996
3997 if (ri->opc1 & 4) {
3998 if (index >= cpu->pmsav8r_hdregion) {
3999 return 0x0;
4000 }
4001 if (ri->opc2 & 0x1) {
4002 return env->pmsav8.hprlar[index];
4003 } else {
4004 return env->pmsav8.hprbar[index];
4005 }
4006 } else {
4007 if (index >= cpu->pmsav7_dregion) {
4008 return 0x0;
4009 }
4010 if (ri->opc2 & 0x1) {
4011 return env->pmsav8.rlar[M_REG_NS][index];
4012 } else {
4013 return env->pmsav8.rbar[M_REG_NS][index];
4014 }
4015 }
4016}
4017
4018static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4019 { .name = "PRBAR",
4020 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4021 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4022 .accessfn = access_tvm_trvm,
4023 .readfn = prbar_read, .writefn = prbar_write },
4024 { .name = "PRLAR",
4025 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4026 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4027 .accessfn = access_tvm_trvm,
4028 .readfn = prlar_read, .writefn = prlar_write },
4029 { .name = "PRSELR", .resetvalue = 0,
4030 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4031 .access = PL1_RW, .accessfn = access_tvm_trvm,
4032 .writefn = prselr_write,
4033 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4034 { .name = "HPRBAR", .resetvalue = 0,
4035 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4036 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4037 .readfn = hprbar_read, .writefn = hprbar_write },
4038 { .name = "HPRLAR",
4039 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4040 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4041 .readfn = hprlar_read, .writefn = hprlar_write },
4042 { .name = "HPRSELR", .resetvalue = 0,
4043 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4044 .access = PL2_RW,
4045 .writefn = hprselr_write,
4046 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4047 { .name = "HPRENR",
4048 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4049 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4050 .readfn = hprenr_read, .writefn = hprenr_write },
4051};
4052
6cb0b013 4053static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
9b37a28c
FR
4054 /*
4055 * Reset for all these registers is handled in arm_cpu_reset(),
69ceea64
PM
4056 * because the PMSAv7 is also used by M-profile CPUs, which do
4057 * not register cpregs but still need the state to be reset.
4058 */
6cb0b013
PC
4059 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4060 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4061 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
69ceea64
PM
4062 .readfn = pmsav7_read, .writefn = pmsav7_write,
4063 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
4064 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4065 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4066 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
69ceea64
PM
4067 .readfn = pmsav7_read, .writefn = pmsav7_write,
4068 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
4069 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4070 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4071 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
69ceea64
PM
4072 .readfn = pmsav7_read, .writefn = pmsav7_write,
4073 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
4074 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4075 .access = PL1_RW,
1bc04a88 4076 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
69ceea64
PM
4077 .writefn = pmsav7_rgnr_write,
4078 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
4079};
4080
18032bec
PM
4081static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4082 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 4083 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 4084 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
18032bec
PM
4085 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4086 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
7a0e58fa 4087 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 4088 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
18032bec
PM
4089 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4090 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4091 .access = PL1_RW,
7e09797c
PM
4092 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4093 .resetvalue = 0, },
18032bec
PM
4094 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4095 .access = PL1_RW,
7e09797c
PM
4096 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4097 .resetvalue = 0, },
ecce5c3c
PM
4098 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4099 .access = PL1_RW,
4100 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4101 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4102 .access = PL1_RW,
4103 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31 4104 /* Protection region base and size registers */
e508a92b
PM
4105 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4106 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4107 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4108 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4109 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4110 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4111 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4112 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4113 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4114 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4115 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4116 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4117 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4118 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4119 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4120 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4121 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4122 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4123 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4124 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4125 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4126 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4127 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4128 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
18032bec
PM
4129};
4130
cb4a0a34
PM
4131static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4132 uint64_t value)
ecce5c3c 4133{
cb4a0a34 4134 ARMCPU *cpu = env_archcpu(env);
2ebcebe2 4135
e389be16
FA
4136 if (!arm_feature(env, ARM_FEATURE_V8)) {
4137 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
cb4a0a34
PM
4138 /*
4139 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4140 * using Long-descriptor translation table format
4141 */
e389be16
FA
4142 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4143 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
cb4a0a34
PM
4144 /*
4145 * In an implementation that includes the Security Extensions
e389be16
FA
4146 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4147 * Short-descriptor translation table format.
4148 */
4149 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4150 } else {
4151 value &= TTBCR_N;
4152 }
e42c4db3 4153 }
e389be16 4154
d4e6df63 4155 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9b37a28c
FR
4156 /*
4157 * With LPAE the TTBCR could result in a change of ASID
d4e6df63
PM
4158 * via the TTBCR.A1 bit, so do a TLB flush.
4159 */
d10eb08f 4160 tlb_flush(CPU(cpu));
d4e6df63 4161 }
cb4a0a34 4162 raw_write(env, ri, value);
ecce5c3c
PM
4163}
4164
d06dc933 4165static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
cb2e37df
PM
4166 uint64_t value)
4167{
2fc0cc0e 4168 ARMCPU *cpu = env_archcpu(env);
00c8cb0a 4169
cb2e37df 4170 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
d10eb08f 4171 tlb_flush(CPU(cpu));
cb4a0a34 4172 raw_write(env, ri, value);
cb2e37df
PM
4173}
4174
327ed10f
PM
4175static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4176 uint64_t value)
4177{
93f379b0
RH
4178 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4179 if (cpreg_field_is_64bit(ri) &&
4180 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
2fc0cc0e 4181 ARMCPU *cpu = env_archcpu(env);
d10eb08f 4182 tlb_flush(CPU(cpu));
327ed10f
PM
4183 }
4184 raw_write(env, ri, value);
4185}
4186
ed30da8e
RH
4187static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4188 uint64_t value)
4189{
d06dc933
RH
4190 /*
4191 * If we are running with E2&0 regime, then an ASID is active.
4192 * Flush if that might be changing. Note we're not checking
4193 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4194 * holds the active ASID, only checking the field that might.
4195 */
4196 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4197 (arm_hcr_el2_eff(env) & HCR_E2H)) {
b6ad6062
RDC
4198 uint16_t mask = ARMMMUIdxBit_E20_2 |
4199 ARMMMUIdxBit_E20_2_PAN |
4200 ARMMMUIdxBit_E20_0;
b6ad6062 4201 tlb_flush_by_mmuidx(env_cpu(env), mask);
d06dc933 4202 }
ed30da8e
RH
4203 raw_write(env, ri, value);
4204}
4205
b698e9cf
EI
4206static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4207 uint64_t value)
4208{
2fc0cc0e 4209 ARMCPU *cpu = env_archcpu(env);
b698e9cf
EI
4210 CPUState *cs = CPU(cpu);
4211
97fa9350
RH
4212 /*
4213 * A change in VMID to the stage2 page table (Stage2) invalidates
575a94af 4214 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
97fa9350 4215 */
00b20ee4 4216 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
575a94af 4217 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
b698e9cf 4218 }
00b20ee4 4219 raw_write(env, ri, value);
b698e9cf
EI
4220}
4221
8e5d75c9 4222static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
18032bec 4223 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
84929218 4224 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4a7e2d73 4225 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
b061a82b 4226 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
18032bec 4227 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
84929218 4228 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
88ca1c2d
FA
4229 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4230 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
8e5d75c9 4231 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
84929218 4232 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
8e5d75c9
PC
4233 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4234 offsetof(CPUARMState, cp15.dfar_ns) } },
4235 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4236 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
84929218 4237 .access = PL1_RW, .accessfn = access_tvm_trvm,
b19ed03c 4238 .fgt = FGT_FAR_EL1,
84929218 4239 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
8e5d75c9 4240 .resetvalue = 0, },
8e5d75c9
PC
4241};
4242
4243static const ARMCPRegInfo vmsa_cp_reginfo[] = {
6cd8a264
RH
4244 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4245 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
84929218 4246 .access = PL1_RW, .accessfn = access_tvm_trvm,
b19ed03c 4247 .fgt = FGT_ESR_EL1,
d81c519c 4248 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
327ed10f 4249 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af 4250 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
84929218 4251 .access = PL1_RW, .accessfn = access_tvm_trvm,
bd8db7d9 4252 .fgt = FGT_TTBR0_EL1,
587f8b33 4253 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
7dd8c9af
FA
4254 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4255 offsetof(CPUARMState, cp15.ttbr0_ns) } },
327ed10f 4256 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af 4257 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
84929218 4258 .access = PL1_RW, .accessfn = access_tvm_trvm,
bd8db7d9 4259 .fgt = FGT_TTBR1_EL1,
587f8b33 4260 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
7dd8c9af
FA
4261 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4262 offsetof(CPUARMState, cp15.ttbr1_ns) } },
cb2e37df
PM
4263 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4264 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
84929218 4265 .access = PL1_RW, .accessfn = access_tvm_trvm,
67dd8030 4266 .fgt = FGT_TCR_EL1,
84929218 4267 .writefn = vmsa_tcr_el12_write,
cb4a0a34
PM
4268 .raw_writefn = raw_write,
4269 .resetvalue = 0,
11f136ee 4270 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
cb2e37df 4271 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
84929218
RH
4272 .access = PL1_RW, .accessfn = access_tvm_trvm,
4273 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
cb4a0a34
PM
4274 .raw_writefn = raw_write,
4275 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4276 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
18032bec
PM
4277};
4278
9b37a28c
FR
4279/*
4280 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
ab638a32
RH
4281 * qemu tlbs nor adjusting cached masks.
4282 */
4283static const ARMCPRegInfo ttbcr2_reginfo = {
4284 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
84929218
RH
4285 .access = PL1_RW, .accessfn = access_tvm_trvm,
4286 .type = ARM_CP_ALIAS,
d102058e 4287 .bank_fieldoffsets = {
cb4a0a34
PM
4288 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4289 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
d102058e 4290 },
ab638a32
RH
4291};
4292
c4241c7d
PM
4293static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4294 uint64_t value)
1047b9d7
PM
4295{
4296 env->cp15.c15_ticonfig = value & 0xe7;
4297 /* The OS_TYPE bit in this register changes the reported CPUID! */
4298 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4299 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1047b9d7
PM
4300}
4301
c4241c7d
PM
4302static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4303 uint64_t value)
1047b9d7
PM
4304{
4305 env->cp15.c15_threadid = value & 0xffff;
1047b9d7
PM
4306}
4307
c4241c7d
PM
4308static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4309 uint64_t value)
1047b9d7
PM
4310{
4311 /* Wait-for-interrupt (deprecated) */
2fc0cc0e 4312 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
1047b9d7
PM
4313}
4314
c4241c7d
PM
4315static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4316 uint64_t value)
c4804214 4317{
9b37a28c
FR
4318 /*
4319 * On OMAP there are registers indicating the max/min index of dcache lines
c4804214
PM
4320 * containing a dirty line; cache flush operations have to reset these.
4321 */
4322 env->cp15.c15_i_max = 0x000;
4323 env->cp15.c15_i_min = 0xff0;
c4804214
PM
4324}
4325
18032bec
PM
4326static const ARMCPRegInfo omap_cp_reginfo[] = {
4327 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4328 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
d81c519c 4329 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
6cd8a264 4330 .resetvalue = 0, },
1047b9d7
PM
4331 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4332 .access = PL1_RW, .type = ARM_CP_NOP },
4333 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4334 .access = PL1_RW,
4335 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4336 .writefn = omap_ticonfig_write },
4337 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4338 .access = PL1_RW,
4339 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4340 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4341 .access = PL1_RW, .resetvalue = 0xff0,
4342 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4343 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4344 .access = PL1_RW,
4345 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4346 .writefn = omap_threadid_write },
4347 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4348 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
7a0e58fa 4349 .type = ARM_CP_NO_RAW,
1047b9d7 4350 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
9b37a28c
FR
4351 /*
4352 * TODO: Peripheral port remap register:
1047b9d7
PM
4353 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4354 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4355 * when MMU is off.
4356 */
c4804214 4357 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
d4e6df63 4358 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
7a0e58fa 4359 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
c4804214 4360 .writefn = omap_cachemaint_write },
34f90529
PM
4361 { .name = "C9", .cp = 15, .crn = 9,
4362 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4363 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
4364};
4365
c4241c7d
PM
4366static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4367 uint64_t value)
1047b9d7 4368{
c0f4af17 4369 env->cp15.c15_cpar = value & 0x3fff;
1047b9d7
PM
4370}
4371
4372static const ARMCPRegInfo xscale_cp_reginfo[] = {
4373 { .name = "XSCALE_CPAR",
4374 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4375 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4376 .writefn = xscale_cpar_write, },
2771db27
PM
4377 { .name = "XSCALE_AUXCR",
4378 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4379 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4380 .resetvalue = 0, },
9b37a28c
FR
4381 /*
4382 * XScale specific cache-lockdown: since we have no cache we NOP these
3b771579
PM
4383 * and hope the guest does not really rely on cache behaviour.
4384 */
4385 { .name = "XSCALE_LOCK_ICACHE_LINE",
4386 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4387 .access = PL1_W, .type = ARM_CP_NOP },
4388 { .name = "XSCALE_UNLOCK_ICACHE",
4389 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4390 .access = PL1_W, .type = ARM_CP_NOP },
4391 { .name = "XSCALE_DCACHE_LOCK",
4392 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4393 .access = PL1_RW, .type = ARM_CP_NOP },
4394 { .name = "XSCALE_UNLOCK_DCACHE",
4395 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4396 .access = PL1_W, .type = ARM_CP_NOP },
1047b9d7
PM
4397};
4398
4399static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
9b37a28c
FR
4400 /*
4401 * RAZ/WI the whole crn=15 space, when we don't have a more specific
1047b9d7
PM
4402 * implementation of this implementation-defined space.
4403 * Ideally this should eventually disappear in favour of actually
4404 * implementing the correct behaviour for all cores.
4405 */
4406 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4407 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671cd87 4408 .access = PL1_RW,
7a0e58fa 4409 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
d4e6df63 4410 .resetvalue = 0 },
18032bec
PM
4411};
4412
c4804214
PM
4413static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4414 /* Cache status: RAZ because we have no cache so it's always clean */
4415 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
7a0e58fa 4416 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 4417 .resetvalue = 0 },
c4804214
PM
4418};
4419
4420static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
a07d9df0 4421 /* We never have a block transfer operation in progress */
c4804214 4422 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
7a0e58fa 4423 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 4424 .resetvalue = 0 },
30b05bba
PM
4425 /* The cache ops themselves: these all NOP for QEMU */
4426 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
04215eb1 4427 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
30b05bba 4428 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
04215eb1 4429 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
30b05bba 4430 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
04215eb1 4431 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
30b05bba 4432 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
04215eb1 4433 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
30b05bba 4434 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
04215eb1 4435 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
30b05bba 4436 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
04215eb1 4437 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
c4804214
PM
4438};
4439
4440static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
9b37a28c
FR
4441 /*
4442 * The cache test-and-clean instructions always return (1 << 30)
c4804214
PM
4443 * to indicate that there are no dirty cache lines.
4444 */
4445 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
7a0e58fa 4446 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 4447 .resetvalue = (1 << 30) },
c4804214 4448 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
7a0e58fa 4449 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 4450 .resetvalue = (1 << 30) },
c4804214
PM
4451};
4452
34f90529
PM
4453static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4454 /* Ignore ReadBuffer accesses */
4455 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4456 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
d4e6df63 4457 .access = PL1_RW, .resetvalue = 0,
7a0e58fa 4458 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
34f90529
PM
4459};
4460
731de9e6
EI
4461static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4462{
731de9e6 4463 unsigned int cur_el = arm_current_el(env);
731de9e6 4464
e6ef0169 4465 if (arm_is_el2_enabled(env) && cur_el == 1) {
731de9e6
EI
4466 return env->cp15.vpidr_el2;
4467 }
4468 return raw_read(env, ri);
4469}
4470
06a7e647 4471static uint64_t mpidr_read_val(CPUARMState *env)
81bdde9d 4472{
2fc0cc0e 4473 ARMCPU *cpu = env_archcpu(env);
eb5e1d3c
PF
4474 uint64_t mpidr = cpu->mp_affinity;
4475
81bdde9d 4476 if (arm_feature(env, ARM_FEATURE_V7MP)) {
78dbbbe4 4477 mpidr |= (1U << 31);
9b37a28c
FR
4478 /*
4479 * Cores which are uniprocessor (non-coherent)
81bdde9d 4480 * but still implement the MP extensions set
a8e81b31 4481 * bit 30. (For instance, Cortex-R5).
81bdde9d 4482 */
a8e81b31
PC
4483 if (cpu->mp_is_up) {
4484 mpidr |= (1u << 30);
4485 }
81bdde9d 4486 }
c4241c7d 4487 return mpidr;
81bdde9d
PM
4488}
4489
06a7e647
EI
4490static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4491{
f0d574d6 4492 unsigned int cur_el = arm_current_el(env);
f0d574d6 4493
e6ef0169 4494 if (arm_is_el2_enabled(env) && cur_el == 1) {
f0d574d6
EI
4495 return env->cp15.vmpidr_el2;
4496 }
06a7e647
EI
4497 return mpidr_read_val(env);
4498}
4499
7ac681cf 4500static const ARMCPRegInfo lpae_cp_reginfo[] = {
a903c449 4501 /* NOP AMAIR0/1 */
b0fe2427
PM
4502 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4503 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
84929218 4504 .access = PL1_RW, .accessfn = access_tvm_trvm,
158c276c 4505 .fgt = FGT_AMAIR_EL1,
84929218 4506 .type = ARM_CP_CONST, .resetvalue = 0 },
b0fe2427 4507 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
7ac681cf 4508 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
84929218
RH
4509 .access = PL1_RW, .accessfn = access_tvm_trvm,
4510 .type = ARM_CP_CONST, .resetvalue = 0 },
891a2fe7 4511 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
01c097f7
FA
4512 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4513 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4514 offsetof(CPUARMState, cp15.par_ns)} },
891a2fe7 4515 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
84929218
RH
4516 .access = PL1_RW, .accessfn = access_tvm_trvm,
4517 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
4518 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4519 offsetof(CPUARMState, cp15.ttbr0_ns) },
587f8b33 4520 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
891a2fe7 4521 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
84929218
RH
4522 .access = PL1_RW, .accessfn = access_tvm_trvm,
4523 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
4524 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4525 offsetof(CPUARMState, cp15.ttbr1_ns) },
587f8b33 4526 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
7ac681cf
PM
4527};
4528
c4241c7d 4529static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 4530{
c4241c7d 4531 return vfp_get_fpcr(env);
b0d2b7d0
PM
4532}
4533
c4241c7d
PM
4534static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4535 uint64_t value)
b0d2b7d0
PM
4536{
4537 vfp_set_fpcr(env, value);
b0d2b7d0
PM
4538}
4539
c4241c7d 4540static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 4541{
c4241c7d 4542 return vfp_get_fpsr(env);
b0d2b7d0
PM
4543}
4544
c4241c7d
PM
4545static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4546 uint64_t value)
b0d2b7d0
PM
4547{
4548 vfp_set_fpsr(env, value);
b0d2b7d0
PM
4549}
4550
3f208fd7
PM
4551static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4552 bool isread)
c2b820fe 4553{
aaec1432 4554 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
c2b820fe
PM
4555 return CP_ACCESS_TRAP;
4556 }
4557 return CP_ACCESS_OK;
4558}
4559
4560static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4561 uint64_t value)
4562{
4563 env->daif = value & PSTATE_DAIF;
4564}
4565
220f508f
RH
4566static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4567{
4568 return env->pstate & PSTATE_PAN;
4569}
4570
4571static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4572 uint64_t value)
4573{
4574 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4575}
4576
4577static const ARMCPRegInfo pan_reginfo = {
4578 .name = "PAN", .state = ARM_CP_STATE_AA64,
4579 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4580 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4581 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4582};
4583
9eeb7a1c
RH
4584static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4585{
4586 return env->pstate & PSTATE_UAO;
4587}
4588
4589static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4590 uint64_t value)
4591{
4592 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4593}
4594
4595static const ARMCPRegInfo uao_reginfo = {
4596 .name = "UAO", .state = ARM_CP_STATE_AA64,
4597 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4598 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4599 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4600};
4601
dc8b1853
RC
4602static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4603{
4604 return env->pstate & PSTATE_DIT;
4605}
4606
4607static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4608 uint64_t value)
4609{
4610 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4611}
4612
4613static const ARMCPRegInfo dit_reginfo = {
4614 .name = "DIT", .state = ARM_CP_STATE_AA64,
4615 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4616 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4617 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4618};
4619
f2f68a78
RC
4620static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4621{
4622 return env->pstate & PSTATE_SSBS;
4623}
4624
4625static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4626 uint64_t value)
4627{
4628 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4629}
4630
4631static const ARMCPRegInfo ssbs_reginfo = {
4632 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4633 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4634 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4635 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4636};
4637
38262d8a
RH
4638static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4639 const ARMCPRegInfo *ri,
4640 bool isread)
8af35c37 4641{
38262d8a
RH
4642 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4643 switch (arm_current_el(env)) {
4644 case 0:
4645 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4646 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4647 return CP_ACCESS_TRAP;
4648 }
4649 /* fall through */
4650 case 1:
4651 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4652 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4653 return CP_ACCESS_TRAP_EL2;
4654 }
4655 break;
8af35c37
PM
4656 }
4657 return CP_ACCESS_OK;
4658}
4659
2d3ce4c6 4660static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
1bed4d2e 4661{
38262d8a 4662 /* Cache invalidate/clean to Point of Unification... */
1bed4d2e
RH
4663 switch (arm_current_el(env)) {
4664 case 0:
4665 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4666 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4667 return CP_ACCESS_TRAP;
4668 }
4669 /* fall through */
4670 case 1:
2d3ce4c6
PM
4671 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4672 if (arm_hcr_el2_eff(env) & hcrflags) {
1bed4d2e
RH
4673 return CP_ACCESS_TRAP_EL2;
4674 }
4675 break;
4676 }
4677 return CP_ACCESS_OK;
4678}
4679
2d3ce4c6
PM
4680static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4681 bool isread)
4682{
4683 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4684}
4685
4686static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4687 bool isread)
4688{
4689 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4690}
4691
9b37a28c
FR
4692/*
4693 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
dbb1fb27
AB
4694 * Page D4-1736 (DDI0487A.b)
4695 */
4696
b7e0730d
RH
4697static int vae1_tlbmask(CPUARMState *env)
4698{
e04a5752 4699 uint64_t hcr = arm_hcr_el2_eff(env);
bc944d3a 4700 uint16_t mask;
e04a5752
RDC
4701
4702 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
bc944d3a
RDC
4703 mask = ARMMMUIdxBit_E20_2 |
4704 ARMMMUIdxBit_E20_2_PAN |
4705 ARMMMUIdxBit_E20_0;
b7e0730d 4706 } else {
bc944d3a 4707 mask = ARMMMUIdxBit_E10_1 |
452ef8cb
RH
4708 ARMMMUIdxBit_E10_1_PAN |
4709 ARMMMUIdxBit_E10_0;
b7e0730d 4710 }
bc944d3a 4711 return mask;
b7e0730d
RH
4712}
4713
ceaa9746
JPB
4714static int vae2_tlbmask(CPUARMState *env)
4715{
4716 uint64_t hcr = arm_hcr_el2_eff(env);
4717 uint16_t mask;
4718
4719 if (hcr & HCR_E2H) {
4720 mask = ARMMMUIdxBit_E20_2 |
4721 ARMMMUIdxBit_E20_2_PAN |
4722 ARMMMUIdxBit_E20_0;
4723 } else {
4724 mask = ARMMMUIdxBit_E2;
4725 }
4726 return mask;
4727}
4728
ea04dce7
RH
4729/* Return 56 if TBI is enabled, 64 otherwise. */
4730static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4731 uint64_t addr)
4732{
c1547bba 4733 uint64_t tcr = regime_tcr(env, mmu_idx);
ea04dce7
RH
4734 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4735 int select = extract64(addr, 55, 1);
4736
4737 return (tbi >> select) & 1 ? 56 : 64;
4738}
4739
4740static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4741{
b6ad6062 4742 uint64_t hcr = arm_hcr_el2_eff(env);
ea04dce7
RH
4743 ARMMMUIdx mmu_idx;
4744
4745 /* Only the regime of the mmu_idx below is significant. */
b6ad6062 4746 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
ea04dce7
RH
4747 mmu_idx = ARMMMUIdx_E20_0;
4748 } else {
4749 mmu_idx = ARMMMUIdx_E10_0;
4750 }
b6ad6062 4751
ea04dce7
RH
4752 return tlbbits_for_regime(env, mmu_idx, addr);
4753}
4754
ceaa9746
JPB
4755static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4756{
4757 uint64_t hcr = arm_hcr_el2_eff(env);
4758 ARMMMUIdx mmu_idx;
4759
4760 /*
4761 * Only the regime of the mmu_idx below is significant.
4762 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4763 * only has one.
4764 */
4765 if (hcr & HCR_E2H) {
4766 mmu_idx = ARMMMUIdx_E20_2;
4767 } else {
4768 mmu_idx = ARMMMUIdx_E2;
4769 }
4770
4771 return tlbbits_for_regime(env, mmu_idx, addr);
4772}
4773
fd3ed969
PM
4774static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4775 uint64_t value)
168aa23b 4776{
29a0af61 4777 CPUState *cs = env_cpu(env);
b7e0730d 4778 int mask = vae1_tlbmask(env);
dbb1fb27 4779
b7e0730d 4780 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
168aa23b
PM
4781}
4782
b4ab8ce9
PM
4783static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4784 uint64_t value)
4785{
29a0af61 4786 CPUState *cs = env_cpu(env);
b7e0730d 4787 int mask = vae1_tlbmask(env);
b4ab8ce9
PM
4788
4789 if (tlb_force_broadcast(env)) {
527db2be
RH
4790 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4791 } else {
4792 tlb_flush_by_mmuidx(cs, mask);
b4ab8ce9 4793 }
b4ab8ce9
PM
4794}
4795
85d0dc9f
RH
4796static int e2_tlbmask(CPUARMState *env)
4797{
d902ae75
RH
4798 return (ARMMMUIdxBit_E20_0 |
4799 ARMMMUIdxBit_E20_2 |
4800 ARMMMUIdxBit_E20_2_PAN |
4801 ARMMMUIdxBit_E2);
85d0dc9f
RH
4802}
4803
90c19cdf
RH
4804static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4805 uint64_t value)
4806{
4807 CPUState *cs = env_cpu(env);
4808 int mask = alle1_tlbmask(env);
4809
4810 tlb_flush_by_mmuidx(cs, mask);
4811}
4812
fd3ed969 4813static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
fa439fc5
PM
4814 uint64_t value)
4815{
85d0dc9f
RH
4816 CPUState *cs = env_cpu(env);
4817 int mask = e2_tlbmask(env);
fd3ed969 4818
85d0dc9f 4819 tlb_flush_by_mmuidx(cs, mask);
fd3ed969
PM
4820}
4821
43efaa33
PM
4822static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4823 uint64_t value)
4824{
2fc0cc0e 4825 ARMCPU *cpu = env_archcpu(env);
43efaa33
PM
4826 CPUState *cs = CPU(cpu);
4827
d902ae75 4828 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
43efaa33
PM
4829}
4830
fd3ed969
PM
4831static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4832 uint64_t value)
4833{
29a0af61 4834 CPUState *cs = env_cpu(env);
90c19cdf
RH
4835 int mask = alle1_tlbmask(env);
4836
4837 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
fa439fc5
PM
4838}
4839
2bfb9d75
PM
4840static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4841 uint64_t value)
4842{
29a0af61 4843 CPUState *cs = env_cpu(env);
85d0dc9f 4844 int mask = e2_tlbmask(env);
2bfb9d75 4845
85d0dc9f 4846 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
2bfb9d75
PM
4847}
4848
43efaa33
PM
4849static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4850 uint64_t value)
4851{
29a0af61 4852 CPUState *cs = env_cpu(env);
43efaa33 4853
d902ae75 4854 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
43efaa33
PM
4855}
4856
fd3ed969
PM
4857static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4858 uint64_t value)
fa439fc5 4859{
9b37a28c
FR
4860 /*
4861 * Invalidate by VA, EL2
fd3ed969
PM
4862 * Currently handles both VAE2 and VALE2, since we don't support
4863 * flush-last-level-only.
4864 */
85d0dc9f 4865 CPUState *cs = env_cpu(env);
ceaa9746 4866 int mask = vae2_tlbmask(env);
fd3ed969 4867 uint64_t pageaddr = sextract64(value << 12, 0, 56);
ceaa9746 4868 int bits = vae2_tlbbits(env, pageaddr);
fd3ed969 4869
ceaa9746 4870 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
fd3ed969
PM
4871}
4872
43efaa33
PM
4873static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4874 uint64_t value)
4875{
9b37a28c
FR
4876 /*
4877 * Invalidate by VA, EL3
43efaa33
PM
4878 * Currently handles both VAE3 and VALE3, since we don't support
4879 * flush-last-level-only.
4880 */
2fc0cc0e 4881 ARMCPU *cpu = env_archcpu(env);
43efaa33
PM
4882 CPUState *cs = CPU(cpu);
4883 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4884
d902ae75 4885 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
43efaa33
PM
4886}
4887
fd3ed969
PM
4888static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4889 uint64_t value)
4890{
90c19cdf
RH
4891 CPUState *cs = env_cpu(env);
4892 int mask = vae1_tlbmask(env);
fa439fc5 4893 uint64_t pageaddr = sextract64(value << 12, 0, 56);
ea04dce7 4894 int bits = vae1_tlbbits(env, pageaddr);
fa439fc5 4895
ea04dce7 4896 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
fa439fc5
PM
4897}
4898
b4ab8ce9
PM
4899static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4900 uint64_t value)
4901{
9b37a28c
FR
4902 /*
4903 * Invalidate by VA, EL1&0 (AArch64 version).
b4ab8ce9
PM
4904 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4905 * since we don't support flush-for-specific-ASID-only or
4906 * flush-last-level-only.
4907 */
90c19cdf
RH
4908 CPUState *cs = env_cpu(env);
4909 int mask = vae1_tlbmask(env);
b4ab8ce9 4910 uint64_t pageaddr = sextract64(value << 12, 0, 56);
ea04dce7 4911 int bits = vae1_tlbbits(env, pageaddr);
b4ab8ce9
PM
4912
4913 if (tlb_force_broadcast(env)) {
ea04dce7 4914 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
527db2be 4915 } else {
ea04dce7 4916 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
b4ab8ce9 4917 }
b4ab8ce9
PM
4918}
4919
fd3ed969
PM
4920static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4921 uint64_t value)
fa439fc5 4922{
29a0af61 4923 CPUState *cs = env_cpu(env);
ceaa9746 4924 int mask = vae2_tlbmask(env);
fd3ed969 4925 uint64_t pageaddr = sextract64(value << 12, 0, 56);
ceaa9746 4926 int bits = vae2_tlbbits(env, pageaddr);
fa439fc5 4927
ceaa9746 4928 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
fa439fc5
PM
4929}
4930
43efaa33
PM
4931static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4932 uint64_t value)
4933{
29a0af61 4934 CPUState *cs = env_cpu(env);
43efaa33 4935 uint64_t pageaddr = sextract64(value << 12, 0, 56);
d902ae75 4936 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
43efaa33 4937
ea04dce7 4938 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
d902ae75 4939 ARMMMUIdxBit_E3, bits);
43efaa33
PM
4940}
4941
575a94af
RH
4942static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4943{
4944 /*
4945 * The MSB of value is the NS field, which only applies if SEL2
4946 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4947 */
4948 return (value >= 0
4949 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4950 && arm_is_secure_below_el3(env)
4951 ? ARMMMUIdxBit_Stage2_S
4952 : ARMMMUIdxBit_Stage2);
4953}
4954
4955static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4956 uint64_t value)
4957{
4958 CPUState *cs = env_cpu(env);
4959 int mask = ipas2e1_tlbmask(env, value);
4960 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4961
4962 if (tlb_force_broadcast(env)) {
4963 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4964 } else {
4965 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4966 }
4967}
4968
4969static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4970 uint64_t value)
4971{
4972 CPUState *cs = env_cpu(env);
4973 int mask = ipas2e1_tlbmask(env, value);
4974 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4975
4976 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4977}
4978
84940ed8 4979#ifdef TARGET_AARCH64
ab1cdb47
RH
4980typedef struct {
4981 uint64_t base;
84940ed8 4982 uint64_t length;
ab1cdb47
RH
4983} TLBIRange;
4984
3c003f70
PM
4985static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4986{
4987 /*
4988 * Note that the TLBI range TG field encoding differs from both
4989 * TG0 and TG1 encodings.
4990 */
4991 switch (tg) {
4992 case 1:
4993 return Gran4K;
4994 case 2:
4995 return Gran16K;
4996 case 3:
4997 return Gran64K;
4998 default:
4999 return GranInvalid;
5000 }
5001}
5002
ab1cdb47
RH
5003static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5004 uint64_t value)
5005{
5006 unsigned int page_size_granule, page_shift, num, scale, exponent;
3974ff93
RH
5007 /* Extract one bit to represent the va selector in use. */
5008 uint64_t select = sextract64(value, 36, 1);
478dccbb 5009 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
ab1cdb47 5010 TLBIRange ret = { };
3c003f70 5011 ARMGranuleSize gran;
84940ed8 5012
84940ed8 5013 page_size_granule = extract64(value, 46, 2);
3c003f70 5014 gran = tlbi_range_tg_to_gran_size(page_size_granule);
84940ed8 5015
3974ff93 5016 /* The granule encoded in value must match the granule in use. */
3c003f70 5017 if (gran != param.gran) {
3974ff93 5018 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
84940ed8 5019 page_size_granule);
ab1cdb47 5020 return ret;
84940ed8
RC
5021 }
5022
3c003f70 5023 page_shift = arm_granule_bits(gran);
ab1cdb47
RH
5024 num = extract64(value, 39, 5);
5025 scale = extract64(value, 44, 2);
84940ed8 5026 exponent = (5 * scale) + 1;
84940ed8 5027
ab1cdb47 5028 ret.length = (num + 1) << (exponent + page_shift);
84940ed8 5029
3974ff93 5030 if (param.select) {
d976de21 5031 ret.base = sextract64(value, 0, 37);
84940ed8 5032 } else {
d976de21 5033 ret.base = extract64(value, 0, 37);
84940ed8 5034 }
ef56c242
RH
5035 if (param.ds) {
5036 /*
5037 * With DS=1, BaseADDR is always shifted 16 so that it is able
5038 * to address all 52 va bits. The input address is perforce
5039 * aligned on a 64k boundary regardless of translation granule.
5040 */
5041 page_shift = 16;
5042 }
d976de21 5043 ret.base <<= page_shift;
84940ed8 5044
ab1cdb47 5045 return ret;
84940ed8
RC
5046}
5047
5048static void do_rvae_write(CPUARMState *env, uint64_t value,
5049 int idxmap, bool synced)
5050{
5051 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
ab1cdb47 5052 TLBIRange range;
84940ed8
RC
5053 int bits;
5054
ab1cdb47
RH
5055 range = tlbi_aa64_get_range(env, one_idx, value);
5056 bits = tlbbits_for_regime(env, one_idx, range.base);
84940ed8
RC
5057
5058 if (synced) {
5059 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
ab1cdb47
RH
5060 range.base,
5061 range.length,
84940ed8
RC
5062 idxmap,
5063 bits);
5064 } else {
ab1cdb47
RH
5065 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5066 range.length, idxmap, bits);
84940ed8
RC
5067 }
5068}
5069
5070static void tlbi_aa64_rvae1_write(CPUARMState *env,
5071 const ARMCPRegInfo *ri,
5072 uint64_t value)
5073{
5074 /*
5075 * Invalidate by VA range, EL1&0.
5076 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5077 * since we don't support flush-for-specific-ASID-only or
5078 * flush-last-level-only.
5079 */
5080
5081 do_rvae_write(env, value, vae1_tlbmask(env),
5082 tlb_force_broadcast(env));
5083}
5084
5085static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5086 const ARMCPRegInfo *ri,
5087 uint64_t value)
5088{
5089 /*
5090 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5091 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5092 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5093 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5094 * shareable specific flushes.
5095 */
5096
5097 do_rvae_write(env, value, vae1_tlbmask(env), true);
5098}
5099
84940ed8
RC
5100static void tlbi_aa64_rvae2_write(CPUARMState *env,
5101 const ARMCPRegInfo *ri,
5102 uint64_t value)
5103{
5104 /*
5105 * Invalidate by VA range, EL2.
5106 * Currently handles all of RVAE2 and RVALE2,
5107 * since we don't support flush-for-specific-ASID-only or
5108 * flush-last-level-only.
5109 */
5110
5111 do_rvae_write(env, value, vae2_tlbmask(env),
5112 tlb_force_broadcast(env));
5113
5114
5115}
5116
5117static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5118 const ARMCPRegInfo *ri,
5119 uint64_t value)
5120{
5121 /*
5122 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5123 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5124 * since we don't support flush-for-specific-ASID-only,
5125 * flush-last-level-only or inner/outer shareable specific flushes.
5126 */
5127
5128 do_rvae_write(env, value, vae2_tlbmask(env), true);
5129
5130}
5131
5132static void tlbi_aa64_rvae3_write(CPUARMState *env,
5133 const ARMCPRegInfo *ri,
5134 uint64_t value)
5135{
5136 /*
5137 * Invalidate by VA range, EL3.
5138 * Currently handles all of RVAE3 and RVALE3,
5139 * since we don't support flush-for-specific-ASID-only or
5140 * flush-last-level-only.
5141 */
5142
d902ae75 5143 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
84940ed8
RC
5144}
5145
5146static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5147 const ARMCPRegInfo *ri,
5148 uint64_t value)
5149{
5150 /*
5151 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5152 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5153 * since we don't support flush-for-specific-ASID-only,
5154 * flush-last-level-only or inner/outer specific flushes.
5155 */
5156
d902ae75 5157 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
84940ed8 5158}
575a94af
RH
5159
5160static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5161 uint64_t value)
5162{
5163 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5164 tlb_force_broadcast(env));
5165}
5166
5167static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5168 const ARMCPRegInfo *ri,
5169 uint64_t value)
5170{
5171 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5172}
84940ed8
RC
5173#endif
5174
3f208fd7
PM
5175static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5176 bool isread)
aca3f40b 5177{
4351cb72
RH
5178 int cur_el = arm_current_el(env);
5179
5180 if (cur_el < 2) {
5181 uint64_t hcr = arm_hcr_el2_eff(env);
5182
5183 if (cur_el == 0) {
5184 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5185 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5186 return CP_ACCESS_TRAP_EL2;
5187 }
5188 } else {
5189 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5190 return CP_ACCESS_TRAP;
5191 }
5192 if (hcr & HCR_TDZ) {
5193 return CP_ACCESS_TRAP_EL2;
5194 }
5195 }
5196 } else if (hcr & HCR_TDZ) {
5197 return CP_ACCESS_TRAP_EL2;
5198 }
aca3f40b
PM
5199 }
5200 return CP_ACCESS_OK;
5201}
5202
5203static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5204{
2fc0cc0e 5205 ARMCPU *cpu = env_archcpu(env);
aca3f40b
PM
5206 int dzp_bit = 1 << 4;
5207
5208 /* DZP indicates whether DC ZVA access is allowed */
3f208fd7 5209 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
aca3f40b
PM
5210 dzp_bit = 0;
5211 }
5212 return cpu->dcz_blocksize | dzp_bit;
5213}
5214
3f208fd7
PM
5215static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5216 bool isread)
f502cfc2 5217{
cdcf1405 5218 if (!(env->pstate & PSTATE_SP)) {
9b37a28c
FR
5219 /*
5220 * Access to SP_EL0 is undefined if it's being used as
f502cfc2
PM
5221 * the stack pointer.
5222 */
5223 return CP_ACCESS_TRAP_UNCATEGORIZED;
5224 }
5225 return CP_ACCESS_OK;
5226}
5227
5228static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5229{
5230 return env->pstate & PSTATE_SP;
5231}
5232
5233static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5234{
5235 update_spsel(env, val);
5236}
5237
137feaa9
FA
5238static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5239 uint64_t value)
5240{
2fc0cc0e 5241 ARMCPU *cpu = env_archcpu(env);
137feaa9 5242
f00faf13
RH
5243 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5244 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5245 value &= ~SCTLR_M;
5246 }
5247
5248 /* ??? Lots of these bits are not implemented. */
5249
5250 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5251 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5252 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5253 } else {
5254 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5255 SCTLR_ATA0 | SCTLR_ATA);
5256 }
5257 }
5258
137feaa9 5259 if (raw_read(env, ri) == value) {
9b37a28c
FR
5260 /*
5261 * Skip the TLB flush if nothing actually changed; Linux likes
137feaa9
FA
5262 * to do a lot of pointless SCTLR writes.
5263 */
5264 return;
5265 }
5266
5267 raw_write(env, ri, value);
f00faf13 5268
137feaa9 5269 /* This may enable/disable the MMU, so do a TLB flush. */
d10eb08f 5270 tlb_flush(CPU(cpu));
2e5dcf36 5271
2b77ad4d 5272 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
2e5dcf36
RH
5273 /*
5274 * Normally we would always end the TB on an SCTLR write; see the
5275 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5276 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5277 * of hflags from the translator, so do it here.
5278 */
5279 arm_rebuild_hflags(env);
5280 }
137feaa9
FA
5281}
5282
80d2b43b
PM
5283static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5284 uint64_t value)
a8d64e73 5285{
01765386
PM
5286 /*
5287 * Some MDCR_EL3 bits affect whether PMU counters are running:
5288 * if we are trying to change any of those then we must
5289 * bracket this update with PMU start/finish calls.
5290 */
5291 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5292
5293 if (pmu_op) {
5294 pmu_op_start(env);
5295 }
80d2b43b 5296 env->cp15.mdcr_el3 = value;
01765386
PM
5297 if (pmu_op) {
5298 pmu_op_finish(env);
5299 }
5300}
5301
80d2b43b
PM
5302static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5303 uint64_t value)
5304{
5305 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5306 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5307}
5308
01765386
PM
5309static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5310 uint64_t value)
5311{
5312 /*
5313 * Some MDCR_EL2 bits affect whether PMU counters are running:
5314 * if we are trying to change any of those then we must
5315 * bracket this update with PMU start/finish calls.
5316 */
5317 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5318
5319 if (pmu_op) {
5320 pmu_op_start(env);
5321 }
5322 env->cp15.mdcr_el2 = value;
5323 if (pmu_op) {
5324 pmu_op_finish(env);
5325 }
a8d64e73
PM
5326}
5327
9719f125
JH
5328#ifdef CONFIG_USER_ONLY
5329/*
5330 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5331 * code to get around W^X restrictions, where one region is writable and the
5332 * other is executable.
5333 *
5334 * Since the executable region is never written to we cannot detect code
5335 * changes when running in user mode, and rely on the emulated JIT telling us
5336 * that the code has changed by executing this instruction.
5337 */
5338static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5339 uint64_t value)
5340{
5341 uint64_t icache_line_mask, start_address, end_address;
5342 const ARMCPU *cpu;
5343
5344 cpu = env_archcpu(env);
5345
5346 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5347 start_address = value & ~icache_line_mask;
5348 end_address = value | icache_line_mask;
5349
5350 mmap_lock();
5351
5352 tb_invalidate_phys_range(start_address, end_address);
5353
5354 mmap_unlock();
5355}
5356#endif
5357
b0d2b7d0 5358static const ARMCPRegInfo v8_cp_reginfo[] = {
9b37a28c
FR
5359 /*
5360 * Minimal set of EL0-visible registers. This will need to be expanded
b0d2b7d0
PM
5361 * significantly for system emulation of AArch64 CPUs.
5362 */
5363 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5364 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5365 .access = PL0_RW, .type = ARM_CP_NZCV },
c2b820fe
PM
5366 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5367 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
7a0e58fa 5368 .type = ARM_CP_NO_RAW,
c2b820fe
PM
5369 .access = PL0_RW, .accessfn = aa64_daif_access,
5370 .fieldoffset = offsetof(CPUARMState, daif),
5371 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
b0d2b7d0
PM
5372 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5373 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
b916c9c3 5374 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
fe03d45f 5375 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
b0d2b7d0
PM
5376 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5377 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
b916c9c3 5378 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
fe03d45f 5379 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
b0d2b7d0
PM
5380 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5381 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
7a0e58fa 5382 .access = PL0_R, .type = ARM_CP_NO_RAW,
b19ed03c 5383 .fgt = FGT_DCZID_EL0,
aca3f40b
PM
5384 .readfn = aa64_dczid_read },
5385 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5386 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5387 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5388#ifndef CONFIG_USER_ONLY
5389 /* Avoid overhead of an access check that always passes in user-mode */
5390 .accessfn = aa64_zva_access,
dd345653 5391 .fgt = FGT_DCZVA,
aca3f40b
PM
5392#endif
5393 },
0eef9d98
PM
5394 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5395 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5396 .access = PL1_R, .type = ARM_CP_CURRENTEL },
9719f125
JH
5397 /*
5398 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5399 * don't emulate caches.
5400 */
8af35c37
PM
5401 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5402 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
38262d8a 5403 .access = PL1_W, .type = ARM_CP_NOP,
dd345653 5404 .fgt = FGT_ICIALLUIS,
2d3ce4c6 5405 .accessfn = access_ticab },
8af35c37
PM
5406 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5407 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
38262d8a 5408 .access = PL1_W, .type = ARM_CP_NOP,
dd345653 5409 .fgt = FGT_ICIALLU,
2d3ce4c6 5410 .accessfn = access_tocu },
8af35c37
PM
5411 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5412 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
9719f125 5413 .access = PL0_W,
dd345653 5414 .fgt = FGT_ICIVAU,
9719f125
JH
5415 .accessfn = access_tocu,
5416#ifdef CONFIG_USER_ONLY
5417 .type = ARM_CP_NO_RAW,
5418 .writefn = ic_ivau_write
5419#else
5420 .type = ARM_CP_NOP
5421#endif
5422 },
5423 /* Cache ops: all NOPs since we don't emulate caches */
8af35c37
PM
5424 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5425 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
1bed4d2e 5426 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
dd345653 5427 .fgt = FGT_DCIVAC,
1bed4d2e 5428 .type = ARM_CP_NOP },
8af35c37
PM
5429 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5430 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
dd345653 5431 .fgt = FGT_DCISW,
1803d271 5432 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
8af35c37
PM
5433 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5434 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5435 .access = PL0_W, .type = ARM_CP_NOP,
950037e2 5436 .fgt = FGT_DCCVAC,
1bed4d2e 5437 .accessfn = aa64_cacheop_poc_access },
8af35c37
PM
5438 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5439 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
dd345653 5440 .fgt = FGT_DCCSW,
1803d271 5441 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
8af35c37
PM
5442 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5443 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5444 .access = PL0_W, .type = ARM_CP_NOP,
dd345653 5445 .fgt = FGT_DCCVAU,
2d3ce4c6 5446 .accessfn = access_tocu },
8af35c37
PM
5447 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5448 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5449 .access = PL0_W, .type = ARM_CP_NOP,
dd345653 5450 .fgt = FGT_DCCIVAC,
1bed4d2e 5451 .accessfn = aa64_cacheop_poc_access },
8af35c37
PM
5452 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5453 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
dd345653 5454 .fgt = FGT_DCCISW,
1803d271 5455 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
168aa23b
PM
5456 /* TLBI operations */
5457 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 5458 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
0f66d223 5459 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 5460 .fgt = FGT_TLBIVMALLE1IS,
fd3ed969 5461 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 5462 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 5463 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
0f66d223 5464 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 5465 .fgt = FGT_TLBIVAE1IS,
fd3ed969 5466 .writefn = tlbi_aa64_vae1is_write },
168aa23b 5467 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 5468 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
0f66d223 5469 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 5470 .fgt = FGT_TLBIASIDE1IS,
fd3ed969 5471 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 5472 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 5473 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
0f66d223 5474 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 5475 .fgt = FGT_TLBIVAAE1IS,
fd3ed969 5476 .writefn = tlbi_aa64_vae1is_write },
168aa23b 5477 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 5478 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
0f66d223 5479 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 5480 .fgt = FGT_TLBIVALE1IS,
fd3ed969 5481 .writefn = tlbi_aa64_vae1is_write },
168aa23b 5482 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 5483 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
0f66d223 5484 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 5485 .fgt = FGT_TLBIVAALE1IS,
fd3ed969 5486 .writefn = tlbi_aa64_vae1is_write },
168aa23b 5487 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
6ab9f499 5488 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
30881b73 5489 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 5490 .fgt = FGT_TLBIVMALLE1,
fd3ed969 5491 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 5492 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 5493 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
30881b73 5494 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 5495 .fgt = FGT_TLBIVAE1,
fd3ed969 5496 .writefn = tlbi_aa64_vae1_write },
168aa23b 5497 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
6ab9f499 5498 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
30881b73 5499 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 5500 .fgt = FGT_TLBIASIDE1,
fd3ed969 5501 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 5502 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 5503 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
30881b73 5504 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 5505 .fgt = FGT_TLBIVAAE1,
fd3ed969 5506 .writefn = tlbi_aa64_vae1_write },
168aa23b 5507 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 5508 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
30881b73 5509 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 5510 .fgt = FGT_TLBIVALE1,
fd3ed969 5511 .writefn = tlbi_aa64_vae1_write },
168aa23b 5512 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 5513 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
30881b73 5514 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 5515 .fgt = FGT_TLBIVAALE1,
fd3ed969 5516 .writefn = tlbi_aa64_vae1_write },
cea66e91
PM
5517 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5518 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
575a94af
RH
5519 .access = PL2_W, .type = ARM_CP_NO_RAW,
5520 .writefn = tlbi_aa64_ipas2e1is_write },
cea66e91
PM
5521 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5522 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
575a94af
RH
5523 .access = PL2_W, .type = ARM_CP_NO_RAW,
5524 .writefn = tlbi_aa64_ipas2e1is_write },
83ddf975
PM
5525 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5526 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5527 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 5528 .writefn = tlbi_aa64_alle1is_write },
43efaa33
PM
5529 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5530 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5531 .access = PL2_W, .type = ARM_CP_NO_RAW,
5532 .writefn = tlbi_aa64_alle1is_write },
cea66e91
PM
5533 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5534 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
575a94af
RH
5535 .access = PL2_W, .type = ARM_CP_NO_RAW,
5536 .writefn = tlbi_aa64_ipas2e1_write },
cea66e91
PM
5537 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5538 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
575a94af
RH
5539 .access = PL2_W, .type = ARM_CP_NO_RAW,
5540 .writefn = tlbi_aa64_ipas2e1_write },
83ddf975
PM
5541 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5542 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5543 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 5544 .writefn = tlbi_aa64_alle1_write },
43efaa33
PM
5545 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5546 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5547 .access = PL2_W, .type = ARM_CP_NO_RAW,
5548 .writefn = tlbi_aa64_alle1is_write },
19525524
PM
5549#ifndef CONFIG_USER_ONLY
5550 /* 64 bit address translation operations */
5551 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5552 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
0710b2fa 5553 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
132c98cd 5554 .fgt = FGT_ATS1E1R,
1acd00ef 5555 .accessfn = at_e012_access, .writefn = ats_write64 },
19525524
PM
5556 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5557 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
0710b2fa 5558 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
132c98cd 5559 .fgt = FGT_ATS1E1W,
1acd00ef 5560 .accessfn = at_e012_access, .writefn = ats_write64 },
19525524
PM
5561 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5562 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
0710b2fa 5563 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
132c98cd 5564 .fgt = FGT_ATS1E0R,
1acd00ef 5565 .accessfn = at_e012_access, .writefn = ats_write64 },
19525524
PM
5566 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5567 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
0710b2fa 5568 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
132c98cd 5569 .fgt = FGT_ATS1E0W,
1acd00ef 5570 .accessfn = at_e012_access, .writefn = ats_write64 },
2a47df95 5571 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
7a379c7e 5572 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
0710b2fa 5573 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
1acd00ef 5574 .accessfn = at_e012_access, .writefn = ats_write64 },
2a47df95 5575 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
7a379c7e 5576 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
0710b2fa 5577 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
1acd00ef 5578 .accessfn = at_e012_access, .writefn = ats_write64 },
2a47df95 5579 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
7a379c7e 5580 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
0710b2fa 5581 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
1acd00ef 5582 .accessfn = at_e012_access, .writefn = ats_write64 },
2a47df95 5583 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
7a379c7e 5584 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
0710b2fa 5585 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
1acd00ef 5586 .accessfn = at_e012_access, .writefn = ats_write64 },
2a47df95
PM
5587 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5588 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5589 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
0710b2fa
PM
5590 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5591 .writefn = ats_write64 },
2a47df95
PM
5592 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5593 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
0710b2fa
PM
5594 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5595 .writefn = ats_write64 },
c96fc9b5
EI
5596 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5597 .type = ARM_CP_ALIAS,
5598 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5599 .access = PL1_RW, .resetvalue = 0,
67dd8030 5600 .fgt = FGT_PAR_EL1,
c96fc9b5
EI
5601 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5602 .writefn = par_write },
19525524 5603#endif
995939a6 5604 /* TLB invalidate last level of translation table walk */
9449fdf6 5605 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
0f66d223 5606 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
30881b73 5607 .writefn = tlbimva_is_write },
9449fdf6 5608 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
0f66d223 5609 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
fa439fc5 5610 .writefn = tlbimvaa_is_write },
9449fdf6 5611 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
30881b73
RH
5612 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5613 .writefn = tlbimva_write },
9449fdf6 5614 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
30881b73
RH
5615 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5616 .writefn = tlbimvaa_write },
541ef8c2
SS
5617 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5618 .type = ARM_CP_NO_RAW, .access = PL2_W,
5619 .writefn = tlbimva_hyp_write },
5620 { .name = "TLBIMVALHIS",
5621 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5622 .type = ARM_CP_NO_RAW, .access = PL2_W,
5623 .writefn = tlbimva_hyp_is_write },
5624 { .name = "TLBIIPAS2",
5625 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
575a94af
RH
5626 .type = ARM_CP_NO_RAW, .access = PL2_W,
5627 .writefn = tlbiipas2_hyp_write },
541ef8c2
SS
5628 { .name = "TLBIIPAS2IS",
5629 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
575a94af
RH
5630 .type = ARM_CP_NO_RAW, .access = PL2_W,
5631 .writefn = tlbiipas2is_hyp_write },
541ef8c2
SS
5632 { .name = "TLBIIPAS2L",
5633 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
575a94af
RH
5634 .type = ARM_CP_NO_RAW, .access = PL2_W,
5635 .writefn = tlbiipas2_hyp_write },
541ef8c2
SS
5636 { .name = "TLBIIPAS2LIS",
5637 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
575a94af
RH
5638 .type = ARM_CP_NO_RAW, .access = PL2_W,
5639 .writefn = tlbiipas2is_hyp_write },
9449fdf6
PM
5640 /* 32 bit cache operations */
5641 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2d3ce4c6 5642 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
9449fdf6
PM
5643 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5644 .type = ARM_CP_NOP, .access = PL1_W },
5645 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2d3ce4c6 5646 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
9449fdf6 5647 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
2d3ce4c6 5648 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
9449fdf6
PM
5649 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5650 .type = ARM_CP_NOP, .access = PL1_W },
5651 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5652 .type = ARM_CP_NOP, .access = PL1_W },
5653 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
1bed4d2e 5654 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
9449fdf6 5655 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
1803d271 5656 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
9449fdf6 5657 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
1bed4d2e 5658 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
9449fdf6 5659 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
1803d271 5660 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
9449fdf6 5661 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
2d3ce4c6 5662 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
9449fdf6 5663 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
1bed4d2e 5664 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
9449fdf6 5665 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
1803d271 5666 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
9449fdf6 5667 /* MMU Domain access control / MPU write buffer control */
0c17d68c 5668 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
84929218 5669 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
0c17d68c
FA
5670 .writefn = dacr_write, .raw_writefn = raw_write,
5671 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5672 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a0618a19 5673 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 5674 .type = ARM_CP_ALIAS,
a0618a19 5675 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
6947f059
EI
5676 .access = PL1_RW,
5677 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
a65f1de9 5678 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 5679 .type = ARM_CP_ALIAS,
a65f1de9 5680 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
5681 .access = PL1_RW,
5682 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
9b37a28c
FR
5683 /*
5684 * We rely on the access checks not allowing the guest to write to the
f502cfc2
PM
5685 * state field when SPSel indicates that it's being used as the stack
5686 * pointer.
5687 */
5688 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5689 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5690 .access = PL1_RW, .accessfn = sp_el0_access,
7a0e58fa 5691 .type = ARM_CP_ALIAS,
f502cfc2 5692 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
884b4dee
GB
5693 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5694 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
beeec926 5695 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
884b4dee 5696 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
f502cfc2
PM
5697 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5698 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
7a0e58fa 5699 .type = ARM_CP_NO_RAW,
f502cfc2 5700 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
6a43e0b6
PM
5701 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5702 .type = ARM_CP_ALIAS,
5703 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5704 .access = PL2_RW,
5705 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5706 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5707 .type = ARM_CP_ALIAS,
5708 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5709 .access = PL2_RW,
5710 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5711 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5712 .type = ARM_CP_ALIAS,
5713 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5714 .access = PL2_RW,
5715 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5716 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5717 .type = ARM_CP_ALIAS,
5718 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5719 .access = PL2_RW,
5720 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
a8d64e73 5721 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
80d2b43b 5722 .type = ARM_CP_IO,
a8d64e73
PM
5723 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5724 .resetvalue = 0,
80d2b43b
PM
5725 .access = PL3_RW,
5726 .writefn = mdcr_el3_write,
5727 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
7f4fbfb5 5728 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
a8d64e73
PM
5729 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5730 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5731 .writefn = sdcr_write,
5732 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
b0d2b7d0
PM
5733};
5734
c36a0d57
PM
5735/* These are present only when EL1 supports AArch32 */
5736static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5737 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5738 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5739 .access = PL2_RW,
5740 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5741 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5742 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5743 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5744 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5745 .writefn = dacr_write, .raw_writefn = raw_write,
5746 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5747 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5748 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5749 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5750 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5751};
5752
d1fb4da2 5753static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
f149e3e8 5754{
2fc0cc0e 5755 ARMCPU *cpu = env_archcpu(env);
d1fb4da2
RH
5756
5757 if (arm_feature(env, ARM_FEATURE_V8)) {
5758 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5759 } else {
5760 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5761 }
f149e3e8
EI
5762
5763 if (arm_feature(env, ARM_FEATURE_EL3)) {
5764 valid_mask &= ~HCR_HCD;
77077a83 5765 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
9b37a28c
FR
5766 /*
5767 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
77077a83
JK
5768 * However, if we're using the SMC PSCI conduit then QEMU is
5769 * effectively acting like EL3 firmware and so the guest at
5770 * EL2 should retain the ability to prevent EL1 from being
5771 * able to make SMC calls into the ersatz firmware, so in
5772 * that case HCR.TSC should be read/write.
5773 */
f149e3e8
EI
5774 valid_mask &= ~HCR_TSC;
5775 }
d1fb4da2
RH
5776
5777 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5778 if (cpu_isar_feature(aa64_vh, cpu)) {
5779 valid_mask |= HCR_E2H;
5780 }
da3d8b13
RH
5781 if (cpu_isar_feature(aa64_ras, cpu)) {
5782 valid_mask |= HCR_TERR | HCR_TEA;
5783 }
d1fb4da2
RH
5784 if (cpu_isar_feature(aa64_lor, cpu)) {
5785 valid_mask |= HCR_TLOR;
5786 }
5787 if (cpu_isar_feature(aa64_pauth, cpu)) {
5788 valid_mask |= HCR_API | HCR_APK;
5789 }
8ddb300b
RH
5790 if (cpu_isar_feature(aa64_mte, cpu)) {
5791 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5792 }
7cb1e618
RH
5793 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5794 valid_mask |= HCR_ENSCXT;
5795 }
8c7e17ef
PM
5796 if (cpu_isar_feature(aa64_fwb, cpu)) {
5797 valid_mask |= HCR_FWB;
5798 }
aa3cc42c
RH
5799 if (cpu_isar_feature(aa64_rme, cpu)) {
5800 valid_mask |= HCR_GPF;
5801 }
ef682cdb 5802 }
f149e3e8 5803
d2fd9313
PM
5804 if (cpu_isar_feature(any_evt, cpu)) {
5805 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5806 } else if (cpu_isar_feature(any_half_evt, cpu)) {
5807 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5808 }
5809
f149e3e8
EI
5810 /* Clear RES0 bits. */
5811 value &= valid_mask;
5812
8ddb300b
RH
5813 /*
5814 * These bits change the MMU setup:
f149e3e8
EI
5815 * HCR_VM enables stage 2 translation
5816 * HCR_PTW forbids certain page-table setups
8ddb300b
RH
5817 * HCR_DC disables stage1 and enables stage2 translation
5818 * HCR_DCT enables tagging on (disabled) stage1 translation
8c7e17ef 5819 * HCR_FWB changes the interpretation of stage2 descriptor bits
f149e3e8 5820 */
8c7e17ef
PM
5821 if ((env->cp15.hcr_el2 ^ value) &
5822 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
d10eb08f 5823 tlb_flush(CPU(cpu));
f149e3e8 5824 }
ce4afed8 5825 env->cp15.hcr_el2 = value;
89430fc6
PM
5826
5827 /*
5828 * Updates to VI and VF require us to update the status of
5829 * virtual interrupts, which are the logical OR of these bits
5830 * and the state of the input lines from the GIC. (This requires
5831 * that we have the iothread lock, which is done by marking the
5832 * reginfo structs as ARM_CP_IO.)
5833 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5834 * possible for it to be taken immediately, because VIRQ and
5835 * VFIQ are masked unless running at EL0 or EL1, and HCR
5836 * can only be written at EL2.
5837 */
5838 g_assert(qemu_mutex_iothread_locked());
5839 arm_cpu_update_virq(cpu);
5840 arm_cpu_update_vfiq(cpu);
3c29632f 5841 arm_cpu_update_vserr(cpu);
ce4afed8
PM
5842}
5843
d1fb4da2
RH
5844static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5845{
5846 do_hcr_write(env, value, 0);
5847}
5848
ce4afed8
PM
5849static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5850 uint64_t value)
5851{
5852 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5853 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
d1fb4da2 5854 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
ce4afed8
PM
5855}
5856
5857static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5858 uint64_t value)
5859{
5860 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5861 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
d1fb4da2 5862 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
f149e3e8
EI
5863}
5864
f7778444 5865/*
b74c0443 5866 * Return the effective value of HCR_EL2, at the given security state.
f7778444
RH
5867 * Bits that are not included here:
5868 * RW (read from SCR_EL3.RW as needed)
5869 */
2d12bb96 5870uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
f7778444
RH
5871{
5872 uint64_t ret = env->cp15.hcr_el2;
5873
2d12bb96
PM
5874 assert(space != ARMSS_Root);
5875
4477020d 5876 if (!arm_is_el2_enabled_secstate(env, space)) {
f7778444
RH
5877 /*
5878 * "This register has no effect if EL2 is not enabled in the
5879 * current Security state". This is ARMv8.4-SecEL2 speak for
5880 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5881 *
5882 * Prior to that, the language was "In an implementation that
5883 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5884 * as if this field is 0 for all purposes other than a direct
5885 * read or write access of HCR_EL2". With lots of enumeration
5886 * on a per-field basis. In current QEMU, this is condition
5887 * is arm_is_secure_below_el3.
5888 *
5889 * Since the v8.4 language applies to the entire register, and
5890 * appears to be backward compatible, use that.
5891 */
4990e1d3
RH
5892 return 0;
5893 }
5894
5895 /*
5896 * For a cpu that supports both aarch64 and aarch32, we can set bits
5897 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5898 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5899 */
5900 if (!arm_el_is_aa64(env, 2)) {
5901 uint64_t aa32_valid;
5902
5903 /*
5904 * These bits are up-to-date as of ARMv8.6.
5905 * For HCR, it's easiest to list just the 2 bits that are invalid.
5906 * For HCR2, list those that are valid.
5907 */
5908 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5909 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5910 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5911 ret &= aa32_valid;
5912 }
5913
5914 if (ret & HCR_TGE) {
5915 /* These bits are up-to-date as of ARMv8.6. */
f7778444
RH
5916 if (ret & HCR_E2H) {
5917 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5918 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5919 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4990e1d3
RH
5920 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5921 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5922 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
f7778444
RH
5923 } else {
5924 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5925 }
5926 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5927 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5928 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5929 HCR_TLOR);
5930 }
5931
5932 return ret;
5933}
5934
b74c0443
RH
5935uint64_t arm_hcr_el2_eff(CPUARMState *env)
5936{
a0262ba6
RH
5937 if (arm_feature(env, ARM_FEATURE_M)) {
5938 return 0;
5939 }
2d12bb96 5940 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
b74c0443
RH
5941}
5942
19668718
RH
5943/*
5944 * Corresponds to ARM pseudocode function ELIsInHost().
5945 */
5946bool el_is_in_host(CPUARMState *env, int el)
5947{
5948 uint64_t mask;
5949
5950 /*
5951 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5952 * Perform the simplest bit tests first, and validate EL2 afterward.
5953 */
5954 if (el & 1) {
5955 return false; /* EL1 or EL3 */
5956 }
5957
5958 /*
5959 * Note that hcr_write() checks isar_feature_aa64_vh(),
5960 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5961 */
5962 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5963 if ((env->cp15.hcr_el2 & mask) != mask) {
5964 return false;
5965 }
5966
5967 /* TGE and/or E2H set: double check those bits are currently legal. */
5968 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5969}
5970
5814d587
RH
5971static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5972 uint64_t value)
5973{
5974 uint64_t valid_mask = 0;
5975
dbc678f9
PM
5976 /* FEAT_MOPS adds MSCEn and MCE2 */
5977 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
5978 valid_mask |= HCRX_MSCEN | HCRX_MCE2;
5979 }
5814d587
RH
5980
5981 /* Clear RES0 bits. */
5982 env->cp15.hcrx_el2 = value & valid_mask;
5983}
5984
5985static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5986 bool isread)
5987{
5988 if (arm_current_el(env) < 3
5989 && arm_feature(env, ARM_FEATURE_EL3)
5990 && !(env->cp15.scr_el3 & SCR_HXEN)) {
5991 return CP_ACCESS_TRAP_EL3;
5992 }
5993 return CP_ACCESS_OK;
5994}
5995
5996static const ARMCPRegInfo hcrx_el2_reginfo = {
5997 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5998 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5999 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6000 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6001};
6002
6003/* Return the effective value of HCRX_EL2. */
6004uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6005{
6006 /*
6007 * The bits in this register behave as 0 for all purposes other than
dbc678f9
PM
6008 * direct reads of the register if SCR_EL3.HXEn is 0.
6009 * If EL2 is not enabled in the current security state, then the
6010 * bit may behave as if 0, or as if 1, depending on the bit.
6011 * For the moment, we treat the EL2-disabled case as taking
6012 * priority over the HXEn-disabled case. This is true for the only
6013 * bit for a feature which we implement where the answer is different
6014 * for the two cases (MSCEn for FEAT_MOPS).
6015 * This may need to be revisited for future bits.
5814d587 6016 */
dbc678f9
PM
6017 if (!arm_is_el2_enabled(env)) {
6018 uint64_t hcrx = 0;
6019 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6020 /* MSCEn behaves as 1 if EL2 is not enabled */
6021 hcrx |= HCRX_MSCEN;
6022 }
6023 return hcrx;
6024 }
6025 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
5814d587
RH
6026 return 0;
6027 }
6028 return env->cp15.hcrx_el2;
6029}
6030
fc1120a7
PM
6031static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6032 uint64_t value)
6033{
6034 /*
6035 * For A-profile AArch32 EL3, if NSACR.CP10
6036 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6037 */
6038 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6039 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
fab8ad39
RH
6040 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6041 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
fc1120a7
PM
6042 }
6043 env->cp15.cptr_el[2] = value;
6044}
6045
6046static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6047{
6048 /*
6049 * For A-profile AArch32 EL3, if NSACR.CP10
6050 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6051 */
6052 uint64_t value = env->cp15.cptr_el[2];
6053
6054 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6055 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
fab8ad39 6056 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
fc1120a7
PM
6057 }
6058 return value;
6059}
6060
4771cd01 6061static const ARMCPRegInfo el2_cp_reginfo[] = {
f149e3e8 6062 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
89430fc6 6063 .type = ARM_CP_IO,
f149e3e8
EI
6064 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6065 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
587f8b33 6066 .writefn = hcr_write, .raw_writefn = raw_write },
ce4afed8 6067 { .name = "HCR", .state = ARM_CP_STATE_AA32,
89430fc6 6068 .type = ARM_CP_ALIAS | ARM_CP_IO,
ce4afed8
PM
6069 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6070 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
c624ea0f 6071 .writefn = hcr_writelow },
831a2fca
PM
6072 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6073 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6074 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3b685ba7 6075 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 6076 .type = ARM_CP_ALIAS,
3b685ba7
EI
6077 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6078 .access = PL2_RW,
6079 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
68e78e33 6080 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
f2c30f42
EI
6081 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6082 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
cba517c3 6083 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
63b60551
EI
6084 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6085 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
cba517c3
PM
6086 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6087 .type = ARM_CP_ALIAS,
6088 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6089 .access = PL2_RW,
6090 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
3b685ba7 6091 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 6092 .type = ARM_CP_ALIAS,
3b685ba7 6093 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
6094 .access = PL2_RW,
6095 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
d79e0c06 6096 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
d42e3c26
EI
6097 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6098 .access = PL2_RW, .writefn = vbar_write,
6099 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6100 .resetvalue = 0 },
884b4dee
GB
6101 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6102 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 6103 .access = PL3_RW, .type = ARM_CP_ALIAS,
884b4dee 6104 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
c6f19164
GB
6105 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6106 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6107 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
fc1120a7
PM
6108 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6109 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
95f949ac
EI
6110 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6111 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6112 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6113 .resetvalue = 0 },
6114 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
b5ede85b 6115 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
95f949ac
EI
6116 .access = PL2_RW, .type = ARM_CP_ALIAS,
6117 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2179ef95
PM
6118 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6119 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6120 .access = PL2_RW, .type = ARM_CP_CONST,
6121 .resetvalue = 0 },
6122 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
55b53c71 6123 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
b5ede85b 6124 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
2179ef95
PM
6125 .access = PL2_RW, .type = ARM_CP_CONST,
6126 .resetvalue = 0 },
37cd6c24
PM
6127 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6128 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6129 .access = PL2_RW, .type = ARM_CP_CONST,
6130 .resetvalue = 0 },
6131 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6132 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6133 .access = PL2_RW, .type = ARM_CP_CONST,
6134 .resetvalue = 0 },
06ec4c8c
EI
6135 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6136 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
d06dc933 6137 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
587f8b33 6138 .raw_writefn = raw_write,
06ec4c8c 6139 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
68e9c2fe
EI
6140 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6141 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112 6142 .type = ARM_CP_ALIAS,
68e9c2fe 6143 .access = PL2_RW, .accessfn = access_el3_aa32ns,
afbb181c 6144 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
68e9c2fe
EI
6145 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6146 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112 6147 .access = PL2_RW,
988cc190 6148 /* no .writefn needed as this can't cause an ASID change */
68e9c2fe 6149 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
b698e9cf
EI
6150 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6151 .cp = 15, .opc1 = 6, .crm = 2,
6152 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6153 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6154 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
587f8b33 6155 .writefn = vttbr_write, .raw_writefn = raw_write },
b698e9cf
EI
6156 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6157 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
587f8b33 6158 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
b698e9cf 6159 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
b9cb5323
EI
6160 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6161 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6162 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6163 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
ff05f37b
EI
6164 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6165 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6166 .access = PL2_RW, .resetvalue = 0,
6167 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
a57633c0
EI
6168 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6169 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
587f8b33
EA
6170 .access = PL2_RW, .resetvalue = 0,
6171 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
a57633c0
EI
6172 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6173 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6174 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
a57633c0 6175 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
541ef8c2
SS
6176 { .name = "TLBIALLNSNH",
6177 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6178 .type = ARM_CP_NO_RAW, .access = PL2_W,
6179 .writefn = tlbiall_nsnh_write },
6180 { .name = "TLBIALLNSNHIS",
6181 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6182 .type = ARM_CP_NO_RAW, .access = PL2_W,
6183 .writefn = tlbiall_nsnh_is_write },
6184 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6185 .type = ARM_CP_NO_RAW, .access = PL2_W,
6186 .writefn = tlbiall_hyp_write },
6187 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6188 .type = ARM_CP_NO_RAW, .access = PL2_W,
6189 .writefn = tlbiall_hyp_is_write },
6190 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6191 .type = ARM_CP_NO_RAW, .access = PL2_W,
6192 .writefn = tlbimva_hyp_write },
6193 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6194 .type = ARM_CP_NO_RAW, .access = PL2_W,
6195 .writefn = tlbimva_hyp_is_write },
51da9014
EI
6196 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6197 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
696ba377 6198 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
fd3ed969 6199 .writefn = tlbi_aa64_alle2_write },
8742d49d
EI
6200 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6201 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
696ba377 6202 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
fd3ed969 6203 .writefn = tlbi_aa64_vae2_write },
2bfb9d75
PM
6204 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6205 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
696ba377 6206 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
2bfb9d75
PM
6207 .writefn = tlbi_aa64_vae2_write },
6208 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6209 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
696ba377 6210 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
2bfb9d75 6211 .writefn = tlbi_aa64_alle2is_write },
8742d49d
EI
6212 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6213 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
696ba377 6214 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
fd3ed969 6215 .writefn = tlbi_aa64_vae2is_write },
2bfb9d75
PM
6216 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6217 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
696ba377 6218 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
2bfb9d75 6219 .writefn = tlbi_aa64_vae2is_write },
edac4d8a 6220#ifndef CONFIG_USER_ONLY
9b37a28c
FR
6221 /*
6222 * Unlike the other EL2-related AT operations, these must
2a47df95
PM
6223 * UNDEF from EL3 if EL2 is not implemented, which is why we
6224 * define them here rather than with the rest of the AT ops.
6225 */
6226 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6227 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6228 .access = PL2_W, .accessfn = at_s1e2_access,
696ba377
RH
6229 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6230 .writefn = ats_write64 },
2a47df95
PM
6231 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6232 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6233 .access = PL2_W, .accessfn = at_s1e2_access,
696ba377
RH
6234 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6235 .writefn = ats_write64 },
9b37a28c
FR
6236 /*
6237 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
14db7fe0
PM
6238 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6239 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6240 * to behave as if SCR.NS was 1.
6241 */
6242 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6243 .access = PL2_W,
0710b2fa 6244 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
14db7fe0
PM
6245 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6246 .access = PL2_W,
0710b2fa 6247 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
0b6440af
EI
6248 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6249 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
9b37a28c
FR
6250 /*
6251 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
0b6440af
EI
6252 * reset values as IMPDEF. We choose to reset to 3 to comply with
6253 * both ARMv7 and ARMv8.
6254 */
f6fc36de
JPB
6255 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6256 .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
0b6440af 6257 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
edac4d8a
EI
6258 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6259 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6260 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6261 .writefn = gt_cntvoff_write,
6262 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6263 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6264 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6265 .writefn = gt_cntvoff_write,
6266 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
b0e66d95
EI
6267 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6268 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6269 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6270 .type = ARM_CP_IO, .access = PL2_RW,
6271 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6272 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6273 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6274 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6275 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6276 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6277 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
d44ec156 6278 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
b0e66d95
EI
6279 .resetfn = gt_hyp_timer_reset,
6280 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6281 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6282 .type = ARM_CP_IO,
6283 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6284 .access = PL2_RW,
6285 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6286 .resetvalue = 0,
6287 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
edac4d8a 6288#endif
59e05530
EI
6289 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6290 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6291 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6292 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6293 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6294 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6295 .access = PL2_RW,
6296 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
2a5a9abd
AF
6297 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6298 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6299 .access = PL2_RW,
6300 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3b685ba7
EI
6301};
6302
ce4afed8
PM
6303static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6304 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
89430fc6 6305 .type = ARM_CP_ALIAS | ARM_CP_IO,
ce4afed8
PM
6306 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6307 .access = PL2_RW,
6308 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6309 .writefn = hcr_writehigh },
ce4afed8
PM
6310};
6311
e9152ee9
RDC
6312static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6313 bool isread)
6314{
6315 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6316 return CP_ACCESS_OK;
6317 }
6318 return CP_ACCESS_TRAP_UNCATEGORIZED;
6319}
6320
6321static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6322 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6323 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6324 .access = PL2_RW, .accessfn = sel2_access,
6325 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6326 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6327 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6328 .access = PL2_RW, .accessfn = sel2_access,
6329 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
e9152ee9
RDC
6330};
6331
2f027fc5
PM
6332static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6333 bool isread)
6334{
9b37a28c
FR
6335 /*
6336 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
926c1b97 6337 * At Secure EL1 it traps to EL3 or EL2.
2f027fc5
PM
6338 */
6339 if (arm_current_el(env) == 3) {
6340 return CP_ACCESS_OK;
6341 }
6342 if (arm_is_secure_below_el3(env)) {
926c1b97
RDC
6343 if (env->cp15.scr_el3 & SCR_EEL2) {
6344 return CP_ACCESS_TRAP_EL2;
6345 }
2f027fc5
PM
6346 return CP_ACCESS_TRAP_EL3;
6347 }
6348 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6349 if (isread) {
6350 return CP_ACCESS_OK;
6351 }
6352 return CP_ACCESS_TRAP_UNCATEGORIZED;
6353}
6354
60fb1a87
GB
6355static const ARMCPRegInfo el3_cp_reginfo[] = {
6356 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6357 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6358 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
587f8b33 6359 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
f80741d1 6360 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
60fb1a87 6361 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
efe4a274
PM
6362 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6363 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
587f8b33 6364 .writefn = scr_write, .raw_writefn = raw_write },
60fb1a87
GB
6365 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6366 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6367 .access = PL3_RW, .resetvalue = 0,
6368 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6369 { .name = "SDER",
6370 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6371 .access = PL3_RW, .resetvalue = 0,
6372 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
60fb1a87 6373 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
efe4a274
PM
6374 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6375 .writefn = vbar_write, .resetvalue = 0,
60fb1a87 6376 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
7dd8c9af
FA
6377 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6378 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
f478847f 6379 .access = PL3_RW, .resetvalue = 0,
7dd8c9af 6380 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
11f136ee
FA
6381 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6382 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c 6383 .access = PL3_RW,
cb4a0a34
PM
6384 /* no .writefn needed as this can't cause an ASID change */
6385 .resetvalue = 0,
11f136ee 6386 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
81547d66 6387 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 6388 .type = ARM_CP_ALIAS,
81547d66
EI
6389 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6390 .access = PL3_RW,
6391 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
f2c30f42 6392 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
6393 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6394 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
63b60551
EI
6395 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6396 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6397 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
81547d66 6398 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 6399 .type = ARM_CP_ALIAS,
81547d66 6400 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
6401 .access = PL3_RW,
6402 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
a1ba125c
EI
6403 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6404 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6405 .access = PL3_RW, .writefn = vbar_write,
6406 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6407 .resetvalue = 0 },
c6f19164
GB
6408 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6409 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6410 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6411 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4cfb8ad8
PM
6412 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6413 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6414 .access = PL3_RW, .resetvalue = 0,
6415 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
2179ef95
PM
6416 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6417 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6418 .access = PL3_RW, .type = ARM_CP_CONST,
6419 .resetvalue = 0 },
37cd6c24
PM
6420 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6421 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6422 .access = PL3_RW, .type = ARM_CP_CONST,
6423 .resetvalue = 0 },
6424 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6425 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6426 .access = PL3_RW, .type = ARM_CP_CONST,
6427 .resetvalue = 0 },
43efaa33
PM
6428 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6429 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6430 .access = PL3_W, .type = ARM_CP_NO_RAW,
6431 .writefn = tlbi_aa64_alle3is_write },
6432 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6433 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6434 .access = PL3_W, .type = ARM_CP_NO_RAW,
6435 .writefn = tlbi_aa64_vae3is_write },
6436 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6437 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6438 .access = PL3_W, .type = ARM_CP_NO_RAW,
6439 .writefn = tlbi_aa64_vae3is_write },
6440 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6441 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6442 .access = PL3_W, .type = ARM_CP_NO_RAW,
6443 .writefn = tlbi_aa64_alle3_write },
6444 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6445 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6446 .access = PL3_W, .type = ARM_CP_NO_RAW,
6447 .writefn = tlbi_aa64_vae3_write },
6448 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6449 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6450 .access = PL3_W, .type = ARM_CP_NO_RAW,
6451 .writefn = tlbi_aa64_vae3_write },
0f1a3b24
FA
6452};
6453
e2cce18f
RH
6454#ifndef CONFIG_USER_ONLY
6455/* Test if system register redirection is to occur in the current state. */
6456static bool redirect_for_e2h(CPUARMState *env)
6457{
6458 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6459}
6460
6461static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6462{
6463 CPReadFn *readfn;
6464
6465 if (redirect_for_e2h(env)) {
6466 /* Switch to the saved EL2 version of the register. */
6467 ri = ri->opaque;
6468 readfn = ri->readfn;
6469 } else {
6470 readfn = ri->orig_readfn;
6471 }
6472 if (readfn == NULL) {
6473 readfn = raw_read;
6474 }
6475 return readfn(env, ri);
6476}
6477
6478static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6479 uint64_t value)
6480{
6481 CPWriteFn *writefn;
6482
6483 if (redirect_for_e2h(env)) {
6484 /* Switch to the saved EL2 version of the register. */
6485 ri = ri->opaque;
6486 writefn = ri->writefn;
6487 } else {
6488 writefn = ri->orig_writefn;
6489 }
6490 if (writefn == NULL) {
6491 writefn = raw_write;
6492 }
6493 writefn(env, ri, value);
6494}
6495
6496static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6497{
6498 struct E2HAlias {
6499 uint32_t src_key, dst_key, new_key;
6500 const char *src_name, *dst_name, *new_name;
6501 bool (*feature)(const ARMISARegisters *id);
6502 };
6503
6504#define K(op0, op1, crn, crm, op2) \
6505 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6506
6507 static const struct E2HAlias aliases[] = {
6508 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6509 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6510 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6511 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6512 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6513 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6514 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6515 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6516 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6517 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6518 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6519 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6520 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6521 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6522 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6523 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6524 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6525 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6526 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6527 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6528 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6529 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6530 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6531 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6532 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6533 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6534 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6535 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6536 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6537 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6538 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6539 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6540
6541 /*
6542 * Note that redirection of ZCR is mentioned in the description
6543 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6544 * not in the summary table.
6545 */
6546 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6547 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
de561988
RH
6548 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6549 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
e2cce18f 6550
4b779ceb
RH
6551 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6552 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6553
7cb1e618
RH
6554 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6555 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6556 isar_feature_aa64_scxtnum },
6557
e2cce18f
RH
6558 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6559 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6560 };
6561#undef K
6562
6563 size_t i;
6564
6565 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6566 const struct E2HAlias *a = &aliases[i];
9da35a40 6567 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
9da35a40 6568 bool ok;
e2cce18f
RH
6569
6570 if (a->feature && !a->feature(&cpu->isar)) {
6571 continue;
6572 }
6573
5860362d
RH
6574 src_reg = g_hash_table_lookup(cpu->cp_regs,
6575 (gpointer)(uintptr_t)a->src_key);
6576 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6577 (gpointer)(uintptr_t)a->dst_key);
e2cce18f
RH
6578 g_assert(src_reg != NULL);
6579 g_assert(dst_reg != NULL);
6580
6581 /* Cross-compare names to detect typos in the keys. */
6582 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6583 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6584
6585 /* None of the core system registers use opaque; we will. */
6586 g_assert(src_reg->opaque == NULL);
6587
6588 /* Create alias before redirection so we dup the right data. */
9da35a40 6589 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
9da35a40
RH
6590
6591 new_reg->name = a->new_name;
6592 new_reg->type |= ARM_CP_ALIAS;
6593 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6594 new_reg->access &= PL2_RW | PL3_RW;
6595
5860362d
RH
6596 ok = g_hash_table_insert(cpu->cp_regs,
6597 (gpointer)(uintptr_t)a->new_key, new_reg);
9da35a40 6598 g_assert(ok);
e2cce18f
RH
6599
6600 src_reg->opaque = dst_reg;
6601 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6602 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6603 if (!src_reg->raw_readfn) {
6604 src_reg->raw_readfn = raw_read;
6605 }
6606 if (!src_reg->raw_writefn) {
6607 src_reg->raw_writefn = raw_write;
6608 }
6609 src_reg->readfn = el2_e2h_read;
6610 src_reg->writefn = el2_e2h_write;
6611 }
6612}
6613#endif
6614
3f208fd7
PM
6615static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6616 bool isread)
7da845b0 6617{
97475a89
RH
6618 int cur_el = arm_current_el(env);
6619
6620 if (cur_el < 2) {
6621 uint64_t hcr = arm_hcr_el2_eff(env);
6622
6623 if (cur_el == 0) {
6624 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6625 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6626 return CP_ACCESS_TRAP_EL2;
6627 }
6628 } else {
6629 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6630 return CP_ACCESS_TRAP;
6631 }
6632 if (hcr & HCR_TID2) {
6633 return CP_ACCESS_TRAP_EL2;
6634 }
6635 }
6636 } else if (hcr & HCR_TID2) {
6637 return CP_ACCESS_TRAP_EL2;
6638 }
7da845b0 6639 }
630fcd4d
MZ
6640
6641 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6642 return CP_ACCESS_TRAP_EL2;
6643 }
6644
7da845b0
PM
6645 return CP_ACCESS_OK;
6646}
6647
58e93b48
RH
6648/*
6649 * Check for traps to RAS registers, which are controlled
6650 * by HCR_EL2.TERR and SCR_EL3.TERR.
6651 */
6652static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6653 bool isread)
6654{
6655 int el = arm_current_el(env);
6656
6657 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6658 return CP_ACCESS_TRAP_EL2;
6659 }
6660 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6661 return CP_ACCESS_TRAP_EL3;
6662 }
6663 return CP_ACCESS_OK;
6664}
6665
6666static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6667{
6668 int el = arm_current_el(env);
6669
6670 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6671 return env->cp15.vdisr_el2;
6672 }
6673 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6674 return 0; /* RAZ/WI */
6675 }
6676 return env->cp15.disr_el1;
6677}
6678
6679static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6680{
6681 int el = arm_current_el(env);
6682
6683 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6684 env->cp15.vdisr_el2 = val;
6685 return;
6686 }
6687 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6688 return; /* RAZ/WI */
6689 }
6690 env->cp15.disr_el1 = val;
6691}
6692
6693/*
6694 * Minimal RAS implementation with no Error Records.
6695 * Which means that all of the Error Record registers:
6696 * ERXADDR_EL1
6697 * ERXCTLR_EL1
6698 * ERXFR_EL1
6699 * ERXMISC0_EL1
6700 * ERXMISC1_EL1
6701 * ERXMISC2_EL1
6702 * ERXMISC3_EL1
6703 * ERXPFGCDN_EL1 (RASv1p1)
6704 * ERXPFGCTL_EL1 (RASv1p1)
6705 * ERXPFGF_EL1 (RASv1p1)
6706 * ERXSTATUS_EL1
6707 * and
6708 * ERRSELR_EL1
6709 * may generate UNDEFINED, which is the effect we get by not
6710 * listing them at all.
bd8db7d9
PM
6711 *
6712 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6713 * is higher priority than FGT-to-EL2 so we do not need to list them
6714 * in order to check for an FGT.
58e93b48
RH
6715 */
6716static const ARMCPRegInfo minimal_ras_reginfo[] = {
6717 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6718 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6719 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6720 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6721 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6722 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6723 .access = PL1_R, .accessfn = access_terr,
bd8db7d9 6724 .fgt = FGT_ERRIDR_EL1,
58e93b48
RH
6725 .type = ARM_CP_CONST, .resetvalue = 0 },
6726 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6727 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6728 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6729 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6730 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6731 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6732};
6733
397d922c
RH
6734/*
6735 * Return the exception level to which exceptions should be taken
6736 * via SVEAccessTrap. This excludes the check for whether the exception
6737 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6738 * be found by testing 0 < fp_exception_el < sve_exception_el.
6739 *
6740 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6741 * pseudocode does *not* separate out the FP trap checks, but has them
6742 * all in one function.
5be5e8ed 6743 */
ced31551 6744int sve_exception_el(CPUARMState *env, int el)
5be5e8ed
RH
6745{
6746#ifndef CONFIG_USER_ONLY
aa4451b6 6747 if (el <= 1 && !el_is_in_host(env, el)) {
fab8ad39 6748 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
7701cee5
RH
6749 case 1:
6750 if (el != 0) {
6751 break;
6752 }
6753 /* fall through */
6754 case 0:
6755 case 2:
61a8c23a 6756 return 1;
5be5e8ed 6757 }
5be5e8ed
RH
6758 }
6759
7d38cb92
RH
6760 if (el <= 2 && arm_is_el2_enabled(env)) {
6761 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6762 if (env->cp15.hcr_el2 & HCR_E2H) {
fab8ad39 6763 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
d5a6fa2d 6764 case 1:
7d38cb92 6765 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
d5a6fa2d
RH
6766 break;
6767 }
6768 /* fall through */
6769 case 0:
6770 case 2:
6771 return 2;
6772 }
7d38cb92 6773 } else {
fab8ad39 6774 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
d5a6fa2d
RH
6775 return 2;
6776 }
60eed086 6777 }
5be5e8ed
RH
6778 }
6779
60eed086
RH
6780 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6781 if (arm_feature(env, ARM_FEATURE_EL3)
fab8ad39 6782 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
5be5e8ed
RH
6783 return 3;
6784 }
6785#endif
6786 return 0;
6787}
6788
6b2ca83e
RH
6789/*
6790 * Return the exception level to which exceptions should be taken for SME.
6791 * C.f. the ARM pseudocode function CheckSMEAccess.
6792 */
6793int sme_exception_el(CPUARMState *env, int el)
6794{
6795#ifndef CONFIG_USER_ONLY
6796 if (el <= 1 && !el_is_in_host(env, el)) {
6797 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6798 case 1:
6799 if (el != 0) {
6800 break;
6801 }
6802 /* fall through */
6803 case 0:
6804 case 2:
6805 return 1;
6806 }
6807 }
6808
6809 if (el <= 2 && arm_is_el2_enabled(env)) {
6810 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6811 if (env->cp15.hcr_el2 & HCR_E2H) {
6812 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6813 case 1:
6814 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6815 break;
6816 }
6817 /* fall through */
6818 case 0:
6819 case 2:
6820 return 2;
6821 }
6822 } else {
6823 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6824 return 2;
6825 }
6826 }
6827 }
6828
6829 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6830 if (arm_feature(env, ARM_FEATURE_EL3)
6831 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6832 return 3;
6833 }
6834#endif
6835 return 0;
6836}
6837
0ab5953b
RH
6838/*
6839 * Given that SVE is enabled, return the vector length for EL.
6840 */
6ca54aa9 6841uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
0ab5953b 6842{
2fc0cc0e 6843 ARMCPU *cpu = env_archcpu(env);
6ca54aa9
RH
6844 uint64_t *cr = env->vfp.zcr_el;
6845 uint32_t map = cpu->sve_vq.map;
6846 uint32_t len = ARM_MAX_VQ - 1;
6847
6848 if (sm) {
6849 cr = env->vfp.smcr_el;
6850 map = cpu->sme_vq.map;
6851 }
0ab5953b 6852
c6225beb 6853 if (el <= 1 && !el_is_in_host(env, el)) {
6ca54aa9 6854 len = MIN(len, 0xf & (uint32_t)cr[1]);
0ab5953b 6855 }
6a02a732 6856 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6ca54aa9 6857 len = MIN(len, 0xf & (uint32_t)cr[2]);
0ab5953b 6858 }
6a02a732 6859 if (arm_feature(env, ARM_FEATURE_EL3)) {
6ca54aa9
RH
6860 len = MIN(len, 0xf & (uint32_t)cr[3]);
6861 }
6862
6863 map &= MAKE_64BIT_MASK(0, len + 1);
6864 if (map != 0) {
6865 return 31 - clz32(map);
0ab5953b 6866 }
0df9142d 6867
6ca54aa9
RH
6868 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6869 assert(sm);
6870 return ctz32(cpu->sme_vq.map);
6871}
6872
6873uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6874{
6875 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
0ab5953b
RH
6876}
6877
5be5e8ed
RH
6878static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6879 uint64_t value)
6880{
0ab5953b 6881 int cur_el = arm_current_el(env);
5ef3cc56 6882 int old_len = sve_vqm1_for_el(env, cur_el);
0ab5953b
RH
6883 int new_len;
6884
5be5e8ed 6885 /* Bits other than [3:0] are RAZ/WI. */
7b351d98 6886 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
5be5e8ed 6887 raw_write(env, ri, value & 0xf);
0ab5953b
RH
6888
6889 /*
6890 * Because we arrived here, we know both FP and SVE are enabled;
6891 * otherwise we would have trapped access to the ZCR_ELn register.
6892 */
5ef3cc56 6893 new_len = sve_vqm1_for_el(env, cur_el);
0ab5953b
RH
6894 if (new_len < old_len) {
6895 aarch64_sve_narrow_vq(env, new_len + 1);
6896 }
5be5e8ed
RH
6897}
6898
60360d82
RH
6899static const ARMCPRegInfo zcr_reginfo[] = {
6900 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6901 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6902 .access = PL1_RW, .type = ARM_CP_SVE,
6903 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6904 .writefn = zcr_write, .raw_writefn = raw_write },
6905 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6906 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6907 .access = PL2_RW, .type = ARM_CP_SVE,
6908 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6909 .writefn = zcr_write, .raw_writefn = raw_write },
6910 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6911 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6912 .access = PL3_RW, .type = ARM_CP_SVE,
6913 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6914 .writefn = zcr_write, .raw_writefn = raw_write },
5be5e8ed
RH
6915};
6916
9e5ec745
RH
6917#ifdef TARGET_AARCH64
6918static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6919 bool isread)
6920{
6921 int el = arm_current_el(env);
6922
6923 if (el == 0) {
6924 uint64_t sctlr = arm_sctlr(env, el);
6925 if (!(sctlr & SCTLR_EnTP2)) {
6926 return CP_ACCESS_TRAP;
6927 }
6928 }
6929 /* TODO: FEAT_FGT */
6930 if (el < 3
6931 && arm_feature(env, ARM_FEATURE_EL3)
6932 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6933 return CP_ACCESS_TRAP_EL3;
6934 }
6935 return CP_ACCESS_OK;
6936}
6937
d5b1223a
RH
6938static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6939 bool isread)
6940{
6941 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6942 if (arm_current_el(env) < 3
6943 && arm_feature(env, ARM_FEATURE_EL3)
6944 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6945 return CP_ACCESS_TRAP_EL3;
6946 }
6947 return CP_ACCESS_OK;
6948}
6949
7f2a01e7
RH
6950/* ResetSVEState */
6951static void arm_reset_sve_state(CPUARMState *env)
6952{
6953 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6954 /* Recall that FFR is stored as pregs[16]. */
6955 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6956 vfp_set_fpcr(env, 0x0800009f);
6957}
6958
2a8af382
RH
6959void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6960{
6961 uint64_t change = (env->svcr ^ new) & mask;
6962
f4318557
RH
6963 if (change == 0) {
6964 return;
6965 }
2a8af382 6966 env->svcr ^= change;
7f2a01e7
RH
6967
6968 if (change & R_SVCR_SM_MASK) {
6969 arm_reset_sve_state(env);
6970 }
fccb4918
RH
6971
6972 /*
6973 * ResetSMEState.
6974 *
6975 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
6976 * on enable: while disabled, the storage is inaccessible and the
6977 * value does not matter. We're not saving the storage in vmstate
6978 * when disabled either.
6979 */
6980 if (change & new & R_SVCR_ZA_MASK) {
6981 memset(env->zarray, 0, sizeof(env->zarray));
6982 }
f4318557 6983
2b77ad4d
FR
6984 if (tcg_enabled()) {
6985 arm_rebuild_hflags(env);
6986 }
2a8af382
RH
6987}
6988
c37e6ac9
RH
6989static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6990 uint64_t value)
6991{
2a8af382 6992 aarch64_set_svcr(env, value, -1);
c37e6ac9
RH
6993}
6994
de561988
RH
6995static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6996 uint64_t value)
6997{
6998 int cur_el = arm_current_el(env);
6999 int old_len = sve_vqm1_for_el(env, cur_el);
7000 int new_len;
7001
7002 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7003 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7004 raw_write(env, ri, value);
7005
7006 /*
7007 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7008 * when SVL is widened (old values kept, or zeros). Choose to keep the
7009 * current values for simplicity. But for QEMU internals, we must still
7010 * apply the narrower SVL to the Zregs and Pregs -- see the comment
7011 * above aarch64_sve_narrow_vq.
7012 */
7013 new_len = sve_vqm1_for_el(env, cur_el);
7014 if (new_len < old_len) {
7015 aarch64_sve_narrow_vq(env, new_len + 1);
7016 }
7017}
7018
9e5ec745
RH
7019static const ARMCPRegInfo sme_reginfo[] = {
7020 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7021 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7022 .access = PL0_RW, .accessfn = access_tpidr2,
bd8db7d9 7023 .fgt = FGT_NTPIDR2_EL0,
9e5ec745 7024 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
c37e6ac9
RH
7025 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7026 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7027 .access = PL0_RW, .type = ARM_CP_SME,
7028 .fieldoffset = offsetof(CPUARMState, svcr),
7029 .writefn = svcr_write, .raw_writefn = raw_write },
de561988
RH
7030 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7031 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7032 .access = PL1_RW, .type = ARM_CP_SME,
7033 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7034 .writefn = smcr_write, .raw_writefn = raw_write },
7035 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7036 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7037 .access = PL2_RW, .type = ARM_CP_SME,
7038 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7039 .writefn = smcr_write, .raw_writefn = raw_write },
7040 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7041 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7042 .access = PL3_RW, .type = ARM_CP_SME,
7043 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7044 .writefn = smcr_write, .raw_writefn = raw_write },
d5b1223a
RH
7045 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7046 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7047 .access = PL1_R, .accessfn = access_aa64_tid1,
7048 /*
7049 * IMPLEMENTOR = 0 (software)
7050 * REVISION = 0 (implementation defined)
7051 * SMPS = 0 (no streaming execution priority in QEMU)
7052 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
7053 */
7054 .type = ARM_CP_CONST, .resetvalue = 0, },
7055 /*
7056 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7057 */
7058 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7059 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7060 .access = PL1_RW, .accessfn = access_esm,
bd8db7d9 7061 .fgt = FGT_NSMPRI_EL1,
d5b1223a
RH
7062 .type = ARM_CP_CONST, .resetvalue = 0 },
7063 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7064 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7065 .access = PL2_RW, .accessfn = access_esm,
7066 .type = ARM_CP_CONST, .resetvalue = 0 },
9e5ec745 7067};
ef1febe7
RH
7068
7069static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7070 uint64_t value)
7071{
7072 CPUState *cs = env_cpu(env);
7073
7074 tlb_flush(cs);
7075}
7076
7077static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7078 uint64_t value)
7079{
7080 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7081 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7082 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7083 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7084
7085 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7086}
7087
7088static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7089{
7090 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7091 env_archcpu(env)->reset_l0gptsz);
7092}
7093
7094static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7095 uint64_t value)
7096{
7097 CPUState *cs = env_cpu(env);
7098
7099 tlb_flush_all_cpus_synced(cs);
7100}
7101
7102static const ARMCPRegInfo rme_reginfo[] = {
7103 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7104 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7105 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7106 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7107 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7108 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7109 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7110 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7111 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7112 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7113 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7114 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7115 .access = PL3_W, .type = ARM_CP_NO_RAW,
7116 .writefn = tlbi_aa64_paall_write },
7117 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7118 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7119 .access = PL3_W, .type = ARM_CP_NO_RAW,
7120 .writefn = tlbi_aa64_paallos_write },
7121 /*
7122 * QEMU does not have a way to invalidate by physical address, thus
7123 * invalidating a range of physical addresses is accomplished by
673d8215 7124 * flushing all tlb entries in the outer shareable domain,
ef1febe7
RH
7125 * just like PAALLOS.
7126 */
7127 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7128 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7129 .access = PL3_W, .type = ARM_CP_NO_RAW,
7130 .writefn = tlbi_aa64_paallos_write },
7131 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7132 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7133 .access = PL3_W, .type = ARM_CP_NO_RAW,
7134 .writefn = tlbi_aa64_paallos_write },
7135 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7136 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7137 .access = PL3_W, .type = ARM_CP_NOP },
7138};
7139
7140static const ARMCPRegInfo rme_mte_reginfo[] = {
7141 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7142 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7143 .access = PL3_W, .type = ARM_CP_NOP },
7144};
9e5ec745
RH
7145#endif /* TARGET_AARCH64 */
7146
24183fb6
PM
7147static void define_pmu_regs(ARMCPU *cpu)
7148{
7149 /*
7150 * v7 performance monitor control register: same implementor
7151 * field as main ID register, and we implement four counters in
7152 * addition to the cycle count register.
7153 */
24526bb9 7154 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
24183fb6
PM
7155 ARMCPRegInfo pmcr = {
7156 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7157 .access = PL0_RW,
dc780233 7158 .fgt = FGT_PMCR_EL0,
24183fb6
PM
7159 .type = ARM_CP_IO | ARM_CP_ALIAS,
7160 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7161 .accessfn = pmreg_access, .writefn = pmcr_write,
7162 .raw_writefn = raw_write,
7163 };
7164 ARMCPRegInfo pmcr64 = {
7165 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7166 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7167 .access = PL0_RW, .accessfn = pmreg_access,
dc780233 7168 .fgt = FGT_PMCR_EL0,
24183fb6
PM
7169 .type = ARM_CP_IO,
7170 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
24526bb9 7171 .resetvalue = cpu->isar.reset_pmcr_el0,
24183fb6
PM
7172 .writefn = pmcr_write, .raw_writefn = raw_write,
7173 };
24526bb9 7174
24183fb6
PM
7175 define_one_arm_cp_reg(cpu, &pmcr);
7176 define_one_arm_cp_reg(cpu, &pmcr64);
7177 for (i = 0; i < pmcrn; i++) {
7178 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7179 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7180 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7181 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7182 ARMCPRegInfo pmev_regs[] = {
7183 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7184 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7185 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
dc780233 7186 .fgt = FGT_PMEVCNTRN_EL0,
24183fb6 7187 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
99a50d1a 7188 .accessfn = pmreg_access_xevcntr },
24183fb6
PM
7189 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7190 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
99a50d1a 7191 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
24183fb6 7192 .type = ARM_CP_IO,
dc780233 7193 .fgt = FGT_PMEVCNTRN_EL0,
24183fb6
PM
7194 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7195 .raw_readfn = pmevcntr_rawread,
7196 .raw_writefn = pmevcntr_rawwrite },
7197 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7198 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7199 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
dc780233 7200 .fgt = FGT_PMEVTYPERN_EL0,
24183fb6
PM
7201 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7202 .accessfn = pmreg_access },
7203 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7204 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7205 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
dc780233 7206 .fgt = FGT_PMEVTYPERN_EL0,
24183fb6
PM
7207 .type = ARM_CP_IO,
7208 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7209 .raw_writefn = pmevtyper_rawwrite },
24183fb6
PM
7210 };
7211 define_arm_cp_regs(cpu, pmev_regs);
7212 g_free(pmevcntr_name);
7213 g_free(pmevcntr_el0_name);
7214 g_free(pmevtyper_name);
7215 g_free(pmevtyper_el0_name);
7216 }
a793bcd0 7217 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
24183fb6
PM
7218 ARMCPRegInfo v81_pmu_regs[] = {
7219 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7220 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7221 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
dc780233 7222 .fgt = FGT_PMCEIDN_EL0,
24183fb6
PM
7223 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7224 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7225 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7226 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
dc780233 7227 .fgt = FGT_PMCEIDN_EL0,
24183fb6 7228 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
24183fb6
PM
7229 };
7230 define_arm_cp_regs(cpu, v81_pmu_regs);
7231 }
a793bcd0 7232 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
15dd1ebd
PM
7233 static const ARMCPRegInfo v84_pmmir = {
7234 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7235 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7236 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
dc780233 7237 .fgt = FGT_PMMIR_EL1,
15dd1ebd
PM
7238 .resetvalue = 0
7239 };
7240 define_one_arm_cp_reg(cpu, &v84_pmmir);
7241 }
24183fb6
PM
7242}
7243
0f150c84 7244#ifndef CONFIG_USER_ONLY
9b37a28c
FR
7245/*
7246 * We don't know until after realize whether there's a GICv3
96a8b92e
PM
7247 * attached, and that is what registers the gicv3 sysregs.
7248 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7249 * at runtime.
7250 */
7251static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7252{
2fc0cc0e 7253 ARMCPU *cpu = env_archcpu(env);
8a130a7b 7254 uint64_t pfr1 = cpu->isar.id_pfr1;
96a8b92e
PM
7255
7256 if (env->gicv3state) {
7257 pfr1 |= 1 << 28;
7258 }
7259 return pfr1;
7260}
7261
7262static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7263{
2fc0cc0e 7264 ARMCPU *cpu = env_archcpu(env);
47576b94 7265 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
96a8b92e
PM
7266
7267 if (env->gicv3state) {
7268 pfr0 |= 1 << 24;
7269 }
7270 return pfr0;
7271}
976b99b6 7272#endif
96a8b92e 7273
9b37a28c
FR
7274/*
7275 * Shared logic between LORID and the rest of the LOR* registers.
9bd268ba 7276 * Secure state exclusion has already been dealt with.
2d7137c1 7277 */
9bd268ba
RDC
7278static CPAccessResult access_lor_ns(CPUARMState *env,
7279 const ARMCPRegInfo *ri, bool isread)
2d7137c1
RH
7280{
7281 int el = arm_current_el(env);
7282
7283 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7284 return CP_ACCESS_TRAP_EL2;
7285 }
7286 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7287 return CP_ACCESS_TRAP_EL3;
7288 }
7289 return CP_ACCESS_OK;
7290}
7291
2d7137c1
RH
7292static CPAccessResult access_lor_other(CPUARMState *env,
7293 const ARMCPRegInfo *ri, bool isread)
7294{
7295 if (arm_is_secure_below_el3(env)) {
7296 /* Access denied in secure mode. */
7297 return CP_ACCESS_TRAP;
7298 }
9bd268ba 7299 return access_lor_ns(env, ri, isread);
2d7137c1
RH
7300}
7301
d8564ee4
RH
7302/*
7303 * A trivial implementation of ARMv8.1-LOR leaves all of these
7304 * registers fixed at 0, which indicates that there are zero
7305 * supported Limited Ordering regions.
7306 */
7307static const ARMCPRegInfo lor_reginfo[] = {
7308 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7309 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7310 .access = PL1_RW, .accessfn = access_lor_other,
b19ed03c 7311 .fgt = FGT_LORSA_EL1,
d8564ee4
RH
7312 .type = ARM_CP_CONST, .resetvalue = 0 },
7313 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7314 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7315 .access = PL1_RW, .accessfn = access_lor_other,
b19ed03c 7316 .fgt = FGT_LOREA_EL1,
d8564ee4
RH
7317 .type = ARM_CP_CONST, .resetvalue = 0 },
7318 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7319 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7320 .access = PL1_RW, .accessfn = access_lor_other,
b19ed03c 7321 .fgt = FGT_LORN_EL1,
d8564ee4
RH
7322 .type = ARM_CP_CONST, .resetvalue = 0 },
7323 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7324 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7325 .access = PL1_RW, .accessfn = access_lor_other,
b19ed03c 7326 .fgt = FGT_LORC_EL1,
d8564ee4
RH
7327 .type = ARM_CP_CONST, .resetvalue = 0 },
7328 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7329 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
9bd268ba 7330 .access = PL1_R, .accessfn = access_lor_ns,
b19ed03c 7331 .fgt = FGT_LORID_EL1,
d8564ee4 7332 .type = ARM_CP_CONST, .resetvalue = 0 },
d8564ee4
RH
7333};
7334
967aa94f
RH
7335#ifdef TARGET_AARCH64
7336static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7337 bool isread)
7338{
7339 int el = arm_current_el(env);
7340
7341 if (el < 2 &&
07b034ea 7342 arm_is_el2_enabled(env) &&
967aa94f
RH
7343 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7344 return CP_ACCESS_TRAP_EL2;
7345 }
7346 if (el < 3 &&
7347 arm_feature(env, ARM_FEATURE_EL3) &&
7348 !(env->cp15.scr_el3 & SCR_APK)) {
7349 return CP_ACCESS_TRAP_EL3;
7350 }
7351 return CP_ACCESS_OK;
7352}
7353
7354static const ARMCPRegInfo pauth_reginfo[] = {
7355 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7356 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7357 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7358 .fgt = FGT_APDAKEY,
108b3ba8 7359 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
967aa94f
RH
7360 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7361 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7362 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7363 .fgt = FGT_APDAKEY,
108b3ba8 7364 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
967aa94f
RH
7365 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7366 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7367 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7368 .fgt = FGT_APDBKEY,
108b3ba8 7369 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
967aa94f
RH
7370 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7371 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7372 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7373 .fgt = FGT_APDBKEY,
108b3ba8 7374 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
967aa94f
RH
7375 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7376 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7377 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7378 .fgt = FGT_APGAKEY,
108b3ba8 7379 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
967aa94f
RH
7380 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7381 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7382 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7383 .fgt = FGT_APGAKEY,
108b3ba8 7384 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
967aa94f
RH
7385 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7386 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7387 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7388 .fgt = FGT_APIAKEY,
108b3ba8 7389 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
967aa94f
RH
7390 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7391 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7392 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7393 .fgt = FGT_APIAKEY,
108b3ba8 7394 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
967aa94f
RH
7395 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7396 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7397 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7398 .fgt = FGT_APIBKEY,
108b3ba8 7399 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
967aa94f
RH
7400 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7401 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7402 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7403 .fgt = FGT_APIBKEY,
108b3ba8 7404 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
967aa94f 7405};
de390645 7406
84940ed8
RC
7407static const ARMCPRegInfo tlbirange_reginfo[] = {
7408 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7409 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
0f66d223 7410 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 7411 .fgt = FGT_TLBIRVAE1IS,
84940ed8
RC
7412 .writefn = tlbi_aa64_rvae1is_write },
7413 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7414 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
0f66d223 7415 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 7416 .fgt = FGT_TLBIRVAAE1IS,
84940ed8
RC
7417 .writefn = tlbi_aa64_rvae1is_write },
7418 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7419 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
0f66d223 7420 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 7421 .fgt = FGT_TLBIRVALE1IS,
84940ed8
RC
7422 .writefn = tlbi_aa64_rvae1is_write },
7423 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7424 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
0f66d223 7425 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 7426 .fgt = FGT_TLBIRVAALE1IS,
84940ed8
RC
7427 .writefn = tlbi_aa64_rvae1is_write },
7428 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7429 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
fe3ca86c 7430 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7431 .fgt = FGT_TLBIRVAE1OS,
84940ed8
RC
7432 .writefn = tlbi_aa64_rvae1is_write },
7433 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7434 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
fe3ca86c 7435 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7436 .fgt = FGT_TLBIRVAAE1OS,
84940ed8
RC
7437 .writefn = tlbi_aa64_rvae1is_write },
7438 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7439 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
fe3ca86c 7440 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7441 .fgt = FGT_TLBIRVALE1OS,
84940ed8
RC
7442 .writefn = tlbi_aa64_rvae1is_write },
7443 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7444 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
fe3ca86c 7445 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7446 .fgt = FGT_TLBIRVAALE1OS,
84940ed8
RC
7447 .writefn = tlbi_aa64_rvae1is_write },
7448 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7449 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
4870f38b 7450 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 7451 .fgt = FGT_TLBIRVAE1,
84940ed8
RC
7452 .writefn = tlbi_aa64_rvae1_write },
7453 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7454 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
4870f38b 7455 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 7456 .fgt = FGT_TLBIRVAAE1,
84940ed8
RC
7457 .writefn = tlbi_aa64_rvae1_write },
7458 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7459 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
4870f38b 7460 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 7461 .fgt = FGT_TLBIRVALE1,
84940ed8
RC
7462 .writefn = tlbi_aa64_rvae1_write },
7463 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7464 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
4870f38b 7465 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 7466 .fgt = FGT_TLBIRVAALE1,
84940ed8
RC
7467 .writefn = tlbi_aa64_rvae1_write },
7468 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7469 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
575a94af
RH
7470 .access = PL2_W, .type = ARM_CP_NO_RAW,
7471 .writefn = tlbi_aa64_ripas2e1is_write },
84940ed8
RC
7472 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7473 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
575a94af
RH
7474 .access = PL2_W, .type = ARM_CP_NO_RAW,
7475 .writefn = tlbi_aa64_ripas2e1is_write },
84940ed8
RC
7476 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7477 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
696ba377 7478 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
84940ed8
RC
7479 .writefn = tlbi_aa64_rvae2is_write },
7480 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7481 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
696ba377 7482 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
84940ed8
RC
7483 .writefn = tlbi_aa64_rvae2is_write },
7484 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7485 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
575a94af
RH
7486 .access = PL2_W, .type = ARM_CP_NO_RAW,
7487 .writefn = tlbi_aa64_ripas2e1_write },
7488 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
84940ed8 7489 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
575a94af
RH
7490 .access = PL2_W, .type = ARM_CP_NO_RAW,
7491 .writefn = tlbi_aa64_ripas2e1_write },
84940ed8
RC
7492 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7493 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
696ba377 7494 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
84940ed8
RC
7495 .writefn = tlbi_aa64_rvae2is_write },
7496 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7497 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
696ba377 7498 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
84940ed8
RC
7499 .writefn = tlbi_aa64_rvae2is_write },
7500 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7501 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
696ba377 7502 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
84940ed8
RC
7503 .writefn = tlbi_aa64_rvae2_write },
7504 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7505 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
696ba377 7506 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
84940ed8
RC
7507 .writefn = tlbi_aa64_rvae2_write },
7508 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7509 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7510 .access = PL3_W, .type = ARM_CP_NO_RAW,
7511 .writefn = tlbi_aa64_rvae3is_write },
7512 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7513 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7514 .access = PL3_W, .type = ARM_CP_NO_RAW,
7515 .writefn = tlbi_aa64_rvae3is_write },
7516 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7517 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7518 .access = PL3_W, .type = ARM_CP_NO_RAW,
7519 .writefn = tlbi_aa64_rvae3is_write },
7520 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7521 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7522 .access = PL3_W, .type = ARM_CP_NO_RAW,
7523 .writefn = tlbi_aa64_rvae3is_write },
7524 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7525 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7526 .access = PL3_W, .type = ARM_CP_NO_RAW,
7527 .writefn = tlbi_aa64_rvae3_write },
7528 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7529 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7530 .access = PL3_W, .type = ARM_CP_NO_RAW,
7531 .writefn = tlbi_aa64_rvae3_write },
84940ed8
RC
7532};
7533
7113d618
RC
7534static const ARMCPRegInfo tlbios_reginfo[] = {
7535 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7536 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
fe3ca86c 7537 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7538 .fgt = FGT_TLBIVMALLE1OS,
7113d618 7539 .writefn = tlbi_aa64_vmalle1is_write },
b7469ef9
IH
7540 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7541 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
bf2f0625 7542 .fgt = FGT_TLBIVAE1OS,
fe3ca86c 7543 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
b7469ef9 7544 .writefn = tlbi_aa64_vae1is_write },
7113d618
RC
7545 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7546 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
fe3ca86c 7547 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7548 .fgt = FGT_TLBIASIDE1OS,
7113d618 7549 .writefn = tlbi_aa64_vmalle1is_write },
b7469ef9
IH
7550 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7551 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
fe3ca86c 7552 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7553 .fgt = FGT_TLBIVAAE1OS,
b7469ef9
IH
7554 .writefn = tlbi_aa64_vae1is_write },
7555 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7556 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
fe3ca86c 7557 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7558 .fgt = FGT_TLBIVALE1OS,
b7469ef9
IH
7559 .writefn = tlbi_aa64_vae1is_write },
7560 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7561 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
fe3ca86c 7562 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7563 .fgt = FGT_TLBIVAALE1OS,
b7469ef9 7564 .writefn = tlbi_aa64_vae1is_write },
7113d618
RC
7565 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7566 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
696ba377 7567 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7113d618 7568 .writefn = tlbi_aa64_alle2is_write },
b7469ef9
IH
7569 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7570 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
696ba377 7571 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
b7469ef9 7572 .writefn = tlbi_aa64_vae2is_write },
7113d618
RC
7573 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7574 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7575 .access = PL2_W, .type = ARM_CP_NO_RAW,
7576 .writefn = tlbi_aa64_alle1is_write },
b7469ef9
IH
7577 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7578 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
696ba377 7579 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
b7469ef9 7580 .writefn = tlbi_aa64_vae2is_write },
7113d618
RC
7581 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7582 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7583 .access = PL2_W, .type = ARM_CP_NO_RAW,
7584 .writefn = tlbi_aa64_alle1is_write },
7585 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7586 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7587 .access = PL2_W, .type = ARM_CP_NOP },
7588 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7589 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7590 .access = PL2_W, .type = ARM_CP_NOP },
7591 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7592 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7593 .access = PL2_W, .type = ARM_CP_NOP },
7594 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7595 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7596 .access = PL2_W, .type = ARM_CP_NOP },
7597 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7598 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7599 .access = PL3_W, .type = ARM_CP_NO_RAW,
7600 .writefn = tlbi_aa64_alle3is_write },
b7469ef9
IH
7601 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7602 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7603 .access = PL3_W, .type = ARM_CP_NO_RAW,
7604 .writefn = tlbi_aa64_vae3is_write },
7605 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7606 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7607 .access = PL3_W, .type = ARM_CP_NO_RAW,
7608 .writefn = tlbi_aa64_vae3is_write },
7113d618
RC
7609};
7610
de390645
RH
7611static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7612{
7613 Error *err = NULL;
7614 uint64_t ret;
7615
7616 /* Success sets NZCV = 0000. */
7617 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7618
7619 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7620 /*
7621 * ??? Failed, for unknown reasons in the crypto subsystem.
7622 * The best we can do is log the reason and return the
7623 * timed-out indication to the guest. There is no reason
7624 * we know to expect this failure to be transitory, so the
7625 * guest may well hang retrying the operation.
7626 */
7627 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7628 ri->name, error_get_pretty(err));
7629 error_free(err);
7630
7631 env->ZF = 0; /* NZCF = 0100 */
7632 return 0;
7633 }
7634 return ret;
7635}
7636
7637/* We do not support re-seeding, so the two registers operate the same. */
7638static const ARMCPRegInfo rndr_reginfo[] = {
7639 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7640 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7641 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7642 .access = PL0_R, .readfn = rndr_readfn },
7643 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7644 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7645 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7646 .access = PL0_R, .readfn = rndr_readfn },
de390645 7647};
0d57b499 7648
0d57b499
BM
7649static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7650 uint64_t value)
7651{
7a3014a9 7652#ifdef CONFIG_TCG
0d57b499
BM
7653 ARMCPU *cpu = env_archcpu(env);
7654 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7655 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7656 uint64_t vaddr_in = (uint64_t) value;
7657 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7658 void *haddr;
7659 int mem_idx = cpu_mmu_index(env, false);
7660
7661 /* This won't be crossing page boundaries */
7662 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7663 if (haddr) {
cd4a47f9 7664#ifndef CONFIG_USER_ONLY
0d57b499
BM
7665
7666 ram_addr_t offset;
7667 MemoryRegion *mr;
7668
7669 /* RCU lock is already being held */
7670 mr = memory_region_from_host(haddr, &offset);
7671
7672 if (mr) {
4dfe59d1 7673 memory_region_writeback(mr, offset, dline_size);
0d57b499 7674 }
cd4a47f9 7675#endif /*CONFIG_USER_ONLY*/
0d57b499 7676 }
7a3014a9
PMD
7677#else
7678 /* Handled by hardware accelerator. */
7679 g_assert_not_reached();
7680#endif /* CONFIG_TCG */
0d57b499
BM
7681}
7682
7683static const ARMCPRegInfo dcpop_reg[] = {
7684 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7685 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7686 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
dd345653 7687 .fgt = FGT_DCCVAP,
1bed4d2e 7688 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
0d57b499
BM
7689};
7690
7691static const ARMCPRegInfo dcpodp_reg[] = {
7692 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7693 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7694 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
dd345653 7695 .fgt = FGT_DCCVADP,
1bed4d2e 7696 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
0d57b499 7697};
0d57b499 7698
4b779ceb
RH
7699static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7700 bool isread)
7701{
7702 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7703 return CP_ACCESS_TRAP_EL2;
7704 }
7705
7706 return CP_ACCESS_OK;
7707}
7708
7709static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7710 bool isread)
7711{
7712 int el = arm_current_el(env);
7713
0da067f2 7714 if (el < 2 && arm_is_el2_enabled(env)) {
4301acd7
RH
7715 uint64_t hcr = arm_hcr_el2_eff(env);
7716 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7717 return CP_ACCESS_TRAP_EL2;
7718 }
4b779ceb
RH
7719 }
7720 if (el < 3 &&
7721 arm_feature(env, ARM_FEATURE_EL3) &&
7722 !(env->cp15.scr_el3 & SCR_ATA)) {
7723 return CP_ACCESS_TRAP_EL3;
7724 }
7725 return CP_ACCESS_OK;
7726}
7727
7728static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7729{
7730 return env->pstate & PSTATE_TCO;
7731}
7732
7733static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7734{
7735 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7736}
7737
7738static const ARMCPRegInfo mte_reginfo[] = {
7739 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7740 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7741 .access = PL1_RW, .accessfn = access_mte,
7742 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7743 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7744 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7745 .access = PL1_RW, .accessfn = access_mte,
7746 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7747 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7748 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7749 .access = PL2_RW, .accessfn = access_mte,
7750 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7751 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7752 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7753 .access = PL3_RW,
7754 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7755 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7756 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7757 .access = PL1_RW, .accessfn = access_mte,
7758 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7759 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7760 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7761 .access = PL1_RW, .accessfn = access_mte,
7762 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
4b779ceb
RH
7763 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7764 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7765 .type = ARM_CP_NO_RAW,
7766 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
5463df16
RH
7767 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7768 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7769 .type = ARM_CP_NOP, .access = PL1_W,
dd345653 7770 .fgt = FGT_DCIVAC,
5463df16
RH
7771 .accessfn = aa64_cacheop_poc_access },
7772 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7773 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
dd345653 7774 .fgt = FGT_DCISW,
5463df16
RH
7775 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7776 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7777 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7778 .type = ARM_CP_NOP, .access = PL1_W,
dd345653 7779 .fgt = FGT_DCIVAC,
5463df16
RH
7780 .accessfn = aa64_cacheop_poc_access },
7781 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7782 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
dd345653 7783 .fgt = FGT_DCISW,
5463df16
RH
7784 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7785 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7786 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
dd345653 7787 .fgt = FGT_DCCSW,
5463df16
RH
7788 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7789 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7790 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
dd345653 7791 .fgt = FGT_DCCSW,
5463df16
RH
7792 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7793 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7794 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
dd345653 7795 .fgt = FGT_DCCISW,
5463df16
RH
7796 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7797 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7798 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
dd345653 7799 .fgt = FGT_DCCISW,
5463df16 7800 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
4b779ceb
RH
7801};
7802
7803static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7804 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7805 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7806 .type = ARM_CP_CONST, .access = PL0_RW, },
4b779ceb 7807};
5463df16
RH
7808
7809static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7810 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7811 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7812 .type = ARM_CP_NOP, .access = PL0_W,
950037e2 7813 .fgt = FGT_DCCVAC,
5463df16
RH
7814 .accessfn = aa64_cacheop_poc_access },
7815 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7816 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7817 .type = ARM_CP_NOP, .access = PL0_W,
950037e2 7818 .fgt = FGT_DCCVAC,
5463df16
RH
7819 .accessfn = aa64_cacheop_poc_access },
7820 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7821 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7822 .type = ARM_CP_NOP, .access = PL0_W,
dd345653 7823 .fgt = FGT_DCCVAP,
5463df16
RH
7824 .accessfn = aa64_cacheop_poc_access },
7825 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7826 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7827 .type = ARM_CP_NOP, .access = PL0_W,
dd345653 7828 .fgt = FGT_DCCVAP,
5463df16
RH
7829 .accessfn = aa64_cacheop_poc_access },
7830 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7831 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7832 .type = ARM_CP_NOP, .access = PL0_W,
dd345653 7833 .fgt = FGT_DCCVADP,
5463df16
RH
7834 .accessfn = aa64_cacheop_poc_access },
7835 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7836 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7837 .type = ARM_CP_NOP, .access = PL0_W,
dd345653 7838 .fgt = FGT_DCCVADP,
5463df16
RH
7839 .accessfn = aa64_cacheop_poc_access },
7840 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7841 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7842 .type = ARM_CP_NOP, .access = PL0_W,
dd345653 7843 .fgt = FGT_DCCIVAC,
5463df16
RH
7844 .accessfn = aa64_cacheop_poc_access },
7845 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7846 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7847 .type = ARM_CP_NOP, .access = PL0_W,
dd345653 7848 .fgt = FGT_DCCIVAC,
5463df16 7849 .accessfn = aa64_cacheop_poc_access },
eb821168
RH
7850 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7851 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7852 .access = PL0_W, .type = ARM_CP_DC_GVA,
7853#ifndef CONFIG_USER_ONLY
7854 /* Avoid overhead of an access check that always passes in user-mode */
7855 .accessfn = aa64_zva_access,
dd345653 7856 .fgt = FGT_DCZVA,
eb821168
RH
7857#endif
7858 },
7859 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7860 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7861 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7862#ifndef CONFIG_USER_ONLY
7863 /* Avoid overhead of an access check that always passes in user-mode */
7864 .accessfn = aa64_zva_access,
dd345653 7865 .fgt = FGT_DCZVA,
eb821168
RH
7866#endif
7867 },
5463df16
RH
7868};
7869
7cb1e618
RH
7870static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7871 bool isread)
7872{
7873 uint64_t hcr = arm_hcr_el2_eff(env);
7874 int el = arm_current_el(env);
7875
7876 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7877 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7878 if (hcr & HCR_TGE) {
7879 return CP_ACCESS_TRAP_EL2;
7880 }
7881 return CP_ACCESS_TRAP;
7882 }
7883 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7884 return CP_ACCESS_TRAP_EL2;
7885 }
7886 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7887 return CP_ACCESS_TRAP_EL2;
7888 }
7889 if (el < 3
7890 && arm_feature(env, ARM_FEATURE_EL3)
7891 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7892 return CP_ACCESS_TRAP_EL3;
7893 }
7894 return CP_ACCESS_OK;
7895}
7896
7897static const ARMCPRegInfo scxtnum_reginfo[] = {
7898 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7899 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7900 .access = PL0_RW, .accessfn = access_scxtnum,
67dd8030 7901 .fgt = FGT_SCXTNUM_EL0,
7cb1e618
RH
7902 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7903 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7904 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7905 .access = PL1_RW, .accessfn = access_scxtnum,
67dd8030 7906 .fgt = FGT_SCXTNUM_EL1,
7cb1e618
RH
7907 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7908 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7909 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7910 .access = PL2_RW, .accessfn = access_scxtnum,
7911 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7912 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7913 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7914 .access = PL3_RW,
7915 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7916};
15126d9c
PM
7917
7918static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7919 bool isread)
7920{
7921 if (arm_current_el(env) == 2 &&
7922 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7923 return CP_ACCESS_TRAP_EL3;
7924 }
7925 return CP_ACCESS_OK;
7926}
7927
7928static const ARMCPRegInfo fgt_reginfo[] = {
7929 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7930 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7931 .access = PL2_RW, .accessfn = access_fgt,
7932 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7933 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7934 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7935 .access = PL2_RW, .accessfn = access_fgt,
7936 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7937 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7938 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7939 .access = PL2_RW, .accessfn = access_fgt,
7940 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7941 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7942 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7943 .access = PL2_RW, .accessfn = access_fgt,
7944 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7945 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7946 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7947 .access = PL2_RW, .accessfn = access_fgt,
7948 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7949};
7cb1e618 7950#endif /* TARGET_AARCH64 */
967aa94f 7951
cb570bd3
RH
7952static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7953 bool isread)
7954{
7955 int el = arm_current_el(env);
7956
7957 if (el == 0) {
7958 uint64_t sctlr = arm_sctlr(env, el);
7959 if (!(sctlr & SCTLR_EnRCTX)) {
7960 return CP_ACCESS_TRAP;
7961 }
7962 } else if (el == 1) {
7963 uint64_t hcr = arm_hcr_el2_eff(env);
7964 if (hcr & HCR_NV) {
7965 return CP_ACCESS_TRAP_EL2;
7966 }
7967 }
7968 return CP_ACCESS_OK;
7969}
7970
7971static const ARMCPRegInfo predinv_reginfo[] = {
7972 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7973 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
950037e2 7974 .fgt = FGT_CFPRCTX,
cb570bd3
RH
7975 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7976 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7977 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
950037e2 7978 .fgt = FGT_DVPRCTX,
cb570bd3
RH
7979 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7980 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7981 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
950037e2 7982 .fgt = FGT_CPPRCTX,
cb570bd3
RH
7983 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7984 /*
7985 * Note the AArch32 opcodes have a different OPC1.
7986 */
7987 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7988 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
950037e2 7989 .fgt = FGT_CFPRCTX,
cb570bd3
RH
7990 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7991 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7992 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
950037e2 7993 .fgt = FGT_DVPRCTX,
cb570bd3
RH
7994 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7995 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7996 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
950037e2 7997 .fgt = FGT_CPPRCTX,
cb570bd3 7998 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
cb570bd3
RH
7999};
8000
957e6155
PM
8001static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8002{
8003 /* Read the high 32 bits of the current CCSIDR */
8004 return extract64(ccsidr_read(env, ri), 32, 32);
8005}
8006
8007static const ARMCPRegInfo ccsidr2_reginfo[] = {
8008 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8009 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8010 .access = PL1_R,
e2ce5fcd 8011 .accessfn = access_tid4,
957e6155 8012 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
957e6155
PM
8013};
8014
6a4ef4e5
MZ
8015static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8016 bool isread)
8017{
8018 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8019 return CP_ACCESS_TRAP_EL2;
8020 }
8021
8022 return CP_ACCESS_OK;
8023}
8024
8025static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8026 bool isread)
8027{
8028 if (arm_feature(env, ARM_FEATURE_V8)) {
8029 return access_aa64_tid3(env, ri, isread);
8030 }
8031
8032 return CP_ACCESS_OK;
8033}
8034
f96f3d5f
MZ
8035static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8036 bool isread)
8037{
8038 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8039 return CP_ACCESS_TRAP_EL2;
8040 }
8041
8042 return CP_ACCESS_OK;
8043}
8044
8e228c9e
PM
8045static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8046 const ARMCPRegInfo *ri, bool isread)
8047{
8048 /*
8049 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8050 * in v7A, not in v8A.
8051 */
8052 if (!arm_feature(env, ARM_FEATURE_V8) &&
8053 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8054 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8055 return CP_ACCESS_TRAP_EL2;
8056 }
8057 return CP_ACCESS_OK;
8058}
8059
f96f3d5f
MZ
8060static const ARMCPRegInfo jazelle_regs[] = {
8061 { .name = "JIDR",
8062 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8063 .access = PL1_R, .accessfn = access_jazelle,
8064 .type = ARM_CP_CONST, .resetvalue = 0 },
8065 { .name = "JOSCR",
8066 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8e228c9e 8067 .accessfn = access_joscr_jmcr,
f96f3d5f
MZ
8068 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8069 { .name = "JMCR",
8070 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8e228c9e 8071 .accessfn = access_joscr_jmcr,
f96f3d5f 8072 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
f96f3d5f
MZ
8073};
8074
52d18727
RH
8075static const ARMCPRegInfo contextidr_el2 = {
8076 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8077 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8078 .access = PL2_RW,
8079 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8080};
8081
e2a1a461 8082static const ARMCPRegInfo vhe_reginfo[] = {
ed30da8e
RH
8083 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8084 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8085 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
587f8b33 8086 .raw_writefn = raw_write,
ed30da8e 8087 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8c94b071
RH
8088#ifndef CONFIG_USER_ONLY
8089 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8090 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8091 .fieldoffset =
8092 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8093 .type = ARM_CP_IO, .access = PL2_RW,
8094 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8095 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8096 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8097 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8098 .resetfn = gt_hv_timer_reset,
8099 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8100 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8101 .type = ARM_CP_IO,
8102 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8103 .access = PL2_RW,
8104 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8105 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
bb5972e4
RH
8106 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8107 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8108 .type = ARM_CP_IO | ARM_CP_ALIAS,
8109 .access = PL2_RW, .accessfn = e2h_access,
8110 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8111 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8112 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8113 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8114 .type = ARM_CP_IO | ARM_CP_ALIAS,
8115 .access = PL2_RW, .accessfn = e2h_access,
8116 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8117 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8118 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8119 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8120 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8121 .access = PL2_RW, .accessfn = e2h_access,
8122 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8123 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8124 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8125 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8126 .access = PL2_RW, .accessfn = e2h_access,
8127 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8128 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8129 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8130 .type = ARM_CP_IO | ARM_CP_ALIAS,
8131 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8132 .access = PL2_RW, .accessfn = e2h_access,
8133 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8134 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8135 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8136 .type = ARM_CP_IO | ARM_CP_ALIAS,
8137 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8138 .access = PL2_RW, .accessfn = e2h_access,
8139 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8c94b071 8140#endif
e2a1a461
RH
8141};
8142
04b07d29
RH
8143#ifndef CONFIG_USER_ONLY
8144static const ARMCPRegInfo ats1e1_reginfo[] = {
3999d2d2 8145 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
04b07d29
RH
8146 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8147 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
132c98cd 8148 .fgt = FGT_ATS1E1RP,
1acd00ef 8149 .accessfn = at_e012_access, .writefn = ats_write64 },
3999d2d2 8150 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
04b07d29
RH
8151 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8152 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
132c98cd 8153 .fgt = FGT_ATS1E1WP,
1acd00ef 8154 .accessfn = at_e012_access, .writefn = ats_write64 },
04b07d29
RH
8155};
8156
8157static const ARMCPRegInfo ats1cp_reginfo[] = {
8158 { .name = "ATS1CPRP",
8159 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8160 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8161 .writefn = ats_write },
8162 { .name = "ATS1CPWP",
8163 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8164 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8165 .writefn = ats_write },
04b07d29
RH
8166};
8167#endif
8168
f6287c24
PM
8169/*
8170 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8171 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8172 * is non-zero, which is never for ARMv7, optionally in ARMv8
8173 * and mandatorily for ARMv8.2 and up.
8174 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8175 * implementation is RAZ/WI we can ignore this detail, as we
8176 * do for ACTLR.
8177 */
8178static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8179 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8180 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
99602377
RH
8181 .access = PL1_RW, .accessfn = access_tacr,
8182 .type = ARM_CP_CONST, .resetvalue = 0 },
f6287c24
PM
8183 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8184 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8185 .access = PL2_RW, .type = ARM_CP_CONST,
8186 .resetvalue = 0 },
f6287c24
PM
8187};
8188
2ceb98c0
PM
8189void register_cp_regs_for_features(ARMCPU *cpu)
8190{
8191 /* Register all the coprocessor registers based on feature bits */
8192 CPUARMState *env = &cpu->env;
8193 if (arm_feature(env, ARM_FEATURE_M)) {
8194 /* M profile has no coprocessor registers */
8195 return;
8196 }
8197
e9aa6c21 8198 define_arm_cp_regs(cpu, cp_reginfo);
9449fdf6 8199 if (!arm_feature(env, ARM_FEATURE_V8)) {
9b37a28c
FR
8200 /*
8201 * Must go early as it is full of wildcards that may be
9449fdf6
PM
8202 * overridden by later definitions.
8203 */
8204 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8205 }
8206
7d57f408 8207 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
8208 /* The ID registers all have impdef reset values */
8209 ARMCPRegInfo v6_idregs[] = {
0ff644a7
PM
8210 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8211 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8212 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8213 .accessfn = access_aa32_tid3,
8a130a7b 8214 .resetvalue = cpu->isar.id_pfr0 },
9b37a28c
FR
8215 /*
8216 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
96a8b92e
PM
8217 * the value of the GIC field until after we define these regs.
8218 */
0ff644a7
PM
8219 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8220 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
96a8b92e 8221 .access = PL1_R, .type = ARM_CP_NO_RAW,
6a4ef4e5 8222 .accessfn = access_aa32_tid3,
0f150c84
PMD
8223#ifdef CONFIG_USER_ONLY
8224 .type = ARM_CP_CONST,
8225 .resetvalue = cpu->isar.id_pfr1,
8226#else
8227 .type = ARM_CP_NO_RAW,
8228 .accessfn = access_aa32_tid3,
96a8b92e 8229 .readfn = id_pfr1_read,
0f150c84
PMD
8230 .writefn = arm_cp_write_ignore
8231#endif
8232 },
0ff644a7
PM
8233 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8234 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8235 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8236 .accessfn = access_aa32_tid3,
a6179538 8237 .resetvalue = cpu->isar.id_dfr0 },
0ff644a7
PM
8238 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8239 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8240 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8241 .accessfn = access_aa32_tid3,
8515a092 8242 .resetvalue = cpu->id_afr0 },
0ff644a7
PM
8243 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8244 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8245 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8246 .accessfn = access_aa32_tid3,
10054016 8247 .resetvalue = cpu->isar.id_mmfr0 },
0ff644a7
PM
8248 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8249 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8250 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8251 .accessfn = access_aa32_tid3,
10054016 8252 .resetvalue = cpu->isar.id_mmfr1 },
0ff644a7
PM
8253 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8254 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8255 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8256 .accessfn = access_aa32_tid3,
10054016 8257 .resetvalue = cpu->isar.id_mmfr2 },
0ff644a7
PM
8258 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8259 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8260 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8261 .accessfn = access_aa32_tid3,
10054016 8262 .resetvalue = cpu->isar.id_mmfr3 },
0ff644a7
PM
8263 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8264 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8265 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8266 .accessfn = access_aa32_tid3,
47576b94 8267 .resetvalue = cpu->isar.id_isar0 },
0ff644a7
PM
8268 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8269 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8270 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8271 .accessfn = access_aa32_tid3,
47576b94 8272 .resetvalue = cpu->isar.id_isar1 },
0ff644a7
PM
8273 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8274 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8275 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8276 .accessfn = access_aa32_tid3,
47576b94 8277 .resetvalue = cpu->isar.id_isar2 },
0ff644a7
PM
8278 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8279 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8280 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8281 .accessfn = access_aa32_tid3,
47576b94 8282 .resetvalue = cpu->isar.id_isar3 },
0ff644a7
PM
8283 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8284 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8285 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8286 .accessfn = access_aa32_tid3,
47576b94 8287 .resetvalue = cpu->isar.id_isar4 },
0ff644a7
PM
8288 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8289 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8290 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8291 .accessfn = access_aa32_tid3,
47576b94 8292 .resetvalue = cpu->isar.id_isar5 },
e20d84c1
PM
8293 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8294 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8295 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8296 .accessfn = access_aa32_tid3,
10054016 8297 .resetvalue = cpu->isar.id_mmfr4 },
802abf40 8298 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
e20d84c1
PM
8299 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8300 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8301 .accessfn = access_aa32_tid3,
47576b94 8302 .resetvalue = cpu->isar.id_isar6 },
8515a092
PM
8303 };
8304 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
8305 define_arm_cp_regs(cpu, v6_cp_reginfo);
8306 } else {
8307 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8308 }
4d31c596
PM
8309 if (arm_feature(env, ARM_FEATURE_V6K)) {
8310 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8311 }
5e5cf9e3 8312 if (arm_feature(env, ARM_FEATURE_V7MP) &&
452a0955 8313 !arm_feature(env, ARM_FEATURE_PMSA)) {
995939a6
PM
8314 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8315 }
327dd510
AL
8316 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8317 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8318 }
e9aa6c21 8319 if (arm_feature(env, ARM_FEATURE_V7)) {
776d4e5c 8320 ARMCPRegInfo clidr = {
7da845b0
PM
8321 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8322 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
630fcd4d 8323 .access = PL1_R, .type = ARM_CP_CONST,
e2ce5fcd 8324 .accessfn = access_tid4,
158c276c 8325 .fgt = FGT_CLIDR_EL1,
630fcd4d 8326 .resetvalue = cpu->clidr
776d4e5c 8327 };
776d4e5c 8328 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 8329 define_arm_cp_regs(cpu, v7_cp_reginfo);
50300698 8330 define_debug_regs(cpu);
24183fb6 8331 define_pmu_regs(cpu);
7d57f408
PM
8332 } else {
8333 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 8334 }
b0d2b7d0 8335 if (arm_feature(env, ARM_FEATURE_V8)) {
dde4d028
PM
8336 /*
8337 * v8 ID registers, which all have impdef reset values.
e20d84c1
PM
8338 * Note that within the ID register ranges the unused slots
8339 * must all RAZ, not UNDEF; future architecture versions may
8340 * define new registers here.
dde4d028
PM
8341 * ID registers which are AArch64 views of the AArch32 ID registers
8342 * which already existed in v6 and v7 are handled elsewhere,
8343 * in v6_idregs[].
e20d84c1 8344 */
dde4d028 8345 int i;
e60cef86 8346 ARMCPRegInfo v8_idregs[] = {
976b99b6
AB
8347 /*
8348 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8349 * emulation because we don't know the right value for the
8350 * GIC field until after we define these regs.
96a8b92e 8351 */
e60cef86
PM
8352 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8353 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
976b99b6
AB
8354 .access = PL1_R,
8355#ifdef CONFIG_USER_ONLY
8356 .type = ARM_CP_CONST,
8357 .resetvalue = cpu->isar.id_aa64pfr0
8358#else
8359 .type = ARM_CP_NO_RAW,
6a4ef4e5 8360 .accessfn = access_aa64_tid3,
96a8b92e 8361 .readfn = id_aa64pfr0_read,
976b99b6
AB
8362 .writefn = arm_cp_write_ignore
8363#endif
8364 },
e60cef86
PM
8365 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8366 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8367 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8368 .accessfn = access_aa64_tid3,
47576b94 8369 .resetvalue = cpu->isar.id_aa64pfr1},
e20d84c1
PM
8370 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8371 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8372 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8373 .accessfn = access_aa64_tid3,
e20d84c1
PM
8374 .resetvalue = 0 },
8375 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8376 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8377 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8378 .accessfn = access_aa64_tid3,
e20d84c1 8379 .resetvalue = 0 },
9516d772 8380 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
e20d84c1
PM
8381 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8382 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8383 .accessfn = access_aa64_tid3,
2dc10fa2 8384 .resetvalue = cpu->isar.id_aa64zfr0 },
414c54d5 8385 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
e20d84c1
PM
8386 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8387 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8388 .accessfn = access_aa64_tid3,
414c54d5 8389 .resetvalue = cpu->isar.id_aa64smfr0 },
e20d84c1
PM
8390 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8391 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8392 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8393 .accessfn = access_aa64_tid3,
e20d84c1
PM
8394 .resetvalue = 0 },
8395 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8396 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8397 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8398 .accessfn = access_aa64_tid3,
e20d84c1 8399 .resetvalue = 0 },
e60cef86
PM
8400 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8401 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8402 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8403 .accessfn = access_aa64_tid3,
2a609df8 8404 .resetvalue = cpu->isar.id_aa64dfr0 },
e60cef86
PM
8405 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8406 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8407 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8408 .accessfn = access_aa64_tid3,
2a609df8 8409 .resetvalue = cpu->isar.id_aa64dfr1 },
e20d84c1
PM
8410 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8411 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8412 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8413 .accessfn = access_aa64_tid3,
e20d84c1
PM
8414 .resetvalue = 0 },
8415 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8416 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8417 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8418 .accessfn = access_aa64_tid3,
e20d84c1 8419 .resetvalue = 0 },
e60cef86
PM
8420 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8421 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8422 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8423 .accessfn = access_aa64_tid3,
e60cef86
PM
8424 .resetvalue = cpu->id_aa64afr0 },
8425 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8426 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8427 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8428 .accessfn = access_aa64_tid3,
e60cef86 8429 .resetvalue = cpu->id_aa64afr1 },
e20d84c1
PM
8430 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8431 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8432 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8433 .accessfn = access_aa64_tid3,
e20d84c1
PM
8434 .resetvalue = 0 },
8435 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8436 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8437 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8438 .accessfn = access_aa64_tid3,
e20d84c1 8439 .resetvalue = 0 },
e60cef86
PM
8440 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8441 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8442 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8443 .accessfn = access_aa64_tid3,
47576b94 8444 .resetvalue = cpu->isar.id_aa64isar0 },
e60cef86
PM
8445 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8446 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8447 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8448 .accessfn = access_aa64_tid3,
47576b94 8449 .resetvalue = cpu->isar.id_aa64isar1 },
a969fe97 8450 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
e20d84c1
PM
8451 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8452 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8453 .accessfn = access_aa64_tid3,
a969fe97 8454 .resetvalue = cpu->isar.id_aa64isar2 },
e20d84c1
PM
8455 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8456 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8457 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8458 .accessfn = access_aa64_tid3,
e20d84c1
PM
8459 .resetvalue = 0 },
8460 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8461 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8462 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8463 .accessfn = access_aa64_tid3,
e20d84c1
PM
8464 .resetvalue = 0 },
8465 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8466 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8467 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8468 .accessfn = access_aa64_tid3,
e20d84c1
PM
8469 .resetvalue = 0 },
8470 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8471 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8472 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8473 .accessfn = access_aa64_tid3,
e20d84c1
PM
8474 .resetvalue = 0 },
8475 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8476 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8477 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8478 .accessfn = access_aa64_tid3,
e20d84c1 8479 .resetvalue = 0 },
e60cef86
PM
8480 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8481 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8482 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8483 .accessfn = access_aa64_tid3,
3dc91ddb 8484 .resetvalue = cpu->isar.id_aa64mmfr0 },
e60cef86
PM
8485 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8486 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8487 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8488 .accessfn = access_aa64_tid3,
3dc91ddb 8489 .resetvalue = cpu->isar.id_aa64mmfr1 },
64761e10 8490 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
e20d84c1
PM
8491 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8492 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8493 .accessfn = access_aa64_tid3,
64761e10 8494 .resetvalue = cpu->isar.id_aa64mmfr2 },
e20d84c1
PM
8495 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8496 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8497 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8498 .accessfn = access_aa64_tid3,
e20d84c1
PM
8499 .resetvalue = 0 },
8500 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8501 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8502 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8503 .accessfn = access_aa64_tid3,
e20d84c1
PM
8504 .resetvalue = 0 },
8505 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8506 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8507 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8508 .accessfn = access_aa64_tid3,
e20d84c1
PM
8509 .resetvalue = 0 },
8510 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8511 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8512 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8513 .accessfn = access_aa64_tid3,
e20d84c1
PM
8514 .resetvalue = 0 },
8515 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8516 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8517 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8518 .accessfn = access_aa64_tid3,
e20d84c1 8519 .resetvalue = 0 },
a50c0f51
PM
8520 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8521 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8522 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8523 .accessfn = access_aa64_tid3,
47576b94 8524 .resetvalue = cpu->isar.mvfr0 },
a50c0f51
PM
8525 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8526 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8527 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8528 .accessfn = access_aa64_tid3,
47576b94 8529 .resetvalue = cpu->isar.mvfr1 },
a50c0f51
PM
8530 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8531 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8532 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8533 .accessfn = access_aa64_tid3,
47576b94 8534 .resetvalue = cpu->isar.mvfr2 },
dde4d028
PM
8535 /*
8536 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8537 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8538 * as RAZ, since it is in the "reserved for future ID
8539 * registers, RAZ" part of the AArch32 encoding space.
8540 */
8541 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8542 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8543 .access = PL1_R, .type = ARM_CP_CONST,
8544 .accessfn = access_aa64_tid3,
8545 .resetvalue = 0 },
8546 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8547 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8548 .access = PL1_R, .type = ARM_CP_CONST,
8549 .accessfn = access_aa64_tid3,
8550 .resetvalue = 0 },
8551 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8552 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8553 .access = PL1_R, .type = ARM_CP_CONST,
8554 .accessfn = access_aa64_tid3,
8555 .resetvalue = 0 },
8556 /*
8557 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8558 * they're also RAZ for AArch64, and in v8 are gradually
8559 * being filled with AArch64-view-of-AArch32-ID-register
8560 * for new ID registers.
8561 */
8562 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
e20d84c1
PM
8563 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8564 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8565 .accessfn = access_aa64_tid3,
e20d84c1 8566 .resetvalue = 0 },
1d51bc96 8567 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
e20d84c1
PM
8568 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8569 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8570 .accessfn = access_aa64_tid3,
1d51bc96 8571 .resetvalue = cpu->isar.id_pfr2 },
d22c5649 8572 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
e20d84c1
PM
8573 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8574 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8575 .accessfn = access_aa64_tid3,
d22c5649 8576 .resetvalue = cpu->isar.id_dfr1 },
32957aad 8577 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
e20d84c1
PM
8578 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8579 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8580 .accessfn = access_aa64_tid3,
32957aad 8581 .resetvalue = cpu->isar.id_mmfr5 },
dde4d028 8582 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
e20d84c1
PM
8583 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8584 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8585 .accessfn = access_aa64_tid3,
e20d84c1 8586 .resetvalue = 0 },
4054bfa9
AF
8587 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8588 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8589 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
dc780233 8590 .fgt = FGT_PMCEIDN_EL0,
cad86737 8591 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
4054bfa9
AF
8592 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8593 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8594 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
dc780233 8595 .fgt = FGT_PMCEIDN_EL0,
4054bfa9
AF
8596 .resetvalue = cpu->pmceid0 },
8597 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8598 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8599 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
dc780233 8600 .fgt = FGT_PMCEIDN_EL0,
cad86737 8601 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
4054bfa9
AF
8602 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8603 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8604 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
dc780233 8605 .fgt = FGT_PMCEIDN_EL0,
4054bfa9 8606 .resetvalue = cpu->pmceid1 },
e60cef86 8607 };
6c5c0fec 8608#ifdef CONFIG_USER_ONLY
10b0220e 8609 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6c5c0fec 8610 { .name = "ID_AA64PFR0_EL1",
bc6bd20e
ZS
8611 .exported_bits = R_ID_AA64PFR0_FP_MASK |
8612 R_ID_AA64PFR0_ADVSIMD_MASK |
8613 R_ID_AA64PFR0_SVE_MASK |
8614 R_ID_AA64PFR0_DIT_MASK,
8615 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8616 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
6c5c0fec 8617 { .name = "ID_AA64PFR1_EL1",
bc6bd20e
ZS
8618 .exported_bits = R_ID_AA64PFR1_BT_MASK |
8619 R_ID_AA64PFR1_SSBS_MASK |
8620 R_ID_AA64PFR1_MTE_MASK |
8621 R_ID_AA64PFR1_SME_MASK },
d040242e 8622 { .name = "ID_AA64PFR*_EL1_RESERVED",
bc6bd20e
ZS
8623 .is_glob = true },
8624 { .name = "ID_AA64ZFR0_EL1",
8625 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8626 R_ID_AA64ZFR0_AES_MASK |
8627 R_ID_AA64ZFR0_BITPERM_MASK |
8628 R_ID_AA64ZFR0_BFLOAT16_MASK |
8629 R_ID_AA64ZFR0_SHA3_MASK |
8630 R_ID_AA64ZFR0_SM4_MASK |
8631 R_ID_AA64ZFR0_I8MM_MASK |
8632 R_ID_AA64ZFR0_F32MM_MASK |
8633 R_ID_AA64ZFR0_F64MM_MASK },
8634 { .name = "ID_AA64SMFR0_EL1",
8635 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
5f7b71fb 8636 R_ID_AA64SMFR0_BI32I32_MASK |
bc6bd20e
ZS
8637 R_ID_AA64SMFR0_B16F32_MASK |
8638 R_ID_AA64SMFR0_F16F32_MASK |
8639 R_ID_AA64SMFR0_I8I32_MASK |
5f7b71fb
PM
8640 R_ID_AA64SMFR0_F16F16_MASK |
8641 R_ID_AA64SMFR0_B16B16_MASK |
8642 R_ID_AA64SMFR0_I16I32_MASK |
bc6bd20e
ZS
8643 R_ID_AA64SMFR0_F64F64_MASK |
8644 R_ID_AA64SMFR0_I16I64_MASK |
5f7b71fb 8645 R_ID_AA64SMFR0_SMEVER_MASK |
bc6bd20e 8646 R_ID_AA64SMFR0_FA64_MASK },
6c5c0fec 8647 { .name = "ID_AA64MMFR0_EL1",
bc6bd20e
ZS
8648 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8649 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8650 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8651 { .name = "ID_AA64MMFR1_EL1",
8652 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8653 { .name = "ID_AA64MMFR2_EL1",
8654 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
d040242e 8655 { .name = "ID_AA64MMFR*_EL1_RESERVED",
bc6bd20e 8656 .is_glob = true },
6c5c0fec 8657 { .name = "ID_AA64DFR0_EL1",
bc6bd20e
ZS
8658 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8659 { .name = "ID_AA64DFR1_EL1" },
d040242e 8660 { .name = "ID_AA64DFR*_EL1_RESERVED",
bc6bd20e 8661 .is_glob = true },
d040242e 8662 { .name = "ID_AA64AFR*",
bc6bd20e 8663 .is_glob = true },
6c5c0fec 8664 { .name = "ID_AA64ISAR0_EL1",
bc6bd20e
ZS
8665 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8666 R_ID_AA64ISAR0_SHA1_MASK |
8667 R_ID_AA64ISAR0_SHA2_MASK |
8668 R_ID_AA64ISAR0_CRC32_MASK |
8669 R_ID_AA64ISAR0_ATOMIC_MASK |
8670 R_ID_AA64ISAR0_RDM_MASK |
8671 R_ID_AA64ISAR0_SHA3_MASK |
8672 R_ID_AA64ISAR0_SM3_MASK |
8673 R_ID_AA64ISAR0_SM4_MASK |
8674 R_ID_AA64ISAR0_DP_MASK |
8675 R_ID_AA64ISAR0_FHM_MASK |
8676 R_ID_AA64ISAR0_TS_MASK |
8677 R_ID_AA64ISAR0_RNDR_MASK },
6c5c0fec 8678 { .name = "ID_AA64ISAR1_EL1",
bc6bd20e
ZS
8679 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8680 R_ID_AA64ISAR1_APA_MASK |
8681 R_ID_AA64ISAR1_API_MASK |
8682 R_ID_AA64ISAR1_JSCVT_MASK |
8683 R_ID_AA64ISAR1_FCMA_MASK |
8684 R_ID_AA64ISAR1_LRCPC_MASK |
8685 R_ID_AA64ISAR1_GPA_MASK |
8686 R_ID_AA64ISAR1_GPI_MASK |
8687 R_ID_AA64ISAR1_FRINTTS_MASK |
8688 R_ID_AA64ISAR1_SB_MASK |
8689 R_ID_AA64ISAR1_BF16_MASK |
8690 R_ID_AA64ISAR1_DGH_MASK |
8691 R_ID_AA64ISAR1_I8MM_MASK },
8692 { .name = "ID_AA64ISAR2_EL1",
8693 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8694 R_ID_AA64ISAR2_RPRES_MASK |
8695 R_ID_AA64ISAR2_GPA3_MASK |
5f7b71fb
PM
8696 R_ID_AA64ISAR2_APA3_MASK |
8697 R_ID_AA64ISAR2_MOPS_MASK |
8698 R_ID_AA64ISAR2_BC_MASK |
8699 R_ID_AA64ISAR2_RPRFM_MASK |
8700 R_ID_AA64ISAR2_CSSC_MASK },
d040242e 8701 { .name = "ID_AA64ISAR*_EL1_RESERVED",
bc6bd20e 8702 .is_glob = true },
6c5c0fec
AB
8703 };
8704 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8705#endif
97198a7d
RH
8706 /*
8707 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
8708 * TODO: For RMR, a write with bit 1 set should do something with
8709 * cpu_reset(). In the meantime, "the bit is strictly a request",
8710 * so we are in spec just ignoring writes.
8711 */
be8e8128
GB
8712 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8713 !arm_feature(env, ARM_FEATURE_EL2)) {
97198a7d
RH
8714 ARMCPRegInfo el1_reset_regs[] = {
8715 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8716 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8717 .access = PL1_R,
8718 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8719 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
8720 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8721 .access = PL1_RW, .type = ARM_CP_CONST,
8722 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
be8e8128 8723 };
97198a7d 8724 define_arm_cp_regs(cpu, el1_reset_regs);
be8e8128 8725 }
e60cef86 8726 define_arm_cp_regs(cpu, v8_idregs);
b0d2b7d0 8727 define_arm_cp_regs(cpu, v8_cp_reginfo);
c36a0d57
PM
8728 if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
8729 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
8730 }
dde4d028
PM
8731
8732 for (i = 4; i < 16; i++) {
8733 /*
8734 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8735 * For pre-v8 cores there are RAZ patterns for these in
8736 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8737 * v8 extends the "must RAZ" part of the ID register space
8738 * to also cover c0, 0, c{8-15}, {0-7}.
8739 * These are STATE_AA32 because in the AArch64 sysreg space
8740 * c4-c7 is where the AArch64 ID registers live (and we've
8741 * already defined those in v8_idregs[]), and c8-c15 are not
8742 * "must RAZ" for AArch64.
8743 */
8744 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8745 ARMCPRegInfo v8_aa32_raz_idregs = {
8746 .name = name,
8747 .state = ARM_CP_STATE_AA32,
8748 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8749 .access = PL1_R, .type = ARM_CP_CONST,
8750 .accessfn = access_aa64_tid3,
8751 .resetvalue = 0 };
8752 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8753 }
b0d2b7d0 8754 }
99a90811
RH
8755
8756 /*
8757 * Register the base EL2 cpregs.
8758 * Pre v8, these registers are implemented only as part of the
8759 * Virtualization Extensions (EL2 present). Beginning with v8,
8760 * if EL2 is missing but EL3 is enabled, mostly these become
8761 * RES0 from EL3, with some specific exceptions.
8762 */
8763 if (arm_feature(env, ARM_FEATURE_EL2)
8764 || (arm_feature(env, ARM_FEATURE_EL3)
8765 && arm_feature(env, ARM_FEATURE_V8))) {
f0d574d6 8766 uint64_t vmpidr_def = mpidr_read_val(env);
731de9e6
EI
8767 ARMCPRegInfo vpidr_regs[] = {
8768 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8769 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8770 .access = PL2_RW, .accessfn = access_el3_aa32ns,
696ba377
RH
8771 .resetvalue = cpu->midr,
8772 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
36476562 8773 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
731de9e6
EI
8774 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8775 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8776 .access = PL2_RW, .resetvalue = cpu->midr,
696ba377 8777 .type = ARM_CP_EL3_NO_EL2_C_NZ,
731de9e6 8778 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
8779 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8780 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8781 .access = PL2_RW, .accessfn = access_el3_aa32ns,
696ba377
RH
8782 .resetvalue = vmpidr_def,
8783 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
36476562 8784 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
f0d574d6
EI
8785 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8786 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
696ba377
RH
8787 .access = PL2_RW, .resetvalue = vmpidr_def,
8788 .type = ARM_CP_EL3_NO_EL2_C_NZ,
f0d574d6 8789 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
731de9e6 8790 };
24526bb9
PM
8791 /*
8792 * The only field of MDCR_EL2 that has a defined architectural reset
8793 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8794 */
8795 ARMCPRegInfo mdcr_el2 = {
7f4fbfb5 8796 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
24526bb9 8797 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
01765386 8798 .writefn = mdcr_el2_write,
24526bb9
PM
8799 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8800 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8801 };
8802 define_one_arm_cp_reg(cpu, &mdcr_el2);
731de9e6 8803 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 8804 define_arm_cp_regs(cpu, el2_cp_reginfo);
ce4afed8
PM
8805 if (arm_feature(env, ARM_FEATURE_V8)) {
8806 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8807 }
e9152ee9
RDC
8808 if (cpu_isar_feature(aa64_sel2, cpu)) {
8809 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8810 }
97198a7d
RH
8811 /*
8812 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
8813 * See commentary near RMR_EL1.
8814 */
be8e8128 8815 if (!arm_feature(env, ARM_FEATURE_EL3)) {
97198a7d
RH
8816 static const ARMCPRegInfo el2_reset_regs[] = {
8817 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8818 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8819 .access = PL2_R,
8820 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8821 { .name = "RVBAR", .type = ARM_CP_ALIAS,
8822 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8823 .access = PL2_R,
8824 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8825 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
8826 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
8827 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
be8e8128 8828 };
97198a7d 8829 define_arm_cp_regs(cpu, el2_reset_regs);
be8e8128 8830 }
3b685ba7 8831 }
99a90811
RH
8832
8833 /* Register the base EL3 cpregs. */
81547d66 8834 if (arm_feature(env, ARM_FEATURE_EL3)) {
0f1a3b24 8835 define_arm_cp_regs(cpu, el3_cp_reginfo);
e24fdd23
PM
8836 ARMCPRegInfo el3_regs[] = {
8837 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8838 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4a7319b7 8839 .access = PL3_R,
97198a7d
RH
8840 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
8841 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
8842 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
8843 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8844 { .name = "RMR", .state = ARM_CP_STATE_AA32,
8845 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8846 .access = PL3_RW, .type = ARM_CP_CONST,
8847 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
e24fdd23
PM
8848 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8849 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8850 .access = PL3_RW,
8851 .raw_writefn = raw_write, .writefn = sctlr_write,
8852 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8853 .resetvalue = cpu->reset_sctlr },
be8e8128 8854 };
e24fdd23
PM
8855
8856 define_arm_cp_regs(cpu, el3_regs);
81547d66 8857 }
9b37a28c
FR
8858 /*
8859 * The behaviour of NSACR is sufficiently various that we don't
2f027fc5
PM
8860 * try to describe it in a single reginfo:
8861 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8862 * reads as constant 0xc00 from NS EL1 and NS EL2
8863 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8864 * if v7 without EL3, register doesn't exist
8865 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8866 */
8867 if (arm_feature(env, ARM_FEATURE_EL3)) {
8868 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
10b0220e 8869 static const ARMCPRegInfo nsacr = {
2f027fc5
PM
8870 .name = "NSACR", .type = ARM_CP_CONST,
8871 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8872 .access = PL1_RW, .accessfn = nsacr_access,
8873 .resetvalue = 0xc00
8874 };
8875 define_one_arm_cp_reg(cpu, &nsacr);
8876 } else {
10b0220e 8877 static const ARMCPRegInfo nsacr = {
2f027fc5
PM
8878 .name = "NSACR",
8879 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8880 .access = PL3_RW | PL1_R,
8881 .resetvalue = 0,
8882 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8883 };
8884 define_one_arm_cp_reg(cpu, &nsacr);
8885 }
8886 } else {
8887 if (arm_feature(env, ARM_FEATURE_V8)) {
10b0220e 8888 static const ARMCPRegInfo nsacr = {
2f027fc5
PM
8889 .name = "NSACR", .type = ARM_CP_CONST,
8890 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8891 .access = PL1_R,
8892 .resetvalue = 0xc00
8893 };
8894 define_one_arm_cp_reg(cpu, &nsacr);
8895 }
8896 }
8897
452a0955 8898 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6cb0b013
PC
8899 if (arm_feature(env, ARM_FEATURE_V6)) {
8900 /* PMSAv6 not implemented */
8901 assert(arm_feature(env, ARM_FEATURE_V7));
8902 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8903 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8904 } else {
8905 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8906 }
18032bec 8907 } else {
8e5d75c9 8908 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
18032bec 8909 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4036b7d1
PM
8910 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8911 if (cpu_isar_feature(aa32_hpd, cpu)) {
ab638a32
RH
8912 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8913 }
18032bec 8914 }
c326b979
PM
8915 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8916 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8917 }
6cc7a3ae
PM
8918 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8919 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8920 }
4a501606 8921 if (arm_feature(env, ARM_FEATURE_VAPA)) {
8ce4d441
AB
8922 ARMCPRegInfo vapa_cp_reginfo[] = {
8923 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
8924 .access = PL1_RW, .resetvalue = 0,
8925 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
8926 offsetoflow32(CPUARMState, cp15.par_ns) },
8927 .writefn = par_write},
8928#ifndef CONFIG_USER_ONLY
8929 /* This underdecoding is safe because the reginfo is NO_RAW. */
8930 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
8931 .access = PL1_W, .accessfn = ats_access,
8932 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
8933#endif
8934 };
8935
8936 /*
8937 * When LPAE exists this 32-bit PAR register is an alias of the
8938 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
8939 */
8940 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8941 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
8942 }
4a501606
PM
8943 define_arm_cp_regs(cpu, vapa_cp_reginfo);
8944 }
c4804214
PM
8945 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8946 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8947 }
8948 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8949 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8950 }
8951 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8952 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8953 }
18032bec
PM
8954 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8955 define_arm_cp_regs(cpu, omap_cp_reginfo);
8956 }
34f90529
PM
8957 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8958 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8959 }
1047b9d7
PM
8960 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8961 define_arm_cp_regs(cpu, xscale_cp_reginfo);
8962 }
8963 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8964 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8965 }
7ac681cf
PM
8966 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8967 define_arm_cp_regs(cpu, lpae_cp_reginfo);
8968 }
873b73c0 8969 if (cpu_isar_feature(aa32_jazelle, cpu)) {
f96f3d5f
MZ
8970 define_arm_cp_regs(cpu, jazelle_regs);
8971 }
9b37a28c
FR
8972 /*
8973 * Slightly awkwardly, the OMAP and StrongARM cores need all of
7884849c
PM
8974 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8975 * be read-only (ie write causes UNDEF exception).
8976 */
8977 {
00a29f3d 8978 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9b37a28c
FR
8979 /*
8980 * Pre-v8 MIDR space.
00a29f3d 8981 * Note that the MIDR isn't a simple constant register because
7884849c
PM
8982 * of the TI925 behaviour where writes to another register can
8983 * cause the MIDR value to change.
97ce8d61
PC
8984 *
8985 * Unimplemented registers in the c15 0 0 0 space default to
8986 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8987 * and friends override accordingly.
7884849c
PM
8988 */
8989 { .name = "MIDR",
97ce8d61 8990 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7884849c 8991 .access = PL1_R, .resetvalue = cpu->midr,
d4e6df63 8992 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
731de9e6 8993 .readfn = midr_read,
97ce8d61
PC
8994 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8995 .type = ARM_CP_OVERRIDE },
7884849c
PM
8996 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8997 { .name = "DUMMY",
8998 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8999 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9000 { .name = "DUMMY",
9001 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
9002 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9003 { .name = "DUMMY",
9004 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9005 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9006 { .name = "DUMMY",
9007 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9008 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9009 { .name = "DUMMY",
9010 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9011 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7884849c 9012 };
00a29f3d 9013 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
00a29f3d
PM
9014 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9015 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
731de9e6 9016 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
67dd8030 9017 .fgt = FGT_MIDR_EL1,
731de9e6
EI
9018 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9019 .readfn = midr_read },
c7f786ab 9020 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
ac00c79f
SF
9021 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9022 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9023 .access = PL1_R, .resetvalue = cpu->midr },
00a29f3d
PM
9024 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9025 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
93fbc983
MZ
9026 .access = PL1_R,
9027 .accessfn = access_aa64_tid1,
67dd8030 9028 .fgt = FGT_REVIDR_EL1,
93fbc983 9029 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
00a29f3d 9030 };
c7f786ab 9031 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
acd8e83a 9032 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
c7f786ab
TR
9033 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9034 .access = PL1_R, .resetvalue = cpu->midr
9035 };
00a29f3d
PM
9036 ARMCPRegInfo id_cp_reginfo[] = {
9037 /* These are common to v8 and pre-v8 */
9038 { .name = "CTR",
9039 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
630fcd4d
MZ
9040 .access = PL1_R, .accessfn = ctr_el0_access,
9041 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
00a29f3d
PM
9042 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9043 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9044 .access = PL0_R, .accessfn = ctr_el0_access,
b19ed03c 9045 .fgt = FGT_CTR_EL0,
00a29f3d
PM
9046 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9047 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9048 { .name = "TCMTR",
9049 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
93fbc983
MZ
9050 .access = PL1_R,
9051 .accessfn = access_aa32_tid1,
9052 .type = ARM_CP_CONST, .resetvalue = 0 },
00a29f3d 9053 };
8085ce63
PC
9054 /* TLBTR is specific to VMSA */
9055 ARMCPRegInfo id_tlbtr_reginfo = {
9056 .name = "TLBTR",
9057 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
93fbc983
MZ
9058 .access = PL1_R,
9059 .accessfn = access_aa32_tid1,
9060 .type = ARM_CP_CONST, .resetvalue = 0,
8085ce63 9061 };
3281af81
PC
9062 /* MPUIR is specific to PMSA V6+ */
9063 ARMCPRegInfo id_mpuir_reginfo = {
9064 .name = "MPUIR",
9065 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9066 .access = PL1_R, .type = ARM_CP_CONST,
9067 .resetvalue = cpu->pmsav7_dregion << 8
9068 };
761c4642
TR
9069 /* HMPUIR is specific to PMSA V8 */
9070 ARMCPRegInfo id_hmpuir_reginfo = {
9071 .name = "HMPUIR",
9072 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9073 .access = PL2_R, .type = ARM_CP_CONST,
9074 .resetvalue = cpu->pmsav8r_hdregion
9075 };
10b0220e 9076 static const ARMCPRegInfo crn0_wi_reginfo = {
7884849c
PM
9077 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9078 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9079 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9080 };
6c5c0fec 9081#ifdef CONFIG_USER_ONLY
10b0220e 9082 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6c5c0fec 9083 { .name = "MIDR_EL1",
bc6bd20e
ZS
9084 .exported_bits = R_MIDR_EL1_REVISION_MASK |
9085 R_MIDR_EL1_PARTNUM_MASK |
9086 R_MIDR_EL1_ARCHITECTURE_MASK |
9087 R_MIDR_EL1_VARIANT_MASK |
9088 R_MIDR_EL1_IMPLEMENTER_MASK },
9089 { .name = "REVIDR_EL1" },
6c5c0fec
AB
9090 };
9091 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9092#endif
7884849c
PM
9093 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9094 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5809ac57 9095 size_t i;
9b37a28c
FR
9096 /*
9097 * Register the blanket "writes ignored" value first to cover the
a703eda1
PC
9098 * whole space. Then update the specific ID registers to allow write
9099 * access, so that they ignore writes rather than causing them to
9100 * UNDEF.
7884849c
PM
9101 */
9102 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5809ac57
RH
9103 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9104 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
00a29f3d 9105 }
5809ac57
RH
9106 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9107 id_cp_reginfo[i].access = PL1_RW;
7884849c 9108 }
10006112 9109 id_mpuir_reginfo.access = PL1_RW;
3281af81 9110 id_tlbtr_reginfo.access = PL1_RW;
7884849c 9111 }
00a29f3d
PM
9112 if (arm_feature(env, ARM_FEATURE_V8)) {
9113 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
c7f786ab
TR
9114 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9115 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9116 }
00a29f3d
PM
9117 } else {
9118 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9119 }
a703eda1 9120 define_arm_cp_regs(cpu, id_cp_reginfo);
452a0955 9121 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8085ce63 9122 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
761c4642
TR
9123 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9124 arm_feature(env, ARM_FEATURE_V8)) {
9125 uint32_t i = 0;
9126 char *tmp_string;
9127
9128 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9129 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9130 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9131
9132 /* Register alias is only valid for first 32 indexes */
9133 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9134 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9135 uint8_t opc1 = extract32(i, 4, 1);
9136 uint8_t opc2 = extract32(i, 0, 1) << 2;
9137
9138 tmp_string = g_strdup_printf("PRBAR%u", i);
9139 ARMCPRegInfo tmp_prbarn_reginfo = {
9140 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9141 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9142 .access = PL1_RW, .resetvalue = 0,
9143 .accessfn = access_tvm_trvm,
9144 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9145 };
9146 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9147 g_free(tmp_string);
9148
9149 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9150 tmp_string = g_strdup_printf("PRLAR%u", i);
9151 ARMCPRegInfo tmp_prlarn_reginfo = {
9152 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9153 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9154 .access = PL1_RW, .resetvalue = 0,
9155 .accessfn = access_tvm_trvm,
9156 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9157 };
9158 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9159 g_free(tmp_string);
9160 }
9161
9162 /* Register alias is only valid for first 32 indexes */
9163 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9164 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9165 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9166 uint8_t opc2 = extract32(i, 0, 1) << 2;
9167
9168 tmp_string = g_strdup_printf("HPRBAR%u", i);
9169 ARMCPRegInfo tmp_hprbarn_reginfo = {
9170 .name = tmp_string,
9171 .type = ARM_CP_NO_RAW,
9172 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9173 .access = PL2_RW, .resetvalue = 0,
9174 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9175 };
9176 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9177 g_free(tmp_string);
9178
9179 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9180 tmp_string = g_strdup_printf("HPRLAR%u", i);
9181 ARMCPRegInfo tmp_hprlarn_reginfo = {
9182 .name = tmp_string,
9183 .type = ARM_CP_NO_RAW,
9184 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9185 .access = PL2_RW, .resetvalue = 0,
9186 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9187 };
9188 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9189 g_free(tmp_string);
9190 }
3281af81
PC
9191 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9192 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8085ce63 9193 }
7884849c
PM
9194 }
9195
97ce8d61 9196 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
52264166
AB
9197 ARMCPRegInfo mpidr_cp_reginfo[] = {
9198 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9199 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
67dd8030 9200 .fgt = FGT_MPIDR_EL1,
52264166 9201 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
52264166
AB
9202 };
9203#ifdef CONFIG_USER_ONLY
10b0220e 9204 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
52264166
AB
9205 { .name = "MPIDR_EL1",
9206 .fixed_bits = 0x0000000080000000 },
52264166
AB
9207 };
9208 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9209#endif
97ce8d61
PC
9210 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9211 }
9212
2771db27 9213 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
834a6c69
PM
9214 ARMCPRegInfo auxcr_reginfo[] = {
9215 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9216 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
99602377
RH
9217 .access = PL1_RW, .accessfn = access_tacr,
9218 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
834a6c69
PM
9219 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9220 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9221 .access = PL2_RW, .type = ARM_CP_CONST,
9222 .resetvalue = 0 },
9223 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9224 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9225 .access = PL3_RW, .type = ARM_CP_CONST,
9226 .resetvalue = 0 },
2771db27 9227 };
834a6c69 9228 define_arm_cp_regs(cpu, auxcr_reginfo);
f6287c24
PM
9229 if (cpu_isar_feature(aa32_ac2, cpu)) {
9230 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
0e0456ab 9231 }
2771db27
PM
9232 }
9233
d8ba780b 9234 if (arm_feature(env, ARM_FEATURE_CBAR)) {
d56974af
LM
9235 /*
9236 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9237 * There are two flavours:
9238 * (1) older 32-bit only cores have a simple 32-bit CBAR
9239 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9240 * 32-bit register visible to AArch32 at a different encoding
9241 * to the "flavour 1" register and with the bits rearranged to
9242 * be able to squash a 64-bit address into the 32-bit view.
9243 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9244 * in future if we support AArch32-only configs of some of the
9245 * AArch64 cores we might need to add a specific feature flag
9246 * to indicate cores with "flavour 2" CBAR.
9247 */
f318cec6
PM
9248 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9249 /* 32 bit view is [31:18] 0...0 [43:32]. */
9250 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9251 | extract64(cpu->reset_cbar, 32, 12);
9252 ARMCPRegInfo cbar_reginfo[] = {
9253 { .name = "CBAR",
9254 .type = ARM_CP_CONST,
d56974af
LM
9255 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9256 .access = PL1_R, .resetvalue = cbar32 },
f318cec6
PM
9257 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9258 .type = ARM_CP_CONST,
9259 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
d56974af 9260 .access = PL1_R, .resetvalue = cpu->reset_cbar },
f318cec6
PM
9261 };
9262 /* We don't implement a r/w 64 bit CBAR currently */
9263 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9264 define_arm_cp_regs(cpu, cbar_reginfo);
9265 } else {
9266 ARMCPRegInfo cbar = {
9267 .name = "CBAR",
9268 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
04215eb1 9269 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
f318cec6
PM
9270 .fieldoffset = offsetof(CPUARMState,
9271 cp15.c15_config_base_address)
9272 };
9273 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9274 cbar.access = PL1_R;
9275 cbar.fieldoffset = 0;
9276 cbar.type = ARM_CP_CONST;
9277 }
9278 define_one_arm_cp_reg(cpu, &cbar);
9279 }
d8ba780b
PC
9280 }
9281
91db4642 9282 if (arm_feature(env, ARM_FEATURE_VBAR)) {
10b0220e 9283 static const ARMCPRegInfo vbar_cp_reginfo[] = {
91db4642
CLG
9284 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9285 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9286 .access = PL1_RW, .writefn = vbar_write,
bd8db7d9 9287 .fgt = FGT_VBAR_EL1,
91db4642
CLG
9288 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9289 offsetof(CPUARMState, cp15.vbar_ns) },
9290 .resetvalue = 0 },
91db4642
CLG
9291 };
9292 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9293 }
9294
2771db27
PM
9295 /* Generic registers whose values depend on the implementation */
9296 {
9297 ARMCPRegInfo sctlr = {
5ebafdf3 9298 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
137feaa9 9299 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
84929218 9300 .access = PL1_RW, .accessfn = access_tvm_trvm,
67dd8030 9301 .fgt = FGT_SCTLR_EL1,
137feaa9
FA
9302 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9303 offsetof(CPUARMState, cp15.sctlr_ns) },
d4e6df63
PM
9304 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9305 .raw_writefn = raw_write,
2771db27
PM
9306 };
9307 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9b37a28c
FR
9308 /*
9309 * Normally we would always end the TB on an SCTLR write, but Linux
2771db27
PM
9310 * arch/arm/mach-pxa/sleep.S expects two instructions following
9311 * an MMU enable to execute from cache. Imitate this behaviour.
9312 */
9313 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9314 }
9315 define_one_arm_cp_reg(cpu, &sctlr);
761c4642
TR
9316
9317 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9318 arm_feature(env, ARM_FEATURE_V8)) {
9319 ARMCPRegInfo vsctlr = {
9320 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9321 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9322 .access = PL2_RW, .resetvalue = 0x0,
9323 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9324 };
9325 define_one_arm_cp_reg(cpu, &vsctlr);
9326 }
2771db27 9327 }
5be5e8ed 9328
2d7137c1 9329 if (cpu_isar_feature(aa64_lor, cpu)) {
2d7137c1
RH
9330 define_arm_cp_regs(cpu, lor_reginfo);
9331 }
220f508f
RH
9332 if (cpu_isar_feature(aa64_pan, cpu)) {
9333 define_one_arm_cp_reg(cpu, &pan_reginfo);
9334 }
04b07d29
RH
9335#ifndef CONFIG_USER_ONLY
9336 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9337 define_arm_cp_regs(cpu, ats1e1_reginfo);
9338 }
9339 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9340 define_arm_cp_regs(cpu, ats1cp_reginfo);
9341 }
9342#endif
9eeb7a1c
RH
9343 if (cpu_isar_feature(aa64_uao, cpu)) {
9344 define_one_arm_cp_reg(cpu, &uao_reginfo);
9345 }
2d7137c1 9346
dc8b1853
RC
9347 if (cpu_isar_feature(aa64_dit, cpu)) {
9348 define_one_arm_cp_reg(cpu, &dit_reginfo);
9349 }
f2f68a78
RC
9350 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9351 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9352 }
58e93b48
RH
9353 if (cpu_isar_feature(any_ras, cpu)) {
9354 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9355 }
dc8b1853 9356
52d18727
RH
9357 if (cpu_isar_feature(aa64_vh, cpu) ||
9358 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9359 define_one_arm_cp_reg(cpu, &contextidr_el2);
9360 }
e2a1a461
RH
9361 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9362 define_arm_cp_regs(cpu, vhe_reginfo);
9363 }
9364
cd208a1c 9365 if (cpu_isar_feature(aa64_sve, cpu)) {
60360d82 9366 define_arm_cp_regs(cpu, zcr_reginfo);
5be5e8ed 9367 }
967aa94f 9368
5814d587
RH
9369 if (cpu_isar_feature(aa64_hcx, cpu)) {
9370 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9371 }
9372
967aa94f 9373#ifdef TARGET_AARCH64
9e5ec745
RH
9374 if (cpu_isar_feature(aa64_sme, cpu)) {
9375 define_arm_cp_regs(cpu, sme_reginfo);
9376 }
967aa94f
RH
9377 if (cpu_isar_feature(aa64_pauth, cpu)) {
9378 define_arm_cp_regs(cpu, pauth_reginfo);
9379 }
de390645
RH
9380 if (cpu_isar_feature(aa64_rndr, cpu)) {
9381 define_arm_cp_regs(cpu, rndr_reginfo);
9382 }
84940ed8
RC
9383 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9384 define_arm_cp_regs(cpu, tlbirange_reginfo);
9385 }
7113d618
RC
9386 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9387 define_arm_cp_regs(cpu, tlbios_reginfo);
9388 }
0d57b499
BM
9389 /* Data Cache clean instructions up to PoP */
9390 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9391 define_one_arm_cp_reg(cpu, dcpop_reg);
9392
9393 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9394 define_one_arm_cp_reg(cpu, dcpodp_reg);
9395 }
9396 }
4b779ceb
RH
9397
9398 /*
9399 * If full MTE is enabled, add all of the system registers.
9400 * If only "instructions available at EL0" are enabled,
9401 * then define only a RAZ/WI version of PSTATE.TCO.
9402 */
9403 if (cpu_isar_feature(aa64_mte, cpu)) {
851ec6eb
RH
9404 ARMCPRegInfo gmid_reginfo = {
9405 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9406 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9407 .access = PL1_R, .accessfn = access_aa64_tid5,
9408 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9409 };
9410 define_one_arm_cp_reg(cpu, &gmid_reginfo);
4b779ceb 9411 define_arm_cp_regs(cpu, mte_reginfo);
5463df16 9412 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
4b779ceb
RH
9413 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9414 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
5463df16 9415 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
4b779ceb 9416 }
7cb1e618
RH
9417
9418 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9419 define_arm_cp_regs(cpu, scxtnum_reginfo);
9420 }
15126d9c
PM
9421
9422 if (cpu_isar_feature(aa64_fgt, cpu)) {
9423 define_arm_cp_regs(cpu, fgt_reginfo);
9424 }
ef1febe7
RH
9425
9426 if (cpu_isar_feature(aa64_rme, cpu)) {
9427 define_arm_cp_regs(cpu, rme_reginfo);
9428 if (cpu_isar_feature(aa64_mte, cpu)) {
9429 define_arm_cp_regs(cpu, rme_mte_reginfo);
9430 }
9431 }
967aa94f 9432#endif
cb570bd3 9433
22e57073 9434 if (cpu_isar_feature(any_predinv, cpu)) {
cb570bd3
RH
9435 define_arm_cp_regs(cpu, predinv_reginfo);
9436 }
e2cce18f 9437
957e6155
PM
9438 if (cpu_isar_feature(any_ccidx, cpu)) {
9439 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9440 }
9441
e2cce18f
RH
9442#ifndef CONFIG_USER_ONLY
9443 /*
9444 * Register redirections and aliases must be done last,
9445 * after the registers from the other extensions have been defined.
9446 */
9447 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9448 define_arm_vh_e2h_redirects_aliases(cpu);
9449 }
9450#endif
2ceb98c0
PM
9451}
9452
777dc784
PM
9453/* Sort alphabetically by type name, except for "any". */
9454static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 9455{
777dc784
PM
9456 ObjectClass *class_a = (ObjectClass *)a;
9457 ObjectClass *class_b = (ObjectClass *)b;
9458 const char *name_a, *name_b;
5adb4839 9459
777dc784
PM
9460 name_a = object_class_get_name(class_a);
9461 name_b = object_class_get_name(class_b);
51492fd1 9462 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 9463 return 1;
51492fd1 9464 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
9465 return -1;
9466 } else {
9467 return strcmp(name_a, name_b);
5adb4839
PB
9468 }
9469}
9470
777dc784 9471static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 9472{
777dc784 9473 ObjectClass *oc = data;
977c33ba 9474 CPUClass *cc = CPU_CLASS(oc);
51492fd1
AF
9475 const char *typename;
9476 char *name;
3371d272 9477
51492fd1
AF
9478 typename = object_class_get_name(oc);
9479 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
977c33ba
DB
9480 if (cc->deprecation_note) {
9481 qemu_printf(" %s (deprecated)\n", name);
9482 } else {
9483 qemu_printf(" %s\n", name);
9484 }
51492fd1 9485 g_free(name);
777dc784
PM
9486}
9487
0442428a 9488void arm_cpu_list(void)
777dc784 9489{
777dc784
PM
9490 GSList *list;
9491
9492 list = object_class_get_list(TYPE_ARM_CPU, false);
9493 list = g_slist_sort(list, arm_cpu_list_compare);
0442428a
MA
9494 qemu_printf("Available CPUs:\n");
9495 g_slist_foreach(list, arm_cpu_list_entry, NULL);
777dc784 9496 g_slist_free(list);
40f137e1
PB
9497}
9498
1859f8c3
RH
9499/*
9500 * Private utility function for define_one_arm_cp_reg_with_opaque():
9501 * add a single reginfo struct to the hash table.
9502 */
6e6efd61 9503static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
cbe64585
RH
9504 void *opaque, CPState state,
9505 CPSecureState secstate,
9c513e78
AB
9506 int crm, int opc1, int opc2,
9507 const char *name)
6e6efd61 9508{
696ba377 9509 CPUARMState *env = &cpu->env;
5860362d 9510 uint32_t key;
c27f5d3a 9511 ARMCPRegInfo *r2;
4c8c4541
RH
9512 bool is64 = r->type & ARM_CP_64BIT;
9513 bool ns = secstate & ARM_CP_SECSTATE_NS;
cac65299 9514 int cp = r->cp;
c27f5d3a 9515 size_t name_len;
696ba377 9516 bool make_const;
c27f5d3a 9517
cac65299
RH
9518 switch (state) {
9519 case ARM_CP_STATE_AA32:
9520 /* We assume it is a cp15 register if the .cp field is left unset. */
9521 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9522 cp = 15;
9523 }
9524 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9525 break;
9526 case ARM_CP_STATE_AA64:
9527 /*
9528 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9529 * cp == 0 as equivalent to the value for "standard guest-visible
9530 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9531 * in their AArch64 view (the .cp value may be non-zero for the
9532 * benefit of the AArch32 view).
9533 */
9534 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9535 cp = CP_REG_ARM64_SYSREG_CP;
9536 }
9537 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9538 break;
9539 default:
9540 g_assert_not_reached();
9541 }
9542
dc44545b
RH
9543 /* Overriding of an existing definition must be explicitly requested. */
9544 if (!(r->type & ARM_CP_OVERRIDE)) {
9545 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9546 if (oldreg) {
9547 assert(oldreg->type & ARM_CP_OVERRIDE);
9548 }
9549 }
9550
696ba377
RH
9551 /*
9552 * Eliminate registers that are not present because the EL is missing.
9553 * Doing this here makes it easier to put all registers for a given
9554 * feature into the same ARMCPRegInfo array and define them all at once.
9555 */
9556 make_const = false;
9557 if (arm_feature(env, ARM_FEATURE_EL3)) {
9558 /*
9559 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9560 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9561 */
9562 int min_el = ctz32(r->access) / 2;
9563 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9564 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9565 return;
9566 }
9567 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9568 }
9569 } else {
9570 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9571 ? PL2_RW : PL1_RW);
9572 if ((r->access & max_el) == 0) {
9573 return;
9574 }
9575 }
9576
c27f5d3a
RH
9577 /* Combine cpreg and name into one allocation. */
9578 name_len = strlen(name) + 1;
9579 r2 = g_malloc(sizeof(*r2) + name_len);
9580 *r2 = *r;
9581 r2->name = memcpy(r2 + 1, name, name_len);
3f3c82a5 9582
cc946d96
RH
9583 /*
9584 * Update fields to match the instantiation, overwiting wildcards
9585 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
3f3c82a5 9586 */
cc946d96
RH
9587 r2->cp = cp;
9588 r2->crm = crm;
9589 r2->opc1 = opc1;
9590 r2->opc2 = opc2;
9591 r2->state = state;
3f3c82a5 9592 r2->secure = secstate;
cc946d96
RH
9593 if (opaque) {
9594 r2->opaque = opaque;
9595 }
3f3c82a5 9596
696ba377
RH
9597 if (make_const) {
9598 /* This should not have been a very special register to begin. */
9599 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9600 assert(old_special == 0 || old_special == ARM_CP_NOP);
1859f8c3 9601 /*
696ba377
RH
9602 * Set the special function to CONST, retaining the other flags.
9603 * This is important for e.g. ARM_CP_SVE so that we still
9604 * take the SVE trap if CPTR_EL3.EZ == 0.
f5a0a5a5 9605 */
696ba377
RH
9606 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9607 /*
9608 * Usually, these registers become RES0, but there are a few
9609 * special cases like VPIDR_EL2 which have a constant non-zero
9610 * value with writes ignored.
9611 */
9612 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9613 r2->resetvalue = 0;
9614 }
9615 /*
9616 * ARM_CP_CONST has precedence, so removing the callbacks and
9617 * offsets are not strictly necessary, but it is potentially
9618 * less confusing to debug later.
9619 */
9620 r2->readfn = NULL;
9621 r2->writefn = NULL;
9622 r2->raw_readfn = NULL;
9623 r2->raw_writefn = NULL;
9624 r2->resetfn = NULL;
9625 r2->fieldoffset = 0;
9626 r2->bank_fieldoffsets[0] = 0;
9627 r2->bank_fieldoffsets[1] = 0;
9628 } else {
9629 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
3f3c82a5 9630
10748a96 9631 if (isbanked) {
1859f8c3 9632 /*
696ba377
RH
9633 * Register is banked (using both entries in array).
9634 * Overwriting fieldoffset as the array is only used to define
9635 * banked registers but later only fieldoffset is used.
3f3c82a5 9636 */
696ba377
RH
9637 r2->fieldoffset = r->bank_fieldoffsets[ns];
9638 }
9639 if (state == ARM_CP_STATE_AA32) {
9640 if (isbanked) {
9641 /*
9642 * If the register is banked then we don't need to migrate or
9643 * reset the 32-bit instance in certain cases:
9644 *
9645 * 1) If the register has both 32-bit and 64-bit instances
9646 * then we can count on the 64-bit instance taking care
9647 * of the non-secure bank.
9648 * 2) If ARMv8 is enabled then we can count on a 64-bit
9649 * version taking care of the secure bank. This requires
9650 * that separate 32 and 64-bit definitions are provided.
9651 */
9652 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9653 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9654 r2->type |= ARM_CP_ALIAS;
9655 }
9656 } else if ((secstate != r->secure) && !ns) {
9657 /*
9658 * The register is not banked so we only want to allow
9659 * migration of the non-secure instance.
9660 */
7a0e58fa 9661 r2->type |= ARM_CP_ALIAS;
3f3c82a5 9662 }
3f3c82a5 9663
696ba377
RH
9664 if (HOST_BIG_ENDIAN &&
9665 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9666 r2->fieldoffset += sizeof(uint32_t);
9667 }
3f3c82a5 9668 }
f5a0a5a5 9669 }
cc946d96 9670
1859f8c3
RH
9671 /*
9672 * By convention, for wildcarded registers only the first
6e6efd61 9673 * entry is used for migration; the others are marked as
7a0e58fa 9674 * ALIAS so we don't try to transfer the register
6e6efd61 9675 * multiple times. Special registers (ie NOP/WFI) are
7a0e58fa 9676 * never migratable and not even raw-accessible.
6e6efd61 9677 */
696ba377 9678 if (r2->type & ARM_CP_SPECIAL_MASK) {
7a0e58fa
PM
9679 r2->type |= ARM_CP_NO_RAW;
9680 }
9681 if (((r->crm == CP_ANY) && crm != 0) ||
6e6efd61
PM
9682 ((r->opc1 == CP_ANY) && opc1 != 0) ||
9683 ((r->opc2 == CP_ANY) && opc2 != 0)) {
1f163787 9684 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6e6efd61
PM
9685 }
9686
1859f8c3
RH
9687 /*
9688 * Check that raw accesses are either forbidden or handled. Note that
375421cc
PM
9689 * we can't assert this earlier because the setup of fieldoffset for
9690 * banked registers has to be done first.
9691 */
9692 if (!(r2->type & ARM_CP_NO_RAW)) {
9693 assert(!raw_accessors_invalid(r2));
9694 }
9695
5860362d 9696 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
6e6efd61
PM
9697}
9698
9699
4b6a83fb
PM
9700void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9701 const ARMCPRegInfo *r, void *opaque)
9702{
9b37a28c
FR
9703 /*
9704 * Define implementations of coprocessor registers.
4b6a83fb
PM
9705 * We store these in a hashtable because typically
9706 * there are less than 150 registers in a space which
9707 * is 16*16*16*8*8 = 262144 in size.
9708 * Wildcarding is supported for the crm, opc1 and opc2 fields.
9709 * If a register is defined twice then the second definition is
9710 * used, so this can be used to define some generic registers and
9711 * then override them with implementation specific variations.
9712 * At least one of the original and the second definition should
9713 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9714 * against accidental use.
f5a0a5a5
PM
9715 *
9716 * The state field defines whether the register is to be
9717 * visible in the AArch32 or AArch64 execution state. If the
9718 * state is set to ARM_CP_STATE_BOTH then we synthesise a
9719 * reginfo structure for the AArch32 view, which sees the lower
9720 * 32 bits of the 64 bit register.
9721 *
9722 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9723 * be wildcarded. AArch64 registers are always considered to be 64
9724 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9725 * the register, if any.
4b6a83fb 9726 */
d95101d6 9727 int crm, opc1, opc2;
4b6a83fb
PM
9728 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9729 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9730 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9731 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9732 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9733 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
d95101d6
RH
9734 CPState state;
9735
4b6a83fb
PM
9736 /* 64 bit registers have only CRm and Opc1 fields */
9737 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
f5a0a5a5
PM
9738 /* op0 only exists in the AArch64 encodings */
9739 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9740 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9741 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
cd8be50e
PM
9742 /*
9743 * This API is only for Arm's system coprocessors (14 and 15) or
9744 * (M-profile or v7A-and-earlier only) for implementation defined
9745 * coprocessors in the range 0..7. Our decode assumes this, since
9746 * 8..13 can be used for other insns including VFP and Neon. See
9747 * valid_cp() in translate.c. Assert here that we haven't tried
9748 * to use an invalid coprocessor number.
9749 */
9750 switch (r->state) {
9751 case ARM_CP_STATE_BOTH:
9752 /* 0 has a special meaning, but otherwise the same rules as AA32. */
9753 if (r->cp == 0) {
9754 break;
9755 }
9756 /* fall through */
9757 case ARM_CP_STATE_AA32:
9758 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9759 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9760 assert(r->cp >= 14 && r->cp <= 15);
9761 } else {
9762 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9763 }
9764 break;
9765 case ARM_CP_STATE_AA64:
9766 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9767 break;
9768 default:
9769 g_assert_not_reached();
9770 }
9b37a28c
FR
9771 /*
9772 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
f5a0a5a5
PM
9773 * encodes a minimum access level for the register. We roll this
9774 * runtime check into our general permission check code, so check
9775 * here that the reginfo's specified permissions are strict enough
9776 * to encompass the generic architectural permission check.
9777 */
9778 if (r->state != ARM_CP_STATE_AA32) {
39107337 9779 CPAccessRights mask;
f5a0a5a5 9780 switch (r->opc1) {
b5bd7440
AB
9781 case 0:
9782 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9783 mask = PL0U_R | PL1_RW;
9784 break;
9785 case 1: case 2:
f5a0a5a5
PM
9786 /* min_EL EL1 */
9787 mask = PL1_RW;
9788 break;
9789 case 3:
9790 /* min_EL EL0 */
9791 mask = PL0_RW;
9792 break;
9793 case 4:
b4ecf60f 9794 case 5:
f5a0a5a5
PM
9795 /* min_EL EL2 */
9796 mask = PL2_RW;
9797 break;
f5a0a5a5
PM
9798 case 6:
9799 /* min_EL EL3 */
9800 mask = PL3_RW;
9801 break;
9802 case 7:
9803 /* min_EL EL1, secure mode only (we don't check the latter) */
9804 mask = PL1_RW;
9805 break;
9806 default:
9807 /* broken reginfo with out-of-range opc1 */
d385a605 9808 g_assert_not_reached();
f5a0a5a5
PM
9809 }
9810 /* assert our permissions are not too lax (stricter is fine) */
9811 assert((r->access & ~mask) == 0);
9812 }
9813
9b37a28c
FR
9814 /*
9815 * Check that the register definition has enough info to handle
4b6a83fb
PM
9816 * reads and writes if they are permitted.
9817 */
87c3f0f2 9818 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
4b6a83fb 9819 if (r->access & PL3_R) {
3f3c82a5
FA
9820 assert((r->fieldoffset ||
9821 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9822 r->readfn);
4b6a83fb
PM
9823 }
9824 if (r->access & PL3_W) {
3f3c82a5
FA
9825 assert((r->fieldoffset ||
9826 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9827 r->writefn);
4b6a83fb
PM
9828 }
9829 }
5809ac57 9830
4b6a83fb
PM
9831 for (crm = crmmin; crm <= crmmax; crm++) {
9832 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9833 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
f5a0a5a5
PM
9834 for (state = ARM_CP_STATE_AA32;
9835 state <= ARM_CP_STATE_AA64; state++) {
9836 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9837 continue;
9838 }
3f3c82a5 9839 if (state == ARM_CP_STATE_AA32) {
9b37a28c
FR
9840 /*
9841 * Under AArch32 CP registers can be common
3f3c82a5
FA
9842 * (same for secure and non-secure world) or banked.
9843 */
9c513e78
AB
9844 char *name;
9845
3f3c82a5
FA
9846 switch (r->secure) {
9847 case ARM_CP_SECSTATE_S:
9848 case ARM_CP_SECSTATE_NS:
9849 add_cpreg_to_hashtable(cpu, r, opaque, state,
9c513e78
AB
9850 r->secure, crm, opc1, opc2,
9851 r->name);
3f3c82a5 9852 break;
cbe64585 9853 case ARM_CP_SECSTATE_BOTH:
9c513e78 9854 name = g_strdup_printf("%s_S", r->name);
3f3c82a5
FA
9855 add_cpreg_to_hashtable(cpu, r, opaque, state,
9856 ARM_CP_SECSTATE_S,
9c513e78
AB
9857 crm, opc1, opc2, name);
9858 g_free(name);
3f3c82a5
FA
9859 add_cpreg_to_hashtable(cpu, r, opaque, state,
9860 ARM_CP_SECSTATE_NS,
9c513e78 9861 crm, opc1, opc2, r->name);
3f3c82a5 9862 break;
cbe64585
RH
9863 default:
9864 g_assert_not_reached();
3f3c82a5
FA
9865 }
9866 } else {
9b37a28c
FR
9867 /*
9868 * AArch64 registers get mapped to non-secure instance
9869 * of AArch32
9870 */
3f3c82a5
FA
9871 add_cpreg_to_hashtable(cpu, r, opaque, state,
9872 ARM_CP_SECSTATE_NS,
9c513e78 9873 crm, opc1, opc2, r->name);
3f3c82a5 9874 }
f5a0a5a5 9875 }
4b6a83fb
PM
9876 }
9877 }
9878 }
9879}
9880
5809ac57
RH
9881/* Define a whole list of registers */
9882void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9883 void *opaque, size_t len)
4b6a83fb 9884{
5809ac57
RH
9885 size_t i;
9886 for (i = 0; i < len; ++i) {
9887 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
4b6a83fb
PM
9888 }
9889}
9890
6c5c0fec
AB
9891/*
9892 * Modify ARMCPRegInfo for access from userspace.
9893 *
9894 * This is a data driven modification directed by
9895 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9896 * user-space cannot alter any values and dynamic values pertaining to
9897 * execution state are hidden from user space view anyway.
9898 */
5809ac57
RH
9899void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9900 const ARMCPRegUserSpaceInfo *mods,
9901 size_t mods_len)
6c5c0fec 9902{
5809ac57
RH
9903 for (size_t mi = 0; mi < mods_len; ++mi) {
9904 const ARMCPRegUserSpaceInfo *m = mods + mi;
d040242e 9905 GPatternSpec *pat = NULL;
5809ac57 9906
d040242e
AB
9907 if (m->is_glob) {
9908 pat = g_pattern_spec_new(m->name);
9909 }
5809ac57
RH
9910 for (size_t ri = 0; ri < regs_len; ++ri) {
9911 ARMCPRegInfo *r = regs + ri;
9912
d040242e
AB
9913 if (pat && g_pattern_match_string(pat, r->name)) {
9914 r->type = ARM_CP_CONST;
9915 r->access = PL0U_R;
9916 r->resetvalue = 0;
9917 /* continue */
9918 } else if (strcmp(r->name, m->name) == 0) {
6c5c0fec
AB
9919 r->type = ARM_CP_CONST;
9920 r->access = PL0U_R;
9921 r->resetvalue &= m->exported_bits;
9922 r->resetvalue |= m->fixed_bits;
9923 break;
9924 }
9925 }
d040242e
AB
9926 if (pat) {
9927 g_pattern_spec_free(pat);
9928 }
6c5c0fec
AB
9929 }
9930}
9931
60322b39 9932const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4b6a83fb 9933{
5860362d 9934 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
4b6a83fb
PM
9935}
9936
c4241c7d
PM
9937void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9938 uint64_t value)
4b6a83fb
PM
9939{
9940 /* Helper coprocessor write function for write-ignore registers */
4b6a83fb
PM
9941}
9942
c4241c7d 9943uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4b6a83fb
PM
9944{
9945 /* Helper coprocessor write function for read-as-zero registers */
4b6a83fb
PM
9946 return 0;
9947}
9948
f5a0a5a5
PM
9949void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9950{
9951 /* Helper coprocessor reset function for do-nothing-on-reset registers */
9952}
9953
af393ffc 9954static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
37064a8b 9955{
9b37a28c
FR
9956 /*
9957 * Return true if it is not valid for us to switch to
37064a8b
PM
9958 * this CPU mode (ie all the UNPREDICTABLE cases in
9959 * the ARM ARM CPSRWriteByInstr pseudocode).
9960 */
af393ffc
PM
9961
9962 /* Changes to or from Hyp via MSR and CPS are illegal. */
9963 if (write_type == CPSRWriteByInstr &&
9964 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9965 mode == ARM_CPU_MODE_HYP)) {
9966 return 1;
9967 }
9968
37064a8b
PM
9969 switch (mode) {
9970 case ARM_CPU_MODE_USR:
10eacda7 9971 return 0;
37064a8b
PM
9972 case ARM_CPU_MODE_SYS:
9973 case ARM_CPU_MODE_SVC:
9974 case ARM_CPU_MODE_ABT:
9975 case ARM_CPU_MODE_UND:
9976 case ARM_CPU_MODE_IRQ:
9977 case ARM_CPU_MODE_FIQ:
9b37a28c
FR
9978 /*
9979 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
52ff951b
PM
9980 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9981 */
9b37a28c
FR
9982 /*
9983 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10eacda7
PM
9984 * and CPS are treated as illegal mode changes.
9985 */
9986 if (write_type == CPSRWriteByInstr &&
10eacda7 9987 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7c208e0f 9988 (arm_hcr_el2_eff(env) & HCR_TGE)) {
10eacda7
PM
9989 return 1;
9990 }
37064a8b 9991 return 0;
e6c8fc07 9992 case ARM_CPU_MODE_HYP:
e6ef0169 9993 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
027fc527 9994 case ARM_CPU_MODE_MON:
58ae2d1f 9995 return arm_current_el(env) < 3;
37064a8b
PM
9996 default:
9997 return 1;
9998 }
9999}
10000
2f4a40e5
AZ
10001uint32_t cpsr_read(CPUARMState *env)
10002{
10003 int ZF;
6fbe23d5
PB
10004 ZF = (env->ZF == 0);
10005 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
10006 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10007 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10008 | ((env->condexec_bits & 0xfc) << 8)
af519934 10009 | (env->GE << 16) | (env->daif & CPSR_AIF);
2f4a40e5
AZ
10010}
10011
50866ba5
PM
10012void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10013 CPSRWriteType write_type)
2f4a40e5 10014{
6e8801f9 10015 uint32_t changed_daif;
e784807c
PM
10016 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10017 (mask & (CPSR_M | CPSR_E | CPSR_IL));
6e8801f9 10018
2f4a40e5 10019 if (mask & CPSR_NZCV) {
6fbe23d5
PB
10020 env->ZF = (~val) & CPSR_Z;
10021 env->NF = val;
2f4a40e5
AZ
10022 env->CF = (val >> 29) & 1;
10023 env->VF = (val << 3) & 0x80000000;
10024 }
f927dbda 10025 if (mask & CPSR_Q) {
2f4a40e5 10026 env->QF = ((val & CPSR_Q) != 0);
f927dbda
FR
10027 }
10028 if (mask & CPSR_T) {
2f4a40e5 10029 env->thumb = ((val & CPSR_T) != 0);
f927dbda 10030 }
2f4a40e5
AZ
10031 if (mask & CPSR_IT_0_1) {
10032 env->condexec_bits &= ~3;
10033 env->condexec_bits |= (val >> 25) & 3;
10034 }
10035 if (mask & CPSR_IT_2_7) {
10036 env->condexec_bits &= 3;
10037 env->condexec_bits |= (val >> 8) & 0xfc;
10038 }
10039 if (mask & CPSR_GE) {
10040 env->GE = (val >> 16) & 0xf;
10041 }
10042
9b37a28c
FR
10043 /*
10044 * In a V7 implementation that includes the security extensions but does
6e8801f9
FA
10045 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10046 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10047 * bits respectively.
10048 *
10049 * In a V8 implementation, it is permitted for privileged software to
10050 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10051 */
f8c88bbc 10052 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6e8801f9
FA
10053 arm_feature(env, ARM_FEATURE_EL3) &&
10054 !arm_feature(env, ARM_FEATURE_EL2) &&
10055 !arm_is_secure(env)) {
10056
10057 changed_daif = (env->daif ^ val) & mask;
10058
10059 if (changed_daif & CPSR_A) {
9b37a28c
FR
10060 /*
10061 * Check to see if we are allowed to change the masking of async
6e8801f9
FA
10062 * abort exceptions from a non-secure state.
10063 */
10064 if (!(env->cp15.scr_el3 & SCR_AW)) {
10065 qemu_log_mask(LOG_GUEST_ERROR,
10066 "Ignoring attempt to switch CPSR_A flag from "
10067 "non-secure world with SCR.AW bit clear\n");
10068 mask &= ~CPSR_A;
10069 }
10070 }
10071
10072 if (changed_daif & CPSR_F) {
9b37a28c
FR
10073 /*
10074 * Check to see if we are allowed to change the masking of FIQ
6e8801f9
FA
10075 * exceptions from a non-secure state.
10076 */
10077 if (!(env->cp15.scr_el3 & SCR_FW)) {
10078 qemu_log_mask(LOG_GUEST_ERROR,
10079 "Ignoring attempt to switch CPSR_F flag from "
10080 "non-secure world with SCR.FW bit clear\n");
10081 mask &= ~CPSR_F;
10082 }
10083
9b37a28c
FR
10084 /*
10085 * Check whether non-maskable FIQ (NMFI) support is enabled.
6e8801f9
FA
10086 * If this bit is set software is not allowed to mask
10087 * FIQs, but is allowed to set CPSR_F to 0.
10088 */
10089 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10090 (val & CPSR_F)) {
10091 qemu_log_mask(LOG_GUEST_ERROR,
10092 "Ignoring attempt to enable CPSR_F flag "
10093 "(non-maskable FIQ [NMFI] support enabled)\n");
10094 mask &= ~CPSR_F;
10095 }
10096 }
10097 }
10098
4cc35614
PM
10099 env->daif &= ~(CPSR_AIF & mask);
10100 env->daif |= val & CPSR_AIF & mask;
10101
f8c88bbc
PM
10102 if (write_type != CPSRWriteRaw &&
10103 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8c4f0eb9 10104 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9b37a28c
FR
10105 /*
10106 * Note that we can only get here in USR mode if this is a
8c4f0eb9
PM
10107 * gdb stub write; for this case we follow the architectural
10108 * behaviour for guest writes in USR mode of ignoring an attempt
10109 * to switch mode. (Those are caught by translate.c for writes
10110 * triggered by guest instructions.)
10111 */
10112 mask &= ~CPSR_M;
10113 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9b37a28c
FR
10114 /*
10115 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
81907a58
PM
10116 * v7, and has defined behaviour in v8:
10117 * + leave CPSR.M untouched
10118 * + allow changes to the other CPSR fields
10119 * + set PSTATE.IL
10120 * For user changes via the GDB stub, we don't set PSTATE.IL,
10121 * as this would be unnecessarily harsh for a user error.
37064a8b
PM
10122 */
10123 mask &= ~CPSR_M;
81907a58
PM
10124 if (write_type != CPSRWriteByGDBStub &&
10125 arm_feature(env, ARM_FEATURE_V8)) {
10126 mask |= CPSR_IL;
10127 val |= CPSR_IL;
10128 }
81e37284
PM
10129 qemu_log_mask(LOG_GUEST_ERROR,
10130 "Illegal AArch32 mode switch attempt from %s to %s\n",
10131 aarch32_mode_name(env->uncached_cpsr),
10132 aarch32_mode_name(val));
37064a8b 10133 } else {
81e37284
PM
10134 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10135 write_type == CPSRWriteExceptionReturn ?
10136 "Exception return from AArch32" :
10137 "AArch32 mode switch from",
10138 aarch32_mode_name(env->uncached_cpsr),
10139 aarch32_mode_name(val), env->regs[15]);
37064a8b
PM
10140 switch_mode(env, val & CPSR_M);
10141 }
2f4a40e5
AZ
10142 }
10143 mask &= ~CACHED_CPSR_BITS;
10144 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
2b77ad4d 10145 if (tcg_enabled() && rebuild_hflags) {
e784807c
PM
10146 arm_rebuild_hflags(env);
10147 }
2f4a40e5
AZ
10148}
10149
c47eaf9f 10150#ifdef CONFIG_USER_ONLY
b5ff1b31 10151
affdb64d 10152static void switch_mode(CPUARMState *env, int mode)
b5ff1b31 10153{
2fc0cc0e 10154 ARMCPU *cpu = env_archcpu(env);
a47dddd7
AF
10155
10156 if (mode != ARM_CPU_MODE_USR) {
10157 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10158 }
b5ff1b31
FB
10159}
10160
012a906b
GB
10161uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10162 uint32_t cur_el, bool secure)
9e729b57
EI
10163{
10164 return 1;
10165}
10166
ce02049d
GB
10167void aarch64_sync_64_to_32(CPUARMState *env)
10168{
10169 g_assert_not_reached();
10170}
10171
b5ff1b31
FB
10172#else
10173
affdb64d 10174static void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
10175{
10176 int old_mode;
10177 int i;
10178
10179 old_mode = env->uncached_cpsr & CPSR_M;
f927dbda 10180 if (mode == old_mode) {
b5ff1b31 10181 return;
f927dbda 10182 }
b5ff1b31
FB
10183
10184 if (old_mode == ARM_CPU_MODE_FIQ) {
04215eb1
FR
10185 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10186 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31 10187 } else if (mode == ARM_CPU_MODE_FIQ) {
04215eb1
FR
10188 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10189 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
10190 }
10191
f5206413 10192 i = bank_number(old_mode);
b5ff1b31 10193 env->banked_r13[i] = env->regs[13];
b5ff1b31
FB
10194 env->banked_spsr[i] = env->spsr;
10195
f5206413 10196 i = bank_number(mode);
b5ff1b31 10197 env->regs[13] = env->banked_r13[i];
b5ff1b31 10198 env->spsr = env->banked_spsr[i];
593cfa2b
PM
10199
10200 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10201 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
b5ff1b31
FB
10202}
10203
9b37a28c
FR
10204/*
10205 * Physical Interrupt Target EL Lookup Table
0eeb17d6
GB
10206 *
10207 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10208 *
10209 * The below multi-dimensional table is used for looking up the target
10210 * exception level given numerous condition criteria. Specifically, the
10211 * target EL is based on SCR and HCR routing controls as well as the
10212 * currently executing EL and secure state.
10213 *
10214 * Dimensions:
10215 * target_el_table[2][2][2][2][2][4]
10216 * | | | | | +--- Current EL
10217 * | | | | +------ Non-secure(0)/Secure(1)
10218 * | | | +--------- HCR mask override
10219 * | | +------------ SCR exec state control
10220 * | +--------------- SCR mask override
10221 * +------------------ 32-bit(0)/64-bit(1) EL3
10222 *
10223 * The table values are as such:
10224 * 0-3 = EL0-EL3
10225 * -1 = Cannot occur
10226 *
10227 * The ARM ARM target EL table includes entries indicating that an "exception
10228 * is not taken". The two cases where this is applicable are:
10229 * 1) An exception is taken from EL3 but the SCR does not have the exception
10230 * routed to EL3.
10231 * 2) An exception is taken from EL2 but the HCR does not have the exception
10232 * routed to EL2.
10233 * In these two cases, the below table contain a target of EL1. This value is
10234 * returned as it is expected that the consumer of the table data will check
10235 * for "target EL >= current EL" to ensure the exception is not taken.
10236 *
10237 * SCR HCR
10238 * 64 EA AMO From
10239 * BIT IRQ IMO Non-secure Secure
10240 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10241 */
82c39f6a 10242static const int8_t target_el_table[2][2][2][2][2][4] = {
0eeb17d6
GB
10243 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10244 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10245 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10246 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10247 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10248 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10249 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10250 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10251 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
6c85f906
RDC
10252 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10253 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10254 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
0eeb17d6
GB
10255 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10256 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
6c85f906
RDC
10257 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10258 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
0eeb17d6
GB
10259};
10260
10261/*
10262 * Determine the target EL for physical exceptions
10263 */
012a906b
GB
10264uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10265 uint32_t cur_el, bool secure)
0eeb17d6 10266{
b77af26e 10267 CPUARMState *env = cpu_env(cs);
f7778444
RH
10268 bool rw;
10269 bool scr;
10270 bool hcr;
0eeb17d6 10271 int target_el;
2cde031f 10272 /* Is the highest EL AArch64? */
f7778444
RH
10273 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10274 uint64_t hcr_el2;
2cde031f
SS
10275
10276 if (arm_feature(env, ARM_FEATURE_EL3)) {
10277 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10278 } else {
9b37a28c
FR
10279 /*
10280 * Either EL2 is the highest EL (and so the EL2 register width
2cde031f
SS
10281 * is given by is64); or there is no EL2 or EL3, in which case
10282 * the value of 'rw' does not affect the table lookup anyway.
10283 */
10284 rw = is64;
10285 }
0eeb17d6 10286
f7778444 10287 hcr_el2 = arm_hcr_el2_eff(env);
0eeb17d6
GB
10288 switch (excp_idx) {
10289 case EXCP_IRQ:
10290 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
f7778444 10291 hcr = hcr_el2 & HCR_IMO;
0eeb17d6
GB
10292 break;
10293 case EXCP_FIQ:
10294 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
f7778444 10295 hcr = hcr_el2 & HCR_FMO;
0eeb17d6
GB
10296 break;
10297 default:
10298 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
f7778444 10299 hcr = hcr_el2 & HCR_AMO;
0eeb17d6
GB
10300 break;
10301 };
10302
d1b31428
RH
10303 /*
10304 * For these purposes, TGE and AMO/IMO/FMO both force the
10305 * interrupt to EL2. Fold TGE into the bit extracted above.
10306 */
10307 hcr |= (hcr_el2 & HCR_TGE) != 0;
10308
0eeb17d6
GB
10309 /* Perform a table-lookup for the target EL given the current state */
10310 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10311
10312 assert(target_el > 0);
10313
10314 return target_el;
10315}
10316
fc6177af 10317void arm_log_exception(CPUState *cs)
b59f479b 10318{
fc6177af
PM
10319 int idx = cs->exception_index;
10320
b59f479b
PMD
10321 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10322 const char *exc = NULL;
10323 static const char * const excnames[] = {
10324 [EXCP_UDEF] = "Undefined Instruction",
10325 [EXCP_SWI] = "SVC",
10326 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10327 [EXCP_DATA_ABORT] = "Data Abort",
10328 [EXCP_IRQ] = "IRQ",
10329 [EXCP_FIQ] = "FIQ",
10330 [EXCP_BKPT] = "Breakpoint",
10331 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10332 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10333 [EXCP_HVC] = "Hypervisor Call",
10334 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10335 [EXCP_SMC] = "Secure Monitor Call",
10336 [EXCP_VIRQ] = "Virtual IRQ",
10337 [EXCP_VFIQ] = "Virtual FIQ",
10338 [EXCP_SEMIHOST] = "Semihosting call",
10339 [EXCP_NOCP] = "v7M NOCP UsageFault",
10340 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10341 [EXCP_STKOF] = "v8M STKOF UsageFault",
10342 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10343 [EXCP_LSERR] = "v8M LSERR UsageFault",
10344 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
e5346292 10345 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
3c29632f 10346 [EXCP_VSERR] = "Virtual SERR",
11b76fda 10347 [EXCP_GPC] = "Granule Protection Check",
b59f479b
PMD
10348 };
10349
10350 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10351 exc = excnames[idx];
10352 }
10353 if (!exc) {
10354 exc = "unknown";
10355 }
fc6177af
PM
10356 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10357 idx, exc, cs->cpu_index);
b59f479b
PMD
10358 }
10359}
10360
a356dacf 10361/*
7aab5a8c
PMD
10362 * Function used to synchronize QEMU's AArch64 register set with AArch32
10363 * register set. This is necessary when switching between AArch32 and AArch64
10364 * execution state.
a356dacf 10365 */
7aab5a8c 10366void aarch64_sync_32_to_64(CPUARMState *env)
9ee6e8bb 10367{
7aab5a8c
PMD
10368 int i;
10369 uint32_t mode = env->uncached_cpsr & CPSR_M;
10370
10371 /* We can blanket copy R[0:7] to X[0:7] */
10372 for (i = 0; i < 8; i++) {
10373 env->xregs[i] = env->regs[i];
fd592d89 10374 }
70d74660 10375
9a223097 10376 /*
7aab5a8c
PMD
10377 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10378 * Otherwise, they come from the banked user regs.
fd592d89 10379 */
7aab5a8c
PMD
10380 if (mode == ARM_CPU_MODE_FIQ) {
10381 for (i = 8; i < 13; i++) {
10382 env->xregs[i] = env->usr_regs[i - 8];
10383 }
10384 } else {
10385 for (i = 8; i < 13; i++) {
10386 env->xregs[i] = env->regs[i];
10387 }
fd592d89 10388 }
9ee6e8bb 10389
7aab5a8c
PMD
10390 /*
10391 * Registers x13-x23 are the various mode SP and FP registers. Registers
10392 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10393 * from the mode banked register.
10394 */
10395 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10396 env->xregs[13] = env->regs[13];
10397 env->xregs[14] = env->regs[14];
10398 } else {
10399 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10400 /* HYP is an exception in that it is copied from r14 */
10401 if (mode == ARM_CPU_MODE_HYP) {
10402 env->xregs[14] = env->regs[14];
95695eff 10403 } else {
7aab5a8c 10404 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
95695eff 10405 }
95695eff
PM
10406 }
10407
7aab5a8c
PMD
10408 if (mode == ARM_CPU_MODE_HYP) {
10409 env->xregs[15] = env->regs[13];
10410 } else {
10411 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
95695eff
PM
10412 }
10413
7aab5a8c
PMD
10414 if (mode == ARM_CPU_MODE_IRQ) {
10415 env->xregs[16] = env->regs[14];
10416 env->xregs[17] = env->regs[13];
10417 } else {
10418 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10419 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10420 }
95695eff 10421
7aab5a8c
PMD
10422 if (mode == ARM_CPU_MODE_SVC) {
10423 env->xregs[18] = env->regs[14];
10424 env->xregs[19] = env->regs[13];
10425 } else {
10426 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10427 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10428 }
95695eff 10429
7aab5a8c
PMD
10430 if (mode == ARM_CPU_MODE_ABT) {
10431 env->xregs[20] = env->regs[14];
10432 env->xregs[21] = env->regs[13];
10433 } else {
10434 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10435 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10436 }
e33cf0f8 10437
7aab5a8c
PMD
10438 if (mode == ARM_CPU_MODE_UND) {
10439 env->xregs[22] = env->regs[14];
10440 env->xregs[23] = env->regs[13];
10441 } else {
10442 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10443 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
e33cf0f8
PM
10444 }
10445
10446 /*
7aab5a8c
PMD
10447 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10448 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10449 * FIQ bank for r8-r14.
e33cf0f8 10450 */
7aab5a8c
PMD
10451 if (mode == ARM_CPU_MODE_FIQ) {
10452 for (i = 24; i < 31; i++) {
10453 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10454 }
10455 } else {
10456 for (i = 24; i < 29; i++) {
10457 env->xregs[i] = env->fiq_regs[i - 24];
e33cf0f8 10458 }
7aab5a8c
PMD
10459 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10460 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
e33cf0f8 10461 }
7aab5a8c
PMD
10462
10463 env->pc = env->regs[15];
e33cf0f8
PM
10464}
10465
9a223097 10466/*
7aab5a8c
PMD
10467 * Function used to synchronize QEMU's AArch32 register set with AArch64
10468 * register set. This is necessary when switching between AArch32 and AArch64
10469 * execution state.
de2db7ec 10470 */
7aab5a8c 10471void aarch64_sync_64_to_32(CPUARMState *env)
9ee6e8bb 10472{
7aab5a8c
PMD
10473 int i;
10474 uint32_t mode = env->uncached_cpsr & CPSR_M;
abc24d86 10475
7aab5a8c
PMD
10476 /* We can blanket copy X[0:7] to R[0:7] */
10477 for (i = 0; i < 8; i++) {
10478 env->regs[i] = env->xregs[i];
de2db7ec 10479 }
3f0cddee 10480
9a223097 10481 /*
7aab5a8c
PMD
10482 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10483 * Otherwise, we copy x8-x12 into the banked user regs.
de2db7ec 10484 */
7aab5a8c
PMD
10485 if (mode == ARM_CPU_MODE_FIQ) {
10486 for (i = 8; i < 13; i++) {
10487 env->usr_regs[i - 8] = env->xregs[i];
10488 }
10489 } else {
10490 for (i = 8; i < 13; i++) {
10491 env->regs[i] = env->xregs[i];
10492 }
fb602cb7
PM
10493 }
10494
9a223097 10495 /*
7aab5a8c
PMD
10496 * Registers r13 & r14 depend on the current mode.
10497 * If we are in a given mode, we copy the corresponding x registers to r13
10498 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10499 * for the mode.
fb602cb7 10500 */
7aab5a8c
PMD
10501 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10502 env->regs[13] = env->xregs[13];
10503 env->regs[14] = env->xregs[14];
fb602cb7 10504 } else {
7aab5a8c 10505 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
fb602cb7 10506
7aab5a8c
PMD
10507 /*
10508 * HYP is an exception in that it does not have its own banked r14 but
10509 * shares the USR r14
10510 */
10511 if (mode == ARM_CPU_MODE_HYP) {
10512 env->regs[14] = env->xregs[14];
10513 } else {
10514 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10515 }
10516 }
fb602cb7 10517
7aab5a8c
PMD
10518 if (mode == ARM_CPU_MODE_HYP) {
10519 env->regs[13] = env->xregs[15];
fb602cb7 10520 } else {
7aab5a8c 10521 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
fb602cb7 10522 }
d02a8698 10523
7aab5a8c
PMD
10524 if (mode == ARM_CPU_MODE_IRQ) {
10525 env->regs[14] = env->xregs[16];
10526 env->regs[13] = env->xregs[17];
d02a8698 10527 } else {
7aab5a8c
PMD
10528 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10529 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
d02a8698
PM
10530 }
10531
7aab5a8c
PMD
10532 if (mode == ARM_CPU_MODE_SVC) {
10533 env->regs[14] = env->xregs[18];
10534 env->regs[13] = env->xregs[19];
10535 } else {
10536 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10537 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
fb602cb7
PM
10538 }
10539
7aab5a8c
PMD
10540 if (mode == ARM_CPU_MODE_ABT) {
10541 env->regs[14] = env->xregs[20];
10542 env->regs[13] = env->xregs[21];
10543 } else {
10544 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10545 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
ce02049d
GB
10546 }
10547
10548 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
10549 env->regs[14] = env->xregs[22];
10550 env->regs[13] = env->xregs[23];
ce02049d 10551 } else {
593cfa2b 10552 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
3a9148d0 10553 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
ce02049d
GB
10554 }
10555
9b37a28c
FR
10556 /*
10557 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
ce02049d
GB
10558 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10559 * FIQ bank for r8-r14.
10560 */
10561 if (mode == ARM_CPU_MODE_FIQ) {
10562 for (i = 24; i < 31; i++) {
10563 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10564 }
10565 } else {
10566 for (i = 24; i < 29; i++) {
10567 env->fiq_regs[i - 24] = env->xregs[i];
10568 }
10569 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
593cfa2b 10570 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
ce02049d
GB
10571 }
10572
10573 env->regs[15] = env->pc;
10574}
10575
dea8378b
PM
10576static void take_aarch32_exception(CPUARMState *env, int new_mode,
10577 uint32_t mask, uint32_t offset,
10578 uint32_t newpc)
10579{
4a2696c0
RH
10580 int new_el;
10581
dea8378b
PM
10582 /* Change the CPU state so as to actually take the exception. */
10583 switch_mode(env, new_mode);
4a2696c0 10584
dea8378b
PM
10585 /*
10586 * For exceptions taken to AArch32 we must clear the SS bit in both
10587 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10588 */
f944a854 10589 env->pstate &= ~PSTATE_SS;
dea8378b
PM
10590 env->spsr = cpsr_read(env);
10591 /* Clear IT bits. */
10592 env->condexec_bits = 0;
10593 /* Switch to the new mode, and to the correct instruction set. */
10594 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
88828bf1
CD
10595
10596 /* This must be after mode switching. */
10597 new_el = arm_current_el(env);
10598
dea8378b
PM
10599 /* Set new mode endianness */
10600 env->uncached_cpsr &= ~CPSR_E;
4a2696c0 10601 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
dea8378b
PM
10602 env->uncached_cpsr |= CPSR_E;
10603 }
829f9fd3
PM
10604 /* J and IL must always be cleared for exception entry */
10605 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
dea8378b
PM
10606 env->daif |= mask;
10607
f2f68a78
RC
10608 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10609 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10610 env->uncached_cpsr |= CPSR_SSBS;
10611 } else {
10612 env->uncached_cpsr &= ~CPSR_SSBS;
10613 }
10614 }
10615
dea8378b
PM
10616 if (new_mode == ARM_CPU_MODE_HYP) {
10617 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10618 env->elr_el[2] = env->regs[15];
10619 } else {
4a2696c0 10620 /* CPSR.PAN is normally preserved preserved unless... */
f8af1143 10621 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
4a2696c0
RH
10622 switch (new_el) {
10623 case 3:
10624 if (!arm_is_secure_below_el3(env)) {
10625 /* ... the target is EL3, from non-secure state. */
10626 env->uncached_cpsr &= ~CPSR_PAN;
10627 break;
10628 }
10629 /* ... the target is EL3, from secure state ... */
10630 /* fall through */
10631 case 1:
10632 /* ... the target is EL1 and SCTLR.SPAN is 0. */
10633 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10634 env->uncached_cpsr |= CPSR_PAN;
10635 }
10636 break;
10637 }
10638 }
dea8378b
PM
10639 /*
10640 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10641 * and we should just guard the thumb mode on V4
10642 */
10643 if (arm_feature(env, ARM_FEATURE_V4T)) {
10644 env->thumb =
10645 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10646 }
10647 env->regs[14] = env->regs[15] + offset;
10648 }
10649 env->regs[15] = newpc;
2b77ad4d
FR
10650
10651 if (tcg_enabled()) {
10652 arm_rebuild_hflags(env);
10653 }
dea8378b
PM
10654}
10655
b9bc21ff
PM
10656static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10657{
10658 /*
10659 * Handle exception entry to Hyp mode; this is sufficiently
10660 * different to entry to other AArch32 modes that we handle it
10661 * separately here.
10662 *
10663 * The vector table entry used is always the 0x14 Hyp mode entry point,
2c023d36 10664 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
b9bc21ff
PM
10665 * The offset applied to the preferred return address is always zero
10666 * (see DDI0487C.a section G1.12.3).
10667 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10668 */
10669 uint32_t addr, mask;
10670 ARMCPU *cpu = ARM_CPU(cs);
10671 CPUARMState *env = &cpu->env;
10672
10673 switch (cs->exception_index) {
10674 case EXCP_UDEF:
10675 addr = 0x04;
10676 break;
10677 case EXCP_SWI:
2c023d36 10678 addr = 0x08;
b9bc21ff
PM
10679 break;
10680 case EXCP_BKPT:
10681 /* Fall through to prefetch abort. */
10682 case EXCP_PREFETCH_ABORT:
10683 env->cp15.ifar_s = env->exception.vaddress;
10684 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10685 (uint32_t)env->exception.vaddress);
10686 addr = 0x0c;
10687 break;
10688 case EXCP_DATA_ABORT:
10689 env->cp15.dfar_s = env->exception.vaddress;
10690 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10691 (uint32_t)env->exception.vaddress);
10692 addr = 0x10;
10693 break;
10694 case EXCP_IRQ:
10695 addr = 0x18;
10696 break;
10697 case EXCP_FIQ:
10698 addr = 0x1c;
10699 break;
10700 case EXCP_HVC:
10701 addr = 0x08;
10702 break;
10703 case EXCP_HYP_TRAP:
10704 addr = 0x14;
9bbb4ef9 10705 break;
b9bc21ff
PM
10706 default:
10707 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10708 }
10709
10710 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
2ed08180
PM
10711 if (!arm_feature(env, ARM_FEATURE_V8)) {
10712 /*
10713 * QEMU syndrome values are v8-style. v7 has the IL bit
10714 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10715 * If this is a v7 CPU, squash the IL bit in those cases.
10716 */
10717 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10718 (cs->exception_index == EXCP_DATA_ABORT &&
10719 !(env->exception.syndrome & ARM_EL_ISV)) ||
10720 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10721 env->exception.syndrome &= ~ARM_EL_IL;
10722 }
10723 }
b9bc21ff
PM
10724 env->cp15.esr_el[2] = env->exception.syndrome;
10725 }
10726
10727 if (arm_current_el(env) != 2 && addr < 0x14) {
10728 addr = 0x14;
10729 }
10730
10731 mask = 0;
10732 if (!(env->cp15.scr_el3 & SCR_EA)) {
10733 mask |= CPSR_A;
10734 }
10735 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10736 mask |= CPSR_I;
10737 }
10738 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10739 mask |= CPSR_F;
10740 }
10741
10742 addr += env->cp15.hvbar;
10743
10744 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10745}
10746
966f758c 10747static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
b5ff1b31 10748{
97a8ea5a
AF
10749 ARMCPU *cpu = ARM_CPU(cs);
10750 CPUARMState *env = &cpu->env;
b5ff1b31
FB
10751 uint32_t addr;
10752 uint32_t mask;
10753 int new_mode;
10754 uint32_t offset;
16a906fd 10755 uint32_t moe;
b5ff1b31 10756
16a906fd 10757 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
64b91e3f 10758 switch (syn_get_ec(env->exception.syndrome)) {
16a906fd
PM
10759 case EC_BREAKPOINT:
10760 case EC_BREAKPOINT_SAME_EL:
10761 moe = 1;
10762 break;
10763 case EC_WATCHPOINT:
10764 case EC_WATCHPOINT_SAME_EL:
10765 moe = 10;
10766 break;
10767 case EC_AA32_BKPT:
10768 moe = 3;
10769 break;
10770 case EC_VECTORCATCH:
10771 moe = 5;
10772 break;
10773 default:
10774 moe = 0;
10775 break;
10776 }
10777
10778 if (moe) {
10779 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10780 }
10781
b9bc21ff
PM
10782 if (env->exception.target_el == 2) {
10783 arm_cpu_do_interrupt_aarch32_hyp(cs);
10784 return;
10785 }
10786
27103424 10787 switch (cs->exception_index) {
b5ff1b31
FB
10788 case EXCP_UDEF:
10789 new_mode = ARM_CPU_MODE_UND;
10790 addr = 0x04;
10791 mask = CPSR_I;
f927dbda 10792 if (env->thumb) {
b5ff1b31 10793 offset = 2;
f927dbda 10794 } else {
b5ff1b31 10795 offset = 4;
f927dbda 10796 }
b5ff1b31
FB
10797 break;
10798 case EXCP_SWI:
10799 new_mode = ARM_CPU_MODE_SVC;
10800 addr = 0x08;
10801 mask = CPSR_I;
601d70b9 10802 /* The PC already points to the next instruction. */
b5ff1b31
FB
10803 offset = 0;
10804 break;
06c949e6 10805 case EXCP_BKPT:
9ee6e8bb
PB
10806 /* Fall through to prefetch abort. */
10807 case EXCP_PREFETCH_ABORT:
88ca1c2d 10808 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
b848ce2b 10809 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
3f1beaca 10810 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
88ca1c2d 10811 env->exception.fsr, (uint32_t)env->exception.vaddress);
b5ff1b31
FB
10812 new_mode = ARM_CPU_MODE_ABT;
10813 addr = 0x0c;
10814 mask = CPSR_A | CPSR_I;
10815 offset = 4;
10816 break;
10817 case EXCP_DATA_ABORT:
4a7e2d73 10818 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
b848ce2b 10819 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
3f1beaca 10820 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4a7e2d73 10821 env->exception.fsr,
6cd8a264 10822 (uint32_t)env->exception.vaddress);
b5ff1b31
FB
10823 new_mode = ARM_CPU_MODE_ABT;
10824 addr = 0x10;
10825 mask = CPSR_A | CPSR_I;
10826 offset = 8;
10827 break;
10828 case EXCP_IRQ:
10829 new_mode = ARM_CPU_MODE_IRQ;
10830 addr = 0x18;
10831 /* Disable IRQ and imprecise data aborts. */
10832 mask = CPSR_A | CPSR_I;
10833 offset = 4;
de38d23b
FA
10834 if (env->cp15.scr_el3 & SCR_IRQ) {
10835 /* IRQ routed to monitor mode */
10836 new_mode = ARM_CPU_MODE_MON;
10837 mask |= CPSR_F;
10838 }
b5ff1b31
FB
10839 break;
10840 case EXCP_FIQ:
10841 new_mode = ARM_CPU_MODE_FIQ;
10842 addr = 0x1c;
10843 /* Disable FIQ, IRQ and imprecise data aborts. */
10844 mask = CPSR_A | CPSR_I | CPSR_F;
de38d23b
FA
10845 if (env->cp15.scr_el3 & SCR_FIQ) {
10846 /* FIQ routed to monitor mode */
10847 new_mode = ARM_CPU_MODE_MON;
10848 }
b5ff1b31
FB
10849 offset = 4;
10850 break;
87a4b270
PM
10851 case EXCP_VIRQ:
10852 new_mode = ARM_CPU_MODE_IRQ;
10853 addr = 0x18;
10854 /* Disable IRQ and imprecise data aborts. */
10855 mask = CPSR_A | CPSR_I;
10856 offset = 4;
10857 break;
10858 case EXCP_VFIQ:
10859 new_mode = ARM_CPU_MODE_FIQ;
10860 addr = 0x1c;
10861 /* Disable FIQ, IRQ and imprecise data aborts. */
10862 mask = CPSR_A | CPSR_I | CPSR_F;
10863 offset = 4;
10864 break;
3c29632f
RH
10865 case EXCP_VSERR:
10866 {
10867 /*
10868 * Note that this is reported as a data abort, but the DFAR
10869 * has an UNKNOWN value. Construct the SError syndrome from
10870 * AET and ExT fields.
10871 */
10872 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10873
10874 if (extended_addresses_enabled(env)) {
10875 env->exception.fsr = arm_fi_to_lfsc(&fi);
10876 } else {
10877 env->exception.fsr = arm_fi_to_sfsc(&fi);
10878 }
10879 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10880 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10881 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10882 env->exception.fsr);
10883
10884 new_mode = ARM_CPU_MODE_ABT;
10885 addr = 0x10;
10886 mask = CPSR_A | CPSR_I;
10887 offset = 8;
10888 }
10889 break;
dbe9d163
FA
10890 case EXCP_SMC:
10891 new_mode = ARM_CPU_MODE_MON;
10892 addr = 0x08;
10893 mask = CPSR_A | CPSR_I | CPSR_F;
10894 offset = 0;
10895 break;
b5ff1b31 10896 default:
a47dddd7 10897 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
b5ff1b31
FB
10898 return; /* Never happens. Keep compiler happy. */
10899 }
e89e51a1
FA
10900
10901 if (new_mode == ARM_CPU_MODE_MON) {
10902 addr += env->cp15.mvbar;
137feaa9 10903 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
e89e51a1 10904 /* High vectors. When enabled, base address cannot be remapped. */
b5ff1b31 10905 addr += 0xffff0000;
8641136c 10906 } else {
9b37a28c
FR
10907 /*
10908 * ARM v7 architectures provide a vector base address register to remap
8641136c 10909 * the interrupt vector table.
e89e51a1 10910 * This register is only followed in non-monitor mode, and is banked.
8641136c
NR
10911 * Note: only bits 31:5 are valid.
10912 */
fb6c91ba 10913 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
b5ff1b31 10914 }
dbe9d163
FA
10915
10916 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10917 env->cp15.scr_el3 &= ~SCR_NS;
10918 }
10919
dea8378b 10920 take_aarch32_exception(env, new_mode, mask, offset, addr);
b5ff1b31
FB
10921}
10922
a65dabf7
PM
10923static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10924{
10925 /*
10926 * Return the register number of the AArch64 view of the AArch32
10927 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10928 * be that of the AArch32 mode the exception came from.
10929 */
10930 int mode = env->uncached_cpsr & CPSR_M;
10931
10932 switch (aarch32_reg) {
10933 case 0 ... 7:
10934 return aarch32_reg;
10935 case 8 ... 12:
10936 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10937 case 13:
10938 switch (mode) {
10939 case ARM_CPU_MODE_USR:
10940 case ARM_CPU_MODE_SYS:
10941 return 13;
10942 case ARM_CPU_MODE_HYP:
10943 return 15;
10944 case ARM_CPU_MODE_IRQ:
10945 return 17;
10946 case ARM_CPU_MODE_SVC:
10947 return 19;
10948 case ARM_CPU_MODE_ABT:
10949 return 21;
10950 case ARM_CPU_MODE_UND:
10951 return 23;
10952 case ARM_CPU_MODE_FIQ:
10953 return 29;
10954 default:
10955 g_assert_not_reached();
10956 }
10957 case 14:
10958 switch (mode) {
10959 case ARM_CPU_MODE_USR:
10960 case ARM_CPU_MODE_SYS:
10961 case ARM_CPU_MODE_HYP:
10962 return 14;
10963 case ARM_CPU_MODE_IRQ:
10964 return 16;
10965 case ARM_CPU_MODE_SVC:
10966 return 18;
10967 case ARM_CPU_MODE_ABT:
10968 return 20;
10969 case ARM_CPU_MODE_UND:
10970 return 22;
10971 case ARM_CPU_MODE_FIQ:
10972 return 30;
10973 default:
10974 g_assert_not_reached();
10975 }
10976 case 15:
10977 return 31;
10978 default:
10979 g_assert_not_reached();
10980 }
10981}
10982
f944a854
RC
10983static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10984{
10985 uint32_t ret = cpsr_read(env);
10986
10987 /* Move DIT to the correct location for SPSR_ELx */
10988 if (ret & CPSR_DIT) {
10989 ret &= ~CPSR_DIT;
10990 ret |= PSTATE_DIT;
10991 }
10992 /* Merge PSTATE.SS into SPSR_ELx */
10993 ret |= env->pstate & PSTATE_SS;
10994
10995 return ret;
10996}
10997
7ac61020
PM
10998static bool syndrome_is_sync_extabt(uint32_t syndrome)
10999{
11000 /* Return true if this syndrome value is a synchronous external abort */
11001 switch (syn_get_ec(syndrome)) {
11002 case EC_INSNABORT:
11003 case EC_INSNABORT_SAME_EL:
11004 case EC_DATAABORT:
11005 case EC_DATAABORT_SAME_EL:
11006 /* Look at fault status code for all the synchronous ext abort cases */
11007 switch (syndrome & 0x3f) {
11008 case 0x10:
11009 case 0x13:
11010 case 0x14:
11011 case 0x15:
11012 case 0x16:
11013 case 0x17:
11014 return true;
11015 default:
11016 return false;
11017 }
11018 default:
11019 return false;
11020 }
11021}
11022
966f758c
PM
11023/* Handle exception entry to a target EL which is using AArch64 */
11024static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
f3a9b694
PM
11025{
11026 ARMCPU *cpu = ARM_CPU(cs);
11027 CPUARMState *env = &cpu->env;
11028 unsigned int new_el = env->exception.target_el;
11029 target_ulong addr = env->cp15.vbar_el[new_el];
11030 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
4a2696c0 11031 unsigned int old_mode;
0ab5953b 11032 unsigned int cur_el = arm_current_el(env);
a65dabf7 11033 int rt;
0ab5953b 11034
d55b2a2a
CF
11035 if (tcg_enabled()) {
11036 /*
11037 * Note that new_el can never be 0. If cur_el is 0, then
11038 * el0_a64 is is_a64(), else el0_a64 is ignored.
11039 */
11040 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11041 }
f3a9b694 11042
0ab5953b 11043 if (cur_el < new_el) {
9b37a28c
FR
11044 /*
11045 * Entry vector offset depends on whether the implemented EL
3d6f7617
PM
11046 * immediately lower than the target level is using AArch32 or AArch64
11047 */
11048 bool is_aa64;
cb092fbb 11049 uint64_t hcr;
3d6f7617
PM
11050
11051 switch (new_el) {
11052 case 3:
11053 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11054 break;
11055 case 2:
cb092fbb
RH
11056 hcr = arm_hcr_el2_eff(env);
11057 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11058 is_aa64 = (hcr & HCR_RW) != 0;
11059 break;
11060 }
11061 /* fall through */
3d6f7617
PM
11062 case 1:
11063 is_aa64 = is_a64(env);
11064 break;
11065 default:
11066 g_assert_not_reached();
11067 }
11068
11069 if (is_aa64) {
f3a9b694
PM
11070 addr += 0x400;
11071 } else {
11072 addr += 0x600;
11073 }
11074 } else if (pstate_read(env) & PSTATE_SP) {
11075 addr += 0x200;
11076 }
11077
f3a9b694 11078 switch (cs->exception_index) {
11b76fda
RH
11079 case EXCP_GPC:
11080 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11081 env->cp15.mfar_el3);
11082 /* fall through */
f3a9b694
PM
11083 case EXCP_PREFETCH_ABORT:
11084 case EXCP_DATA_ABORT:
7ac61020
PM
11085 /*
11086 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11087 * to be taken to the SError vector entrypoint.
11088 */
11089 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11090 syndrome_is_sync_extabt(env->exception.syndrome)) {
11091 addr += 0x180;
11092 }
f3a9b694
PM
11093 env->cp15.far_el[new_el] = env->exception.vaddress;
11094 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11095 env->cp15.far_el[new_el]);
11096 /* fall through */
11097 case EXCP_BKPT:
11098 case EXCP_UDEF:
11099 case EXCP_SWI:
11100 case EXCP_HVC:
11101 case EXCP_HYP_TRAP:
11102 case EXCP_SMC:
a65dabf7
PM
11103 switch (syn_get_ec(env->exception.syndrome)) {
11104 case EC_ADVSIMDFPACCESSTRAP:
4be42f40
PM
11105 /*
11106 * QEMU internal FP/SIMD syndromes from AArch32 include the
11107 * TA and coproc fields which are only exposed if the exception
11108 * is taken to AArch32 Hyp mode. Mask them out to get a valid
11109 * AArch64 format syndrome.
11110 */
11111 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
a65dabf7
PM
11112 break;
11113 case EC_CP14RTTRAP:
11114 case EC_CP15RTTRAP:
11115 case EC_CP14DTTRAP:
11116 /*
11117 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11118 * the raw register field from the insn; when taking this to
11119 * AArch64 we must convert it to the AArch64 view of the register
11120 * number. Notice that we read a 4-bit AArch32 register number and
11121 * write back a 5-bit AArch64 one.
11122 */
11123 rt = extract32(env->exception.syndrome, 5, 4);
11124 rt = aarch64_regnum(env, rt);
11125 env->exception.syndrome = deposit32(env->exception.syndrome,
11126 5, 5, rt);
11127 break;
11128 case EC_CP15RRTTRAP:
11129 case EC_CP14RRTTRAP:
11130 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11131 rt = extract32(env->exception.syndrome, 5, 4);
11132 rt = aarch64_regnum(env, rt);
11133 env->exception.syndrome = deposit32(env->exception.syndrome,
11134 5, 5, rt);
11135 rt = extract32(env->exception.syndrome, 10, 4);
11136 rt = aarch64_regnum(env, rt);
11137 env->exception.syndrome = deposit32(env->exception.syndrome,
11138 10, 5, rt);
11139 break;
4be42f40 11140 }
f3a9b694
PM
11141 env->cp15.esr_el[new_el] = env->exception.syndrome;
11142 break;
11143 case EXCP_IRQ:
11144 case EXCP_VIRQ:
11145 addr += 0x80;
11146 break;
11147 case EXCP_FIQ:
11148 case EXCP_VFIQ:
11149 addr += 0x100;
11150 break;
3c29632f
RH
11151 case EXCP_VSERR:
11152 addr += 0x180;
11153 /* Construct the SError syndrome from IDS and ISS fields. */
11154 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11155 env->cp15.esr_el[new_el] = env->exception.syndrome;
11156 break;
f3a9b694
PM
11157 default:
11158 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11159 }
11160
11161 if (is_a64(env)) {
4a2696c0 11162 old_mode = pstate_read(env);
f3a9b694
PM
11163 aarch64_save_sp(env, arm_current_el(env));
11164 env->elr_el[new_el] = env->pc;
11165 } else {
f944a854 11166 old_mode = cpsr_read_for_spsr_elx(env);
f3a9b694
PM
11167 env->elr_el[new_el] = env->regs[15];
11168
11169 aarch64_sync_32_to_64(env);
11170
11171 env->condexec_bits = 0;
11172 }
4a2696c0
RH
11173 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11174
f3a9b694
PM
11175 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11176 env->elr_el[new_el]);
11177
4a2696c0
RH
11178 if (cpu_isar_feature(aa64_pan, cpu)) {
11179 /* The value of PSTATE.PAN is normally preserved, except when ... */
11180 new_mode |= old_mode & PSTATE_PAN;
11181 switch (new_el) {
11182 case 2:
11183 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11184 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11185 != (HCR_E2H | HCR_TGE)) {
11186 break;
11187 }
11188 /* fall through */
11189 case 1:
11190 /* ... the target is EL1 ... */
11191 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11192 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11193 new_mode |= PSTATE_PAN;
11194 }
11195 break;
11196 }
11197 }
34669338
RH
11198 if (cpu_isar_feature(aa64_mte, cpu)) {
11199 new_mode |= PSTATE_TCO;
11200 }
4a2696c0 11201
f2f68a78
RC
11202 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11203 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11204 new_mode |= PSTATE_SSBS;
11205 } else {
11206 new_mode &= ~PSTATE_SSBS;
11207 }
11208 }
11209
f3a9b694 11210 pstate_write(env, PSTATE_DAIF | new_mode);
53221552 11211 env->aarch64 = true;
f3a9b694 11212 aarch64_restore_sp(env, new_el);
2b77ad4d
FR
11213
11214 if (tcg_enabled()) {
11215 helper_rebuild_hflags_a64(env, new_el);
11216 }
f3a9b694
PM
11217
11218 env->pc = addr;
11219
11220 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11221 new_el, env->pc, pstate_read(env));
966f758c
PM
11222}
11223
ed6e6ba9
AB
11224/*
11225 * Do semihosting call and set the appropriate return value. All the
11226 * permission and validity checks have been done at translate time.
11227 *
11228 * We only see semihosting exceptions in TCG only as they are not
11229 * trapped to the hypervisor in KVM.
11230 */
91f78c58 11231#ifdef CONFIG_TCG
a06e3a68 11232static void tcg_handle_semihosting(CPUState *cs)
ed6e6ba9 11233{
904c04de
PM
11234 ARMCPU *cpu = ARM_CPU(cs);
11235 CPUARMState *env = &cpu->env;
11236
11237 if (is_a64(env)) {
ed6e6ba9
AB
11238 qemu_log_mask(CPU_LOG_INT,
11239 "...handling as semihosting call 0x%" PRIx64 "\n",
11240 env->xregs[0]);
ed3a06b1 11241 do_common_semihosting(cs);
4ff5ef9e 11242 env->pc += 4;
904c04de 11243 } else {
904c04de
PM
11244 qemu_log_mask(CPU_LOG_INT,
11245 "...handling as semihosting call 0x%x\n",
11246 env->regs[0]);
ed3a06b1 11247 do_common_semihosting(cs);
4ff5ef9e 11248 env->regs[15] += env->thumb ? 2 : 4;
904c04de
PM
11249 }
11250}
ed6e6ba9 11251#endif
904c04de 11252
9b37a28c
FR
11253/*
11254 * Handle a CPU exception for A and R profile CPUs.
966f758c
PM
11255 * Do any appropriate logging, handle PSCI calls, and then hand off
11256 * to the AArch64-entry or AArch32-entry function depending on the
11257 * target exception level's register width.
853bfef4
CF
11258 *
11259 * Note: this is used for both TCG (as the do_interrupt tcg op),
11260 * and KVM to re-inject guest debug exceptions, and to
11261 * inject a Synchronous-External-Abort.
966f758c
PM
11262 */
11263void arm_cpu_do_interrupt(CPUState *cs)
11264{
11265 ARMCPU *cpu = ARM_CPU(cs);
11266 CPUARMState *env = &cpu->env;
11267 unsigned int new_el = env->exception.target_el;
11268
531c60a9 11269 assert(!arm_feature(env, ARM_FEATURE_M));
966f758c 11270
fc6177af 11271 arm_log_exception(cs);
966f758c
PM
11272 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11273 new_el);
11274 if (qemu_loglevel_mask(CPU_LOG_INT)
11275 && !excp_is_internal(cs->exception_index)) {
6568da45 11276 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
64b91e3f 11277 syn_get_ec(env->exception.syndrome),
966f758c
PM
11278 env->exception.syndrome);
11279 }
11280
0c1aaa66 11281 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
966f758c
PM
11282 arm_handle_psci_call(cpu);
11283 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11284 return;
11285 }
11286
ed6e6ba9
AB
11287 /*
11288 * Semihosting semantics depend on the register width of the code
11289 * that caused the exception, not the target exception level, so
11290 * must be handled here.
966f758c 11291 */
ed6e6ba9
AB
11292#ifdef CONFIG_TCG
11293 if (cs->exception_index == EXCP_SEMIHOST) {
a06e3a68 11294 tcg_handle_semihosting(cs);
904c04de
PM
11295 return;
11296 }
ed6e6ba9 11297#endif
904c04de 11298
9b37a28c
FR
11299 /*
11300 * Hooks may change global state so BQL should be held, also the
b5c53d1b
AL
11301 * BQL needs to be held for any modification of
11302 * cs->interrupt_request.
11303 */
11304 g_assert(qemu_mutex_iothread_locked());
11305
11306 arm_call_pre_el_change_hook(cpu);
11307
904c04de
PM
11308 assert(!excp_is_internal(cs->exception_index));
11309 if (arm_el_is_aa64(env, new_el)) {
966f758c
PM
11310 arm_cpu_do_interrupt_aarch64(cs);
11311 } else {
11312 arm_cpu_do_interrupt_aarch32(cs);
11313 }
f3a9b694 11314
bd7d00fc
PM
11315 arm_call_el_change_hook(cpu);
11316
f3a9b694
PM
11317 if (!kvm_enabled()) {
11318 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11319 }
11320}
c47eaf9f 11321#endif /* !CONFIG_USER_ONLY */
0480f69a 11322
aaec1432
RH
11323uint64_t arm_sctlr(CPUARMState *env, int el)
11324{
11325 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11326 if (el == 0) {
11327 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
d902ae75 11328 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
aaec1432
RH
11329 }
11330 return env->cp15.sctlr_el[el];
11331}
c47eaf9f 11332
8ae08860 11333int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
b830a5ee
RH
11334{
11335 if (regime_has_2_ranges(mmu_idx)) {
11336 return extract64(tcr, 37, 2);
edc05dd4 11337 } else if (regime_is_stage2(mmu_idx)) {
b830a5ee
RH
11338 return 0; /* VTCR_EL2 */
11339 } else {
3e270f67
RH
11340 /* Replicate the single TBI bit so we always have 2 bits. */
11341 return extract32(tcr, 20, 1) * 3;
b830a5ee
RH
11342 }
11343}
11344
8ae08860 11345int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
b830a5ee
RH
11346{
11347 if (regime_has_2_ranges(mmu_idx)) {
11348 return extract64(tcr, 51, 2);
edc05dd4 11349 } else if (regime_is_stage2(mmu_idx)) {
b830a5ee
RH
11350 return 0; /* VTCR_EL2 */
11351 } else {
3e270f67
RH
11352 /* Replicate the single TBID bit so we always have 2 bits. */
11353 return extract32(tcr, 29, 1) * 3;
b830a5ee
RH
11354 }
11355}
11356
671efad1 11357int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
81ae05fa
RH
11358{
11359 if (regime_has_2_ranges(mmu_idx)) {
11360 return extract64(tcr, 57, 2);
11361 } else {
11362 /* Replicate the single TCMA bit so we always have 2 bits. */
11363 return extract32(tcr, 30, 1) * 3;
11364 }
11365}
11366
104f703d
PM
11367static ARMGranuleSize tg0_to_gran_size(int tg)
11368{
11369 switch (tg) {
11370 case 0:
11371 return Gran4K;
11372 case 1:
11373 return Gran64K;
11374 case 2:
11375 return Gran16K;
11376 default:
11377 return GranInvalid;
11378 }
11379}
11380
11381static ARMGranuleSize tg1_to_gran_size(int tg)
11382{
11383 switch (tg) {
11384 case 1:
11385 return Gran16K;
11386 case 2:
11387 return Gran4K;
11388 case 3:
11389 return Gran64K;
11390 default:
11391 return GranInvalid;
11392 }
11393}
11394
11395static inline bool have4k(ARMCPU *cpu, bool stage2)
11396{
11397 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11398 : cpu_isar_feature(aa64_tgran4, cpu);
11399}
11400
11401static inline bool have16k(ARMCPU *cpu, bool stage2)
11402{
11403 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11404 : cpu_isar_feature(aa64_tgran16, cpu);
11405}
11406
11407static inline bool have64k(ARMCPU *cpu, bool stage2)
11408{
11409 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11410 : cpu_isar_feature(aa64_tgran64, cpu);
11411}
11412
11413static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11414 bool stage2)
11415{
11416 switch (gran) {
11417 case Gran4K:
11418 if (have4k(cpu, stage2)) {
11419 return gran;
11420 }
11421 break;
11422 case Gran16K:
11423 if (have16k(cpu, stage2)) {
11424 return gran;
11425 }
11426 break;
11427 case Gran64K:
11428 if (have64k(cpu, stage2)) {
11429 return gran;
11430 }
11431 break;
11432 case GranInvalid:
11433 break;
11434 }
11435 /*
11436 * If the guest selects a granule size that isn't implemented,
11437 * the architecture requires that we behave as if it selected one
11438 * that is (with an IMPDEF choice of which one to pick). We choose
11439 * to implement the smallest supported granule size.
11440 */
11441 if (have4k(cpu, stage2)) {
11442 return Gran4K;
11443 }
11444 if (have16k(cpu, stage2)) {
11445 return Gran16K;
11446 }
11447 assert(have64k(cpu, stage2));
11448 return Gran64K;
11449}
11450
b830a5ee 11451ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
478dccbb
PM
11452 ARMMMUIdx mmu_idx, bool data,
11453 bool el1_is_aa32)
ba97be9f 11454{
c1547bba 11455 uint64_t tcr = regime_tcr(env, mmu_idx);
89739227 11456 bool epd, hpd, tsz_oob, ds, ha, hd;
ef56c242 11457 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
104f703d 11458 ARMGranuleSize gran;
ef56c242 11459 ARMCPU *cpu = env_archcpu(env);
edc05dd4 11460 bool stage2 = regime_is_stage2(mmu_idx);
ba97be9f 11461
339370b9 11462 if (!regime_has_2_ranges(mmu_idx)) {
71d18164 11463 select = 0;
ba97be9f 11464 tsz = extract32(tcr, 0, 6);
104f703d
PM
11465 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11466 if (stage2) {
ba97be9f 11467 /* VTCR_EL2 */
b830a5ee 11468 hpd = false;
ba97be9f 11469 } else {
ba97be9f
RH
11470 hpd = extract32(tcr, 24, 1);
11471 }
11472 epd = false;
ef56c242 11473 sh = extract32(tcr, 12, 2);
f4ecc015 11474 ps = extract32(tcr, 16, 3);
89739227
RH
11475 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11476 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
ef56c242 11477 ds = extract64(tcr, 32, 1);
ba97be9f 11478 } else {
e4c93e44
PM
11479 bool e0pd;
11480
71d18164
RH
11481 /*
11482 * Bit 55 is always between the two regions, and is canonical for
11483 * determining if address tagging is enabled.
11484 */
11485 select = extract64(va, 55, 1);
11486 if (!select) {
11487 tsz = extract32(tcr, 0, 6);
104f703d 11488 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
71d18164 11489 epd = extract32(tcr, 7, 1);
ef56c242 11490 sh = extract32(tcr, 12, 2);
71d18164 11491 hpd = extract64(tcr, 41, 1);
e4c93e44 11492 e0pd = extract64(tcr, 55, 1);
71d18164 11493 } else {
71d18164 11494 tsz = extract32(tcr, 16, 6);
104f703d 11495 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
71d18164 11496 epd = extract32(tcr, 23, 1);
ef56c242 11497 sh = extract32(tcr, 28, 2);
71d18164 11498 hpd = extract64(tcr, 42, 1);
e4c93e44 11499 e0pd = extract64(tcr, 56, 1);
71d18164 11500 }
f4ecc015 11501 ps = extract64(tcr, 32, 3);
89739227
RH
11502 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11503 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
ef56c242 11504 ds = extract64(tcr, 59, 1);
e4c93e44
PM
11505
11506 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11507 regime_is_user(env, mmu_idx)) {
11508 epd = true;
11509 }
ba97be9f 11510 }
c36c65ea 11511
104f703d 11512 gran = sanitize_gran_size(cpu, gran, stage2);
104f703d 11513
ef56c242 11514 if (cpu_isar_feature(aa64_st, cpu)) {
3c003f70 11515 max_tsz = 48 - (gran == Gran64K);
c36c65ea
RDC
11516 } else {
11517 max_tsz = 39;
11518 }
0af312b6 11519
ef56c242
RH
11520 /*
11521 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11522 * adjust the effective value of DS, as documented.
11523 */
0af312b6 11524 min_tsz = 16;
3c003f70 11525 if (gran == Gran64K) {
ef56c242
RH
11526 if (cpu_isar_feature(aa64_lva, cpu)) {
11527 min_tsz = 12;
11528 }
11529 ds = false;
11530 } else if (ds) {
edc05dd4 11531 if (regime_is_stage2(mmu_idx)) {
3c003f70 11532 if (gran == Gran16K) {
ef56c242
RH
11533 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11534 } else {
11535 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11536 }
edc05dd4 11537 } else {
3c003f70 11538 if (gran == Gran16K) {
ef56c242
RH
11539 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11540 } else {
11541 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11542 }
ef56c242
RH
11543 }
11544 if (ds) {
0af312b6
RH
11545 min_tsz = 12;
11546 }
11547 }
c36c65ea 11548
478dccbb
PM
11549 if (stage2 && el1_is_aa32) {
11550 /*
11551 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11552 * are loosened: a configured IPA of 40 bits is permitted even if
11553 * the implemented PA is less than that (and so a 40 bit IPA would
11554 * fault for an AArch64 EL1). See R_DTLMN.
11555 */
11556 min_tsz = MIN(min_tsz, 24);
11557 }
11558
ebf93ce7
RH
11559 if (tsz > max_tsz) {
11560 tsz = max_tsz;
11561 tsz_oob = true;
11562 } else if (tsz < min_tsz) {
11563 tsz = min_tsz;
11564 tsz_oob = true;
11565 } else {
11566 tsz_oob = false;
11567 }
ba97be9f 11568
b830a5ee
RH
11569 /* Present TBI as a composite with TBID. */
11570 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11571 if (!data) {
11572 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11573 }
11574 tbi = (tbi >> select) & 1;
11575
ba97be9f
RH
11576 return (ARMVAParameters) {
11577 .tsz = tsz,
f4ecc015 11578 .ps = ps,
ef56c242 11579 .sh = sh,
ba97be9f
RH
11580 .select = select,
11581 .tbi = tbi,
11582 .epd = epd,
11583 .hpd = hpd,
ebf93ce7 11584 .tsz_oob = tsz_oob,
ef56c242 11585 .ds = ds,
89739227
RH
11586 .ha = ha,
11587 .hd = ha && hd,
3c003f70 11588 .gran = gran,
ba97be9f
RH
11589 };
11590}
11591
9b37a28c
FR
11592/*
11593 * Note that signed overflow is undefined in C. The following routines are
11594 * careful to use unsigned types where modulo arithmetic is required.
11595 * Failure to do so _will_ break on newer gcc.
11596 */
6ddbc6e4
PB
11597
11598/* Signed saturating arithmetic. */
11599
1654b2d6 11600/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
11601static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11602{
11603 uint16_t res;
11604
11605 res = a + b;
11606 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
f927dbda 11607 if (a & 0x8000) {
6ddbc6e4 11608 res = 0x8000;
f927dbda 11609 } else {
6ddbc6e4 11610 res = 0x7fff;
f927dbda 11611 }
6ddbc6e4
PB
11612 }
11613 return res;
11614}
11615
1654b2d6 11616/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
11617static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11618{
11619 uint8_t res;
11620
11621 res = a + b;
11622 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
f927dbda 11623 if (a & 0x80) {
6ddbc6e4 11624 res = 0x80;
f927dbda 11625 } else {
6ddbc6e4 11626 res = 0x7f;
f927dbda 11627 }
6ddbc6e4
PB
11628 }
11629 return res;
11630}
11631
1654b2d6 11632/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
11633static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11634{
11635 uint16_t res;
11636
11637 res = a - b;
11638 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
f927dbda 11639 if (a & 0x8000) {
6ddbc6e4 11640 res = 0x8000;
f927dbda 11641 } else {
6ddbc6e4 11642 res = 0x7fff;
f927dbda 11643 }
6ddbc6e4
PB
11644 }
11645 return res;
11646}
11647
1654b2d6 11648/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
11649static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11650{
11651 uint8_t res;
11652
11653 res = a - b;
11654 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
f927dbda 11655 if (a & 0x80) {
6ddbc6e4 11656 res = 0x80;
f927dbda 11657 } else {
6ddbc6e4 11658 res = 0x7f;
f927dbda 11659 }
6ddbc6e4
PB
11660 }
11661 return res;
11662}
11663
11664#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11665#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11666#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11667#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11668#define PFX q
11669
11670#include "op_addsub.h"
11671
11672/* Unsigned saturating arithmetic. */
460a09c1 11673static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
11674{
11675 uint16_t res;
11676 res = a + b;
f927dbda 11677 if (res < a) {
6ddbc6e4 11678 res = 0xffff;
f927dbda 11679 }
6ddbc6e4
PB
11680 return res;
11681}
11682
460a09c1 11683static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 11684{
f927dbda 11685 if (a > b) {
6ddbc6e4 11686 return a - b;
f927dbda 11687 } else {
6ddbc6e4 11688 return 0;
f927dbda 11689 }
6ddbc6e4
PB
11690}
11691
11692static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11693{
11694 uint8_t res;
11695 res = a + b;
f927dbda 11696 if (res < a) {
6ddbc6e4 11697 res = 0xff;
f927dbda 11698 }
6ddbc6e4
PB
11699 return res;
11700}
11701
11702static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11703{
f927dbda 11704 if (a > b) {
6ddbc6e4 11705 return a - b;
f927dbda 11706 } else {
6ddbc6e4 11707 return 0;
f927dbda 11708 }
6ddbc6e4
PB
11709}
11710
11711#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11712#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11713#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11714#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11715#define PFX uq
11716
11717#include "op_addsub.h"
11718
11719/* Signed modulo arithmetic. */
11720#define SARITH16(a, b, n, op) do { \
11721 int32_t sum; \
db6e2e65 11722 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
11723 RESULT(sum, n, 16); \
11724 if (sum >= 0) \
11725 ge |= 3 << (n * 2); \
04215eb1 11726 } while (0)
6ddbc6e4
PB
11727
11728#define SARITH8(a, b, n, op) do { \
11729 int32_t sum; \
db6e2e65 11730 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
11731 RESULT(sum, n, 8); \
11732 if (sum >= 0) \
11733 ge |= 1 << n; \
04215eb1 11734 } while (0)
6ddbc6e4
PB
11735
11736
11737#define ADD16(a, b, n) SARITH16(a, b, n, +)
11738#define SUB16(a, b, n) SARITH16(a, b, n, -)
11739#define ADD8(a, b, n) SARITH8(a, b, n, +)
11740#define SUB8(a, b, n) SARITH8(a, b, n, -)
11741#define PFX s
11742#define ARITH_GE
11743
11744#include "op_addsub.h"
11745
11746/* Unsigned modulo arithmetic. */
11747#define ADD16(a, b, n) do { \
11748 uint32_t sum; \
11749 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11750 RESULT(sum, n, 16); \
a87aa10b 11751 if ((sum >> 16) == 1) \
6ddbc6e4 11752 ge |= 3 << (n * 2); \
04215eb1 11753 } while (0)
6ddbc6e4
PB
11754
11755#define ADD8(a, b, n) do { \
11756 uint32_t sum; \
11757 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11758 RESULT(sum, n, 8); \
a87aa10b
AZ
11759 if ((sum >> 8) == 1) \
11760 ge |= 1 << n; \
04215eb1 11761 } while (0)
6ddbc6e4
PB
11762
11763#define SUB16(a, b, n) do { \
11764 uint32_t sum; \
11765 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11766 RESULT(sum, n, 16); \
11767 if ((sum >> 16) == 0) \
11768 ge |= 3 << (n * 2); \
04215eb1 11769 } while (0)
6ddbc6e4
PB
11770
11771#define SUB8(a, b, n) do { \
11772 uint32_t sum; \
11773 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11774 RESULT(sum, n, 8); \
11775 if ((sum >> 8) == 0) \
a87aa10b 11776 ge |= 1 << n; \
04215eb1 11777 } while (0)
6ddbc6e4
PB
11778
11779#define PFX u
11780#define ARITH_GE
11781
11782#include "op_addsub.h"
11783
11784/* Halved signed arithmetic. */
11785#define ADD16(a, b, n) \
11786 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11787#define SUB16(a, b, n) \
11788 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11789#define ADD8(a, b, n) \
11790 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11791#define SUB8(a, b, n) \
11792 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11793#define PFX sh
11794
11795#include "op_addsub.h"
11796
11797/* Halved unsigned arithmetic. */
11798#define ADD16(a, b, n) \
11799 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11800#define SUB16(a, b, n) \
11801 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11802#define ADD8(a, b, n) \
11803 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11804#define SUB8(a, b, n) \
11805 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11806#define PFX uh
11807
11808#include "op_addsub.h"
11809
11810static inline uint8_t do_usad(uint8_t a, uint8_t b)
11811{
f927dbda 11812 if (a > b) {
6ddbc6e4 11813 return a - b;
f927dbda 11814 } else {
6ddbc6e4 11815 return b - a;
f927dbda 11816 }
6ddbc6e4
PB
11817}
11818
11819/* Unsigned sum of absolute byte differences. */
11820uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11821{
11822 uint32_t sum;
11823 sum = do_usad(a, b);
11824 sum += do_usad(a >> 8, b >> 8);
bdc3b6f5 11825 sum += do_usad(a >> 16, b >> 16);
6ddbc6e4
PB
11826 sum += do_usad(a >> 24, b >> 24);
11827 return sum;
11828}
11829
11830/* For ARMv6 SEL instruction. */
11831uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11832{
11833 uint32_t mask;
11834
11835 mask = 0;
f927dbda 11836 if (flags & 1) {
6ddbc6e4 11837 mask |= 0xff;
f927dbda
FR
11838 }
11839 if (flags & 2) {
6ddbc6e4 11840 mask |= 0xff00;
f927dbda
FR
11841 }
11842 if (flags & 4) {
6ddbc6e4 11843 mask |= 0xff0000;
f927dbda
FR
11844 }
11845 if (flags & 8) {
6ddbc6e4 11846 mask |= 0xff000000;
f927dbda 11847 }
6ddbc6e4
PB
11848 return (a & mask) | (b & ~mask);
11849}
11850
9b37a28c
FR
11851/*
11852 * CRC helpers.
aa633469
PM
11853 * The upper bytes of val (above the number specified by 'bytes') must have
11854 * been zeroed out by the caller.
11855 */
eb0ecd5a
WN
11856uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11857{
11858 uint8_t buf[4];
11859
aa633469 11860 stl_le_p(buf, val);
eb0ecd5a
WN
11861
11862 /* zlib crc32 converts the accumulator and output to one's complement. */
11863 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11864}
11865
11866uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11867{
11868 uint8_t buf[4];
11869
aa633469 11870 stl_le_p(buf, val);
eb0ecd5a
WN
11871
11872 /* Linux crc32c converts the output to one's complement. */
11873 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11874}
a9e01311 11875
9b37a28c
FR
11876/*
11877 * Return the exception level to which FP-disabled exceptions should
a9e01311
RH
11878 * be taken, or 0 if FP is enabled.
11879 */
ced31551 11880int fp_exception_el(CPUARMState *env, int cur_el)
a9e01311 11881{
55faa212 11882#ifndef CONFIG_USER_ONLY
d5a6fa2d
RH
11883 uint64_t hcr_el2;
11884
9b37a28c
FR
11885 /*
11886 * CPACR and the CPTR registers don't exist before v6, so FP is
a9e01311
RH
11887 * always accessible
11888 */
11889 if (!arm_feature(env, ARM_FEATURE_V6)) {
11890 return 0;
11891 }
11892
d87513c0
PM
11893 if (arm_feature(env, ARM_FEATURE_M)) {
11894 /* CPACR can cause a NOCP UsageFault taken to current security state */
11895 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11896 return 1;
11897 }
11898
11899 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11900 if (!extract32(env->v7m.nsacr, 10, 1)) {
11901 /* FP insns cause a NOCP UsageFault taken to Secure */
11902 return 3;
11903 }
11904 }
11905
11906 return 0;
11907 }
11908
d5a6fa2d
RH
11909 hcr_el2 = arm_hcr_el2_eff(env);
11910
9b37a28c
FR
11911 /*
11912 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
a9e01311
RH
11913 * 0, 2 : trap EL0 and EL1/PL1 accesses
11914 * 1 : trap only EL0 accesses
11915 * 3 : trap no accesses
c2ddb7cf 11916 * This register is ignored if E2H+TGE are both set.
a9e01311 11917 */
d5a6fa2d 11918 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
fab8ad39 11919 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
c2ddb7cf
RH
11920
11921 switch (fpen) {
02e1de14
RH
11922 case 1:
11923 if (cur_el != 0) {
11924 break;
11925 }
11926 /* fall through */
c2ddb7cf
RH
11927 case 0:
11928 case 2:
02e1de14
RH
11929 /* Trap from Secure PL0 or PL1 to Secure PL1. */
11930 if (!arm_el_is_aa64(env, 3)
11931 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
a9e01311
RH
11932 return 3;
11933 }
02e1de14 11934 if (cur_el <= 1) {
c2ddb7cf
RH
11935 return 1;
11936 }
11937 break;
a9e01311 11938 }
a9e01311
RH
11939 }
11940
fc1120a7
PM
11941 /*
11942 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11943 * to control non-secure access to the FPU. It doesn't have any
11944 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11945 */
11946 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11947 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11948 if (!extract32(env->cp15.nsacr, 10, 1)) {
11949 /* FP insns act as UNDEF */
11950 return cur_el == 2 ? 2 : 1;
11951 }
11952 }
11953
d5a6fa2d
RH
11954 /*
11955 * CPTR_EL2 is present in v7VE or v8, and changes format
11956 * with HCR_EL2.E2H (regardless of TGE).
a9e01311 11957 */
d5a6fa2d
RH
11958 if (cur_el <= 2) {
11959 if (hcr_el2 & HCR_E2H) {
fab8ad39 11960 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
d5a6fa2d
RH
11961 case 1:
11962 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11963 break;
11964 }
11965 /* fall through */
11966 case 0:
11967 case 2:
11968 return 2;
11969 }
11970 } else if (arm_is_el2_enabled(env)) {
fab8ad39 11971 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
d5a6fa2d
RH
11972 return 2;
11973 }
11974 }
a9e01311
RH
11975 }
11976
11977 /* CPTR_EL3 : present in v8 */
fab8ad39 11978 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
a9e01311
RH
11979 /* Trap all FP ops to EL3 */
11980 return 3;
11981 }
55faa212 11982#endif
a9e01311
RH
11983 return 0;
11984}
11985
b9f6033c
RH
11986/* Return the exception level we're running at if this is our mmu_idx */
11987int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11988{
11989 if (mmu_idx & ARM_MMU_IDX_M) {
11990 return mmu_idx & ARM_MMU_IDX_M_PRIV;
11991 }
11992
11993 switch (mmu_idx) {
11994 case ARMMMUIdx_E10_0:
11995 case ARMMMUIdx_E20_0:
b9f6033c
RH
11996 return 0;
11997 case ARMMMUIdx_E10_1:
452ef8cb 11998 case ARMMMUIdx_E10_1_PAN:
b9f6033c
RH
11999 return 1;
12000 case ARMMMUIdx_E2:
12001 case ARMMMUIdx_E20_2:
452ef8cb 12002 case ARMMMUIdx_E20_2_PAN:
b9f6033c 12003 return 2;
d902ae75 12004 case ARMMMUIdx_E3:
b9f6033c
RH
12005 return 3;
12006 default:
12007 g_assert_not_reached();
12008 }
12009}
12010
7aab5a8c 12011#ifndef CONFIG_TCG
65e4655c
RH
12012ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12013{
7aab5a8c 12014 g_assert_not_reached();
65e4655c 12015}
7aab5a8c 12016#endif
65e4655c 12017
6f2d9d74
TK
12018static bool arm_pan_enabled(CPUARMState *env)
12019{
12020 if (is_a64(env)) {
12021 return env->pstate & PSTATE_PAN;
12022 } else {
12023 return env->uncached_cpsr & CPSR_PAN;
12024 }
12025}
12026
164690b2 12027ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
65e4655c 12028{
b6ad6062
RDC
12029 ARMMMUIdx idx;
12030 uint64_t hcr;
12031
65e4655c 12032 if (arm_feature(env, ARM_FEATURE_M)) {
50494a27 12033 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
65e4655c
RH
12034 }
12035
6003d980 12036 /* See ARM pseudo-function ELIsInHost. */
b9f6033c
RH
12037 switch (el) {
12038 case 0:
b6ad6062
RDC
12039 hcr = arm_hcr_el2_eff(env);
12040 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12041 idx = ARMMMUIdx_E20_0;
12042 } else {
12043 idx = ARMMMUIdx_E10_0;
6003d980 12044 }
b6ad6062 12045 break;
b9f6033c 12046 case 1:
6f2d9d74 12047 if (arm_pan_enabled(env)) {
b6ad6062
RDC
12048 idx = ARMMMUIdx_E10_1_PAN;
12049 } else {
12050 idx = ARMMMUIdx_E10_1;
66412260 12051 }
b6ad6062 12052 break;
b9f6033c 12053 case 2:
6003d980 12054 /* Note that TGE does not apply at EL2. */
b6ad6062 12055 if (arm_hcr_el2_eff(env) & HCR_E2H) {
6f2d9d74 12056 if (arm_pan_enabled(env)) {
b6ad6062
RDC
12057 idx = ARMMMUIdx_E20_2_PAN;
12058 } else {
12059 idx = ARMMMUIdx_E20_2;
66412260 12060 }
b6ad6062
RDC
12061 } else {
12062 idx = ARMMMUIdx_E2;
6003d980 12063 }
b6ad6062 12064 break;
b9f6033c 12065 case 3:
d902ae75 12066 return ARMMMUIdx_E3;
b9f6033c
RH
12067 default:
12068 g_assert_not_reached();
65e4655c 12069 }
b6ad6062 12070
b6ad6062 12071 return idx;
50494a27
RH
12072}
12073
164690b2
RH
12074ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12075{
12076 return arm_mmu_idx_el(env, arm_current_el(env));
12077}
12078
26702213
PM
12079static bool mve_no_pred(CPUARMState *env)
12080{
12081 /*
12082 * Return true if there is definitely no predication of MVE
12083 * instructions by VPR or LTPSIZE. (Returning false even if there
12084 * isn't any predication is OK; generated code will just be
12085 * a little worse.)
12086 * If the CPU does not implement MVE then this TB flag is always 0.
12087 *
12088 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12089 * logic in gen_update_fp_context() needs to be updated to match.
12090 *
12091 * We do not include the effect of the ECI bits here -- they are
12092 * tracked in other TB flags. This simplifies the logic for
12093 * "when did we emit code that changes the MVE_NO_PRED TB flag
12094 * and thus need to end the TB?".
12095 */
12096 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12097 return false;
12098 }
12099 if (env->v7m.vpr) {
12100 return false;
12101 }
12102 if (env->v7m.ltpsize < 4) {
12103 return false;
12104 }
12105 return true;
12106}
12107
bb5de525
AJ
12108void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12109 uint64_t *cs_base, uint32_t *pflags)
d4d7503a 12110{
3902bfc6 12111 CPUARMTBFlags flags;
d4d7503a 12112
0ee8b24a 12113 assert_hflags_rebuild_correctly(env);
3902bfc6 12114 flags = env->hflags;
3d74e2e9 12115
a729a46b 12116 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
d4d7503a 12117 *pc = env->pc;
d4d7503a 12118 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
a729a46b 12119 DP_TBFLAG_A64(flags, BTYPE, env->btype);
08f1434a 12120 }
a9e01311
RH
12121 } else {
12122 *pc = env->regs[15];
6e33ced5
RH
12123
12124 if (arm_feature(env, ARM_FEATURE_M)) {
9550d1bd
RH
12125 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12126 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12127 != env->v7m.secure) {
a729a46b 12128 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
9550d1bd
RH
12129 }
12130
12131 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12132 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12133 (env->v7m.secure &&
12134 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12135 /*
12136 * ASPEN is set, but FPCA/SFPA indicate that there is no
12137 * active FP context; we must create a new FP context before
12138 * executing any FP insn.
12139 */
a729a46b 12140 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
9550d1bd
RH
12141 }
12142
12143 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12144 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
a729a46b 12145 DP_TBFLAG_M32(flags, LSPACT, 1);
9550d1bd 12146 }
26702213
PM
12147
12148 if (mve_no_pred(env)) {
12149 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12150 }
6e33ced5 12151 } else {
bbad7c62
RH
12152 /*
12153 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12154 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12155 */
12156 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
a729a46b 12157 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
bbad7c62 12158 } else {
a729a46b
RH
12159 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12160 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
bbad7c62 12161 }
0a54d68e 12162 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
a729a46b 12163 DP_TBFLAG_A32(flags, VFPEN, 1);
0a54d68e 12164 }
6e33ced5
RH
12165 }
12166
a729a46b
RH
12167 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12168 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
d4d7503a 12169 }
a9e01311 12170
60e12c37
RH
12171 /*
12172 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
a9e01311
RH
12173 * states defined in the ARM ARM for software singlestep:
12174 * SS_ACTIVE PSTATE.SS State
12175 * 0 x Inactive (the TB flag for SS is always 0)
12176 * 1 0 Active-pending
12177 * 1 1 Active-not-pending
ae6eb1e9 12178 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
a9e01311 12179 */
a729a46b
RH
12180 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12181 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
a9e01311 12182 }
a9e01311 12183
3902bfc6 12184 *pflags = flags.flags;
a378206a 12185 *cs_base = flags.flags2;
a9e01311 12186}
0ab5953b
RH
12187
12188#ifdef TARGET_AARCH64
12189/*
12190 * The manual says that when SVE is enabled and VQ is widened the
12191 * implementation is allowed to zero the previously inaccessible
12192 * portion of the registers. The corollary to that is that when
12193 * SVE is enabled and VQ is narrowed we are also allowed to zero
12194 * the now inaccessible portion of the registers.
12195 *
12196 * The intent of this is that no predicate bit beyond VQ is ever set.
12197 * Which means that some operations on predicate registers themselves
12198 * may operate on full uint64_t or even unrolled across the maximum
12199 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12200 * may well be cheaper than conditionals to restrict the operation
12201 * to the relevant portion of a uint16_t[16].
12202 */
12203void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12204{
12205 int i, j;
12206 uint64_t pmask;
12207
12208 assert(vq >= 1 && vq <= ARM_MAX_VQ);
2fc0cc0e 12209 assert(vq <= env_archcpu(env)->sve_max_vq);
0ab5953b
RH
12210
12211 /* Zap the high bits of the zregs. */
12212 for (i = 0; i < 32; i++) {
12213 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12214 }
12215
12216 /* Zap the high bits of the pregs and ffr. */
12217 pmask = 0;
12218 if (vq & 3) {
12219 pmask = ~(-1ULL << (16 * (vq & 3)));
12220 }
12221 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12222 for (i = 0; i < 17; ++i) {
12223 env->vfp.pregs[i].p[j] &= pmask;
12224 }
12225 pmask = 0;
12226 }
12227}
12228
6a775fd6
RH
12229static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12230{
12231 int exc_el;
12232
12233 if (sm) {
12234 exc_el = sme_exception_el(env, el);
12235 } else {
12236 exc_el = sve_exception_el(env, el);
12237 }
12238 if (exc_el) {
12239 return 0; /* disabled */
12240 }
12241 return sve_vqm1_for_el_sm(env, el, sm);
12242}
12243
0ab5953b
RH
12244/*
12245 * Notice a change in SVE vector size when changing EL.
12246 */
9a05f7b6
RH
12247void aarch64_sve_change_el(CPUARMState *env, int old_el,
12248 int new_el, bool el0_a64)
0ab5953b 12249{
2fc0cc0e 12250 ARMCPU *cpu = env_archcpu(env);
0ab5953b 12251 int old_len, new_len;
6a775fd6 12252 bool old_a64, new_a64, sm;
0ab5953b
RH
12253
12254 /* Nothing to do if no SVE. */
cd208a1c 12255 if (!cpu_isar_feature(aa64_sve, cpu)) {
0ab5953b
RH
12256 return;
12257 }
12258
12259 /* Nothing to do if FP is disabled in either EL. */
12260 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12261 return;
12262 }
12263
04fbce76
RH
12264 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12265 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12266
12267 /*
12268 * Both AArch64.TakeException and AArch64.ExceptionReturn
12269 * invoke ResetSVEState when taking an exception from, or
12270 * returning to, AArch32 state when PSTATE.SM is enabled.
12271 */
6a775fd6
RH
12272 sm = FIELD_EX64(env->svcr, SVCR, SM);
12273 if (old_a64 != new_a64 && sm) {
04fbce76
RH
12274 arm_reset_sve_state(env);
12275 return;
12276 }
12277
0ab5953b
RH
12278 /*
12279 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12280 * at ELx, or not available because the EL is in AArch32 state, then
12281 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12282 * has an effective value of 0".
12283 *
12284 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12285 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12286 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12287 * we already have the correct register contents when encountering the
12288 * vq0->vq0 transition between EL0->EL1.
12289 */
6a775fd6
RH
12290 old_len = new_len = 0;
12291 if (old_a64) {
12292 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12293 }
12294 if (new_a64) {
12295 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12296 }
0ab5953b
RH
12297
12298 /* When changing vector length, clear inaccessible state. */
12299 if (new_len < old_len) {
12300 aarch64_sve_narrow_vq(env, new_len + 1);
12301 }
12302}
12303#endif
5d28ac0c
RH
12304
12305#ifndef CONFIG_USER_ONLY
12306ARMSecuritySpace arm_security_space(CPUARMState *env)
12307{
12308 if (arm_feature(env, ARM_FEATURE_M)) {
12309 return arm_secure_to_space(env->v7m.secure);
12310 }
12311
12312 /*
12313 * If EL3 is not supported then the secure state is implementation
12314 * defined, in which case QEMU defaults to non-secure.
12315 */
12316 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12317 return ARMSS_NonSecure;
12318 }
12319
12320 /* Check for AArch64 EL3 or AArch32 Mon. */
12321 if (is_a64(env)) {
12322 if (extract32(env->pstate, 2, 2) == 3) {
12323 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12324 return ARMSS_Root;
12325 } else {
12326 return ARMSS_Secure;
12327 }
12328 }
12329 } else {
12330 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12331 return ARMSS_Secure;
12332 }
12333 }
12334
12335 return arm_security_space_below_el3(env);
12336}
12337
12338ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12339{
12340 assert(!arm_feature(env, ARM_FEATURE_M));
12341
12342 /*
12343 * If EL3 is not supported then the secure state is implementation
12344 * defined, in which case QEMU defaults to non-secure.
12345 */
12346 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12347 return ARMSS_NonSecure;
12348 }
12349
12350 /*
12351 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12352 * Ignoring NSE when !NS retains consistency without having to
12353 * modify other predicates.
12354 */
12355 if (!(env->cp15.scr_el3 & SCR_NS)) {
12356 return ARMSS_Secure;
12357 } else if (env->cp15.scr_el3 & SCR_NSE) {
12358 return ARMSS_Realm;
12359 } else {
12360 return ARMSS_NonSecure;
12361 }
12362}
12363#endif /* !CONFIG_USER_ONLY */