]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/helper.c
target/arm: Factor MPU lookup code out of get_phys_addr_pmsav8()
[mirror_qemu.git] / target / arm / helper.c
CommitLineData
74c21bd0 1#include "qemu/osdep.h"
194cbc49 2#include "trace.h"
b5ff1b31 3#include "cpu.h"
ccd38087 4#include "internals.h"
022c62cb 5#include "exec/gdbstub.h"
2ef6175a 6#include "exec/helper-proto.h"
1de7afc9 7#include "qemu/host-utils.h"
78027bb6 8#include "sysemu/arch_init.h"
9c17d615 9#include "sysemu/sysemu.h"
1de7afc9 10#include "qemu/bitops.h"
eb0ecd5a 11#include "qemu/crc32c.h"
63c91552 12#include "exec/exec-all.h"
f08b6170 13#include "exec/cpu_ldst.h"
1d854765 14#include "arm_ldst.h"
eb0ecd5a 15#include <zlib.h> /* For crc32 */
cfe67cef 16#include "exec/semihost.h"
f3a9b694 17#include "sysemu/kvm.h"
0b03bdfc 18
352c98e5
LV
19#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20
4a501606 21#ifndef CONFIG_USER_ONLY
5b2d261d
AB
22/* Cacheability and shareability attributes for a memory access */
23typedef struct ARMCacheAttrs {
24 unsigned int attrs:8; /* as in the MAIR register encoding */
25 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
26} ARMCacheAttrs;
27
af51f566 28static bool get_phys_addr(CPUARMState *env, target_ulong address,
03ae85f8 29 MMUAccessType access_type, ARMMMUIdx mmu_idx,
af51f566 30 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23 31 target_ulong *page_size, uint32_t *fsr,
5b2d261d 32 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
7c2cb42b 33
37785977 34static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
03ae85f8 35 MMUAccessType access_type, ARMMMUIdx mmu_idx,
37785977
EI
36 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
37 target_ulong *page_size_ptr, uint32_t *fsr,
5b2d261d 38 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
37785977 39
35337cc3
PM
40/* Security attributes for an address, as returned by v8m_security_lookup. */
41typedef struct V8M_SAttributes {
42 bool ns;
43 bool nsc;
44 uint8_t sregion;
45 bool srvalid;
46 uint8_t iregion;
47 bool irvalid;
48} V8M_SAttributes;
49
333e10c5
PM
50static void v8m_security_lookup(CPUARMState *env, uint32_t address,
51 MMUAccessType access_type, ARMMMUIdx mmu_idx,
52 V8M_SAttributes *sattrs);
53
7c2cb42b
AF
54/* Definitions for the PMCCNTR and PMCR registers */
55#define PMCRD 0x8
56#define PMCRC 0x4
57#define PMCRE 0x1
4a501606
PM
58#endif
59
0ecb72a5 60static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
61{
62 int nregs;
63
64 /* VFP data registers are always little-endian. */
65 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
66 if (reg < nregs) {
67 stfq_le_p(buf, env->vfp.regs[reg]);
68 return 8;
69 }
70 if (arm_feature(env, ARM_FEATURE_NEON)) {
71 /* Aliases for Q regs. */
72 nregs += 16;
73 if (reg < nregs) {
74 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
75 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
76 return 16;
77 }
78 }
79 switch (reg - nregs) {
80 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
81 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
82 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
83 }
84 return 0;
85}
86
0ecb72a5 87static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
88{
89 int nregs;
90
91 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
92 if (reg < nregs) {
93 env->vfp.regs[reg] = ldfq_le_p(buf);
94 return 8;
95 }
96 if (arm_feature(env, ARM_FEATURE_NEON)) {
97 nregs += 16;
98 if (reg < nregs) {
99 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
100 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
101 return 16;
102 }
103 }
104 switch (reg - nregs) {
105 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
106 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 107 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
108 }
109 return 0;
110}
111
6a669427
PM
112static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
113{
114 switch (reg) {
115 case 0 ... 31:
116 /* 128 bit FP register */
117 stfq_le_p(buf, env->vfp.regs[reg * 2]);
118 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
119 return 16;
120 case 32:
121 /* FPSR */
122 stl_p(buf, vfp_get_fpsr(env));
123 return 4;
124 case 33:
125 /* FPCR */
126 stl_p(buf, vfp_get_fpcr(env));
127 return 4;
128 default:
129 return 0;
130 }
131}
132
133static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
134{
135 switch (reg) {
136 case 0 ... 31:
137 /* 128 bit FP register */
138 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
139 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
140 return 16;
141 case 32:
142 /* FPSR */
143 vfp_set_fpsr(env, ldl_p(buf));
144 return 4;
145 case 33:
146 /* FPCR */
147 vfp_set_fpcr(env, ldl_p(buf));
148 return 4;
149 default:
150 return 0;
151 }
152}
153
c4241c7d 154static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
d4e6df63 155{
375421cc 156 assert(ri->fieldoffset);
67ed771d 157 if (cpreg_field_is_64bit(ri)) {
c4241c7d 158 return CPREG_FIELD64(env, ri);
22d9e1a9 159 } else {
c4241c7d 160 return CPREG_FIELD32(env, ri);
22d9e1a9 161 }
d4e6df63
PM
162}
163
c4241c7d
PM
164static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
165 uint64_t value)
d4e6df63 166{
375421cc 167 assert(ri->fieldoffset);
67ed771d 168 if (cpreg_field_is_64bit(ri)) {
22d9e1a9
PM
169 CPREG_FIELD64(env, ri) = value;
170 } else {
171 CPREG_FIELD32(env, ri) = value;
172 }
d4e6df63
PM
173}
174
11f136ee
FA
175static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
176{
177 return (char *)env + ri->fieldoffset;
178}
179
49a66191 180uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
721fae12 181{
59a1c327 182 /* Raw read of a coprocessor register (as needed for migration, etc). */
721fae12 183 if (ri->type & ARM_CP_CONST) {
59a1c327 184 return ri->resetvalue;
721fae12 185 } else if (ri->raw_readfn) {
59a1c327 186 return ri->raw_readfn(env, ri);
721fae12 187 } else if (ri->readfn) {
59a1c327 188 return ri->readfn(env, ri);
721fae12 189 } else {
59a1c327 190 return raw_read(env, ri);
721fae12 191 }
721fae12
PM
192}
193
59a1c327 194static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
7900e9f1 195 uint64_t v)
721fae12
PM
196{
197 /* Raw write of a coprocessor register (as needed for migration, etc).
721fae12
PM
198 * Note that constant registers are treated as write-ignored; the
199 * caller should check for success by whether a readback gives the
200 * value written.
201 */
202 if (ri->type & ARM_CP_CONST) {
59a1c327 203 return;
721fae12 204 } else if (ri->raw_writefn) {
c4241c7d 205 ri->raw_writefn(env, ri, v);
721fae12 206 } else if (ri->writefn) {
c4241c7d 207 ri->writefn(env, ri, v);
721fae12 208 } else {
afb2530f 209 raw_write(env, ri, v);
721fae12 210 }
721fae12
PM
211}
212
375421cc
PM
213static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
214{
215 /* Return true if the regdef would cause an assertion if you called
216 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
217 * program bug for it not to have the NO_RAW flag).
218 * NB that returning false here doesn't necessarily mean that calling
219 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
220 * read/write access functions which are safe for raw use" from "has
221 * read/write access functions which have side effects but has forgotten
222 * to provide raw access functions".
223 * The tests here line up with the conditions in read/write_raw_cp_reg()
224 * and assertions in raw_read()/raw_write().
225 */
226 if ((ri->type & ARM_CP_CONST) ||
227 ri->fieldoffset ||
228 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
229 return false;
230 }
231 return true;
232}
233
721fae12
PM
234bool write_cpustate_to_list(ARMCPU *cpu)
235{
236 /* Write the coprocessor state from cpu->env to the (index,value) list. */
237 int i;
238 bool ok = true;
239
240 for (i = 0; i < cpu->cpreg_array_len; i++) {
241 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
242 const ARMCPRegInfo *ri;
59a1c327 243
60322b39 244 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
245 if (!ri) {
246 ok = false;
247 continue;
248 }
7a0e58fa 249 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
250 continue;
251 }
59a1c327 252 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
721fae12
PM
253 }
254 return ok;
255}
256
257bool write_list_to_cpustate(ARMCPU *cpu)
258{
259 int i;
260 bool ok = true;
261
262 for (i = 0; i < cpu->cpreg_array_len; i++) {
263 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
264 uint64_t v = cpu->cpreg_values[i];
721fae12
PM
265 const ARMCPRegInfo *ri;
266
60322b39 267 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
268 if (!ri) {
269 ok = false;
270 continue;
271 }
7a0e58fa 272 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
273 continue;
274 }
275 /* Write value and confirm it reads back as written
276 * (to catch read-only registers and partially read-only
277 * registers where the incoming migration value doesn't match)
278 */
59a1c327
PM
279 write_raw_cp_reg(&cpu->env, ri, v);
280 if (read_raw_cp_reg(&cpu->env, ri) != v) {
721fae12
PM
281 ok = false;
282 }
283 }
284 return ok;
285}
286
287static void add_cpreg_to_list(gpointer key, gpointer opaque)
288{
289 ARMCPU *cpu = opaque;
290 uint64_t regidx;
291 const ARMCPRegInfo *ri;
292
293 regidx = *(uint32_t *)key;
60322b39 294 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 295
7a0e58fa 296 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
297 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
298 /* The value array need not be initialized at this point */
299 cpu->cpreg_array_len++;
300 }
301}
302
303static void count_cpreg(gpointer key, gpointer opaque)
304{
305 ARMCPU *cpu = opaque;
306 uint64_t regidx;
307 const ARMCPRegInfo *ri;
308
309 regidx = *(uint32_t *)key;
60322b39 310 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 311
7a0e58fa 312 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
313 cpu->cpreg_array_len++;
314 }
315}
316
317static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
318{
cbf239b7
AR
319 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
320 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
721fae12 321
cbf239b7
AR
322 if (aidx > bidx) {
323 return 1;
324 }
325 if (aidx < bidx) {
326 return -1;
327 }
328 return 0;
721fae12
PM
329}
330
331void init_cpreg_list(ARMCPU *cpu)
332{
333 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
334 * Note that we require cpreg_tuples[] to be sorted by key ID.
335 */
57b6d95e 336 GList *keys;
721fae12
PM
337 int arraylen;
338
57b6d95e 339 keys = g_hash_table_get_keys(cpu->cp_regs);
721fae12
PM
340 keys = g_list_sort(keys, cpreg_key_compare);
341
342 cpu->cpreg_array_len = 0;
343
344 g_list_foreach(keys, count_cpreg, cpu);
345
346 arraylen = cpu->cpreg_array_len;
347 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
348 cpu->cpreg_values = g_new(uint64_t, arraylen);
349 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
350 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
351 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
352 cpu->cpreg_array_len = 0;
353
354 g_list_foreach(keys, add_cpreg_to_list, cpu);
355
356 assert(cpu->cpreg_array_len == arraylen);
357
358 g_list_free(keys);
359}
360
68e9c2fe
EI
361/*
362 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
363 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
364 *
365 * access_el3_aa32ns: Used to check AArch32 register views.
366 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
367 */
368static CPAccessResult access_el3_aa32ns(CPUARMState *env,
3f208fd7
PM
369 const ARMCPRegInfo *ri,
370 bool isread)
68e9c2fe
EI
371{
372 bool secure = arm_is_secure_below_el3(env);
373
374 assert(!arm_el_is_aa64(env, 3));
375 if (secure) {
376 return CP_ACCESS_TRAP_UNCATEGORIZED;
377 }
378 return CP_ACCESS_OK;
379}
380
381static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
3f208fd7
PM
382 const ARMCPRegInfo *ri,
383 bool isread)
68e9c2fe
EI
384{
385 if (!arm_el_is_aa64(env, 3)) {
3f208fd7 386 return access_el3_aa32ns(env, ri, isread);
68e9c2fe
EI
387 }
388 return CP_ACCESS_OK;
389}
390
5513c3ab
PM
391/* Some secure-only AArch32 registers trap to EL3 if used from
392 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
393 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
394 * We assume that the .access field is set to PL1_RW.
395 */
396static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
3f208fd7
PM
397 const ARMCPRegInfo *ri,
398 bool isread)
5513c3ab
PM
399{
400 if (arm_current_el(env) == 3) {
401 return CP_ACCESS_OK;
402 }
403 if (arm_is_secure_below_el3(env)) {
404 return CP_ACCESS_TRAP_EL3;
405 }
406 /* This will be EL1 NS and EL2 NS, which just UNDEF */
407 return CP_ACCESS_TRAP_UNCATEGORIZED;
408}
409
187f678d
PM
410/* Check for traps to "powerdown debug" registers, which are controlled
411 * by MDCR.TDOSA
412 */
413static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
414 bool isread)
415{
416 int el = arm_current_el(env);
417
418 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
419 && !arm_is_secure_below_el3(env)) {
420 return CP_ACCESS_TRAP_EL2;
421 }
422 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
423 return CP_ACCESS_TRAP_EL3;
424 }
425 return CP_ACCESS_OK;
426}
427
91b0a238
PM
428/* Check for traps to "debug ROM" registers, which are controlled
429 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
430 */
431static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
432 bool isread)
433{
434 int el = arm_current_el(env);
435
436 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
437 && !arm_is_secure_below_el3(env)) {
438 return CP_ACCESS_TRAP_EL2;
439 }
440 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
441 return CP_ACCESS_TRAP_EL3;
442 }
443 return CP_ACCESS_OK;
444}
445
d6c8cf81
PM
446/* Check for traps to general debug registers, which are controlled
447 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
448 */
449static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
450 bool isread)
451{
452 int el = arm_current_el(env);
453
454 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
455 && !arm_is_secure_below_el3(env)) {
456 return CP_ACCESS_TRAP_EL2;
457 }
458 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
459 return CP_ACCESS_TRAP_EL3;
460 }
461 return CP_ACCESS_OK;
462}
463
1fce1ba9
PM
464/* Check for traps to performance monitor registers, which are controlled
465 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
466 */
467static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
468 bool isread)
469{
470 int el = arm_current_el(env);
471
472 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
473 && !arm_is_secure_below_el3(env)) {
474 return CP_ACCESS_TRAP_EL2;
475 }
476 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
477 return CP_ACCESS_TRAP_EL3;
478 }
479 return CP_ACCESS_OK;
480}
481
c4241c7d 482static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
c983fe6c 483{
00c8cb0a
AF
484 ARMCPU *cpu = arm_env_get_cpu(env);
485
8d5c773e 486 raw_write(env, ri, value);
d10eb08f 487 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
c983fe6c
PM
488}
489
c4241c7d 490static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
08de207b 491{
00c8cb0a
AF
492 ARMCPU *cpu = arm_env_get_cpu(env);
493
8d5c773e 494 if (raw_read(env, ri) != value) {
08de207b
PM
495 /* Unlike real hardware the qemu TLB uses virtual addresses,
496 * not modified virtual addresses, so this causes a TLB flush.
497 */
d10eb08f 498 tlb_flush(CPU(cpu));
8d5c773e 499 raw_write(env, ri, value);
08de207b 500 }
08de207b 501}
c4241c7d
PM
502
503static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
504 uint64_t value)
08de207b 505{
00c8cb0a
AF
506 ARMCPU *cpu = arm_env_get_cpu(env);
507
452a0955 508 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
014406b5 509 && !extended_addresses_enabled(env)) {
08de207b
PM
510 /* For VMSA (when not using the LPAE long descriptor page table
511 * format) this register includes the ASID, so do a TLB flush.
512 * For PMSA it is purely a process ID and no action is needed.
513 */
d10eb08f 514 tlb_flush(CPU(cpu));
08de207b 515 }
8d5c773e 516 raw_write(env, ri, value);
08de207b
PM
517}
518
c4241c7d
PM
519static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
520 uint64_t value)
d929823f
PM
521{
522 /* Invalidate all (TLBIALL) */
00c8cb0a
AF
523 ARMCPU *cpu = arm_env_get_cpu(env);
524
d10eb08f 525 tlb_flush(CPU(cpu));
d929823f
PM
526}
527
c4241c7d
PM
528static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
529 uint64_t value)
d929823f
PM
530{
531 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
31b030d4
AF
532 ARMCPU *cpu = arm_env_get_cpu(env);
533
534 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
535}
536
c4241c7d
PM
537static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
538 uint64_t value)
d929823f
PM
539{
540 /* Invalidate by ASID (TLBIASID) */
00c8cb0a
AF
541 ARMCPU *cpu = arm_env_get_cpu(env);
542
d10eb08f 543 tlb_flush(CPU(cpu));
d929823f
PM
544}
545
c4241c7d
PM
546static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
547 uint64_t value)
d929823f
PM
548{
549 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
31b030d4
AF
550 ARMCPU *cpu = arm_env_get_cpu(env);
551
552 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
553}
554
fa439fc5
PM
555/* IS variants of TLB operations must affect all cores */
556static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
557 uint64_t value)
558{
a67cf277 559 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 560
a67cf277 561 tlb_flush_all_cpus_synced(cs);
fa439fc5
PM
562}
563
564static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
566{
a67cf277 567 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 568
a67cf277 569 tlb_flush_all_cpus_synced(cs);
fa439fc5
PM
570}
571
572static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
573 uint64_t value)
574{
a67cf277 575 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 576
a67cf277 577 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
fa439fc5
PM
578}
579
580static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
581 uint64_t value)
582{
a67cf277 583 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 584
a67cf277 585 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
fa439fc5
PM
586}
587
541ef8c2
SS
588static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
589 uint64_t value)
590{
591 CPUState *cs = ENV_GET_CPU(env);
592
0336cbf8 593 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
594 ARMMMUIdxBit_S12NSE1 |
595 ARMMMUIdxBit_S12NSE0 |
596 ARMMMUIdxBit_S2NS);
541ef8c2
SS
597}
598
599static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
600 uint64_t value)
601{
a67cf277 602 CPUState *cs = ENV_GET_CPU(env);
541ef8c2 603
a67cf277 604 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
605 ARMMMUIdxBit_S12NSE1 |
606 ARMMMUIdxBit_S12NSE0 |
607 ARMMMUIdxBit_S2NS);
541ef8c2
SS
608}
609
610static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
611 uint64_t value)
612{
613 /* Invalidate by IPA. This has to invalidate any structures that
614 * contain only stage 2 translation information, but does not need
615 * to apply to structures that contain combined stage 1 and stage 2
616 * translation information.
617 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
618 */
619 CPUState *cs = ENV_GET_CPU(env);
620 uint64_t pageaddr;
621
622 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
623 return;
624 }
625
626 pageaddr = sextract64(value << 12, 0, 40);
627
8bd5c820 628 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
541ef8c2
SS
629}
630
631static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
632 uint64_t value)
633{
a67cf277 634 CPUState *cs = ENV_GET_CPU(env);
541ef8c2
SS
635 uint64_t pageaddr;
636
637 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
638 return;
639 }
640
641 pageaddr = sextract64(value << 12, 0, 40);
642
a67cf277 643 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 644 ARMMMUIdxBit_S2NS);
541ef8c2
SS
645}
646
647static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
648 uint64_t value)
649{
650 CPUState *cs = ENV_GET_CPU(env);
651
8bd5c820 652 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
541ef8c2
SS
653}
654
655static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
656 uint64_t value)
657{
a67cf277 658 CPUState *cs = ENV_GET_CPU(env);
541ef8c2 659
8bd5c820 660 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
541ef8c2
SS
661}
662
663static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
664 uint64_t value)
665{
666 CPUState *cs = ENV_GET_CPU(env);
667 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
668
8bd5c820 669 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
541ef8c2
SS
670}
671
672static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
673 uint64_t value)
674{
a67cf277 675 CPUState *cs = ENV_GET_CPU(env);
541ef8c2
SS
676 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
677
a67cf277 678 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 679 ARMMMUIdxBit_S1E2);
541ef8c2
SS
680}
681
e9aa6c21 682static const ARMCPRegInfo cp_reginfo[] = {
54bf36ed
FA
683 /* Define the secure and non-secure FCSE identifier CP registers
684 * separately because there is no secure bank in V8 (no _EL3). This allows
685 * the secure register to be properly reset and migrated. There is also no
686 * v8 EL1 version of the register so the non-secure instance stands alone.
687 */
688 { .name = "FCSEIDR(NS)",
689 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
690 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
691 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
692 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
693 { .name = "FCSEIDR(S)",
694 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
695 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
696 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
d4e6df63 697 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
54bf36ed
FA
698 /* Define the secure and non-secure context identifier CP registers
699 * separately because there is no secure bank in V8 (no _EL3). This allows
700 * the secure register to be properly reset and migrated. In the
701 * non-secure case, the 32-bit register will have reset and migration
702 * disabled during registration as it is handled by the 64-bit instance.
703 */
704 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
014406b5 705 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
54bf36ed
FA
706 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
707 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
708 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
709 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
710 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
711 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
712 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
d4e6df63 713 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9449fdf6
PM
714 REGINFO_SENTINEL
715};
716
717static const ARMCPRegInfo not_v8_cp_reginfo[] = {
718 /* NB: Some of these registers exist in v8 but with more precise
719 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
720 */
721 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
722 { .name = "DACR",
723 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
724 .access = PL1_RW, .resetvalue = 0,
725 .writefn = dacr_write, .raw_writefn = raw_write,
726 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
727 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a903c449
EI
728 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
729 * For v6 and v5, these mappings are overly broad.
4fdd17dd 730 */
a903c449
EI
731 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
732 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
733 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
734 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
735 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
736 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
737 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
4fdd17dd 738 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
c4804214
PM
739 /* Cache maintenance ops; some of this space may be overridden later. */
740 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
741 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
742 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
743 REGINFO_SENTINEL
744};
745
7d57f408
PM
746static const ARMCPRegInfo not_v6_cp_reginfo[] = {
747 /* Not all pre-v6 cores implemented this WFI, so this is slightly
748 * over-broad.
749 */
750 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
751 .access = PL1_W, .type = ARM_CP_WFI },
752 REGINFO_SENTINEL
753};
754
755static const ARMCPRegInfo not_v7_cp_reginfo[] = {
756 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
757 * is UNPREDICTABLE; we choose to NOP as most implementations do).
758 */
759 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
760 .access = PL1_W, .type = ARM_CP_WFI },
34f90529
PM
761 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
762 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
763 * OMAPCP will override this space.
764 */
765 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
766 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
767 .resetvalue = 0 },
768 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
769 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
770 .resetvalue = 0 },
776d4e5c
PM
771 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
772 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
7a0e58fa 773 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 774 .resetvalue = 0 },
50300698
PM
775 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
776 * implementing it as RAZ means the "debug architecture version" bits
777 * will read as a reserved value, which should cause Linux to not try
778 * to use the debug hardware.
779 */
780 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
781 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
995939a6
PM
782 /* MMU TLB control. Note that the wildcarding means we cover not just
783 * the unified TLB ops but also the dside/iside/inner-shareable variants.
784 */
785 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
786 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
7a0e58fa 787 .type = ARM_CP_NO_RAW },
995939a6
PM
788 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
789 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
7a0e58fa 790 .type = ARM_CP_NO_RAW },
995939a6
PM
791 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
792 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
7a0e58fa 793 .type = ARM_CP_NO_RAW },
995939a6
PM
794 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
795 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
7a0e58fa 796 .type = ARM_CP_NO_RAW },
a903c449
EI
797 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
798 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
799 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
800 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
7d57f408
PM
801 REGINFO_SENTINEL
802};
803
c4241c7d
PM
804static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
805 uint64_t value)
2771db27 806{
f0aff255
FA
807 uint32_t mask = 0;
808
809 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
810 if (!arm_feature(env, ARM_FEATURE_V8)) {
811 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
812 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
813 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
814 */
815 if (arm_feature(env, ARM_FEATURE_VFP)) {
816 /* VFP coprocessor: cp10 & cp11 [23:20] */
817 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
818
819 if (!arm_feature(env, ARM_FEATURE_NEON)) {
820 /* ASEDIS [31] bit is RAO/WI */
821 value |= (1 << 31);
822 }
823
824 /* VFPv3 and upwards with NEON implement 32 double precision
825 * registers (D0-D31).
826 */
827 if (!arm_feature(env, ARM_FEATURE_NEON) ||
828 !arm_feature(env, ARM_FEATURE_VFP3)) {
829 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
830 value |= (1 << 30);
831 }
832 }
833 value &= mask;
2771db27 834 }
7ebd5f2e 835 env->cp15.cpacr_el1 = value;
2771db27
PM
836}
837
3f208fd7
PM
838static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
839 bool isread)
c6f19164
GB
840{
841 if (arm_feature(env, ARM_FEATURE_V8)) {
842 /* Check if CPACR accesses are to be trapped to EL2 */
843 if (arm_current_el(env) == 1 &&
844 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
845 return CP_ACCESS_TRAP_EL2;
846 /* Check if CPACR accesses are to be trapped to EL3 */
847 } else if (arm_current_el(env) < 3 &&
848 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
849 return CP_ACCESS_TRAP_EL3;
850 }
851 }
852
853 return CP_ACCESS_OK;
854}
855
3f208fd7
PM
856static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
857 bool isread)
c6f19164
GB
858{
859 /* Check if CPTR accesses are set to trap to EL3 */
860 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
861 return CP_ACCESS_TRAP_EL3;
862 }
863
864 return CP_ACCESS_OK;
865}
866
7d57f408
PM
867static const ARMCPRegInfo v6_cp_reginfo[] = {
868 /* prefetch by MVA in v6, NOP in v7 */
869 { .name = "MVA_prefetch",
870 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
871 .access = PL1_W, .type = ARM_CP_NOP },
6df99dec
SS
872 /* We need to break the TB after ISB to execute self-modifying code
873 * correctly and also to take any pending interrupts immediately.
874 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
875 */
7d57f408 876 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
6df99dec 877 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
091fd17c 878 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 879 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 880 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 881 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31 882 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
6cd8a264 883 .access = PL1_RW,
b848ce2b
FA
884 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
885 offsetof(CPUARMState, cp15.ifar_ns) },
06d76f31
PM
886 .resetvalue = 0, },
887 /* Watchpoint Fault Address Register : should actually only be present
888 * for 1136, 1176, 11MPCore.
889 */
890 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
891 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
34222fb8 892 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
c6f19164 893 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
7ebd5f2e 894 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
2771db27 895 .resetvalue = 0, .writefn = cpacr_write },
7d57f408
PM
896 REGINFO_SENTINEL
897};
898
3f208fd7
PM
899static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
900 bool isread)
200ac0ef 901{
3b163b01 902 /* Performance monitor registers user accessibility is controlled
1fce1ba9
PM
903 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
904 * trapping to EL2 or EL3 for other accesses.
200ac0ef 905 */
1fce1ba9
PM
906 int el = arm_current_el(env);
907
6ecd0b6b 908 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
fcd25206 909 return CP_ACCESS_TRAP;
200ac0ef 910 }
1fce1ba9
PM
911 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
912 && !arm_is_secure_below_el3(env)) {
913 return CP_ACCESS_TRAP_EL2;
914 }
915 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
916 return CP_ACCESS_TRAP_EL3;
917 }
918
fcd25206 919 return CP_ACCESS_OK;
200ac0ef
PM
920}
921
6ecd0b6b
AB
922static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
923 const ARMCPRegInfo *ri,
924 bool isread)
925{
926 /* ER: event counter read trap control */
927 if (arm_feature(env, ARM_FEATURE_V8)
928 && arm_current_el(env) == 0
929 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
930 && isread) {
931 return CP_ACCESS_OK;
932 }
933
934 return pmreg_access(env, ri, isread);
935}
936
937static CPAccessResult pmreg_access_swinc(CPUARMState *env,
938 const ARMCPRegInfo *ri,
939 bool isread)
940{
941 /* SW: software increment write trap control */
942 if (arm_feature(env, ARM_FEATURE_V8)
943 && arm_current_el(env) == 0
944 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
945 && !isread) {
946 return CP_ACCESS_OK;
947 }
948
949 return pmreg_access(env, ri, isread);
950}
951
7c2cb42b 952#ifndef CONFIG_USER_ONLY
87124fde 953
6ecd0b6b
AB
954static CPAccessResult pmreg_access_selr(CPUARMState *env,
955 const ARMCPRegInfo *ri,
956 bool isread)
957{
958 /* ER: event counter read trap control */
959 if (arm_feature(env, ARM_FEATURE_V8)
960 && arm_current_el(env) == 0
961 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
962 return CP_ACCESS_OK;
963 }
964
965 return pmreg_access(env, ri, isread);
966}
967
968static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
969 const ARMCPRegInfo *ri,
970 bool isread)
971{
972 /* CR: cycle counter read trap control */
973 if (arm_feature(env, ARM_FEATURE_V8)
974 && arm_current_el(env) == 0
975 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
976 && isread) {
977 return CP_ACCESS_OK;
978 }
979
980 return pmreg_access(env, ri, isread);
981}
982
87124fde
AF
983static inline bool arm_ccnt_enabled(CPUARMState *env)
984{
985 /* This does not support checking PMCCFILTR_EL0 register */
986
987 if (!(env->cp15.c9_pmcr & PMCRE)) {
988 return false;
989 }
990
991 return true;
992}
993
ec7b4ce4
AF
994void pmccntr_sync(CPUARMState *env)
995{
996 uint64_t temp_ticks;
997
352c98e5
LV
998 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
999 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
ec7b4ce4
AF
1000
1001 if (env->cp15.c9_pmcr & PMCRD) {
1002 /* Increment once every 64 processor clock cycles */
1003 temp_ticks /= 64;
1004 }
1005
1006 if (arm_ccnt_enabled(env)) {
1007 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1008 }
1009}
1010
c4241c7d
PM
1011static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1012 uint64_t value)
200ac0ef 1013{
942a155b 1014 pmccntr_sync(env);
7c2cb42b
AF
1015
1016 if (value & PMCRC) {
1017 /* The counter has been reset */
1018 env->cp15.c15_ccnt = 0;
1019 }
1020
200ac0ef
PM
1021 /* only the DP, X, D and E bits are writable */
1022 env->cp15.c9_pmcr &= ~0x39;
1023 env->cp15.c9_pmcr |= (value & 0x39);
7c2cb42b 1024
942a155b 1025 pmccntr_sync(env);
7c2cb42b
AF
1026}
1027
1028static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1029{
c92c0687 1030 uint64_t total_ticks;
7c2cb42b 1031
942a155b 1032 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
1033 /* Counter is disabled, do not change value */
1034 return env->cp15.c15_ccnt;
1035 }
1036
352c98e5
LV
1037 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1038 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
7c2cb42b
AF
1039
1040 if (env->cp15.c9_pmcr & PMCRD) {
1041 /* Increment once every 64 processor clock cycles */
1042 total_ticks /= 64;
1043 }
1044 return total_ticks - env->cp15.c15_ccnt;
1045}
1046
6b040780
WH
1047static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1048 uint64_t value)
1049{
1050 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1051 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1052 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1053 * accessed.
1054 */
1055 env->cp15.c9_pmselr = value & 0x1f;
1056}
1057
7c2cb42b
AF
1058static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1059 uint64_t value)
1060{
c92c0687 1061 uint64_t total_ticks;
7c2cb42b 1062
942a155b 1063 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
1064 /* Counter is disabled, set the absolute value */
1065 env->cp15.c15_ccnt = value;
1066 return;
1067 }
1068
352c98e5
LV
1069 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1070 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
7c2cb42b
AF
1071
1072 if (env->cp15.c9_pmcr & PMCRD) {
1073 /* Increment once every 64 processor clock cycles */
1074 total_ticks /= 64;
1075 }
1076 env->cp15.c15_ccnt = total_ticks - value;
200ac0ef 1077}
421c7ebd
PC
1078
1079static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1080 uint64_t value)
1081{
1082 uint64_t cur_val = pmccntr_read(env, NULL);
1083
1084 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1085}
1086
ec7b4ce4
AF
1087#else /* CONFIG_USER_ONLY */
1088
1089void pmccntr_sync(CPUARMState *env)
1090{
1091}
1092
7c2cb42b 1093#endif
200ac0ef 1094
0614601c
AF
1095static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1096 uint64_t value)
1097{
1098 pmccntr_sync(env);
1099 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1100 pmccntr_sync(env);
1101}
1102
c4241c7d 1103static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1104 uint64_t value)
1105{
200ac0ef
PM
1106 value &= (1 << 31);
1107 env->cp15.c9_pmcnten |= value;
200ac0ef
PM
1108}
1109
c4241c7d
PM
1110static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1111 uint64_t value)
200ac0ef 1112{
200ac0ef
PM
1113 value &= (1 << 31);
1114 env->cp15.c9_pmcnten &= ~value;
200ac0ef
PM
1115}
1116
c4241c7d
PM
1117static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1118 uint64_t value)
200ac0ef 1119{
200ac0ef 1120 env->cp15.c9_pmovsr &= ~value;
200ac0ef
PM
1121}
1122
c4241c7d
PM
1123static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1124 uint64_t value)
200ac0ef 1125{
fdb86656
WH
1126 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1127 * PMSELR value is equal to or greater than the number of implemented
1128 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1129 */
1130 if (env->cp15.c9_pmselr == 0x1f) {
1131 pmccfiltr_write(env, ri, value);
1132 }
1133}
1134
1135static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1136{
1137 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1138 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1139 */
1140 if (env->cp15.c9_pmselr == 0x1f) {
1141 return env->cp15.pmccfiltr_el0;
1142 } else {
1143 return 0;
1144 }
200ac0ef
PM
1145}
1146
c4241c7d 1147static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1148 uint64_t value)
1149{
6ecd0b6b
AB
1150 if (arm_feature(env, ARM_FEATURE_V8)) {
1151 env->cp15.c9_pmuserenr = value & 0xf;
1152 } else {
1153 env->cp15.c9_pmuserenr = value & 1;
1154 }
200ac0ef
PM
1155}
1156
c4241c7d
PM
1157static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1158 uint64_t value)
200ac0ef
PM
1159{
1160 /* We have no event counters so only the C bit can be changed */
1161 value &= (1 << 31);
1162 env->cp15.c9_pminten |= value;
200ac0ef
PM
1163}
1164
c4241c7d
PM
1165static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1166 uint64_t value)
200ac0ef
PM
1167{
1168 value &= (1 << 31);
1169 env->cp15.c9_pminten &= ~value;
200ac0ef
PM
1170}
1171
c4241c7d
PM
1172static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1173 uint64_t value)
8641136c 1174{
a505d7fe
PM
1175 /* Note that even though the AArch64 view of this register has bits
1176 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1177 * architectural requirements for bits which are RES0 only in some
1178 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1179 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1180 */
855ea66d 1181 raw_write(env, ri, value & ~0x1FULL);
8641136c
NR
1182}
1183
64e0e2de
EI
1184static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1185{
1186 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1187 * For bits that vary between AArch32/64, code needs to check the
1188 * current execution mode before directly using the feature bit.
1189 */
1190 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1191
1192 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1193 valid_mask &= ~SCR_HCE;
1194
1195 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1196 * supported if EL2 exists. The bit is UNK/SBZP when
1197 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1198 * when EL2 is unavailable.
4eb27640 1199 * On ARMv8, this bit is always available.
64e0e2de 1200 */
4eb27640
GB
1201 if (arm_feature(env, ARM_FEATURE_V7) &&
1202 !arm_feature(env, ARM_FEATURE_V8)) {
64e0e2de
EI
1203 valid_mask &= ~SCR_SMD;
1204 }
1205 }
1206
1207 /* Clear all-context RES0 bits. */
1208 value &= valid_mask;
1209 raw_write(env, ri, value);
1210}
1211
c4241c7d 1212static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
776d4e5c
PM
1213{
1214 ARMCPU *cpu = arm_env_get_cpu(env);
b85a1fd6
FA
1215
1216 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1217 * bank
1218 */
1219 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1220 ri->secure & ARM_CP_SECSTATE_S);
1221
1222 return cpu->ccsidr[index];
776d4e5c
PM
1223}
1224
c4241c7d
PM
1225static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1226 uint64_t value)
776d4e5c 1227{
8d5c773e 1228 raw_write(env, ri, value & 0xf);
776d4e5c
PM
1229}
1230
1090b9c6
PM
1231static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1232{
1233 CPUState *cs = ENV_GET_CPU(env);
1234 uint64_t ret = 0;
1235
1236 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1237 ret |= CPSR_I;
1238 }
1239 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1240 ret |= CPSR_F;
1241 }
1242 /* External aborts are not possible in QEMU so A bit is always clear */
1243 return ret;
1244}
1245
e9aa6c21 1246static const ARMCPRegInfo v7_cp_reginfo[] = {
7d57f408
PM
1247 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1248 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1249 .access = PL1_W, .type = ARM_CP_NOP },
200ac0ef
PM
1250 /* Performance monitors are implementation defined in v7,
1251 * but with an ARM recommended set of registers, which we
1252 * follow (although we don't actually implement any counters)
1253 *
1254 * Performance registers fall into three categories:
1255 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1256 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1257 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1258 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1259 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1260 */
1261 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
7a0e58fa 1262 .access = PL0_RW, .type = ARM_CP_ALIAS,
8521466b 1263 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1264 .writefn = pmcntenset_write,
1265 .accessfn = pmreg_access,
1266 .raw_writefn = raw_write },
8521466b
AF
1267 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1268 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1269 .access = PL0_RW, .accessfn = pmreg_access,
1270 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1271 .writefn = pmcntenset_write, .raw_writefn = raw_write },
200ac0ef 1272 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
8521466b
AF
1273 .access = PL0_RW,
1274 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1275 .accessfn = pmreg_access,
1276 .writefn = pmcntenclr_write,
7a0e58fa 1277 .type = ARM_CP_ALIAS },
8521466b
AF
1278 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1279 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1280 .access = PL0_RW, .accessfn = pmreg_access,
7a0e58fa 1281 .type = ARM_CP_ALIAS,
8521466b
AF
1282 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1283 .writefn = pmcntenclr_write },
200ac0ef
PM
1284 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1285 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
fcd25206
PM
1286 .accessfn = pmreg_access,
1287 .writefn = pmovsr_write,
1288 .raw_writefn = raw_write },
978364f1
AF
1289 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1290 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1291 .access = PL0_RW, .accessfn = pmreg_access,
1292 .type = ARM_CP_ALIAS,
1293 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1294 .writefn = pmovsr_write,
1295 .raw_writefn = raw_write },
fcd25206 1296 /* Unimplemented so WI. */
200ac0ef 1297 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
6ecd0b6b 1298 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
7c2cb42b 1299#ifndef CONFIG_USER_ONLY
6b040780
WH
1300 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1301 .access = PL0_RW, .type = ARM_CP_ALIAS,
1302 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
6ecd0b6b 1303 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
6b040780
WH
1304 .raw_writefn = raw_write},
1305 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1306 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
6ecd0b6b 1307 .access = PL0_RW, .accessfn = pmreg_access_selr,
6b040780
WH
1308 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1309 .writefn = pmselr_write, .raw_writefn = raw_write, },
200ac0ef 1310 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
7c2cb42b 1311 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
421c7ebd 1312 .readfn = pmccntr_read, .writefn = pmccntr_write32,
6ecd0b6b 1313 .accessfn = pmreg_access_ccntr },
8521466b
AF
1314 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1315 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
6ecd0b6b 1316 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
8521466b
AF
1317 .type = ARM_CP_IO,
1318 .readfn = pmccntr_read, .writefn = pmccntr_write, },
7c2cb42b 1319#endif
8521466b
AF
1320 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1321 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
0614601c 1322 .writefn = pmccfiltr_write,
8521466b
AF
1323 .access = PL0_RW, .accessfn = pmreg_access,
1324 .type = ARM_CP_IO,
1325 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1326 .resetvalue = 0, },
200ac0ef 1327 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
fdb86656
WH
1328 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1329 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1330 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1331 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1332 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1333 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
fcd25206 1334 /* Unimplemented, RAZ/WI. */
200ac0ef 1335 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
fcd25206 1336 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
6ecd0b6b 1337 .accessfn = pmreg_access_xevcntr },
200ac0ef 1338 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1fce1ba9 1339 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
200ac0ef
PM
1340 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1341 .resetvalue = 0,
d4e6df63 1342 .writefn = pmuserenr_write, .raw_writefn = raw_write },
8a83ffc2
AF
1343 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1344 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1fce1ba9 1345 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
8a83ffc2
AF
1346 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1347 .resetvalue = 0,
1348 .writefn = pmuserenr_write, .raw_writefn = raw_write },
200ac0ef 1349 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1fce1ba9 1350 .access = PL1_RW, .accessfn = access_tpm,
e6ec5457
WH
1351 .type = ARM_CP_ALIAS,
1352 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
200ac0ef 1353 .resetvalue = 0,
d4e6df63 1354 .writefn = pmintenset_write, .raw_writefn = raw_write },
e6ec5457
WH
1355 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1356 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1357 .access = PL1_RW, .accessfn = access_tpm,
1358 .type = ARM_CP_IO,
1359 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1360 .writefn = pmintenset_write, .raw_writefn = raw_write,
1361 .resetvalue = 0x0 },
200ac0ef 1362 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1fce1ba9 1363 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
200ac0ef 1364 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
b061a82b 1365 .writefn = pmintenclr_write, },
978364f1
AF
1366 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1367 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1fce1ba9 1368 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
978364f1
AF
1369 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1370 .writefn = pmintenclr_write },
7da845b0
PM
1371 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1372 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
7a0e58fa 1373 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
7da845b0
PM
1374 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1375 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
b85a1fd6
FA
1376 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1377 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1378 offsetof(CPUARMState, cp15.csselr_ns) } },
776d4e5c
PM
1379 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1380 * just RAZ for all cores:
1381 */
0ff644a7
PM
1382 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1383 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
776d4e5c 1384 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
f32cdad5
PM
1385 /* Auxiliary fault status registers: these also are IMPDEF, and we
1386 * choose to RAZ/WI for all cores.
1387 */
1388 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1389 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1390 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1391 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1392 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1393 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b0fe2427
PM
1394 /* MAIR can just read-as-written because we don't implement caches
1395 * and so don't need to care about memory attributes.
1396 */
1397 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1398 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
be693c87 1399 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
b0fe2427 1400 .resetvalue = 0 },
4cfb8ad8
PM
1401 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1402 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1403 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1404 .resetvalue = 0 },
b0fe2427
PM
1405 /* For non-long-descriptor page tables these are PRRR and NMRR;
1406 * regardless they still act as reads-as-written for QEMU.
b0fe2427 1407 */
1281f8e3 1408 /* MAIR0/1 are defined separately from their 64-bit counterpart which
be693c87
GB
1409 * allows them to assign the correct fieldoffset based on the endianness
1410 * handled in the field definitions.
1411 */
a903c449 1412 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
b0fe2427 1413 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
be693c87
GB
1414 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1415 offsetof(CPUARMState, cp15.mair0_ns) },
b0fe2427 1416 .resetfn = arm_cp_reset_ignore },
a903c449 1417 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
b0fe2427 1418 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
be693c87
GB
1419 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1420 offsetof(CPUARMState, cp15.mair1_ns) },
b0fe2427 1421 .resetfn = arm_cp_reset_ignore },
1090b9c6
PM
1422 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1423 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
7a0e58fa 1424 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
995939a6
PM
1425 /* 32 bit ITLB invalidates */
1426 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
7a0e58fa 1427 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1428 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7a0e58fa 1429 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1430 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
7a0e58fa 1431 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1432 /* 32 bit DTLB invalidates */
1433 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
7a0e58fa 1434 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1435 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7a0e58fa 1436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1437 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
7a0e58fa 1438 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1439 /* 32 bit TLB invalidates */
1440 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 1441 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1442 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 1443 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1444 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 1445 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6 1446 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 1447 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
995939a6
PM
1448 REGINFO_SENTINEL
1449};
1450
1451static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1452 /* 32 bit TLB invalidates, Inner Shareable */
1453 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 1454 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
995939a6 1455 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 1456 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
995939a6 1457 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 1458 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1459 .writefn = tlbiasid_is_write },
995939a6 1460 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 1461 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1462 .writefn = tlbimvaa_is_write },
e9aa6c21
PM
1463 REGINFO_SENTINEL
1464};
1465
c4241c7d
PM
1466static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1467 uint64_t value)
c326b979
PM
1468{
1469 value &= 1;
1470 env->teecr = value;
c326b979
PM
1471}
1472
3f208fd7
PM
1473static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1474 bool isread)
c326b979 1475{
dcbff19b 1476 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
92611c00 1477 return CP_ACCESS_TRAP;
c326b979 1478 }
92611c00 1479 return CP_ACCESS_OK;
c326b979
PM
1480}
1481
1482static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1483 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1484 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1485 .resetvalue = 0,
1486 .writefn = teecr_write },
1487 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1488 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
92611c00 1489 .accessfn = teehbr_access, .resetvalue = 0 },
c326b979
PM
1490 REGINFO_SENTINEL
1491};
1492
4d31c596 1493static const ARMCPRegInfo v6k_cp_reginfo[] = {
e4fe830b
PM
1494 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1495 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1496 .access = PL0_RW,
54bf36ed 1497 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
4d31c596
PM
1498 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1499 .access = PL0_RW,
54bf36ed
FA
1500 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1501 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
e4fe830b
PM
1502 .resetfn = arm_cp_reset_ignore },
1503 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1504 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1505 .access = PL0_R|PL1_W,
54bf36ed
FA
1506 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1507 .resetvalue = 0},
4d31c596
PM
1508 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1509 .access = PL0_R|PL1_W,
54bf36ed
FA
1510 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1511 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
e4fe830b 1512 .resetfn = arm_cp_reset_ignore },
54bf36ed 1513 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
e4fe830b 1514 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
4d31c596 1515 .access = PL1_RW,
54bf36ed
FA
1516 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1517 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1518 .access = PL1_RW,
1519 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1520 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1521 .resetvalue = 0 },
4d31c596
PM
1522 REGINFO_SENTINEL
1523};
1524
55d284af
PM
1525#ifndef CONFIG_USER_ONLY
1526
3f208fd7
PM
1527static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1528 bool isread)
00108f2d 1529{
75502672
PM
1530 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1531 * Writable only at the highest implemented exception level.
1532 */
1533 int el = arm_current_el(env);
1534
1535 switch (el) {
1536 case 0:
1537 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1538 return CP_ACCESS_TRAP;
1539 }
1540 break;
1541 case 1:
1542 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1543 arm_is_secure_below_el3(env)) {
1544 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1545 return CP_ACCESS_TRAP_UNCATEGORIZED;
1546 }
1547 break;
1548 case 2:
1549 case 3:
1550 break;
00108f2d 1551 }
75502672
PM
1552
1553 if (!isread && el < arm_highest_el(env)) {
1554 return CP_ACCESS_TRAP_UNCATEGORIZED;
1555 }
1556
00108f2d
PM
1557 return CP_ACCESS_OK;
1558}
1559
3f208fd7
PM
1560static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1561 bool isread)
00108f2d 1562{
0b6440af
EI
1563 unsigned int cur_el = arm_current_el(env);
1564 bool secure = arm_is_secure(env);
1565
00108f2d 1566 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
0b6440af 1567 if (cur_el == 0 &&
00108f2d
PM
1568 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1569 return CP_ACCESS_TRAP;
1570 }
0b6440af
EI
1571
1572 if (arm_feature(env, ARM_FEATURE_EL2) &&
1573 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1574 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1575 return CP_ACCESS_TRAP_EL2;
1576 }
00108f2d
PM
1577 return CP_ACCESS_OK;
1578}
1579
3f208fd7
PM
1580static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1581 bool isread)
00108f2d 1582{
0b6440af
EI
1583 unsigned int cur_el = arm_current_el(env);
1584 bool secure = arm_is_secure(env);
1585
00108f2d
PM
1586 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1587 * EL0[PV]TEN is zero.
1588 */
0b6440af 1589 if (cur_el == 0 &&
00108f2d
PM
1590 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1591 return CP_ACCESS_TRAP;
1592 }
0b6440af
EI
1593
1594 if (arm_feature(env, ARM_FEATURE_EL2) &&
1595 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1596 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1597 return CP_ACCESS_TRAP_EL2;
1598 }
00108f2d
PM
1599 return CP_ACCESS_OK;
1600}
1601
1602static CPAccessResult gt_pct_access(CPUARMState *env,
3f208fd7
PM
1603 const ARMCPRegInfo *ri,
1604 bool isread)
00108f2d 1605{
3f208fd7 1606 return gt_counter_access(env, GTIMER_PHYS, isread);
00108f2d
PM
1607}
1608
1609static CPAccessResult gt_vct_access(CPUARMState *env,
3f208fd7
PM
1610 const ARMCPRegInfo *ri,
1611 bool isread)
00108f2d 1612{
3f208fd7 1613 return gt_counter_access(env, GTIMER_VIRT, isread);
00108f2d
PM
1614}
1615
3f208fd7
PM
1616static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1617 bool isread)
00108f2d 1618{
3f208fd7 1619 return gt_timer_access(env, GTIMER_PHYS, isread);
00108f2d
PM
1620}
1621
3f208fd7
PM
1622static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1623 bool isread)
00108f2d 1624{
3f208fd7 1625 return gt_timer_access(env, GTIMER_VIRT, isread);
00108f2d
PM
1626}
1627
b4d3978c 1628static CPAccessResult gt_stimer_access(CPUARMState *env,
3f208fd7
PM
1629 const ARMCPRegInfo *ri,
1630 bool isread)
b4d3978c
PM
1631{
1632 /* The AArch64 register view of the secure physical timer is
1633 * always accessible from EL3, and configurably accessible from
1634 * Secure EL1.
1635 */
1636 switch (arm_current_el(env)) {
1637 case 1:
1638 if (!arm_is_secure(env)) {
1639 return CP_ACCESS_TRAP;
1640 }
1641 if (!(env->cp15.scr_el3 & SCR_ST)) {
1642 return CP_ACCESS_TRAP_EL3;
1643 }
1644 return CP_ACCESS_OK;
1645 case 0:
1646 case 2:
1647 return CP_ACCESS_TRAP;
1648 case 3:
1649 return CP_ACCESS_OK;
1650 default:
1651 g_assert_not_reached();
1652 }
1653}
1654
55d284af
PM
1655static uint64_t gt_get_countervalue(CPUARMState *env)
1656{
bc72ad67 1657 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
55d284af
PM
1658}
1659
1660static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1661{
1662 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1663
1664 if (gt->ctl & 1) {
1665 /* Timer enabled: calculate and set current ISTATUS, irq, and
1666 * reset timer to when ISTATUS next has to change
1667 */
edac4d8a
EI
1668 uint64_t offset = timeridx == GTIMER_VIRT ?
1669 cpu->env.cp15.cntvoff_el2 : 0;
55d284af
PM
1670 uint64_t count = gt_get_countervalue(&cpu->env);
1671 /* Note that this must be unsigned 64 bit arithmetic: */
edac4d8a 1672 int istatus = count - offset >= gt->cval;
55d284af 1673 uint64_t nexttick;
194cbc49 1674 int irqstate;
55d284af
PM
1675
1676 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
194cbc49
PM
1677
1678 irqstate = (istatus && !(gt->ctl & 2));
1679 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1680
55d284af
PM
1681 if (istatus) {
1682 /* Next transition is when count rolls back over to zero */
1683 nexttick = UINT64_MAX;
1684 } else {
1685 /* Next transition is when we hit cval */
edac4d8a 1686 nexttick = gt->cval + offset;
55d284af
PM
1687 }
1688 /* Note that the desired next expiry time might be beyond the
1689 * signed-64-bit range of a QEMUTimer -- in this case we just
1690 * set the timer for as far in the future as possible. When the
1691 * timer expires we will reset the timer for any remaining period.
1692 */
1693 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1694 nexttick = INT64_MAX / GTIMER_SCALE;
1695 }
bc72ad67 1696 timer_mod(cpu->gt_timer[timeridx], nexttick);
194cbc49 1697 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
55d284af
PM
1698 } else {
1699 /* Timer disabled: ISTATUS and timer output always clear */
1700 gt->ctl &= ~4;
1701 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
bc72ad67 1702 timer_del(cpu->gt_timer[timeridx]);
194cbc49 1703 trace_arm_gt_recalc_disabled(timeridx);
55d284af
PM
1704 }
1705}
1706
0e3eca4c
EI
1707static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1708 int timeridx)
55d284af
PM
1709{
1710 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af 1711
bc72ad67 1712 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
1713}
1714
c4241c7d 1715static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af 1716{
c4241c7d 1717 return gt_get_countervalue(env);
55d284af
PM
1718}
1719
edac4d8a
EI
1720static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1721{
1722 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1723}
1724
c4241c7d 1725static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1726 int timeridx,
c4241c7d 1727 uint64_t value)
55d284af 1728{
194cbc49 1729 trace_arm_gt_cval_write(timeridx, value);
55d284af
PM
1730 env->cp15.c14_timer[timeridx].cval = value;
1731 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af 1732}
c4241c7d 1733
0e3eca4c
EI
1734static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1735 int timeridx)
55d284af 1736{
edac4d8a 1737 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1738
c4241c7d 1739 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
edac4d8a 1740 (gt_get_countervalue(env) - offset));
55d284af
PM
1741}
1742
c4241c7d 1743static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1744 int timeridx,
c4241c7d 1745 uint64_t value)
55d284af 1746{
edac4d8a 1747 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1748
194cbc49 1749 trace_arm_gt_tval_write(timeridx, value);
edac4d8a 1750 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
18084b2f 1751 sextract64(value, 0, 32);
55d284af 1752 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af
PM
1753}
1754
c4241c7d 1755static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1756 int timeridx,
c4241c7d 1757 uint64_t value)
55d284af
PM
1758{
1759 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af
PM
1760 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1761
194cbc49 1762 trace_arm_gt_ctl_write(timeridx, value);
d3afacc7 1763 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
55d284af
PM
1764 if ((oldval ^ value) & 1) {
1765 /* Enable toggled */
1766 gt_recalc_timer(cpu, timeridx);
d3afacc7 1767 } else if ((oldval ^ value) & 2) {
55d284af
PM
1768 /* IMASK toggled: don't need to recalculate,
1769 * just set the interrupt line based on ISTATUS
1770 */
194cbc49
PM
1771 int irqstate = (oldval & 4) && !(value & 2);
1772
1773 trace_arm_gt_imask_toggle(timeridx, irqstate);
1774 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
55d284af 1775 }
55d284af
PM
1776}
1777
0e3eca4c
EI
1778static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1779{
1780 gt_timer_reset(env, ri, GTIMER_PHYS);
1781}
1782
1783static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1784 uint64_t value)
1785{
1786 gt_cval_write(env, ri, GTIMER_PHYS, value);
1787}
1788
1789static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1790{
1791 return gt_tval_read(env, ri, GTIMER_PHYS);
1792}
1793
1794static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1795 uint64_t value)
1796{
1797 gt_tval_write(env, ri, GTIMER_PHYS, value);
1798}
1799
1800static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1801 uint64_t value)
1802{
1803 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1804}
1805
1806static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1807{
1808 gt_timer_reset(env, ri, GTIMER_VIRT);
1809}
1810
1811static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1812 uint64_t value)
1813{
1814 gt_cval_write(env, ri, GTIMER_VIRT, value);
1815}
1816
1817static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1818{
1819 return gt_tval_read(env, ri, GTIMER_VIRT);
1820}
1821
1822static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823 uint64_t value)
1824{
1825 gt_tval_write(env, ri, GTIMER_VIRT, value);
1826}
1827
1828static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1829 uint64_t value)
1830{
1831 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1832}
1833
edac4d8a
EI
1834static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1835 uint64_t value)
1836{
1837 ARMCPU *cpu = arm_env_get_cpu(env);
1838
194cbc49 1839 trace_arm_gt_cntvoff_write(value);
edac4d8a
EI
1840 raw_write(env, ri, value);
1841 gt_recalc_timer(cpu, GTIMER_VIRT);
1842}
1843
b0e66d95
EI
1844static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1845{
1846 gt_timer_reset(env, ri, GTIMER_HYP);
1847}
1848
1849static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850 uint64_t value)
1851{
1852 gt_cval_write(env, ri, GTIMER_HYP, value);
1853}
1854
1855static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1856{
1857 return gt_tval_read(env, ri, GTIMER_HYP);
1858}
1859
1860static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1861 uint64_t value)
1862{
1863 gt_tval_write(env, ri, GTIMER_HYP, value);
1864}
1865
1866static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1867 uint64_t value)
1868{
1869 gt_ctl_write(env, ri, GTIMER_HYP, value);
1870}
1871
b4d3978c
PM
1872static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1873{
1874 gt_timer_reset(env, ri, GTIMER_SEC);
1875}
1876
1877static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1878 uint64_t value)
1879{
1880 gt_cval_write(env, ri, GTIMER_SEC, value);
1881}
1882
1883static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1884{
1885 return gt_tval_read(env, ri, GTIMER_SEC);
1886}
1887
1888static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1889 uint64_t value)
1890{
1891 gt_tval_write(env, ri, GTIMER_SEC, value);
1892}
1893
1894static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1895 uint64_t value)
1896{
1897 gt_ctl_write(env, ri, GTIMER_SEC, value);
1898}
1899
55d284af
PM
1900void arm_gt_ptimer_cb(void *opaque)
1901{
1902 ARMCPU *cpu = opaque;
1903
1904 gt_recalc_timer(cpu, GTIMER_PHYS);
1905}
1906
1907void arm_gt_vtimer_cb(void *opaque)
1908{
1909 ARMCPU *cpu = opaque;
1910
1911 gt_recalc_timer(cpu, GTIMER_VIRT);
1912}
1913
b0e66d95
EI
1914void arm_gt_htimer_cb(void *opaque)
1915{
1916 ARMCPU *cpu = opaque;
1917
1918 gt_recalc_timer(cpu, GTIMER_HYP);
1919}
1920
b4d3978c
PM
1921void arm_gt_stimer_cb(void *opaque)
1922{
1923 ARMCPU *cpu = opaque;
1924
1925 gt_recalc_timer(cpu, GTIMER_SEC);
1926}
1927
55d284af
PM
1928static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1929 /* Note that CNTFRQ is purely reads-as-written for the benefit
1930 * of software; writing it doesn't actually change the timer frequency.
1931 * Our reset value matches the fixed frequency we implement the timer at.
1932 */
1933 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 1934 .type = ARM_CP_ALIAS,
a7adc4b7
PM
1935 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1936 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
a7adc4b7
PM
1937 },
1938 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1939 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1940 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
55d284af
PM
1941 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1942 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
55d284af
PM
1943 },
1944 /* overall control: mostly access permissions */
a7adc4b7
PM
1945 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1946 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
55d284af
PM
1947 .access = PL1_RW,
1948 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1949 .resetvalue = 0,
1950 },
1951 /* per-timer control */
1952 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
9ff9dd3c 1953 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1954 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1955 .accessfn = gt_ptimer_access,
1956 .fieldoffset = offsetoflow32(CPUARMState,
1957 cp15.c14_timer[GTIMER_PHYS].ctl),
0e3eca4c 1958 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
a7adc4b7 1959 },
9ff9dd3c
PM
1960 { .name = "CNTP_CTL(S)",
1961 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1962 .secure = ARM_CP_SECSTATE_S,
1963 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1964 .accessfn = gt_ptimer_access,
1965 .fieldoffset = offsetoflow32(CPUARMState,
1966 cp15.c14_timer[GTIMER_SEC].ctl),
1967 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1968 },
a7adc4b7
PM
1969 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1970 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
55d284af 1971 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1972 .accessfn = gt_ptimer_access,
55d284af
PM
1973 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1974 .resetvalue = 0,
0e3eca4c 1975 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1976 },
1977 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
7a0e58fa 1978 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1979 .accessfn = gt_vtimer_access,
1980 .fieldoffset = offsetoflow32(CPUARMState,
1981 cp15.c14_timer[GTIMER_VIRT].ctl),
0e3eca4c 1982 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
a7adc4b7
PM
1983 },
1984 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1985 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
55d284af 1986 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1987 .accessfn = gt_vtimer_access,
55d284af
PM
1988 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1989 .resetvalue = 0,
0e3eca4c 1990 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1991 },
1992 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1993 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
9ff9dd3c 1994 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1995 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1996 .accessfn = gt_ptimer_access,
0e3eca4c 1997 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
55d284af 1998 },
9ff9dd3c
PM
1999 { .name = "CNTP_TVAL(S)",
2000 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2001 .secure = ARM_CP_SECSTATE_S,
2002 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2003 .accessfn = gt_ptimer_access,
2004 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2005 },
a7adc4b7
PM
2006 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2007 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
7a0e58fa 2008 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
2009 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2010 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
a7adc4b7 2011 },
55d284af 2012 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
7a0e58fa 2013 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 2014 .accessfn = gt_vtimer_access,
0e3eca4c 2015 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
55d284af 2016 },
a7adc4b7
PM
2017 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2018 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
7a0e58fa 2019 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
2020 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2021 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
a7adc4b7 2022 },
55d284af
PM
2023 /* The counter itself */
2024 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
7a0e58fa 2025 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 2026 .accessfn = gt_pct_access,
a7adc4b7
PM
2027 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2028 },
2029 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2030 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
7a0e58fa 2031 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 2032 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
55d284af
PM
2033 },
2034 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
7a0e58fa 2035 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 2036 .accessfn = gt_vct_access,
edac4d8a 2037 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
a7adc4b7
PM
2038 },
2039 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2040 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
7a0e58fa 2041 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 2042 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
55d284af
PM
2043 },
2044 /* Comparison value, indicating when the timer goes off */
2045 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 2046 .secure = ARM_CP_SECSTATE_NS,
55d284af 2047 .access = PL1_RW | PL0_R,
7a0e58fa 2048 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 2049 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
b061a82b 2050 .accessfn = gt_ptimer_access,
0e3eca4c 2051 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
a7adc4b7 2052 },
9ff9dd3c
PM
2053 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2054 .secure = ARM_CP_SECSTATE_S,
2055 .access = PL1_RW | PL0_R,
2056 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2057 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2058 .accessfn = gt_ptimer_access,
2059 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2060 },
a7adc4b7
PM
2061 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2062 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2063 .access = PL1_RW | PL0_R,
2064 .type = ARM_CP_IO,
2065 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
12cde08a 2066 .resetvalue = 0, .accessfn = gt_ptimer_access,
0e3eca4c 2067 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
55d284af
PM
2068 },
2069 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2070 .access = PL1_RW | PL0_R,
7a0e58fa 2071 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 2072 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
b061a82b 2073 .accessfn = gt_vtimer_access,
0e3eca4c 2074 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
a7adc4b7
PM
2075 },
2076 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2077 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2078 .access = PL1_RW | PL0_R,
2079 .type = ARM_CP_IO,
2080 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2081 .resetvalue = 0, .accessfn = gt_vtimer_access,
0e3eca4c 2082 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
55d284af 2083 },
b4d3978c
PM
2084 /* Secure timer -- this is actually restricted to only EL3
2085 * and configurably Secure-EL1 via the accessfn.
2086 */
2087 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2088 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2089 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2090 .accessfn = gt_stimer_access,
2091 .readfn = gt_sec_tval_read,
2092 .writefn = gt_sec_tval_write,
2093 .resetfn = gt_sec_timer_reset,
2094 },
2095 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2096 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2097 .type = ARM_CP_IO, .access = PL1_RW,
2098 .accessfn = gt_stimer_access,
2099 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2100 .resetvalue = 0,
2101 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2102 },
2103 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2104 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2105 .type = ARM_CP_IO, .access = PL1_RW,
2106 .accessfn = gt_stimer_access,
2107 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2108 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2109 },
55d284af
PM
2110 REGINFO_SENTINEL
2111};
2112
2113#else
2114/* In user-mode none of the generic timer registers are accessible,
bc72ad67 2115 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
55d284af
PM
2116 * so instead just don't register any of them.
2117 */
6cc7a3ae 2118static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
6cc7a3ae
PM
2119 REGINFO_SENTINEL
2120};
2121
55d284af
PM
2122#endif
2123
c4241c7d 2124static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 2125{
891a2fe7 2126 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8d5c773e 2127 raw_write(env, ri, value);
891a2fe7 2128 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8d5c773e 2129 raw_write(env, ri, value & 0xfffff6ff);
4a501606 2130 } else {
8d5c773e 2131 raw_write(env, ri, value & 0xfffff1ff);
4a501606 2132 }
4a501606
PM
2133}
2134
2135#ifndef CONFIG_USER_ONLY
2136/* get_phys_addr() isn't present for user-mode-only targets */
702a9357 2137
3f208fd7
PM
2138static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2139 bool isread)
92611c00
PM
2140{
2141 if (ri->opc2 & 4) {
87562e4f
PM
2142 /* The ATS12NSO* operations must trap to EL3 if executed in
2143 * Secure EL1 (which can only happen if EL3 is AArch64).
2144 * They are simply UNDEF if executed from NS EL1.
2145 * They function normally from EL2 or EL3.
92611c00 2146 */
87562e4f
PM
2147 if (arm_current_el(env) == 1) {
2148 if (arm_is_secure_below_el3(env)) {
2149 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2150 }
2151 return CP_ACCESS_TRAP_UNCATEGORIZED;
2152 }
92611c00
PM
2153 }
2154 return CP_ACCESS_OK;
2155}
2156
060e8a48 2157static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
03ae85f8 2158 MMUAccessType access_type, ARMMMUIdx mmu_idx)
4a501606 2159{
a8170e5e 2160 hwaddr phys_addr;
4a501606
PM
2161 target_ulong page_size;
2162 int prot;
b7cc4e82
PC
2163 uint32_t fsr;
2164 bool ret;
01c097f7 2165 uint64_t par64;
8bf5b6a9 2166 MemTxAttrs attrs = {};
e14b5a23 2167 ARMMMUFaultInfo fi = {};
5b2d261d 2168 ARMCacheAttrs cacheattrs = {};
4a501606 2169
5b2d261d
AB
2170 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2171 &prot, &page_size, &fsr, &fi, &cacheattrs);
50cd71b0 2172 if (arm_s1_regime_using_lpae_format(env, mmu_idx)) {
b7cc4e82 2173 /* fsr is a DFSR/IFSR value for the long descriptor
702a9357
PM
2174 * translation table format, but with WnR always clear.
2175 * Convert it to a 64-bit PAR.
2176 */
01c097f7 2177 par64 = (1 << 11); /* LPAE bit always set */
b7cc4e82 2178 if (!ret) {
702a9357 2179 par64 |= phys_addr & ~0xfffULL;
8bf5b6a9
PM
2180 if (!attrs.secure) {
2181 par64 |= (1 << 9); /* NS */
2182 }
5b2d261d
AB
2183 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2184 par64 |= cacheattrs.shareability << 7; /* SH */
4a501606 2185 } else {
702a9357 2186 par64 |= 1; /* F */
b7cc4e82 2187 par64 |= (fsr & 0x3f) << 1; /* FS */
702a9357
PM
2188 /* Note that S2WLK and FSTAGE are always zero, because we don't
2189 * implement virtualization and therefore there can't be a stage 2
2190 * fault.
2191 */
4a501606
PM
2192 }
2193 } else {
b7cc4e82 2194 /* fsr is a DFSR/IFSR value for the short descriptor
702a9357
PM
2195 * translation table format (with WnR always clear).
2196 * Convert it to a 32-bit PAR.
2197 */
b7cc4e82 2198 if (!ret) {
702a9357
PM
2199 /* We do not set any attribute bits in the PAR */
2200 if (page_size == (1 << 24)
2201 && arm_feature(env, ARM_FEATURE_V7)) {
01c097f7 2202 par64 = (phys_addr & 0xff000000) | (1 << 1);
702a9357 2203 } else {
01c097f7 2204 par64 = phys_addr & 0xfffff000;
702a9357 2205 }
8bf5b6a9
PM
2206 if (!attrs.secure) {
2207 par64 |= (1 << 9); /* NS */
2208 }
702a9357 2209 } else {
b7cc4e82
PC
2210 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2211 ((fsr & 0xf) << 1) | 1;
702a9357 2212 }
4a501606 2213 }
060e8a48
PM
2214 return par64;
2215}
2216
2217static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2218{
03ae85f8 2219 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
060e8a48 2220 uint64_t par64;
d3649702
PM
2221 ARMMMUIdx mmu_idx;
2222 int el = arm_current_el(env);
2223 bool secure = arm_is_secure_below_el3(env);
060e8a48 2224
d3649702
PM
2225 switch (ri->opc2 & 6) {
2226 case 0:
2227 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2228 switch (el) {
2229 case 3:
2230 mmu_idx = ARMMMUIdx_S1E3;
2231 break;
2232 case 2:
2233 mmu_idx = ARMMMUIdx_S1NSE1;
2234 break;
2235 case 1:
2236 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2237 break;
2238 default:
2239 g_assert_not_reached();
2240 }
2241 break;
2242 case 2:
2243 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2244 switch (el) {
2245 case 3:
2246 mmu_idx = ARMMMUIdx_S1SE0;
2247 break;
2248 case 2:
2249 mmu_idx = ARMMMUIdx_S1NSE0;
2250 break;
2251 case 1:
2252 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2253 break;
2254 default:
2255 g_assert_not_reached();
2256 }
2257 break;
2258 case 4:
2259 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2260 mmu_idx = ARMMMUIdx_S12NSE1;
2261 break;
2262 case 6:
2263 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2264 mmu_idx = ARMMMUIdx_S12NSE0;
2265 break;
2266 default:
2267 g_assert_not_reached();
2268 }
2269
2270 par64 = do_ats_write(env, value, access_type, mmu_idx);
01c097f7
FA
2271
2272 A32_BANKED_CURRENT_REG_SET(env, par, par64);
4a501606 2273}
060e8a48 2274
14db7fe0
PM
2275static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2276 uint64_t value)
2277{
03ae85f8 2278 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
14db7fe0
PM
2279 uint64_t par64;
2280
2281 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2282
2283 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2284}
2285
3f208fd7
PM
2286static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2287 bool isread)
2a47df95
PM
2288{
2289 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2290 return CP_ACCESS_TRAP;
2291 }
2292 return CP_ACCESS_OK;
2293}
2294
060e8a48
PM
2295static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2296 uint64_t value)
2297{
03ae85f8 2298 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
d3649702
PM
2299 ARMMMUIdx mmu_idx;
2300 int secure = arm_is_secure_below_el3(env);
2301
2302 switch (ri->opc2 & 6) {
2303 case 0:
2304 switch (ri->opc1) {
2305 case 0: /* AT S1E1R, AT S1E1W */
2306 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2307 break;
2308 case 4: /* AT S1E2R, AT S1E2W */
2309 mmu_idx = ARMMMUIdx_S1E2;
2310 break;
2311 case 6: /* AT S1E3R, AT S1E3W */
2312 mmu_idx = ARMMMUIdx_S1E3;
2313 break;
2314 default:
2315 g_assert_not_reached();
2316 }
2317 break;
2318 case 2: /* AT S1E0R, AT S1E0W */
2319 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2320 break;
2321 case 4: /* AT S12E1R, AT S12E1W */
2a47df95 2322 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
d3649702
PM
2323 break;
2324 case 6: /* AT S12E0R, AT S12E0W */
2a47df95 2325 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
d3649702
PM
2326 break;
2327 default:
2328 g_assert_not_reached();
2329 }
060e8a48 2330
d3649702 2331 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
060e8a48 2332}
4a501606
PM
2333#endif
2334
2335static const ARMCPRegInfo vapa_cp_reginfo[] = {
2336 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2337 .access = PL1_RW, .resetvalue = 0,
01c097f7
FA
2338 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2339 offsetoflow32(CPUARMState, cp15.par_ns) },
4a501606
PM
2340 .writefn = par_write },
2341#ifndef CONFIG_USER_ONLY
87562e4f 2342 /* This underdecoding is safe because the reginfo is NO_RAW. */
4a501606 2343 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
92611c00 2344 .access = PL1_W, .accessfn = ats_access,
7a0e58fa 2345 .writefn = ats_write, .type = ARM_CP_NO_RAW },
4a501606
PM
2346#endif
2347 REGINFO_SENTINEL
2348};
2349
18032bec
PM
2350/* Return basic MPU access permission bits. */
2351static uint32_t simple_mpu_ap_bits(uint32_t val)
2352{
2353 uint32_t ret;
2354 uint32_t mask;
2355 int i;
2356 ret = 0;
2357 mask = 3;
2358 for (i = 0; i < 16; i += 2) {
2359 ret |= (val >> i) & mask;
2360 mask <<= 2;
2361 }
2362 return ret;
2363}
2364
2365/* Pad basic MPU access permission bits to extended format. */
2366static uint32_t extended_mpu_ap_bits(uint32_t val)
2367{
2368 uint32_t ret;
2369 uint32_t mask;
2370 int i;
2371 ret = 0;
2372 mask = 3;
2373 for (i = 0; i < 16; i += 2) {
2374 ret |= (val & mask) << i;
2375 mask <<= 2;
2376 }
2377 return ret;
2378}
2379
c4241c7d
PM
2380static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2381 uint64_t value)
18032bec 2382{
7e09797c 2383 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
18032bec
PM
2384}
2385
c4241c7d 2386static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 2387{
7e09797c 2388 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
18032bec
PM
2389}
2390
c4241c7d
PM
2391static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2392 uint64_t value)
18032bec 2393{
7e09797c 2394 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
18032bec
PM
2395}
2396
c4241c7d 2397static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 2398{
7e09797c 2399 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
18032bec
PM
2400}
2401
6cb0b013
PC
2402static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2403{
2404 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2405
2406 if (!u32p) {
2407 return 0;
2408 }
2409
1bc04a88 2410 u32p += env->pmsav7.rnr[M_REG_NS];
6cb0b013
PC
2411 return *u32p;
2412}
2413
2414static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2415 uint64_t value)
2416{
2417 ARMCPU *cpu = arm_env_get_cpu(env);
2418 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2419
2420 if (!u32p) {
2421 return;
2422 }
2423
1bc04a88 2424 u32p += env->pmsav7.rnr[M_REG_NS];
d10eb08f 2425 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
6cb0b013
PC
2426 *u32p = value;
2427}
2428
6cb0b013
PC
2429static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2430 uint64_t value)
2431{
2432 ARMCPU *cpu = arm_env_get_cpu(env);
2433 uint32_t nrgs = cpu->pmsav7_dregion;
2434
2435 if (value >= nrgs) {
2436 qemu_log_mask(LOG_GUEST_ERROR,
2437 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2438 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2439 return;
2440 }
2441
2442 raw_write(env, ri, value);
2443}
2444
2445static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
69ceea64
PM
2446 /* Reset for all these registers is handled in arm_cpu_reset(),
2447 * because the PMSAv7 is also used by M-profile CPUs, which do
2448 * not register cpregs but still need the state to be reset.
2449 */
6cb0b013
PC
2450 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2451 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2452 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
69ceea64
PM
2453 .readfn = pmsav7_read, .writefn = pmsav7_write,
2454 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
2455 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2456 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2457 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
69ceea64
PM
2458 .readfn = pmsav7_read, .writefn = pmsav7_write,
2459 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
2460 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2461 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2462 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
69ceea64
PM
2463 .readfn = pmsav7_read, .writefn = pmsav7_write,
2464 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
2465 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2466 .access = PL1_RW,
1bc04a88 2467 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
69ceea64
PM
2468 .writefn = pmsav7_rgnr_write,
2469 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
2470 REGINFO_SENTINEL
2471};
2472
18032bec
PM
2473static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2474 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2475 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2476 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
18032bec
PM
2477 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2478 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
7a0e58fa 2479 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2480 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
18032bec
PM
2481 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2482 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2483 .access = PL1_RW,
7e09797c
PM
2484 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2485 .resetvalue = 0, },
18032bec
PM
2486 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2487 .access = PL1_RW,
7e09797c
PM
2488 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2489 .resetvalue = 0, },
ecce5c3c
PM
2490 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2491 .access = PL1_RW,
2492 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2493 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2494 .access = PL1_RW,
2495 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31 2496 /* Protection region base and size registers */
e508a92b
PM
2497 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2498 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2499 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2500 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2501 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2502 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2503 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2504 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2505 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2506 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2507 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2508 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2509 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2510 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2511 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2512 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2513 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2514 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2515 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2516 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2517 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2518 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2519 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2520 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
18032bec
PM
2521 REGINFO_SENTINEL
2522};
2523
c4241c7d
PM
2524static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2525 uint64_t value)
ecce5c3c 2526{
11f136ee 2527 TCR *tcr = raw_ptr(env, ri);
2ebcebe2
PM
2528 int maskshift = extract32(value, 0, 3);
2529
e389be16
FA
2530 if (!arm_feature(env, ARM_FEATURE_V8)) {
2531 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2532 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2533 * using Long-desciptor translation table format */
2534 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2535 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2536 /* In an implementation that includes the Security Extensions
2537 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2538 * Short-descriptor translation table format.
2539 */
2540 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2541 } else {
2542 value &= TTBCR_N;
2543 }
e42c4db3 2544 }
e389be16 2545
b6af0975 2546 /* Update the masks corresponding to the TCR bank being written
11f136ee 2547 * Note that we always calculate mask and base_mask, but
e42c4db3 2548 * they are only used for short-descriptor tables (ie if EAE is 0);
11f136ee
FA
2549 * for long-descriptor tables the TCR fields are used differently
2550 * and the mask and base_mask values are meaningless.
e42c4db3 2551 */
11f136ee
FA
2552 tcr->raw_tcr = value;
2553 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2554 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
ecce5c3c
PM
2555}
2556
c4241c7d
PM
2557static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2558 uint64_t value)
d4e6df63 2559{
00c8cb0a
AF
2560 ARMCPU *cpu = arm_env_get_cpu(env);
2561
d4e6df63
PM
2562 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2563 /* With LPAE the TTBCR could result in a change of ASID
2564 * via the TTBCR.A1 bit, so do a TLB flush.
2565 */
d10eb08f 2566 tlb_flush(CPU(cpu));
d4e6df63 2567 }
c4241c7d 2568 vmsa_ttbcr_raw_write(env, ri, value);
d4e6df63
PM
2569}
2570
ecce5c3c
PM
2571static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2572{
11f136ee
FA
2573 TCR *tcr = raw_ptr(env, ri);
2574
2575 /* Reset both the TCR as well as the masks corresponding to the bank of
2576 * the TCR being reset.
2577 */
2578 tcr->raw_tcr = 0;
2579 tcr->mask = 0;
2580 tcr->base_mask = 0xffffc000u;
ecce5c3c
PM
2581}
2582
cb2e37df
PM
2583static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2584 uint64_t value)
2585{
00c8cb0a 2586 ARMCPU *cpu = arm_env_get_cpu(env);
11f136ee 2587 TCR *tcr = raw_ptr(env, ri);
00c8cb0a 2588
cb2e37df 2589 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
d10eb08f 2590 tlb_flush(CPU(cpu));
11f136ee 2591 tcr->raw_tcr = value;
cb2e37df
PM
2592}
2593
327ed10f
PM
2594static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2595 uint64_t value)
2596{
2597 /* 64 bit accesses to the TTBRs can change the ASID and so we
2598 * must flush the TLB.
2599 */
2600 if (cpreg_field_is_64bit(ri)) {
00c8cb0a
AF
2601 ARMCPU *cpu = arm_env_get_cpu(env);
2602
d10eb08f 2603 tlb_flush(CPU(cpu));
327ed10f
PM
2604 }
2605 raw_write(env, ri, value);
2606}
2607
b698e9cf
EI
2608static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2609 uint64_t value)
2610{
2611 ARMCPU *cpu = arm_env_get_cpu(env);
2612 CPUState *cs = CPU(cpu);
2613
2614 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2615 if (raw_read(env, ri) != value) {
0336cbf8 2616 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2617 ARMMMUIdxBit_S12NSE1 |
2618 ARMMMUIdxBit_S12NSE0 |
2619 ARMMMUIdxBit_S2NS);
b698e9cf
EI
2620 raw_write(env, ri, value);
2621 }
2622}
2623
8e5d75c9 2624static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
18032bec 2625 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2626 .access = PL1_RW, .type = ARM_CP_ALIAS,
4a7e2d73 2627 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
b061a82b 2628 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
18032bec 2629 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
88ca1c2d
FA
2630 .access = PL1_RW, .resetvalue = 0,
2631 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2632 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
8e5d75c9
PC
2633 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2634 .access = PL1_RW, .resetvalue = 0,
2635 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2636 offsetof(CPUARMState, cp15.dfar_ns) } },
2637 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2638 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2639 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2640 .resetvalue = 0, },
2641 REGINFO_SENTINEL
2642};
2643
2644static const ARMCPRegInfo vmsa_cp_reginfo[] = {
6cd8a264
RH
2645 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2646 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2647 .access = PL1_RW,
d81c519c 2648 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
327ed10f 2649 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2650 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2651 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2652 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2653 offsetof(CPUARMState, cp15.ttbr0_ns) } },
327ed10f 2654 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2655 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2656 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2657 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2658 offsetof(CPUARMState, cp15.ttbr1_ns) } },
cb2e37df
PM
2659 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2660 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2661 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2662 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
11f136ee 2663 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
cb2e37df 2664 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
7a0e58fa 2665 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
b061a82b 2666 .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee
FA
2667 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2668 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
18032bec
PM
2669 REGINFO_SENTINEL
2670};
2671
c4241c7d
PM
2672static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2673 uint64_t value)
1047b9d7
PM
2674{
2675 env->cp15.c15_ticonfig = value & 0xe7;
2676 /* The OS_TYPE bit in this register changes the reported CPUID! */
2677 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2678 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1047b9d7
PM
2679}
2680
c4241c7d
PM
2681static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2682 uint64_t value)
1047b9d7
PM
2683{
2684 env->cp15.c15_threadid = value & 0xffff;
1047b9d7
PM
2685}
2686
c4241c7d
PM
2687static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2688 uint64_t value)
1047b9d7
PM
2689{
2690 /* Wait-for-interrupt (deprecated) */
c3affe56 2691 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1047b9d7
PM
2692}
2693
c4241c7d
PM
2694static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2695 uint64_t value)
c4804214
PM
2696{
2697 /* On OMAP there are registers indicating the max/min index of dcache lines
2698 * containing a dirty line; cache flush operations have to reset these.
2699 */
2700 env->cp15.c15_i_max = 0x000;
2701 env->cp15.c15_i_min = 0xff0;
c4804214
PM
2702}
2703
18032bec
PM
2704static const ARMCPRegInfo omap_cp_reginfo[] = {
2705 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2706 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
d81c519c 2707 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
6cd8a264 2708 .resetvalue = 0, },
1047b9d7
PM
2709 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2710 .access = PL1_RW, .type = ARM_CP_NOP },
2711 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2712 .access = PL1_RW,
2713 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2714 .writefn = omap_ticonfig_write },
2715 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2716 .access = PL1_RW,
2717 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2718 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2719 .access = PL1_RW, .resetvalue = 0xff0,
2720 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2721 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2722 .access = PL1_RW,
2723 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2724 .writefn = omap_threadid_write },
2725 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2726 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
7a0e58fa 2727 .type = ARM_CP_NO_RAW,
1047b9d7
PM
2728 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2729 /* TODO: Peripheral port remap register:
2730 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2731 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2732 * when MMU is off.
2733 */
c4804214 2734 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
d4e6df63 2735 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
7a0e58fa 2736 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
c4804214 2737 .writefn = omap_cachemaint_write },
34f90529
PM
2738 { .name = "C9", .cp = 15, .crn = 9,
2739 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2740 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
2741 REGINFO_SENTINEL
2742};
2743
c4241c7d
PM
2744static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2745 uint64_t value)
1047b9d7 2746{
c0f4af17 2747 env->cp15.c15_cpar = value & 0x3fff;
1047b9d7
PM
2748}
2749
2750static const ARMCPRegInfo xscale_cp_reginfo[] = {
2751 { .name = "XSCALE_CPAR",
2752 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2753 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2754 .writefn = xscale_cpar_write, },
2771db27
PM
2755 { .name = "XSCALE_AUXCR",
2756 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2757 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2758 .resetvalue = 0, },
3b771579
PM
2759 /* XScale specific cache-lockdown: since we have no cache we NOP these
2760 * and hope the guest does not really rely on cache behaviour.
2761 */
2762 { .name = "XSCALE_LOCK_ICACHE_LINE",
2763 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2764 .access = PL1_W, .type = ARM_CP_NOP },
2765 { .name = "XSCALE_UNLOCK_ICACHE",
2766 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2767 .access = PL1_W, .type = ARM_CP_NOP },
2768 { .name = "XSCALE_DCACHE_LOCK",
2769 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2770 .access = PL1_RW, .type = ARM_CP_NOP },
2771 { .name = "XSCALE_UNLOCK_DCACHE",
2772 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2773 .access = PL1_W, .type = ARM_CP_NOP },
1047b9d7
PM
2774 REGINFO_SENTINEL
2775};
2776
2777static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2778 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2779 * implementation of this implementation-defined space.
2780 * Ideally this should eventually disappear in favour of actually
2781 * implementing the correct behaviour for all cores.
2782 */
2783 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2784 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671cd87 2785 .access = PL1_RW,
7a0e58fa 2786 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
d4e6df63 2787 .resetvalue = 0 },
18032bec
PM
2788 REGINFO_SENTINEL
2789};
2790
c4804214
PM
2791static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2792 /* Cache status: RAZ because we have no cache so it's always clean */
2793 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
7a0e58fa 2794 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2795 .resetvalue = 0 },
c4804214
PM
2796 REGINFO_SENTINEL
2797};
2798
2799static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2800 /* We never have a a block transfer operation in progress */
2801 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
7a0e58fa 2802 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2803 .resetvalue = 0 },
30b05bba
PM
2804 /* The cache ops themselves: these all NOP for QEMU */
2805 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2806 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2807 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2808 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2809 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2810 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2811 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2812 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2813 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2814 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2815 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2816 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
c4804214
PM
2817 REGINFO_SENTINEL
2818};
2819
2820static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2821 /* The cache test-and-clean instructions always return (1 << 30)
2822 * to indicate that there are no dirty cache lines.
2823 */
2824 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
7a0e58fa 2825 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2826 .resetvalue = (1 << 30) },
c4804214 2827 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
7a0e58fa 2828 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2829 .resetvalue = (1 << 30) },
c4804214
PM
2830 REGINFO_SENTINEL
2831};
2832
34f90529
PM
2833static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2834 /* Ignore ReadBuffer accesses */
2835 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2836 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
d4e6df63 2837 .access = PL1_RW, .resetvalue = 0,
7a0e58fa 2838 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
34f90529
PM
2839 REGINFO_SENTINEL
2840};
2841
731de9e6
EI
2842static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2843{
2844 ARMCPU *cpu = arm_env_get_cpu(env);
2845 unsigned int cur_el = arm_current_el(env);
2846 bool secure = arm_is_secure(env);
2847
2848 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2849 return env->cp15.vpidr_el2;
2850 }
2851 return raw_read(env, ri);
2852}
2853
06a7e647 2854static uint64_t mpidr_read_val(CPUARMState *env)
81bdde9d 2855{
eb5e1d3c
PF
2856 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2857 uint64_t mpidr = cpu->mp_affinity;
2858
81bdde9d 2859 if (arm_feature(env, ARM_FEATURE_V7MP)) {
78dbbbe4 2860 mpidr |= (1U << 31);
81bdde9d
PM
2861 /* Cores which are uniprocessor (non-coherent)
2862 * but still implement the MP extensions set
a8e81b31 2863 * bit 30. (For instance, Cortex-R5).
81bdde9d 2864 */
a8e81b31
PC
2865 if (cpu->mp_is_up) {
2866 mpidr |= (1u << 30);
2867 }
81bdde9d 2868 }
c4241c7d 2869 return mpidr;
81bdde9d
PM
2870}
2871
06a7e647
EI
2872static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2873{
f0d574d6
EI
2874 unsigned int cur_el = arm_current_el(env);
2875 bool secure = arm_is_secure(env);
2876
2877 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2878 return env->cp15.vmpidr_el2;
2879 }
06a7e647
EI
2880 return mpidr_read_val(env);
2881}
2882
81bdde9d 2883static const ARMCPRegInfo mpidr_cp_reginfo[] = {
4b7fff2f
PM
2884 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2885 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7a0e58fa 2886 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
81bdde9d
PM
2887 REGINFO_SENTINEL
2888};
2889
7ac681cf 2890static const ARMCPRegInfo lpae_cp_reginfo[] = {
a903c449 2891 /* NOP AMAIR0/1 */
b0fe2427
PM
2892 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2893 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
a903c449 2894 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2895 .resetvalue = 0 },
b0fe2427 2896 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
7ac681cf 2897 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
a903c449 2898 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2899 .resetvalue = 0 },
891a2fe7 2900 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
01c097f7
FA
2901 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2902 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2903 offsetof(CPUARMState, cp15.par_ns)} },
891a2fe7 2904 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
7a0e58fa 2905 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2906 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2907 offsetof(CPUARMState, cp15.ttbr0_ns) },
b061a82b 2908 .writefn = vmsa_ttbr_write, },
891a2fe7 2909 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
7a0e58fa 2910 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2911 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2912 offsetof(CPUARMState, cp15.ttbr1_ns) },
b061a82b 2913 .writefn = vmsa_ttbr_write, },
7ac681cf
PM
2914 REGINFO_SENTINEL
2915};
2916
c4241c7d 2917static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2918{
c4241c7d 2919 return vfp_get_fpcr(env);
b0d2b7d0
PM
2920}
2921
c4241c7d
PM
2922static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2923 uint64_t value)
b0d2b7d0
PM
2924{
2925 vfp_set_fpcr(env, value);
b0d2b7d0
PM
2926}
2927
c4241c7d 2928static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2929{
c4241c7d 2930 return vfp_get_fpsr(env);
b0d2b7d0
PM
2931}
2932
c4241c7d
PM
2933static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2934 uint64_t value)
b0d2b7d0
PM
2935{
2936 vfp_set_fpsr(env, value);
b0d2b7d0
PM
2937}
2938
3f208fd7
PM
2939static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2940 bool isread)
c2b820fe 2941{
137feaa9 2942 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
c2b820fe
PM
2943 return CP_ACCESS_TRAP;
2944 }
2945 return CP_ACCESS_OK;
2946}
2947
2948static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2949 uint64_t value)
2950{
2951 env->daif = value & PSTATE_DAIF;
2952}
2953
8af35c37 2954static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3f208fd7
PM
2955 const ARMCPRegInfo *ri,
2956 bool isread)
8af35c37
PM
2957{
2958 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2959 * SCTLR_EL1.UCI is set.
2960 */
137feaa9 2961 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
8af35c37
PM
2962 return CP_ACCESS_TRAP;
2963 }
2964 return CP_ACCESS_OK;
2965}
2966
dbb1fb27
AB
2967/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2968 * Page D4-1736 (DDI0487A.b)
2969 */
2970
fd3ed969
PM
2971static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2972 uint64_t value)
168aa23b 2973{
a67cf277 2974 CPUState *cs = ENV_GET_CPU(env);
dbb1fb27 2975
fd3ed969 2976 if (arm_is_secure_below_el3(env)) {
0336cbf8 2977 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2978 ARMMMUIdxBit_S1SE1 |
2979 ARMMMUIdxBit_S1SE0);
fd3ed969 2980 } else {
0336cbf8 2981 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2982 ARMMMUIdxBit_S12NSE1 |
2983 ARMMMUIdxBit_S12NSE0);
fd3ed969 2984 }
168aa23b
PM
2985}
2986
fd3ed969
PM
2987static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2988 uint64_t value)
168aa23b 2989{
a67cf277 2990 CPUState *cs = ENV_GET_CPU(env);
fd3ed969 2991 bool sec = arm_is_secure_below_el3(env);
dbb1fb27 2992
a67cf277
AB
2993 if (sec) {
2994 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
2995 ARMMMUIdxBit_S1SE1 |
2996 ARMMMUIdxBit_S1SE0);
a67cf277
AB
2997 } else {
2998 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
2999 ARMMMUIdxBit_S12NSE1 |
3000 ARMMMUIdxBit_S12NSE0);
fd3ed969 3001 }
168aa23b
PM
3002}
3003
fd3ed969
PM
3004static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005 uint64_t value)
168aa23b 3006{
fd3ed969
PM
3007 /* Note that the 'ALL' scope must invalidate both stage 1 and
3008 * stage 2 translations, whereas most other scopes only invalidate
3009 * stage 1 translations.
3010 */
00c8cb0a 3011 ARMCPU *cpu = arm_env_get_cpu(env);
fd3ed969
PM
3012 CPUState *cs = CPU(cpu);
3013
3014 if (arm_is_secure_below_el3(env)) {
0336cbf8 3015 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3016 ARMMMUIdxBit_S1SE1 |
3017 ARMMMUIdxBit_S1SE0);
fd3ed969
PM
3018 } else {
3019 if (arm_feature(env, ARM_FEATURE_EL2)) {
0336cbf8 3020 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3021 ARMMMUIdxBit_S12NSE1 |
3022 ARMMMUIdxBit_S12NSE0 |
3023 ARMMMUIdxBit_S2NS);
fd3ed969 3024 } else {
0336cbf8 3025 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3026 ARMMMUIdxBit_S12NSE1 |
3027 ARMMMUIdxBit_S12NSE0);
fd3ed969
PM
3028 }
3029 }
168aa23b
PM
3030}
3031
fd3ed969 3032static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
fa439fc5
PM
3033 uint64_t value)
3034{
fd3ed969
PM
3035 ARMCPU *cpu = arm_env_get_cpu(env);
3036 CPUState *cs = CPU(cpu);
3037
8bd5c820 3038 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
fd3ed969
PM
3039}
3040
43efaa33
PM
3041static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3042 uint64_t value)
3043{
3044 ARMCPU *cpu = arm_env_get_cpu(env);
3045 CPUState *cs = CPU(cpu);
3046
8bd5c820 3047 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
43efaa33
PM
3048}
3049
fd3ed969
PM
3050static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3051 uint64_t value)
3052{
3053 /* Note that the 'ALL' scope must invalidate both stage 1 and
3054 * stage 2 translations, whereas most other scopes only invalidate
3055 * stage 1 translations.
3056 */
a67cf277 3057 CPUState *cs = ENV_GET_CPU(env);
fd3ed969
PM
3058 bool sec = arm_is_secure_below_el3(env);
3059 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
a67cf277
AB
3060
3061 if (sec) {
3062 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3063 ARMMMUIdxBit_S1SE1 |
3064 ARMMMUIdxBit_S1SE0);
a67cf277
AB
3065 } else if (has_el2) {
3066 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3067 ARMMMUIdxBit_S12NSE1 |
3068 ARMMMUIdxBit_S12NSE0 |
3069 ARMMMUIdxBit_S2NS);
a67cf277
AB
3070 } else {
3071 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3072 ARMMMUIdxBit_S12NSE1 |
3073 ARMMMUIdxBit_S12NSE0);
fa439fc5
PM
3074 }
3075}
3076
2bfb9d75
PM
3077static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3078 uint64_t value)
3079{
a67cf277 3080 CPUState *cs = ENV_GET_CPU(env);
2bfb9d75 3081
8bd5c820 3082 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
2bfb9d75
PM
3083}
3084
43efaa33
PM
3085static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3086 uint64_t value)
3087{
a67cf277 3088 CPUState *cs = ENV_GET_CPU(env);
43efaa33 3089
8bd5c820 3090 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
43efaa33
PM
3091}
3092
fd3ed969
PM
3093static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3094 uint64_t value)
3095{
3096 /* Invalidate by VA, EL1&0 (AArch64 version).
3097 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3098 * since we don't support flush-for-specific-ASID-only or
3099 * flush-last-level-only.
3100 */
3101 ARMCPU *cpu = arm_env_get_cpu(env);
3102 CPUState *cs = CPU(cpu);
3103 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3104
3105 if (arm_is_secure_below_el3(env)) {
0336cbf8 3106 tlb_flush_page_by_mmuidx(cs, pageaddr,
8bd5c820
PM
3107 ARMMMUIdxBit_S1SE1 |
3108 ARMMMUIdxBit_S1SE0);
fd3ed969 3109 } else {
0336cbf8 3110 tlb_flush_page_by_mmuidx(cs, pageaddr,
8bd5c820
PM
3111 ARMMMUIdxBit_S12NSE1 |
3112 ARMMMUIdxBit_S12NSE0);
fd3ed969
PM
3113 }
3114}
3115
3116static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3117 uint64_t value)
fa439fc5 3118{
fd3ed969
PM
3119 /* Invalidate by VA, EL2
3120 * Currently handles both VAE2 and VALE2, since we don't support
3121 * flush-last-level-only.
3122 */
3123 ARMCPU *cpu = arm_env_get_cpu(env);
3124 CPUState *cs = CPU(cpu);
3125 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3126
8bd5c820 3127 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
fd3ed969
PM
3128}
3129
43efaa33
PM
3130static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3131 uint64_t value)
3132{
3133 /* Invalidate by VA, EL3
3134 * Currently handles both VAE3 and VALE3, since we don't support
3135 * flush-last-level-only.
3136 */
3137 ARMCPU *cpu = arm_env_get_cpu(env);
3138 CPUState *cs = CPU(cpu);
3139 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3140
8bd5c820 3141 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
43efaa33
PM
3142}
3143
fd3ed969
PM
3144static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3145 uint64_t value)
3146{
a67cf277
AB
3147 ARMCPU *cpu = arm_env_get_cpu(env);
3148 CPUState *cs = CPU(cpu);
fd3ed969 3149 bool sec = arm_is_secure_below_el3(env);
fa439fc5
PM
3150 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3151
a67cf277
AB
3152 if (sec) {
3153 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820
PM
3154 ARMMMUIdxBit_S1SE1 |
3155 ARMMMUIdxBit_S1SE0);
a67cf277
AB
3156 } else {
3157 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820
PM
3158 ARMMMUIdxBit_S12NSE1 |
3159 ARMMMUIdxBit_S12NSE0);
fa439fc5
PM
3160 }
3161}
3162
fd3ed969
PM
3163static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3164 uint64_t value)
fa439fc5 3165{
a67cf277 3166 CPUState *cs = ENV_GET_CPU(env);
fd3ed969 3167 uint64_t pageaddr = sextract64(value << 12, 0, 56);
fa439fc5 3168
a67cf277 3169 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3170 ARMMMUIdxBit_S1E2);
fa439fc5
PM
3171}
3172
43efaa33
PM
3173static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3174 uint64_t value)
3175{
a67cf277 3176 CPUState *cs = ENV_GET_CPU(env);
43efaa33
PM
3177 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3178
a67cf277 3179 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3180 ARMMMUIdxBit_S1E3);
43efaa33
PM
3181}
3182
cea66e91
PM
3183static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3184 uint64_t value)
3185{
3186 /* Invalidate by IPA. This has to invalidate any structures that
3187 * contain only stage 2 translation information, but does not need
3188 * to apply to structures that contain combined stage 1 and stage 2
3189 * translation information.
3190 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3191 */
3192 ARMCPU *cpu = arm_env_get_cpu(env);
3193 CPUState *cs = CPU(cpu);
3194 uint64_t pageaddr;
3195
3196 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3197 return;
3198 }
3199
3200 pageaddr = sextract64(value << 12, 0, 48);
3201
8bd5c820 3202 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
cea66e91
PM
3203}
3204
3205static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3206 uint64_t value)
3207{
a67cf277 3208 CPUState *cs = ENV_GET_CPU(env);
cea66e91
PM
3209 uint64_t pageaddr;
3210
3211 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3212 return;
3213 }
3214
3215 pageaddr = sextract64(value << 12, 0, 48);
3216
a67cf277 3217 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3218 ARMMMUIdxBit_S2NS);
cea66e91
PM
3219}
3220
3f208fd7
PM
3221static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3222 bool isread)
aca3f40b
PM
3223{
3224 /* We don't implement EL2, so the only control on DC ZVA is the
3225 * bit in the SCTLR which can prohibit access for EL0.
3226 */
137feaa9 3227 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
aca3f40b
PM
3228 return CP_ACCESS_TRAP;
3229 }
3230 return CP_ACCESS_OK;
3231}
3232
3233static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3234{
3235 ARMCPU *cpu = arm_env_get_cpu(env);
3236 int dzp_bit = 1 << 4;
3237
3238 /* DZP indicates whether DC ZVA access is allowed */
3f208fd7 3239 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
aca3f40b
PM
3240 dzp_bit = 0;
3241 }
3242 return cpu->dcz_blocksize | dzp_bit;
3243}
3244
3f208fd7
PM
3245static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3246 bool isread)
f502cfc2 3247{
cdcf1405 3248 if (!(env->pstate & PSTATE_SP)) {
f502cfc2
PM
3249 /* Access to SP_EL0 is undefined if it's being used as
3250 * the stack pointer.
3251 */
3252 return CP_ACCESS_TRAP_UNCATEGORIZED;
3253 }
3254 return CP_ACCESS_OK;
3255}
3256
3257static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3258{
3259 return env->pstate & PSTATE_SP;
3260}
3261
3262static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3263{
3264 update_spsel(env, val);
3265}
3266
137feaa9
FA
3267static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3268 uint64_t value)
3269{
3270 ARMCPU *cpu = arm_env_get_cpu(env);
3271
3272 if (raw_read(env, ri) == value) {
3273 /* Skip the TLB flush if nothing actually changed; Linux likes
3274 * to do a lot of pointless SCTLR writes.
3275 */
3276 return;
3277 }
3278
06312feb
PM
3279 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3280 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3281 value &= ~SCTLR_M;
3282 }
3283
137feaa9
FA
3284 raw_write(env, ri, value);
3285 /* ??? Lots of these bits are not implemented. */
3286 /* This may enable/disable the MMU, so do a TLB flush. */
d10eb08f 3287 tlb_flush(CPU(cpu));
137feaa9
FA
3288}
3289
3f208fd7
PM
3290static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3291 bool isread)
03fbf20f
PM
3292{
3293 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
f2cae609 3294 return CP_ACCESS_TRAP_FP_EL2;
03fbf20f
PM
3295 }
3296 if (env->cp15.cptr_el[3] & CPTR_TFP) {
f2cae609 3297 return CP_ACCESS_TRAP_FP_EL3;
03fbf20f
PM
3298 }
3299 return CP_ACCESS_OK;
3300}
3301
a8d64e73
PM
3302static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3303 uint64_t value)
3304{
3305 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3306}
3307
b0d2b7d0
PM
3308static const ARMCPRegInfo v8_cp_reginfo[] = {
3309 /* Minimal set of EL0-visible registers. This will need to be expanded
3310 * significantly for system emulation of AArch64 CPUs.
3311 */
3312 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3313 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3314 .access = PL0_RW, .type = ARM_CP_NZCV },
c2b820fe
PM
3315 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3316 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
7a0e58fa 3317 .type = ARM_CP_NO_RAW,
c2b820fe
PM
3318 .access = PL0_RW, .accessfn = aa64_daif_access,
3319 .fieldoffset = offsetof(CPUARMState, daif),
3320 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
b0d2b7d0
PM
3321 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3322 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3323 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3324 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3325 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3326 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
b0d2b7d0
PM
3327 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3328 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
7a0e58fa 3329 .access = PL0_R, .type = ARM_CP_NO_RAW,
aca3f40b
PM
3330 .readfn = aa64_dczid_read },
3331 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3333 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3334#ifndef CONFIG_USER_ONLY
3335 /* Avoid overhead of an access check that always passes in user-mode */
3336 .accessfn = aa64_zva_access,
3337#endif
3338 },
0eef9d98
PM
3339 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3340 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3341 .access = PL1_R, .type = ARM_CP_CURRENTEL },
8af35c37
PM
3342 /* Cache ops: all NOPs since we don't emulate caches */
3343 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3344 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3345 .access = PL1_W, .type = ARM_CP_NOP },
3346 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3347 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3348 .access = PL1_W, .type = ARM_CP_NOP },
3349 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3350 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3351 .access = PL0_W, .type = ARM_CP_NOP,
3352 .accessfn = aa64_cacheop_access },
3353 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3354 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3355 .access = PL1_W, .type = ARM_CP_NOP },
3356 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3357 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3358 .access = PL1_W, .type = ARM_CP_NOP },
3359 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3360 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3361 .access = PL0_W, .type = ARM_CP_NOP,
3362 .accessfn = aa64_cacheop_access },
3363 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3364 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3365 .access = PL1_W, .type = ARM_CP_NOP },
3366 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3367 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3368 .access = PL0_W, .type = ARM_CP_NOP,
3369 .accessfn = aa64_cacheop_access },
3370 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3371 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3372 .access = PL0_W, .type = ARM_CP_NOP,
3373 .accessfn = aa64_cacheop_access },
3374 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3375 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3376 .access = PL1_W, .type = ARM_CP_NOP },
168aa23b
PM
3377 /* TLBI operations */
3378 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3379 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 3380 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3381 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 3382 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3383 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 3384 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3385 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3386 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3387 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 3388 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3389 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 3390 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3391 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 3392 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3393 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3394 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3395 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 3396 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3397 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3398 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3399 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 3400 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3401 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3402 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3403 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 3404 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3405 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 3406 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3407 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 3408 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3409 .writefn = tlbi_aa64_vae1_write },
168aa23b 3410 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3411 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 3412 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3413 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 3414 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3415 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 3416 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3417 .writefn = tlbi_aa64_vae1_write },
168aa23b 3418 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3419 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 3420 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3421 .writefn = tlbi_aa64_vae1_write },
168aa23b 3422 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3423 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 3424 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3425 .writefn = tlbi_aa64_vae1_write },
cea66e91
PM
3426 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3427 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3428 .access = PL2_W, .type = ARM_CP_NO_RAW,
3429 .writefn = tlbi_aa64_ipas2e1is_write },
3430 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3431 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3432 .access = PL2_W, .type = ARM_CP_NO_RAW,
3433 .writefn = tlbi_aa64_ipas2e1is_write },
83ddf975
PM
3434 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3435 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3436 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 3437 .writefn = tlbi_aa64_alle1is_write },
43efaa33
PM
3438 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3439 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3440 .access = PL2_W, .type = ARM_CP_NO_RAW,
3441 .writefn = tlbi_aa64_alle1is_write },
cea66e91
PM
3442 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3443 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3444 .access = PL2_W, .type = ARM_CP_NO_RAW,
3445 .writefn = tlbi_aa64_ipas2e1_write },
3446 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3447 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3448 .access = PL2_W, .type = ARM_CP_NO_RAW,
3449 .writefn = tlbi_aa64_ipas2e1_write },
83ddf975
PM
3450 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3451 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3452 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 3453 .writefn = tlbi_aa64_alle1_write },
43efaa33
PM
3454 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3455 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3456 .access = PL2_W, .type = ARM_CP_NO_RAW,
3457 .writefn = tlbi_aa64_alle1is_write },
19525524
PM
3458#ifndef CONFIG_USER_ONLY
3459 /* 64 bit address translation operations */
3460 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3461 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
060e8a48 3462 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3463 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3464 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
060e8a48 3465 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3466 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3467 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
060e8a48 3468 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3469 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3470 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
060e8a48 3471 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2a47df95 3472 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
7a379c7e 3473 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
2a47df95
PM
3474 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3475 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
7a379c7e 3476 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
2a47df95
PM
3477 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3478 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
7a379c7e 3479 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
2a47df95
PM
3480 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3481 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
7a379c7e 3482 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
2a47df95
PM
3483 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3484 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3485 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3486 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3487 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3488 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3489 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3490 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
c96fc9b5
EI
3491 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3492 .type = ARM_CP_ALIAS,
3493 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3494 .access = PL1_RW, .resetvalue = 0,
3495 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3496 .writefn = par_write },
19525524 3497#endif
995939a6 3498 /* TLB invalidate last level of translation table walk */
9449fdf6 3499 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 3500 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
9449fdf6 3501 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 3502 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 3503 .writefn = tlbimvaa_is_write },
9449fdf6 3504 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 3505 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
9449fdf6 3506 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 3507 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
541ef8c2
SS
3508 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3509 .type = ARM_CP_NO_RAW, .access = PL2_W,
3510 .writefn = tlbimva_hyp_write },
3511 { .name = "TLBIMVALHIS",
3512 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3513 .type = ARM_CP_NO_RAW, .access = PL2_W,
3514 .writefn = tlbimva_hyp_is_write },
3515 { .name = "TLBIIPAS2",
3516 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3517 .type = ARM_CP_NO_RAW, .access = PL2_W,
3518 .writefn = tlbiipas2_write },
3519 { .name = "TLBIIPAS2IS",
3520 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3521 .type = ARM_CP_NO_RAW, .access = PL2_W,
3522 .writefn = tlbiipas2_is_write },
3523 { .name = "TLBIIPAS2L",
3524 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3525 .type = ARM_CP_NO_RAW, .access = PL2_W,
3526 .writefn = tlbiipas2_write },
3527 { .name = "TLBIIPAS2LIS",
3528 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3529 .type = ARM_CP_NO_RAW, .access = PL2_W,
3530 .writefn = tlbiipas2_is_write },
9449fdf6
PM
3531 /* 32 bit cache operations */
3532 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3533 .type = ARM_CP_NOP, .access = PL1_W },
3534 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3535 .type = ARM_CP_NOP, .access = PL1_W },
3536 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3537 .type = ARM_CP_NOP, .access = PL1_W },
3538 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3539 .type = ARM_CP_NOP, .access = PL1_W },
3540 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3541 .type = ARM_CP_NOP, .access = PL1_W },
3542 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3543 .type = ARM_CP_NOP, .access = PL1_W },
3544 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3545 .type = ARM_CP_NOP, .access = PL1_W },
3546 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3547 .type = ARM_CP_NOP, .access = PL1_W },
3548 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3549 .type = ARM_CP_NOP, .access = PL1_W },
3550 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3551 .type = ARM_CP_NOP, .access = PL1_W },
3552 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3553 .type = ARM_CP_NOP, .access = PL1_W },
3554 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3555 .type = ARM_CP_NOP, .access = PL1_W },
3556 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3557 .type = ARM_CP_NOP, .access = PL1_W },
3558 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
3559 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3560 .access = PL1_RW, .resetvalue = 0,
3561 .writefn = dacr_write, .raw_writefn = raw_write,
3562 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3563 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a0618a19 3564 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3565 .type = ARM_CP_ALIAS,
a0618a19 3566 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
6947f059
EI
3567 .access = PL1_RW,
3568 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
a65f1de9 3569 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3570 .type = ARM_CP_ALIAS,
a65f1de9 3571 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3572 .access = PL1_RW,
3573 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
f502cfc2
PM
3574 /* We rely on the access checks not allowing the guest to write to the
3575 * state field when SPSel indicates that it's being used as the stack
3576 * pointer.
3577 */
3578 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3579 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3580 .access = PL1_RW, .accessfn = sp_el0_access,
7a0e58fa 3581 .type = ARM_CP_ALIAS,
f502cfc2 3582 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
884b4dee
GB
3583 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3584 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3585 .access = PL2_RW, .type = ARM_CP_ALIAS,
884b4dee 3586 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
f502cfc2
PM
3587 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3588 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
7a0e58fa 3589 .type = ARM_CP_NO_RAW,
f502cfc2 3590 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
03fbf20f
PM
3591 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3592 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3593 .type = ARM_CP_ALIAS,
3594 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3595 .access = PL2_RW, .accessfn = fpexc32_access },
6a43e0b6
PM
3596 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3597 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3598 .access = PL2_RW, .resetvalue = 0,
3599 .writefn = dacr_write, .raw_writefn = raw_write,
3600 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3601 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3602 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3603 .access = PL2_RW, .resetvalue = 0,
3604 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3605 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3606 .type = ARM_CP_ALIAS,
3607 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3608 .access = PL2_RW,
3609 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3610 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3611 .type = ARM_CP_ALIAS,
3612 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3613 .access = PL2_RW,
3614 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3615 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3616 .type = ARM_CP_ALIAS,
3617 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3618 .access = PL2_RW,
3619 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3620 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3621 .type = ARM_CP_ALIAS,
3622 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3623 .access = PL2_RW,
3624 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
a8d64e73
PM
3625 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3626 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3627 .resetvalue = 0,
3628 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3629 { .name = "SDCR", .type = ARM_CP_ALIAS,
3630 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3631 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3632 .writefn = sdcr_write,
3633 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
b0d2b7d0
PM
3634 REGINFO_SENTINEL
3635};
3636
d42e3c26 3637/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4771cd01 3638static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
d42e3c26
EI
3639 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3640 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3641 .access = PL2_RW,
3642 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
f149e3e8 3643 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3644 .type = ARM_CP_NO_RAW,
f149e3e8
EI
3645 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3646 .access = PL2_RW,
3647 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
c6f19164
GB
3648 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3649 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3650 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
95f949ac
EI
3651 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3652 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3653 .access = PL2_RW, .type = ARM_CP_CONST,
3654 .resetvalue = 0 },
3655 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3656 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3657 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2179ef95
PM
3658 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3659 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3660 .access = PL2_RW, .type = ARM_CP_CONST,
3661 .resetvalue = 0 },
3662 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3663 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3664 .access = PL2_RW, .type = ARM_CP_CONST,
3665 .resetvalue = 0 },
37cd6c24
PM
3666 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3667 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3668 .access = PL2_RW, .type = ARM_CP_CONST,
3669 .resetvalue = 0 },
3670 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3671 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3672 .access = PL2_RW, .type = ARM_CP_CONST,
3673 .resetvalue = 0 },
06ec4c8c
EI
3674 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3675 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3676 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
68e9c2fe
EI
3677 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3678 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3679 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3680 .type = ARM_CP_CONST, .resetvalue = 0 },
b698e9cf
EI
3681 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3682 .cp = 15, .opc1 = 6, .crm = 2,
3683 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3684 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3685 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3686 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3687 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b9cb5323
EI
3688 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3689 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3690 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
ff05f37b
EI
3691 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3692 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3693 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
a57633c0
EI
3694 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3695 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3696 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3697 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3698 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3699 .resetvalue = 0 },
0b6440af
EI
3700 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3701 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3702 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
edac4d8a
EI
3703 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3704 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3705 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3706 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3707 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3708 .resetvalue = 0 },
b0e66d95
EI
3709 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3710 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3711 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3712 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3713 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3714 .resetvalue = 0 },
3715 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3716 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3717 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3718 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3719 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3720 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
14cc7b54
SF
3721 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3722 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
d6c8cf81
PM
3723 .access = PL2_RW, .accessfn = access_tda,
3724 .type = ARM_CP_CONST, .resetvalue = 0 },
59e05530
EI
3725 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3726 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3727 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3728 .type = ARM_CP_CONST, .resetvalue = 0 },
2a5a9abd
AF
3729 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3730 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3731 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
d42e3c26
EI
3732 REGINFO_SENTINEL
3733};
3734
f149e3e8
EI
3735static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3736{
3737 ARMCPU *cpu = arm_env_get_cpu(env);
3738 uint64_t valid_mask = HCR_MASK;
3739
3740 if (arm_feature(env, ARM_FEATURE_EL3)) {
3741 valid_mask &= ~HCR_HCD;
77077a83
JK
3742 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3743 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3744 * However, if we're using the SMC PSCI conduit then QEMU is
3745 * effectively acting like EL3 firmware and so the guest at
3746 * EL2 should retain the ability to prevent EL1 from being
3747 * able to make SMC calls into the ersatz firmware, so in
3748 * that case HCR.TSC should be read/write.
3749 */
f149e3e8
EI
3750 valid_mask &= ~HCR_TSC;
3751 }
3752
3753 /* Clear RES0 bits. */
3754 value &= valid_mask;
3755
3756 /* These bits change the MMU setup:
3757 * HCR_VM enables stage 2 translation
3758 * HCR_PTW forbids certain page-table setups
3759 * HCR_DC Disables stage1 and enables stage2 translation
3760 */
3761 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
d10eb08f 3762 tlb_flush(CPU(cpu));
f149e3e8
EI
3763 }
3764 raw_write(env, ri, value);
3765}
3766
4771cd01 3767static const ARMCPRegInfo el2_cp_reginfo[] = {
f149e3e8
EI
3768 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3769 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3770 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3771 .writefn = hcr_write },
3b685ba7 3772 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3773 .type = ARM_CP_ALIAS,
3b685ba7
EI
3774 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3775 .access = PL2_RW,
3776 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
f2c30f42 3777 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
3778 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3779 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
63b60551
EI
3780 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3781 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3782 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3b685ba7 3783 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3784 .type = ARM_CP_ALIAS,
3b685ba7 3785 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3786 .access = PL2_RW,
3787 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
d42e3c26
EI
3788 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3789 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3790 .access = PL2_RW, .writefn = vbar_write,
3791 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3792 .resetvalue = 0 },
884b4dee
GB
3793 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3794 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3795 .access = PL3_RW, .type = ARM_CP_ALIAS,
884b4dee 3796 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
c6f19164
GB
3797 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3798 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3799 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3800 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
95f949ac
EI
3801 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3802 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3803 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3804 .resetvalue = 0 },
3805 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3806 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3807 .access = PL2_RW, .type = ARM_CP_ALIAS,
3808 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2179ef95
PM
3809 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3810 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3811 .access = PL2_RW, .type = ARM_CP_CONST,
3812 .resetvalue = 0 },
3813 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3814 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3815 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3816 .access = PL2_RW, .type = ARM_CP_CONST,
3817 .resetvalue = 0 },
37cd6c24
PM
3818 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3819 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3820 .access = PL2_RW, .type = ARM_CP_CONST,
3821 .resetvalue = 0 },
3822 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3823 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3824 .access = PL2_RW, .type = ARM_CP_CONST,
3825 .resetvalue = 0 },
06ec4c8c
EI
3826 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3827 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
3828 .access = PL2_RW,
3829 /* no .writefn needed as this can't cause an ASID change;
3830 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3831 */
06ec4c8c 3832 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
68e9c2fe
EI
3833 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3834 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112 3835 .type = ARM_CP_ALIAS,
68e9c2fe
EI
3836 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3837 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3838 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3839 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112
PM
3840 .access = PL2_RW,
3841 /* no .writefn needed as this can't cause an ASID change;
3842 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3843 */
68e9c2fe 3844 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
b698e9cf
EI
3845 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3846 .cp = 15, .opc1 = 6, .crm = 2,
3847 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3848 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3849 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3850 .writefn = vttbr_write },
3851 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3852 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3853 .access = PL2_RW, .writefn = vttbr_write,
3854 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
b9cb5323
EI
3855 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3856 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3857 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3858 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
ff05f37b
EI
3859 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3860 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3861 .access = PL2_RW, .resetvalue = 0,
3862 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
a57633c0
EI
3863 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3864 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3865 .access = PL2_RW, .resetvalue = 0,
3866 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3867 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3868 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
a57633c0 3869 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
541ef8c2
SS
3870 { .name = "TLBIALLNSNH",
3871 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3872 .type = ARM_CP_NO_RAW, .access = PL2_W,
3873 .writefn = tlbiall_nsnh_write },
3874 { .name = "TLBIALLNSNHIS",
3875 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3876 .type = ARM_CP_NO_RAW, .access = PL2_W,
3877 .writefn = tlbiall_nsnh_is_write },
3878 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3879 .type = ARM_CP_NO_RAW, .access = PL2_W,
3880 .writefn = tlbiall_hyp_write },
3881 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3882 .type = ARM_CP_NO_RAW, .access = PL2_W,
3883 .writefn = tlbiall_hyp_is_write },
3884 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3885 .type = ARM_CP_NO_RAW, .access = PL2_W,
3886 .writefn = tlbimva_hyp_write },
3887 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3888 .type = ARM_CP_NO_RAW, .access = PL2_W,
3889 .writefn = tlbimva_hyp_is_write },
51da9014
EI
3890 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3891 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3892 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3893 .writefn = tlbi_aa64_alle2_write },
8742d49d
EI
3894 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3895 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3896 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3897 .writefn = tlbi_aa64_vae2_write },
2bfb9d75
PM
3898 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3899 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3900 .access = PL2_W, .type = ARM_CP_NO_RAW,
3901 .writefn = tlbi_aa64_vae2_write },
3902 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3903 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3904 .access = PL2_W, .type = ARM_CP_NO_RAW,
3905 .writefn = tlbi_aa64_alle2is_write },
8742d49d
EI
3906 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3907 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3908 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3909 .writefn = tlbi_aa64_vae2is_write },
2bfb9d75
PM
3910 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3911 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3912 .access = PL2_W, .type = ARM_CP_NO_RAW,
3913 .writefn = tlbi_aa64_vae2is_write },
edac4d8a 3914#ifndef CONFIG_USER_ONLY
2a47df95
PM
3915 /* Unlike the other EL2-related AT operations, these must
3916 * UNDEF from EL3 if EL2 is not implemented, which is why we
3917 * define them here rather than with the rest of the AT ops.
3918 */
3919 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3920 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3921 .access = PL2_W, .accessfn = at_s1e2_access,
3922 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3923 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3924 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3925 .access = PL2_W, .accessfn = at_s1e2_access,
3926 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
14db7fe0
PM
3927 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3928 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3929 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3930 * to behave as if SCR.NS was 1.
3931 */
3932 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3933 .access = PL2_W,
3934 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3935 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3936 .access = PL2_W,
3937 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
0b6440af
EI
3938 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3939 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3940 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3941 * reset values as IMPDEF. We choose to reset to 3 to comply with
3942 * both ARMv7 and ARMv8.
3943 */
3944 .access = PL2_RW, .resetvalue = 3,
3945 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
edac4d8a
EI
3946 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3947 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3948 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3949 .writefn = gt_cntvoff_write,
3950 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3951 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3952 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3953 .writefn = gt_cntvoff_write,
3954 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
b0e66d95
EI
3955 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3956 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3957 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3958 .type = ARM_CP_IO, .access = PL2_RW,
3959 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3960 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3961 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3962 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3963 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3964 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3965 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
d44ec156 3966 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
b0e66d95
EI
3967 .resetfn = gt_hyp_timer_reset,
3968 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3969 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3970 .type = ARM_CP_IO,
3971 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3972 .access = PL2_RW,
3973 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3974 .resetvalue = 0,
3975 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
edac4d8a 3976#endif
14cc7b54
SF
3977 /* The only field of MDCR_EL2 that has a defined architectural reset value
3978 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3979 * don't impelment any PMU event counters, so using zero as a reset
3980 * value for MDCR_EL2 is okay
3981 */
3982 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3983 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3984 .access = PL2_RW, .resetvalue = 0,
3985 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
59e05530
EI
3986 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3987 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3988 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3989 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3990 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3991 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3992 .access = PL2_RW,
3993 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
2a5a9abd
AF
3994 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3995 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3996 .access = PL2_RW,
3997 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3b685ba7
EI
3998 REGINFO_SENTINEL
3999};
4000
2f027fc5
PM
4001static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4002 bool isread)
4003{
4004 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4005 * At Secure EL1 it traps to EL3.
4006 */
4007 if (arm_current_el(env) == 3) {
4008 return CP_ACCESS_OK;
4009 }
4010 if (arm_is_secure_below_el3(env)) {
4011 return CP_ACCESS_TRAP_EL3;
4012 }
4013 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4014 if (isread) {
4015 return CP_ACCESS_OK;
4016 }
4017 return CP_ACCESS_TRAP_UNCATEGORIZED;
4018}
4019
60fb1a87
GB
4020static const ARMCPRegInfo el3_cp_reginfo[] = {
4021 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4022 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4023 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4024 .resetvalue = 0, .writefn = scr_write },
7a0e58fa 4025 { .name = "SCR", .type = ARM_CP_ALIAS,
60fb1a87 4026 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
efe4a274
PM
4027 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4028 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
b061a82b 4029 .writefn = scr_write },
60fb1a87
GB
4030 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4031 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4032 .access = PL3_RW, .resetvalue = 0,
4033 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4034 { .name = "SDER",
4035 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4036 .access = PL3_RW, .resetvalue = 0,
4037 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
60fb1a87 4038 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
efe4a274
PM
4039 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4040 .writefn = vbar_write, .resetvalue = 0,
60fb1a87 4041 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
7dd8c9af
FA
4042 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4043 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4044 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4045 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
11f136ee
FA
4046 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4047 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
4048 .access = PL3_RW,
4049 /* no .writefn needed as this can't cause an ASID change;
811595a2
PM
4050 * we must provide a .raw_writefn and .resetfn because we handle
4051 * reset and migration for the AArch32 TTBCR(S), which might be
4052 * using mask and base_mask.
6459b94c 4053 */
811595a2 4054 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee 4055 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
81547d66 4056 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 4057 .type = ARM_CP_ALIAS,
81547d66
EI
4058 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4059 .access = PL3_RW,
4060 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
f2c30f42 4061 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
4062 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4063 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
63b60551
EI
4064 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4065 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4066 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
81547d66 4067 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 4068 .type = ARM_CP_ALIAS,
81547d66 4069 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
4070 .access = PL3_RW,
4071 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
a1ba125c
EI
4072 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4073 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4074 .access = PL3_RW, .writefn = vbar_write,
4075 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4076 .resetvalue = 0 },
c6f19164
GB
4077 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4078 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4079 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4080 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4cfb8ad8
PM
4081 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4082 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4083 .access = PL3_RW, .resetvalue = 0,
4084 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
2179ef95
PM
4085 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4086 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4087 .access = PL3_RW, .type = ARM_CP_CONST,
4088 .resetvalue = 0 },
37cd6c24
PM
4089 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4090 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4091 .access = PL3_RW, .type = ARM_CP_CONST,
4092 .resetvalue = 0 },
4093 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4094 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4095 .access = PL3_RW, .type = ARM_CP_CONST,
4096 .resetvalue = 0 },
43efaa33
PM
4097 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4098 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4099 .access = PL3_W, .type = ARM_CP_NO_RAW,
4100 .writefn = tlbi_aa64_alle3is_write },
4101 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4102 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4103 .access = PL3_W, .type = ARM_CP_NO_RAW,
4104 .writefn = tlbi_aa64_vae3is_write },
4105 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4106 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4107 .access = PL3_W, .type = ARM_CP_NO_RAW,
4108 .writefn = tlbi_aa64_vae3is_write },
4109 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4110 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4111 .access = PL3_W, .type = ARM_CP_NO_RAW,
4112 .writefn = tlbi_aa64_alle3_write },
4113 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4114 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4115 .access = PL3_W, .type = ARM_CP_NO_RAW,
4116 .writefn = tlbi_aa64_vae3_write },
4117 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4118 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4119 .access = PL3_W, .type = ARM_CP_NO_RAW,
4120 .writefn = tlbi_aa64_vae3_write },
0f1a3b24
FA
4121 REGINFO_SENTINEL
4122};
4123
3f208fd7
PM
4124static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4125 bool isread)
7da845b0
PM
4126{
4127 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4128 * but the AArch32 CTR has its own reginfo struct)
4129 */
137feaa9 4130 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7da845b0
PM
4131 return CP_ACCESS_TRAP;
4132 }
4133 return CP_ACCESS_OK;
4134}
4135
1424ca8d
DM
4136static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4137 uint64_t value)
4138{
4139 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4140 * read via a bit in OSLSR_EL1.
4141 */
4142 int oslock;
4143
4144 if (ri->state == ARM_CP_STATE_AA32) {
4145 oslock = (value == 0xC5ACCE55);
4146 } else {
4147 oslock = value & 1;
4148 }
4149
4150 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4151}
4152
50300698 4153static const ARMCPRegInfo debug_cp_reginfo[] = {
50300698 4154 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
10aae104
PM
4155 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4156 * unlike DBGDRAR it is never accessible from EL0.
4157 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4158 * accessor.
50300698
PM
4159 */
4160 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
4161 .access = PL0_R, .accessfn = access_tdra,
4162 .type = ARM_CP_CONST, .resetvalue = 0 },
10aae104
PM
4163 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4164 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
91b0a238
PM
4165 .access = PL1_R, .accessfn = access_tdra,
4166 .type = ARM_CP_CONST, .resetvalue = 0 },
50300698 4167 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
4168 .access = PL0_R, .accessfn = access_tdra,
4169 .type = ARM_CP_CONST, .resetvalue = 0 },
17a9eb53 4170 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
10aae104
PM
4171 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4172 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
d6c8cf81 4173 .access = PL1_RW, .accessfn = access_tda,
0e5e8935
PM
4174 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4175 .resetvalue = 0 },
5e8b12ff
PM
4176 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4177 * We don't implement the configurable EL0 access.
4178 */
4179 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4180 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7a0e58fa 4181 .type = ARM_CP_ALIAS,
d6c8cf81 4182 .access = PL1_R, .accessfn = access_tda,
b061a82b 4183 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
10aae104
PM
4184 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4185 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1424ca8d 4186 .access = PL1_W, .type = ARM_CP_NO_RAW,
187f678d 4187 .accessfn = access_tdosa,
1424ca8d
DM
4188 .writefn = oslar_write },
4189 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4190 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4191 .access = PL1_R, .resetvalue = 10,
187f678d 4192 .accessfn = access_tdosa,
1424ca8d 4193 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5e8b12ff
PM
4194 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4195 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4196 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
187f678d
PM
4197 .access = PL1_RW, .accessfn = access_tdosa,
4198 .type = ARM_CP_NOP },
5e8b12ff
PM
4199 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4200 * implement vector catch debug events yet.
4201 */
4202 { .name = "DBGVCR",
4203 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
d6c8cf81
PM
4204 .access = PL1_RW, .accessfn = access_tda,
4205 .type = ARM_CP_NOP },
4d2ec4da
PM
4206 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4207 * to save and restore a 32-bit guest's DBGVCR)
4208 */
4209 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4210 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4211 .access = PL2_RW, .accessfn = access_tda,
4212 .type = ARM_CP_NOP },
5dbdc434
PM
4213 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4214 * Channel but Linux may try to access this register. The 32-bit
4215 * alias is DBGDCCINT.
4216 */
4217 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4218 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4219 .access = PL1_RW, .accessfn = access_tda,
4220 .type = ARM_CP_NOP },
50300698
PM
4221 REGINFO_SENTINEL
4222};
4223
4224static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4225 /* 64 bit access versions of the (dummy) debug registers */
4226 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4227 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4228 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4229 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4230 REGINFO_SENTINEL
4231};
4232
9ee98ce8
PM
4233void hw_watchpoint_update(ARMCPU *cpu, int n)
4234{
4235 CPUARMState *env = &cpu->env;
4236 vaddr len = 0;
4237 vaddr wvr = env->cp15.dbgwvr[n];
4238 uint64_t wcr = env->cp15.dbgwcr[n];
4239 int mask;
4240 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4241
4242 if (env->cpu_watchpoint[n]) {
4243 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4244 env->cpu_watchpoint[n] = NULL;
4245 }
4246
4247 if (!extract64(wcr, 0, 1)) {
4248 /* E bit clear : watchpoint disabled */
4249 return;
4250 }
4251
4252 switch (extract64(wcr, 3, 2)) {
4253 case 0:
4254 /* LSC 00 is reserved and must behave as if the wp is disabled */
4255 return;
4256 case 1:
4257 flags |= BP_MEM_READ;
4258 break;
4259 case 2:
4260 flags |= BP_MEM_WRITE;
4261 break;
4262 case 3:
4263 flags |= BP_MEM_ACCESS;
4264 break;
4265 }
4266
4267 /* Attempts to use both MASK and BAS fields simultaneously are
4268 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4269 * thus generating a watchpoint for every byte in the masked region.
4270 */
4271 mask = extract64(wcr, 24, 4);
4272 if (mask == 1 || mask == 2) {
4273 /* Reserved values of MASK; we must act as if the mask value was
4274 * some non-reserved value, or as if the watchpoint were disabled.
4275 * We choose the latter.
4276 */
4277 return;
4278 } else if (mask) {
4279 /* Watchpoint covers an aligned area up to 2GB in size */
4280 len = 1ULL << mask;
4281 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4282 * whether the watchpoint fires when the unmasked bits match; we opt
4283 * to generate the exceptions.
4284 */
4285 wvr &= ~(len - 1);
4286 } else {
4287 /* Watchpoint covers bytes defined by the byte address select bits */
4288 int bas = extract64(wcr, 5, 8);
4289 int basstart;
4290
4291 if (bas == 0) {
4292 /* This must act as if the watchpoint is disabled */
4293 return;
4294 }
4295
4296 if (extract64(wvr, 2, 1)) {
4297 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4298 * ignored, and BAS[3:0] define which bytes to watch.
4299 */
4300 bas &= 0xf;
4301 }
4302 /* The BAS bits are supposed to be programmed to indicate a contiguous
4303 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4304 * we fire for each byte in the word/doubleword addressed by the WVR.
4305 * We choose to ignore any non-zero bits after the first range of 1s.
4306 */
4307 basstart = ctz32(bas);
4308 len = cto32(bas >> basstart);
4309 wvr += basstart;
4310 }
4311
4312 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4313 &env->cpu_watchpoint[n]);
4314}
4315
4316void hw_watchpoint_update_all(ARMCPU *cpu)
4317{
4318 int i;
4319 CPUARMState *env = &cpu->env;
4320
4321 /* Completely clear out existing QEMU watchpoints and our array, to
4322 * avoid possible stale entries following migration load.
4323 */
4324 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4325 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4326
4327 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4328 hw_watchpoint_update(cpu, i);
4329 }
4330}
4331
4332static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4333 uint64_t value)
4334{
4335 ARMCPU *cpu = arm_env_get_cpu(env);
4336 int i = ri->crm;
4337
4338 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4339 * register reads and behaves as if values written are sign extended.
4340 * Bits [1:0] are RES0.
4341 */
4342 value = sextract64(value, 0, 49) & ~3ULL;
4343
4344 raw_write(env, ri, value);
4345 hw_watchpoint_update(cpu, i);
4346}
4347
4348static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4349 uint64_t value)
4350{
4351 ARMCPU *cpu = arm_env_get_cpu(env);
4352 int i = ri->crm;
4353
4354 raw_write(env, ri, value);
4355 hw_watchpoint_update(cpu, i);
4356}
4357
46747d15
PM
4358void hw_breakpoint_update(ARMCPU *cpu, int n)
4359{
4360 CPUARMState *env = &cpu->env;
4361 uint64_t bvr = env->cp15.dbgbvr[n];
4362 uint64_t bcr = env->cp15.dbgbcr[n];
4363 vaddr addr;
4364 int bt;
4365 int flags = BP_CPU;
4366
4367 if (env->cpu_breakpoint[n]) {
4368 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4369 env->cpu_breakpoint[n] = NULL;
4370 }
4371
4372 if (!extract64(bcr, 0, 1)) {
4373 /* E bit clear : watchpoint disabled */
4374 return;
4375 }
4376
4377 bt = extract64(bcr, 20, 4);
4378
4379 switch (bt) {
4380 case 4: /* unlinked address mismatch (reserved if AArch64) */
4381 case 5: /* linked address mismatch (reserved if AArch64) */
4382 qemu_log_mask(LOG_UNIMP,
4383 "arm: address mismatch breakpoint types not implemented");
4384 return;
4385 case 0: /* unlinked address match */
4386 case 1: /* linked address match */
4387 {
4388 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4389 * we behave as if the register was sign extended. Bits [1:0] are
4390 * RES0. The BAS field is used to allow setting breakpoints on 16
4391 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4392 * a bp will fire if the addresses covered by the bp and the addresses
4393 * covered by the insn overlap but the insn doesn't start at the
4394 * start of the bp address range. We choose to require the insn and
4395 * the bp to have the same address. The constraints on writing to
4396 * BAS enforced in dbgbcr_write mean we have only four cases:
4397 * 0b0000 => no breakpoint
4398 * 0b0011 => breakpoint on addr
4399 * 0b1100 => breakpoint on addr + 2
4400 * 0b1111 => breakpoint on addr
4401 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4402 */
4403 int bas = extract64(bcr, 5, 4);
4404 addr = sextract64(bvr, 0, 49) & ~3ULL;
4405 if (bas == 0) {
4406 return;
4407 }
4408 if (bas == 0xc) {
4409 addr += 2;
4410 }
4411 break;
4412 }
4413 case 2: /* unlinked context ID match */
4414 case 8: /* unlinked VMID match (reserved if no EL2) */
4415 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4416 qemu_log_mask(LOG_UNIMP,
4417 "arm: unlinked context breakpoint types not implemented");
4418 return;
4419 case 9: /* linked VMID match (reserved if no EL2) */
4420 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4421 case 3: /* linked context ID match */
4422 default:
4423 /* We must generate no events for Linked context matches (unless
4424 * they are linked to by some other bp/wp, which is handled in
4425 * updates for the linking bp/wp). We choose to also generate no events
4426 * for reserved values.
4427 */
4428 return;
4429 }
4430
4431 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4432}
4433
4434void hw_breakpoint_update_all(ARMCPU *cpu)
4435{
4436 int i;
4437 CPUARMState *env = &cpu->env;
4438
4439 /* Completely clear out existing QEMU breakpoints and our array, to
4440 * avoid possible stale entries following migration load.
4441 */
4442 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4443 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4444
4445 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4446 hw_breakpoint_update(cpu, i);
4447 }
4448}
4449
4450static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4451 uint64_t value)
4452{
4453 ARMCPU *cpu = arm_env_get_cpu(env);
4454 int i = ri->crm;
4455
4456 raw_write(env, ri, value);
4457 hw_breakpoint_update(cpu, i);
4458}
4459
4460static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4461 uint64_t value)
4462{
4463 ARMCPU *cpu = arm_env_get_cpu(env);
4464 int i = ri->crm;
4465
4466 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4467 * copy of BAS[0].
4468 */
4469 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4470 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4471
4472 raw_write(env, ri, value);
4473 hw_breakpoint_update(cpu, i);
4474}
4475
50300698 4476static void define_debug_regs(ARMCPU *cpu)
0b45451e 4477{
50300698
PM
4478 /* Define v7 and v8 architectural debug registers.
4479 * These are just dummy implementations for now.
0b45451e
PM
4480 */
4481 int i;
3ff6fc91 4482 int wrps, brps, ctx_cmps;
48eb3ae6
PM
4483 ARMCPRegInfo dbgdidr = {
4484 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
d6c8cf81
PM
4485 .access = PL0_R, .accessfn = access_tda,
4486 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
48eb3ae6
PM
4487 };
4488
3ff6fc91 4489 /* Note that all these register fields hold "number of Xs minus 1". */
48eb3ae6
PM
4490 brps = extract32(cpu->dbgdidr, 24, 4);
4491 wrps = extract32(cpu->dbgdidr, 28, 4);
3ff6fc91
PM
4492 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4493
4494 assert(ctx_cmps <= brps);
48eb3ae6
PM
4495
4496 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4497 * of the debug registers such as number of breakpoints;
4498 * check that if they both exist then they agree.
4499 */
4500 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4501 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4502 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3ff6fc91 4503 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
48eb3ae6 4504 }
0b45451e 4505
48eb3ae6 4506 define_one_arm_cp_reg(cpu, &dbgdidr);
50300698
PM
4507 define_arm_cp_regs(cpu, debug_cp_reginfo);
4508
4509 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4510 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4511 }
4512
48eb3ae6 4513 for (i = 0; i < brps + 1; i++) {
0b45451e 4514 ARMCPRegInfo dbgregs[] = {
10aae104
PM
4515 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4516 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
d6c8cf81 4517 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
4518 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4519 .writefn = dbgbvr_write, .raw_writefn = raw_write
4520 },
10aae104
PM
4521 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4522 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
d6c8cf81 4523 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
4524 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4525 .writefn = dbgbcr_write, .raw_writefn = raw_write
4526 },
48eb3ae6
PM
4527 REGINFO_SENTINEL
4528 };
4529 define_arm_cp_regs(cpu, dbgregs);
4530 }
4531
4532 for (i = 0; i < wrps + 1; i++) {
4533 ARMCPRegInfo dbgregs[] = {
10aae104
PM
4534 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4535 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
d6c8cf81 4536 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
4537 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4538 .writefn = dbgwvr_write, .raw_writefn = raw_write
4539 },
10aae104
PM
4540 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4541 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
d6c8cf81 4542 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
4543 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4544 .writefn = dbgwcr_write, .raw_writefn = raw_write
4545 },
4546 REGINFO_SENTINEL
0b45451e
PM
4547 };
4548 define_arm_cp_regs(cpu, dbgregs);
4549 }
4550}
4551
96a8b92e
PM
4552/* We don't know until after realize whether there's a GICv3
4553 * attached, and that is what registers the gicv3 sysregs.
4554 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4555 * at runtime.
4556 */
4557static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4558{
4559 ARMCPU *cpu = arm_env_get_cpu(env);
4560 uint64_t pfr1 = cpu->id_pfr1;
4561
4562 if (env->gicv3state) {
4563 pfr1 |= 1 << 28;
4564 }
4565 return pfr1;
4566}
4567
4568static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4569{
4570 ARMCPU *cpu = arm_env_get_cpu(env);
4571 uint64_t pfr0 = cpu->id_aa64pfr0;
4572
4573 if (env->gicv3state) {
4574 pfr0 |= 1 << 24;
4575 }
4576 return pfr0;
4577}
4578
2ceb98c0
PM
4579void register_cp_regs_for_features(ARMCPU *cpu)
4580{
4581 /* Register all the coprocessor registers based on feature bits */
4582 CPUARMState *env = &cpu->env;
4583 if (arm_feature(env, ARM_FEATURE_M)) {
4584 /* M profile has no coprocessor registers */
4585 return;
4586 }
4587
e9aa6c21 4588 define_arm_cp_regs(cpu, cp_reginfo);
9449fdf6
PM
4589 if (!arm_feature(env, ARM_FEATURE_V8)) {
4590 /* Must go early as it is full of wildcards that may be
4591 * overridden by later definitions.
4592 */
4593 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4594 }
4595
7d57f408 4596 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
4597 /* The ID registers all have impdef reset values */
4598 ARMCPRegInfo v6_idregs[] = {
0ff644a7
PM
4599 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4601 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4602 .resetvalue = cpu->id_pfr0 },
96a8b92e
PM
4603 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
4604 * the value of the GIC field until after we define these regs.
4605 */
0ff644a7
PM
4606 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
96a8b92e
PM
4608 .access = PL1_R, .type = ARM_CP_NO_RAW,
4609 .readfn = id_pfr1_read,
4610 .writefn = arm_cp_write_ignore },
0ff644a7
PM
4611 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4612 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4613 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4614 .resetvalue = cpu->id_dfr0 },
0ff644a7
PM
4615 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4616 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4617 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4618 .resetvalue = cpu->id_afr0 },
0ff644a7
PM
4619 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4620 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4621 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4622 .resetvalue = cpu->id_mmfr0 },
0ff644a7
PM
4623 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4624 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4625 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4626 .resetvalue = cpu->id_mmfr1 },
0ff644a7
PM
4627 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4629 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4630 .resetvalue = cpu->id_mmfr2 },
0ff644a7
PM
4631 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4632 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4633 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4634 .resetvalue = cpu->id_mmfr3 },
0ff644a7
PM
4635 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4636 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4637 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4638 .resetvalue = cpu->id_isar0 },
0ff644a7
PM
4639 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4641 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4642 .resetvalue = cpu->id_isar1 },
0ff644a7
PM
4643 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4644 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4645 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4646 .resetvalue = cpu->id_isar2 },
0ff644a7
PM
4647 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4648 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4649 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4650 .resetvalue = cpu->id_isar3 },
0ff644a7
PM
4651 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4653 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4654 .resetvalue = cpu->id_isar4 },
0ff644a7
PM
4655 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4657 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4658 .resetvalue = cpu->id_isar5 },
e20d84c1
PM
4659 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4661 .access = PL1_R, .type = ARM_CP_CONST,
4662 .resetvalue = cpu->id_mmfr4 },
4663 /* 7 is as yet unallocated and must RAZ */
4664 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4665 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4666 .access = PL1_R, .type = ARM_CP_CONST,
8515a092
PM
4667 .resetvalue = 0 },
4668 REGINFO_SENTINEL
4669 };
4670 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
4671 define_arm_cp_regs(cpu, v6_cp_reginfo);
4672 } else {
4673 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4674 }
4d31c596
PM
4675 if (arm_feature(env, ARM_FEATURE_V6K)) {
4676 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4677 }
5e5cf9e3 4678 if (arm_feature(env, ARM_FEATURE_V7MP) &&
452a0955 4679 !arm_feature(env, ARM_FEATURE_PMSA)) {
995939a6
PM
4680 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4681 }
e9aa6c21 4682 if (arm_feature(env, ARM_FEATURE_V7)) {
200ac0ef 4683 /* v7 performance monitor control register: same implementor
7c2cb42b
AF
4684 * field as main ID register, and we implement only the cycle
4685 * count register.
200ac0ef 4686 */
7c2cb42b 4687#ifndef CONFIG_USER_ONLY
200ac0ef
PM
4688 ARMCPRegInfo pmcr = {
4689 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
8521466b 4690 .access = PL0_RW,
7a0e58fa 4691 .type = ARM_CP_IO | ARM_CP_ALIAS,
8521466b 4692 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
fcd25206
PM
4693 .accessfn = pmreg_access, .writefn = pmcr_write,
4694 .raw_writefn = raw_write,
200ac0ef 4695 };
8521466b
AF
4696 ARMCPRegInfo pmcr64 = {
4697 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4698 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4699 .access = PL0_RW, .accessfn = pmreg_access,
4700 .type = ARM_CP_IO,
4701 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4702 .resetvalue = cpu->midr & 0xff000000,
4703 .writefn = pmcr_write, .raw_writefn = raw_write,
4704 };
7c2cb42b 4705 define_one_arm_cp_reg(cpu, &pmcr);
8521466b 4706 define_one_arm_cp_reg(cpu, &pmcr64);
7c2cb42b 4707#endif
776d4e5c 4708 ARMCPRegInfo clidr = {
7da845b0
PM
4709 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4710 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
776d4e5c
PM
4711 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4712 };
776d4e5c 4713 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 4714 define_arm_cp_regs(cpu, v7_cp_reginfo);
50300698 4715 define_debug_regs(cpu);
7d57f408
PM
4716 } else {
4717 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 4718 }
b0d2b7d0 4719 if (arm_feature(env, ARM_FEATURE_V8)) {
e20d84c1
PM
4720 /* AArch64 ID registers, which all have impdef reset values.
4721 * Note that within the ID register ranges the unused slots
4722 * must all RAZ, not UNDEF; future architecture versions may
4723 * define new registers here.
4724 */
e60cef86 4725 ARMCPRegInfo v8_idregs[] = {
96a8b92e
PM
4726 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
4727 * know the right value for the GIC field until after we
4728 * define these regs.
4729 */
e60cef86
PM
4730 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
96a8b92e
PM
4732 .access = PL1_R, .type = ARM_CP_NO_RAW,
4733 .readfn = id_aa64pfr0_read,
4734 .writefn = arm_cp_write_ignore },
e60cef86
PM
4735 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4736 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4737 .access = PL1_R, .type = ARM_CP_CONST,
4738 .resetvalue = cpu->id_aa64pfr1},
e20d84c1
PM
4739 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4740 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4741 .access = PL1_R, .type = ARM_CP_CONST,
4742 .resetvalue = 0 },
4743 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4745 .access = PL1_R, .type = ARM_CP_CONST,
4746 .resetvalue = 0 },
4747 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4748 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4749 .access = PL1_R, .type = ARM_CP_CONST,
4750 .resetvalue = 0 },
4751 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4753 .access = PL1_R, .type = ARM_CP_CONST,
4754 .resetvalue = 0 },
4755 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4756 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4757 .access = PL1_R, .type = ARM_CP_CONST,
4758 .resetvalue = 0 },
4759 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4761 .access = PL1_R, .type = ARM_CP_CONST,
4762 .resetvalue = 0 },
e60cef86
PM
4763 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4765 .access = PL1_R, .type = ARM_CP_CONST,
d6f02ce3 4766 .resetvalue = cpu->id_aa64dfr0 },
e60cef86
PM
4767 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4768 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4769 .access = PL1_R, .type = ARM_CP_CONST,
4770 .resetvalue = cpu->id_aa64dfr1 },
e20d84c1
PM
4771 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4773 .access = PL1_R, .type = ARM_CP_CONST,
4774 .resetvalue = 0 },
4775 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4777 .access = PL1_R, .type = ARM_CP_CONST,
4778 .resetvalue = 0 },
e60cef86
PM
4779 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4781 .access = PL1_R, .type = ARM_CP_CONST,
4782 .resetvalue = cpu->id_aa64afr0 },
4783 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4785 .access = PL1_R, .type = ARM_CP_CONST,
4786 .resetvalue = cpu->id_aa64afr1 },
e20d84c1
PM
4787 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4788 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4789 .access = PL1_R, .type = ARM_CP_CONST,
4790 .resetvalue = 0 },
4791 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4793 .access = PL1_R, .type = ARM_CP_CONST,
4794 .resetvalue = 0 },
e60cef86
PM
4795 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4797 .access = PL1_R, .type = ARM_CP_CONST,
4798 .resetvalue = cpu->id_aa64isar0 },
4799 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4801 .access = PL1_R, .type = ARM_CP_CONST,
4802 .resetvalue = cpu->id_aa64isar1 },
e20d84c1
PM
4803 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4805 .access = PL1_R, .type = ARM_CP_CONST,
4806 .resetvalue = 0 },
4807 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4809 .access = PL1_R, .type = ARM_CP_CONST,
4810 .resetvalue = 0 },
4811 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4813 .access = PL1_R, .type = ARM_CP_CONST,
4814 .resetvalue = 0 },
4815 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4817 .access = PL1_R, .type = ARM_CP_CONST,
4818 .resetvalue = 0 },
4819 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4820 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4821 .access = PL1_R, .type = ARM_CP_CONST,
4822 .resetvalue = 0 },
4823 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4825 .access = PL1_R, .type = ARM_CP_CONST,
4826 .resetvalue = 0 },
e60cef86
PM
4827 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4829 .access = PL1_R, .type = ARM_CP_CONST,
4830 .resetvalue = cpu->id_aa64mmfr0 },
4831 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4833 .access = PL1_R, .type = ARM_CP_CONST,
4834 .resetvalue = cpu->id_aa64mmfr1 },
e20d84c1
PM
4835 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4837 .access = PL1_R, .type = ARM_CP_CONST,
4838 .resetvalue = 0 },
4839 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4840 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4841 .access = PL1_R, .type = ARM_CP_CONST,
4842 .resetvalue = 0 },
4843 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4845 .access = PL1_R, .type = ARM_CP_CONST,
4846 .resetvalue = 0 },
4847 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4848 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4849 .access = PL1_R, .type = ARM_CP_CONST,
4850 .resetvalue = 0 },
4851 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4853 .access = PL1_R, .type = ARM_CP_CONST,
4854 .resetvalue = 0 },
4855 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4856 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4857 .access = PL1_R, .type = ARM_CP_CONST,
4858 .resetvalue = 0 },
a50c0f51
PM
4859 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4860 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4861 .access = PL1_R, .type = ARM_CP_CONST,
4862 .resetvalue = cpu->mvfr0 },
4863 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4865 .access = PL1_R, .type = ARM_CP_CONST,
4866 .resetvalue = cpu->mvfr1 },
4867 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4868 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4869 .access = PL1_R, .type = ARM_CP_CONST,
4870 .resetvalue = cpu->mvfr2 },
e20d84c1
PM
4871 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4872 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4873 .access = PL1_R, .type = ARM_CP_CONST,
4874 .resetvalue = 0 },
4875 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4877 .access = PL1_R, .type = ARM_CP_CONST,
4878 .resetvalue = 0 },
4879 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4880 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4881 .access = PL1_R, .type = ARM_CP_CONST,
4882 .resetvalue = 0 },
4883 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4884 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4885 .access = PL1_R, .type = ARM_CP_CONST,
4886 .resetvalue = 0 },
4887 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4888 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4889 .access = PL1_R, .type = ARM_CP_CONST,
4890 .resetvalue = 0 },
4054bfa9
AF
4891 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4892 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4893 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4894 .resetvalue = cpu->pmceid0 },
4895 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4896 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4897 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4898 .resetvalue = cpu->pmceid0 },
4899 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4900 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4901 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4902 .resetvalue = cpu->pmceid1 },
4903 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4904 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4905 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4906 .resetvalue = cpu->pmceid1 },
e60cef86
PM
4907 REGINFO_SENTINEL
4908 };
be8e8128
GB
4909 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4910 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4911 !arm_feature(env, ARM_FEATURE_EL2)) {
4912 ARMCPRegInfo rvbar = {
4913 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4914 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4915 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4916 };
4917 define_one_arm_cp_reg(cpu, &rvbar);
4918 }
e60cef86 4919 define_arm_cp_regs(cpu, v8_idregs);
b0d2b7d0
PM
4920 define_arm_cp_regs(cpu, v8_cp_reginfo);
4921 }
3b685ba7 4922 if (arm_feature(env, ARM_FEATURE_EL2)) {
f0d574d6 4923 uint64_t vmpidr_def = mpidr_read_val(env);
731de9e6
EI
4924 ARMCPRegInfo vpidr_regs[] = {
4925 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4926 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4927 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4928 .resetvalue = cpu->midr,
4929 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4930 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4931 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4932 .access = PL2_RW, .resetvalue = cpu->midr,
4933 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
4934 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4935 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4936 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4937 .resetvalue = vmpidr_def,
4938 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4939 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4940 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4941 .access = PL2_RW,
4942 .resetvalue = vmpidr_def,
4943 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
731de9e6
EI
4944 REGINFO_SENTINEL
4945 };
4946 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 4947 define_arm_cp_regs(cpu, el2_cp_reginfo);
be8e8128
GB
4948 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4949 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4950 ARMCPRegInfo rvbar = {
4951 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4952 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4953 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4954 };
4955 define_one_arm_cp_reg(cpu, &rvbar);
4956 }
d42e3c26
EI
4957 } else {
4958 /* If EL2 is missing but higher ELs are enabled, we need to
4959 * register the no_el2 reginfos.
4960 */
4961 if (arm_feature(env, ARM_FEATURE_EL3)) {
f0d574d6
EI
4962 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4963 * of MIDR_EL1 and MPIDR_EL1.
731de9e6
EI
4964 */
4965 ARMCPRegInfo vpidr_regs[] = {
4966 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4967 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4968 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4969 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4970 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
4971 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4972 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4973 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4974 .type = ARM_CP_NO_RAW,
4975 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
731de9e6
EI
4976 REGINFO_SENTINEL
4977 };
4978 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 4979 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
d42e3c26 4980 }
3b685ba7 4981 }
81547d66 4982 if (arm_feature(env, ARM_FEATURE_EL3)) {
0f1a3b24 4983 define_arm_cp_regs(cpu, el3_cp_reginfo);
e24fdd23
PM
4984 ARMCPRegInfo el3_regs[] = {
4985 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4986 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4987 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4988 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4989 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4990 .access = PL3_RW,
4991 .raw_writefn = raw_write, .writefn = sctlr_write,
4992 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4993 .resetvalue = cpu->reset_sctlr },
4994 REGINFO_SENTINEL
be8e8128 4995 };
e24fdd23
PM
4996
4997 define_arm_cp_regs(cpu, el3_regs);
81547d66 4998 }
2f027fc5
PM
4999 /* The behaviour of NSACR is sufficiently various that we don't
5000 * try to describe it in a single reginfo:
5001 * if EL3 is 64 bit, then trap to EL3 from S EL1,
5002 * reads as constant 0xc00 from NS EL1 and NS EL2
5003 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5004 * if v7 without EL3, register doesn't exist
5005 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5006 */
5007 if (arm_feature(env, ARM_FEATURE_EL3)) {
5008 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5009 ARMCPRegInfo nsacr = {
5010 .name = "NSACR", .type = ARM_CP_CONST,
5011 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5012 .access = PL1_RW, .accessfn = nsacr_access,
5013 .resetvalue = 0xc00
5014 };
5015 define_one_arm_cp_reg(cpu, &nsacr);
5016 } else {
5017 ARMCPRegInfo nsacr = {
5018 .name = "NSACR",
5019 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5020 .access = PL3_RW | PL1_R,
5021 .resetvalue = 0,
5022 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5023 };
5024 define_one_arm_cp_reg(cpu, &nsacr);
5025 }
5026 } else {
5027 if (arm_feature(env, ARM_FEATURE_V8)) {
5028 ARMCPRegInfo nsacr = {
5029 .name = "NSACR", .type = ARM_CP_CONST,
5030 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5031 .access = PL1_R,
5032 .resetvalue = 0xc00
5033 };
5034 define_one_arm_cp_reg(cpu, &nsacr);
5035 }
5036 }
5037
452a0955 5038 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6cb0b013
PC
5039 if (arm_feature(env, ARM_FEATURE_V6)) {
5040 /* PMSAv6 not implemented */
5041 assert(arm_feature(env, ARM_FEATURE_V7));
5042 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5043 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5044 } else {
5045 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5046 }
18032bec 5047 } else {
8e5d75c9 5048 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
18032bec
PM
5049 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5050 }
c326b979
PM
5051 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5052 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5053 }
6cc7a3ae
PM
5054 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5055 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5056 }
4a501606
PM
5057 if (arm_feature(env, ARM_FEATURE_VAPA)) {
5058 define_arm_cp_regs(cpu, vapa_cp_reginfo);
5059 }
c4804214
PM
5060 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5061 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5062 }
5063 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5064 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5065 }
5066 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5067 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5068 }
18032bec
PM
5069 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5070 define_arm_cp_regs(cpu, omap_cp_reginfo);
5071 }
34f90529
PM
5072 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5073 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5074 }
1047b9d7
PM
5075 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5076 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5077 }
5078 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5079 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5080 }
7ac681cf
PM
5081 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5082 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5083 }
7884849c
PM
5084 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5085 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5086 * be read-only (ie write causes UNDEF exception).
5087 */
5088 {
00a29f3d
PM
5089 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5090 /* Pre-v8 MIDR space.
5091 * Note that the MIDR isn't a simple constant register because
7884849c
PM
5092 * of the TI925 behaviour where writes to another register can
5093 * cause the MIDR value to change.
97ce8d61
PC
5094 *
5095 * Unimplemented registers in the c15 0 0 0 space default to
5096 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5097 * and friends override accordingly.
7884849c
PM
5098 */
5099 { .name = "MIDR",
97ce8d61 5100 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7884849c 5101 .access = PL1_R, .resetvalue = cpu->midr,
d4e6df63 5102 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
731de9e6 5103 .readfn = midr_read,
97ce8d61
PC
5104 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5105 .type = ARM_CP_OVERRIDE },
7884849c
PM
5106 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5107 { .name = "DUMMY",
5108 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5109 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5110 { .name = "DUMMY",
5111 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5112 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5113 { .name = "DUMMY",
5114 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5115 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5116 { .name = "DUMMY",
5117 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5118 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5119 { .name = "DUMMY",
5120 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5121 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5122 REGINFO_SENTINEL
5123 };
00a29f3d 5124 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
00a29f3d
PM
5125 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5126 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
731de9e6
EI
5127 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5128 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5129 .readfn = midr_read },
ac00c79f
SF
5130 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5131 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5132 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5133 .access = PL1_R, .resetvalue = cpu->midr },
5134 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5135 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5136 .access = PL1_R, .resetvalue = cpu->midr },
00a29f3d
PM
5137 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5138 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
13b72b2b 5139 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
00a29f3d
PM
5140 REGINFO_SENTINEL
5141 };
5142 ARMCPRegInfo id_cp_reginfo[] = {
5143 /* These are common to v8 and pre-v8 */
5144 { .name = "CTR",
5145 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5146 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5147 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5148 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5149 .access = PL0_R, .accessfn = ctr_el0_access,
5150 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5151 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5152 { .name = "TCMTR",
5153 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5154 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
00a29f3d
PM
5155 REGINFO_SENTINEL
5156 };
8085ce63
PC
5157 /* TLBTR is specific to VMSA */
5158 ARMCPRegInfo id_tlbtr_reginfo = {
5159 .name = "TLBTR",
5160 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5161 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5162 };
3281af81
PC
5163 /* MPUIR is specific to PMSA V6+ */
5164 ARMCPRegInfo id_mpuir_reginfo = {
5165 .name = "MPUIR",
5166 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5167 .access = PL1_R, .type = ARM_CP_CONST,
5168 .resetvalue = cpu->pmsav7_dregion << 8
5169 };
7884849c
PM
5170 ARMCPRegInfo crn0_wi_reginfo = {
5171 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5172 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5173 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5174 };
5175 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5176 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5177 ARMCPRegInfo *r;
5178 /* Register the blanket "writes ignored" value first to cover the
a703eda1
PC
5179 * whole space. Then update the specific ID registers to allow write
5180 * access, so that they ignore writes rather than causing them to
5181 * UNDEF.
7884849c
PM
5182 */
5183 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
00a29f3d
PM
5184 for (r = id_pre_v8_midr_cp_reginfo;
5185 r->type != ARM_CP_SENTINEL; r++) {
5186 r->access = PL1_RW;
5187 }
7884849c
PM
5188 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5189 r->access = PL1_RW;
7884849c 5190 }
8085ce63 5191 id_tlbtr_reginfo.access = PL1_RW;
3281af81 5192 id_tlbtr_reginfo.access = PL1_RW;
7884849c 5193 }
00a29f3d
PM
5194 if (arm_feature(env, ARM_FEATURE_V8)) {
5195 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5196 } else {
5197 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5198 }
a703eda1 5199 define_arm_cp_regs(cpu, id_cp_reginfo);
452a0955 5200 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8085ce63 5201 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
3281af81
PC
5202 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5203 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8085ce63 5204 }
7884849c
PM
5205 }
5206
97ce8d61
PC
5207 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5208 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5209 }
5210
2771db27 5211 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
834a6c69
PM
5212 ARMCPRegInfo auxcr_reginfo[] = {
5213 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5214 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5215 .access = PL1_RW, .type = ARM_CP_CONST,
5216 .resetvalue = cpu->reset_auxcr },
5217 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5218 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5219 .access = PL2_RW, .type = ARM_CP_CONST,
5220 .resetvalue = 0 },
5221 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5222 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5223 .access = PL3_RW, .type = ARM_CP_CONST,
5224 .resetvalue = 0 },
5225 REGINFO_SENTINEL
2771db27 5226 };
834a6c69 5227 define_arm_cp_regs(cpu, auxcr_reginfo);
2771db27
PM
5228 }
5229
d8ba780b 5230 if (arm_feature(env, ARM_FEATURE_CBAR)) {
f318cec6
PM
5231 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5232 /* 32 bit view is [31:18] 0...0 [43:32]. */
5233 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5234 | extract64(cpu->reset_cbar, 32, 12);
5235 ARMCPRegInfo cbar_reginfo[] = {
5236 { .name = "CBAR",
5237 .type = ARM_CP_CONST,
5238 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5239 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5240 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5241 .type = ARM_CP_CONST,
5242 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5243 .access = PL1_R, .resetvalue = cbar32 },
5244 REGINFO_SENTINEL
5245 };
5246 /* We don't implement a r/w 64 bit CBAR currently */
5247 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5248 define_arm_cp_regs(cpu, cbar_reginfo);
5249 } else {
5250 ARMCPRegInfo cbar = {
5251 .name = "CBAR",
5252 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5253 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5254 .fieldoffset = offsetof(CPUARMState,
5255 cp15.c15_config_base_address)
5256 };
5257 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5258 cbar.access = PL1_R;
5259 cbar.fieldoffset = 0;
5260 cbar.type = ARM_CP_CONST;
5261 }
5262 define_one_arm_cp_reg(cpu, &cbar);
5263 }
d8ba780b
PC
5264 }
5265
91db4642
CLG
5266 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5267 ARMCPRegInfo vbar_cp_reginfo[] = {
5268 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5269 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5270 .access = PL1_RW, .writefn = vbar_write,
5271 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5272 offsetof(CPUARMState, cp15.vbar_ns) },
5273 .resetvalue = 0 },
5274 REGINFO_SENTINEL
5275 };
5276 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5277 }
5278
2771db27
PM
5279 /* Generic registers whose values depend on the implementation */
5280 {
5281 ARMCPRegInfo sctlr = {
5ebafdf3 5282 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
137feaa9
FA
5283 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5284 .access = PL1_RW,
5285 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5286 offsetof(CPUARMState, cp15.sctlr_ns) },
d4e6df63
PM
5287 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5288 .raw_writefn = raw_write,
2771db27
PM
5289 };
5290 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5291 /* Normally we would always end the TB on an SCTLR write, but Linux
5292 * arch/arm/mach-pxa/sleep.S expects two instructions following
5293 * an MMU enable to execute from cache. Imitate this behaviour.
5294 */
5295 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5296 }
5297 define_one_arm_cp_reg(cpu, &sctlr);
5298 }
2ceb98c0
PM
5299}
5300
14969266
AF
5301void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5302{
22169d41 5303 CPUState *cs = CPU(cpu);
14969266
AF
5304 CPUARMState *env = &cpu->env;
5305
6a669427
PM
5306 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5307 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5308 aarch64_fpu_gdb_set_reg,
5309 34, "aarch64-fpu.xml", 0);
5310 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
22169d41 5311 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
5312 51, "arm-neon.xml", 0);
5313 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
22169d41 5314 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
5315 35, "arm-vfp3.xml", 0);
5316 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
22169d41 5317 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
5318 19, "arm-vfp.xml", 0);
5319 }
40f137e1
PB
5320}
5321
777dc784
PM
5322/* Sort alphabetically by type name, except for "any". */
5323static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 5324{
777dc784
PM
5325 ObjectClass *class_a = (ObjectClass *)a;
5326 ObjectClass *class_b = (ObjectClass *)b;
5327 const char *name_a, *name_b;
5adb4839 5328
777dc784
PM
5329 name_a = object_class_get_name(class_a);
5330 name_b = object_class_get_name(class_b);
51492fd1 5331 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 5332 return 1;
51492fd1 5333 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
5334 return -1;
5335 } else {
5336 return strcmp(name_a, name_b);
5adb4839
PB
5337 }
5338}
5339
777dc784 5340static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 5341{
777dc784 5342 ObjectClass *oc = data;
92a31361 5343 CPUListState *s = user_data;
51492fd1
AF
5344 const char *typename;
5345 char *name;
3371d272 5346
51492fd1
AF
5347 typename = object_class_get_name(oc);
5348 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
777dc784 5349 (*s->cpu_fprintf)(s->file, " %s\n",
51492fd1
AF
5350 name);
5351 g_free(name);
777dc784
PM
5352}
5353
5354void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5355{
92a31361 5356 CPUListState s = {
777dc784
PM
5357 .file = f,
5358 .cpu_fprintf = cpu_fprintf,
5359 };
5360 GSList *list;
5361
5362 list = object_class_get_list(TYPE_ARM_CPU, false);
5363 list = g_slist_sort(list, arm_cpu_list_compare);
5364 (*cpu_fprintf)(f, "Available CPUs:\n");
5365 g_slist_foreach(list, arm_cpu_list_entry, &s);
5366 g_slist_free(list);
a96c0514
PM
5367#ifdef CONFIG_KVM
5368 /* The 'host' CPU type is dynamically registered only if KVM is
5369 * enabled, so we have to special-case it here:
5370 */
5371 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5372#endif
40f137e1
PB
5373}
5374
78027bb6
CR
5375static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5376{
5377 ObjectClass *oc = data;
5378 CpuDefinitionInfoList **cpu_list = user_data;
5379 CpuDefinitionInfoList *entry;
5380 CpuDefinitionInfo *info;
5381 const char *typename;
5382
5383 typename = object_class_get_name(oc);
5384 info = g_malloc0(sizeof(*info));
5385 info->name = g_strndup(typename,
5386 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8ed877b7 5387 info->q_typename = g_strdup(typename);
78027bb6
CR
5388
5389 entry = g_malloc0(sizeof(*entry));
5390 entry->value = info;
5391 entry->next = *cpu_list;
5392 *cpu_list = entry;
5393}
5394
5395CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5396{
5397 CpuDefinitionInfoList *cpu_list = NULL;
5398 GSList *list;
5399
5400 list = object_class_get_list(TYPE_ARM_CPU, false);
5401 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5402 g_slist_free(list);
5403
5404 return cpu_list;
5405}
5406
6e6efd61 5407static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
51a79b03 5408 void *opaque, int state, int secstate,
f5a0a5a5 5409 int crm, int opc1, int opc2)
6e6efd61
PM
5410{
5411 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5412 * add a single reginfo struct to the hash table.
5413 */
5414 uint32_t *key = g_new(uint32_t, 1);
5415 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5416 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3f3c82a5
FA
5417 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5418
5419 /* Reset the secure state to the specific incoming state. This is
5420 * necessary as the register may have been defined with both states.
5421 */
5422 r2->secure = secstate;
5423
5424 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5425 /* Register is banked (using both entries in array).
5426 * Overwriting fieldoffset as the array is only used to define
5427 * banked registers but later only fieldoffset is used.
f5a0a5a5 5428 */
3f3c82a5
FA
5429 r2->fieldoffset = r->bank_fieldoffsets[ns];
5430 }
5431
5432 if (state == ARM_CP_STATE_AA32) {
5433 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5434 /* If the register is banked then we don't need to migrate or
5435 * reset the 32-bit instance in certain cases:
5436 *
5437 * 1) If the register has both 32-bit and 64-bit instances then we
5438 * can count on the 64-bit instance taking care of the
5439 * non-secure bank.
5440 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5441 * taking care of the secure bank. This requires that separate
5442 * 32 and 64-bit definitions are provided.
5443 */
5444 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5445 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7a0e58fa 5446 r2->type |= ARM_CP_ALIAS;
3f3c82a5
FA
5447 }
5448 } else if ((secstate != r->secure) && !ns) {
5449 /* The register is not banked so we only want to allow migration of
5450 * the non-secure instance.
5451 */
7a0e58fa 5452 r2->type |= ARM_CP_ALIAS;
58a1d8ce 5453 }
3f3c82a5
FA
5454
5455 if (r->state == ARM_CP_STATE_BOTH) {
5456 /* We assume it is a cp15 register if the .cp field is left unset.
5457 */
5458 if (r2->cp == 0) {
5459 r2->cp = 15;
5460 }
5461
f5a0a5a5 5462#ifdef HOST_WORDS_BIGENDIAN
3f3c82a5
FA
5463 if (r2->fieldoffset) {
5464 r2->fieldoffset += sizeof(uint32_t);
5465 }
f5a0a5a5 5466#endif
3f3c82a5 5467 }
f5a0a5a5
PM
5468 }
5469 if (state == ARM_CP_STATE_AA64) {
5470 /* To allow abbreviation of ARMCPRegInfo
5471 * definitions, we treat cp == 0 as equivalent to
5472 * the value for "standard guest-visible sysreg".
58a1d8ce
PM
5473 * STATE_BOTH definitions are also always "standard
5474 * sysreg" in their AArch64 view (the .cp value may
5475 * be non-zero for the benefit of the AArch32 view).
f5a0a5a5 5476 */
58a1d8ce 5477 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
f5a0a5a5
PM
5478 r2->cp = CP_REG_ARM64_SYSREG_CP;
5479 }
5480 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5481 r2->opc0, opc1, opc2);
5482 } else {
51a79b03 5483 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
f5a0a5a5 5484 }
6e6efd61
PM
5485 if (opaque) {
5486 r2->opaque = opaque;
5487 }
67ed771d
PM
5488 /* reginfo passed to helpers is correct for the actual access,
5489 * and is never ARM_CP_STATE_BOTH:
5490 */
5491 r2->state = state;
6e6efd61
PM
5492 /* Make sure reginfo passed to helpers for wildcarded regs
5493 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5494 */
5495 r2->crm = crm;
5496 r2->opc1 = opc1;
5497 r2->opc2 = opc2;
5498 /* By convention, for wildcarded registers only the first
5499 * entry is used for migration; the others are marked as
7a0e58fa 5500 * ALIAS so we don't try to transfer the register
6e6efd61 5501 * multiple times. Special registers (ie NOP/WFI) are
7a0e58fa 5502 * never migratable and not even raw-accessible.
6e6efd61 5503 */
7a0e58fa
PM
5504 if ((r->type & ARM_CP_SPECIAL)) {
5505 r2->type |= ARM_CP_NO_RAW;
5506 }
5507 if (((r->crm == CP_ANY) && crm != 0) ||
6e6efd61
PM
5508 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5509 ((r->opc2 == CP_ANY) && opc2 != 0)) {
7a0e58fa 5510 r2->type |= ARM_CP_ALIAS;
6e6efd61
PM
5511 }
5512
375421cc
PM
5513 /* Check that raw accesses are either forbidden or handled. Note that
5514 * we can't assert this earlier because the setup of fieldoffset for
5515 * banked registers has to be done first.
5516 */
5517 if (!(r2->type & ARM_CP_NO_RAW)) {
5518 assert(!raw_accessors_invalid(r2));
5519 }
5520
6e6efd61
PM
5521 /* Overriding of an existing definition must be explicitly
5522 * requested.
5523 */
5524 if (!(r->type & ARM_CP_OVERRIDE)) {
5525 ARMCPRegInfo *oldreg;
5526 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5527 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5528 fprintf(stderr, "Register redefined: cp=%d %d bit "
5529 "crn=%d crm=%d opc1=%d opc2=%d, "
5530 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5531 r2->crn, r2->crm, r2->opc1, r2->opc2,
5532 oldreg->name, r2->name);
5533 g_assert_not_reached();
5534 }
5535 }
5536 g_hash_table_insert(cpu->cp_regs, key, r2);
5537}
5538
5539
4b6a83fb
PM
5540void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5541 const ARMCPRegInfo *r, void *opaque)
5542{
5543 /* Define implementations of coprocessor registers.
5544 * We store these in a hashtable because typically
5545 * there are less than 150 registers in a space which
5546 * is 16*16*16*8*8 = 262144 in size.
5547 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5548 * If a register is defined twice then the second definition is
5549 * used, so this can be used to define some generic registers and
5550 * then override them with implementation specific variations.
5551 * At least one of the original and the second definition should
5552 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5553 * against accidental use.
f5a0a5a5
PM
5554 *
5555 * The state field defines whether the register is to be
5556 * visible in the AArch32 or AArch64 execution state. If the
5557 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5558 * reginfo structure for the AArch32 view, which sees the lower
5559 * 32 bits of the 64 bit register.
5560 *
5561 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5562 * be wildcarded. AArch64 registers are always considered to be 64
5563 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5564 * the register, if any.
4b6a83fb 5565 */
f5a0a5a5 5566 int crm, opc1, opc2, state;
4b6a83fb
PM
5567 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5568 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5569 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5570 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5571 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5572 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5573 /* 64 bit registers have only CRm and Opc1 fields */
5574 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
f5a0a5a5
PM
5575 /* op0 only exists in the AArch64 encodings */
5576 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5577 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5578 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5579 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5580 * encodes a minimum access level for the register. We roll this
5581 * runtime check into our general permission check code, so check
5582 * here that the reginfo's specified permissions are strict enough
5583 * to encompass the generic architectural permission check.
5584 */
5585 if (r->state != ARM_CP_STATE_AA32) {
5586 int mask = 0;
5587 switch (r->opc1) {
5588 case 0: case 1: case 2:
5589 /* min_EL EL1 */
5590 mask = PL1_RW;
5591 break;
5592 case 3:
5593 /* min_EL EL0 */
5594 mask = PL0_RW;
5595 break;
5596 case 4:
5597 /* min_EL EL2 */
5598 mask = PL2_RW;
5599 break;
5600 case 5:
5601 /* unallocated encoding, so not possible */
5602 assert(false);
5603 break;
5604 case 6:
5605 /* min_EL EL3 */
5606 mask = PL3_RW;
5607 break;
5608 case 7:
5609 /* min_EL EL1, secure mode only (we don't check the latter) */
5610 mask = PL1_RW;
5611 break;
5612 default:
5613 /* broken reginfo with out-of-range opc1 */
5614 assert(false);
5615 break;
5616 }
5617 /* assert our permissions are not too lax (stricter is fine) */
5618 assert((r->access & ~mask) == 0);
5619 }
5620
4b6a83fb
PM
5621 /* Check that the register definition has enough info to handle
5622 * reads and writes if they are permitted.
5623 */
5624 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5625 if (r->access & PL3_R) {
3f3c82a5
FA
5626 assert((r->fieldoffset ||
5627 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5628 r->readfn);
4b6a83fb
PM
5629 }
5630 if (r->access & PL3_W) {
3f3c82a5
FA
5631 assert((r->fieldoffset ||
5632 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5633 r->writefn);
4b6a83fb
PM
5634 }
5635 }
5636 /* Bad type field probably means missing sentinel at end of reg list */
5637 assert(cptype_valid(r->type));
5638 for (crm = crmmin; crm <= crmmax; crm++) {
5639 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5640 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
f5a0a5a5
PM
5641 for (state = ARM_CP_STATE_AA32;
5642 state <= ARM_CP_STATE_AA64; state++) {
5643 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5644 continue;
5645 }
3f3c82a5
FA
5646 if (state == ARM_CP_STATE_AA32) {
5647 /* Under AArch32 CP registers can be common
5648 * (same for secure and non-secure world) or banked.
5649 */
5650 switch (r->secure) {
5651 case ARM_CP_SECSTATE_S:
5652 case ARM_CP_SECSTATE_NS:
5653 add_cpreg_to_hashtable(cpu, r, opaque, state,
5654 r->secure, crm, opc1, opc2);
5655 break;
5656 default:
5657 add_cpreg_to_hashtable(cpu, r, opaque, state,
5658 ARM_CP_SECSTATE_S,
5659 crm, opc1, opc2);
5660 add_cpreg_to_hashtable(cpu, r, opaque, state,
5661 ARM_CP_SECSTATE_NS,
5662 crm, opc1, opc2);
5663 break;
5664 }
5665 } else {
5666 /* AArch64 registers get mapped to non-secure instance
5667 * of AArch32 */
5668 add_cpreg_to_hashtable(cpu, r, opaque, state,
5669 ARM_CP_SECSTATE_NS,
5670 crm, opc1, opc2);
5671 }
f5a0a5a5 5672 }
4b6a83fb
PM
5673 }
5674 }
5675 }
5676}
5677
5678void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5679 const ARMCPRegInfo *regs, void *opaque)
5680{
5681 /* Define a whole list of registers */
5682 const ARMCPRegInfo *r;
5683 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5684 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5685 }
5686}
5687
60322b39 5688const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4b6a83fb 5689{
60322b39 5690 return g_hash_table_lookup(cpregs, &encoded_cp);
4b6a83fb
PM
5691}
5692
c4241c7d
PM
5693void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5694 uint64_t value)
4b6a83fb
PM
5695{
5696 /* Helper coprocessor write function for write-ignore registers */
4b6a83fb
PM
5697}
5698
c4241c7d 5699uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4b6a83fb
PM
5700{
5701 /* Helper coprocessor write function for read-as-zero registers */
4b6a83fb
PM
5702 return 0;
5703}
5704
f5a0a5a5
PM
5705void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5706{
5707 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5708}
5709
af393ffc 5710static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
37064a8b
PM
5711{
5712 /* Return true if it is not valid for us to switch to
5713 * this CPU mode (ie all the UNPREDICTABLE cases in
5714 * the ARM ARM CPSRWriteByInstr pseudocode).
5715 */
af393ffc
PM
5716
5717 /* Changes to or from Hyp via MSR and CPS are illegal. */
5718 if (write_type == CPSRWriteByInstr &&
5719 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5720 mode == ARM_CPU_MODE_HYP)) {
5721 return 1;
5722 }
5723
37064a8b
PM
5724 switch (mode) {
5725 case ARM_CPU_MODE_USR:
10eacda7 5726 return 0;
37064a8b
PM
5727 case ARM_CPU_MODE_SYS:
5728 case ARM_CPU_MODE_SVC:
5729 case ARM_CPU_MODE_ABT:
5730 case ARM_CPU_MODE_UND:
5731 case ARM_CPU_MODE_IRQ:
5732 case ARM_CPU_MODE_FIQ:
52ff951b
PM
5733 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5734 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5735 */
10eacda7
PM
5736 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5737 * and CPS are treated as illegal mode changes.
5738 */
5739 if (write_type == CPSRWriteByInstr &&
5740 (env->cp15.hcr_el2 & HCR_TGE) &&
5741 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5742 !arm_is_secure_below_el3(env)) {
5743 return 1;
5744 }
37064a8b 5745 return 0;
e6c8fc07
PM
5746 case ARM_CPU_MODE_HYP:
5747 return !arm_feature(env, ARM_FEATURE_EL2)
5748 || arm_current_el(env) < 2 || arm_is_secure(env);
027fc527 5749 case ARM_CPU_MODE_MON:
58ae2d1f 5750 return arm_current_el(env) < 3;
37064a8b
PM
5751 default:
5752 return 1;
5753 }
5754}
5755
2f4a40e5
AZ
5756uint32_t cpsr_read(CPUARMState *env)
5757{
5758 int ZF;
6fbe23d5
PB
5759 ZF = (env->ZF == 0);
5760 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
5761 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5762 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5763 | ((env->condexec_bits & 0xfc) << 8)
af519934 5764 | (env->GE << 16) | (env->daif & CPSR_AIF);
2f4a40e5
AZ
5765}
5766
50866ba5
PM
5767void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5768 CPSRWriteType write_type)
2f4a40e5 5769{
6e8801f9
FA
5770 uint32_t changed_daif;
5771
2f4a40e5 5772 if (mask & CPSR_NZCV) {
6fbe23d5
PB
5773 env->ZF = (~val) & CPSR_Z;
5774 env->NF = val;
2f4a40e5
AZ
5775 env->CF = (val >> 29) & 1;
5776 env->VF = (val << 3) & 0x80000000;
5777 }
5778 if (mask & CPSR_Q)
5779 env->QF = ((val & CPSR_Q) != 0);
5780 if (mask & CPSR_T)
5781 env->thumb = ((val & CPSR_T) != 0);
5782 if (mask & CPSR_IT_0_1) {
5783 env->condexec_bits &= ~3;
5784 env->condexec_bits |= (val >> 25) & 3;
5785 }
5786 if (mask & CPSR_IT_2_7) {
5787 env->condexec_bits &= 3;
5788 env->condexec_bits |= (val >> 8) & 0xfc;
5789 }
5790 if (mask & CPSR_GE) {
5791 env->GE = (val >> 16) & 0xf;
5792 }
5793
6e8801f9
FA
5794 /* In a V7 implementation that includes the security extensions but does
5795 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5796 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5797 * bits respectively.
5798 *
5799 * In a V8 implementation, it is permitted for privileged software to
5800 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5801 */
f8c88bbc 5802 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6e8801f9
FA
5803 arm_feature(env, ARM_FEATURE_EL3) &&
5804 !arm_feature(env, ARM_FEATURE_EL2) &&
5805 !arm_is_secure(env)) {
5806
5807 changed_daif = (env->daif ^ val) & mask;
5808
5809 if (changed_daif & CPSR_A) {
5810 /* Check to see if we are allowed to change the masking of async
5811 * abort exceptions from a non-secure state.
5812 */
5813 if (!(env->cp15.scr_el3 & SCR_AW)) {
5814 qemu_log_mask(LOG_GUEST_ERROR,
5815 "Ignoring attempt to switch CPSR_A flag from "
5816 "non-secure world with SCR.AW bit clear\n");
5817 mask &= ~CPSR_A;
5818 }
5819 }
5820
5821 if (changed_daif & CPSR_F) {
5822 /* Check to see if we are allowed to change the masking of FIQ
5823 * exceptions from a non-secure state.
5824 */
5825 if (!(env->cp15.scr_el3 & SCR_FW)) {
5826 qemu_log_mask(LOG_GUEST_ERROR,
5827 "Ignoring attempt to switch CPSR_F flag from "
5828 "non-secure world with SCR.FW bit clear\n");
5829 mask &= ~CPSR_F;
5830 }
5831
5832 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5833 * If this bit is set software is not allowed to mask
5834 * FIQs, but is allowed to set CPSR_F to 0.
5835 */
5836 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5837 (val & CPSR_F)) {
5838 qemu_log_mask(LOG_GUEST_ERROR,
5839 "Ignoring attempt to enable CPSR_F flag "
5840 "(non-maskable FIQ [NMFI] support enabled)\n");
5841 mask &= ~CPSR_F;
5842 }
5843 }
5844 }
5845
4cc35614
PM
5846 env->daif &= ~(CPSR_AIF & mask);
5847 env->daif |= val & CPSR_AIF & mask;
5848
f8c88bbc
PM
5849 if (write_type != CPSRWriteRaw &&
5850 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8c4f0eb9
PM
5851 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5852 /* Note that we can only get here in USR mode if this is a
5853 * gdb stub write; for this case we follow the architectural
5854 * behaviour for guest writes in USR mode of ignoring an attempt
5855 * to switch mode. (Those are caught by translate.c for writes
5856 * triggered by guest instructions.)
5857 */
5858 mask &= ~CPSR_M;
5859 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
81907a58
PM
5860 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5861 * v7, and has defined behaviour in v8:
5862 * + leave CPSR.M untouched
5863 * + allow changes to the other CPSR fields
5864 * + set PSTATE.IL
5865 * For user changes via the GDB stub, we don't set PSTATE.IL,
5866 * as this would be unnecessarily harsh for a user error.
37064a8b
PM
5867 */
5868 mask &= ~CPSR_M;
81907a58
PM
5869 if (write_type != CPSRWriteByGDBStub &&
5870 arm_feature(env, ARM_FEATURE_V8)) {
5871 mask |= CPSR_IL;
5872 val |= CPSR_IL;
5873 }
37064a8b
PM
5874 } else {
5875 switch_mode(env, val & CPSR_M);
5876 }
2f4a40e5
AZ
5877 }
5878 mask &= ~CACHED_CPSR_BITS;
5879 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5880}
5881
b26eefb6
PB
5882/* Sign/zero extend */
5883uint32_t HELPER(sxtb16)(uint32_t x)
5884{
5885 uint32_t res;
5886 res = (uint16_t)(int8_t)x;
5887 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5888 return res;
5889}
5890
5891uint32_t HELPER(uxtb16)(uint32_t x)
5892{
5893 uint32_t res;
5894 res = (uint16_t)(uint8_t)x;
5895 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5896 return res;
5897}
5898
3670669c
PB
5899int32_t HELPER(sdiv)(int32_t num, int32_t den)
5900{
5901 if (den == 0)
5902 return 0;
686eeb93
AJ
5903 if (num == INT_MIN && den == -1)
5904 return INT_MIN;
3670669c
PB
5905 return num / den;
5906}
5907
5908uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5909{
5910 if (den == 0)
5911 return 0;
5912 return num / den;
5913}
5914
5915uint32_t HELPER(rbit)(uint32_t x)
5916{
42fedbca 5917 return revbit32(x);
3670669c
PB
5918}
5919
5fafdf24 5920#if defined(CONFIG_USER_ONLY)
b5ff1b31 5921
9ee6e8bb 5922/* These should probably raise undefined insn exceptions. */
0ecb72a5 5923void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 5924{
a47dddd7
AF
5925 ARMCPU *cpu = arm_env_get_cpu(env);
5926
5927 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
9ee6e8bb
PB
5928}
5929
0ecb72a5 5930uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 5931{
a47dddd7
AF
5932 ARMCPU *cpu = arm_env_get_cpu(env);
5933
5934 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
9ee6e8bb
PB
5935 return 0;
5936}
5937
fb602cb7
PM
5938void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
5939{
5940 /* translate.c should never generate calls here in user-only mode */
5941 g_assert_not_reached();
5942}
5943
3e3fa230
PM
5944void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
5945{
5946 /* translate.c should never generate calls here in user-only mode */
5947 g_assert_not_reached();
5948}
5949
0ecb72a5 5950void switch_mode(CPUARMState *env, int mode)
b5ff1b31 5951{
a47dddd7
AF
5952 ARMCPU *cpu = arm_env_get_cpu(env);
5953
5954 if (mode != ARM_CPU_MODE_USR) {
5955 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5956 }
b5ff1b31
FB
5957}
5958
012a906b
GB
5959uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5960 uint32_t cur_el, bool secure)
9e729b57
EI
5961{
5962 return 1;
5963}
5964
ce02049d
GB
5965void aarch64_sync_64_to_32(CPUARMState *env)
5966{
5967 g_assert_not_reached();
5968}
5969
b5ff1b31
FB
5970#else
5971
0ecb72a5 5972void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
5973{
5974 int old_mode;
5975 int i;
5976
5977 old_mode = env->uncached_cpsr & CPSR_M;
5978 if (mode == old_mode)
5979 return;
5980
5981 if (old_mode == ARM_CPU_MODE_FIQ) {
5982 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5983 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5984 } else if (mode == ARM_CPU_MODE_FIQ) {
5985 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5986 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5987 }
5988
f5206413 5989 i = bank_number(old_mode);
b5ff1b31
FB
5990 env->banked_r13[i] = env->regs[13];
5991 env->banked_r14[i] = env->regs[14];
5992 env->banked_spsr[i] = env->spsr;
5993
f5206413 5994 i = bank_number(mode);
b5ff1b31
FB
5995 env->regs[13] = env->banked_r13[i];
5996 env->regs[14] = env->banked_r14[i];
5997 env->spsr = env->banked_spsr[i];
5998}
5999
0eeb17d6
GB
6000/* Physical Interrupt Target EL Lookup Table
6001 *
6002 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6003 *
6004 * The below multi-dimensional table is used for looking up the target
6005 * exception level given numerous condition criteria. Specifically, the
6006 * target EL is based on SCR and HCR routing controls as well as the
6007 * currently executing EL and secure state.
6008 *
6009 * Dimensions:
6010 * target_el_table[2][2][2][2][2][4]
6011 * | | | | | +--- Current EL
6012 * | | | | +------ Non-secure(0)/Secure(1)
6013 * | | | +--------- HCR mask override
6014 * | | +------------ SCR exec state control
6015 * | +--------------- SCR mask override
6016 * +------------------ 32-bit(0)/64-bit(1) EL3
6017 *
6018 * The table values are as such:
6019 * 0-3 = EL0-EL3
6020 * -1 = Cannot occur
6021 *
6022 * The ARM ARM target EL table includes entries indicating that an "exception
6023 * is not taken". The two cases where this is applicable are:
6024 * 1) An exception is taken from EL3 but the SCR does not have the exception
6025 * routed to EL3.
6026 * 2) An exception is taken from EL2 but the HCR does not have the exception
6027 * routed to EL2.
6028 * In these two cases, the below table contain a target of EL1. This value is
6029 * returned as it is expected that the consumer of the table data will check
6030 * for "target EL >= current EL" to ensure the exception is not taken.
6031 *
6032 * SCR HCR
6033 * 64 EA AMO From
6034 * BIT IRQ IMO Non-secure Secure
6035 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
6036 */
82c39f6a 6037static const int8_t target_el_table[2][2][2][2][2][4] = {
0eeb17d6
GB
6038 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6039 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
6040 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6041 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
6042 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6043 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
6044 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6045 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
6046 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
6047 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
6048 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
6049 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
6050 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6051 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
6052 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6053 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
6054};
6055
6056/*
6057 * Determine the target EL for physical exceptions
6058 */
012a906b
GB
6059uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6060 uint32_t cur_el, bool secure)
0eeb17d6
GB
6061{
6062 CPUARMState *env = cs->env_ptr;
2cde031f 6063 int rw;
0eeb17d6
GB
6064 int scr;
6065 int hcr;
6066 int target_el;
2cde031f
SS
6067 /* Is the highest EL AArch64? */
6068 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6069
6070 if (arm_feature(env, ARM_FEATURE_EL3)) {
6071 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6072 } else {
6073 /* Either EL2 is the highest EL (and so the EL2 register width
6074 * is given by is64); or there is no EL2 or EL3, in which case
6075 * the value of 'rw' does not affect the table lookup anyway.
6076 */
6077 rw = is64;
6078 }
0eeb17d6
GB
6079
6080 switch (excp_idx) {
6081 case EXCP_IRQ:
6082 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6083 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6084 break;
6085 case EXCP_FIQ:
6086 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6087 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6088 break;
6089 default:
6090 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6091 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6092 break;
6093 };
6094
6095 /* If HCR.TGE is set then HCR is treated as being 1 */
6096 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6097
6098 /* Perform a table-lookup for the target EL given the current state */
6099 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6100
6101 assert(target_el > 0);
6102
6103 return target_el;
6104}
6105
9ee6e8bb
PB
6106static void v7m_push(CPUARMState *env, uint32_t val)
6107{
70d74660
AF
6108 CPUState *cs = CPU(arm_env_get_cpu(env));
6109
9ee6e8bb 6110 env->regs[13] -= 4;
ab1da857 6111 stl_phys(cs->as, env->regs[13], val);
9ee6e8bb
PB
6112}
6113
fb602cb7
PM
6114/* Return true if we're using the process stack pointer (not the MSP) */
6115static bool v7m_using_psp(CPUARMState *env)
6116{
6117 /* Handler mode always uses the main stack; for thread mode
6118 * the CONTROL.SPSEL bit determines the answer.
6119 * Note that in v7M it is not possible to be in Handler mode with
6120 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6121 */
6122 return !arm_v7m_is_handler_mode(env) &&
6123 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6124}
6125
3f0cddee
PM
6126/* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6127 * This may change the current stack pointer between Main and Process
6128 * stack pointers if it is done for the CONTROL register for the current
6129 * security state.
de2db7ec 6130 */
3f0cddee
PM
6131static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6132 bool new_spsel,
6133 bool secstate)
9ee6e8bb 6134{
3f0cddee 6135 bool old_is_psp = v7m_using_psp(env);
de2db7ec 6136
3f0cddee
PM
6137 env->v7m.control[secstate] =
6138 deposit32(env->v7m.control[secstate],
de2db7ec
PM
6139 R_V7M_CONTROL_SPSEL_SHIFT,
6140 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6141
3f0cddee
PM
6142 if (secstate == env->v7m.secure) {
6143 bool new_is_psp = v7m_using_psp(env);
6144 uint32_t tmp;
abc24d86 6145
3f0cddee
PM
6146 if (old_is_psp != new_is_psp) {
6147 tmp = env->v7m.other_sp;
6148 env->v7m.other_sp = env->regs[13];
6149 env->regs[13] = tmp;
6150 }
de2db7ec
PM
6151 }
6152}
6153
3f0cddee
PM
6154/* Write to v7M CONTROL.SPSEL bit. This may change the current
6155 * stack pointer between Main and Process stack pointers.
6156 */
6157static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6158{
6159 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6160}
6161
de2db7ec
PM
6162void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6163{
6164 /* Write a new value to v7m.exception, thus transitioning into or out
6165 * of Handler mode; this may result in a change of active stack pointer.
6166 */
6167 bool new_is_psp, old_is_psp = v7m_using_psp(env);
6168 uint32_t tmp;
abc24d86 6169
de2db7ec
PM
6170 env->v7m.exception = new_exc;
6171
6172 new_is_psp = v7m_using_psp(env);
6173
6174 if (old_is_psp != new_is_psp) {
6175 tmp = env->v7m.other_sp;
6176 env->v7m.other_sp = env->regs[13];
6177 env->regs[13] = tmp;
9ee6e8bb
PB
6178 }
6179}
6180
fb602cb7
PM
6181/* Switch M profile security state between NS and S */
6182static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6183{
6184 uint32_t new_ss_msp, new_ss_psp;
6185
6186 if (env->v7m.secure == new_secstate) {
6187 return;
6188 }
6189
6190 /* All the banked state is accessed by looking at env->v7m.secure
6191 * except for the stack pointer; rearrange the SP appropriately.
6192 */
6193 new_ss_msp = env->v7m.other_ss_msp;
6194 new_ss_psp = env->v7m.other_ss_psp;
6195
6196 if (v7m_using_psp(env)) {
6197 env->v7m.other_ss_psp = env->regs[13];
6198 env->v7m.other_ss_msp = env->v7m.other_sp;
6199 } else {
6200 env->v7m.other_ss_msp = env->regs[13];
6201 env->v7m.other_ss_psp = env->v7m.other_sp;
6202 }
6203
6204 env->v7m.secure = new_secstate;
6205
6206 if (v7m_using_psp(env)) {
6207 env->regs[13] = new_ss_psp;
6208 env->v7m.other_sp = new_ss_msp;
6209 } else {
6210 env->regs[13] = new_ss_msp;
6211 env->v7m.other_sp = new_ss_psp;
6212 }
6213}
6214
6215void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6216{
6217 /* Handle v7M BXNS:
6218 * - if the return value is a magic value, do exception return (like BX)
6219 * - otherwise bit 0 of the return value is the target security state
6220 */
d02a8698
PM
6221 uint32_t min_magic;
6222
6223 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6224 /* Covers FNC_RETURN and EXC_RETURN magic */
6225 min_magic = FNC_RETURN_MIN_MAGIC;
6226 } else {
6227 /* EXC_RETURN magic only */
6228 min_magic = EXC_RETURN_MIN_MAGIC;
6229 }
6230
6231 if (dest >= min_magic) {
fb602cb7
PM
6232 /* This is an exception return magic value; put it where
6233 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6234 * Note that if we ever add gen_ss_advance() singlestep support to
6235 * M profile this should count as an "instruction execution complete"
6236 * event (compare gen_bx_excret_final_code()).
6237 */
6238 env->regs[15] = dest & ~1;
6239 env->thumb = dest & 1;
6240 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6241 /* notreached */
6242 }
6243
6244 /* translate.c should have made BXNS UNDEF unless we're secure */
6245 assert(env->v7m.secure);
6246
6247 switch_v7m_security_state(env, dest & 1);
6248 env->thumb = 1;
6249 env->regs[15] = dest & ~1;
6250}
6251
3e3fa230
PM
6252void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6253{
6254 /* Handle v7M BLXNS:
6255 * - bit 0 of the destination address is the target security state
6256 */
6257
6258 /* At this point regs[15] is the address just after the BLXNS */
6259 uint32_t nextinst = env->regs[15] | 1;
6260 uint32_t sp = env->regs[13] - 8;
6261 uint32_t saved_psr;
6262
6263 /* translate.c will have made BLXNS UNDEF unless we're secure */
6264 assert(env->v7m.secure);
6265
6266 if (dest & 1) {
6267 /* target is Secure, so this is just a normal BLX,
6268 * except that the low bit doesn't indicate Thumb/not.
6269 */
6270 env->regs[14] = nextinst;
6271 env->thumb = 1;
6272 env->regs[15] = dest & ~1;
6273 return;
6274 }
6275
6276 /* Target is non-secure: first push a stack frame */
6277 if (!QEMU_IS_ALIGNED(sp, 8)) {
6278 qemu_log_mask(LOG_GUEST_ERROR,
6279 "BLXNS with misaligned SP is UNPREDICTABLE\n");
6280 }
6281
6282 saved_psr = env->v7m.exception;
6283 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6284 saved_psr |= XPSR_SFPA;
6285 }
6286
6287 /* Note that these stores can throw exceptions on MPU faults */
6288 cpu_stl_data(env, sp, nextinst);
6289 cpu_stl_data(env, sp + 4, saved_psr);
6290
6291 env->regs[13] = sp;
6292 env->regs[14] = 0xfeffffff;
6293 if (arm_v7m_is_handler_mode(env)) {
6294 /* Write a dummy value to IPSR, to avoid leaking the current secure
6295 * exception number to non-secure code. This is guaranteed not
6296 * to cause write_v7m_exception() to actually change stacks.
6297 */
6298 write_v7m_exception(env, 1);
6299 }
6300 switch_v7m_security_state(env, 0);
6301 env->thumb = 1;
6302 env->regs[15] = dest;
6303}
6304
5b522399
PM
6305static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6306 bool spsel)
6307{
6308 /* Return a pointer to the location where we currently store the
6309 * stack pointer for the requested security state and thread mode.
6310 * This pointer will become invalid if the CPU state is updated
6311 * such that the stack pointers are switched around (eg changing
6312 * the SPSEL control bit).
6313 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6314 * Unlike that pseudocode, we require the caller to pass us in the
6315 * SPSEL control bit value; this is because we also use this
6316 * function in handling of pushing of the callee-saves registers
6317 * part of the v8M stack frame (pseudocode PushCalleeStack()),
6318 * and in the tailchain codepath the SPSEL bit comes from the exception
6319 * return magic LR value from the previous exception. The pseudocode
6320 * opencodes the stack-selection in PushCalleeStack(), but we prefer
6321 * to make this utility function generic enough to do the job.
6322 */
6323 bool want_psp = threadmode && spsel;
6324
6325 if (secure == env->v7m.secure) {
de2db7ec
PM
6326 if (want_psp == v7m_using_psp(env)) {
6327 return &env->regs[13];
6328 } else {
6329 return &env->v7m.other_sp;
6330 }
5b522399
PM
6331 } else {
6332 if (want_psp) {
6333 return &env->v7m.other_ss_psp;
6334 } else {
6335 return &env->v7m.other_ss_msp;
6336 }
6337 }
6338}
6339
d3392718 6340static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure)
39ae2474
PM
6341{
6342 CPUState *cs = CPU(cpu);
6343 CPUARMState *env = &cpu->env;
6344 MemTxResult result;
d3392718 6345 hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4;
39ae2474
PM
6346 uint32_t addr;
6347
6348 addr = address_space_ldl(cs->as, vec,
6349 MEMTXATTRS_UNSPECIFIED, &result);
6350 if (result != MEMTX_OK) {
6351 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6352 * which would then be immediately followed by our failing to load
6353 * the entry vector for that HardFault, which is a Lockup case.
6354 * Since we don't model Lockup, we just report this guest error
6355 * via cpu_abort().
6356 */
d3392718
PM
6357 cpu_abort(cs, "Failed to read from %s exception vector table "
6358 "entry %08x\n", targets_secure ? "secure" : "nonsecure",
6359 (unsigned)vec);
39ae2474
PM
6360 }
6361 return addr;
6362}
6363
d3392718
PM
6364static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6365{
6366 /* For v8M, push the callee-saves register part of the stack frame.
6367 * Compare the v8M pseudocode PushCalleeStack().
6368 * In the tailchaining case this may not be the current stack.
6369 */
6370 CPUARMState *env = &cpu->env;
6371 CPUState *cs = CPU(cpu);
6372 uint32_t *frame_sp_p;
6373 uint32_t frameptr;
6374
6375 if (dotailchain) {
6376 frame_sp_p = get_v7m_sp_ptr(env, true,
6377 lr & R_V7M_EXCRET_MODE_MASK,
6378 lr & R_V7M_EXCRET_SPSEL_MASK);
6379 } else {
6380 frame_sp_p = &env->regs[13];
6381 }
6382
6383 frameptr = *frame_sp_p - 0x28;
6384
6385 stl_phys(cs->as, frameptr, 0xfefa125b);
6386 stl_phys(cs->as, frameptr + 0x8, env->regs[4]);
6387 stl_phys(cs->as, frameptr + 0xc, env->regs[5]);
6388 stl_phys(cs->as, frameptr + 0x10, env->regs[6]);
6389 stl_phys(cs->as, frameptr + 0x14, env->regs[7]);
6390 stl_phys(cs->as, frameptr + 0x18, env->regs[8]);
6391 stl_phys(cs->as, frameptr + 0x1c, env->regs[9]);
6392 stl_phys(cs->as, frameptr + 0x20, env->regs[10]);
6393 stl_phys(cs->as, frameptr + 0x24, env->regs[11]);
6394
6395 *frame_sp_p = frameptr;
6396}
6397
6398static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain)
39ae2474
PM
6399{
6400 /* Do the "take the exception" parts of exception entry,
6401 * but not the pushing of state to the stack. This is
6402 * similar to the pseudocode ExceptionTaken() function.
6403 */
6404 CPUARMState *env = &cpu->env;
6405 uint32_t addr;
d3392718
PM
6406 bool targets_secure;
6407
6408 targets_secure = armv7m_nvic_acknowledge_irq(env->nvic);
6409
6410 if (arm_feature(env, ARM_FEATURE_V8)) {
6411 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6412 (lr & R_V7M_EXCRET_S_MASK)) {
6413 /* The background code (the owner of the registers in the
6414 * exception frame) is Secure. This means it may either already
6415 * have or now needs to push callee-saves registers.
6416 */
6417 if (targets_secure) {
6418 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6419 /* We took an exception from Secure to NonSecure
6420 * (which means the callee-saved registers got stacked)
6421 * and are now tailchaining to a Secure exception.
6422 * Clear DCRS so eventual return from this Secure
6423 * exception unstacks the callee-saved registers.
6424 */
6425 lr &= ~R_V7M_EXCRET_DCRS_MASK;
6426 }
6427 } else {
6428 /* We're going to a non-secure exception; push the
6429 * callee-saves registers to the stack now, if they're
6430 * not already saved.
6431 */
6432 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6433 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6434 v7m_push_callee_stack(cpu, lr, dotailchain);
6435 }
6436 lr |= R_V7M_EXCRET_DCRS_MASK;
6437 }
6438 }
6439
6440 lr &= ~R_V7M_EXCRET_ES_MASK;
6441 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6442 lr |= R_V7M_EXCRET_ES_MASK;
6443 }
6444 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6445 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6446 lr |= R_V7M_EXCRET_SPSEL_MASK;
6447 }
6448
6449 /* Clear registers if necessary to prevent non-secure exception
6450 * code being able to see register values from secure code.
6451 * Where register values become architecturally UNKNOWN we leave
6452 * them with their previous values.
6453 */
6454 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6455 if (!targets_secure) {
6456 /* Always clear the caller-saved registers (they have been
6457 * pushed to the stack earlier in v7m_push_stack()).
6458 * Clear callee-saved registers if the background code is
6459 * Secure (in which case these regs were saved in
6460 * v7m_push_callee_stack()).
6461 */
6462 int i;
6463
6464 for (i = 0; i < 13; i++) {
6465 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6466 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6467 env->regs[i] = 0;
6468 }
6469 }
6470 /* Clear EAPSR */
6471 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6472 }
6473 }
6474 }
39ae2474 6475
d3392718
PM
6476 /* Switch to target security state -- must do this before writing SPSEL */
6477 switch_v7m_security_state(env, targets_secure);
de2db7ec 6478 write_v7m_control_spsel(env, 0);
dc3c4c14 6479 arm_clear_exclusive(env);
39ae2474
PM
6480 /* Clear IT bits */
6481 env->condexec_bits = 0;
6482 env->regs[14] = lr;
d3392718 6483 addr = arm_v7m_load_vector(cpu, targets_secure);
39ae2474
PM
6484 env->regs[15] = addr & 0xfffffffe;
6485 env->thumb = addr & 1;
6486}
6487
6488static void v7m_push_stack(ARMCPU *cpu)
6489{
6490 /* Do the "set up stack frame" part of exception entry,
6491 * similar to pseudocode PushStack().
6492 */
6493 CPUARMState *env = &cpu->env;
6494 uint32_t xpsr = xpsr_read(env);
6495
6496 /* Align stack pointer if the guest wants that */
9d40cd8a
PM
6497 if ((env->regs[13] & 4) &&
6498 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
39ae2474 6499 env->regs[13] -= 4;
987ab45e 6500 xpsr |= XPSR_SPREALIGN;
39ae2474
PM
6501 }
6502 /* Switch to the handler mode. */
6503 v7m_push(env, xpsr);
6504 v7m_push(env, env->regs[15]);
6505 v7m_push(env, env->regs[14]);
6506 v7m_push(env, env->regs[12]);
6507 v7m_push(env, env->regs[3]);
6508 v7m_push(env, env->regs[2]);
6509 v7m_push(env, env->regs[1]);
6510 v7m_push(env, env->regs[0]);
6511}
6512
aa488fe3 6513static void do_v7m_exception_exit(ARMCPU *cpu)
9ee6e8bb 6514{
aa488fe3 6515 CPUARMState *env = &cpu->env;
5b522399 6516 CPUState *cs = CPU(cpu);
351e527a 6517 uint32_t excret;
9ee6e8bb 6518 uint32_t xpsr;
aa488fe3 6519 bool ufault = false;
bfb2eb52
PM
6520 bool sfault = false;
6521 bool return_to_sp_process;
6522 bool return_to_handler;
aa488fe3 6523 bool rettobase = false;
5cb18069 6524 bool exc_secure = false;
5b522399 6525 bool return_to_secure;
aa488fe3 6526
d02a8698
PM
6527 /* If we're not in Handler mode then jumps to magic exception-exit
6528 * addresses don't have magic behaviour. However for the v8M
6529 * security extensions the magic secure-function-return has to
6530 * work in thread mode too, so to avoid doing an extra check in
6531 * the generated code we allow exception-exit magic to also cause the
6532 * internal exception and bring us here in thread mode. Correct code
6533 * will never try to do this (the following insn fetch will always
6534 * fault) so we the overhead of having taken an unnecessary exception
6535 * doesn't matter.
aa488fe3 6536 */
d02a8698
PM
6537 if (!arm_v7m_is_handler_mode(env)) {
6538 return;
6539 }
aa488fe3
PM
6540
6541 /* In the spec pseudocode ExceptionReturn() is called directly
6542 * from BXWritePC() and gets the full target PC value including
6543 * bit zero. In QEMU's implementation we treat it as a normal
6544 * jump-to-register (which is then caught later on), and so split
6545 * the target value up between env->regs[15] and env->thumb in
6546 * gen_bx(). Reconstitute it.
6547 */
351e527a 6548 excret = env->regs[15];
aa488fe3 6549 if (env->thumb) {
351e527a 6550 excret |= 1;
aa488fe3
PM
6551 }
6552
6553 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6554 " previous exception %d\n",
351e527a 6555 excret, env->v7m.exception);
aa488fe3 6556
351e527a 6557 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
aa488fe3 6558 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
351e527a
PM
6559 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6560 excret);
aa488fe3
PM
6561 }
6562
bfb2eb52
PM
6563 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6564 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
6565 * we pick which FAULTMASK to clear.
6566 */
6567 if (!env->v7m.secure &&
6568 ((excret & R_V7M_EXCRET_ES_MASK) ||
6569 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
6570 sfault = 1;
6571 /* For all other purposes, treat ES as 0 (R_HXSR) */
6572 excret &= ~R_V7M_EXCRET_ES_MASK;
6573 }
6574 }
6575
a20ee600 6576 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
42a6686b
PM
6577 /* Auto-clear FAULTMASK on return from other than NMI.
6578 * If the security extension is implemented then this only
6579 * happens if the raw execution priority is >= 0; the
6580 * value of the ES bit in the exception return value indicates
6581 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6582 */
6583 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
5cb18069 6584 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
42a6686b 6585 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
5cb18069 6586 env->v7m.faultmask[exc_secure] = 0;
42a6686b
PM
6587 }
6588 } else {
6589 env->v7m.faultmask[M_REG_NS] = 0;
6590 }
a20ee600 6591 }
aa488fe3 6592
5cb18069
PM
6593 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
6594 exc_secure)) {
aa488fe3
PM
6595 case -1:
6596 /* attempt to exit an exception that isn't active */
6597 ufault = true;
6598 break;
6599 case 0:
6600 /* still an irq active now */
6601 break;
6602 case 1:
6603 /* we returned to base exception level, no nesting.
6604 * (In the pseudocode this is written using "NestedActivation != 1"
6605 * where we have 'rettobase == false'.)
6606 */
6607 rettobase = true;
6608 break;
6609 default:
6610 g_assert_not_reached();
6611 }
6612
bfb2eb52
PM
6613 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
6614 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
5b522399
PM
6615 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6616 (excret & R_V7M_EXCRET_S_MASK);
6617
bfb2eb52
PM
6618 if (arm_feature(env, ARM_FEATURE_V8)) {
6619 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6620 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
6621 * we choose to take the UsageFault.
6622 */
6623 if ((excret & R_V7M_EXCRET_S_MASK) ||
6624 (excret & R_V7M_EXCRET_ES_MASK) ||
6625 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
6626 ufault = true;
6627 }
6628 }
6629 if (excret & R_V7M_EXCRET_RES0_MASK) {
aa488fe3
PM
6630 ufault = true;
6631 }
bfb2eb52
PM
6632 } else {
6633 /* For v7M we only recognize certain combinations of the low bits */
6634 switch (excret & 0xf) {
6635 case 1: /* Return to Handler */
6636 break;
6637 case 13: /* Return to Thread using Process stack */
6638 case 9: /* Return to Thread using Main stack */
6639 /* We only need to check NONBASETHRDENA for v7M, because in
6640 * v8M this bit does not exist (it is RES1).
6641 */
6642 if (!rettobase &&
6643 !(env->v7m.ccr[env->v7m.secure] &
6644 R_V7M_CCR_NONBASETHRDENA_MASK)) {
6645 ufault = true;
6646 }
6647 break;
6648 default:
6649 ufault = true;
6650 }
6651 }
6652
6653 if (sfault) {
6654 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
6655 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
d3392718 6656 v7m_exception_taken(cpu, excret, true);
bfb2eb52
PM
6657 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6658 "stackframe: failed EXC_RETURN.ES validity check\n");
6659 return;
aa488fe3
PM
6660 }
6661
6662 if (ufault) {
6663 /* Bad exception return: instead of popping the exception
6664 * stack, directly take a usage fault on the current stack.
6665 */
334e8dad 6666 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
2fb50a33 6667 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
d3392718 6668 v7m_exception_taken(cpu, excret, true);
aa488fe3
PM
6669 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6670 "stackframe: failed exception return integrity check\n");
6671 return;
a20ee600 6672 }
9ee6e8bb 6673
de2db7ec
PM
6674 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
6675 * Handler mode (and will be until we write the new XPSR.Interrupt
6676 * field) this does not switch around the current stack pointer.
5b522399 6677 */
3f0cddee 6678 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
5b522399 6679
3919e60b
PM
6680 switch_v7m_security_state(env, return_to_secure);
6681
5b522399
PM
6682 {
6683 /* The stack pointer we should be reading the exception frame from
6684 * depends on bits in the magic exception return type value (and
6685 * for v8M isn't necessarily the stack pointer we will eventually
6686 * end up resuming execution with). Get a pointer to the location
6687 * in the CPU state struct where the SP we need is currently being
6688 * stored; we will use and modify it in place.
6689 * We use this limited C variable scope so we don't accidentally
6690 * use 'frame_sp_p' after we do something that makes it invalid.
fcf83ab1 6691 */
5b522399
PM
6692 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
6693 return_to_secure,
6694 !return_to_handler,
6695 return_to_sp_process);
6696 uint32_t frameptr = *frame_sp_p;
6697
cb484f9a
PM
6698 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
6699 arm_feature(env, ARM_FEATURE_V8)) {
6700 qemu_log_mask(LOG_GUEST_ERROR,
6701 "M profile exception return with non-8-aligned SP "
6702 "for destination state is UNPREDICTABLE\n");
6703 }
6704
907bedb3
PM
6705 /* Do we need to pop callee-saved registers? */
6706 if (return_to_secure &&
6707 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
6708 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
6709 uint32_t expected_sig = 0xfefa125b;
6710 uint32_t actual_sig = ldl_phys(cs->as, frameptr);
6711
6712 if (expected_sig != actual_sig) {
6713 /* Take a SecureFault on the current stack */
6714 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
6715 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
d3392718 6716 v7m_exception_taken(cpu, excret, true);
907bedb3
PM
6717 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6718 "stackframe: failed exception return integrity "
6719 "signature check\n");
6720 return;
6721 }
6722
6723 env->regs[4] = ldl_phys(cs->as, frameptr + 0x8);
6724 env->regs[5] = ldl_phys(cs->as, frameptr + 0xc);
6725 env->regs[6] = ldl_phys(cs->as, frameptr + 0x10);
6726 env->regs[7] = ldl_phys(cs->as, frameptr + 0x14);
6727 env->regs[8] = ldl_phys(cs->as, frameptr + 0x18);
6728 env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c);
6729 env->regs[10] = ldl_phys(cs->as, frameptr + 0x20);
6730 env->regs[11] = ldl_phys(cs->as, frameptr + 0x24);
6731
6732 frameptr += 0x28;
6733 }
6734
5b522399
PM
6735 /* Pop registers. TODO: make these accesses use the correct
6736 * attributes and address space (S/NS, priv/unpriv) and handle
6737 * memory transaction failures.
6738 */
6739 env->regs[0] = ldl_phys(cs->as, frameptr);
6740 env->regs[1] = ldl_phys(cs->as, frameptr + 0x4);
6741 env->regs[2] = ldl_phys(cs->as, frameptr + 0x8);
6742 env->regs[3] = ldl_phys(cs->as, frameptr + 0xc);
6743 env->regs[12] = ldl_phys(cs->as, frameptr + 0x10);
6744 env->regs[14] = ldl_phys(cs->as, frameptr + 0x14);
6745 env->regs[15] = ldl_phys(cs->as, frameptr + 0x18);
4e4259d3
PM
6746
6747 /* Returning from an exception with a PC with bit 0 set is defined
6748 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
6749 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
6750 * the lsbit, and there are several RTOSes out there which incorrectly
6751 * assume the r15 in the stack frame should be a Thumb-style "lsbit
6752 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
6753 * complain about the badly behaved guest.
6754 */
5b522399 6755 if (env->regs[15] & 1) {
5b522399 6756 env->regs[15] &= ~1U;
4e4259d3
PM
6757 if (!arm_feature(env, ARM_FEATURE_V8)) {
6758 qemu_log_mask(LOG_GUEST_ERROR,
6759 "M profile return from interrupt with misaligned "
6760 "PC is UNPREDICTABLE on v7M\n");
6761 }
5b522399 6762 }
4e4259d3 6763
5b522399
PM
6764 xpsr = ldl_phys(cs->as, frameptr + 0x1c);
6765
224e0c30
PM
6766 if (arm_feature(env, ARM_FEATURE_V8)) {
6767 /* For v8M we have to check whether the xPSR exception field
6768 * matches the EXCRET value for return to handler/thread
6769 * before we commit to changing the SP and xPSR.
6770 */
6771 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
6772 if (return_to_handler != will_be_handler) {
6773 /* Take an INVPC UsageFault on the current stack.
6774 * By this point we will have switched to the security state
6775 * for the background state, so this UsageFault will target
6776 * that state.
6777 */
6778 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6779 env->v7m.secure);
6780 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
d3392718 6781 v7m_exception_taken(cpu, excret, true);
224e0c30
PM
6782 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6783 "stackframe: failed exception return integrity "
6784 "check\n");
6785 return;
6786 }
6787 }
6788
5b522399
PM
6789 /* Commit to consuming the stack frame */
6790 frameptr += 0x20;
6791 /* Undo stack alignment (the SPREALIGN bit indicates that the original
6792 * pre-exception SP was not 8-aligned and we added a padding word to
6793 * align it, so we undo this by ORing in the bit that increases it
6794 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
6795 * would work too but a logical OR is how the pseudocode specifies it.)
6796 */
6797 if (xpsr & XPSR_SPREALIGN) {
6798 frameptr |= 4;
6799 }
6800 *frame_sp_p = frameptr;
fcf83ab1 6801 }
5b522399 6802 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
987ab45e 6803 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
aa488fe3
PM
6804
6805 /* The restored xPSR exception field will be zero if we're
6806 * resuming in Thread mode. If that doesn't match what the
351e527a 6807 * exception return excret specified then this is a UsageFault.
224e0c30 6808 * v7M requires we make this check here; v8M did it earlier.
aa488fe3 6809 */
15b3f556 6810 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
224e0c30
PM
6811 /* Take an INVPC UsageFault by pushing the stack again;
6812 * we know we're v7M so this is never a Secure UsageFault.
2fb50a33 6813 */
224e0c30 6814 assert(!arm_feature(env, ARM_FEATURE_V8));
2fb50a33 6815 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
334e8dad 6816 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
aa488fe3 6817 v7m_push_stack(cpu);
d3392718 6818 v7m_exception_taken(cpu, excret, false);
aa488fe3
PM
6819 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6820 "failed exception return integrity check\n");
6821 return;
6822 }
6823
6824 /* Otherwise, we have a successful exception exit. */
dc3c4c14 6825 arm_clear_exclusive(env);
aa488fe3 6826 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
9ee6e8bb
PB
6827}
6828
d02a8698
PM
6829static bool do_v7m_function_return(ARMCPU *cpu)
6830{
6831 /* v8M security extensions magic function return.
6832 * We may either:
6833 * (1) throw an exception (longjump)
6834 * (2) return true if we successfully handled the function return
6835 * (3) return false if we failed a consistency check and have
6836 * pended a UsageFault that needs to be taken now
6837 *
6838 * At this point the magic return value is split between env->regs[15]
6839 * and env->thumb. We don't bother to reconstitute it because we don't
6840 * need it (all values are handled the same way).
6841 */
6842 CPUARMState *env = &cpu->env;
6843 uint32_t newpc, newpsr, newpsr_exc;
6844
6845 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
6846
6847 {
6848 bool threadmode, spsel;
6849 TCGMemOpIdx oi;
6850 ARMMMUIdx mmu_idx;
6851 uint32_t *frame_sp_p;
6852 uint32_t frameptr;
6853
6854 /* Pull the return address and IPSR from the Secure stack */
6855 threadmode = !arm_v7m_is_handler_mode(env);
6856 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
6857
6858 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
6859 frameptr = *frame_sp_p;
6860
6861 /* These loads may throw an exception (for MPU faults). We want to
6862 * do them as secure, so work out what MMU index that is.
6863 */
6864 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
6865 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
6866 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
6867 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
6868
6869 /* Consistency checks on new IPSR */
6870 newpsr_exc = newpsr & XPSR_EXCP;
6871 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
6872 (env->v7m.exception == 1 && newpsr_exc != 0))) {
6873 /* Pend the fault and tell our caller to take it */
6874 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6875 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6876 env->v7m.secure);
6877 qemu_log_mask(CPU_LOG_INT,
6878 "...taking INVPC UsageFault: "
6879 "IPSR consistency check failed\n");
6880 return false;
6881 }
6882
6883 *frame_sp_p = frameptr + 8;
6884 }
6885
6886 /* This invalidates frame_sp_p */
6887 switch_v7m_security_state(env, true);
6888 env->v7m.exception = newpsr_exc;
6889 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
6890 if (newpsr & XPSR_SFPA) {
6891 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
6892 }
6893 xpsr_write(env, 0, XPSR_IT);
6894 env->thumb = newpc & 1;
6895 env->regs[15] = newpc & ~1;
6896
6897 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
6898 return true;
6899}
6900
27a7ea8a
PB
6901static void arm_log_exception(int idx)
6902{
6903 if (qemu_loglevel_mask(CPU_LOG_INT)) {
6904 const char *exc = NULL;
2c4a7cc5
PM
6905 static const char * const excnames[] = {
6906 [EXCP_UDEF] = "Undefined Instruction",
6907 [EXCP_SWI] = "SVC",
6908 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6909 [EXCP_DATA_ABORT] = "Data Abort",
6910 [EXCP_IRQ] = "IRQ",
6911 [EXCP_FIQ] = "FIQ",
6912 [EXCP_BKPT] = "Breakpoint",
6913 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6914 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6915 [EXCP_HVC] = "Hypervisor Call",
6916 [EXCP_HYP_TRAP] = "Hypervisor Trap",
6917 [EXCP_SMC] = "Secure Monitor Call",
6918 [EXCP_VIRQ] = "Virtual IRQ",
6919 [EXCP_VFIQ] = "Virtual FIQ",
6920 [EXCP_SEMIHOST] = "Semihosting call",
6921 [EXCP_NOCP] = "v7M NOCP UsageFault",
6922 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6923 };
27a7ea8a
PB
6924
6925 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6926 exc = excnames[idx];
6927 }
6928 if (!exc) {
6929 exc = "unknown";
6930 }
6931 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6932 }
6933}
6934
333e10c5
PM
6935static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
6936 uint32_t addr, uint16_t *insn)
6937{
6938 /* Load a 16-bit portion of a v7M instruction, returning true on success,
6939 * or false on failure (in which case we will have pended the appropriate
6940 * exception).
6941 * We need to do the instruction fetch's MPU and SAU checks
6942 * like this because there is no MMU index that would allow
6943 * doing the load with a single function call. Instead we must
6944 * first check that the security attributes permit the load
6945 * and that they don't mismatch on the two halves of the instruction,
6946 * and then we do the load as a secure load (ie using the security
6947 * attributes of the address, not the CPU, as architecturally required).
6948 */
6949 CPUState *cs = CPU(cpu);
6950 CPUARMState *env = &cpu->env;
6951 V8M_SAttributes sattrs = {};
6952 MemTxAttrs attrs = {};
6953 ARMMMUFaultInfo fi = {};
6954 MemTxResult txres;
6955 target_ulong page_size;
6956 hwaddr physaddr;
6957 int prot;
6958 uint32_t fsr;
6959
6960 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
6961 if (!sattrs.nsc || sattrs.ns) {
6962 /* This must be the second half of the insn, and it straddles a
6963 * region boundary with the second half not being S&NSC.
6964 */
6965 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
6966 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6967 qemu_log_mask(CPU_LOG_INT,
6968 "...really SecureFault with SFSR.INVEP\n");
6969 return false;
6970 }
6971 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
5b2d261d 6972 &physaddr, &attrs, &prot, &page_size, &fsr, &fi, NULL)) {
333e10c5
PM
6973 /* the MPU lookup failed */
6974 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
6975 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
6976 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
6977 return false;
6978 }
6979 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
6980 attrs, &txres);
6981 if (txres != MEMTX_OK) {
6982 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
6983 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
6984 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
6985 return false;
6986 }
6987 return true;
6988}
6989
6990static bool v7m_handle_execute_nsc(ARMCPU *cpu)
6991{
6992 /* Check whether this attempt to execute code in a Secure & NS-Callable
6993 * memory region is for an SG instruction; if so, then emulate the
6994 * effect of the SG instruction and return true. Otherwise pend
6995 * the correct kind of exception and return false.
6996 */
6997 CPUARMState *env = &cpu->env;
6998 ARMMMUIdx mmu_idx;
6999 uint16_t insn;
7000
7001 /* We should never get here unless get_phys_addr_pmsav8() caused
7002 * an exception for NS executing in S&NSC memory.
7003 */
7004 assert(!env->v7m.secure);
7005 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7006
7007 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7008 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7009
7010 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7011 return false;
7012 }
7013
7014 if (!env->thumb) {
7015 goto gen_invep;
7016 }
7017
7018 if (insn != 0xe97f) {
7019 /* Not an SG instruction first half (we choose the IMPDEF
7020 * early-SG-check option).
7021 */
7022 goto gen_invep;
7023 }
7024
7025 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7026 return false;
7027 }
7028
7029 if (insn != 0xe97f) {
7030 /* Not an SG instruction second half (yes, both halves of the SG
7031 * insn have the same hex value)
7032 */
7033 goto gen_invep;
7034 }
7035
7036 /* OK, we have confirmed that we really have an SG instruction.
7037 * We know we're NS in S memory so don't need to repeat those checks.
7038 */
7039 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7040 ", executing it\n", env->regs[15]);
7041 env->regs[14] &= ~1;
7042 switch_v7m_security_state(env, true);
7043 xpsr_write(env, 0, XPSR_IT);
7044 env->regs[15] += 4;
7045 return true;
7046
7047gen_invep:
7048 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7049 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7050 qemu_log_mask(CPU_LOG_INT,
7051 "...really SecureFault with SFSR.INVEP\n");
7052 return false;
7053}
7054
e6f010cc 7055void arm_v7m_cpu_do_interrupt(CPUState *cs)
9ee6e8bb 7056{
e6f010cc
AF
7057 ARMCPU *cpu = ARM_CPU(cs);
7058 CPUARMState *env = &cpu->env;
9ee6e8bb 7059 uint32_t lr;
9ee6e8bb 7060
27103424 7061 arm_log_exception(cs->exception_index);
3f1beaca 7062
9ee6e8bb
PB
7063 /* For exceptions we just mark as pending on the NVIC, and let that
7064 handle it. */
27103424 7065 switch (cs->exception_index) {
9ee6e8bb 7066 case EXCP_UDEF:
2fb50a33 7067 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
334e8dad 7068 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
a25dc805 7069 break;
7517748e 7070 case EXCP_NOCP:
2fb50a33 7071 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
334e8dad 7072 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
a25dc805 7073 break;
e13886e3 7074 case EXCP_INVSTATE:
2fb50a33 7075 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
334e8dad 7076 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
e13886e3 7077 break;
9ee6e8bb 7078 case EXCP_SWI:
314e2296 7079 /* The PC already points to the next instruction. */
2fb50a33 7080 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
a25dc805 7081 break;
9ee6e8bb
PB
7082 case EXCP_PREFETCH_ABORT:
7083 case EXCP_DATA_ABORT:
5dd0641d
MD
7084 /* Note that for M profile we don't have a guest facing FSR, but
7085 * the env->exception.fsr will be populated by the code that
7086 * raises the fault, in the A profile short-descriptor format.
abf1172f 7087 */
5dd0641d 7088 switch (env->exception.fsr & 0xf) {
35337cc3
PM
7089 case M_FAKE_FSR_NSC_EXEC:
7090 /* Exception generated when we try to execute code at an address
7091 * which is marked as Secure & Non-Secure Callable and the CPU
7092 * is in the Non-Secure state. The only instruction which can
7093 * be executed like this is SG (and that only if both halves of
7094 * the SG instruction have the same security attributes.)
7095 * Everything else must generate an INVEP SecureFault, so we
7096 * emulate the SG instruction here.
35337cc3 7097 */
333e10c5
PM
7098 if (v7m_handle_execute_nsc(cpu)) {
7099 return;
7100 }
35337cc3
PM
7101 break;
7102 case M_FAKE_FSR_SFAULT:
7103 /* Various flavours of SecureFault for attempts to execute or
7104 * access data in the wrong security state.
7105 */
7106 switch (cs->exception_index) {
7107 case EXCP_PREFETCH_ABORT:
7108 if (env->v7m.secure) {
7109 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7110 qemu_log_mask(CPU_LOG_INT,
7111 "...really SecureFault with SFSR.INVTRAN\n");
7112 } else {
7113 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7114 qemu_log_mask(CPU_LOG_INT,
7115 "...really SecureFault with SFSR.INVEP\n");
7116 }
7117 break;
7118 case EXCP_DATA_ABORT:
7119 /* This must be an NS access to S memory */
7120 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7121 qemu_log_mask(CPU_LOG_INT,
7122 "...really SecureFault with SFSR.AUVIOL\n");
7123 break;
7124 }
7125 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7126 break;
5dd0641d
MD
7127 case 0x8: /* External Abort */
7128 switch (cs->exception_index) {
7129 case EXCP_PREFETCH_ABORT:
c6158878
PM
7130 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7131 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
5dd0641d
MD
7132 break;
7133 case EXCP_DATA_ABORT:
334e8dad 7134 env->v7m.cfsr[M_REG_NS] |=
c6158878 7135 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
5dd0641d
MD
7136 env->v7m.bfar = env->exception.vaddress;
7137 qemu_log_mask(CPU_LOG_INT,
c6158878 7138 "...with CFSR.PRECISERR and BFAR 0x%x\n",
5dd0641d
MD
7139 env->v7m.bfar);
7140 break;
7141 }
2fb50a33 7142 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
5dd0641d
MD
7143 break;
7144 default:
7145 /* All other FSR values are either MPU faults or "can't happen
7146 * for M profile" cases.
7147 */
7148 switch (cs->exception_index) {
7149 case EXCP_PREFETCH_ABORT:
334e8dad 7150 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
5dd0641d
MD
7151 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7152 break;
7153 case EXCP_DATA_ABORT:
334e8dad 7154 env->v7m.cfsr[env->v7m.secure] |=
5dd0641d 7155 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
c51a5cfc 7156 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
5dd0641d
MD
7157 qemu_log_mask(CPU_LOG_INT,
7158 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
c51a5cfc 7159 env->v7m.mmfar[env->v7m.secure]);
5dd0641d
MD
7160 break;
7161 }
2fb50a33
PM
7162 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7163 env->v7m.secure);
5dd0641d
MD
7164 break;
7165 }
a25dc805 7166 break;
9ee6e8bb 7167 case EXCP_BKPT:
cfe67cef 7168 if (semihosting_enabled()) {
2ad207d4 7169 int nr;
f9fd40eb 7170 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
2ad207d4
PB
7171 if (nr == 0xab) {
7172 env->regs[15] += 2;
205ace55
CC
7173 qemu_log_mask(CPU_LOG_INT,
7174 "...handling as semihosting call 0x%x\n",
7175 env->regs[0]);
2ad207d4
PB
7176 env->regs[0] = do_arm_semihosting(env);
7177 return;
7178 }
7179 }
2fb50a33 7180 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
a25dc805 7181 break;
9ee6e8bb 7182 case EXCP_IRQ:
9ee6e8bb
PB
7183 break;
7184 case EXCP_EXCEPTION_EXIT:
d02a8698
PM
7185 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7186 /* Must be v8M security extension function return */
7187 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7188 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7189 if (do_v7m_function_return(cpu)) {
7190 return;
7191 }
7192 } else {
7193 do_v7m_exception_exit(cpu);
7194 return;
7195 }
7196 break;
9ee6e8bb 7197 default:
a47dddd7 7198 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9ee6e8bb
PB
7199 return; /* Never happens. Keep compiler happy. */
7200 }
7201
d3392718
PM
7202 if (arm_feature(env, ARM_FEATURE_V8)) {
7203 lr = R_V7M_EXCRET_RES1_MASK |
7204 R_V7M_EXCRET_DCRS_MASK |
7205 R_V7M_EXCRET_FTYPE_MASK;
7206 /* The S bit indicates whether we should return to Secure
7207 * or NonSecure (ie our current state).
7208 * The ES bit indicates whether we're taking this exception
7209 * to Secure or NonSecure (ie our target state). We set it
7210 * later, in v7m_exception_taken().
7211 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7212 * This corresponds to the ARM ARM pseudocode for v8M setting
7213 * some LR bits in PushStack() and some in ExceptionTaken();
7214 * the distinction matters for the tailchain cases where we
7215 * can take an exception without pushing the stack.
7216 */
7217 if (env->v7m.secure) {
7218 lr |= R_V7M_EXCRET_S_MASK;
7219 }
7220 } else {
7221 lr = R_V7M_EXCRET_RES1_MASK |
7222 R_V7M_EXCRET_S_MASK |
7223 R_V7M_EXCRET_DCRS_MASK |
7224 R_V7M_EXCRET_FTYPE_MASK |
7225 R_V7M_EXCRET_ES_MASK;
7226 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7227 lr |= R_V7M_EXCRET_SPSEL_MASK;
7228 }
bd70b29b 7229 }
15b3f556 7230 if (!arm_v7m_is_handler_mode(env)) {
4d1e7a47 7231 lr |= R_V7M_EXCRET_MODE_MASK;
bd70b29b
PM
7232 }
7233
39ae2474 7234 v7m_push_stack(cpu);
d3392718 7235 v7m_exception_taken(cpu, lr, false);
a25dc805 7236 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
9ee6e8bb
PB
7237}
7238
ce02049d
GB
7239/* Function used to synchronize QEMU's AArch64 register set with AArch32
7240 * register set. This is necessary when switching between AArch32 and AArch64
7241 * execution state.
7242 */
7243void aarch64_sync_32_to_64(CPUARMState *env)
7244{
7245 int i;
7246 uint32_t mode = env->uncached_cpsr & CPSR_M;
7247
7248 /* We can blanket copy R[0:7] to X[0:7] */
7249 for (i = 0; i < 8; i++) {
7250 env->xregs[i] = env->regs[i];
7251 }
7252
7253 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7254 * Otherwise, they come from the banked user regs.
7255 */
7256 if (mode == ARM_CPU_MODE_FIQ) {
7257 for (i = 8; i < 13; i++) {
7258 env->xregs[i] = env->usr_regs[i - 8];
7259 }
7260 } else {
7261 for (i = 8; i < 13; i++) {
7262 env->xregs[i] = env->regs[i];
7263 }
7264 }
7265
7266 /* Registers x13-x23 are the various mode SP and FP registers. Registers
7267 * r13 and r14 are only copied if we are in that mode, otherwise we copy
7268 * from the mode banked register.
7269 */
7270 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7271 env->xregs[13] = env->regs[13];
7272 env->xregs[14] = env->regs[14];
7273 } else {
7274 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7275 /* HYP is an exception in that it is copied from r14 */
7276 if (mode == ARM_CPU_MODE_HYP) {
7277 env->xregs[14] = env->regs[14];
7278 } else {
7279 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7280 }
7281 }
7282
7283 if (mode == ARM_CPU_MODE_HYP) {
7284 env->xregs[15] = env->regs[13];
7285 } else {
7286 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7287 }
7288
7289 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
7290 env->xregs[16] = env->regs[14];
7291 env->xregs[17] = env->regs[13];
ce02049d 7292 } else {
3a9148d0
SS
7293 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7294 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
ce02049d
GB
7295 }
7296
7297 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
7298 env->xregs[18] = env->regs[14];
7299 env->xregs[19] = env->regs[13];
ce02049d 7300 } else {
3a9148d0
SS
7301 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7302 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
ce02049d
GB
7303 }
7304
7305 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
7306 env->xregs[20] = env->regs[14];
7307 env->xregs[21] = env->regs[13];
ce02049d 7308 } else {
3a9148d0
SS
7309 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7310 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
ce02049d
GB
7311 }
7312
7313 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
7314 env->xregs[22] = env->regs[14];
7315 env->xregs[23] = env->regs[13];
ce02049d 7316 } else {
3a9148d0
SS
7317 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7318 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
ce02049d
GB
7319 }
7320
7321 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7322 * mode, then we can copy from r8-r14. Otherwise, we copy from the
7323 * FIQ bank for r8-r14.
7324 */
7325 if (mode == ARM_CPU_MODE_FIQ) {
7326 for (i = 24; i < 31; i++) {
7327 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
7328 }
7329 } else {
7330 for (i = 24; i < 29; i++) {
7331 env->xregs[i] = env->fiq_regs[i - 24];
7332 }
7333 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7334 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7335 }
7336
7337 env->pc = env->regs[15];
7338}
7339
7340/* Function used to synchronize QEMU's AArch32 register set with AArch64
7341 * register set. This is necessary when switching between AArch32 and AArch64
7342 * execution state.
7343 */
7344void aarch64_sync_64_to_32(CPUARMState *env)
7345{
7346 int i;
7347 uint32_t mode = env->uncached_cpsr & CPSR_M;
7348
7349 /* We can blanket copy X[0:7] to R[0:7] */
7350 for (i = 0; i < 8; i++) {
7351 env->regs[i] = env->xregs[i];
7352 }
7353
7354 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7355 * Otherwise, we copy x8-x12 into the banked user regs.
7356 */
7357 if (mode == ARM_CPU_MODE_FIQ) {
7358 for (i = 8; i < 13; i++) {
7359 env->usr_regs[i - 8] = env->xregs[i];
7360 }
7361 } else {
7362 for (i = 8; i < 13; i++) {
7363 env->regs[i] = env->xregs[i];
7364 }
7365 }
7366
7367 /* Registers r13 & r14 depend on the current mode.
7368 * If we are in a given mode, we copy the corresponding x registers to r13
7369 * and r14. Otherwise, we copy the x register to the banked r13 and r14
7370 * for the mode.
7371 */
7372 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7373 env->regs[13] = env->xregs[13];
7374 env->regs[14] = env->xregs[14];
7375 } else {
7376 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7377
7378 /* HYP is an exception in that it does not have its own banked r14 but
7379 * shares the USR r14
7380 */
7381 if (mode == ARM_CPU_MODE_HYP) {
7382 env->regs[14] = env->xregs[14];
7383 } else {
7384 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7385 }
7386 }
7387
7388 if (mode == ARM_CPU_MODE_HYP) {
7389 env->regs[13] = env->xregs[15];
7390 } else {
7391 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7392 }
7393
7394 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
7395 env->regs[14] = env->xregs[16];
7396 env->regs[13] = env->xregs[17];
ce02049d 7397 } else {
3a9148d0
SS
7398 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7399 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
ce02049d
GB
7400 }
7401
7402 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
7403 env->regs[14] = env->xregs[18];
7404 env->regs[13] = env->xregs[19];
ce02049d 7405 } else {
3a9148d0
SS
7406 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7407 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
ce02049d
GB
7408 }
7409
7410 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
7411 env->regs[14] = env->xregs[20];
7412 env->regs[13] = env->xregs[21];
ce02049d 7413 } else {
3a9148d0
SS
7414 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7415 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
ce02049d
GB
7416 }
7417
7418 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
7419 env->regs[14] = env->xregs[22];
7420 env->regs[13] = env->xregs[23];
ce02049d 7421 } else {
3a9148d0
SS
7422 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7423 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
ce02049d
GB
7424 }
7425
7426 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7427 * mode, then we can copy to r8-r14. Otherwise, we copy to the
7428 * FIQ bank for r8-r14.
7429 */
7430 if (mode == ARM_CPU_MODE_FIQ) {
7431 for (i = 24; i < 31; i++) {
7432 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
7433 }
7434 } else {
7435 for (i = 24; i < 29; i++) {
7436 env->fiq_regs[i - 24] = env->xregs[i];
7437 }
7438 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7439 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7440 }
7441
7442 env->regs[15] = env->pc;
7443}
7444
966f758c 7445static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
b5ff1b31 7446{
97a8ea5a
AF
7447 ARMCPU *cpu = ARM_CPU(cs);
7448 CPUARMState *env = &cpu->env;
b5ff1b31
FB
7449 uint32_t addr;
7450 uint32_t mask;
7451 int new_mode;
7452 uint32_t offset;
16a906fd 7453 uint32_t moe;
b5ff1b31 7454
16a906fd
PM
7455 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7456 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7457 case EC_BREAKPOINT:
7458 case EC_BREAKPOINT_SAME_EL:
7459 moe = 1;
7460 break;
7461 case EC_WATCHPOINT:
7462 case EC_WATCHPOINT_SAME_EL:
7463 moe = 10;
7464 break;
7465 case EC_AA32_BKPT:
7466 moe = 3;
7467 break;
7468 case EC_VECTORCATCH:
7469 moe = 5;
7470 break;
7471 default:
7472 moe = 0;
7473 break;
7474 }
7475
7476 if (moe) {
7477 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
7478 }
7479
b5ff1b31 7480 /* TODO: Vectored interrupt controller. */
27103424 7481 switch (cs->exception_index) {
b5ff1b31
FB
7482 case EXCP_UDEF:
7483 new_mode = ARM_CPU_MODE_UND;
7484 addr = 0x04;
7485 mask = CPSR_I;
7486 if (env->thumb)
7487 offset = 2;
7488 else
7489 offset = 4;
7490 break;
7491 case EXCP_SWI:
7492 new_mode = ARM_CPU_MODE_SVC;
7493 addr = 0x08;
7494 mask = CPSR_I;
601d70b9 7495 /* The PC already points to the next instruction. */
b5ff1b31
FB
7496 offset = 0;
7497 break;
06c949e6 7498 case EXCP_BKPT:
abf1172f 7499 env->exception.fsr = 2;
9ee6e8bb
PB
7500 /* Fall through to prefetch abort. */
7501 case EXCP_PREFETCH_ABORT:
88ca1c2d 7502 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
b848ce2b 7503 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
3f1beaca 7504 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
88ca1c2d 7505 env->exception.fsr, (uint32_t)env->exception.vaddress);
b5ff1b31
FB
7506 new_mode = ARM_CPU_MODE_ABT;
7507 addr = 0x0c;
7508 mask = CPSR_A | CPSR_I;
7509 offset = 4;
7510 break;
7511 case EXCP_DATA_ABORT:
4a7e2d73 7512 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
b848ce2b 7513 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
3f1beaca 7514 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4a7e2d73 7515 env->exception.fsr,
6cd8a264 7516 (uint32_t)env->exception.vaddress);
b5ff1b31
FB
7517 new_mode = ARM_CPU_MODE_ABT;
7518 addr = 0x10;
7519 mask = CPSR_A | CPSR_I;
7520 offset = 8;
7521 break;
7522 case EXCP_IRQ:
7523 new_mode = ARM_CPU_MODE_IRQ;
7524 addr = 0x18;
7525 /* Disable IRQ and imprecise data aborts. */
7526 mask = CPSR_A | CPSR_I;
7527 offset = 4;
de38d23b
FA
7528 if (env->cp15.scr_el3 & SCR_IRQ) {
7529 /* IRQ routed to monitor mode */
7530 new_mode = ARM_CPU_MODE_MON;
7531 mask |= CPSR_F;
7532 }
b5ff1b31
FB
7533 break;
7534 case EXCP_FIQ:
7535 new_mode = ARM_CPU_MODE_FIQ;
7536 addr = 0x1c;
7537 /* Disable FIQ, IRQ and imprecise data aborts. */
7538 mask = CPSR_A | CPSR_I | CPSR_F;
de38d23b
FA
7539 if (env->cp15.scr_el3 & SCR_FIQ) {
7540 /* FIQ routed to monitor mode */
7541 new_mode = ARM_CPU_MODE_MON;
7542 }
b5ff1b31
FB
7543 offset = 4;
7544 break;
87a4b270
PM
7545 case EXCP_VIRQ:
7546 new_mode = ARM_CPU_MODE_IRQ;
7547 addr = 0x18;
7548 /* Disable IRQ and imprecise data aborts. */
7549 mask = CPSR_A | CPSR_I;
7550 offset = 4;
7551 break;
7552 case EXCP_VFIQ:
7553 new_mode = ARM_CPU_MODE_FIQ;
7554 addr = 0x1c;
7555 /* Disable FIQ, IRQ and imprecise data aborts. */
7556 mask = CPSR_A | CPSR_I | CPSR_F;
7557 offset = 4;
7558 break;
dbe9d163
FA
7559 case EXCP_SMC:
7560 new_mode = ARM_CPU_MODE_MON;
7561 addr = 0x08;
7562 mask = CPSR_A | CPSR_I | CPSR_F;
7563 offset = 0;
7564 break;
b5ff1b31 7565 default:
a47dddd7 7566 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
b5ff1b31
FB
7567 return; /* Never happens. Keep compiler happy. */
7568 }
e89e51a1
FA
7569
7570 if (new_mode == ARM_CPU_MODE_MON) {
7571 addr += env->cp15.mvbar;
137feaa9 7572 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
e89e51a1 7573 /* High vectors. When enabled, base address cannot be remapped. */
b5ff1b31 7574 addr += 0xffff0000;
8641136c
NR
7575 } else {
7576 /* ARM v7 architectures provide a vector base address register to remap
7577 * the interrupt vector table.
e89e51a1 7578 * This register is only followed in non-monitor mode, and is banked.
8641136c
NR
7579 * Note: only bits 31:5 are valid.
7580 */
fb6c91ba 7581 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
b5ff1b31 7582 }
dbe9d163
FA
7583
7584 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
7585 env->cp15.scr_el3 &= ~SCR_NS;
7586 }
7587
b5ff1b31 7588 switch_mode (env, new_mode);
662cefb7
PM
7589 /* For exceptions taken to AArch32 we must clear the SS bit in both
7590 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
7591 */
7592 env->uncached_cpsr &= ~PSTATE_SS;
b5ff1b31 7593 env->spsr = cpsr_read(env);
9ee6e8bb
PB
7594 /* Clear IT bits. */
7595 env->condexec_bits = 0;
30a8cac1 7596 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 7597 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
73462ddd
PC
7598 /* Set new mode endianness */
7599 env->uncached_cpsr &= ~CPSR_E;
7600 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
3823b9db 7601 env->uncached_cpsr |= CPSR_E;
73462ddd 7602 }
4cc35614 7603 env->daif |= mask;
be5e7a76
DES
7604 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
7605 * and we should just guard the thumb mode on V4 */
7606 if (arm_feature(env, ARM_FEATURE_V4T)) {
137feaa9 7607 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
be5e7a76 7608 }
b5ff1b31
FB
7609 env->regs[14] = env->regs[15] + offset;
7610 env->regs[15] = addr;
b5ff1b31
FB
7611}
7612
966f758c
PM
7613/* Handle exception entry to a target EL which is using AArch64 */
7614static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
f3a9b694
PM
7615{
7616 ARMCPU *cpu = ARM_CPU(cs);
7617 CPUARMState *env = &cpu->env;
7618 unsigned int new_el = env->exception.target_el;
7619 target_ulong addr = env->cp15.vbar_el[new_el];
7620 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
7621
7622 if (arm_current_el(env) < new_el) {
3d6f7617
PM
7623 /* Entry vector offset depends on whether the implemented EL
7624 * immediately lower than the target level is using AArch32 or AArch64
7625 */
7626 bool is_aa64;
7627
7628 switch (new_el) {
7629 case 3:
7630 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
7631 break;
7632 case 2:
7633 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
7634 break;
7635 case 1:
7636 is_aa64 = is_a64(env);
7637 break;
7638 default:
7639 g_assert_not_reached();
7640 }
7641
7642 if (is_aa64) {
f3a9b694
PM
7643 addr += 0x400;
7644 } else {
7645 addr += 0x600;
7646 }
7647 } else if (pstate_read(env) & PSTATE_SP) {
7648 addr += 0x200;
7649 }
7650
f3a9b694
PM
7651 switch (cs->exception_index) {
7652 case EXCP_PREFETCH_ABORT:
7653 case EXCP_DATA_ABORT:
7654 env->cp15.far_el[new_el] = env->exception.vaddress;
7655 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
7656 env->cp15.far_el[new_el]);
7657 /* fall through */
7658 case EXCP_BKPT:
7659 case EXCP_UDEF:
7660 case EXCP_SWI:
7661 case EXCP_HVC:
7662 case EXCP_HYP_TRAP:
7663 case EXCP_SMC:
7664 env->cp15.esr_el[new_el] = env->exception.syndrome;
7665 break;
7666 case EXCP_IRQ:
7667 case EXCP_VIRQ:
7668 addr += 0x80;
7669 break;
7670 case EXCP_FIQ:
7671 case EXCP_VFIQ:
7672 addr += 0x100;
7673 break;
7674 case EXCP_SEMIHOST:
7675 qemu_log_mask(CPU_LOG_INT,
7676 "...handling as semihosting call 0x%" PRIx64 "\n",
7677 env->xregs[0]);
7678 env->xregs[0] = do_arm_semihosting(env);
7679 return;
7680 default:
7681 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7682 }
7683
7684 if (is_a64(env)) {
7685 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
7686 aarch64_save_sp(env, arm_current_el(env));
7687 env->elr_el[new_el] = env->pc;
7688 } else {
7689 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
f3a9b694
PM
7690 env->elr_el[new_el] = env->regs[15];
7691
7692 aarch64_sync_32_to_64(env);
7693
7694 env->condexec_bits = 0;
7695 }
7696 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
7697 env->elr_el[new_el]);
7698
7699 pstate_write(env, PSTATE_DAIF | new_mode);
7700 env->aarch64 = 1;
7701 aarch64_restore_sp(env, new_el);
7702
7703 env->pc = addr;
7704
7705 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
7706 new_el, env->pc, pstate_read(env));
966f758c
PM
7707}
7708
904c04de
PM
7709static inline bool check_for_semihosting(CPUState *cs)
7710{
7711 /* Check whether this exception is a semihosting call; if so
7712 * then handle it and return true; otherwise return false.
7713 */
7714 ARMCPU *cpu = ARM_CPU(cs);
7715 CPUARMState *env = &cpu->env;
7716
7717 if (is_a64(env)) {
7718 if (cs->exception_index == EXCP_SEMIHOST) {
7719 /* This is always the 64-bit semihosting exception.
7720 * The "is this usermode" and "is semihosting enabled"
7721 * checks have been done at translate time.
7722 */
7723 qemu_log_mask(CPU_LOG_INT,
7724 "...handling as semihosting call 0x%" PRIx64 "\n",
7725 env->xregs[0]);
7726 env->xregs[0] = do_arm_semihosting(env);
7727 return true;
7728 }
7729 return false;
7730 } else {
7731 uint32_t imm;
7732
7733 /* Only intercept calls from privileged modes, to provide some
7734 * semblance of security.
7735 */
19a6e31c
PM
7736 if (cs->exception_index != EXCP_SEMIHOST &&
7737 (!semihosting_enabled() ||
7738 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
904c04de
PM
7739 return false;
7740 }
7741
7742 switch (cs->exception_index) {
19a6e31c
PM
7743 case EXCP_SEMIHOST:
7744 /* This is always a semihosting call; the "is this usermode"
7745 * and "is semihosting enabled" checks have been done at
7746 * translate time.
7747 */
7748 break;
904c04de
PM
7749 case EXCP_SWI:
7750 /* Check for semihosting interrupt. */
7751 if (env->thumb) {
f9fd40eb 7752 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
904c04de
PM
7753 & 0xff;
7754 if (imm == 0xab) {
7755 break;
7756 }
7757 } else {
f9fd40eb 7758 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
904c04de
PM
7759 & 0xffffff;
7760 if (imm == 0x123456) {
7761 break;
7762 }
7763 }
7764 return false;
7765 case EXCP_BKPT:
7766 /* See if this is a semihosting syscall. */
7767 if (env->thumb) {
f9fd40eb 7768 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
904c04de
PM
7769 & 0xff;
7770 if (imm == 0xab) {
7771 env->regs[15] += 2;
7772 break;
7773 }
7774 }
7775 return false;
7776 default:
7777 return false;
7778 }
7779
7780 qemu_log_mask(CPU_LOG_INT,
7781 "...handling as semihosting call 0x%x\n",
7782 env->regs[0]);
7783 env->regs[0] = do_arm_semihosting(env);
7784 return true;
7785 }
7786}
7787
966f758c
PM
7788/* Handle a CPU exception for A and R profile CPUs.
7789 * Do any appropriate logging, handle PSCI calls, and then hand off
7790 * to the AArch64-entry or AArch32-entry function depending on the
7791 * target exception level's register width.
7792 */
7793void arm_cpu_do_interrupt(CPUState *cs)
7794{
7795 ARMCPU *cpu = ARM_CPU(cs);
7796 CPUARMState *env = &cpu->env;
7797 unsigned int new_el = env->exception.target_el;
7798
531c60a9 7799 assert(!arm_feature(env, ARM_FEATURE_M));
966f758c
PM
7800
7801 arm_log_exception(cs->exception_index);
7802 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
7803 new_el);
7804 if (qemu_loglevel_mask(CPU_LOG_INT)
7805 && !excp_is_internal(cs->exception_index)) {
6568da45 7806 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
966f758c
PM
7807 env->exception.syndrome >> ARM_EL_EC_SHIFT,
7808 env->exception.syndrome);
7809 }
7810
7811 if (arm_is_psci_call(cpu, cs->exception_index)) {
7812 arm_handle_psci_call(cpu);
7813 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
7814 return;
7815 }
7816
904c04de
PM
7817 /* Semihosting semantics depend on the register width of the
7818 * code that caused the exception, not the target exception level,
7819 * so must be handled here.
966f758c 7820 */
904c04de
PM
7821 if (check_for_semihosting(cs)) {
7822 return;
7823 }
7824
7825 assert(!excp_is_internal(cs->exception_index));
7826 if (arm_el_is_aa64(env, new_el)) {
966f758c
PM
7827 arm_cpu_do_interrupt_aarch64(cs);
7828 } else {
7829 arm_cpu_do_interrupt_aarch32(cs);
7830 }
f3a9b694 7831
8d04fb55
JK
7832 /* Hooks may change global state so BQL should be held, also the
7833 * BQL needs to be held for any modification of
7834 * cs->interrupt_request.
7835 */
7836 g_assert(qemu_mutex_iothread_locked());
7837
bd7d00fc
PM
7838 arm_call_el_change_hook(cpu);
7839
f3a9b694
PM
7840 if (!kvm_enabled()) {
7841 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7842 }
7843}
0480f69a
PM
7844
7845/* Return the exception level which controls this address translation regime */
7846static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7847{
7848 switch (mmu_idx) {
7849 case ARMMMUIdx_S2NS:
7850 case ARMMMUIdx_S1E2:
7851 return 2;
7852 case ARMMMUIdx_S1E3:
7853 return 3;
7854 case ARMMMUIdx_S1SE0:
7855 return arm_el_is_aa64(env, 3) ? 1 : 3;
7856 case ARMMMUIdx_S1SE1:
7857 case ARMMMUIdx_S1NSE0:
7858 case ARMMMUIdx_S1NSE1:
62593718
PM
7859 case ARMMMUIdx_MPrivNegPri:
7860 case ARMMMUIdx_MUserNegPri:
e7b921c2
PM
7861 case ARMMMUIdx_MPriv:
7862 case ARMMMUIdx_MUser:
62593718
PM
7863 case ARMMMUIdx_MSPrivNegPri:
7864 case ARMMMUIdx_MSUserNegPri:
66787c78 7865 case ARMMMUIdx_MSPriv:
66787c78 7866 case ARMMMUIdx_MSUser:
0480f69a
PM
7867 return 1;
7868 default:
7869 g_assert_not_reached();
7870 }
7871}
7872
7873/* Return the SCTLR value which controls this address translation regime */
7874static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7875{
7876 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7877}
7878
7879/* Return true if the specified stage of address translation is disabled */
7880static inline bool regime_translation_disabled(CPUARMState *env,
7881 ARMMMUIdx mmu_idx)
7882{
29c483a5 7883 if (arm_feature(env, ARM_FEATURE_M)) {
ecf5e8ea 7884 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
3bef7012
PM
7885 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7886 case R_V7M_MPU_CTRL_ENABLE_MASK:
7887 /* Enabled, but not for HardFault and NMI */
62593718 7888 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
3bef7012
PM
7889 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7890 /* Enabled for all cases */
7891 return false;
7892 case 0:
7893 default:
7894 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7895 * we warned about that in armv7m_nvic.c when the guest set it.
7896 */
7897 return true;
7898 }
29c483a5
MD
7899 }
7900
0480f69a
PM
7901 if (mmu_idx == ARMMMUIdx_S2NS) {
7902 return (env->cp15.hcr_el2 & HCR_VM) == 0;
7903 }
7904 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7905}
7906
73462ddd
PC
7907static inline bool regime_translation_big_endian(CPUARMState *env,
7908 ARMMMUIdx mmu_idx)
7909{
7910 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7911}
7912
0480f69a
PM
7913/* Return the TCR controlling this translation regime */
7914static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7915{
7916 if (mmu_idx == ARMMMUIdx_S2NS) {
68e9c2fe 7917 return &env->cp15.vtcr_el2;
0480f69a
PM
7918 }
7919 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7920}
7921
8bd5c820
PM
7922/* Convert a possible stage1+2 MMU index into the appropriate
7923 * stage 1 MMU index
7924 */
7925static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7926{
7927 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7928 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7929 }
7930 return mmu_idx;
7931}
7932
86fb3fa4
TH
7933/* Returns TBI0 value for current regime el */
7934uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7935{
7936 TCR *tcr;
7937 uint32_t el;
7938
7939 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8bd5c820
PM
7940 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7941 */
7942 mmu_idx = stage_1_mmu_idx(mmu_idx);
86fb3fa4
TH
7943
7944 tcr = regime_tcr(env, mmu_idx);
7945 el = regime_el(env, mmu_idx);
7946
7947 if (el > 1) {
7948 return extract64(tcr->raw_tcr, 20, 1);
7949 } else {
7950 return extract64(tcr->raw_tcr, 37, 1);
7951 }
7952}
7953
7954/* Returns TBI1 value for current regime el */
7955uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7956{
7957 TCR *tcr;
7958 uint32_t el;
7959
7960 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8bd5c820
PM
7961 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7962 */
7963 mmu_idx = stage_1_mmu_idx(mmu_idx);
86fb3fa4
TH
7964
7965 tcr = regime_tcr(env, mmu_idx);
7966 el = regime_el(env, mmu_idx);
7967
7968 if (el > 1) {
7969 return 0;
7970 } else {
7971 return extract64(tcr->raw_tcr, 38, 1);
7972 }
7973}
7974
aef878be
GB
7975/* Return the TTBR associated with this translation regime */
7976static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7977 int ttbrn)
7978{
7979 if (mmu_idx == ARMMMUIdx_S2NS) {
b698e9cf 7980 return env->cp15.vttbr_el2;
aef878be
GB
7981 }
7982 if (ttbrn == 0) {
7983 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7984 } else {
7985 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7986 }
7987}
7988
0480f69a
PM
7989/* Return true if the translation regime is using LPAE format page tables */
7990static inline bool regime_using_lpae_format(CPUARMState *env,
7991 ARMMMUIdx mmu_idx)
7992{
7993 int el = regime_el(env, mmu_idx);
7994 if (el == 2 || arm_el_is_aa64(env, el)) {
7995 return true;
7996 }
7997 if (arm_feature(env, ARM_FEATURE_LPAE)
7998 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7999 return true;
8000 }
8001 return false;
8002}
8003
deb2db99
AR
8004/* Returns true if the stage 1 translation regime is using LPAE format page
8005 * tables. Used when raising alignment exceptions, whose FSR changes depending
8006 * on whether the long or short descriptor format is in use. */
8007bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
30901475 8008{
8bd5c820 8009 mmu_idx = stage_1_mmu_idx(mmu_idx);
deb2db99 8010
30901475
AB
8011 return regime_using_lpae_format(env, mmu_idx);
8012}
8013
0480f69a
PM
8014static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8015{
8016 switch (mmu_idx) {
8017 case ARMMMUIdx_S1SE0:
8018 case ARMMMUIdx_S1NSE0:
e7b921c2 8019 case ARMMMUIdx_MUser:
871bec7c 8020 case ARMMMUIdx_MSUser:
62593718
PM
8021 case ARMMMUIdx_MUserNegPri:
8022 case ARMMMUIdx_MSUserNegPri:
0480f69a
PM
8023 return true;
8024 default:
8025 return false;
8026 case ARMMMUIdx_S12NSE0:
8027 case ARMMMUIdx_S12NSE1:
8028 g_assert_not_reached();
8029 }
8030}
8031
0fbf5238
AJ
8032/* Translate section/page access permissions to page
8033 * R/W protection flags
d76951b6
AJ
8034 *
8035 * @env: CPUARMState
8036 * @mmu_idx: MMU index indicating required translation regime
8037 * @ap: The 3-bit access permissions (AP[2:0])
8038 * @domain_prot: The 2-bit domain access permissions
0fbf5238
AJ
8039 */
8040static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8041 int ap, int domain_prot)
8042{
554b0b09
PM
8043 bool is_user = regime_is_user(env, mmu_idx);
8044
8045 if (domain_prot == 3) {
8046 return PAGE_READ | PAGE_WRITE;
8047 }
8048
554b0b09
PM
8049 switch (ap) {
8050 case 0:
8051 if (arm_feature(env, ARM_FEATURE_V7)) {
8052 return 0;
8053 }
554b0b09
PM
8054 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8055 case SCTLR_S:
8056 return is_user ? 0 : PAGE_READ;
8057 case SCTLR_R:
8058 return PAGE_READ;
8059 default:
8060 return 0;
8061 }
8062 case 1:
8063 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8064 case 2:
87c3d486 8065 if (is_user) {
0fbf5238 8066 return PAGE_READ;
87c3d486 8067 } else {
554b0b09 8068 return PAGE_READ | PAGE_WRITE;
87c3d486 8069 }
554b0b09
PM
8070 case 3:
8071 return PAGE_READ | PAGE_WRITE;
8072 case 4: /* Reserved. */
8073 return 0;
8074 case 5:
0fbf5238 8075 return is_user ? 0 : PAGE_READ;
554b0b09 8076 case 6:
0fbf5238 8077 return PAGE_READ;
554b0b09 8078 case 7:
87c3d486 8079 if (!arm_feature(env, ARM_FEATURE_V6K)) {
554b0b09 8080 return 0;
87c3d486 8081 }
0fbf5238 8082 return PAGE_READ;
554b0b09 8083 default:
0fbf5238 8084 g_assert_not_reached();
554b0b09 8085 }
b5ff1b31
FB
8086}
8087
d76951b6
AJ
8088/* Translate section/page access permissions to page
8089 * R/W protection flags.
8090 *
d76951b6 8091 * @ap: The 2-bit simple AP (AP[2:1])
d8e052b3 8092 * @is_user: TRUE if accessing from PL0
d76951b6 8093 */
d8e052b3 8094static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
d76951b6 8095{
d76951b6
AJ
8096 switch (ap) {
8097 case 0:
8098 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8099 case 1:
8100 return PAGE_READ | PAGE_WRITE;
8101 case 2:
8102 return is_user ? 0 : PAGE_READ;
8103 case 3:
8104 return PAGE_READ;
8105 default:
8106 g_assert_not_reached();
8107 }
8108}
8109
d8e052b3
AJ
8110static inline int
8111simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8112{
8113 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8114}
8115
6ab1a5ee
EI
8116/* Translate S2 section/page access permissions to protection flags
8117 *
8118 * @env: CPUARMState
8119 * @s2ap: The 2-bit stage2 access permissions (S2AP)
8120 * @xn: XN (execute-never) bit
8121 */
8122static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8123{
8124 int prot = 0;
8125
8126 if (s2ap & 1) {
8127 prot |= PAGE_READ;
8128 }
8129 if (s2ap & 2) {
8130 prot |= PAGE_WRITE;
8131 }
8132 if (!xn) {
dfda6837
SS
8133 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8134 prot |= PAGE_EXEC;
8135 }
6ab1a5ee
EI
8136 }
8137 return prot;
8138}
8139
d8e052b3
AJ
8140/* Translate section/page access permissions to protection flags
8141 *
8142 * @env: CPUARMState
8143 * @mmu_idx: MMU index indicating required translation regime
8144 * @is_aa64: TRUE if AArch64
8145 * @ap: The 2-bit simple AP (AP[2:1])
8146 * @ns: NS (non-secure) bit
8147 * @xn: XN (execute-never) bit
8148 * @pxn: PXN (privileged execute-never) bit
8149 */
8150static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8151 int ap, int ns, int xn, int pxn)
8152{
8153 bool is_user = regime_is_user(env, mmu_idx);
8154 int prot_rw, user_rw;
8155 bool have_wxn;
8156 int wxn = 0;
8157
8158 assert(mmu_idx != ARMMMUIdx_S2NS);
8159
8160 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8161 if (is_user) {
8162 prot_rw = user_rw;
8163 } else {
8164 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8165 }
8166
8167 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8168 return prot_rw;
8169 }
8170
8171 /* TODO have_wxn should be replaced with
8172 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8173 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8174 * compatible processors have EL2, which is required for [U]WXN.
8175 */
8176 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8177
8178 if (have_wxn) {
8179 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8180 }
8181
8182 if (is_aa64) {
8183 switch (regime_el(env, mmu_idx)) {
8184 case 1:
8185 if (!is_user) {
8186 xn = pxn || (user_rw & PAGE_WRITE);
8187 }
8188 break;
8189 case 2:
8190 case 3:
8191 break;
8192 }
8193 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8194 switch (regime_el(env, mmu_idx)) {
8195 case 1:
8196 case 3:
8197 if (is_user) {
8198 xn = xn || !(user_rw & PAGE_READ);
8199 } else {
8200 int uwxn = 0;
8201 if (have_wxn) {
8202 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8203 }
8204 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8205 (uwxn && (user_rw & PAGE_WRITE));
8206 }
8207 break;
8208 case 2:
8209 break;
8210 }
8211 } else {
8212 xn = wxn = 0;
8213 }
8214
8215 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8216 return prot_rw;
8217 }
8218 return prot_rw | PAGE_EXEC;
8219}
8220
0480f69a
PM
8221static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8222 uint32_t *table, uint32_t address)
b2fa1797 8223{
0480f69a 8224 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
0480f69a 8225 TCR *tcr = regime_tcr(env, mmu_idx);
11f136ee 8226
11f136ee
FA
8227 if (address & tcr->mask) {
8228 if (tcr->raw_tcr & TTBCR_PD1) {
e389be16
FA
8229 /* Translation table walk disabled for TTBR1 */
8230 return false;
8231 }
aef878be 8232 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
e389be16 8233 } else {
11f136ee 8234 if (tcr->raw_tcr & TTBCR_PD0) {
e389be16
FA
8235 /* Translation table walk disabled for TTBR0 */
8236 return false;
8237 }
aef878be 8238 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
e389be16
FA
8239 }
8240 *table |= (address >> 18) & 0x3ffc;
8241 return true;
b2fa1797
PB
8242}
8243
37785977
EI
8244/* Translate a S1 pagetable walk through S2 if needed. */
8245static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8246 hwaddr addr, MemTxAttrs txattrs,
8247 uint32_t *fsr,
8248 ARMMMUFaultInfo *fi)
8249{
8250 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8251 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8252 target_ulong s2size;
8253 hwaddr s2pa;
8254 int s2prot;
8255 int ret;
8256
8257 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
5b2d261d 8258 &txattrs, &s2prot, &s2size, fsr, fi, NULL);
37785977
EI
8259 if (ret) {
8260 fi->s2addr = addr;
8261 fi->stage2 = true;
8262 fi->s1ptw = true;
8263 return ~0;
8264 }
8265 addr = s2pa;
8266 }
8267 return addr;
8268}
8269
ebca90e4
PM
8270/* All loads done in the course of a page table walk go through here.
8271 * TODO: rather than ignoring errors from physical memory reads (which
8272 * are external aborts in ARM terminology) we should propagate this
8273 * error out so that we can turn it into a Data Abort if this walk
8274 * was being done for a CPU load/store or an address translation instruction
8275 * (but not if it was for a debug access).
8276 */
a614e698
EI
8277static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8278 ARMMMUIdx mmu_idx, uint32_t *fsr,
8279 ARMMMUFaultInfo *fi)
ebca90e4 8280{
a614e698
EI
8281 ARMCPU *cpu = ARM_CPU(cs);
8282 CPUARMState *env = &cpu->env;
ebca90e4 8283 MemTxAttrs attrs = {};
5ce4ff65 8284 AddressSpace *as;
ebca90e4
PM
8285
8286 attrs.secure = is_secure;
5ce4ff65 8287 as = arm_addressspace(cs, attrs);
a614e698
EI
8288 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
8289 if (fi->s1ptw) {
8290 return 0;
8291 }
73462ddd
PC
8292 if (regime_translation_big_endian(env, mmu_idx)) {
8293 return address_space_ldl_be(as, addr, attrs, NULL);
8294 } else {
8295 return address_space_ldl_le(as, addr, attrs, NULL);
8296 }
ebca90e4
PM
8297}
8298
37785977
EI
8299static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8300 ARMMMUIdx mmu_idx, uint32_t *fsr,
8301 ARMMMUFaultInfo *fi)
ebca90e4 8302{
37785977
EI
8303 ARMCPU *cpu = ARM_CPU(cs);
8304 CPUARMState *env = &cpu->env;
ebca90e4 8305 MemTxAttrs attrs = {};
5ce4ff65 8306 AddressSpace *as;
ebca90e4
PM
8307
8308 attrs.secure = is_secure;
5ce4ff65 8309 as = arm_addressspace(cs, attrs);
37785977
EI
8310 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
8311 if (fi->s1ptw) {
8312 return 0;
8313 }
73462ddd
PC
8314 if (regime_translation_big_endian(env, mmu_idx)) {
8315 return address_space_ldq_be(as, addr, attrs, NULL);
8316 } else {
8317 return address_space_ldq_le(as, addr, attrs, NULL);
8318 }
ebca90e4
PM
8319}
8320
b7cc4e82 8321static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
03ae85f8 8322 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 8323 hwaddr *phys_ptr, int *prot,
e14b5a23
EI
8324 target_ulong *page_size, uint32_t *fsr,
8325 ARMMMUFaultInfo *fi)
b5ff1b31 8326{
70d74660 8327 CPUState *cs = CPU(arm_env_get_cpu(env));
b5ff1b31
FB
8328 int code;
8329 uint32_t table;
8330 uint32_t desc;
8331 int type;
8332 int ap;
e389be16 8333 int domain = 0;
dd4ebc2e 8334 int domain_prot;
a8170e5e 8335 hwaddr phys_addr;
0480f69a 8336 uint32_t dacr;
b5ff1b31 8337
9ee6e8bb
PB
8338 /* Pagetable walk. */
8339 /* Lookup l1 descriptor. */
0480f69a 8340 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
8341 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8342 code = 5;
8343 goto do_fault;
8344 }
a614e698
EI
8345 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8346 mmu_idx, fsr, fi);
9ee6e8bb 8347 type = (desc & 3);
dd4ebc2e 8348 domain = (desc >> 5) & 0x0f;
0480f69a
PM
8349 if (regime_el(env, mmu_idx) == 1) {
8350 dacr = env->cp15.dacr_ns;
8351 } else {
8352 dacr = env->cp15.dacr_s;
8353 }
8354 domain_prot = (dacr >> (domain * 2)) & 3;
9ee6e8bb 8355 if (type == 0) {
601d70b9 8356 /* Section translation fault. */
9ee6e8bb
PB
8357 code = 5;
8358 goto do_fault;
8359 }
dd4ebc2e 8360 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
8361 if (type == 2)
8362 code = 9; /* Section domain fault. */
8363 else
8364 code = 11; /* Page domain fault. */
8365 goto do_fault;
8366 }
8367 if (type == 2) {
8368 /* 1Mb section. */
8369 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8370 ap = (desc >> 10) & 3;
8371 code = 13;
d4c430a8 8372 *page_size = 1024 * 1024;
9ee6e8bb
PB
8373 } else {
8374 /* Lookup l2 entry. */
554b0b09
PM
8375 if (type == 1) {
8376 /* Coarse pagetable. */
8377 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8378 } else {
8379 /* Fine pagetable. */
8380 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8381 }
a614e698
EI
8382 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8383 mmu_idx, fsr, fi);
9ee6e8bb
PB
8384 switch (desc & 3) {
8385 case 0: /* Page translation fault. */
8386 code = 7;
8387 goto do_fault;
8388 case 1: /* 64k page. */
8389 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8390 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 8391 *page_size = 0x10000;
ce819861 8392 break;
9ee6e8bb
PB
8393 case 2: /* 4k page. */
8394 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
c10f7fc3 8395 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
d4c430a8 8396 *page_size = 0x1000;
ce819861 8397 break;
fc1891c7 8398 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
554b0b09 8399 if (type == 1) {
fc1891c7
PM
8400 /* ARMv6/XScale extended small page format */
8401 if (arm_feature(env, ARM_FEATURE_XSCALE)
8402 || arm_feature(env, ARM_FEATURE_V6)) {
554b0b09 8403 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
fc1891c7 8404 *page_size = 0x1000;
554b0b09 8405 } else {
fc1891c7
PM
8406 /* UNPREDICTABLE in ARMv5; we choose to take a
8407 * page translation fault.
8408 */
554b0b09
PM
8409 code = 7;
8410 goto do_fault;
8411 }
8412 } else {
8413 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
fc1891c7 8414 *page_size = 0x400;
554b0b09 8415 }
9ee6e8bb 8416 ap = (desc >> 4) & 3;
ce819861
PB
8417 break;
8418 default:
9ee6e8bb
PB
8419 /* Never happens, but compiler isn't smart enough to tell. */
8420 abort();
ce819861 8421 }
9ee6e8bb
PB
8422 code = 15;
8423 }
0fbf5238
AJ
8424 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8425 *prot |= *prot ? PAGE_EXEC : 0;
8426 if (!(*prot & (1 << access_type))) {
9ee6e8bb
PB
8427 /* Access permission fault. */
8428 goto do_fault;
8429 }
8430 *phys_ptr = phys_addr;
b7cc4e82 8431 return false;
9ee6e8bb 8432do_fault:
b7cc4e82
PC
8433 *fsr = code | (domain << 4);
8434 return true;
9ee6e8bb
PB
8435}
8436
b7cc4e82 8437static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
03ae85f8 8438 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 8439 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
8440 target_ulong *page_size, uint32_t *fsr,
8441 ARMMMUFaultInfo *fi)
9ee6e8bb 8442{
70d74660 8443 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb
PB
8444 int code;
8445 uint32_t table;
8446 uint32_t desc;
8447 uint32_t xn;
de9b05b8 8448 uint32_t pxn = 0;
9ee6e8bb
PB
8449 int type;
8450 int ap;
de9b05b8 8451 int domain = 0;
dd4ebc2e 8452 int domain_prot;
a8170e5e 8453 hwaddr phys_addr;
0480f69a 8454 uint32_t dacr;
8bf5b6a9 8455 bool ns;
9ee6e8bb
PB
8456
8457 /* Pagetable walk. */
8458 /* Lookup l1 descriptor. */
0480f69a 8459 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
8460 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8461 code = 5;
8462 goto do_fault;
8463 }
a614e698
EI
8464 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8465 mmu_idx, fsr, fi);
9ee6e8bb 8466 type = (desc & 3);
de9b05b8
PM
8467 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
8468 /* Section translation fault, or attempt to use the encoding
8469 * which is Reserved on implementations without PXN.
8470 */
9ee6e8bb 8471 code = 5;
9ee6e8bb 8472 goto do_fault;
de9b05b8
PM
8473 }
8474 if ((type == 1) || !(desc & (1 << 18))) {
8475 /* Page or Section. */
dd4ebc2e 8476 domain = (desc >> 5) & 0x0f;
9ee6e8bb 8477 }
0480f69a
PM
8478 if (regime_el(env, mmu_idx) == 1) {
8479 dacr = env->cp15.dacr_ns;
8480 } else {
8481 dacr = env->cp15.dacr_s;
8482 }
8483 domain_prot = (dacr >> (domain * 2)) & 3;
dd4ebc2e 8484 if (domain_prot == 0 || domain_prot == 2) {
de9b05b8 8485 if (type != 1) {
9ee6e8bb 8486 code = 9; /* Section domain fault. */
de9b05b8 8487 } else {
9ee6e8bb 8488 code = 11; /* Page domain fault. */
de9b05b8 8489 }
9ee6e8bb
PB
8490 goto do_fault;
8491 }
de9b05b8 8492 if (type != 1) {
9ee6e8bb
PB
8493 if (desc & (1 << 18)) {
8494 /* Supersection. */
8495 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
4e42a6ca
SF
8496 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
8497 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
d4c430a8 8498 *page_size = 0x1000000;
b5ff1b31 8499 } else {
9ee6e8bb
PB
8500 /* Section. */
8501 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 8502 *page_size = 0x100000;
b5ff1b31 8503 }
9ee6e8bb
PB
8504 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
8505 xn = desc & (1 << 4);
de9b05b8 8506 pxn = desc & 1;
9ee6e8bb 8507 code = 13;
8bf5b6a9 8508 ns = extract32(desc, 19, 1);
9ee6e8bb 8509 } else {
de9b05b8
PM
8510 if (arm_feature(env, ARM_FEATURE_PXN)) {
8511 pxn = (desc >> 2) & 1;
8512 }
8bf5b6a9 8513 ns = extract32(desc, 3, 1);
9ee6e8bb
PB
8514 /* Lookup l2 entry. */
8515 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
a614e698
EI
8516 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8517 mmu_idx, fsr, fi);
9ee6e8bb
PB
8518 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
8519 switch (desc & 3) {
8520 case 0: /* Page translation fault. */
8521 code = 7;
b5ff1b31 8522 goto do_fault;
9ee6e8bb
PB
8523 case 1: /* 64k page. */
8524 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8525 xn = desc & (1 << 15);
d4c430a8 8526 *page_size = 0x10000;
9ee6e8bb
PB
8527 break;
8528 case 2: case 3: /* 4k page. */
8529 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8530 xn = desc & 1;
d4c430a8 8531 *page_size = 0x1000;
9ee6e8bb
PB
8532 break;
8533 default:
8534 /* Never happens, but compiler isn't smart enough to tell. */
8535 abort();
b5ff1b31 8536 }
9ee6e8bb
PB
8537 code = 15;
8538 }
dd4ebc2e 8539 if (domain_prot == 3) {
c0034328
JR
8540 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8541 } else {
0480f69a 8542 if (pxn && !regime_is_user(env, mmu_idx)) {
de9b05b8
PM
8543 xn = 1;
8544 }
03ae85f8 8545 if (xn && access_type == MMU_INST_FETCH)
c0034328 8546 goto do_fault;
9ee6e8bb 8547
d76951b6
AJ
8548 if (arm_feature(env, ARM_FEATURE_V6K) &&
8549 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
8550 /* The simplified model uses AP[0] as an access control bit. */
8551 if ((ap & 1) == 0) {
8552 /* Access flag fault. */
8553 code = (code == 15) ? 6 : 3;
8554 goto do_fault;
8555 }
8556 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
8557 } else {
8558 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
c0034328 8559 }
0fbf5238
AJ
8560 if (*prot && !xn) {
8561 *prot |= PAGE_EXEC;
8562 }
8563 if (!(*prot & (1 << access_type))) {
c0034328
JR
8564 /* Access permission fault. */
8565 goto do_fault;
8566 }
3ad493fc 8567 }
8bf5b6a9
PM
8568 if (ns) {
8569 /* The NS bit will (as required by the architecture) have no effect if
8570 * the CPU doesn't support TZ or this is a non-secure translation
8571 * regime, because the attribute will already be non-secure.
8572 */
8573 attrs->secure = false;
8574 }
9ee6e8bb 8575 *phys_ptr = phys_addr;
b7cc4e82 8576 return false;
b5ff1b31 8577do_fault:
b7cc4e82
PC
8578 *fsr = code | (domain << 4);
8579 return true;
b5ff1b31
FB
8580}
8581
3dde962f
PM
8582/* Fault type for long-descriptor MMU fault reporting; this corresponds
8583 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
8584 */
8585typedef enum {
8586 translation_fault = 1,
8587 access_fault = 2,
8588 permission_fault = 3,
8589} MMUFaultType;
8590
1853d5a9 8591/*
a0e966c9 8592 * check_s2_mmu_setup
1853d5a9
EI
8593 * @cpu: ARMCPU
8594 * @is_aa64: True if the translation regime is in AArch64 state
8595 * @startlevel: Suggested starting level
8596 * @inputsize: Bitsize of IPAs
8597 * @stride: Page-table stride (See the ARM ARM)
8598 *
a0e966c9
EI
8599 * Returns true if the suggested S2 translation parameters are OK and
8600 * false otherwise.
1853d5a9 8601 */
a0e966c9
EI
8602static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
8603 int inputsize, int stride)
1853d5a9 8604{
98d68ec2
EI
8605 const int grainsize = stride + 3;
8606 int startsizecheck;
8607
1853d5a9
EI
8608 /* Negative levels are never allowed. */
8609 if (level < 0) {
8610 return false;
8611 }
8612
98d68ec2
EI
8613 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
8614 if (startsizecheck < 1 || startsizecheck > stride + 4) {
8615 return false;
8616 }
8617
1853d5a9 8618 if (is_aa64) {
3526423e 8619 CPUARMState *env = &cpu->env;
1853d5a9
EI
8620 unsigned int pamax = arm_pamax(cpu);
8621
8622 switch (stride) {
8623 case 13: /* 64KB Pages. */
8624 if (level == 0 || (level == 1 && pamax <= 42)) {
8625 return false;
8626 }
8627 break;
8628 case 11: /* 16KB Pages. */
8629 if (level == 0 || (level == 1 && pamax <= 40)) {
8630 return false;
8631 }
8632 break;
8633 case 9: /* 4KB Pages. */
8634 if (level == 0 && pamax <= 42) {
8635 return false;
8636 }
8637 break;
8638 default:
8639 g_assert_not_reached();
8640 }
3526423e
EI
8641
8642 /* Inputsize checks. */
8643 if (inputsize > pamax &&
8644 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
8645 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
8646 return false;
8647 }
1853d5a9 8648 } else {
1853d5a9
EI
8649 /* AArch32 only supports 4KB pages. Assert on that. */
8650 assert(stride == 9);
8651
8652 if (level == 0) {
8653 return false;
8654 }
1853d5a9
EI
8655 }
8656 return true;
8657}
8658
5b2d261d
AB
8659/* Translate from the 4-bit stage 2 representation of
8660 * memory attributes (without cache-allocation hints) to
8661 * the 8-bit representation of the stage 1 MAIR registers
8662 * (which includes allocation hints).
8663 *
8664 * ref: shared/translation/attrs/S2AttrDecode()
8665 * .../S2ConvertAttrsHints()
8666 */
8667static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
8668{
8669 uint8_t hiattr = extract32(s2attrs, 2, 2);
8670 uint8_t loattr = extract32(s2attrs, 0, 2);
8671 uint8_t hihint = 0, lohint = 0;
8672
8673 if (hiattr != 0) { /* normal memory */
8674 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
8675 hiattr = loattr = 1; /* non-cacheable */
8676 } else {
8677 if (hiattr != 1) { /* Write-through or write-back */
8678 hihint = 3; /* RW allocate */
8679 }
8680 if (loattr != 1) { /* Write-through or write-back */
8681 lohint = 3; /* RW allocate */
8682 }
8683 }
8684 }
8685
8686 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
8687}
8688
b7cc4e82 8689static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
03ae85f8 8690 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 8691 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
e14b5a23 8692 target_ulong *page_size_ptr, uint32_t *fsr,
5b2d261d 8693 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
3dde962f 8694{
1853d5a9
EI
8695 ARMCPU *cpu = arm_env_get_cpu(env);
8696 CPUState *cs = CPU(cpu);
3dde962f
PM
8697 /* Read an LPAE long-descriptor translation table. */
8698 MMUFaultType fault_type = translation_fault;
1b4093ea 8699 uint32_t level;
0c5fbf3b 8700 uint32_t epd = 0;
1f4c8c18 8701 int32_t t0sz, t1sz;
2c8dd318 8702 uint32_t tg;
3dde962f
PM
8703 uint64_t ttbr;
8704 int ttbr_select;
dddb5223 8705 hwaddr descaddr, indexmask, indexmask_grainsize;
3dde962f
PM
8706 uint32_t tableattrs;
8707 target_ulong page_size;
8708 uint32_t attrs;
973a5434 8709 int32_t stride = 9;
6e99f762 8710 int32_t addrsize;
4ca6a051 8711 int inputsize;
2c8dd318 8712 int32_t tbi = 0;
0480f69a 8713 TCR *tcr = regime_tcr(env, mmu_idx);
d8e052b3 8714 int ap, ns, xn, pxn;
88e8add8
GB
8715 uint32_t el = regime_el(env, mmu_idx);
8716 bool ttbr1_valid = true;
6109769a 8717 uint64_t descaddrmask;
6e99f762 8718 bool aarch64 = arm_el_is_aa64(env, el);
0480f69a
PM
8719
8720 /* TODO:
88e8add8
GB
8721 * This code does not handle the different format TCR for VTCR_EL2.
8722 * This code also does not support shareability levels.
8723 * Attribute and permission bit handling should also be checked when adding
8724 * support for those page table walks.
0480f69a 8725 */
6e99f762 8726 if (aarch64) {
1b4093ea 8727 level = 0;
6e99f762 8728 addrsize = 64;
88e8add8 8729 if (el > 1) {
1edee470
EI
8730 if (mmu_idx != ARMMMUIdx_S2NS) {
8731 tbi = extract64(tcr->raw_tcr, 20, 1);
8732 }
88e8add8
GB
8733 } else {
8734 if (extract64(address, 55, 1)) {
8735 tbi = extract64(tcr->raw_tcr, 38, 1);
8736 } else {
8737 tbi = extract64(tcr->raw_tcr, 37, 1);
8738 }
8739 }
2c8dd318 8740 tbi *= 8;
88e8add8
GB
8741
8742 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
8743 * invalid.
8744 */
8745 if (el > 1) {
8746 ttbr1_valid = false;
8747 }
d0a2cbce 8748 } else {
1b4093ea 8749 level = 1;
6e99f762 8750 addrsize = 32;
d0a2cbce
PM
8751 /* There is no TTBR1 for EL2 */
8752 if (el == 2) {
8753 ttbr1_valid = false;
8754 }
2c8dd318 8755 }
3dde962f
PM
8756
8757 /* Determine whether this address is in the region controlled by
8758 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
8759 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
8760 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
8761 */
6e99f762 8762 if (aarch64) {
4ee38098
EI
8763 /* AArch64 translation. */
8764 t0sz = extract32(tcr->raw_tcr, 0, 6);
2c8dd318
RH
8765 t0sz = MIN(t0sz, 39);
8766 t0sz = MAX(t0sz, 16);
4ee38098
EI
8767 } else if (mmu_idx != ARMMMUIdx_S2NS) {
8768 /* AArch32 stage 1 translation. */
8769 t0sz = extract32(tcr->raw_tcr, 0, 3);
8770 } else {
8771 /* AArch32 stage 2 translation. */
8772 bool sext = extract32(tcr->raw_tcr, 4, 1);
8773 bool sign = extract32(tcr->raw_tcr, 3, 1);
6e99f762
SS
8774 /* Address size is 40-bit for a stage 2 translation,
8775 * and t0sz can be negative (from -8 to 7),
8776 * so we need to adjust it to use the TTBR selecting logic below.
8777 */
8778 addrsize = 40;
8779 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
4ee38098
EI
8780
8781 /* If the sign-extend bit is not the same as t0sz[3], the result
8782 * is unpredictable. Flag this as a guest error. */
8783 if (sign != sext) {
8784 qemu_log_mask(LOG_GUEST_ERROR,
39cba610 8785 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
4ee38098 8786 }
2c8dd318 8787 }
1f4c8c18 8788 t1sz = extract32(tcr->raw_tcr, 16, 6);
6e99f762 8789 if (aarch64) {
2c8dd318
RH
8790 t1sz = MIN(t1sz, 39);
8791 t1sz = MAX(t1sz, 16);
8792 }
6e99f762 8793 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
3dde962f
PM
8794 /* there is a ttbr0 region and we are in it (high bits all zero) */
8795 ttbr_select = 0;
88e8add8 8796 } else if (ttbr1_valid && t1sz &&
6e99f762 8797 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
3dde962f
PM
8798 /* there is a ttbr1 region and we are in it (high bits all one) */
8799 ttbr_select = 1;
8800 } else if (!t0sz) {
8801 /* ttbr0 region is "everything not in the ttbr1 region" */
8802 ttbr_select = 0;
88e8add8 8803 } else if (!t1sz && ttbr1_valid) {
3dde962f
PM
8804 /* ttbr1 region is "everything not in the ttbr0 region" */
8805 ttbr_select = 1;
8806 } else {
8807 /* in the gap between the two regions, this is a Translation fault */
8808 fault_type = translation_fault;
8809 goto do_fault;
8810 }
8811
8812 /* Note that QEMU ignores shareability and cacheability attributes,
8813 * so we don't need to do anything with the SH, ORGN, IRGN fields
8814 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
8815 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
8816 * implement any ASID-like capability so we can ignore it (instead
8817 * we will always flush the TLB any time the ASID is changed).
8818 */
8819 if (ttbr_select == 0) {
aef878be 8820 ttbr = regime_ttbr(env, mmu_idx, 0);
0c5fbf3b
EI
8821 if (el < 2) {
8822 epd = extract32(tcr->raw_tcr, 7, 1);
8823 }
6e99f762 8824 inputsize = addrsize - t0sz;
2c8dd318 8825
11f136ee 8826 tg = extract32(tcr->raw_tcr, 14, 2);
2c8dd318 8827 if (tg == 1) { /* 64KB pages */
973a5434 8828 stride = 13;
2c8dd318
RH
8829 }
8830 if (tg == 2) { /* 16KB pages */
973a5434 8831 stride = 11;
2c8dd318 8832 }
3dde962f 8833 } else {
88e8add8
GB
8834 /* We should only be here if TTBR1 is valid */
8835 assert(ttbr1_valid);
8836
aef878be 8837 ttbr = regime_ttbr(env, mmu_idx, 1);
11f136ee 8838 epd = extract32(tcr->raw_tcr, 23, 1);
6e99f762 8839 inputsize = addrsize - t1sz;
2c8dd318 8840
11f136ee 8841 tg = extract32(tcr->raw_tcr, 30, 2);
2c8dd318 8842 if (tg == 3) { /* 64KB pages */
973a5434 8843 stride = 13;
2c8dd318
RH
8844 }
8845 if (tg == 1) { /* 16KB pages */
973a5434 8846 stride = 11;
2c8dd318 8847 }
3dde962f
PM
8848 }
8849
0480f69a 8850 /* Here we should have set up all the parameters for the translation:
6e99f762 8851 * inputsize, ttbr, epd, stride, tbi
0480f69a
PM
8852 */
8853
3dde962f 8854 if (epd) {
88e8add8
GB
8855 /* Translation table walk disabled => Translation fault on TLB miss
8856 * Note: This is always 0 on 64-bit EL2 and EL3.
8857 */
3dde962f
PM
8858 goto do_fault;
8859 }
8860
1853d5a9
EI
8861 if (mmu_idx != ARMMMUIdx_S2NS) {
8862 /* The starting level depends on the virtual address size (which can
8863 * be up to 48 bits) and the translation granule size. It indicates
8864 * the number of strides (stride bits at a time) needed to
8865 * consume the bits of the input address. In the pseudocode this is:
8866 * level = 4 - RoundUp((inputsize - grainsize) / stride)
8867 * where their 'inputsize' is our 'inputsize', 'grainsize' is
8868 * our 'stride + 3' and 'stride' is our 'stride'.
8869 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8870 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8871 * = 4 - (inputsize - 4) / stride;
8872 */
8873 level = 4 - (inputsize - 4) / stride;
8874 } else {
8875 /* For stage 2 translations the starting level is specified by the
8876 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8877 */
1b4093ea
SS
8878 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8879 uint32_t startlevel;
1853d5a9
EI
8880 bool ok;
8881
6e99f762 8882 if (!aarch64 || stride == 9) {
1853d5a9 8883 /* AArch32 or 4KB pages */
1b4093ea 8884 startlevel = 2 - sl0;
1853d5a9
EI
8885 } else {
8886 /* 16KB or 64KB pages */
1b4093ea 8887 startlevel = 3 - sl0;
1853d5a9
EI
8888 }
8889
8890 /* Check that the starting level is valid. */
6e99f762 8891 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1b4093ea 8892 inputsize, stride);
1853d5a9 8893 if (!ok) {
1853d5a9
EI
8894 fault_type = translation_fault;
8895 goto do_fault;
8896 }
1b4093ea 8897 level = startlevel;
1853d5a9 8898 }
3dde962f 8899
dddb5223
SS
8900 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8901 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
3dde962f
PM
8902
8903 /* Now we can extract the actual base address from the TTBR */
2c8dd318 8904 descaddr = extract64(ttbr, 0, 48);
dddb5223 8905 descaddr &= ~indexmask;
3dde962f 8906
6109769a 8907 /* The address field in the descriptor goes up to bit 39 for ARMv7
dddb5223
SS
8908 * but up to bit 47 for ARMv8, but we use the descaddrmask
8909 * up to bit 39 for AArch32, because we don't need other bits in that case
8910 * to construct next descriptor address (anyway they should be all zeroes).
6109769a 8911 */
6e99f762 8912 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
dddb5223 8913 ~indexmask_grainsize;
6109769a 8914
ebca90e4
PM
8915 /* Secure accesses start with the page table in secure memory and
8916 * can be downgraded to non-secure at any step. Non-secure accesses
8917 * remain non-secure. We implement this by just ORing in the NSTable/NS
8918 * bits at each step.
8919 */
8920 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
3dde962f
PM
8921 for (;;) {
8922 uint64_t descriptor;
ebca90e4 8923 bool nstable;
3dde962f 8924
dddb5223 8925 descaddr |= (address >> (stride * (4 - level))) & indexmask;
2c8dd318 8926 descaddr &= ~7ULL;
ebca90e4 8927 nstable = extract32(tableattrs, 4, 1);
37785977
EI
8928 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
8929 if (fi->s1ptw) {
8930 goto do_fault;
8931 }
8932
3dde962f
PM
8933 if (!(descriptor & 1) ||
8934 (!(descriptor & 2) && (level == 3))) {
8935 /* Invalid, or the Reserved level 3 encoding */
8936 goto do_fault;
8937 }
6109769a 8938 descaddr = descriptor & descaddrmask;
3dde962f
PM
8939
8940 if ((descriptor & 2) && (level < 3)) {
8941 /* Table entry. The top five bits are attributes which may
8942 * propagate down through lower levels of the table (and
8943 * which are all arranged so that 0 means "no effect", so
8944 * we can gather them up by ORing in the bits at each level).
8945 */
8946 tableattrs |= extract64(descriptor, 59, 5);
8947 level++;
dddb5223 8948 indexmask = indexmask_grainsize;
3dde962f
PM
8949 continue;
8950 }
8951 /* Block entry at level 1 or 2, or page entry at level 3.
8952 * These are basically the same thing, although the number
8953 * of bits we pull in from the vaddr varies.
8954 */
973a5434 8955 page_size = (1ULL << ((stride * (4 - level)) + 3));
3dde962f 8956 descaddr |= (address & (page_size - 1));
6ab1a5ee 8957 /* Extract attributes from the descriptor */
d615efac
IC
8958 attrs = extract64(descriptor, 2, 10)
8959 | (extract64(descriptor, 52, 12) << 10);
6ab1a5ee
EI
8960
8961 if (mmu_idx == ARMMMUIdx_S2NS) {
8962 /* Stage 2 table descriptors do not include any attribute fields */
8963 break;
8964 }
8965 /* Merge in attributes from table descriptors */
3dde962f
PM
8966 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8967 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8968 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8969 * means "force PL1 access only", which means forcing AP[1] to 0.
8970 */
8971 if (extract32(tableattrs, 2, 1)) {
8972 attrs &= ~(1 << 4);
8973 }
ebca90e4 8974 attrs |= nstable << 3; /* NS */
3dde962f
PM
8975 break;
8976 }
8977 /* Here descaddr is the final physical address, and attributes
8978 * are all in attrs.
8979 */
8980 fault_type = access_fault;
8981 if ((attrs & (1 << 8)) == 0) {
8982 /* Access flag */
8983 goto do_fault;
8984 }
d8e052b3
AJ
8985
8986 ap = extract32(attrs, 4, 2);
d8e052b3 8987 xn = extract32(attrs, 12, 1);
d8e052b3 8988
6ab1a5ee
EI
8989 if (mmu_idx == ARMMMUIdx_S2NS) {
8990 ns = true;
8991 *prot = get_S2prot(env, ap, xn);
8992 } else {
8993 ns = extract32(attrs, 3, 1);
8994 pxn = extract32(attrs, 11, 1);
6e99f762 8995 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
6ab1a5ee 8996 }
d8e052b3 8997
3dde962f 8998 fault_type = permission_fault;
d8e052b3 8999 if (!(*prot & (1 << access_type))) {
3dde962f
PM
9000 goto do_fault;
9001 }
3dde962f 9002
8bf5b6a9
PM
9003 if (ns) {
9004 /* The NS bit will (as required by the architecture) have no effect if
9005 * the CPU doesn't support TZ or this is a non-secure translation
9006 * regime, because the attribute will already be non-secure.
9007 */
9008 txattrs->secure = false;
9009 }
5b2d261d
AB
9010
9011 if (cacheattrs != NULL) {
9012 if (mmu_idx == ARMMMUIdx_S2NS) {
9013 cacheattrs->attrs = convert_stage2_attrs(env,
9014 extract32(attrs, 0, 4));
9015 } else {
9016 /* Index into MAIR registers for cache attributes */
9017 uint8_t attrindx = extract32(attrs, 0, 3);
9018 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9019 assert(attrindx <= 7);
9020 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9021 }
9022 cacheattrs->shareability = extract32(attrs, 6, 2);
9023 }
9024
3dde962f
PM
9025 *phys_ptr = descaddr;
9026 *page_size_ptr = page_size;
b7cc4e82 9027 return false;
3dde962f
PM
9028
9029do_fault:
9030 /* Long-descriptor format IFSR/DFSR value */
b7cc4e82 9031 *fsr = (1 << 9) | (fault_type << 2) | level;
37785977
EI
9032 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
9033 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
b7cc4e82 9034 return true;
3dde962f
PM
9035}
9036
f6bda88f
PC
9037static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9038 ARMMMUIdx mmu_idx,
9039 int32_t address, int *prot)
9040{
3a00d560
MD
9041 if (!arm_feature(env, ARM_FEATURE_M)) {
9042 *prot = PAGE_READ | PAGE_WRITE;
9043 switch (address) {
9044 case 0xF0000000 ... 0xFFFFFFFF:
9045 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9046 /* hivecs execing is ok */
9047 *prot |= PAGE_EXEC;
9048 }
9049 break;
9050 case 0x00000000 ... 0x7FFFFFFF:
f6bda88f 9051 *prot |= PAGE_EXEC;
3a00d560
MD
9052 break;
9053 }
9054 } else {
9055 /* Default system address map for M profile cores.
9056 * The architecture specifies which regions are execute-never;
9057 * at the MPU level no other checks are defined.
9058 */
9059 switch (address) {
9060 case 0x00000000 ... 0x1fffffff: /* ROM */
9061 case 0x20000000 ... 0x3fffffff: /* SRAM */
9062 case 0x60000000 ... 0x7fffffff: /* RAM */
9063 case 0x80000000 ... 0x9fffffff: /* RAM */
9064 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9065 break;
9066 case 0x40000000 ... 0x5fffffff: /* Peripheral */
9067 case 0xa0000000 ... 0xbfffffff: /* Device */
9068 case 0xc0000000 ... 0xdfffffff: /* Device */
9069 case 0xe0000000 ... 0xffffffff: /* System */
9070 *prot = PAGE_READ | PAGE_WRITE;
9071 break;
9072 default:
9073 g_assert_not_reached();
f6bda88f 9074 }
f6bda88f 9075 }
f6bda88f
PC
9076}
9077
29c483a5
MD
9078static bool pmsav7_use_background_region(ARMCPU *cpu,
9079 ARMMMUIdx mmu_idx, bool is_user)
9080{
9081 /* Return true if we should use the default memory map as a
9082 * "background" region if there are no hits against any MPU regions.
9083 */
9084 CPUARMState *env = &cpu->env;
9085
9086 if (is_user) {
9087 return false;
9088 }
9089
9090 if (arm_feature(env, ARM_FEATURE_M)) {
ecf5e8ea
PM
9091 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9092 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
29c483a5
MD
9093 } else {
9094 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9095 }
9096}
9097
38aaa60c
PM
9098static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9099{
9100 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9101 return arm_feature(env, ARM_FEATURE_M) &&
9102 extract32(address, 20, 12) == 0xe00;
9103}
9104
bf446a11
PM
9105static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9106{
9107 /* True if address is in the M profile system region
9108 * 0xe0000000 - 0xffffffff
9109 */
9110 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9111}
9112
f6bda88f 9113static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
03ae85f8 9114 MMUAccessType access_type, ARMMMUIdx mmu_idx,
f6bda88f
PC
9115 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9116{
9117 ARMCPU *cpu = arm_env_get_cpu(env);
9118 int n;
9119 bool is_user = regime_is_user(env, mmu_idx);
9120
9121 *phys_ptr = address;
9122 *prot = 0;
9123
38aaa60c
PM
9124 if (regime_translation_disabled(env, mmu_idx) ||
9125 m_is_ppb_region(env, address)) {
9126 /* MPU disabled or M profile PPB access: use default memory map.
9127 * The other case which uses the default memory map in the
9128 * v7M ARM ARM pseudocode is exception vector reads from the vector
9129 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9130 * which always does a direct read using address_space_ldl(), rather
9131 * than going via this function, so we don't need to check that here.
9132 */
f6bda88f
PC
9133 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9134 } else { /* MPU enabled */
9135 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9136 /* region search */
9137 uint32_t base = env->pmsav7.drbar[n];
9138 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9139 uint32_t rmask;
9140 bool srdis = false;
9141
9142 if (!(env->pmsav7.drsr[n] & 0x1)) {
9143 continue;
9144 }
9145
9146 if (!rsize) {
c9f9f124
MD
9147 qemu_log_mask(LOG_GUEST_ERROR,
9148 "DRSR[%d]: Rsize field cannot be 0\n", n);
f6bda88f
PC
9149 continue;
9150 }
9151 rsize++;
9152 rmask = (1ull << rsize) - 1;
9153
9154 if (base & rmask) {
c9f9f124
MD
9155 qemu_log_mask(LOG_GUEST_ERROR,
9156 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9157 "to DRSR region size, mask = 0x%" PRIx32 "\n",
9158 n, base, rmask);
f6bda88f
PC
9159 continue;
9160 }
9161
9162 if (address < base || address > base + rmask) {
9163 continue;
9164 }
9165
9166 /* Region matched */
9167
9168 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9169 int i, snd;
9170 uint32_t srdis_mask;
9171
9172 rsize -= 3; /* sub region size (power of 2) */
9173 snd = ((address - base) >> rsize) & 0x7;
9174 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9175
9176 srdis_mask = srdis ? 0x3 : 0x0;
9177 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9178 /* This will check in groups of 2, 4 and then 8, whether
9179 * the subregion bits are consistent. rsize is incremented
9180 * back up to give the region size, considering consistent
9181 * adjacent subregions as one region. Stop testing if rsize
9182 * is already big enough for an entire QEMU page.
9183 */
9184 int snd_rounded = snd & ~(i - 1);
9185 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9186 snd_rounded + 8, i);
9187 if (srdis_mask ^ srdis_multi) {
9188 break;
9189 }
9190 srdis_mask = (srdis_mask << i) | srdis_mask;
9191 rsize++;
9192 }
9193 }
9194 if (rsize < TARGET_PAGE_BITS) {
c9f9f124
MD
9195 qemu_log_mask(LOG_UNIMP,
9196 "DRSR[%d]: No support for MPU (sub)region "
f6bda88f 9197 "alignment of %" PRIu32 " bits. Minimum is %d\n",
c9f9f124 9198 n, rsize, TARGET_PAGE_BITS);
f6bda88f
PC
9199 continue;
9200 }
9201 if (srdis) {
9202 continue;
9203 }
9204 break;
9205 }
9206
9207 if (n == -1) { /* no hits */
29c483a5 9208 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
f6bda88f
PC
9209 /* background fault */
9210 *fsr = 0;
9211 return true;
9212 }
9213 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9214 } else { /* a MPU hit! */
9215 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
bf446a11
PM
9216 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9217
9218 if (m_is_system_region(env, address)) {
9219 /* System space is always execute never */
9220 xn = 1;
9221 }
f6bda88f
PC
9222
9223 if (is_user) { /* User mode AP bit decoding */
9224 switch (ap) {
9225 case 0:
9226 case 1:
9227 case 5:
9228 break; /* no access */
9229 case 3:
9230 *prot |= PAGE_WRITE;
9231 /* fall through */
9232 case 2:
9233 case 6:
9234 *prot |= PAGE_READ | PAGE_EXEC;
9235 break;
9236 default:
9237 qemu_log_mask(LOG_GUEST_ERROR,
c9f9f124
MD
9238 "DRACR[%d]: Bad value for AP bits: 0x%"
9239 PRIx32 "\n", n, ap);
f6bda88f
PC
9240 }
9241 } else { /* Priv. mode AP bits decoding */
9242 switch (ap) {
9243 case 0:
9244 break; /* no access */
9245 case 1:
9246 case 2:
9247 case 3:
9248 *prot |= PAGE_WRITE;
9249 /* fall through */
9250 case 5:
9251 case 6:
9252 *prot |= PAGE_READ | PAGE_EXEC;
9253 break;
9254 default:
9255 qemu_log_mask(LOG_GUEST_ERROR,
c9f9f124
MD
9256 "DRACR[%d]: Bad value for AP bits: 0x%"
9257 PRIx32 "\n", n, ap);
f6bda88f
PC
9258 }
9259 }
9260
9261 /* execute never */
bf446a11 9262 if (xn) {
f6bda88f
PC
9263 *prot &= ~PAGE_EXEC;
9264 }
9265 }
9266 }
9267
9268 *fsr = 0x00d; /* Permission fault */
9269 return !(*prot & (1 << access_type));
9270}
9271
35337cc3
PM
9272static bool v8m_is_sau_exempt(CPUARMState *env,
9273 uint32_t address, MMUAccessType access_type)
9274{
9275 /* The architecture specifies that certain address ranges are
9276 * exempt from v8M SAU/IDAU checks.
9277 */
9278 return
9279 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9280 (address >= 0xe0000000 && address <= 0xe0002fff) ||
9281 (address >= 0xe000e000 && address <= 0xe000efff) ||
9282 (address >= 0xe002e000 && address <= 0xe002efff) ||
9283 (address >= 0xe0040000 && address <= 0xe0041fff) ||
9284 (address >= 0xe00ff000 && address <= 0xe00fffff);
9285}
9286
9287static void v8m_security_lookup(CPUARMState *env, uint32_t address,
9288 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9289 V8M_SAttributes *sattrs)
9290{
9291 /* Look up the security attributes for this address. Compare the
9292 * pseudocode SecurityCheck() function.
9293 * We assume the caller has zero-initialized *sattrs.
9294 */
9295 ARMCPU *cpu = arm_env_get_cpu(env);
9296 int r;
9297
9298 /* TODO: implement IDAU */
9299
9300 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9301 /* 0xf0000000..0xffffffff is always S for insn fetches */
9302 return;
9303 }
9304
9305 if (v8m_is_sau_exempt(env, address, access_type)) {
9306 sattrs->ns = !regime_is_secure(env, mmu_idx);
9307 return;
9308 }
9309
9310 switch (env->sau.ctrl & 3) {
9311 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9312 break;
9313 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9314 sattrs->ns = true;
9315 break;
9316 default: /* SAU.ENABLE == 1 */
9317 for (r = 0; r < cpu->sau_sregion; r++) {
9318 if (env->sau.rlar[r] & 1) {
9319 uint32_t base = env->sau.rbar[r] & ~0x1f;
9320 uint32_t limit = env->sau.rlar[r] | 0x1f;
9321
9322 if (base <= address && limit >= address) {
9323 if (sattrs->srvalid) {
9324 /* If we hit in more than one region then we must report
9325 * as Secure, not NS-Callable, with no valid region
9326 * number info.
9327 */
9328 sattrs->ns = false;
9329 sattrs->nsc = false;
9330 sattrs->sregion = 0;
9331 sattrs->srvalid = false;
9332 break;
9333 } else {
9334 if (env->sau.rlar[r] & 2) {
9335 sattrs->nsc = true;
9336 } else {
9337 sattrs->ns = true;
9338 }
9339 sattrs->srvalid = true;
9340 sattrs->sregion = r;
9341 }
9342 }
9343 }
9344 }
9345
9346 /* TODO when we support the IDAU then it may override the result here */
9347 break;
9348 }
9349}
9350
54317c0f
PM
9351static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
9352 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9353 hwaddr *phys_ptr, MemTxAttrs *txattrs,
9354 int *prot, uint32_t *fsr, uint32_t *mregion)
9355{
9356 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
9357 * that a full phys-to-virt translation does).
9358 * mregion is (if not NULL) set to the region number which matched,
9359 * or -1 if no region number is returned (MPU off, address did not
9360 * hit a region, address hit in multiple regions).
9361 */
504e3cc3
PM
9362 ARMCPU *cpu = arm_env_get_cpu(env);
9363 bool is_user = regime_is_user(env, mmu_idx);
62c58ee0 9364 uint32_t secure = regime_is_secure(env, mmu_idx);
504e3cc3
PM
9365 int n;
9366 int matchregion = -1;
9367 bool hit = false;
9368
9369 *phys_ptr = address;
9370 *prot = 0;
54317c0f
PM
9371 if (mregion) {
9372 *mregion = -1;
35337cc3
PM
9373 }
9374
504e3cc3
PM
9375 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
9376 * was an exception vector read from the vector table (which is always
9377 * done using the default system address map), because those accesses
9378 * are done in arm_v7m_load_vector(), which always does a direct
9379 * read using address_space_ldl(), rather than going via this function.
9380 */
9381 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
9382 hit = true;
9383 } else if (m_is_ppb_region(env, address)) {
9384 hit = true;
9385 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9386 hit = true;
9387 } else {
9388 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9389 /* region search */
9390 /* Note that the base address is bits [31:5] from the register
9391 * with bits [4:0] all zeroes, but the limit address is bits
9392 * [31:5] from the register with bits [4:0] all ones.
9393 */
62c58ee0
PM
9394 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
9395 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
504e3cc3 9396
62c58ee0 9397 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
504e3cc3
PM
9398 /* Region disabled */
9399 continue;
9400 }
9401
9402 if (address < base || address > limit) {
9403 continue;
9404 }
9405
9406 if (hit) {
9407 /* Multiple regions match -- always a failure (unlike
9408 * PMSAv7 where highest-numbered-region wins)
9409 */
9410 *fsr = 0x00d; /* permission fault */
9411 return true;
9412 }
9413
9414 matchregion = n;
9415 hit = true;
9416
9417 if (base & ~TARGET_PAGE_MASK) {
9418 qemu_log_mask(LOG_UNIMP,
9419 "MPU_RBAR[%d]: No support for MPU region base"
9420 "address of 0x%" PRIx32 ". Minimum alignment is "
9421 "%d\n",
9422 n, base, TARGET_PAGE_BITS);
9423 continue;
9424 }
9425 if ((limit + 1) & ~TARGET_PAGE_MASK) {
9426 qemu_log_mask(LOG_UNIMP,
9427 "MPU_RBAR[%d]: No support for MPU region limit"
9428 "address of 0x%" PRIx32 ". Minimum alignment is "
9429 "%d\n",
9430 n, limit, TARGET_PAGE_BITS);
9431 continue;
9432 }
9433 }
9434 }
9435
9436 if (!hit) {
9437 /* background fault */
9438 *fsr = 0;
9439 return true;
9440 }
9441
9442 if (matchregion == -1) {
9443 /* hit using the background region */
9444 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9445 } else {
62c58ee0
PM
9446 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
9447 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
504e3cc3
PM
9448
9449 if (m_is_system_region(env, address)) {
9450 /* System space is always execute never */
9451 xn = 1;
9452 }
9453
9454 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
9455 if (*prot && !xn) {
9456 *prot |= PAGE_EXEC;
9457 }
9458 /* We don't need to look the attribute up in the MAIR0/MAIR1
9459 * registers because that only tells us about cacheability.
9460 */
54317c0f
PM
9461 if (mregion) {
9462 *mregion = matchregion;
9463 }
504e3cc3
PM
9464 }
9465
9466 *fsr = 0x00d; /* Permission fault */
9467 return !(*prot & (1 << access_type));
9468}
9469
54317c0f
PM
9470
9471static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
9472 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9473 hwaddr *phys_ptr, MemTxAttrs *txattrs,
9474 int *prot, uint32_t *fsr)
9475{
9476 uint32_t secure = regime_is_secure(env, mmu_idx);
9477 V8M_SAttributes sattrs = {};
9478
9479 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9480 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
9481 if (access_type == MMU_INST_FETCH) {
9482 /* Instruction fetches always use the MMU bank and the
9483 * transaction attribute determined by the fetch address,
9484 * regardless of CPU state. This is painful for QEMU
9485 * to handle, because it would mean we need to encode
9486 * into the mmu_idx not just the (user, negpri) information
9487 * for the current security state but also that for the
9488 * other security state, which would balloon the number
9489 * of mmu_idx values needed alarmingly.
9490 * Fortunately we can avoid this because it's not actually
9491 * possible to arbitrarily execute code from memory with
9492 * the wrong security attribute: it will always generate
9493 * an exception of some kind or another, apart from the
9494 * special case of an NS CPU executing an SG instruction
9495 * in S&NSC memory. So we always just fail the translation
9496 * here and sort things out in the exception handler
9497 * (including possibly emulating an SG instruction).
9498 */
9499 if (sattrs.ns != !secure) {
9500 *fsr = sattrs.nsc ? M_FAKE_FSR_NSC_EXEC : M_FAKE_FSR_SFAULT;
9501 *phys_ptr = address;
9502 *prot = 0;
9503 return true;
9504 }
9505 } else {
9506 /* For data accesses we always use the MMU bank indicated
9507 * by the current CPU state, but the security attributes
9508 * might downgrade a secure access to nonsecure.
9509 */
9510 if (sattrs.ns) {
9511 txattrs->secure = false;
9512 } else if (!secure) {
9513 /* NS access to S memory must fault.
9514 * Architecturally we should first check whether the
9515 * MPU information for this address indicates that we
9516 * are doing an unaligned access to Device memory, which
9517 * should generate a UsageFault instead. QEMU does not
9518 * currently check for that kind of unaligned access though.
9519 * If we added it we would need to do so as a special case
9520 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
9521 */
9522 *fsr = M_FAKE_FSR_SFAULT;
9523 *phys_ptr = address;
9524 *prot = 0;
9525 return true;
9526 }
9527 }
9528 }
9529
9530 return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
9531 txattrs, prot, fsr, NULL);
9532}
9533
13689d43 9534static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
03ae85f8 9535 MMUAccessType access_type, ARMMMUIdx mmu_idx,
13689d43 9536 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9ee6e8bb
PB
9537{
9538 int n;
9539 uint32_t mask;
9540 uint32_t base;
0480f69a 9541 bool is_user = regime_is_user(env, mmu_idx);
9ee6e8bb 9542
3279adb9
PM
9543 if (regime_translation_disabled(env, mmu_idx)) {
9544 /* MPU disabled. */
9545 *phys_ptr = address;
9546 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9547 return false;
9548 }
9549
9ee6e8bb
PB
9550 *phys_ptr = address;
9551 for (n = 7; n >= 0; n--) {
554b0b09 9552 base = env->cp15.c6_region[n];
87c3d486 9553 if ((base & 1) == 0) {
554b0b09 9554 continue;
87c3d486 9555 }
554b0b09
PM
9556 mask = 1 << ((base >> 1) & 0x1f);
9557 /* Keep this shift separate from the above to avoid an
9558 (undefined) << 32. */
9559 mask = (mask << 1) - 1;
87c3d486 9560 if (((base ^ address) & ~mask) == 0) {
554b0b09 9561 break;
87c3d486 9562 }
9ee6e8bb 9563 }
87c3d486 9564 if (n < 0) {
b7cc4e82
PC
9565 *fsr = 2;
9566 return true;
87c3d486 9567 }
9ee6e8bb 9568
03ae85f8 9569 if (access_type == MMU_INST_FETCH) {
7e09797c 9570 mask = env->cp15.pmsav5_insn_ap;
9ee6e8bb 9571 } else {
7e09797c 9572 mask = env->cp15.pmsav5_data_ap;
9ee6e8bb
PB
9573 }
9574 mask = (mask >> (n * 4)) & 0xf;
9575 switch (mask) {
9576 case 0:
b7cc4e82
PC
9577 *fsr = 1;
9578 return true;
9ee6e8bb 9579 case 1:
87c3d486 9580 if (is_user) {
b7cc4e82
PC
9581 *fsr = 1;
9582 return true;
87c3d486 9583 }
554b0b09
PM
9584 *prot = PAGE_READ | PAGE_WRITE;
9585 break;
9ee6e8bb 9586 case 2:
554b0b09 9587 *prot = PAGE_READ;
87c3d486 9588 if (!is_user) {
554b0b09 9589 *prot |= PAGE_WRITE;
87c3d486 9590 }
554b0b09 9591 break;
9ee6e8bb 9592 case 3:
554b0b09
PM
9593 *prot = PAGE_READ | PAGE_WRITE;
9594 break;
9ee6e8bb 9595 case 5:
87c3d486 9596 if (is_user) {
b7cc4e82
PC
9597 *fsr = 1;
9598 return true;
87c3d486 9599 }
554b0b09
PM
9600 *prot = PAGE_READ;
9601 break;
9ee6e8bb 9602 case 6:
554b0b09
PM
9603 *prot = PAGE_READ;
9604 break;
9ee6e8bb 9605 default:
554b0b09 9606 /* Bad permission. */
b7cc4e82
PC
9607 *fsr = 1;
9608 return true;
9ee6e8bb 9609 }
3ad493fc 9610 *prot |= PAGE_EXEC;
b7cc4e82 9611 return false;
9ee6e8bb
PB
9612}
9613
5b2d261d
AB
9614/* Combine either inner or outer cacheability attributes for normal
9615 * memory, according to table D4-42 and pseudocode procedure
9616 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
9617 *
9618 * NB: only stage 1 includes allocation hints (RW bits), leading to
9619 * some asymmetry.
9620 */
9621static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
9622{
9623 if (s1 == 4 || s2 == 4) {
9624 /* non-cacheable has precedence */
9625 return 4;
9626 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
9627 /* stage 1 write-through takes precedence */
9628 return s1;
9629 } else if (extract32(s2, 2, 2) == 2) {
9630 /* stage 2 write-through takes precedence, but the allocation hint
9631 * is still taken from stage 1
9632 */
9633 return (2 << 2) | extract32(s1, 0, 2);
9634 } else { /* write-back */
9635 return s1;
9636 }
9637}
9638
9639/* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
9640 * and CombineS1S2Desc()
9641 *
9642 * @s1: Attributes from stage 1 walk
9643 * @s2: Attributes from stage 2 walk
9644 */
9645static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
9646{
9647 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
9648 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
9649 ARMCacheAttrs ret;
9650
9651 /* Combine shareability attributes (table D4-43) */
9652 if (s1.shareability == 2 || s2.shareability == 2) {
9653 /* if either are outer-shareable, the result is outer-shareable */
9654 ret.shareability = 2;
9655 } else if (s1.shareability == 3 || s2.shareability == 3) {
9656 /* if either are inner-shareable, the result is inner-shareable */
9657 ret.shareability = 3;
9658 } else {
9659 /* both non-shareable */
9660 ret.shareability = 0;
9661 }
9662
9663 /* Combine memory type and cacheability attributes */
9664 if (s1hi == 0 || s2hi == 0) {
9665 /* Device has precedence over normal */
9666 if (s1lo == 0 || s2lo == 0) {
9667 /* nGnRnE has precedence over anything */
9668 ret.attrs = 0;
9669 } else if (s1lo == 4 || s2lo == 4) {
9670 /* non-Reordering has precedence over Reordering */
9671 ret.attrs = 4; /* nGnRE */
9672 } else if (s1lo == 8 || s2lo == 8) {
9673 /* non-Gathering has precedence over Gathering */
9674 ret.attrs = 8; /* nGRE */
9675 } else {
9676 ret.attrs = 0xc; /* GRE */
9677 }
9678
9679 /* Any location for which the resultant memory type is any
9680 * type of Device memory is always treated as Outer Shareable.
9681 */
9682 ret.shareability = 2;
9683 } else { /* Normal memory */
9684 /* Outer/inner cacheability combine independently */
9685 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
9686 | combine_cacheattr_nibble(s1lo, s2lo);
9687
9688 if (ret.attrs == 0x44) {
9689 /* Any location for which the resultant memory type is Normal
9690 * Inner Non-cacheable, Outer Non-cacheable is always treated
9691 * as Outer Shareable.
9692 */
9693 ret.shareability = 2;
9694 }
9695 }
9696
9697 return ret;
9698}
9699
9700
702a9357
PM
9701/* get_phys_addr - get the physical address for this virtual address
9702 *
9703 * Find the physical address corresponding to the given virtual address,
9704 * by doing a translation table walk on MMU based systems or using the
9705 * MPU state on MPU based systems.
9706 *
b7cc4e82
PC
9707 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
9708 * prot and page_size may not be filled in, and the populated fsr value provides
702a9357
PM
9709 * information on why the translation aborted, in the format of a
9710 * DFSR/IFSR fault register, with the following caveats:
9711 * * we honour the short vs long DFSR format differences.
9712 * * the WnR bit is never set (the caller must do this).
f6bda88f 9713 * * for PSMAv5 based systems we don't bother to return a full FSR format
702a9357
PM
9714 * value.
9715 *
9716 * @env: CPUARMState
9717 * @address: virtual address to get physical address for
9718 * @access_type: 0 for read, 1 for write, 2 for execute
d3649702 9719 * @mmu_idx: MMU index indicating required translation regime
702a9357 9720 * @phys_ptr: set to the physical address corresponding to the virtual address
8bf5b6a9 9721 * @attrs: set to the memory transaction attributes to use
702a9357
PM
9722 * @prot: set to the permissions for the page containing phys_ptr
9723 * @page_size: set to the size of the page containing phys_ptr
b7cc4e82 9724 * @fsr: set to the DFSR/IFSR value on failure
5b2d261d
AB
9725 * @fi: set to fault info if the translation fails
9726 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
702a9357 9727 */
af51f566 9728static bool get_phys_addr(CPUARMState *env, target_ulong address,
03ae85f8 9729 MMUAccessType access_type, ARMMMUIdx mmu_idx,
af51f566 9730 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23 9731 target_ulong *page_size, uint32_t *fsr,
5b2d261d 9732 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9ee6e8bb 9733{
0480f69a 9734 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9b539263
EI
9735 /* Call ourselves recursively to do the stage 1 and then stage 2
9736 * translations.
0480f69a 9737 */
9b539263
EI
9738 if (arm_feature(env, ARM_FEATURE_EL2)) {
9739 hwaddr ipa;
9740 int s2_prot;
9741 int ret;
5b2d261d 9742 ARMCacheAttrs cacheattrs2 = {};
9b539263
EI
9743
9744 ret = get_phys_addr(env, address, access_type,
8bd5c820 9745 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
5b2d261d 9746 prot, page_size, fsr, fi, cacheattrs);
9b539263
EI
9747
9748 /* If S1 fails or S2 is disabled, return early. */
9749 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9750 *phys_ptr = ipa;
9751 return ret;
9752 }
9753
9754 /* S1 is done. Now do S2 translation. */
9755 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
9756 phys_ptr, attrs, &s2_prot,
5b2d261d
AB
9757 page_size, fsr, fi,
9758 cacheattrs != NULL ? &cacheattrs2 : NULL);
9b539263
EI
9759 fi->s2addr = ipa;
9760 /* Combine the S1 and S2 perms. */
9761 *prot &= s2_prot;
5b2d261d
AB
9762
9763 /* Combine the S1 and S2 cache attributes, if needed */
9764 if (!ret && cacheattrs != NULL) {
9765 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
9766 }
9767
9b539263
EI
9768 return ret;
9769 } else {
9770 /*
9771 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
9772 */
8bd5c820 9773 mmu_idx = stage_1_mmu_idx(mmu_idx);
9b539263 9774 }
0480f69a 9775 }
d3649702 9776
8bf5b6a9
PM
9777 /* The page table entries may downgrade secure to non-secure, but
9778 * cannot upgrade an non-secure translation regime's attributes
9779 * to secure.
9780 */
9781 attrs->secure = regime_is_secure(env, mmu_idx);
0995bf8c 9782 attrs->user = regime_is_user(env, mmu_idx);
8bf5b6a9 9783
0480f69a
PM
9784 /* Fast Context Switch Extension. This doesn't exist at all in v8.
9785 * In v7 and earlier it affects all stage 1 translations.
9786 */
9787 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
9788 && !arm_feature(env, ARM_FEATURE_V8)) {
9789 if (regime_el(env, mmu_idx) == 3) {
9790 address += env->cp15.fcseidr_s;
9791 } else {
9792 address += env->cp15.fcseidr_ns;
9793 }
54bf36ed 9794 }
9ee6e8bb 9795
3279adb9 9796 if (arm_feature(env, ARM_FEATURE_PMSA)) {
c9f9f124 9797 bool ret;
f6bda88f 9798 *page_size = TARGET_PAGE_SIZE;
3279adb9 9799
504e3cc3
PM
9800 if (arm_feature(env, ARM_FEATURE_V8)) {
9801 /* PMSAv8 */
9802 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
35337cc3 9803 phys_ptr, attrs, prot, fsr);
504e3cc3 9804 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3279adb9
PM
9805 /* PMSAv7 */
9806 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
9807 phys_ptr, prot, fsr);
9808 } else {
9809 /* Pre-v7 MPU */
9810 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
9811 phys_ptr, prot, fsr);
9812 }
9813 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
c9f9f124 9814 " mmu_idx %u -> %s (prot %c%c%c)\n",
709e4407
PM
9815 access_type == MMU_DATA_LOAD ? "reading" :
9816 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
c9f9f124
MD
9817 (uint32_t)address, mmu_idx,
9818 ret ? "Miss" : "Hit",
9819 *prot & PAGE_READ ? 'r' : '-',
9820 *prot & PAGE_WRITE ? 'w' : '-',
9821 *prot & PAGE_EXEC ? 'x' : '-');
9822
9823 return ret;
f6bda88f
PC
9824 }
9825
3279adb9
PM
9826 /* Definitely a real MMU, not an MPU */
9827
0480f69a 9828 if (regime_translation_disabled(env, mmu_idx)) {
3279adb9 9829 /* MMU disabled. */
9ee6e8bb 9830 *phys_ptr = address;
3ad493fc 9831 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 9832 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb 9833 return 0;
0480f69a
PM
9834 }
9835
0480f69a
PM
9836 if (regime_using_lpae_format(env, mmu_idx)) {
9837 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
5b2d261d 9838 attrs, prot, page_size, fsr, fi, cacheattrs);
0480f69a
PM
9839 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
9840 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 9841 attrs, prot, page_size, fsr, fi);
9ee6e8bb 9842 } else {
0480f69a 9843 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 9844 prot, page_size, fsr, fi);
9ee6e8bb
PB
9845 }
9846}
9847
8c6084bf 9848/* Walk the page table and (if the mapping exists) add the page
b7cc4e82
PC
9849 * to the TLB. Return false on success, or true on failure. Populate
9850 * fsr with ARM DFSR/IFSR fault register format value on failure.
8c6084bf 9851 */
b7cc4e82 9852bool arm_tlb_fill(CPUState *cs, vaddr address,
03ae85f8 9853 MMUAccessType access_type, int mmu_idx, uint32_t *fsr,
e14b5a23 9854 ARMMMUFaultInfo *fi)
b5ff1b31 9855{
7510454e
AF
9856 ARMCPU *cpu = ARM_CPU(cs);
9857 CPUARMState *env = &cpu->env;
a8170e5e 9858 hwaddr phys_addr;
d4c430a8 9859 target_ulong page_size;
b5ff1b31 9860 int prot;
d3649702 9861 int ret;
8bf5b6a9 9862 MemTxAttrs attrs = {};
b5ff1b31 9863
8bd5c820
PM
9864 ret = get_phys_addr(env, address, access_type,
9865 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
5b2d261d 9866 &attrs, &prot, &page_size, fsr, fi, NULL);
b7cc4e82 9867 if (!ret) {
b5ff1b31 9868 /* Map a single [sub]page. */
dcd82c11
AB
9869 phys_addr &= TARGET_PAGE_MASK;
9870 address &= TARGET_PAGE_MASK;
8bf5b6a9
PM
9871 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
9872 prot, mmu_idx, page_size);
d4c430a8 9873 return 0;
b5ff1b31
FB
9874 }
9875
8c6084bf 9876 return ret;
b5ff1b31
FB
9877}
9878
0faea0c7
PM
9879hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
9880 MemTxAttrs *attrs)
b5ff1b31 9881{
00b941e5 9882 ARMCPU *cpu = ARM_CPU(cs);
d3649702 9883 CPUARMState *env = &cpu->env;
a8170e5e 9884 hwaddr phys_addr;
d4c430a8 9885 target_ulong page_size;
b5ff1b31 9886 int prot;
b7cc4e82
PC
9887 bool ret;
9888 uint32_t fsr;
e14b5a23 9889 ARMMMUFaultInfo fi = {};
8bd5c820 9890 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
b5ff1b31 9891
0faea0c7
PM
9892 *attrs = (MemTxAttrs) {};
9893
8bd5c820 9894 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
5b2d261d 9895 attrs, &prot, &page_size, &fsr, &fi, NULL);
b5ff1b31 9896
b7cc4e82 9897 if (ret) {
b5ff1b31 9898 return -1;
00b941e5 9899 }
b5ff1b31
FB
9900 return phys_addr;
9901}
9902
0ecb72a5 9903uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 9904{
58117c9b
MD
9905 uint32_t mask;
9906 unsigned el = arm_current_el(env);
9907
9908 /* First handle registers which unprivileged can read */
9909
9910 switch (reg) {
9911 case 0 ... 7: /* xPSR sub-fields */
9912 mask = 0;
9913 if ((reg & 1) && el) {
987ab45e 9914 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
58117c9b
MD
9915 }
9916 if (!(reg & 4)) {
987ab45e 9917 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
58117c9b
MD
9918 }
9919 /* EPSR reads as zero */
9920 return xpsr_read(env) & mask;
9921 break;
9922 case 20: /* CONTROL */
8bfc26ea 9923 return env->v7m.control[env->v7m.secure];
50f11062
PM
9924 case 0x94: /* CONTROL_NS */
9925 /* We have to handle this here because unprivileged Secure code
9926 * can read the NS CONTROL register.
9927 */
9928 if (!env->v7m.secure) {
9929 return 0;
9930 }
9931 return env->v7m.control[M_REG_NS];
58117c9b
MD
9932 }
9933
9934 if (el == 0) {
9935 return 0; /* unprivileged reads others as zero */
9936 }
a47dddd7 9937
50f11062
PM
9938 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9939 switch (reg) {
9940 case 0x88: /* MSP_NS */
9941 if (!env->v7m.secure) {
9942 return 0;
9943 }
9944 return env->v7m.other_ss_msp;
9945 case 0x89: /* PSP_NS */
9946 if (!env->v7m.secure) {
9947 return 0;
9948 }
9949 return env->v7m.other_ss_psp;
9950 case 0x90: /* PRIMASK_NS */
9951 if (!env->v7m.secure) {
9952 return 0;
9953 }
9954 return env->v7m.primask[M_REG_NS];
9955 case 0x91: /* BASEPRI_NS */
9956 if (!env->v7m.secure) {
9957 return 0;
9958 }
9959 return env->v7m.basepri[M_REG_NS];
9960 case 0x93: /* FAULTMASK_NS */
9961 if (!env->v7m.secure) {
9962 return 0;
9963 }
9964 return env->v7m.faultmask[M_REG_NS];
9965 case 0x98: /* SP_NS */
9966 {
9967 /* This gives the non-secure SP selected based on whether we're
9968 * currently in handler mode or not, using the NS CONTROL.SPSEL.
9969 */
9970 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
9971
9972 if (!env->v7m.secure) {
9973 return 0;
9974 }
9975 if (!arm_v7m_is_handler_mode(env) && spsel) {
9976 return env->v7m.other_ss_psp;
9977 } else {
9978 return env->v7m.other_ss_msp;
9979 }
9980 }
9981 default:
9982 break;
9983 }
9984 }
9985
9ee6e8bb 9986 switch (reg) {
9ee6e8bb 9987 case 8: /* MSP */
1169d3aa 9988 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
9ee6e8bb 9989 case 9: /* PSP */
1169d3aa 9990 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
9ee6e8bb 9991 case 16: /* PRIMASK */
6d804834 9992 return env->v7m.primask[env->v7m.secure];
82845826
SH
9993 case 17: /* BASEPRI */
9994 case 18: /* BASEPRI_MAX */
acf94941 9995 return env->v7m.basepri[env->v7m.secure];
82845826 9996 case 19: /* FAULTMASK */
42a6686b 9997 return env->v7m.faultmask[env->v7m.secure];
9ee6e8bb 9998 default:
58117c9b
MD
9999 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
10000 " register %d\n", reg);
9ee6e8bb
PB
10001 return 0;
10002 }
10003}
10004
b28b3377
PM
10005void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
10006{
10007 /* We're passed bits [11..0] of the instruction; extract
10008 * SYSm and the mask bits.
10009 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
10010 * we choose to treat them as if the mask bits were valid.
10011 * NB that the pseudocode 'mask' variable is bits [11..10],
10012 * whereas ours is [11..8].
10013 */
10014 uint32_t mask = extract32(maskreg, 8, 4);
10015 uint32_t reg = extract32(maskreg, 0, 8);
10016
58117c9b
MD
10017 if (arm_current_el(env) == 0 && reg > 7) {
10018 /* only xPSR sub-fields may be written by unprivileged */
10019 return;
10020 }
a47dddd7 10021
50f11062
PM
10022 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10023 switch (reg) {
10024 case 0x88: /* MSP_NS */
10025 if (!env->v7m.secure) {
10026 return;
10027 }
10028 env->v7m.other_ss_msp = val;
10029 return;
10030 case 0x89: /* PSP_NS */
10031 if (!env->v7m.secure) {
10032 return;
10033 }
10034 env->v7m.other_ss_psp = val;
10035 return;
10036 case 0x90: /* PRIMASK_NS */
10037 if (!env->v7m.secure) {
10038 return;
10039 }
10040 env->v7m.primask[M_REG_NS] = val & 1;
10041 return;
10042 case 0x91: /* BASEPRI_NS */
10043 if (!env->v7m.secure) {
10044 return;
10045 }
10046 env->v7m.basepri[M_REG_NS] = val & 0xff;
10047 return;
10048 case 0x93: /* FAULTMASK_NS */
10049 if (!env->v7m.secure) {
10050 return;
10051 }
10052 env->v7m.faultmask[M_REG_NS] = val & 1;
10053 return;
10054 case 0x98: /* SP_NS */
10055 {
10056 /* This gives the non-secure SP selected based on whether we're
10057 * currently in handler mode or not, using the NS CONTROL.SPSEL.
10058 */
10059 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10060
10061 if (!env->v7m.secure) {
10062 return;
10063 }
10064 if (!arm_v7m_is_handler_mode(env) && spsel) {
10065 env->v7m.other_ss_psp = val;
10066 } else {
10067 env->v7m.other_ss_msp = val;
10068 }
10069 return;
10070 }
10071 default:
10072 break;
10073 }
10074 }
10075
9ee6e8bb 10076 switch (reg) {
58117c9b
MD
10077 case 0 ... 7: /* xPSR sub-fields */
10078 /* only APSR is actually writable */
b28b3377
PM
10079 if (!(reg & 4)) {
10080 uint32_t apsrmask = 0;
10081
10082 if (mask & 8) {
987ab45e 10083 apsrmask |= XPSR_NZCV | XPSR_Q;
b28b3377
PM
10084 }
10085 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
987ab45e 10086 apsrmask |= XPSR_GE;
b28b3377
PM
10087 }
10088 xpsr_write(env, val, apsrmask);
58117c9b 10089 }
9ee6e8bb
PB
10090 break;
10091 case 8: /* MSP */
1169d3aa 10092 if (v7m_using_psp(env)) {
9ee6e8bb 10093 env->v7m.other_sp = val;
abc24d86 10094 } else {
9ee6e8bb 10095 env->regs[13] = val;
abc24d86 10096 }
9ee6e8bb
PB
10097 break;
10098 case 9: /* PSP */
1169d3aa 10099 if (v7m_using_psp(env)) {
9ee6e8bb 10100 env->regs[13] = val;
abc24d86 10101 } else {
9ee6e8bb 10102 env->v7m.other_sp = val;
abc24d86 10103 }
9ee6e8bb
PB
10104 break;
10105 case 16: /* PRIMASK */
6d804834 10106 env->v7m.primask[env->v7m.secure] = val & 1;
9ee6e8bb 10107 break;
82845826 10108 case 17: /* BASEPRI */
acf94941 10109 env->v7m.basepri[env->v7m.secure] = val & 0xff;
9ee6e8bb 10110 break;
82845826 10111 case 18: /* BASEPRI_MAX */
9ee6e8bb 10112 val &= 0xff;
acf94941
PM
10113 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
10114 || env->v7m.basepri[env->v7m.secure] == 0)) {
10115 env->v7m.basepri[env->v7m.secure] = val;
10116 }
9ee6e8bb 10117 break;
82845826 10118 case 19: /* FAULTMASK */
42a6686b 10119 env->v7m.faultmask[env->v7m.secure] = val & 1;
82845826 10120 break;
9ee6e8bb 10121 case 20: /* CONTROL */
792dac30
PM
10122 /* Writing to the SPSEL bit only has an effect if we are in
10123 * thread mode; other bits can be updated by any privileged code.
de2db7ec 10124 * write_v7m_control_spsel() deals with updating the SPSEL bit in
792dac30 10125 * env->v7m.control, so we only need update the others.
83d7f86d
PM
10126 * For v7M, we must just ignore explicit writes to SPSEL in handler
10127 * mode; for v8M the write is permitted but will have no effect.
792dac30 10128 */
83d7f86d
PM
10129 if (arm_feature(env, ARM_FEATURE_V8) ||
10130 !arm_v7m_is_handler_mode(env)) {
de2db7ec 10131 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
792dac30 10132 }
8bfc26ea
PM
10133 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
10134 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
9ee6e8bb
PB
10135 break;
10136 default:
58117c9b
MD
10137 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
10138 " register %d\n", reg);
9ee6e8bb
PB
10139 return;
10140 }
10141}
10142
b5ff1b31 10143#endif
6ddbc6e4 10144
aca3f40b
PM
10145void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
10146{
10147 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
10148 * Note that we do not implement the (architecturally mandated)
10149 * alignment fault for attempts to use this on Device memory
10150 * (which matches the usual QEMU behaviour of not implementing either
10151 * alignment faults or any memory attribute handling).
10152 */
10153
10154 ARMCPU *cpu = arm_env_get_cpu(env);
10155 uint64_t blocklen = 4 << cpu->dcz_blocksize;
10156 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
10157
10158#ifndef CONFIG_USER_ONLY
10159 {
10160 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
10161 * the block size so we might have to do more than one TLB lookup.
10162 * We know that in fact for any v8 CPU the page size is at least 4K
10163 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
10164 * 1K as an artefact of legacy v5 subpage support being present in the
10165 * same QEMU executable.
10166 */
10167 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
10168 void *hostaddr[maxidx];
10169 int try, i;
97ed5ccd 10170 unsigned mmu_idx = cpu_mmu_index(env, false);
3972ef6f 10171 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
aca3f40b
PM
10172
10173 for (try = 0; try < 2; try++) {
10174
10175 for (i = 0; i < maxidx; i++) {
10176 hostaddr[i] = tlb_vaddr_to_host(env,
10177 vaddr + TARGET_PAGE_SIZE * i,
3972ef6f 10178 1, mmu_idx);
aca3f40b
PM
10179 if (!hostaddr[i]) {
10180 break;
10181 }
10182 }
10183 if (i == maxidx) {
10184 /* If it's all in the TLB it's fair game for just writing to;
10185 * we know we don't need to update dirty status, etc.
10186 */
10187 for (i = 0; i < maxidx - 1; i++) {
10188 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
10189 }
10190 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
10191 return;
10192 }
10193 /* OK, try a store and see if we can populate the tlb. This
10194 * might cause an exception if the memory isn't writable,
10195 * in which case we will longjmp out of here. We must for
10196 * this purpose use the actual register value passed to us
10197 * so that we get the fault address right.
10198 */
01ecaf43 10199 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
aca3f40b
PM
10200 /* Now we can populate the other TLB entries, if any */
10201 for (i = 0; i < maxidx; i++) {
10202 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
10203 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
01ecaf43 10204 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
aca3f40b
PM
10205 }
10206 }
10207 }
10208
10209 /* Slow path (probably attempt to do this to an I/O device or
10210 * similar, or clearing of a block of code we have translations
10211 * cached for). Just do a series of byte writes as the architecture
10212 * demands. It's not worth trying to use a cpu_physical_memory_map(),
10213 * memset(), unmap() sequence here because:
10214 * + we'd need to account for the blocksize being larger than a page
10215 * + the direct-RAM access case is almost always going to be dealt
10216 * with in the fastpath code above, so there's no speed benefit
10217 * + we would have to deal with the map returning NULL because the
10218 * bounce buffer was in use
10219 */
10220 for (i = 0; i < blocklen; i++) {
01ecaf43 10221 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
aca3f40b
PM
10222 }
10223 }
10224#else
10225 memset(g2h(vaddr), 0, blocklen);
10226#endif
10227}
10228
6ddbc6e4
PB
10229/* Note that signed overflow is undefined in C. The following routines are
10230 careful to use unsigned types where modulo arithmetic is required.
10231 Failure to do so _will_ break on newer gcc. */
10232
10233/* Signed saturating arithmetic. */
10234
1654b2d6 10235/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
10236static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10237{
10238 uint16_t res;
10239
10240 res = a + b;
10241 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10242 if (a & 0x8000)
10243 res = 0x8000;
10244 else
10245 res = 0x7fff;
10246 }
10247 return res;
10248}
10249
1654b2d6 10250/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
10251static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10252{
10253 uint8_t res;
10254
10255 res = a + b;
10256 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10257 if (a & 0x80)
10258 res = 0x80;
10259 else
10260 res = 0x7f;
10261 }
10262 return res;
10263}
10264
1654b2d6 10265/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
10266static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10267{
10268 uint16_t res;
10269
10270 res = a - b;
10271 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10272 if (a & 0x8000)
10273 res = 0x8000;
10274 else
10275 res = 0x7fff;
10276 }
10277 return res;
10278}
10279
1654b2d6 10280/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
10281static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10282{
10283 uint8_t res;
10284
10285 res = a - b;
10286 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10287 if (a & 0x80)
10288 res = 0x80;
10289 else
10290 res = 0x7f;
10291 }
10292 return res;
10293}
10294
10295#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10296#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10297#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
10298#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
10299#define PFX q
10300
10301#include "op_addsub.h"
10302
10303/* Unsigned saturating arithmetic. */
460a09c1 10304static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
10305{
10306 uint16_t res;
10307 res = a + b;
10308 if (res < a)
10309 res = 0xffff;
10310 return res;
10311}
10312
460a09c1 10313static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 10314{
4c4fd3f8 10315 if (a > b)
6ddbc6e4
PB
10316 return a - b;
10317 else
10318 return 0;
10319}
10320
10321static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10322{
10323 uint8_t res;
10324 res = a + b;
10325 if (res < a)
10326 res = 0xff;
10327 return res;
10328}
10329
10330static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10331{
4c4fd3f8 10332 if (a > b)
6ddbc6e4
PB
10333 return a - b;
10334 else
10335 return 0;
10336}
10337
10338#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10339#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10340#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
10341#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
10342#define PFX uq
10343
10344#include "op_addsub.h"
10345
10346/* Signed modulo arithmetic. */
10347#define SARITH16(a, b, n, op) do { \
10348 int32_t sum; \
db6e2e65 10349 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
10350 RESULT(sum, n, 16); \
10351 if (sum >= 0) \
10352 ge |= 3 << (n * 2); \
10353 } while(0)
10354
10355#define SARITH8(a, b, n, op) do { \
10356 int32_t sum; \
db6e2e65 10357 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
10358 RESULT(sum, n, 8); \
10359 if (sum >= 0) \
10360 ge |= 1 << n; \
10361 } while(0)
10362
10363
10364#define ADD16(a, b, n) SARITH16(a, b, n, +)
10365#define SUB16(a, b, n) SARITH16(a, b, n, -)
10366#define ADD8(a, b, n) SARITH8(a, b, n, +)
10367#define SUB8(a, b, n) SARITH8(a, b, n, -)
10368#define PFX s
10369#define ARITH_GE
10370
10371#include "op_addsub.h"
10372
10373/* Unsigned modulo arithmetic. */
10374#define ADD16(a, b, n) do { \
10375 uint32_t sum; \
10376 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10377 RESULT(sum, n, 16); \
a87aa10b 10378 if ((sum >> 16) == 1) \
6ddbc6e4
PB
10379 ge |= 3 << (n * 2); \
10380 } while(0)
10381
10382#define ADD8(a, b, n) do { \
10383 uint32_t sum; \
10384 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10385 RESULT(sum, n, 8); \
a87aa10b
AZ
10386 if ((sum >> 8) == 1) \
10387 ge |= 1 << n; \
6ddbc6e4
PB
10388 } while(0)
10389
10390#define SUB16(a, b, n) do { \
10391 uint32_t sum; \
10392 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10393 RESULT(sum, n, 16); \
10394 if ((sum >> 16) == 0) \
10395 ge |= 3 << (n * 2); \
10396 } while(0)
10397
10398#define SUB8(a, b, n) do { \
10399 uint32_t sum; \
10400 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10401 RESULT(sum, n, 8); \
10402 if ((sum >> 8) == 0) \
a87aa10b 10403 ge |= 1 << n; \
6ddbc6e4
PB
10404 } while(0)
10405
10406#define PFX u
10407#define ARITH_GE
10408
10409#include "op_addsub.h"
10410
10411/* Halved signed arithmetic. */
10412#define ADD16(a, b, n) \
10413 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10414#define SUB16(a, b, n) \
10415 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10416#define ADD8(a, b, n) \
10417 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10418#define SUB8(a, b, n) \
10419 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10420#define PFX sh
10421
10422#include "op_addsub.h"
10423
10424/* Halved unsigned arithmetic. */
10425#define ADD16(a, b, n) \
10426 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10427#define SUB16(a, b, n) \
10428 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10429#define ADD8(a, b, n) \
10430 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10431#define SUB8(a, b, n) \
10432 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10433#define PFX uh
10434
10435#include "op_addsub.h"
10436
10437static inline uint8_t do_usad(uint8_t a, uint8_t b)
10438{
10439 if (a > b)
10440 return a - b;
10441 else
10442 return b - a;
10443}
10444
10445/* Unsigned sum of absolute byte differences. */
10446uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10447{
10448 uint32_t sum;
10449 sum = do_usad(a, b);
10450 sum += do_usad(a >> 8, b >> 8);
10451 sum += do_usad(a >> 16, b >>16);
10452 sum += do_usad(a >> 24, b >> 24);
10453 return sum;
10454}
10455
10456/* For ARMv6 SEL instruction. */
10457uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10458{
10459 uint32_t mask;
10460
10461 mask = 0;
10462 if (flags & 1)
10463 mask |= 0xff;
10464 if (flags & 2)
10465 mask |= 0xff00;
10466 if (flags & 4)
10467 mask |= 0xff0000;
10468 if (flags & 8)
10469 mask |= 0xff000000;
10470 return (a & mask) | (b & ~mask);
10471}
10472
b90372ad
PM
10473/* VFP support. We follow the convention used for VFP instructions:
10474 Single precision routines have a "s" suffix, double precision a
4373f3ce
PB
10475 "d" suffix. */
10476
10477/* Convert host exception flags to vfp form. */
10478static inline int vfp_exceptbits_from_host(int host_bits)
10479{
10480 int target_bits = 0;
10481
10482 if (host_bits & float_flag_invalid)
10483 target_bits |= 1;
10484 if (host_bits & float_flag_divbyzero)
10485 target_bits |= 2;
10486 if (host_bits & float_flag_overflow)
10487 target_bits |= 4;
36802b6b 10488 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4373f3ce
PB
10489 target_bits |= 8;
10490 if (host_bits & float_flag_inexact)
10491 target_bits |= 0x10;
cecd8504
PM
10492 if (host_bits & float_flag_input_denormal)
10493 target_bits |= 0x80;
4373f3ce
PB
10494 return target_bits;
10495}
10496
0ecb72a5 10497uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4373f3ce
PB
10498{
10499 int i;
10500 uint32_t fpscr;
10501
10502 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
10503 | (env->vfp.vec_len << 16)
10504 | (env->vfp.vec_stride << 20);
10505 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 10506 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4373f3ce
PB
10507 fpscr |= vfp_exceptbits_from_host(i);
10508 return fpscr;
10509}
10510
0ecb72a5 10511uint32_t vfp_get_fpscr(CPUARMState *env)
01653295
PM
10512{
10513 return HELPER(vfp_get_fpscr)(env);
10514}
10515
4373f3ce
PB
10516/* Convert vfp exception flags to target form. */
10517static inline int vfp_exceptbits_to_host(int target_bits)
10518{
10519 int host_bits = 0;
10520
10521 if (target_bits & 1)
10522 host_bits |= float_flag_invalid;
10523 if (target_bits & 2)
10524 host_bits |= float_flag_divbyzero;
10525 if (target_bits & 4)
10526 host_bits |= float_flag_overflow;
10527 if (target_bits & 8)
10528 host_bits |= float_flag_underflow;
10529 if (target_bits & 0x10)
10530 host_bits |= float_flag_inexact;
cecd8504
PM
10531 if (target_bits & 0x80)
10532 host_bits |= float_flag_input_denormal;
4373f3ce
PB
10533 return host_bits;
10534}
10535
0ecb72a5 10536void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4373f3ce
PB
10537{
10538 int i;
10539 uint32_t changed;
10540
10541 changed = env->vfp.xregs[ARM_VFP_FPSCR];
10542 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
10543 env->vfp.vec_len = (val >> 16) & 7;
10544 env->vfp.vec_stride = (val >> 20) & 3;
10545
10546 changed ^= val;
10547 if (changed & (3 << 22)) {
10548 i = (val >> 22) & 3;
10549 switch (i) {
4d3da0f3 10550 case FPROUNDING_TIEEVEN:
4373f3ce
PB
10551 i = float_round_nearest_even;
10552 break;
4d3da0f3 10553 case FPROUNDING_POSINF:
4373f3ce
PB
10554 i = float_round_up;
10555 break;
4d3da0f3 10556 case FPROUNDING_NEGINF:
4373f3ce
PB
10557 i = float_round_down;
10558 break;
4d3da0f3 10559 case FPROUNDING_ZERO:
4373f3ce
PB
10560 i = float_round_to_zero;
10561 break;
10562 }
10563 set_float_rounding_mode(i, &env->vfp.fp_status);
10564 }
cecd8504 10565 if (changed & (1 << 24)) {
fe76d976 10566 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
cecd8504
PM
10567 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
10568 }
5c7908ed
PB
10569 if (changed & (1 << 25))
10570 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce 10571
b12c390b 10572 i = vfp_exceptbits_to_host(val);
4373f3ce 10573 set_float_exception_flags(i, &env->vfp.fp_status);
3a492f3a 10574 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
10575}
10576
0ecb72a5 10577void vfp_set_fpscr(CPUARMState *env, uint32_t val)
01653295
PM
10578{
10579 HELPER(vfp_set_fpscr)(env, val);
10580}
10581
4373f3ce
PB
10582#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
10583
10584#define VFP_BINOP(name) \
ae1857ec 10585float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4373f3ce 10586{ \
ae1857ec
PM
10587 float_status *fpst = fpstp; \
10588 return float32_ ## name(a, b, fpst); \
4373f3ce 10589} \
ae1857ec 10590float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4373f3ce 10591{ \
ae1857ec
PM
10592 float_status *fpst = fpstp; \
10593 return float64_ ## name(a, b, fpst); \
4373f3ce
PB
10594}
10595VFP_BINOP(add)
10596VFP_BINOP(sub)
10597VFP_BINOP(mul)
10598VFP_BINOP(div)
f71a2ae5
PM
10599VFP_BINOP(min)
10600VFP_BINOP(max)
10601VFP_BINOP(minnum)
10602VFP_BINOP(maxnum)
4373f3ce
PB
10603#undef VFP_BINOP
10604
10605float32 VFP_HELPER(neg, s)(float32 a)
10606{
10607 return float32_chs(a);
10608}
10609
10610float64 VFP_HELPER(neg, d)(float64 a)
10611{
66230e0d 10612 return float64_chs(a);
4373f3ce
PB
10613}
10614
10615float32 VFP_HELPER(abs, s)(float32 a)
10616{
10617 return float32_abs(a);
10618}
10619
10620float64 VFP_HELPER(abs, d)(float64 a)
10621{
66230e0d 10622 return float64_abs(a);
4373f3ce
PB
10623}
10624
0ecb72a5 10625float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4373f3ce
PB
10626{
10627 return float32_sqrt(a, &env->vfp.fp_status);
10628}
10629
0ecb72a5 10630float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4373f3ce
PB
10631{
10632 return float64_sqrt(a, &env->vfp.fp_status);
10633}
10634
10635/* XXX: check quiet/signaling case */
10636#define DO_VFP_cmp(p, type) \
0ecb72a5 10637void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
10638{ \
10639 uint32_t flags; \
10640 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
10641 case 0: flags = 0x6; break; \
10642 case -1: flags = 0x8; break; \
10643 case 1: flags = 0x2; break; \
10644 default: case 2: flags = 0x3; break; \
10645 } \
10646 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10647 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10648} \
0ecb72a5 10649void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
10650{ \
10651 uint32_t flags; \
10652 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
10653 case 0: flags = 0x6; break; \
10654 case -1: flags = 0x8; break; \
10655 case 1: flags = 0x2; break; \
10656 default: case 2: flags = 0x3; break; \
10657 } \
10658 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10659 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10660}
10661DO_VFP_cmp(s, float32)
10662DO_VFP_cmp(d, float64)
10663#undef DO_VFP_cmp
10664
5500b06c 10665/* Integer to float and float to integer conversions */
4373f3ce 10666
5500b06c
PM
10667#define CONV_ITOF(name, fsz, sign) \
10668 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
10669{ \
10670 float_status *fpst = fpstp; \
85836979 10671 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4373f3ce
PB
10672}
10673
5500b06c
PM
10674#define CONV_FTOI(name, fsz, sign, round) \
10675uint32_t HELPER(name)(float##fsz x, void *fpstp) \
10676{ \
10677 float_status *fpst = fpstp; \
10678 if (float##fsz##_is_any_nan(x)) { \
10679 float_raise(float_flag_invalid, fpst); \
10680 return 0; \
10681 } \
10682 return float##fsz##_to_##sign##int32##round(x, fpst); \
4373f3ce
PB
10683}
10684
5500b06c
PM
10685#define FLOAT_CONVS(name, p, fsz, sign) \
10686CONV_ITOF(vfp_##name##to##p, fsz, sign) \
10687CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
10688CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4373f3ce 10689
5500b06c
PM
10690FLOAT_CONVS(si, s, 32, )
10691FLOAT_CONVS(si, d, 64, )
10692FLOAT_CONVS(ui, s, 32, u)
10693FLOAT_CONVS(ui, d, 64, u)
4373f3ce 10694
5500b06c
PM
10695#undef CONV_ITOF
10696#undef CONV_FTOI
10697#undef FLOAT_CONVS
4373f3ce
PB
10698
10699/* floating point conversion */
0ecb72a5 10700float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4373f3ce 10701{
2d627737
PM
10702 float64 r = float32_to_float64(x, &env->vfp.fp_status);
10703 /* ARM requires that S<->D conversion of any kind of NaN generates
10704 * a quiet NaN by forcing the most significant frac bit to 1.
10705 */
af39bc8c 10706 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
4373f3ce
PB
10707}
10708
0ecb72a5 10709float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4373f3ce 10710{
2d627737
PM
10711 float32 r = float64_to_float32(x, &env->vfp.fp_status);
10712 /* ARM requires that S<->D conversion of any kind of NaN generates
10713 * a quiet NaN by forcing the most significant frac bit to 1.
10714 */
af39bc8c 10715 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
4373f3ce
PB
10716}
10717
10718/* VFP3 fixed point conversion. */
16d5b3ca 10719#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8ed697e8
WN
10720float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
10721 void *fpstp) \
4373f3ce 10722{ \
5500b06c 10723 float_status *fpst = fpstp; \
622465e1 10724 float##fsz tmp; \
8ed697e8 10725 tmp = itype##_to_##float##fsz(x, fpst); \
5500b06c 10726 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
16d5b3ca
WN
10727}
10728
abe66f70
PM
10729/* Notice that we want only input-denormal exception flags from the
10730 * scalbn operation: the other possible flags (overflow+inexact if
10731 * we overflow to infinity, output-denormal) aren't correct for the
10732 * complete scale-and-convert operation.
10733 */
16d5b3ca
WN
10734#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
10735uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
10736 uint32_t shift, \
10737 void *fpstp) \
4373f3ce 10738{ \
5500b06c 10739 float_status *fpst = fpstp; \
abe66f70 10740 int old_exc_flags = get_float_exception_flags(fpst); \
622465e1
PM
10741 float##fsz tmp; \
10742 if (float##fsz##_is_any_nan(x)) { \
5500b06c 10743 float_raise(float_flag_invalid, fpst); \
622465e1 10744 return 0; \
09d9487f 10745 } \
5500b06c 10746 tmp = float##fsz##_scalbn(x, shift, fpst); \
abe66f70
PM
10747 old_exc_flags |= get_float_exception_flags(fpst) \
10748 & float_flag_input_denormal; \
10749 set_float_exception_flags(old_exc_flags, fpst); \
16d5b3ca 10750 return float##fsz##_to_##itype##round(tmp, fpst); \
622465e1
PM
10751}
10752
16d5b3ca
WN
10753#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
10754VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
3c6a074a
WN
10755VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
10756VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10757
10758#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
10759VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10760VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
16d5b3ca 10761
8ed697e8
WN
10762VFP_CONV_FIX(sh, d, 64, 64, int16)
10763VFP_CONV_FIX(sl, d, 64, 64, int32)
3c6a074a 10764VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8ed697e8
WN
10765VFP_CONV_FIX(uh, d, 64, 64, uint16)
10766VFP_CONV_FIX(ul, d, 64, 64, uint32)
3c6a074a 10767VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8ed697e8
WN
10768VFP_CONV_FIX(sh, s, 32, 32, int16)
10769VFP_CONV_FIX(sl, s, 32, 32, int32)
3c6a074a 10770VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8ed697e8
WN
10771VFP_CONV_FIX(uh, s, 32, 32, uint16)
10772VFP_CONV_FIX(ul, s, 32, 32, uint32)
3c6a074a 10773VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4373f3ce 10774#undef VFP_CONV_FIX
16d5b3ca
WN
10775#undef VFP_CONV_FIX_FLOAT
10776#undef VFP_CONV_FLOAT_FIX_ROUND
4373f3ce 10777
52a1f6a3
AG
10778/* Set the current fp rounding mode and return the old one.
10779 * The argument is a softfloat float_round_ value.
10780 */
10781uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
10782{
10783 float_status *fp_status = &env->vfp.fp_status;
10784
10785 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10786 set_float_rounding_mode(rmode, fp_status);
10787
10788 return prev_rmode;
10789}
10790
43630e58
WN
10791/* Set the current fp rounding mode in the standard fp status and return
10792 * the old one. This is for NEON instructions that need to change the
10793 * rounding mode but wish to use the standard FPSCR values for everything
10794 * else. Always set the rounding mode back to the correct value after
10795 * modifying it.
10796 * The argument is a softfloat float_round_ value.
10797 */
10798uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
10799{
10800 float_status *fp_status = &env->vfp.standard_fp_status;
10801
10802 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10803 set_float_rounding_mode(rmode, fp_status);
10804
10805 return prev_rmode;
10806}
10807
60011498 10808/* Half precision conversions. */
0ecb72a5 10809static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
60011498 10810{
60011498 10811 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
10812 float32 r = float16_to_float32(make_float16(a), ieee, s);
10813 if (ieee) {
af39bc8c 10814 return float32_maybe_silence_nan(r, s);
fb91678d
PM
10815 }
10816 return r;
60011498
PB
10817}
10818
0ecb72a5 10819static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
60011498 10820{
60011498 10821 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
10822 float16 r = float32_to_float16(a, ieee, s);
10823 if (ieee) {
af39bc8c 10824 r = float16_maybe_silence_nan(r, s);
fb91678d
PM
10825 }
10826 return float16_val(r);
60011498
PB
10827}
10828
0ecb72a5 10829float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
10830{
10831 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
10832}
10833
0ecb72a5 10834uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
10835{
10836 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
10837}
10838
0ecb72a5 10839float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
10840{
10841 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
10842}
10843
0ecb72a5 10844uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
10845{
10846 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
10847}
10848
8900aad2
PM
10849float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
10850{
10851 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10852 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
10853 if (ieee) {
af39bc8c 10854 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
8900aad2
PM
10855 }
10856 return r;
10857}
10858
10859uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
10860{
10861 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10862 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
10863 if (ieee) {
af39bc8c 10864 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
8900aad2
PM
10865 }
10866 return float16_val(r);
10867}
10868
dda3ec49 10869#define float32_two make_float32(0x40000000)
6aae3df1
PM
10870#define float32_three make_float32(0x40400000)
10871#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 10872
0ecb72a5 10873float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 10874{
dda3ec49
PM
10875 float_status *s = &env->vfp.standard_fp_status;
10876 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
10877 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
10878 if (!(float32_is_zero(a) || float32_is_zero(b))) {
10879 float_raise(float_flag_input_denormal, s);
10880 }
dda3ec49
PM
10881 return float32_two;
10882 }
10883 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
10884}
10885
0ecb72a5 10886float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 10887{
71826966 10888 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
10889 float32 product;
10890 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
10891 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
10892 if (!(float32_is_zero(a) || float32_is_zero(b))) {
10893 float_raise(float_flag_input_denormal, s);
10894 }
6aae3df1 10895 return float32_one_point_five;
9ea62f57 10896 }
6aae3df1
PM
10897 product = float32_mul(a, b, s);
10898 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
10899}
10900
8f8e3aa4
PB
10901/* NEON helpers. */
10902
56bf4fe2
CL
10903/* Constants 256 and 512 are used in some helpers; we avoid relying on
10904 * int->float conversions at run-time. */
10905#define float64_256 make_float64(0x4070000000000000LL)
10906#define float64_512 make_float64(0x4080000000000000LL)
b6d4443a
AB
10907#define float32_maxnorm make_float32(0x7f7fffff)
10908#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
56bf4fe2 10909
b6d4443a
AB
10910/* Reciprocal functions
10911 *
10912 * The algorithm that must be used to calculate the estimate
10913 * is specified by the ARM ARM, see FPRecipEstimate()
fe0e4872 10914 */
b6d4443a
AB
10915
10916static float64 recip_estimate(float64 a, float_status *real_fp_status)
fe0e4872 10917{
1146a817
PM
10918 /* These calculations mustn't set any fp exception flags,
10919 * so we use a local copy of the fp_status.
10920 */
b6d4443a 10921 float_status dummy_status = *real_fp_status;
1146a817 10922 float_status *s = &dummy_status;
fe0e4872
CL
10923 /* q = (int)(a * 512.0) */
10924 float64 q = float64_mul(float64_512, a, s);
10925 int64_t q_int = float64_to_int64_round_to_zero(q, s);
10926
10927 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
10928 q = int64_to_float64(q_int, s);
10929 q = float64_add(q, float64_half, s);
10930 q = float64_div(q, float64_512, s);
10931 q = float64_div(float64_one, q, s);
10932
10933 /* s = (int)(256.0 * r + 0.5) */
10934 q = float64_mul(q, float64_256, s);
10935 q = float64_add(q, float64_half, s);
10936 q_int = float64_to_int64_round_to_zero(q, s);
10937
10938 /* return (double)s / 256.0 */
10939 return float64_div(int64_to_float64(q_int, s), float64_256, s);
10940}
10941
b6d4443a
AB
10942/* Common wrapper to call recip_estimate */
10943static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
4373f3ce 10944{
b6d4443a
AB
10945 uint64_t val64 = float64_val(num);
10946 uint64_t frac = extract64(val64, 0, 52);
10947 int64_t exp = extract64(val64, 52, 11);
10948 uint64_t sbit;
10949 float64 scaled, estimate;
fe0e4872 10950
b6d4443a
AB
10951 /* Generate the scaled number for the estimate function */
10952 if (exp == 0) {
10953 if (extract64(frac, 51, 1) == 0) {
10954 exp = -1;
10955 frac = extract64(frac, 0, 50) << 2;
10956 } else {
10957 frac = extract64(frac, 0, 51) << 1;
10958 }
10959 }
fe0e4872 10960
b6d4443a
AB
10961 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
10962 scaled = make_float64((0x3feULL << 52)
10963 | extract64(frac, 44, 8) << 44);
10964
10965 estimate = recip_estimate(scaled, fpst);
10966
10967 /* Build new result */
10968 val64 = float64_val(estimate);
10969 sbit = 0x8000000000000000ULL & val64;
10970 exp = off - exp;
10971 frac = extract64(val64, 0, 52);
10972
10973 if (exp == 0) {
10974 frac = 1ULL << 51 | extract64(frac, 1, 51);
10975 } else if (exp == -1) {
10976 frac = 1ULL << 50 | extract64(frac, 2, 50);
10977 exp = 0;
10978 }
10979
10980 return make_float64(sbit | (exp << 52) | frac);
10981}
10982
10983static bool round_to_inf(float_status *fpst, bool sign_bit)
10984{
10985 switch (fpst->float_rounding_mode) {
10986 case float_round_nearest_even: /* Round to Nearest */
10987 return true;
10988 case float_round_up: /* Round to +Inf */
10989 return !sign_bit;
10990 case float_round_down: /* Round to -Inf */
10991 return sign_bit;
10992 case float_round_to_zero: /* Round to Zero */
10993 return false;
10994 }
10995
10996 g_assert_not_reached();
10997}
10998
10999float32 HELPER(recpe_f32)(float32 input, void *fpstp)
11000{
11001 float_status *fpst = fpstp;
11002 float32 f32 = float32_squash_input_denormal(input, fpst);
11003 uint32_t f32_val = float32_val(f32);
11004 uint32_t f32_sbit = 0x80000000ULL & f32_val;
11005 int32_t f32_exp = extract32(f32_val, 23, 8);
11006 uint32_t f32_frac = extract32(f32_val, 0, 23);
11007 float64 f64, r64;
11008 uint64_t r64_val;
11009 int64_t r64_exp;
11010 uint64_t r64_frac;
11011
11012 if (float32_is_any_nan(f32)) {
11013 float32 nan = f32;
af39bc8c 11014 if (float32_is_signaling_nan(f32, fpst)) {
b6d4443a 11015 float_raise(float_flag_invalid, fpst);
af39bc8c 11016 nan = float32_maybe_silence_nan(f32, fpst);
fe0e4872 11017 }
b6d4443a 11018 if (fpst->default_nan_mode) {
af39bc8c 11019 nan = float32_default_nan(fpst);
43fe9bdb 11020 }
b6d4443a
AB
11021 return nan;
11022 } else if (float32_is_infinity(f32)) {
11023 return float32_set_sign(float32_zero, float32_is_neg(f32));
11024 } else if (float32_is_zero(f32)) {
11025 float_raise(float_flag_divbyzero, fpst);
11026 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11027 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
11028 /* Abs(value) < 2.0^-128 */
11029 float_raise(float_flag_overflow | float_flag_inexact, fpst);
11030 if (round_to_inf(fpst, f32_sbit)) {
11031 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11032 } else {
11033 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
11034 }
11035 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
11036 float_raise(float_flag_underflow, fpst);
11037 return float32_set_sign(float32_zero, float32_is_neg(f32));
fe0e4872
CL
11038 }
11039
fe0e4872 11040
b6d4443a
AB
11041 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
11042 r64 = call_recip_estimate(f64, 253, fpst);
11043 r64_val = float64_val(r64);
11044 r64_exp = extract64(r64_val, 52, 11);
11045 r64_frac = extract64(r64_val, 0, 52);
11046
11047 /* result = sign : result_exp<7:0> : fraction<51:29>; */
11048 return make_float32(f32_sbit |
11049 (r64_exp & 0xff) << 23 |
11050 extract64(r64_frac, 29, 24));
11051}
11052
11053float64 HELPER(recpe_f64)(float64 input, void *fpstp)
11054{
11055 float_status *fpst = fpstp;
11056 float64 f64 = float64_squash_input_denormal(input, fpst);
11057 uint64_t f64_val = float64_val(f64);
11058 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
11059 int64_t f64_exp = extract64(f64_val, 52, 11);
11060 float64 r64;
11061 uint64_t r64_val;
11062 int64_t r64_exp;
11063 uint64_t r64_frac;
11064
11065 /* Deal with any special cases */
11066 if (float64_is_any_nan(f64)) {
11067 float64 nan = f64;
af39bc8c 11068 if (float64_is_signaling_nan(f64, fpst)) {
b6d4443a 11069 float_raise(float_flag_invalid, fpst);
af39bc8c 11070 nan = float64_maybe_silence_nan(f64, fpst);
b6d4443a
AB
11071 }
11072 if (fpst->default_nan_mode) {
af39bc8c 11073 nan = float64_default_nan(fpst);
b6d4443a
AB
11074 }
11075 return nan;
11076 } else if (float64_is_infinity(f64)) {
11077 return float64_set_sign(float64_zero, float64_is_neg(f64));
11078 } else if (float64_is_zero(f64)) {
11079 float_raise(float_flag_divbyzero, fpst);
11080 return float64_set_sign(float64_infinity, float64_is_neg(f64));
11081 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
11082 /* Abs(value) < 2.0^-1024 */
11083 float_raise(float_flag_overflow | float_flag_inexact, fpst);
11084 if (round_to_inf(fpst, f64_sbit)) {
11085 return float64_set_sign(float64_infinity, float64_is_neg(f64));
11086 } else {
11087 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
11088 }
fc1792e9 11089 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
b6d4443a
AB
11090 float_raise(float_flag_underflow, fpst);
11091 return float64_set_sign(float64_zero, float64_is_neg(f64));
11092 }
fe0e4872 11093
b6d4443a
AB
11094 r64 = call_recip_estimate(f64, 2045, fpst);
11095 r64_val = float64_val(r64);
11096 r64_exp = extract64(r64_val, 52, 11);
11097 r64_frac = extract64(r64_val, 0, 52);
fe0e4872 11098
b6d4443a
AB
11099 /* result = sign : result_exp<10:0> : fraction<51:0> */
11100 return make_float64(f64_sbit |
11101 ((r64_exp & 0x7ff) << 52) |
11102 r64_frac);
4373f3ce
PB
11103}
11104
e07be5d2
CL
11105/* The algorithm that must be used to calculate the estimate
11106 * is specified by the ARM ARM.
11107 */
c2fb418e 11108static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
e07be5d2 11109{
1146a817
PM
11110 /* These calculations mustn't set any fp exception flags,
11111 * so we use a local copy of the fp_status.
11112 */
c2fb418e 11113 float_status dummy_status = *real_fp_status;
1146a817 11114 float_status *s = &dummy_status;
e07be5d2
CL
11115 float64 q;
11116 int64_t q_int;
11117
11118 if (float64_lt(a, float64_half, s)) {
11119 /* range 0.25 <= a < 0.5 */
11120
11121 /* a in units of 1/512 rounded down */
11122 /* q0 = (int)(a * 512.0); */
11123 q = float64_mul(float64_512, a, s);
11124 q_int = float64_to_int64_round_to_zero(q, s);
11125
11126 /* reciprocal root r */
11127 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
11128 q = int64_to_float64(q_int, s);
11129 q = float64_add(q, float64_half, s);
11130 q = float64_div(q, float64_512, s);
11131 q = float64_sqrt(q, s);
11132 q = float64_div(float64_one, q, s);
11133 } else {
11134 /* range 0.5 <= a < 1.0 */
11135
11136 /* a in units of 1/256 rounded down */
11137 /* q1 = (int)(a * 256.0); */
11138 q = float64_mul(float64_256, a, s);
11139 int64_t q_int = float64_to_int64_round_to_zero(q, s);
11140
11141 /* reciprocal root r */
11142 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
11143 q = int64_to_float64(q_int, s);
11144 q = float64_add(q, float64_half, s);
11145 q = float64_div(q, float64_256, s);
11146 q = float64_sqrt(q, s);
11147 q = float64_div(float64_one, q, s);
11148 }
11149 /* r in units of 1/256 rounded to nearest */
11150 /* s = (int)(256.0 * r + 0.5); */
11151
11152 q = float64_mul(q, float64_256,s );
11153 q = float64_add(q, float64_half, s);
11154 q_int = float64_to_int64_round_to_zero(q, s);
11155
11156 /* return (double)s / 256.0;*/
11157 return float64_div(int64_to_float64(q_int, s), float64_256, s);
11158}
11159
c2fb418e 11160float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
4373f3ce 11161{
c2fb418e
AB
11162 float_status *s = fpstp;
11163 float32 f32 = float32_squash_input_denormal(input, s);
11164 uint32_t val = float32_val(f32);
11165 uint32_t f32_sbit = 0x80000000 & val;
11166 int32_t f32_exp = extract32(val, 23, 8);
11167 uint32_t f32_frac = extract32(val, 0, 23);
11168 uint64_t f64_frac;
11169 uint64_t val64;
e07be5d2
CL
11170 int result_exp;
11171 float64 f64;
e07be5d2 11172
c2fb418e
AB
11173 if (float32_is_any_nan(f32)) {
11174 float32 nan = f32;
af39bc8c 11175 if (float32_is_signaling_nan(f32, s)) {
e07be5d2 11176 float_raise(float_flag_invalid, s);
af39bc8c 11177 nan = float32_maybe_silence_nan(f32, s);
e07be5d2 11178 }
c2fb418e 11179 if (s->default_nan_mode) {
af39bc8c 11180 nan = float32_default_nan(s);
43fe9bdb 11181 }
c2fb418e
AB
11182 return nan;
11183 } else if (float32_is_zero(f32)) {
e07be5d2 11184 float_raise(float_flag_divbyzero, s);
c2fb418e
AB
11185 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11186 } else if (float32_is_neg(f32)) {
e07be5d2 11187 float_raise(float_flag_invalid, s);
af39bc8c 11188 return float32_default_nan(s);
c2fb418e 11189 } else if (float32_is_infinity(f32)) {
e07be5d2
CL
11190 return float32_zero;
11191 }
11192
c2fb418e 11193 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
e07be5d2 11194 * preserving the parity of the exponent. */
c2fb418e
AB
11195
11196 f64_frac = ((uint64_t) f32_frac) << 29;
11197 if (f32_exp == 0) {
11198 while (extract64(f64_frac, 51, 1) == 0) {
11199 f64_frac = f64_frac << 1;
11200 f32_exp = f32_exp-1;
11201 }
11202 f64_frac = extract64(f64_frac, 0, 51) << 1;
11203 }
11204
11205 if (extract64(f32_exp, 0, 1) == 0) {
11206 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 11207 | (0x3feULL << 52)
c2fb418e 11208 | f64_frac);
e07be5d2 11209 } else {
c2fb418e 11210 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 11211 | (0x3fdULL << 52)
c2fb418e 11212 | f64_frac);
e07be5d2
CL
11213 }
11214
c2fb418e 11215 result_exp = (380 - f32_exp) / 2;
e07be5d2 11216
c2fb418e 11217 f64 = recip_sqrt_estimate(f64, s);
e07be5d2
CL
11218
11219 val64 = float64_val(f64);
11220
26cc6abf 11221 val = ((result_exp & 0xff) << 23)
e07be5d2
CL
11222 | ((val64 >> 29) & 0x7fffff);
11223 return make_float32(val);
4373f3ce
PB
11224}
11225
c2fb418e
AB
11226float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
11227{
11228 float_status *s = fpstp;
11229 float64 f64 = float64_squash_input_denormal(input, s);
11230 uint64_t val = float64_val(f64);
11231 uint64_t f64_sbit = 0x8000000000000000ULL & val;
11232 int64_t f64_exp = extract64(val, 52, 11);
11233 uint64_t f64_frac = extract64(val, 0, 52);
11234 int64_t result_exp;
11235 uint64_t result_frac;
11236
11237 if (float64_is_any_nan(f64)) {
11238 float64 nan = f64;
af39bc8c 11239 if (float64_is_signaling_nan(f64, s)) {
c2fb418e 11240 float_raise(float_flag_invalid, s);
af39bc8c 11241 nan = float64_maybe_silence_nan(f64, s);
c2fb418e
AB
11242 }
11243 if (s->default_nan_mode) {
af39bc8c 11244 nan = float64_default_nan(s);
c2fb418e
AB
11245 }
11246 return nan;
11247 } else if (float64_is_zero(f64)) {
11248 float_raise(float_flag_divbyzero, s);
11249 return float64_set_sign(float64_infinity, float64_is_neg(f64));
11250 } else if (float64_is_neg(f64)) {
11251 float_raise(float_flag_invalid, s);
af39bc8c 11252 return float64_default_nan(s);
c2fb418e
AB
11253 } else if (float64_is_infinity(f64)) {
11254 return float64_zero;
11255 }
11256
11257 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11258 * preserving the parity of the exponent. */
11259
11260 if (f64_exp == 0) {
11261 while (extract64(f64_frac, 51, 1) == 0) {
11262 f64_frac = f64_frac << 1;
11263 f64_exp = f64_exp - 1;
11264 }
11265 f64_frac = extract64(f64_frac, 0, 51) << 1;
11266 }
11267
11268 if (extract64(f64_exp, 0, 1) == 0) {
11269 f64 = make_float64(f64_sbit
11270 | (0x3feULL << 52)
11271 | f64_frac);
11272 } else {
11273 f64 = make_float64(f64_sbit
11274 | (0x3fdULL << 52)
11275 | f64_frac);
11276 }
11277
11278 result_exp = (3068 - f64_exp) / 2;
11279
11280 f64 = recip_sqrt_estimate(f64, s);
11281
11282 result_frac = extract64(float64_val(f64), 0, 52);
11283
11284 return make_float64(f64_sbit |
11285 ((result_exp & 0x7ff) << 52) |
11286 result_frac);
11287}
11288
b6d4443a 11289uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
4373f3ce 11290{
b6d4443a 11291 float_status *s = fpstp;
fe0e4872
CL
11292 float64 f64;
11293
11294 if ((a & 0x80000000) == 0) {
11295 return 0xffffffff;
11296 }
11297
11298 f64 = make_float64((0x3feULL << 52)
11299 | ((int64_t)(a & 0x7fffffff) << 21));
11300
b6d4443a 11301 f64 = recip_estimate(f64, s);
fe0e4872
CL
11302
11303 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce
PB
11304}
11305
c2fb418e 11306uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
4373f3ce 11307{
c2fb418e 11308 float_status *fpst = fpstp;
e07be5d2
CL
11309 float64 f64;
11310
11311 if ((a & 0xc0000000) == 0) {
11312 return 0xffffffff;
11313 }
11314
11315 if (a & 0x80000000) {
11316 f64 = make_float64((0x3feULL << 52)
11317 | ((uint64_t)(a & 0x7fffffff) << 21));
11318 } else { /* bits 31-30 == '01' */
11319 f64 = make_float64((0x3fdULL << 52)
11320 | ((uint64_t)(a & 0x3fffffff) << 22));
11321 }
11322
c2fb418e 11323 f64 = recip_sqrt_estimate(f64, fpst);
e07be5d2
CL
11324
11325 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce 11326}
fe1479c3 11327
da97f52c
PM
11328/* VFPv4 fused multiply-accumulate */
11329float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
11330{
11331 float_status *fpst = fpstp;
11332 return float32_muladd(a, b, c, 0, fpst);
11333}
11334
11335float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
11336{
11337 float_status *fpst = fpstp;
11338 return float64_muladd(a, b, c, 0, fpst);
11339}
d9b0848d
PM
11340
11341/* ARMv8 round to integral */
11342float32 HELPER(rints_exact)(float32 x, void *fp_status)
11343{
11344 return float32_round_to_int(x, fp_status);
11345}
11346
11347float64 HELPER(rintd_exact)(float64 x, void *fp_status)
11348{
11349 return float64_round_to_int(x, fp_status);
11350}
11351
11352float32 HELPER(rints)(float32 x, void *fp_status)
11353{
11354 int old_flags = get_float_exception_flags(fp_status), new_flags;
11355 float32 ret;
11356
11357 ret = float32_round_to_int(x, fp_status);
11358
11359 /* Suppress any inexact exceptions the conversion produced */
11360 if (!(old_flags & float_flag_inexact)) {
11361 new_flags = get_float_exception_flags(fp_status);
11362 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11363 }
11364
11365 return ret;
11366}
11367
11368float64 HELPER(rintd)(float64 x, void *fp_status)
11369{
11370 int old_flags = get_float_exception_flags(fp_status), new_flags;
11371 float64 ret;
11372
11373 ret = float64_round_to_int(x, fp_status);
11374
11375 new_flags = get_float_exception_flags(fp_status);
11376
11377 /* Suppress any inexact exceptions the conversion produced */
11378 if (!(old_flags & float_flag_inexact)) {
11379 new_flags = get_float_exception_flags(fp_status);
11380 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11381 }
11382
11383 return ret;
11384}
9972da66
WN
11385
11386/* Convert ARM rounding mode to softfloat */
11387int arm_rmode_to_sf(int rmode)
11388{
11389 switch (rmode) {
11390 case FPROUNDING_TIEAWAY:
11391 rmode = float_round_ties_away;
11392 break;
11393 case FPROUNDING_ODD:
11394 /* FIXME: add support for TIEAWAY and ODD */
11395 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
11396 rmode);
11397 case FPROUNDING_TIEEVEN:
11398 default:
11399 rmode = float_round_nearest_even;
11400 break;
11401 case FPROUNDING_POSINF:
11402 rmode = float_round_up;
11403 break;
11404 case FPROUNDING_NEGINF:
11405 rmode = float_round_down;
11406 break;
11407 case FPROUNDING_ZERO:
11408 rmode = float_round_to_zero;
11409 break;
11410 }
11411 return rmode;
11412}
eb0ecd5a 11413
aa633469
PM
11414/* CRC helpers.
11415 * The upper bytes of val (above the number specified by 'bytes') must have
11416 * been zeroed out by the caller.
11417 */
eb0ecd5a
WN
11418uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11419{
11420 uint8_t buf[4];
11421
aa633469 11422 stl_le_p(buf, val);
eb0ecd5a
WN
11423
11424 /* zlib crc32 converts the accumulator and output to one's complement. */
11425 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11426}
11427
11428uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11429{
11430 uint8_t buf[4];
11431
aa633469 11432 stl_le_p(buf, val);
eb0ecd5a
WN
11433
11434 /* Linux crc32c converts the output to one's complement. */
11435 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11436}