]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/helper.c
target/arm: Add MMU indexes for secure v8M
[mirror_qemu.git] / target / arm / helper.c
CommitLineData
74c21bd0 1#include "qemu/osdep.h"
194cbc49 2#include "trace.h"
b5ff1b31 3#include "cpu.h"
ccd38087 4#include "internals.h"
022c62cb 5#include "exec/gdbstub.h"
2ef6175a 6#include "exec/helper-proto.h"
1de7afc9 7#include "qemu/host-utils.h"
78027bb6 8#include "sysemu/arch_init.h"
9c17d615 9#include "sysemu/sysemu.h"
1de7afc9 10#include "qemu/bitops.h"
eb0ecd5a 11#include "qemu/crc32c.h"
63c91552 12#include "exec/exec-all.h"
f08b6170 13#include "exec/cpu_ldst.h"
1d854765 14#include "arm_ldst.h"
eb0ecd5a 15#include <zlib.h> /* For crc32 */
cfe67cef 16#include "exec/semihost.h"
f3a9b694 17#include "sysemu/kvm.h"
0b03bdfc 18
352c98e5
LV
19#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20
4a501606 21#ifndef CONFIG_USER_ONLY
af51f566 22static bool get_phys_addr(CPUARMState *env, target_ulong address,
03ae85f8 23 MMUAccessType access_type, ARMMMUIdx mmu_idx,
af51f566 24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
25 target_ulong *page_size, uint32_t *fsr,
26 ARMMMUFaultInfo *fi);
7c2cb42b 27
37785977 28static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
03ae85f8 29 MMUAccessType access_type, ARMMMUIdx mmu_idx,
37785977
EI
30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31 target_ulong *page_size_ptr, uint32_t *fsr,
32 ARMMMUFaultInfo *fi);
33
7c2cb42b
AF
34/* Definitions for the PMCCNTR and PMCR registers */
35#define PMCRD 0x8
36#define PMCRC 0x4
37#define PMCRE 0x1
4a501606
PM
38#endif
39
0ecb72a5 40static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
41{
42 int nregs;
43
44 /* VFP data registers are always little-endian. */
45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46 if (reg < nregs) {
47 stfq_le_p(buf, env->vfp.regs[reg]);
48 return 8;
49 }
50 if (arm_feature(env, ARM_FEATURE_NEON)) {
51 /* Aliases for Q regs. */
52 nregs += 16;
53 if (reg < nregs) {
54 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
55 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
56 return 16;
57 }
58 }
59 switch (reg - nregs) {
60 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
61 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
62 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
63 }
64 return 0;
65}
66
0ecb72a5 67static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
68{
69 int nregs;
70
71 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
72 if (reg < nregs) {
73 env->vfp.regs[reg] = ldfq_le_p(buf);
74 return 8;
75 }
76 if (arm_feature(env, ARM_FEATURE_NEON)) {
77 nregs += 16;
78 if (reg < nregs) {
79 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
80 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
81 return 16;
82 }
83 }
84 switch (reg - nregs) {
85 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
86 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 87 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
88 }
89 return 0;
90}
91
6a669427
PM
92static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
93{
94 switch (reg) {
95 case 0 ... 31:
96 /* 128 bit FP register */
97 stfq_le_p(buf, env->vfp.regs[reg * 2]);
98 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
99 return 16;
100 case 32:
101 /* FPSR */
102 stl_p(buf, vfp_get_fpsr(env));
103 return 4;
104 case 33:
105 /* FPCR */
106 stl_p(buf, vfp_get_fpcr(env));
107 return 4;
108 default:
109 return 0;
110 }
111}
112
113static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
114{
115 switch (reg) {
116 case 0 ... 31:
117 /* 128 bit FP register */
118 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
119 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
120 return 16;
121 case 32:
122 /* FPSR */
123 vfp_set_fpsr(env, ldl_p(buf));
124 return 4;
125 case 33:
126 /* FPCR */
127 vfp_set_fpcr(env, ldl_p(buf));
128 return 4;
129 default:
130 return 0;
131 }
132}
133
c4241c7d 134static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
d4e6df63 135{
375421cc 136 assert(ri->fieldoffset);
67ed771d 137 if (cpreg_field_is_64bit(ri)) {
c4241c7d 138 return CPREG_FIELD64(env, ri);
22d9e1a9 139 } else {
c4241c7d 140 return CPREG_FIELD32(env, ri);
22d9e1a9 141 }
d4e6df63
PM
142}
143
c4241c7d
PM
144static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
145 uint64_t value)
d4e6df63 146{
375421cc 147 assert(ri->fieldoffset);
67ed771d 148 if (cpreg_field_is_64bit(ri)) {
22d9e1a9
PM
149 CPREG_FIELD64(env, ri) = value;
150 } else {
151 CPREG_FIELD32(env, ri) = value;
152 }
d4e6df63
PM
153}
154
11f136ee
FA
155static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
156{
157 return (char *)env + ri->fieldoffset;
158}
159
49a66191 160uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
721fae12 161{
59a1c327 162 /* Raw read of a coprocessor register (as needed for migration, etc). */
721fae12 163 if (ri->type & ARM_CP_CONST) {
59a1c327 164 return ri->resetvalue;
721fae12 165 } else if (ri->raw_readfn) {
59a1c327 166 return ri->raw_readfn(env, ri);
721fae12 167 } else if (ri->readfn) {
59a1c327 168 return ri->readfn(env, ri);
721fae12 169 } else {
59a1c327 170 return raw_read(env, ri);
721fae12 171 }
721fae12
PM
172}
173
59a1c327 174static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
7900e9f1 175 uint64_t v)
721fae12
PM
176{
177 /* Raw write of a coprocessor register (as needed for migration, etc).
721fae12
PM
178 * Note that constant registers are treated as write-ignored; the
179 * caller should check for success by whether a readback gives the
180 * value written.
181 */
182 if (ri->type & ARM_CP_CONST) {
59a1c327 183 return;
721fae12 184 } else if (ri->raw_writefn) {
c4241c7d 185 ri->raw_writefn(env, ri, v);
721fae12 186 } else if (ri->writefn) {
c4241c7d 187 ri->writefn(env, ri, v);
721fae12 188 } else {
afb2530f 189 raw_write(env, ri, v);
721fae12 190 }
721fae12
PM
191}
192
375421cc
PM
193static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
194{
195 /* Return true if the regdef would cause an assertion if you called
196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197 * program bug for it not to have the NO_RAW flag).
198 * NB that returning false here doesn't necessarily mean that calling
199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200 * read/write access functions which are safe for raw use" from "has
201 * read/write access functions which have side effects but has forgotten
202 * to provide raw access functions".
203 * The tests here line up with the conditions in read/write_raw_cp_reg()
204 * and assertions in raw_read()/raw_write().
205 */
206 if ((ri->type & ARM_CP_CONST) ||
207 ri->fieldoffset ||
208 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
209 return false;
210 }
211 return true;
212}
213
721fae12
PM
214bool write_cpustate_to_list(ARMCPU *cpu)
215{
216 /* Write the coprocessor state from cpu->env to the (index,value) list. */
217 int i;
218 bool ok = true;
219
220 for (i = 0; i < cpu->cpreg_array_len; i++) {
221 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
222 const ARMCPRegInfo *ri;
59a1c327 223
60322b39 224 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
225 if (!ri) {
226 ok = false;
227 continue;
228 }
7a0e58fa 229 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
230 continue;
231 }
59a1c327 232 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
721fae12
PM
233 }
234 return ok;
235}
236
237bool write_list_to_cpustate(ARMCPU *cpu)
238{
239 int i;
240 bool ok = true;
241
242 for (i = 0; i < cpu->cpreg_array_len; i++) {
243 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
244 uint64_t v = cpu->cpreg_values[i];
721fae12
PM
245 const ARMCPRegInfo *ri;
246
60322b39 247 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
248 if (!ri) {
249 ok = false;
250 continue;
251 }
7a0e58fa 252 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
253 continue;
254 }
255 /* Write value and confirm it reads back as written
256 * (to catch read-only registers and partially read-only
257 * registers where the incoming migration value doesn't match)
258 */
59a1c327
PM
259 write_raw_cp_reg(&cpu->env, ri, v);
260 if (read_raw_cp_reg(&cpu->env, ri) != v) {
721fae12
PM
261 ok = false;
262 }
263 }
264 return ok;
265}
266
267static void add_cpreg_to_list(gpointer key, gpointer opaque)
268{
269 ARMCPU *cpu = opaque;
270 uint64_t regidx;
271 const ARMCPRegInfo *ri;
272
273 regidx = *(uint32_t *)key;
60322b39 274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 275
7a0e58fa 276 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
277 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
278 /* The value array need not be initialized at this point */
279 cpu->cpreg_array_len++;
280 }
281}
282
283static void count_cpreg(gpointer key, gpointer opaque)
284{
285 ARMCPU *cpu = opaque;
286 uint64_t regidx;
287 const ARMCPRegInfo *ri;
288
289 regidx = *(uint32_t *)key;
60322b39 290 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 291
7a0e58fa 292 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
293 cpu->cpreg_array_len++;
294 }
295}
296
297static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
298{
cbf239b7
AR
299 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
300 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
721fae12 301
cbf239b7
AR
302 if (aidx > bidx) {
303 return 1;
304 }
305 if (aidx < bidx) {
306 return -1;
307 }
308 return 0;
721fae12
PM
309}
310
311void init_cpreg_list(ARMCPU *cpu)
312{
313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314 * Note that we require cpreg_tuples[] to be sorted by key ID.
315 */
57b6d95e 316 GList *keys;
721fae12
PM
317 int arraylen;
318
57b6d95e 319 keys = g_hash_table_get_keys(cpu->cp_regs);
721fae12
PM
320 keys = g_list_sort(keys, cpreg_key_compare);
321
322 cpu->cpreg_array_len = 0;
323
324 g_list_foreach(keys, count_cpreg, cpu);
325
326 arraylen = cpu->cpreg_array_len;
327 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
330 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
331 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
332 cpu->cpreg_array_len = 0;
333
334 g_list_foreach(keys, add_cpreg_to_list, cpu);
335
336 assert(cpu->cpreg_array_len == arraylen);
337
338 g_list_free(keys);
339}
340
68e9c2fe
EI
341/*
342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
344 *
345 * access_el3_aa32ns: Used to check AArch32 register views.
346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
347 */
348static CPAccessResult access_el3_aa32ns(CPUARMState *env,
3f208fd7
PM
349 const ARMCPRegInfo *ri,
350 bool isread)
68e9c2fe
EI
351{
352 bool secure = arm_is_secure_below_el3(env);
353
354 assert(!arm_el_is_aa64(env, 3));
355 if (secure) {
356 return CP_ACCESS_TRAP_UNCATEGORIZED;
357 }
358 return CP_ACCESS_OK;
359}
360
361static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
3f208fd7
PM
362 const ARMCPRegInfo *ri,
363 bool isread)
68e9c2fe
EI
364{
365 if (!arm_el_is_aa64(env, 3)) {
3f208fd7 366 return access_el3_aa32ns(env, ri, isread);
68e9c2fe
EI
367 }
368 return CP_ACCESS_OK;
369}
370
5513c3ab
PM
371/* Some secure-only AArch32 registers trap to EL3 if used from
372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374 * We assume that the .access field is set to PL1_RW.
375 */
376static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
3f208fd7
PM
377 const ARMCPRegInfo *ri,
378 bool isread)
5513c3ab
PM
379{
380 if (arm_current_el(env) == 3) {
381 return CP_ACCESS_OK;
382 }
383 if (arm_is_secure_below_el3(env)) {
384 return CP_ACCESS_TRAP_EL3;
385 }
386 /* This will be EL1 NS and EL2 NS, which just UNDEF */
387 return CP_ACCESS_TRAP_UNCATEGORIZED;
388}
389
187f678d
PM
390/* Check for traps to "powerdown debug" registers, which are controlled
391 * by MDCR.TDOSA
392 */
393static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
394 bool isread)
395{
396 int el = arm_current_el(env);
397
398 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
399 && !arm_is_secure_below_el3(env)) {
400 return CP_ACCESS_TRAP_EL2;
401 }
402 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
403 return CP_ACCESS_TRAP_EL3;
404 }
405 return CP_ACCESS_OK;
406}
407
91b0a238
PM
408/* Check for traps to "debug ROM" registers, which are controlled
409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
410 */
411static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
412 bool isread)
413{
414 int el = arm_current_el(env);
415
416 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
417 && !arm_is_secure_below_el3(env)) {
418 return CP_ACCESS_TRAP_EL2;
419 }
420 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
421 return CP_ACCESS_TRAP_EL3;
422 }
423 return CP_ACCESS_OK;
424}
425
d6c8cf81
PM
426/* Check for traps to general debug registers, which are controlled
427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
428 */
429static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
430 bool isread)
431{
432 int el = arm_current_el(env);
433
434 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
435 && !arm_is_secure_below_el3(env)) {
436 return CP_ACCESS_TRAP_EL2;
437 }
438 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
439 return CP_ACCESS_TRAP_EL3;
440 }
441 return CP_ACCESS_OK;
442}
443
1fce1ba9
PM
444/* Check for traps to performance monitor registers, which are controlled
445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
446 */
447static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
448 bool isread)
449{
450 int el = arm_current_el(env);
451
452 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
453 && !arm_is_secure_below_el3(env)) {
454 return CP_ACCESS_TRAP_EL2;
455 }
456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
457 return CP_ACCESS_TRAP_EL3;
458 }
459 return CP_ACCESS_OK;
460}
461
c4241c7d 462static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
c983fe6c 463{
00c8cb0a
AF
464 ARMCPU *cpu = arm_env_get_cpu(env);
465
8d5c773e 466 raw_write(env, ri, value);
d10eb08f 467 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
c983fe6c
PM
468}
469
c4241c7d 470static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
08de207b 471{
00c8cb0a
AF
472 ARMCPU *cpu = arm_env_get_cpu(env);
473
8d5c773e 474 if (raw_read(env, ri) != value) {
08de207b
PM
475 /* Unlike real hardware the qemu TLB uses virtual addresses,
476 * not modified virtual addresses, so this causes a TLB flush.
477 */
d10eb08f 478 tlb_flush(CPU(cpu));
8d5c773e 479 raw_write(env, ri, value);
08de207b 480 }
08de207b 481}
c4241c7d
PM
482
483static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484 uint64_t value)
08de207b 485{
00c8cb0a
AF
486 ARMCPU *cpu = arm_env_get_cpu(env);
487
452a0955 488 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
014406b5 489 && !extended_addresses_enabled(env)) {
08de207b
PM
490 /* For VMSA (when not using the LPAE long descriptor page table
491 * format) this register includes the ASID, so do a TLB flush.
492 * For PMSA it is purely a process ID and no action is needed.
493 */
d10eb08f 494 tlb_flush(CPU(cpu));
08de207b 495 }
8d5c773e 496 raw_write(env, ri, value);
08de207b
PM
497}
498
c4241c7d
PM
499static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
d929823f
PM
501{
502 /* Invalidate all (TLBIALL) */
00c8cb0a
AF
503 ARMCPU *cpu = arm_env_get_cpu(env);
504
d10eb08f 505 tlb_flush(CPU(cpu));
d929823f
PM
506}
507
c4241c7d
PM
508static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
509 uint64_t value)
d929823f
PM
510{
511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
31b030d4
AF
512 ARMCPU *cpu = arm_env_get_cpu(env);
513
514 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
515}
516
c4241c7d
PM
517static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
518 uint64_t value)
d929823f
PM
519{
520 /* Invalidate by ASID (TLBIASID) */
00c8cb0a
AF
521 ARMCPU *cpu = arm_env_get_cpu(env);
522
d10eb08f 523 tlb_flush(CPU(cpu));
d929823f
PM
524}
525
c4241c7d
PM
526static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
d929823f
PM
528{
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
31b030d4
AF
530 ARMCPU *cpu = arm_env_get_cpu(env);
531
532 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
533}
534
fa439fc5
PM
535/* IS variants of TLB operations must affect all cores */
536static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
537 uint64_t value)
538{
a67cf277 539 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 540
a67cf277 541 tlb_flush_all_cpus_synced(cs);
fa439fc5
PM
542}
543
544static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
545 uint64_t value)
546{
a67cf277 547 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 548
a67cf277 549 tlb_flush_all_cpus_synced(cs);
fa439fc5
PM
550}
551
552static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
553 uint64_t value)
554{
a67cf277 555 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 556
a67cf277 557 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
fa439fc5
PM
558}
559
560static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
561 uint64_t value)
562{
a67cf277 563 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 564
a67cf277 565 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
fa439fc5
PM
566}
567
541ef8c2
SS
568static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
569 uint64_t value)
570{
571 CPUState *cs = ENV_GET_CPU(env);
572
0336cbf8 573 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
574 ARMMMUIdxBit_S12NSE1 |
575 ARMMMUIdxBit_S12NSE0 |
576 ARMMMUIdxBit_S2NS);
541ef8c2
SS
577}
578
579static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
580 uint64_t value)
581{
a67cf277 582 CPUState *cs = ENV_GET_CPU(env);
541ef8c2 583
a67cf277 584 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
585 ARMMMUIdxBit_S12NSE1 |
586 ARMMMUIdxBit_S12NSE0 |
587 ARMMMUIdxBit_S2NS);
541ef8c2
SS
588}
589
590static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
591 uint64_t value)
592{
593 /* Invalidate by IPA. This has to invalidate any structures that
594 * contain only stage 2 translation information, but does not need
595 * to apply to structures that contain combined stage 1 and stage 2
596 * translation information.
597 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
598 */
599 CPUState *cs = ENV_GET_CPU(env);
600 uint64_t pageaddr;
601
602 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
603 return;
604 }
605
606 pageaddr = sextract64(value << 12, 0, 40);
607
8bd5c820 608 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
541ef8c2
SS
609}
610
611static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
612 uint64_t value)
613{
a67cf277 614 CPUState *cs = ENV_GET_CPU(env);
541ef8c2
SS
615 uint64_t pageaddr;
616
617 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
618 return;
619 }
620
621 pageaddr = sextract64(value << 12, 0, 40);
622
a67cf277 623 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 624 ARMMMUIdxBit_S2NS);
541ef8c2
SS
625}
626
627static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
628 uint64_t value)
629{
630 CPUState *cs = ENV_GET_CPU(env);
631
8bd5c820 632 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
541ef8c2
SS
633}
634
635static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
636 uint64_t value)
637{
a67cf277 638 CPUState *cs = ENV_GET_CPU(env);
541ef8c2 639
8bd5c820 640 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
541ef8c2
SS
641}
642
643static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
644 uint64_t value)
645{
646 CPUState *cs = ENV_GET_CPU(env);
647 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
648
8bd5c820 649 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
541ef8c2
SS
650}
651
652static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
653 uint64_t value)
654{
a67cf277 655 CPUState *cs = ENV_GET_CPU(env);
541ef8c2
SS
656 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
657
a67cf277 658 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 659 ARMMMUIdxBit_S1E2);
541ef8c2
SS
660}
661
e9aa6c21 662static const ARMCPRegInfo cp_reginfo[] = {
54bf36ed
FA
663 /* Define the secure and non-secure FCSE identifier CP registers
664 * separately because there is no secure bank in V8 (no _EL3). This allows
665 * the secure register to be properly reset and migrated. There is also no
666 * v8 EL1 version of the register so the non-secure instance stands alone.
667 */
668 { .name = "FCSEIDR(NS)",
669 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
670 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
671 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
672 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
673 { .name = "FCSEIDR(S)",
674 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
675 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
676 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
d4e6df63 677 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
54bf36ed
FA
678 /* Define the secure and non-secure context identifier CP registers
679 * separately because there is no secure bank in V8 (no _EL3). This allows
680 * the secure register to be properly reset and migrated. In the
681 * non-secure case, the 32-bit register will have reset and migration
682 * disabled during registration as it is handled by the 64-bit instance.
683 */
684 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
014406b5 685 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
54bf36ed
FA
686 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
687 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
688 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
689 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
690 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
691 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
692 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
d4e6df63 693 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9449fdf6
PM
694 REGINFO_SENTINEL
695};
696
697static const ARMCPRegInfo not_v8_cp_reginfo[] = {
698 /* NB: Some of these registers exist in v8 but with more precise
699 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
700 */
701 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
702 { .name = "DACR",
703 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
704 .access = PL1_RW, .resetvalue = 0,
705 .writefn = dacr_write, .raw_writefn = raw_write,
706 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
707 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a903c449
EI
708 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
709 * For v6 and v5, these mappings are overly broad.
4fdd17dd 710 */
a903c449
EI
711 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
712 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
713 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
714 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
715 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
716 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
717 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
4fdd17dd 718 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
c4804214
PM
719 /* Cache maintenance ops; some of this space may be overridden later. */
720 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
721 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
722 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
723 REGINFO_SENTINEL
724};
725
7d57f408
PM
726static const ARMCPRegInfo not_v6_cp_reginfo[] = {
727 /* Not all pre-v6 cores implemented this WFI, so this is slightly
728 * over-broad.
729 */
730 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
731 .access = PL1_W, .type = ARM_CP_WFI },
732 REGINFO_SENTINEL
733};
734
735static const ARMCPRegInfo not_v7_cp_reginfo[] = {
736 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
737 * is UNPREDICTABLE; we choose to NOP as most implementations do).
738 */
739 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
740 .access = PL1_W, .type = ARM_CP_WFI },
34f90529
PM
741 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
742 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
743 * OMAPCP will override this space.
744 */
745 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
746 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
747 .resetvalue = 0 },
748 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
749 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
750 .resetvalue = 0 },
776d4e5c
PM
751 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
752 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
7a0e58fa 753 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 754 .resetvalue = 0 },
50300698
PM
755 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
756 * implementing it as RAZ means the "debug architecture version" bits
757 * will read as a reserved value, which should cause Linux to not try
758 * to use the debug hardware.
759 */
760 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
761 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
995939a6
PM
762 /* MMU TLB control. Note that the wildcarding means we cover not just
763 * the unified TLB ops but also the dside/iside/inner-shareable variants.
764 */
765 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
766 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
7a0e58fa 767 .type = ARM_CP_NO_RAW },
995939a6
PM
768 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
769 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
7a0e58fa 770 .type = ARM_CP_NO_RAW },
995939a6
PM
771 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
772 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
7a0e58fa 773 .type = ARM_CP_NO_RAW },
995939a6
PM
774 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
775 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
7a0e58fa 776 .type = ARM_CP_NO_RAW },
a903c449
EI
777 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
778 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
779 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
780 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
7d57f408
PM
781 REGINFO_SENTINEL
782};
783
c4241c7d
PM
784static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
785 uint64_t value)
2771db27 786{
f0aff255
FA
787 uint32_t mask = 0;
788
789 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
790 if (!arm_feature(env, ARM_FEATURE_V8)) {
791 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
792 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
793 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
794 */
795 if (arm_feature(env, ARM_FEATURE_VFP)) {
796 /* VFP coprocessor: cp10 & cp11 [23:20] */
797 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
798
799 if (!arm_feature(env, ARM_FEATURE_NEON)) {
800 /* ASEDIS [31] bit is RAO/WI */
801 value |= (1 << 31);
802 }
803
804 /* VFPv3 and upwards with NEON implement 32 double precision
805 * registers (D0-D31).
806 */
807 if (!arm_feature(env, ARM_FEATURE_NEON) ||
808 !arm_feature(env, ARM_FEATURE_VFP3)) {
809 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
810 value |= (1 << 30);
811 }
812 }
813 value &= mask;
2771db27 814 }
7ebd5f2e 815 env->cp15.cpacr_el1 = value;
2771db27
PM
816}
817
3f208fd7
PM
818static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
819 bool isread)
c6f19164
GB
820{
821 if (arm_feature(env, ARM_FEATURE_V8)) {
822 /* Check if CPACR accesses are to be trapped to EL2 */
823 if (arm_current_el(env) == 1 &&
824 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
825 return CP_ACCESS_TRAP_EL2;
826 /* Check if CPACR accesses are to be trapped to EL3 */
827 } else if (arm_current_el(env) < 3 &&
828 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
829 return CP_ACCESS_TRAP_EL3;
830 }
831 }
832
833 return CP_ACCESS_OK;
834}
835
3f208fd7
PM
836static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
837 bool isread)
c6f19164
GB
838{
839 /* Check if CPTR accesses are set to trap to EL3 */
840 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
841 return CP_ACCESS_TRAP_EL3;
842 }
843
844 return CP_ACCESS_OK;
845}
846
7d57f408
PM
847static const ARMCPRegInfo v6_cp_reginfo[] = {
848 /* prefetch by MVA in v6, NOP in v7 */
849 { .name = "MVA_prefetch",
850 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
851 .access = PL1_W, .type = ARM_CP_NOP },
6df99dec
SS
852 /* We need to break the TB after ISB to execute self-modifying code
853 * correctly and also to take any pending interrupts immediately.
854 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
855 */
7d57f408 856 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
6df99dec 857 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
091fd17c 858 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 859 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 860 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 861 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31 862 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
6cd8a264 863 .access = PL1_RW,
b848ce2b
FA
864 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
865 offsetof(CPUARMState, cp15.ifar_ns) },
06d76f31
PM
866 .resetvalue = 0, },
867 /* Watchpoint Fault Address Register : should actually only be present
868 * for 1136, 1176, 11MPCore.
869 */
870 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
871 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
34222fb8 872 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
c6f19164 873 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
7ebd5f2e 874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
2771db27 875 .resetvalue = 0, .writefn = cpacr_write },
7d57f408
PM
876 REGINFO_SENTINEL
877};
878
3f208fd7
PM
879static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
880 bool isread)
200ac0ef 881{
3b163b01 882 /* Performance monitor registers user accessibility is controlled
1fce1ba9
PM
883 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
884 * trapping to EL2 or EL3 for other accesses.
200ac0ef 885 */
1fce1ba9
PM
886 int el = arm_current_el(env);
887
6ecd0b6b 888 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
fcd25206 889 return CP_ACCESS_TRAP;
200ac0ef 890 }
1fce1ba9
PM
891 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
892 && !arm_is_secure_below_el3(env)) {
893 return CP_ACCESS_TRAP_EL2;
894 }
895 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
896 return CP_ACCESS_TRAP_EL3;
897 }
898
fcd25206 899 return CP_ACCESS_OK;
200ac0ef
PM
900}
901
6ecd0b6b
AB
902static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
903 const ARMCPRegInfo *ri,
904 bool isread)
905{
906 /* ER: event counter read trap control */
907 if (arm_feature(env, ARM_FEATURE_V8)
908 && arm_current_el(env) == 0
909 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
910 && isread) {
911 return CP_ACCESS_OK;
912 }
913
914 return pmreg_access(env, ri, isread);
915}
916
917static CPAccessResult pmreg_access_swinc(CPUARMState *env,
918 const ARMCPRegInfo *ri,
919 bool isread)
920{
921 /* SW: software increment write trap control */
922 if (arm_feature(env, ARM_FEATURE_V8)
923 && arm_current_el(env) == 0
924 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
925 && !isread) {
926 return CP_ACCESS_OK;
927 }
928
929 return pmreg_access(env, ri, isread);
930}
931
7c2cb42b 932#ifndef CONFIG_USER_ONLY
87124fde 933
6ecd0b6b
AB
934static CPAccessResult pmreg_access_selr(CPUARMState *env,
935 const ARMCPRegInfo *ri,
936 bool isread)
937{
938 /* ER: event counter read trap control */
939 if (arm_feature(env, ARM_FEATURE_V8)
940 && arm_current_el(env) == 0
941 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
942 return CP_ACCESS_OK;
943 }
944
945 return pmreg_access(env, ri, isread);
946}
947
948static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
949 const ARMCPRegInfo *ri,
950 bool isread)
951{
952 /* CR: cycle counter read trap control */
953 if (arm_feature(env, ARM_FEATURE_V8)
954 && arm_current_el(env) == 0
955 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
956 && isread) {
957 return CP_ACCESS_OK;
958 }
959
960 return pmreg_access(env, ri, isread);
961}
962
87124fde
AF
963static inline bool arm_ccnt_enabled(CPUARMState *env)
964{
965 /* This does not support checking PMCCFILTR_EL0 register */
966
967 if (!(env->cp15.c9_pmcr & PMCRE)) {
968 return false;
969 }
970
971 return true;
972}
973
ec7b4ce4
AF
974void pmccntr_sync(CPUARMState *env)
975{
976 uint64_t temp_ticks;
977
352c98e5
LV
978 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
979 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
ec7b4ce4
AF
980
981 if (env->cp15.c9_pmcr & PMCRD) {
982 /* Increment once every 64 processor clock cycles */
983 temp_ticks /= 64;
984 }
985
986 if (arm_ccnt_enabled(env)) {
987 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
988 }
989}
990
c4241c7d
PM
991static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
992 uint64_t value)
200ac0ef 993{
942a155b 994 pmccntr_sync(env);
7c2cb42b
AF
995
996 if (value & PMCRC) {
997 /* The counter has been reset */
998 env->cp15.c15_ccnt = 0;
999 }
1000
200ac0ef
PM
1001 /* only the DP, X, D and E bits are writable */
1002 env->cp15.c9_pmcr &= ~0x39;
1003 env->cp15.c9_pmcr |= (value & 0x39);
7c2cb42b 1004
942a155b 1005 pmccntr_sync(env);
7c2cb42b
AF
1006}
1007
1008static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1009{
c92c0687 1010 uint64_t total_ticks;
7c2cb42b 1011
942a155b 1012 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
1013 /* Counter is disabled, do not change value */
1014 return env->cp15.c15_ccnt;
1015 }
1016
352c98e5
LV
1017 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1018 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
7c2cb42b
AF
1019
1020 if (env->cp15.c9_pmcr & PMCRD) {
1021 /* Increment once every 64 processor clock cycles */
1022 total_ticks /= 64;
1023 }
1024 return total_ticks - env->cp15.c15_ccnt;
1025}
1026
6b040780
WH
1027static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1028 uint64_t value)
1029{
1030 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1031 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1032 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1033 * accessed.
1034 */
1035 env->cp15.c9_pmselr = value & 0x1f;
1036}
1037
7c2cb42b
AF
1038static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1039 uint64_t value)
1040{
c92c0687 1041 uint64_t total_ticks;
7c2cb42b 1042
942a155b 1043 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
1044 /* Counter is disabled, set the absolute value */
1045 env->cp15.c15_ccnt = value;
1046 return;
1047 }
1048
352c98e5
LV
1049 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1050 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
7c2cb42b
AF
1051
1052 if (env->cp15.c9_pmcr & PMCRD) {
1053 /* Increment once every 64 processor clock cycles */
1054 total_ticks /= 64;
1055 }
1056 env->cp15.c15_ccnt = total_ticks - value;
200ac0ef 1057}
421c7ebd
PC
1058
1059static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1060 uint64_t value)
1061{
1062 uint64_t cur_val = pmccntr_read(env, NULL);
1063
1064 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1065}
1066
ec7b4ce4
AF
1067#else /* CONFIG_USER_ONLY */
1068
1069void pmccntr_sync(CPUARMState *env)
1070{
1071}
1072
7c2cb42b 1073#endif
200ac0ef 1074
0614601c
AF
1075static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1076 uint64_t value)
1077{
1078 pmccntr_sync(env);
1079 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1080 pmccntr_sync(env);
1081}
1082
c4241c7d 1083static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1084 uint64_t value)
1085{
200ac0ef
PM
1086 value &= (1 << 31);
1087 env->cp15.c9_pmcnten |= value;
200ac0ef
PM
1088}
1089
c4241c7d
PM
1090static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1091 uint64_t value)
200ac0ef 1092{
200ac0ef
PM
1093 value &= (1 << 31);
1094 env->cp15.c9_pmcnten &= ~value;
200ac0ef
PM
1095}
1096
c4241c7d
PM
1097static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1098 uint64_t value)
200ac0ef 1099{
200ac0ef 1100 env->cp15.c9_pmovsr &= ~value;
200ac0ef
PM
1101}
1102
c4241c7d
PM
1103static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104 uint64_t value)
200ac0ef 1105{
fdb86656
WH
1106 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1107 * PMSELR value is equal to or greater than the number of implemented
1108 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1109 */
1110 if (env->cp15.c9_pmselr == 0x1f) {
1111 pmccfiltr_write(env, ri, value);
1112 }
1113}
1114
1115static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1116{
1117 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1118 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1119 */
1120 if (env->cp15.c9_pmselr == 0x1f) {
1121 return env->cp15.pmccfiltr_el0;
1122 } else {
1123 return 0;
1124 }
200ac0ef
PM
1125}
1126
c4241c7d 1127static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1128 uint64_t value)
1129{
6ecd0b6b
AB
1130 if (arm_feature(env, ARM_FEATURE_V8)) {
1131 env->cp15.c9_pmuserenr = value & 0xf;
1132 } else {
1133 env->cp15.c9_pmuserenr = value & 1;
1134 }
200ac0ef
PM
1135}
1136
c4241c7d
PM
1137static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1138 uint64_t value)
200ac0ef
PM
1139{
1140 /* We have no event counters so only the C bit can be changed */
1141 value &= (1 << 31);
1142 env->cp15.c9_pminten |= value;
200ac0ef
PM
1143}
1144
c4241c7d
PM
1145static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1146 uint64_t value)
200ac0ef
PM
1147{
1148 value &= (1 << 31);
1149 env->cp15.c9_pminten &= ~value;
200ac0ef
PM
1150}
1151
c4241c7d
PM
1152static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1153 uint64_t value)
8641136c 1154{
a505d7fe
PM
1155 /* Note that even though the AArch64 view of this register has bits
1156 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1157 * architectural requirements for bits which are RES0 only in some
1158 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1159 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1160 */
855ea66d 1161 raw_write(env, ri, value & ~0x1FULL);
8641136c
NR
1162}
1163
64e0e2de
EI
1164static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1165{
1166 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1167 * For bits that vary between AArch32/64, code needs to check the
1168 * current execution mode before directly using the feature bit.
1169 */
1170 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1171
1172 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1173 valid_mask &= ~SCR_HCE;
1174
1175 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1176 * supported if EL2 exists. The bit is UNK/SBZP when
1177 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1178 * when EL2 is unavailable.
4eb27640 1179 * On ARMv8, this bit is always available.
64e0e2de 1180 */
4eb27640
GB
1181 if (arm_feature(env, ARM_FEATURE_V7) &&
1182 !arm_feature(env, ARM_FEATURE_V8)) {
64e0e2de
EI
1183 valid_mask &= ~SCR_SMD;
1184 }
1185 }
1186
1187 /* Clear all-context RES0 bits. */
1188 value &= valid_mask;
1189 raw_write(env, ri, value);
1190}
1191
c4241c7d 1192static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
776d4e5c
PM
1193{
1194 ARMCPU *cpu = arm_env_get_cpu(env);
b85a1fd6
FA
1195
1196 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1197 * bank
1198 */
1199 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1200 ri->secure & ARM_CP_SECSTATE_S);
1201
1202 return cpu->ccsidr[index];
776d4e5c
PM
1203}
1204
c4241c7d
PM
1205static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1206 uint64_t value)
776d4e5c 1207{
8d5c773e 1208 raw_write(env, ri, value & 0xf);
776d4e5c
PM
1209}
1210
1090b9c6
PM
1211static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1212{
1213 CPUState *cs = ENV_GET_CPU(env);
1214 uint64_t ret = 0;
1215
1216 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1217 ret |= CPSR_I;
1218 }
1219 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1220 ret |= CPSR_F;
1221 }
1222 /* External aborts are not possible in QEMU so A bit is always clear */
1223 return ret;
1224}
1225
e9aa6c21 1226static const ARMCPRegInfo v7_cp_reginfo[] = {
7d57f408
PM
1227 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1228 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1229 .access = PL1_W, .type = ARM_CP_NOP },
200ac0ef
PM
1230 /* Performance monitors are implementation defined in v7,
1231 * but with an ARM recommended set of registers, which we
1232 * follow (although we don't actually implement any counters)
1233 *
1234 * Performance registers fall into three categories:
1235 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1236 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1237 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1238 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1239 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1240 */
1241 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
7a0e58fa 1242 .access = PL0_RW, .type = ARM_CP_ALIAS,
8521466b 1243 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1244 .writefn = pmcntenset_write,
1245 .accessfn = pmreg_access,
1246 .raw_writefn = raw_write },
8521466b
AF
1247 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1248 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1249 .access = PL0_RW, .accessfn = pmreg_access,
1250 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1251 .writefn = pmcntenset_write, .raw_writefn = raw_write },
200ac0ef 1252 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
8521466b
AF
1253 .access = PL0_RW,
1254 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1255 .accessfn = pmreg_access,
1256 .writefn = pmcntenclr_write,
7a0e58fa 1257 .type = ARM_CP_ALIAS },
8521466b
AF
1258 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1259 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1260 .access = PL0_RW, .accessfn = pmreg_access,
7a0e58fa 1261 .type = ARM_CP_ALIAS,
8521466b
AF
1262 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1263 .writefn = pmcntenclr_write },
200ac0ef
PM
1264 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1265 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
fcd25206
PM
1266 .accessfn = pmreg_access,
1267 .writefn = pmovsr_write,
1268 .raw_writefn = raw_write },
978364f1
AF
1269 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1270 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1271 .access = PL0_RW, .accessfn = pmreg_access,
1272 .type = ARM_CP_ALIAS,
1273 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1274 .writefn = pmovsr_write,
1275 .raw_writefn = raw_write },
fcd25206 1276 /* Unimplemented so WI. */
200ac0ef 1277 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
6ecd0b6b 1278 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
7c2cb42b 1279#ifndef CONFIG_USER_ONLY
6b040780
WH
1280 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1281 .access = PL0_RW, .type = ARM_CP_ALIAS,
1282 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
6ecd0b6b 1283 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
6b040780
WH
1284 .raw_writefn = raw_write},
1285 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1286 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
6ecd0b6b 1287 .access = PL0_RW, .accessfn = pmreg_access_selr,
6b040780
WH
1288 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1289 .writefn = pmselr_write, .raw_writefn = raw_write, },
200ac0ef 1290 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
7c2cb42b 1291 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
421c7ebd 1292 .readfn = pmccntr_read, .writefn = pmccntr_write32,
6ecd0b6b 1293 .accessfn = pmreg_access_ccntr },
8521466b
AF
1294 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1295 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
6ecd0b6b 1296 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
8521466b
AF
1297 .type = ARM_CP_IO,
1298 .readfn = pmccntr_read, .writefn = pmccntr_write, },
7c2cb42b 1299#endif
8521466b
AF
1300 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1301 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
0614601c 1302 .writefn = pmccfiltr_write,
8521466b
AF
1303 .access = PL0_RW, .accessfn = pmreg_access,
1304 .type = ARM_CP_IO,
1305 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1306 .resetvalue = 0, },
200ac0ef 1307 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
fdb86656
WH
1308 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1309 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1310 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1311 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1312 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1313 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
fcd25206 1314 /* Unimplemented, RAZ/WI. */
200ac0ef 1315 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
fcd25206 1316 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
6ecd0b6b 1317 .accessfn = pmreg_access_xevcntr },
200ac0ef 1318 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1fce1ba9 1319 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
200ac0ef
PM
1320 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1321 .resetvalue = 0,
d4e6df63 1322 .writefn = pmuserenr_write, .raw_writefn = raw_write },
8a83ffc2
AF
1323 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1324 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1fce1ba9 1325 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
8a83ffc2
AF
1326 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1327 .resetvalue = 0,
1328 .writefn = pmuserenr_write, .raw_writefn = raw_write },
200ac0ef 1329 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1fce1ba9 1330 .access = PL1_RW, .accessfn = access_tpm,
e6ec5457
WH
1331 .type = ARM_CP_ALIAS,
1332 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
200ac0ef 1333 .resetvalue = 0,
d4e6df63 1334 .writefn = pmintenset_write, .raw_writefn = raw_write },
e6ec5457
WH
1335 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1336 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1337 .access = PL1_RW, .accessfn = access_tpm,
1338 .type = ARM_CP_IO,
1339 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1340 .writefn = pmintenset_write, .raw_writefn = raw_write,
1341 .resetvalue = 0x0 },
200ac0ef 1342 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1fce1ba9 1343 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
200ac0ef 1344 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
b061a82b 1345 .writefn = pmintenclr_write, },
978364f1
AF
1346 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1347 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1fce1ba9 1348 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
978364f1
AF
1349 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1350 .writefn = pmintenclr_write },
7da845b0
PM
1351 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1352 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
7a0e58fa 1353 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
7da845b0
PM
1354 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1355 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
b85a1fd6
FA
1356 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1357 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1358 offsetof(CPUARMState, cp15.csselr_ns) } },
776d4e5c
PM
1359 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1360 * just RAZ for all cores:
1361 */
0ff644a7
PM
1362 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1363 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
776d4e5c 1364 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
f32cdad5
PM
1365 /* Auxiliary fault status registers: these also are IMPDEF, and we
1366 * choose to RAZ/WI for all cores.
1367 */
1368 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1369 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1370 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1371 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1372 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1373 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b0fe2427
PM
1374 /* MAIR can just read-as-written because we don't implement caches
1375 * and so don't need to care about memory attributes.
1376 */
1377 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1378 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
be693c87 1379 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
b0fe2427 1380 .resetvalue = 0 },
4cfb8ad8
PM
1381 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1382 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1383 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1384 .resetvalue = 0 },
b0fe2427
PM
1385 /* For non-long-descriptor page tables these are PRRR and NMRR;
1386 * regardless they still act as reads-as-written for QEMU.
b0fe2427 1387 */
1281f8e3 1388 /* MAIR0/1 are defined separately from their 64-bit counterpart which
be693c87
GB
1389 * allows them to assign the correct fieldoffset based on the endianness
1390 * handled in the field definitions.
1391 */
a903c449 1392 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
b0fe2427 1393 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
be693c87
GB
1394 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1395 offsetof(CPUARMState, cp15.mair0_ns) },
b0fe2427 1396 .resetfn = arm_cp_reset_ignore },
a903c449 1397 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
b0fe2427 1398 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
be693c87
GB
1399 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1400 offsetof(CPUARMState, cp15.mair1_ns) },
b0fe2427 1401 .resetfn = arm_cp_reset_ignore },
1090b9c6
PM
1402 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1403 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
7a0e58fa 1404 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
995939a6
PM
1405 /* 32 bit ITLB invalidates */
1406 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
7a0e58fa 1407 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1408 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7a0e58fa 1409 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1410 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
7a0e58fa 1411 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1412 /* 32 bit DTLB invalidates */
1413 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
7a0e58fa 1414 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1415 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7a0e58fa 1416 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1417 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
7a0e58fa 1418 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1419 /* 32 bit TLB invalidates */
1420 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 1421 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1422 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 1423 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1424 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 1425 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6 1426 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 1427 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
995939a6
PM
1428 REGINFO_SENTINEL
1429};
1430
1431static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1432 /* 32 bit TLB invalidates, Inner Shareable */
1433 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 1434 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
995939a6 1435 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 1436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
995939a6 1437 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 1438 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1439 .writefn = tlbiasid_is_write },
995939a6 1440 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 1441 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1442 .writefn = tlbimvaa_is_write },
e9aa6c21
PM
1443 REGINFO_SENTINEL
1444};
1445
c4241c7d
PM
1446static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1447 uint64_t value)
c326b979
PM
1448{
1449 value &= 1;
1450 env->teecr = value;
c326b979
PM
1451}
1452
3f208fd7
PM
1453static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1454 bool isread)
c326b979 1455{
dcbff19b 1456 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
92611c00 1457 return CP_ACCESS_TRAP;
c326b979 1458 }
92611c00 1459 return CP_ACCESS_OK;
c326b979
PM
1460}
1461
1462static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1463 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1464 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1465 .resetvalue = 0,
1466 .writefn = teecr_write },
1467 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1468 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
92611c00 1469 .accessfn = teehbr_access, .resetvalue = 0 },
c326b979
PM
1470 REGINFO_SENTINEL
1471};
1472
4d31c596 1473static const ARMCPRegInfo v6k_cp_reginfo[] = {
e4fe830b
PM
1474 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1475 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1476 .access = PL0_RW,
54bf36ed 1477 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
4d31c596
PM
1478 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1479 .access = PL0_RW,
54bf36ed
FA
1480 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1481 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
e4fe830b
PM
1482 .resetfn = arm_cp_reset_ignore },
1483 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1484 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1485 .access = PL0_R|PL1_W,
54bf36ed
FA
1486 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1487 .resetvalue = 0},
4d31c596
PM
1488 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1489 .access = PL0_R|PL1_W,
54bf36ed
FA
1490 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1491 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
e4fe830b 1492 .resetfn = arm_cp_reset_ignore },
54bf36ed 1493 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
e4fe830b 1494 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
4d31c596 1495 .access = PL1_RW,
54bf36ed
FA
1496 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1497 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1498 .access = PL1_RW,
1499 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1500 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1501 .resetvalue = 0 },
4d31c596
PM
1502 REGINFO_SENTINEL
1503};
1504
55d284af
PM
1505#ifndef CONFIG_USER_ONLY
1506
3f208fd7
PM
1507static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1508 bool isread)
00108f2d 1509{
75502672
PM
1510 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1511 * Writable only at the highest implemented exception level.
1512 */
1513 int el = arm_current_el(env);
1514
1515 switch (el) {
1516 case 0:
1517 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1518 return CP_ACCESS_TRAP;
1519 }
1520 break;
1521 case 1:
1522 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1523 arm_is_secure_below_el3(env)) {
1524 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1525 return CP_ACCESS_TRAP_UNCATEGORIZED;
1526 }
1527 break;
1528 case 2:
1529 case 3:
1530 break;
00108f2d 1531 }
75502672
PM
1532
1533 if (!isread && el < arm_highest_el(env)) {
1534 return CP_ACCESS_TRAP_UNCATEGORIZED;
1535 }
1536
00108f2d
PM
1537 return CP_ACCESS_OK;
1538}
1539
3f208fd7
PM
1540static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1541 bool isread)
00108f2d 1542{
0b6440af
EI
1543 unsigned int cur_el = arm_current_el(env);
1544 bool secure = arm_is_secure(env);
1545
00108f2d 1546 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
0b6440af 1547 if (cur_el == 0 &&
00108f2d
PM
1548 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1549 return CP_ACCESS_TRAP;
1550 }
0b6440af
EI
1551
1552 if (arm_feature(env, ARM_FEATURE_EL2) &&
1553 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1554 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1555 return CP_ACCESS_TRAP_EL2;
1556 }
00108f2d
PM
1557 return CP_ACCESS_OK;
1558}
1559
3f208fd7
PM
1560static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1561 bool isread)
00108f2d 1562{
0b6440af
EI
1563 unsigned int cur_el = arm_current_el(env);
1564 bool secure = arm_is_secure(env);
1565
00108f2d
PM
1566 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1567 * EL0[PV]TEN is zero.
1568 */
0b6440af 1569 if (cur_el == 0 &&
00108f2d
PM
1570 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1571 return CP_ACCESS_TRAP;
1572 }
0b6440af
EI
1573
1574 if (arm_feature(env, ARM_FEATURE_EL2) &&
1575 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1576 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1577 return CP_ACCESS_TRAP_EL2;
1578 }
00108f2d
PM
1579 return CP_ACCESS_OK;
1580}
1581
1582static CPAccessResult gt_pct_access(CPUARMState *env,
3f208fd7
PM
1583 const ARMCPRegInfo *ri,
1584 bool isread)
00108f2d 1585{
3f208fd7 1586 return gt_counter_access(env, GTIMER_PHYS, isread);
00108f2d
PM
1587}
1588
1589static CPAccessResult gt_vct_access(CPUARMState *env,
3f208fd7
PM
1590 const ARMCPRegInfo *ri,
1591 bool isread)
00108f2d 1592{
3f208fd7 1593 return gt_counter_access(env, GTIMER_VIRT, isread);
00108f2d
PM
1594}
1595
3f208fd7
PM
1596static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1597 bool isread)
00108f2d 1598{
3f208fd7 1599 return gt_timer_access(env, GTIMER_PHYS, isread);
00108f2d
PM
1600}
1601
3f208fd7
PM
1602static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1603 bool isread)
00108f2d 1604{
3f208fd7 1605 return gt_timer_access(env, GTIMER_VIRT, isread);
00108f2d
PM
1606}
1607
b4d3978c 1608static CPAccessResult gt_stimer_access(CPUARMState *env,
3f208fd7
PM
1609 const ARMCPRegInfo *ri,
1610 bool isread)
b4d3978c
PM
1611{
1612 /* The AArch64 register view of the secure physical timer is
1613 * always accessible from EL3, and configurably accessible from
1614 * Secure EL1.
1615 */
1616 switch (arm_current_el(env)) {
1617 case 1:
1618 if (!arm_is_secure(env)) {
1619 return CP_ACCESS_TRAP;
1620 }
1621 if (!(env->cp15.scr_el3 & SCR_ST)) {
1622 return CP_ACCESS_TRAP_EL3;
1623 }
1624 return CP_ACCESS_OK;
1625 case 0:
1626 case 2:
1627 return CP_ACCESS_TRAP;
1628 case 3:
1629 return CP_ACCESS_OK;
1630 default:
1631 g_assert_not_reached();
1632 }
1633}
1634
55d284af
PM
1635static uint64_t gt_get_countervalue(CPUARMState *env)
1636{
bc72ad67 1637 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
55d284af
PM
1638}
1639
1640static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1641{
1642 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1643
1644 if (gt->ctl & 1) {
1645 /* Timer enabled: calculate and set current ISTATUS, irq, and
1646 * reset timer to when ISTATUS next has to change
1647 */
edac4d8a
EI
1648 uint64_t offset = timeridx == GTIMER_VIRT ?
1649 cpu->env.cp15.cntvoff_el2 : 0;
55d284af
PM
1650 uint64_t count = gt_get_countervalue(&cpu->env);
1651 /* Note that this must be unsigned 64 bit arithmetic: */
edac4d8a 1652 int istatus = count - offset >= gt->cval;
55d284af 1653 uint64_t nexttick;
194cbc49 1654 int irqstate;
55d284af
PM
1655
1656 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
194cbc49
PM
1657
1658 irqstate = (istatus && !(gt->ctl & 2));
1659 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1660
55d284af
PM
1661 if (istatus) {
1662 /* Next transition is when count rolls back over to zero */
1663 nexttick = UINT64_MAX;
1664 } else {
1665 /* Next transition is when we hit cval */
edac4d8a 1666 nexttick = gt->cval + offset;
55d284af
PM
1667 }
1668 /* Note that the desired next expiry time might be beyond the
1669 * signed-64-bit range of a QEMUTimer -- in this case we just
1670 * set the timer for as far in the future as possible. When the
1671 * timer expires we will reset the timer for any remaining period.
1672 */
1673 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1674 nexttick = INT64_MAX / GTIMER_SCALE;
1675 }
bc72ad67 1676 timer_mod(cpu->gt_timer[timeridx], nexttick);
194cbc49 1677 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
55d284af
PM
1678 } else {
1679 /* Timer disabled: ISTATUS and timer output always clear */
1680 gt->ctl &= ~4;
1681 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
bc72ad67 1682 timer_del(cpu->gt_timer[timeridx]);
194cbc49 1683 trace_arm_gt_recalc_disabled(timeridx);
55d284af
PM
1684 }
1685}
1686
0e3eca4c
EI
1687static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1688 int timeridx)
55d284af
PM
1689{
1690 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af 1691
bc72ad67 1692 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
1693}
1694
c4241c7d 1695static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af 1696{
c4241c7d 1697 return gt_get_countervalue(env);
55d284af
PM
1698}
1699
edac4d8a
EI
1700static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1701{
1702 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1703}
1704
c4241c7d 1705static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1706 int timeridx,
c4241c7d 1707 uint64_t value)
55d284af 1708{
194cbc49 1709 trace_arm_gt_cval_write(timeridx, value);
55d284af
PM
1710 env->cp15.c14_timer[timeridx].cval = value;
1711 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af 1712}
c4241c7d 1713
0e3eca4c
EI
1714static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1715 int timeridx)
55d284af 1716{
edac4d8a 1717 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1718
c4241c7d 1719 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
edac4d8a 1720 (gt_get_countervalue(env) - offset));
55d284af
PM
1721}
1722
c4241c7d 1723static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1724 int timeridx,
c4241c7d 1725 uint64_t value)
55d284af 1726{
edac4d8a 1727 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1728
194cbc49 1729 trace_arm_gt_tval_write(timeridx, value);
edac4d8a 1730 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
18084b2f 1731 sextract64(value, 0, 32);
55d284af 1732 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af
PM
1733}
1734
c4241c7d 1735static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1736 int timeridx,
c4241c7d 1737 uint64_t value)
55d284af
PM
1738{
1739 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af
PM
1740 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1741
194cbc49 1742 trace_arm_gt_ctl_write(timeridx, value);
d3afacc7 1743 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
55d284af
PM
1744 if ((oldval ^ value) & 1) {
1745 /* Enable toggled */
1746 gt_recalc_timer(cpu, timeridx);
d3afacc7 1747 } else if ((oldval ^ value) & 2) {
55d284af
PM
1748 /* IMASK toggled: don't need to recalculate,
1749 * just set the interrupt line based on ISTATUS
1750 */
194cbc49
PM
1751 int irqstate = (oldval & 4) && !(value & 2);
1752
1753 trace_arm_gt_imask_toggle(timeridx, irqstate);
1754 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
55d284af 1755 }
55d284af
PM
1756}
1757
0e3eca4c
EI
1758static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1759{
1760 gt_timer_reset(env, ri, GTIMER_PHYS);
1761}
1762
1763static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764 uint64_t value)
1765{
1766 gt_cval_write(env, ri, GTIMER_PHYS, value);
1767}
1768
1769static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1770{
1771 return gt_tval_read(env, ri, GTIMER_PHYS);
1772}
1773
1774static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1775 uint64_t value)
1776{
1777 gt_tval_write(env, ri, GTIMER_PHYS, value);
1778}
1779
1780static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1781 uint64_t value)
1782{
1783 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1784}
1785
1786static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1787{
1788 gt_timer_reset(env, ri, GTIMER_VIRT);
1789}
1790
1791static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792 uint64_t value)
1793{
1794 gt_cval_write(env, ri, GTIMER_VIRT, value);
1795}
1796
1797static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1798{
1799 return gt_tval_read(env, ri, GTIMER_VIRT);
1800}
1801
1802static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1803 uint64_t value)
1804{
1805 gt_tval_write(env, ri, GTIMER_VIRT, value);
1806}
1807
1808static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1809 uint64_t value)
1810{
1811 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1812}
1813
edac4d8a
EI
1814static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value)
1816{
1817 ARMCPU *cpu = arm_env_get_cpu(env);
1818
194cbc49 1819 trace_arm_gt_cntvoff_write(value);
edac4d8a
EI
1820 raw_write(env, ri, value);
1821 gt_recalc_timer(cpu, GTIMER_VIRT);
1822}
1823
b0e66d95
EI
1824static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1825{
1826 gt_timer_reset(env, ri, GTIMER_HYP);
1827}
1828
1829static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1830 uint64_t value)
1831{
1832 gt_cval_write(env, ri, GTIMER_HYP, value);
1833}
1834
1835static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1836{
1837 return gt_tval_read(env, ri, GTIMER_HYP);
1838}
1839
1840static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841 uint64_t value)
1842{
1843 gt_tval_write(env, ri, GTIMER_HYP, value);
1844}
1845
1846static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847 uint64_t value)
1848{
1849 gt_ctl_write(env, ri, GTIMER_HYP, value);
1850}
1851
b4d3978c
PM
1852static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1853{
1854 gt_timer_reset(env, ri, GTIMER_SEC);
1855}
1856
1857static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858 uint64_t value)
1859{
1860 gt_cval_write(env, ri, GTIMER_SEC, value);
1861}
1862
1863static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1864{
1865 return gt_tval_read(env, ri, GTIMER_SEC);
1866}
1867
1868static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1869 uint64_t value)
1870{
1871 gt_tval_write(env, ri, GTIMER_SEC, value);
1872}
1873
1874static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875 uint64_t value)
1876{
1877 gt_ctl_write(env, ri, GTIMER_SEC, value);
1878}
1879
55d284af
PM
1880void arm_gt_ptimer_cb(void *opaque)
1881{
1882 ARMCPU *cpu = opaque;
1883
1884 gt_recalc_timer(cpu, GTIMER_PHYS);
1885}
1886
1887void arm_gt_vtimer_cb(void *opaque)
1888{
1889 ARMCPU *cpu = opaque;
1890
1891 gt_recalc_timer(cpu, GTIMER_VIRT);
1892}
1893
b0e66d95
EI
1894void arm_gt_htimer_cb(void *opaque)
1895{
1896 ARMCPU *cpu = opaque;
1897
1898 gt_recalc_timer(cpu, GTIMER_HYP);
1899}
1900
b4d3978c
PM
1901void arm_gt_stimer_cb(void *opaque)
1902{
1903 ARMCPU *cpu = opaque;
1904
1905 gt_recalc_timer(cpu, GTIMER_SEC);
1906}
1907
55d284af
PM
1908static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1909 /* Note that CNTFRQ is purely reads-as-written for the benefit
1910 * of software; writing it doesn't actually change the timer frequency.
1911 * Our reset value matches the fixed frequency we implement the timer at.
1912 */
1913 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 1914 .type = ARM_CP_ALIAS,
a7adc4b7
PM
1915 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1916 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
a7adc4b7
PM
1917 },
1918 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1919 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1920 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
55d284af
PM
1921 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1922 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
55d284af
PM
1923 },
1924 /* overall control: mostly access permissions */
a7adc4b7
PM
1925 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1926 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
55d284af
PM
1927 .access = PL1_RW,
1928 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1929 .resetvalue = 0,
1930 },
1931 /* per-timer control */
1932 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
9ff9dd3c 1933 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1934 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1935 .accessfn = gt_ptimer_access,
1936 .fieldoffset = offsetoflow32(CPUARMState,
1937 cp15.c14_timer[GTIMER_PHYS].ctl),
0e3eca4c 1938 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
a7adc4b7 1939 },
9ff9dd3c
PM
1940 { .name = "CNTP_CTL(S)",
1941 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1942 .secure = ARM_CP_SECSTATE_S,
1943 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1944 .accessfn = gt_ptimer_access,
1945 .fieldoffset = offsetoflow32(CPUARMState,
1946 cp15.c14_timer[GTIMER_SEC].ctl),
1947 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1948 },
a7adc4b7
PM
1949 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1950 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
55d284af 1951 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1952 .accessfn = gt_ptimer_access,
55d284af
PM
1953 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1954 .resetvalue = 0,
0e3eca4c 1955 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1956 },
1957 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
7a0e58fa 1958 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1959 .accessfn = gt_vtimer_access,
1960 .fieldoffset = offsetoflow32(CPUARMState,
1961 cp15.c14_timer[GTIMER_VIRT].ctl),
0e3eca4c 1962 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
a7adc4b7
PM
1963 },
1964 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1965 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
55d284af 1966 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1967 .accessfn = gt_vtimer_access,
55d284af
PM
1968 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1969 .resetvalue = 0,
0e3eca4c 1970 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1971 },
1972 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1973 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
9ff9dd3c 1974 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1975 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1976 .accessfn = gt_ptimer_access,
0e3eca4c 1977 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
55d284af 1978 },
9ff9dd3c
PM
1979 { .name = "CNTP_TVAL(S)",
1980 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1981 .secure = ARM_CP_SECSTATE_S,
1982 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1983 .accessfn = gt_ptimer_access,
1984 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1985 },
a7adc4b7
PM
1986 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1987 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
7a0e58fa 1988 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
1989 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1990 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
a7adc4b7 1991 },
55d284af 1992 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
7a0e58fa 1993 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1994 .accessfn = gt_vtimer_access,
0e3eca4c 1995 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
55d284af 1996 },
a7adc4b7
PM
1997 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1998 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
7a0e58fa 1999 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
2000 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2001 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
a7adc4b7 2002 },
55d284af
PM
2003 /* The counter itself */
2004 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
7a0e58fa 2005 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 2006 .accessfn = gt_pct_access,
a7adc4b7
PM
2007 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2008 },
2009 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2010 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
7a0e58fa 2011 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 2012 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
55d284af
PM
2013 },
2014 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
7a0e58fa 2015 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 2016 .accessfn = gt_vct_access,
edac4d8a 2017 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
a7adc4b7
PM
2018 },
2019 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2020 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
7a0e58fa 2021 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 2022 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
55d284af
PM
2023 },
2024 /* Comparison value, indicating when the timer goes off */
2025 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 2026 .secure = ARM_CP_SECSTATE_NS,
55d284af 2027 .access = PL1_RW | PL0_R,
7a0e58fa 2028 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 2029 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
b061a82b 2030 .accessfn = gt_ptimer_access,
0e3eca4c 2031 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
a7adc4b7 2032 },
9ff9dd3c
PM
2033 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2034 .secure = ARM_CP_SECSTATE_S,
2035 .access = PL1_RW | PL0_R,
2036 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2037 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2038 .accessfn = gt_ptimer_access,
2039 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2040 },
a7adc4b7
PM
2041 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2043 .access = PL1_RW | PL0_R,
2044 .type = ARM_CP_IO,
2045 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
12cde08a 2046 .resetvalue = 0, .accessfn = gt_ptimer_access,
0e3eca4c 2047 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
55d284af
PM
2048 },
2049 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2050 .access = PL1_RW | PL0_R,
7a0e58fa 2051 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 2052 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
b061a82b 2053 .accessfn = gt_vtimer_access,
0e3eca4c 2054 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
a7adc4b7
PM
2055 },
2056 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2057 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2058 .access = PL1_RW | PL0_R,
2059 .type = ARM_CP_IO,
2060 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2061 .resetvalue = 0, .accessfn = gt_vtimer_access,
0e3eca4c 2062 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
55d284af 2063 },
b4d3978c
PM
2064 /* Secure timer -- this is actually restricted to only EL3
2065 * and configurably Secure-EL1 via the accessfn.
2066 */
2067 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2068 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2069 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2070 .accessfn = gt_stimer_access,
2071 .readfn = gt_sec_tval_read,
2072 .writefn = gt_sec_tval_write,
2073 .resetfn = gt_sec_timer_reset,
2074 },
2075 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2076 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2077 .type = ARM_CP_IO, .access = PL1_RW,
2078 .accessfn = gt_stimer_access,
2079 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2080 .resetvalue = 0,
2081 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2082 },
2083 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2084 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2085 .type = ARM_CP_IO, .access = PL1_RW,
2086 .accessfn = gt_stimer_access,
2087 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2088 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2089 },
55d284af
PM
2090 REGINFO_SENTINEL
2091};
2092
2093#else
2094/* In user-mode none of the generic timer registers are accessible,
bc72ad67 2095 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
55d284af
PM
2096 * so instead just don't register any of them.
2097 */
6cc7a3ae 2098static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
6cc7a3ae
PM
2099 REGINFO_SENTINEL
2100};
2101
55d284af
PM
2102#endif
2103
c4241c7d 2104static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 2105{
891a2fe7 2106 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8d5c773e 2107 raw_write(env, ri, value);
891a2fe7 2108 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8d5c773e 2109 raw_write(env, ri, value & 0xfffff6ff);
4a501606 2110 } else {
8d5c773e 2111 raw_write(env, ri, value & 0xfffff1ff);
4a501606 2112 }
4a501606
PM
2113}
2114
2115#ifndef CONFIG_USER_ONLY
2116/* get_phys_addr() isn't present for user-mode-only targets */
702a9357 2117
3f208fd7
PM
2118static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2119 bool isread)
92611c00
PM
2120{
2121 if (ri->opc2 & 4) {
87562e4f
PM
2122 /* The ATS12NSO* operations must trap to EL3 if executed in
2123 * Secure EL1 (which can only happen if EL3 is AArch64).
2124 * They are simply UNDEF if executed from NS EL1.
2125 * They function normally from EL2 or EL3.
92611c00 2126 */
87562e4f
PM
2127 if (arm_current_el(env) == 1) {
2128 if (arm_is_secure_below_el3(env)) {
2129 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2130 }
2131 return CP_ACCESS_TRAP_UNCATEGORIZED;
2132 }
92611c00
PM
2133 }
2134 return CP_ACCESS_OK;
2135}
2136
060e8a48 2137static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
03ae85f8 2138 MMUAccessType access_type, ARMMMUIdx mmu_idx)
4a501606 2139{
a8170e5e 2140 hwaddr phys_addr;
4a501606
PM
2141 target_ulong page_size;
2142 int prot;
b7cc4e82
PC
2143 uint32_t fsr;
2144 bool ret;
01c097f7 2145 uint64_t par64;
8bf5b6a9 2146 MemTxAttrs attrs = {};
e14b5a23 2147 ARMMMUFaultInfo fi = {};
4a501606 2148
d3649702 2149 ret = get_phys_addr(env, value, access_type, mmu_idx,
e14b5a23 2150 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
702a9357 2151 if (extended_addresses_enabled(env)) {
b7cc4e82 2152 /* fsr is a DFSR/IFSR value for the long descriptor
702a9357
PM
2153 * translation table format, but with WnR always clear.
2154 * Convert it to a 64-bit PAR.
2155 */
01c097f7 2156 par64 = (1 << 11); /* LPAE bit always set */
b7cc4e82 2157 if (!ret) {
702a9357 2158 par64 |= phys_addr & ~0xfffULL;
8bf5b6a9
PM
2159 if (!attrs.secure) {
2160 par64 |= (1 << 9); /* NS */
2161 }
702a9357 2162 /* We don't set the ATTR or SH fields in the PAR. */
4a501606 2163 } else {
702a9357 2164 par64 |= 1; /* F */
b7cc4e82 2165 par64 |= (fsr & 0x3f) << 1; /* FS */
702a9357
PM
2166 /* Note that S2WLK and FSTAGE are always zero, because we don't
2167 * implement virtualization and therefore there can't be a stage 2
2168 * fault.
2169 */
4a501606
PM
2170 }
2171 } else {
b7cc4e82 2172 /* fsr is a DFSR/IFSR value for the short descriptor
702a9357
PM
2173 * translation table format (with WnR always clear).
2174 * Convert it to a 32-bit PAR.
2175 */
b7cc4e82 2176 if (!ret) {
702a9357
PM
2177 /* We do not set any attribute bits in the PAR */
2178 if (page_size == (1 << 24)
2179 && arm_feature(env, ARM_FEATURE_V7)) {
01c097f7 2180 par64 = (phys_addr & 0xff000000) | (1 << 1);
702a9357 2181 } else {
01c097f7 2182 par64 = phys_addr & 0xfffff000;
702a9357 2183 }
8bf5b6a9
PM
2184 if (!attrs.secure) {
2185 par64 |= (1 << 9); /* NS */
2186 }
702a9357 2187 } else {
b7cc4e82
PC
2188 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2189 ((fsr & 0xf) << 1) | 1;
702a9357 2190 }
4a501606 2191 }
060e8a48
PM
2192 return par64;
2193}
2194
2195static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2196{
03ae85f8 2197 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
060e8a48 2198 uint64_t par64;
d3649702
PM
2199 ARMMMUIdx mmu_idx;
2200 int el = arm_current_el(env);
2201 bool secure = arm_is_secure_below_el3(env);
060e8a48 2202
d3649702
PM
2203 switch (ri->opc2 & 6) {
2204 case 0:
2205 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2206 switch (el) {
2207 case 3:
2208 mmu_idx = ARMMMUIdx_S1E3;
2209 break;
2210 case 2:
2211 mmu_idx = ARMMMUIdx_S1NSE1;
2212 break;
2213 case 1:
2214 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2215 break;
2216 default:
2217 g_assert_not_reached();
2218 }
2219 break;
2220 case 2:
2221 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2222 switch (el) {
2223 case 3:
2224 mmu_idx = ARMMMUIdx_S1SE0;
2225 break;
2226 case 2:
2227 mmu_idx = ARMMMUIdx_S1NSE0;
2228 break;
2229 case 1:
2230 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2231 break;
2232 default:
2233 g_assert_not_reached();
2234 }
2235 break;
2236 case 4:
2237 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2238 mmu_idx = ARMMMUIdx_S12NSE1;
2239 break;
2240 case 6:
2241 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2242 mmu_idx = ARMMMUIdx_S12NSE0;
2243 break;
2244 default:
2245 g_assert_not_reached();
2246 }
2247
2248 par64 = do_ats_write(env, value, access_type, mmu_idx);
01c097f7
FA
2249
2250 A32_BANKED_CURRENT_REG_SET(env, par, par64);
4a501606 2251}
060e8a48 2252
14db7fe0
PM
2253static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2254 uint64_t value)
2255{
03ae85f8 2256 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
14db7fe0
PM
2257 uint64_t par64;
2258
2259 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2260
2261 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2262}
2263
3f208fd7
PM
2264static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2265 bool isread)
2a47df95
PM
2266{
2267 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2268 return CP_ACCESS_TRAP;
2269 }
2270 return CP_ACCESS_OK;
2271}
2272
060e8a48
PM
2273static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2274 uint64_t value)
2275{
03ae85f8 2276 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
d3649702
PM
2277 ARMMMUIdx mmu_idx;
2278 int secure = arm_is_secure_below_el3(env);
2279
2280 switch (ri->opc2 & 6) {
2281 case 0:
2282 switch (ri->opc1) {
2283 case 0: /* AT S1E1R, AT S1E1W */
2284 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2285 break;
2286 case 4: /* AT S1E2R, AT S1E2W */
2287 mmu_idx = ARMMMUIdx_S1E2;
2288 break;
2289 case 6: /* AT S1E3R, AT S1E3W */
2290 mmu_idx = ARMMMUIdx_S1E3;
2291 break;
2292 default:
2293 g_assert_not_reached();
2294 }
2295 break;
2296 case 2: /* AT S1E0R, AT S1E0W */
2297 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2298 break;
2299 case 4: /* AT S12E1R, AT S12E1W */
2a47df95 2300 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
d3649702
PM
2301 break;
2302 case 6: /* AT S12E0R, AT S12E0W */
2a47df95 2303 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
d3649702
PM
2304 break;
2305 default:
2306 g_assert_not_reached();
2307 }
060e8a48 2308
d3649702 2309 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
060e8a48 2310}
4a501606
PM
2311#endif
2312
2313static const ARMCPRegInfo vapa_cp_reginfo[] = {
2314 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2315 .access = PL1_RW, .resetvalue = 0,
01c097f7
FA
2316 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2317 offsetoflow32(CPUARMState, cp15.par_ns) },
4a501606
PM
2318 .writefn = par_write },
2319#ifndef CONFIG_USER_ONLY
87562e4f 2320 /* This underdecoding is safe because the reginfo is NO_RAW. */
4a501606 2321 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
92611c00 2322 .access = PL1_W, .accessfn = ats_access,
7a0e58fa 2323 .writefn = ats_write, .type = ARM_CP_NO_RAW },
4a501606
PM
2324#endif
2325 REGINFO_SENTINEL
2326};
2327
18032bec
PM
2328/* Return basic MPU access permission bits. */
2329static uint32_t simple_mpu_ap_bits(uint32_t val)
2330{
2331 uint32_t ret;
2332 uint32_t mask;
2333 int i;
2334 ret = 0;
2335 mask = 3;
2336 for (i = 0; i < 16; i += 2) {
2337 ret |= (val >> i) & mask;
2338 mask <<= 2;
2339 }
2340 return ret;
2341}
2342
2343/* Pad basic MPU access permission bits to extended format. */
2344static uint32_t extended_mpu_ap_bits(uint32_t val)
2345{
2346 uint32_t ret;
2347 uint32_t mask;
2348 int i;
2349 ret = 0;
2350 mask = 3;
2351 for (i = 0; i < 16; i += 2) {
2352 ret |= (val & mask) << i;
2353 mask <<= 2;
2354 }
2355 return ret;
2356}
2357
c4241c7d
PM
2358static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2359 uint64_t value)
18032bec 2360{
7e09797c 2361 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
18032bec
PM
2362}
2363
c4241c7d 2364static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 2365{
7e09797c 2366 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
18032bec
PM
2367}
2368
c4241c7d
PM
2369static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2370 uint64_t value)
18032bec 2371{
7e09797c 2372 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
18032bec
PM
2373}
2374
c4241c7d 2375static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 2376{
7e09797c 2377 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
18032bec
PM
2378}
2379
6cb0b013
PC
2380static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2381{
2382 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2383
2384 if (!u32p) {
2385 return 0;
2386 }
2387
8531eb4f 2388 u32p += env->pmsav7.rnr;
6cb0b013
PC
2389 return *u32p;
2390}
2391
2392static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2393 uint64_t value)
2394{
2395 ARMCPU *cpu = arm_env_get_cpu(env);
2396 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2397
2398 if (!u32p) {
2399 return;
2400 }
2401
8531eb4f 2402 u32p += env->pmsav7.rnr;
d10eb08f 2403 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
6cb0b013
PC
2404 *u32p = value;
2405}
2406
6cb0b013
PC
2407static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2408 uint64_t value)
2409{
2410 ARMCPU *cpu = arm_env_get_cpu(env);
2411 uint32_t nrgs = cpu->pmsav7_dregion;
2412
2413 if (value >= nrgs) {
2414 qemu_log_mask(LOG_GUEST_ERROR,
2415 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2416 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2417 return;
2418 }
2419
2420 raw_write(env, ri, value);
2421}
2422
2423static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
69ceea64
PM
2424 /* Reset for all these registers is handled in arm_cpu_reset(),
2425 * because the PMSAv7 is also used by M-profile CPUs, which do
2426 * not register cpregs but still need the state to be reset.
2427 */
6cb0b013
PC
2428 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2429 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2430 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
69ceea64
PM
2431 .readfn = pmsav7_read, .writefn = pmsav7_write,
2432 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
2433 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2434 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2435 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
69ceea64
PM
2436 .readfn = pmsav7_read, .writefn = pmsav7_write,
2437 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
2438 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2439 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2440 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
69ceea64
PM
2441 .readfn = pmsav7_read, .writefn = pmsav7_write,
2442 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
2443 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2444 .access = PL1_RW,
8531eb4f 2445 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr),
69ceea64
PM
2446 .writefn = pmsav7_rgnr_write,
2447 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
2448 REGINFO_SENTINEL
2449};
2450
18032bec
PM
2451static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2452 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2453 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2454 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
18032bec
PM
2455 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2456 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
7a0e58fa 2457 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2458 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
18032bec
PM
2459 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2460 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2461 .access = PL1_RW,
7e09797c
PM
2462 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2463 .resetvalue = 0, },
18032bec
PM
2464 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2465 .access = PL1_RW,
7e09797c
PM
2466 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2467 .resetvalue = 0, },
ecce5c3c
PM
2468 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2469 .access = PL1_RW,
2470 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2471 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2472 .access = PL1_RW,
2473 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31 2474 /* Protection region base and size registers */
e508a92b
PM
2475 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2476 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2477 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2478 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2479 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2480 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2481 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2482 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2483 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2484 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2485 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2486 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2487 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2488 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2489 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2490 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2491 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2492 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2493 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2494 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2495 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2496 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2497 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2498 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
18032bec
PM
2499 REGINFO_SENTINEL
2500};
2501
c4241c7d
PM
2502static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2503 uint64_t value)
ecce5c3c 2504{
11f136ee 2505 TCR *tcr = raw_ptr(env, ri);
2ebcebe2
PM
2506 int maskshift = extract32(value, 0, 3);
2507
e389be16
FA
2508 if (!arm_feature(env, ARM_FEATURE_V8)) {
2509 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2510 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2511 * using Long-desciptor translation table format */
2512 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2513 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2514 /* In an implementation that includes the Security Extensions
2515 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2516 * Short-descriptor translation table format.
2517 */
2518 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2519 } else {
2520 value &= TTBCR_N;
2521 }
e42c4db3 2522 }
e389be16 2523
b6af0975 2524 /* Update the masks corresponding to the TCR bank being written
11f136ee 2525 * Note that we always calculate mask and base_mask, but
e42c4db3 2526 * they are only used for short-descriptor tables (ie if EAE is 0);
11f136ee
FA
2527 * for long-descriptor tables the TCR fields are used differently
2528 * and the mask and base_mask values are meaningless.
e42c4db3 2529 */
11f136ee
FA
2530 tcr->raw_tcr = value;
2531 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2532 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
ecce5c3c
PM
2533}
2534
c4241c7d
PM
2535static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2536 uint64_t value)
d4e6df63 2537{
00c8cb0a
AF
2538 ARMCPU *cpu = arm_env_get_cpu(env);
2539
d4e6df63
PM
2540 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2541 /* With LPAE the TTBCR could result in a change of ASID
2542 * via the TTBCR.A1 bit, so do a TLB flush.
2543 */
d10eb08f 2544 tlb_flush(CPU(cpu));
d4e6df63 2545 }
c4241c7d 2546 vmsa_ttbcr_raw_write(env, ri, value);
d4e6df63
PM
2547}
2548
ecce5c3c
PM
2549static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2550{
11f136ee
FA
2551 TCR *tcr = raw_ptr(env, ri);
2552
2553 /* Reset both the TCR as well as the masks corresponding to the bank of
2554 * the TCR being reset.
2555 */
2556 tcr->raw_tcr = 0;
2557 tcr->mask = 0;
2558 tcr->base_mask = 0xffffc000u;
ecce5c3c
PM
2559}
2560
cb2e37df
PM
2561static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2562 uint64_t value)
2563{
00c8cb0a 2564 ARMCPU *cpu = arm_env_get_cpu(env);
11f136ee 2565 TCR *tcr = raw_ptr(env, ri);
00c8cb0a 2566
cb2e37df 2567 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
d10eb08f 2568 tlb_flush(CPU(cpu));
11f136ee 2569 tcr->raw_tcr = value;
cb2e37df
PM
2570}
2571
327ed10f
PM
2572static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2573 uint64_t value)
2574{
2575 /* 64 bit accesses to the TTBRs can change the ASID and so we
2576 * must flush the TLB.
2577 */
2578 if (cpreg_field_is_64bit(ri)) {
00c8cb0a
AF
2579 ARMCPU *cpu = arm_env_get_cpu(env);
2580
d10eb08f 2581 tlb_flush(CPU(cpu));
327ed10f
PM
2582 }
2583 raw_write(env, ri, value);
2584}
2585
b698e9cf
EI
2586static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2587 uint64_t value)
2588{
2589 ARMCPU *cpu = arm_env_get_cpu(env);
2590 CPUState *cs = CPU(cpu);
2591
2592 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2593 if (raw_read(env, ri) != value) {
0336cbf8 2594 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2595 ARMMMUIdxBit_S12NSE1 |
2596 ARMMMUIdxBit_S12NSE0 |
2597 ARMMMUIdxBit_S2NS);
b698e9cf
EI
2598 raw_write(env, ri, value);
2599 }
2600}
2601
8e5d75c9 2602static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
18032bec 2603 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2604 .access = PL1_RW, .type = ARM_CP_ALIAS,
4a7e2d73 2605 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
b061a82b 2606 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
18032bec 2607 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
88ca1c2d
FA
2608 .access = PL1_RW, .resetvalue = 0,
2609 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2610 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
8e5d75c9
PC
2611 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2612 .access = PL1_RW, .resetvalue = 0,
2613 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2614 offsetof(CPUARMState, cp15.dfar_ns) } },
2615 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2616 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2617 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2618 .resetvalue = 0, },
2619 REGINFO_SENTINEL
2620};
2621
2622static const ARMCPRegInfo vmsa_cp_reginfo[] = {
6cd8a264
RH
2623 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2624 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2625 .access = PL1_RW,
d81c519c 2626 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
327ed10f 2627 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2628 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2629 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2630 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2631 offsetof(CPUARMState, cp15.ttbr0_ns) } },
327ed10f 2632 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2633 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2634 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2635 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2636 offsetof(CPUARMState, cp15.ttbr1_ns) } },
cb2e37df
PM
2637 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2638 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2639 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2640 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
11f136ee 2641 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
cb2e37df 2642 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
7a0e58fa 2643 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
b061a82b 2644 .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee
FA
2645 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2646 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
18032bec
PM
2647 REGINFO_SENTINEL
2648};
2649
c4241c7d
PM
2650static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2651 uint64_t value)
1047b9d7
PM
2652{
2653 env->cp15.c15_ticonfig = value & 0xe7;
2654 /* The OS_TYPE bit in this register changes the reported CPUID! */
2655 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2656 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1047b9d7
PM
2657}
2658
c4241c7d
PM
2659static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2660 uint64_t value)
1047b9d7
PM
2661{
2662 env->cp15.c15_threadid = value & 0xffff;
1047b9d7
PM
2663}
2664
c4241c7d
PM
2665static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2666 uint64_t value)
1047b9d7
PM
2667{
2668 /* Wait-for-interrupt (deprecated) */
c3affe56 2669 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1047b9d7
PM
2670}
2671
c4241c7d
PM
2672static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2673 uint64_t value)
c4804214
PM
2674{
2675 /* On OMAP there are registers indicating the max/min index of dcache lines
2676 * containing a dirty line; cache flush operations have to reset these.
2677 */
2678 env->cp15.c15_i_max = 0x000;
2679 env->cp15.c15_i_min = 0xff0;
c4804214
PM
2680}
2681
18032bec
PM
2682static const ARMCPRegInfo omap_cp_reginfo[] = {
2683 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2684 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
d81c519c 2685 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
6cd8a264 2686 .resetvalue = 0, },
1047b9d7
PM
2687 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2688 .access = PL1_RW, .type = ARM_CP_NOP },
2689 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2690 .access = PL1_RW,
2691 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2692 .writefn = omap_ticonfig_write },
2693 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2694 .access = PL1_RW,
2695 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2696 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2697 .access = PL1_RW, .resetvalue = 0xff0,
2698 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2699 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2700 .access = PL1_RW,
2701 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2702 .writefn = omap_threadid_write },
2703 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2704 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
7a0e58fa 2705 .type = ARM_CP_NO_RAW,
1047b9d7
PM
2706 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2707 /* TODO: Peripheral port remap register:
2708 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2709 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2710 * when MMU is off.
2711 */
c4804214 2712 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
d4e6df63 2713 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
7a0e58fa 2714 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
c4804214 2715 .writefn = omap_cachemaint_write },
34f90529
PM
2716 { .name = "C9", .cp = 15, .crn = 9,
2717 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2718 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
2719 REGINFO_SENTINEL
2720};
2721
c4241c7d
PM
2722static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2723 uint64_t value)
1047b9d7 2724{
c0f4af17 2725 env->cp15.c15_cpar = value & 0x3fff;
1047b9d7
PM
2726}
2727
2728static const ARMCPRegInfo xscale_cp_reginfo[] = {
2729 { .name = "XSCALE_CPAR",
2730 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2731 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2732 .writefn = xscale_cpar_write, },
2771db27
PM
2733 { .name = "XSCALE_AUXCR",
2734 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2735 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2736 .resetvalue = 0, },
3b771579
PM
2737 /* XScale specific cache-lockdown: since we have no cache we NOP these
2738 * and hope the guest does not really rely on cache behaviour.
2739 */
2740 { .name = "XSCALE_LOCK_ICACHE_LINE",
2741 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2742 .access = PL1_W, .type = ARM_CP_NOP },
2743 { .name = "XSCALE_UNLOCK_ICACHE",
2744 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2745 .access = PL1_W, .type = ARM_CP_NOP },
2746 { .name = "XSCALE_DCACHE_LOCK",
2747 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2748 .access = PL1_RW, .type = ARM_CP_NOP },
2749 { .name = "XSCALE_UNLOCK_DCACHE",
2750 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2751 .access = PL1_W, .type = ARM_CP_NOP },
1047b9d7
PM
2752 REGINFO_SENTINEL
2753};
2754
2755static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2756 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2757 * implementation of this implementation-defined space.
2758 * Ideally this should eventually disappear in favour of actually
2759 * implementing the correct behaviour for all cores.
2760 */
2761 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2762 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671cd87 2763 .access = PL1_RW,
7a0e58fa 2764 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
d4e6df63 2765 .resetvalue = 0 },
18032bec
PM
2766 REGINFO_SENTINEL
2767};
2768
c4804214
PM
2769static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2770 /* Cache status: RAZ because we have no cache so it's always clean */
2771 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
7a0e58fa 2772 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2773 .resetvalue = 0 },
c4804214
PM
2774 REGINFO_SENTINEL
2775};
2776
2777static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2778 /* We never have a a block transfer operation in progress */
2779 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
7a0e58fa 2780 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2781 .resetvalue = 0 },
30b05bba
PM
2782 /* The cache ops themselves: these all NOP for QEMU */
2783 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2784 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2785 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2786 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2787 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2788 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2789 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2790 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2791 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2792 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2793 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2794 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
c4804214
PM
2795 REGINFO_SENTINEL
2796};
2797
2798static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2799 /* The cache test-and-clean instructions always return (1 << 30)
2800 * to indicate that there are no dirty cache lines.
2801 */
2802 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
7a0e58fa 2803 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2804 .resetvalue = (1 << 30) },
c4804214 2805 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
7a0e58fa 2806 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2807 .resetvalue = (1 << 30) },
c4804214
PM
2808 REGINFO_SENTINEL
2809};
2810
34f90529
PM
2811static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2812 /* Ignore ReadBuffer accesses */
2813 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2814 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
d4e6df63 2815 .access = PL1_RW, .resetvalue = 0,
7a0e58fa 2816 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
34f90529
PM
2817 REGINFO_SENTINEL
2818};
2819
731de9e6
EI
2820static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2821{
2822 ARMCPU *cpu = arm_env_get_cpu(env);
2823 unsigned int cur_el = arm_current_el(env);
2824 bool secure = arm_is_secure(env);
2825
2826 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2827 return env->cp15.vpidr_el2;
2828 }
2829 return raw_read(env, ri);
2830}
2831
06a7e647 2832static uint64_t mpidr_read_val(CPUARMState *env)
81bdde9d 2833{
eb5e1d3c
PF
2834 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2835 uint64_t mpidr = cpu->mp_affinity;
2836
81bdde9d 2837 if (arm_feature(env, ARM_FEATURE_V7MP)) {
78dbbbe4 2838 mpidr |= (1U << 31);
81bdde9d
PM
2839 /* Cores which are uniprocessor (non-coherent)
2840 * but still implement the MP extensions set
a8e81b31 2841 * bit 30. (For instance, Cortex-R5).
81bdde9d 2842 */
a8e81b31
PC
2843 if (cpu->mp_is_up) {
2844 mpidr |= (1u << 30);
2845 }
81bdde9d 2846 }
c4241c7d 2847 return mpidr;
81bdde9d
PM
2848}
2849
06a7e647
EI
2850static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2851{
f0d574d6
EI
2852 unsigned int cur_el = arm_current_el(env);
2853 bool secure = arm_is_secure(env);
2854
2855 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2856 return env->cp15.vmpidr_el2;
2857 }
06a7e647
EI
2858 return mpidr_read_val(env);
2859}
2860
81bdde9d 2861static const ARMCPRegInfo mpidr_cp_reginfo[] = {
4b7fff2f
PM
2862 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2863 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7a0e58fa 2864 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
81bdde9d
PM
2865 REGINFO_SENTINEL
2866};
2867
7ac681cf 2868static const ARMCPRegInfo lpae_cp_reginfo[] = {
a903c449 2869 /* NOP AMAIR0/1 */
b0fe2427
PM
2870 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2871 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
a903c449 2872 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2873 .resetvalue = 0 },
b0fe2427 2874 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
7ac681cf 2875 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
a903c449 2876 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2877 .resetvalue = 0 },
891a2fe7 2878 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
01c097f7
FA
2879 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2880 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2881 offsetof(CPUARMState, cp15.par_ns)} },
891a2fe7 2882 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
7a0e58fa 2883 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2884 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2885 offsetof(CPUARMState, cp15.ttbr0_ns) },
b061a82b 2886 .writefn = vmsa_ttbr_write, },
891a2fe7 2887 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
7a0e58fa 2888 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2889 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2890 offsetof(CPUARMState, cp15.ttbr1_ns) },
b061a82b 2891 .writefn = vmsa_ttbr_write, },
7ac681cf
PM
2892 REGINFO_SENTINEL
2893};
2894
c4241c7d 2895static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2896{
c4241c7d 2897 return vfp_get_fpcr(env);
b0d2b7d0
PM
2898}
2899
c4241c7d
PM
2900static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2901 uint64_t value)
b0d2b7d0
PM
2902{
2903 vfp_set_fpcr(env, value);
b0d2b7d0
PM
2904}
2905
c4241c7d 2906static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2907{
c4241c7d 2908 return vfp_get_fpsr(env);
b0d2b7d0
PM
2909}
2910
c4241c7d
PM
2911static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2912 uint64_t value)
b0d2b7d0
PM
2913{
2914 vfp_set_fpsr(env, value);
b0d2b7d0
PM
2915}
2916
3f208fd7
PM
2917static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2918 bool isread)
c2b820fe 2919{
137feaa9 2920 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
c2b820fe
PM
2921 return CP_ACCESS_TRAP;
2922 }
2923 return CP_ACCESS_OK;
2924}
2925
2926static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2927 uint64_t value)
2928{
2929 env->daif = value & PSTATE_DAIF;
2930}
2931
8af35c37 2932static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3f208fd7
PM
2933 const ARMCPRegInfo *ri,
2934 bool isread)
8af35c37
PM
2935{
2936 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2937 * SCTLR_EL1.UCI is set.
2938 */
137feaa9 2939 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
8af35c37
PM
2940 return CP_ACCESS_TRAP;
2941 }
2942 return CP_ACCESS_OK;
2943}
2944
dbb1fb27
AB
2945/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2946 * Page D4-1736 (DDI0487A.b)
2947 */
2948
fd3ed969
PM
2949static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2950 uint64_t value)
168aa23b 2951{
a67cf277 2952 CPUState *cs = ENV_GET_CPU(env);
dbb1fb27 2953
fd3ed969 2954 if (arm_is_secure_below_el3(env)) {
0336cbf8 2955 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2956 ARMMMUIdxBit_S1SE1 |
2957 ARMMMUIdxBit_S1SE0);
fd3ed969 2958 } else {
0336cbf8 2959 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2960 ARMMMUIdxBit_S12NSE1 |
2961 ARMMMUIdxBit_S12NSE0);
fd3ed969 2962 }
168aa23b
PM
2963}
2964
fd3ed969
PM
2965static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2966 uint64_t value)
168aa23b 2967{
a67cf277 2968 CPUState *cs = ENV_GET_CPU(env);
fd3ed969 2969 bool sec = arm_is_secure_below_el3(env);
dbb1fb27 2970
a67cf277
AB
2971 if (sec) {
2972 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
2973 ARMMMUIdxBit_S1SE1 |
2974 ARMMMUIdxBit_S1SE0);
a67cf277
AB
2975 } else {
2976 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
2977 ARMMMUIdxBit_S12NSE1 |
2978 ARMMMUIdxBit_S12NSE0);
fd3ed969 2979 }
168aa23b
PM
2980}
2981
fd3ed969
PM
2982static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2983 uint64_t value)
168aa23b 2984{
fd3ed969
PM
2985 /* Note that the 'ALL' scope must invalidate both stage 1 and
2986 * stage 2 translations, whereas most other scopes only invalidate
2987 * stage 1 translations.
2988 */
00c8cb0a 2989 ARMCPU *cpu = arm_env_get_cpu(env);
fd3ed969
PM
2990 CPUState *cs = CPU(cpu);
2991
2992 if (arm_is_secure_below_el3(env)) {
0336cbf8 2993 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2994 ARMMMUIdxBit_S1SE1 |
2995 ARMMMUIdxBit_S1SE0);
fd3ed969
PM
2996 } else {
2997 if (arm_feature(env, ARM_FEATURE_EL2)) {
0336cbf8 2998 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2999 ARMMMUIdxBit_S12NSE1 |
3000 ARMMMUIdxBit_S12NSE0 |
3001 ARMMMUIdxBit_S2NS);
fd3ed969 3002 } else {
0336cbf8 3003 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3004 ARMMMUIdxBit_S12NSE1 |
3005 ARMMMUIdxBit_S12NSE0);
fd3ed969
PM
3006 }
3007 }
168aa23b
PM
3008}
3009
fd3ed969 3010static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
fa439fc5
PM
3011 uint64_t value)
3012{
fd3ed969
PM
3013 ARMCPU *cpu = arm_env_get_cpu(env);
3014 CPUState *cs = CPU(cpu);
3015
8bd5c820 3016 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
fd3ed969
PM
3017}
3018
43efaa33
PM
3019static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3020 uint64_t value)
3021{
3022 ARMCPU *cpu = arm_env_get_cpu(env);
3023 CPUState *cs = CPU(cpu);
3024
8bd5c820 3025 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
43efaa33
PM
3026}
3027
fd3ed969
PM
3028static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3029 uint64_t value)
3030{
3031 /* Note that the 'ALL' scope must invalidate both stage 1 and
3032 * stage 2 translations, whereas most other scopes only invalidate
3033 * stage 1 translations.
3034 */
a67cf277 3035 CPUState *cs = ENV_GET_CPU(env);
fd3ed969
PM
3036 bool sec = arm_is_secure_below_el3(env);
3037 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
a67cf277
AB
3038
3039 if (sec) {
3040 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3041 ARMMMUIdxBit_S1SE1 |
3042 ARMMMUIdxBit_S1SE0);
a67cf277
AB
3043 } else if (has_el2) {
3044 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3045 ARMMMUIdxBit_S12NSE1 |
3046 ARMMMUIdxBit_S12NSE0 |
3047 ARMMMUIdxBit_S2NS);
a67cf277
AB
3048 } else {
3049 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3050 ARMMMUIdxBit_S12NSE1 |
3051 ARMMMUIdxBit_S12NSE0);
fa439fc5
PM
3052 }
3053}
3054
2bfb9d75
PM
3055static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3056 uint64_t value)
3057{
a67cf277 3058 CPUState *cs = ENV_GET_CPU(env);
2bfb9d75 3059
8bd5c820 3060 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
2bfb9d75
PM
3061}
3062
43efaa33
PM
3063static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064 uint64_t value)
3065{
a67cf277 3066 CPUState *cs = ENV_GET_CPU(env);
43efaa33 3067
8bd5c820 3068 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
43efaa33
PM
3069}
3070
fd3ed969
PM
3071static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3072 uint64_t value)
3073{
3074 /* Invalidate by VA, EL1&0 (AArch64 version).
3075 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3076 * since we don't support flush-for-specific-ASID-only or
3077 * flush-last-level-only.
3078 */
3079 ARMCPU *cpu = arm_env_get_cpu(env);
3080 CPUState *cs = CPU(cpu);
3081 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3082
3083 if (arm_is_secure_below_el3(env)) {
0336cbf8 3084 tlb_flush_page_by_mmuidx(cs, pageaddr,
8bd5c820
PM
3085 ARMMMUIdxBit_S1SE1 |
3086 ARMMMUIdxBit_S1SE0);
fd3ed969 3087 } else {
0336cbf8 3088 tlb_flush_page_by_mmuidx(cs, pageaddr,
8bd5c820
PM
3089 ARMMMUIdxBit_S12NSE1 |
3090 ARMMMUIdxBit_S12NSE0);
fd3ed969
PM
3091 }
3092}
3093
3094static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3095 uint64_t value)
fa439fc5 3096{
fd3ed969
PM
3097 /* Invalidate by VA, EL2
3098 * Currently handles both VAE2 and VALE2, since we don't support
3099 * flush-last-level-only.
3100 */
3101 ARMCPU *cpu = arm_env_get_cpu(env);
3102 CPUState *cs = CPU(cpu);
3103 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3104
8bd5c820 3105 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
fd3ed969
PM
3106}
3107
43efaa33
PM
3108static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109 uint64_t value)
3110{
3111 /* Invalidate by VA, EL3
3112 * Currently handles both VAE3 and VALE3, since we don't support
3113 * flush-last-level-only.
3114 */
3115 ARMCPU *cpu = arm_env_get_cpu(env);
3116 CPUState *cs = CPU(cpu);
3117 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3118
8bd5c820 3119 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
43efaa33
PM
3120}
3121
fd3ed969
PM
3122static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3123 uint64_t value)
3124{
a67cf277
AB
3125 ARMCPU *cpu = arm_env_get_cpu(env);
3126 CPUState *cs = CPU(cpu);
fd3ed969 3127 bool sec = arm_is_secure_below_el3(env);
fa439fc5
PM
3128 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3129
a67cf277
AB
3130 if (sec) {
3131 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820
PM
3132 ARMMMUIdxBit_S1SE1 |
3133 ARMMMUIdxBit_S1SE0);
a67cf277
AB
3134 } else {
3135 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820
PM
3136 ARMMMUIdxBit_S12NSE1 |
3137 ARMMMUIdxBit_S12NSE0);
fa439fc5
PM
3138 }
3139}
3140
fd3ed969
PM
3141static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3142 uint64_t value)
fa439fc5 3143{
a67cf277 3144 CPUState *cs = ENV_GET_CPU(env);
fd3ed969 3145 uint64_t pageaddr = sextract64(value << 12, 0, 56);
fa439fc5 3146
a67cf277 3147 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3148 ARMMMUIdxBit_S1E2);
fa439fc5
PM
3149}
3150
43efaa33
PM
3151static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3152 uint64_t value)
3153{
a67cf277 3154 CPUState *cs = ENV_GET_CPU(env);
43efaa33
PM
3155 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3156
a67cf277 3157 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3158 ARMMMUIdxBit_S1E3);
43efaa33
PM
3159}
3160
cea66e91
PM
3161static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3162 uint64_t value)
3163{
3164 /* Invalidate by IPA. This has to invalidate any structures that
3165 * contain only stage 2 translation information, but does not need
3166 * to apply to structures that contain combined stage 1 and stage 2
3167 * translation information.
3168 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3169 */
3170 ARMCPU *cpu = arm_env_get_cpu(env);
3171 CPUState *cs = CPU(cpu);
3172 uint64_t pageaddr;
3173
3174 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3175 return;
3176 }
3177
3178 pageaddr = sextract64(value << 12, 0, 48);
3179
8bd5c820 3180 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
cea66e91
PM
3181}
3182
3183static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3184 uint64_t value)
3185{
a67cf277 3186 CPUState *cs = ENV_GET_CPU(env);
cea66e91
PM
3187 uint64_t pageaddr;
3188
3189 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3190 return;
3191 }
3192
3193 pageaddr = sextract64(value << 12, 0, 48);
3194
a67cf277 3195 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3196 ARMMMUIdxBit_S2NS);
cea66e91
PM
3197}
3198
3f208fd7
PM
3199static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3200 bool isread)
aca3f40b
PM
3201{
3202 /* We don't implement EL2, so the only control on DC ZVA is the
3203 * bit in the SCTLR which can prohibit access for EL0.
3204 */
137feaa9 3205 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
aca3f40b
PM
3206 return CP_ACCESS_TRAP;
3207 }
3208 return CP_ACCESS_OK;
3209}
3210
3211static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3212{
3213 ARMCPU *cpu = arm_env_get_cpu(env);
3214 int dzp_bit = 1 << 4;
3215
3216 /* DZP indicates whether DC ZVA access is allowed */
3f208fd7 3217 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
aca3f40b
PM
3218 dzp_bit = 0;
3219 }
3220 return cpu->dcz_blocksize | dzp_bit;
3221}
3222
3f208fd7
PM
3223static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3224 bool isread)
f502cfc2 3225{
cdcf1405 3226 if (!(env->pstate & PSTATE_SP)) {
f502cfc2
PM
3227 /* Access to SP_EL0 is undefined if it's being used as
3228 * the stack pointer.
3229 */
3230 return CP_ACCESS_TRAP_UNCATEGORIZED;
3231 }
3232 return CP_ACCESS_OK;
3233}
3234
3235static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3236{
3237 return env->pstate & PSTATE_SP;
3238}
3239
3240static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3241{
3242 update_spsel(env, val);
3243}
3244
137feaa9
FA
3245static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3246 uint64_t value)
3247{
3248 ARMCPU *cpu = arm_env_get_cpu(env);
3249
3250 if (raw_read(env, ri) == value) {
3251 /* Skip the TLB flush if nothing actually changed; Linux likes
3252 * to do a lot of pointless SCTLR writes.
3253 */
3254 return;
3255 }
3256
06312feb
PM
3257 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3258 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3259 value &= ~SCTLR_M;
3260 }
3261
137feaa9
FA
3262 raw_write(env, ri, value);
3263 /* ??? Lots of these bits are not implemented. */
3264 /* This may enable/disable the MMU, so do a TLB flush. */
d10eb08f 3265 tlb_flush(CPU(cpu));
137feaa9
FA
3266}
3267
3f208fd7
PM
3268static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3269 bool isread)
03fbf20f
PM
3270{
3271 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
f2cae609 3272 return CP_ACCESS_TRAP_FP_EL2;
03fbf20f
PM
3273 }
3274 if (env->cp15.cptr_el[3] & CPTR_TFP) {
f2cae609 3275 return CP_ACCESS_TRAP_FP_EL3;
03fbf20f
PM
3276 }
3277 return CP_ACCESS_OK;
3278}
3279
a8d64e73
PM
3280static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3281 uint64_t value)
3282{
3283 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3284}
3285
b0d2b7d0
PM
3286static const ARMCPRegInfo v8_cp_reginfo[] = {
3287 /* Minimal set of EL0-visible registers. This will need to be expanded
3288 * significantly for system emulation of AArch64 CPUs.
3289 */
3290 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3291 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3292 .access = PL0_RW, .type = ARM_CP_NZCV },
c2b820fe
PM
3293 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3294 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
7a0e58fa 3295 .type = ARM_CP_NO_RAW,
c2b820fe
PM
3296 .access = PL0_RW, .accessfn = aa64_daif_access,
3297 .fieldoffset = offsetof(CPUARMState, daif),
3298 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
b0d2b7d0
PM
3299 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3300 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3301 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3302 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3303 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3304 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
b0d2b7d0
PM
3305 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3306 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
7a0e58fa 3307 .access = PL0_R, .type = ARM_CP_NO_RAW,
aca3f40b
PM
3308 .readfn = aa64_dczid_read },
3309 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3310 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3311 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3312#ifndef CONFIG_USER_ONLY
3313 /* Avoid overhead of an access check that always passes in user-mode */
3314 .accessfn = aa64_zva_access,
3315#endif
3316 },
0eef9d98
PM
3317 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3318 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3319 .access = PL1_R, .type = ARM_CP_CURRENTEL },
8af35c37
PM
3320 /* Cache ops: all NOPs since we don't emulate caches */
3321 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3322 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3323 .access = PL1_W, .type = ARM_CP_NOP },
3324 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3325 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3326 .access = PL1_W, .type = ARM_CP_NOP },
3327 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3328 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3329 .access = PL0_W, .type = ARM_CP_NOP,
3330 .accessfn = aa64_cacheop_access },
3331 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3333 .access = PL1_W, .type = ARM_CP_NOP },
3334 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3335 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3336 .access = PL1_W, .type = ARM_CP_NOP },
3337 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3338 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3339 .access = PL0_W, .type = ARM_CP_NOP,
3340 .accessfn = aa64_cacheop_access },
3341 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3342 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3343 .access = PL1_W, .type = ARM_CP_NOP },
3344 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3345 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3346 .access = PL0_W, .type = ARM_CP_NOP,
3347 .accessfn = aa64_cacheop_access },
3348 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3349 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3350 .access = PL0_W, .type = ARM_CP_NOP,
3351 .accessfn = aa64_cacheop_access },
3352 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3353 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3354 .access = PL1_W, .type = ARM_CP_NOP },
168aa23b
PM
3355 /* TLBI operations */
3356 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3357 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 3358 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3359 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 3360 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3361 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 3362 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3363 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3364 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3365 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 3366 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3367 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 3368 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3369 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 3370 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3371 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3372 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3373 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 3374 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3375 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3376 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3377 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 3378 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3379 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3380 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3381 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 3382 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3383 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 3384 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3385 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 3386 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3387 .writefn = tlbi_aa64_vae1_write },
168aa23b 3388 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3389 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 3390 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3391 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 3392 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3393 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 3394 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3395 .writefn = tlbi_aa64_vae1_write },
168aa23b 3396 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3397 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 3398 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3399 .writefn = tlbi_aa64_vae1_write },
168aa23b 3400 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3401 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 3402 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3403 .writefn = tlbi_aa64_vae1_write },
cea66e91
PM
3404 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3405 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3406 .access = PL2_W, .type = ARM_CP_NO_RAW,
3407 .writefn = tlbi_aa64_ipas2e1is_write },
3408 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3409 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3410 .access = PL2_W, .type = ARM_CP_NO_RAW,
3411 .writefn = tlbi_aa64_ipas2e1is_write },
83ddf975
PM
3412 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3413 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3414 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 3415 .writefn = tlbi_aa64_alle1is_write },
43efaa33
PM
3416 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3417 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3418 .access = PL2_W, .type = ARM_CP_NO_RAW,
3419 .writefn = tlbi_aa64_alle1is_write },
cea66e91
PM
3420 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3421 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3422 .access = PL2_W, .type = ARM_CP_NO_RAW,
3423 .writefn = tlbi_aa64_ipas2e1_write },
3424 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3425 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3426 .access = PL2_W, .type = ARM_CP_NO_RAW,
3427 .writefn = tlbi_aa64_ipas2e1_write },
83ddf975
PM
3428 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3429 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3430 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 3431 .writefn = tlbi_aa64_alle1_write },
43efaa33
PM
3432 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3433 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3434 .access = PL2_W, .type = ARM_CP_NO_RAW,
3435 .writefn = tlbi_aa64_alle1is_write },
19525524
PM
3436#ifndef CONFIG_USER_ONLY
3437 /* 64 bit address translation operations */
3438 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3439 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
060e8a48 3440 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3441 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3442 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
060e8a48 3443 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3444 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3445 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
060e8a48 3446 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3447 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3448 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
060e8a48 3449 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2a47df95 3450 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
7a379c7e 3451 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
2a47df95
PM
3452 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3453 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
7a379c7e 3454 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
2a47df95
PM
3455 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3456 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
7a379c7e 3457 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
2a47df95
PM
3458 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3459 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
7a379c7e 3460 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
2a47df95
PM
3461 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3462 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3463 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3464 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3465 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3466 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3467 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3468 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
c96fc9b5
EI
3469 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3470 .type = ARM_CP_ALIAS,
3471 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3472 .access = PL1_RW, .resetvalue = 0,
3473 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3474 .writefn = par_write },
19525524 3475#endif
995939a6 3476 /* TLB invalidate last level of translation table walk */
9449fdf6 3477 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 3478 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
9449fdf6 3479 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 3480 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 3481 .writefn = tlbimvaa_is_write },
9449fdf6 3482 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 3483 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
9449fdf6 3484 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 3485 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
541ef8c2
SS
3486 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3487 .type = ARM_CP_NO_RAW, .access = PL2_W,
3488 .writefn = tlbimva_hyp_write },
3489 { .name = "TLBIMVALHIS",
3490 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3491 .type = ARM_CP_NO_RAW, .access = PL2_W,
3492 .writefn = tlbimva_hyp_is_write },
3493 { .name = "TLBIIPAS2",
3494 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3495 .type = ARM_CP_NO_RAW, .access = PL2_W,
3496 .writefn = tlbiipas2_write },
3497 { .name = "TLBIIPAS2IS",
3498 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3499 .type = ARM_CP_NO_RAW, .access = PL2_W,
3500 .writefn = tlbiipas2_is_write },
3501 { .name = "TLBIIPAS2L",
3502 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3503 .type = ARM_CP_NO_RAW, .access = PL2_W,
3504 .writefn = tlbiipas2_write },
3505 { .name = "TLBIIPAS2LIS",
3506 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3507 .type = ARM_CP_NO_RAW, .access = PL2_W,
3508 .writefn = tlbiipas2_is_write },
9449fdf6
PM
3509 /* 32 bit cache operations */
3510 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3511 .type = ARM_CP_NOP, .access = PL1_W },
3512 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3513 .type = ARM_CP_NOP, .access = PL1_W },
3514 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3515 .type = ARM_CP_NOP, .access = PL1_W },
3516 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3517 .type = ARM_CP_NOP, .access = PL1_W },
3518 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3519 .type = ARM_CP_NOP, .access = PL1_W },
3520 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3521 .type = ARM_CP_NOP, .access = PL1_W },
3522 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3523 .type = ARM_CP_NOP, .access = PL1_W },
3524 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3525 .type = ARM_CP_NOP, .access = PL1_W },
3526 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3527 .type = ARM_CP_NOP, .access = PL1_W },
3528 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3529 .type = ARM_CP_NOP, .access = PL1_W },
3530 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3531 .type = ARM_CP_NOP, .access = PL1_W },
3532 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3533 .type = ARM_CP_NOP, .access = PL1_W },
3534 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3535 .type = ARM_CP_NOP, .access = PL1_W },
3536 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
3537 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3538 .access = PL1_RW, .resetvalue = 0,
3539 .writefn = dacr_write, .raw_writefn = raw_write,
3540 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3541 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a0618a19 3542 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3543 .type = ARM_CP_ALIAS,
a0618a19 3544 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
6947f059
EI
3545 .access = PL1_RW,
3546 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
a65f1de9 3547 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3548 .type = ARM_CP_ALIAS,
a65f1de9 3549 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3550 .access = PL1_RW,
3551 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
f502cfc2
PM
3552 /* We rely on the access checks not allowing the guest to write to the
3553 * state field when SPSel indicates that it's being used as the stack
3554 * pointer.
3555 */
3556 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3557 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3558 .access = PL1_RW, .accessfn = sp_el0_access,
7a0e58fa 3559 .type = ARM_CP_ALIAS,
f502cfc2 3560 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
884b4dee
GB
3561 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3562 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3563 .access = PL2_RW, .type = ARM_CP_ALIAS,
884b4dee 3564 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
f502cfc2
PM
3565 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3566 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
7a0e58fa 3567 .type = ARM_CP_NO_RAW,
f502cfc2 3568 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
03fbf20f
PM
3569 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3570 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3571 .type = ARM_CP_ALIAS,
3572 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3573 .access = PL2_RW, .accessfn = fpexc32_access },
6a43e0b6
PM
3574 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3575 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3576 .access = PL2_RW, .resetvalue = 0,
3577 .writefn = dacr_write, .raw_writefn = raw_write,
3578 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3579 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3580 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3581 .access = PL2_RW, .resetvalue = 0,
3582 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3583 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3584 .type = ARM_CP_ALIAS,
3585 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3586 .access = PL2_RW,
3587 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3588 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3589 .type = ARM_CP_ALIAS,
3590 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3591 .access = PL2_RW,
3592 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3593 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3594 .type = ARM_CP_ALIAS,
3595 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3596 .access = PL2_RW,
3597 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3598 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3599 .type = ARM_CP_ALIAS,
3600 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3601 .access = PL2_RW,
3602 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
a8d64e73
PM
3603 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3604 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3605 .resetvalue = 0,
3606 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3607 { .name = "SDCR", .type = ARM_CP_ALIAS,
3608 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3609 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3610 .writefn = sdcr_write,
3611 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
b0d2b7d0
PM
3612 REGINFO_SENTINEL
3613};
3614
d42e3c26 3615/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4771cd01 3616static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
d42e3c26
EI
3617 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3618 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3619 .access = PL2_RW,
3620 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
f149e3e8 3621 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3622 .type = ARM_CP_NO_RAW,
f149e3e8
EI
3623 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3624 .access = PL2_RW,
3625 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
c6f19164
GB
3626 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3627 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3628 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
95f949ac
EI
3629 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3630 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3631 .access = PL2_RW, .type = ARM_CP_CONST,
3632 .resetvalue = 0 },
3633 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3634 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3635 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2179ef95
PM
3636 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3637 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3638 .access = PL2_RW, .type = ARM_CP_CONST,
3639 .resetvalue = 0 },
3640 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3641 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3642 .access = PL2_RW, .type = ARM_CP_CONST,
3643 .resetvalue = 0 },
37cd6c24
PM
3644 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3645 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3646 .access = PL2_RW, .type = ARM_CP_CONST,
3647 .resetvalue = 0 },
3648 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3649 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3650 .access = PL2_RW, .type = ARM_CP_CONST,
3651 .resetvalue = 0 },
06ec4c8c
EI
3652 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3653 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3654 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
68e9c2fe
EI
3655 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3656 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3657 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3658 .type = ARM_CP_CONST, .resetvalue = 0 },
b698e9cf
EI
3659 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3660 .cp = 15, .opc1 = 6, .crm = 2,
3661 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3662 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3663 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3664 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3665 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b9cb5323
EI
3666 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3667 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3668 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
ff05f37b
EI
3669 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3670 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3671 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
a57633c0
EI
3672 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3673 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3674 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3675 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3676 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3677 .resetvalue = 0 },
0b6440af
EI
3678 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3679 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3680 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
edac4d8a
EI
3681 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3682 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3683 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3684 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3685 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3686 .resetvalue = 0 },
b0e66d95
EI
3687 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3688 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3689 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3690 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3691 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3692 .resetvalue = 0 },
3693 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3694 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3695 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3696 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3697 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3698 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
14cc7b54
SF
3699 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3700 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
d6c8cf81
PM
3701 .access = PL2_RW, .accessfn = access_tda,
3702 .type = ARM_CP_CONST, .resetvalue = 0 },
59e05530
EI
3703 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3704 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3705 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3706 .type = ARM_CP_CONST, .resetvalue = 0 },
2a5a9abd
AF
3707 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3708 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3709 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
d42e3c26
EI
3710 REGINFO_SENTINEL
3711};
3712
f149e3e8
EI
3713static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3714{
3715 ARMCPU *cpu = arm_env_get_cpu(env);
3716 uint64_t valid_mask = HCR_MASK;
3717
3718 if (arm_feature(env, ARM_FEATURE_EL3)) {
3719 valid_mask &= ~HCR_HCD;
3720 } else {
3721 valid_mask &= ~HCR_TSC;
3722 }
3723
3724 /* Clear RES0 bits. */
3725 value &= valid_mask;
3726
3727 /* These bits change the MMU setup:
3728 * HCR_VM enables stage 2 translation
3729 * HCR_PTW forbids certain page-table setups
3730 * HCR_DC Disables stage1 and enables stage2 translation
3731 */
3732 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
d10eb08f 3733 tlb_flush(CPU(cpu));
f149e3e8
EI
3734 }
3735 raw_write(env, ri, value);
3736}
3737
4771cd01 3738static const ARMCPRegInfo el2_cp_reginfo[] = {
f149e3e8
EI
3739 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3740 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3741 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3742 .writefn = hcr_write },
3b685ba7 3743 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3744 .type = ARM_CP_ALIAS,
3b685ba7
EI
3745 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3746 .access = PL2_RW,
3747 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
f2c30f42 3748 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
3749 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3750 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
63b60551
EI
3751 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3752 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3753 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3b685ba7 3754 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3755 .type = ARM_CP_ALIAS,
3b685ba7 3756 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3757 .access = PL2_RW,
3758 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
d42e3c26
EI
3759 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3760 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3761 .access = PL2_RW, .writefn = vbar_write,
3762 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3763 .resetvalue = 0 },
884b4dee
GB
3764 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3765 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3766 .access = PL3_RW, .type = ARM_CP_ALIAS,
884b4dee 3767 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
c6f19164
GB
3768 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3769 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3770 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3771 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
95f949ac
EI
3772 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3773 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3774 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3775 .resetvalue = 0 },
3776 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3777 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3778 .access = PL2_RW, .type = ARM_CP_ALIAS,
3779 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2179ef95
PM
3780 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3781 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3782 .access = PL2_RW, .type = ARM_CP_CONST,
3783 .resetvalue = 0 },
3784 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3785 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3786 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3787 .access = PL2_RW, .type = ARM_CP_CONST,
3788 .resetvalue = 0 },
37cd6c24
PM
3789 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3790 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3791 .access = PL2_RW, .type = ARM_CP_CONST,
3792 .resetvalue = 0 },
3793 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3794 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3795 .access = PL2_RW, .type = ARM_CP_CONST,
3796 .resetvalue = 0 },
06ec4c8c
EI
3797 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3798 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
3799 .access = PL2_RW,
3800 /* no .writefn needed as this can't cause an ASID change;
3801 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3802 */
06ec4c8c 3803 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
68e9c2fe
EI
3804 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3805 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112 3806 .type = ARM_CP_ALIAS,
68e9c2fe
EI
3807 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3808 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3809 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3810 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112
PM
3811 .access = PL2_RW,
3812 /* no .writefn needed as this can't cause an ASID change;
3813 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3814 */
68e9c2fe 3815 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
b698e9cf
EI
3816 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3817 .cp = 15, .opc1 = 6, .crm = 2,
3818 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3819 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3820 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3821 .writefn = vttbr_write },
3822 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3823 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3824 .access = PL2_RW, .writefn = vttbr_write,
3825 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
b9cb5323
EI
3826 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3827 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3828 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3829 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
ff05f37b
EI
3830 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3831 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3832 .access = PL2_RW, .resetvalue = 0,
3833 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
a57633c0
EI
3834 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3835 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3836 .access = PL2_RW, .resetvalue = 0,
3837 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3838 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3839 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
a57633c0 3840 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
541ef8c2
SS
3841 { .name = "TLBIALLNSNH",
3842 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3843 .type = ARM_CP_NO_RAW, .access = PL2_W,
3844 .writefn = tlbiall_nsnh_write },
3845 { .name = "TLBIALLNSNHIS",
3846 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3847 .type = ARM_CP_NO_RAW, .access = PL2_W,
3848 .writefn = tlbiall_nsnh_is_write },
3849 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3850 .type = ARM_CP_NO_RAW, .access = PL2_W,
3851 .writefn = tlbiall_hyp_write },
3852 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3853 .type = ARM_CP_NO_RAW, .access = PL2_W,
3854 .writefn = tlbiall_hyp_is_write },
3855 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3856 .type = ARM_CP_NO_RAW, .access = PL2_W,
3857 .writefn = tlbimva_hyp_write },
3858 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3859 .type = ARM_CP_NO_RAW, .access = PL2_W,
3860 .writefn = tlbimva_hyp_is_write },
51da9014
EI
3861 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3862 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3863 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3864 .writefn = tlbi_aa64_alle2_write },
8742d49d
EI
3865 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3866 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3867 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3868 .writefn = tlbi_aa64_vae2_write },
2bfb9d75
PM
3869 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3870 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3871 .access = PL2_W, .type = ARM_CP_NO_RAW,
3872 .writefn = tlbi_aa64_vae2_write },
3873 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3874 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3875 .access = PL2_W, .type = ARM_CP_NO_RAW,
3876 .writefn = tlbi_aa64_alle2is_write },
8742d49d
EI
3877 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3878 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3879 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3880 .writefn = tlbi_aa64_vae2is_write },
2bfb9d75
PM
3881 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3882 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3883 .access = PL2_W, .type = ARM_CP_NO_RAW,
3884 .writefn = tlbi_aa64_vae2is_write },
edac4d8a 3885#ifndef CONFIG_USER_ONLY
2a47df95
PM
3886 /* Unlike the other EL2-related AT operations, these must
3887 * UNDEF from EL3 if EL2 is not implemented, which is why we
3888 * define them here rather than with the rest of the AT ops.
3889 */
3890 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3891 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3892 .access = PL2_W, .accessfn = at_s1e2_access,
3893 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3894 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3895 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3896 .access = PL2_W, .accessfn = at_s1e2_access,
3897 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
14db7fe0
PM
3898 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3899 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3900 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3901 * to behave as if SCR.NS was 1.
3902 */
3903 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3904 .access = PL2_W,
3905 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3906 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3907 .access = PL2_W,
3908 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
0b6440af
EI
3909 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3910 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3911 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3912 * reset values as IMPDEF. We choose to reset to 3 to comply with
3913 * both ARMv7 and ARMv8.
3914 */
3915 .access = PL2_RW, .resetvalue = 3,
3916 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
edac4d8a
EI
3917 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3918 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3919 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3920 .writefn = gt_cntvoff_write,
3921 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3922 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3923 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3924 .writefn = gt_cntvoff_write,
3925 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
b0e66d95
EI
3926 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3927 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3928 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3929 .type = ARM_CP_IO, .access = PL2_RW,
3930 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3931 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3932 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3933 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3934 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3935 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3936 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
d44ec156 3937 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
b0e66d95
EI
3938 .resetfn = gt_hyp_timer_reset,
3939 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3940 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3941 .type = ARM_CP_IO,
3942 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3943 .access = PL2_RW,
3944 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3945 .resetvalue = 0,
3946 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
edac4d8a 3947#endif
14cc7b54
SF
3948 /* The only field of MDCR_EL2 that has a defined architectural reset value
3949 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3950 * don't impelment any PMU event counters, so using zero as a reset
3951 * value for MDCR_EL2 is okay
3952 */
3953 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3954 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3955 .access = PL2_RW, .resetvalue = 0,
3956 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
59e05530
EI
3957 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3958 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3959 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3960 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3961 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3962 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3963 .access = PL2_RW,
3964 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
2a5a9abd
AF
3965 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3966 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3967 .access = PL2_RW,
3968 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3b685ba7
EI
3969 REGINFO_SENTINEL
3970};
3971
2f027fc5
PM
3972static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3973 bool isread)
3974{
3975 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3976 * At Secure EL1 it traps to EL3.
3977 */
3978 if (arm_current_el(env) == 3) {
3979 return CP_ACCESS_OK;
3980 }
3981 if (arm_is_secure_below_el3(env)) {
3982 return CP_ACCESS_TRAP_EL3;
3983 }
3984 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3985 if (isread) {
3986 return CP_ACCESS_OK;
3987 }
3988 return CP_ACCESS_TRAP_UNCATEGORIZED;
3989}
3990
60fb1a87
GB
3991static const ARMCPRegInfo el3_cp_reginfo[] = {
3992 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3993 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3994 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3995 .resetvalue = 0, .writefn = scr_write },
7a0e58fa 3996 { .name = "SCR", .type = ARM_CP_ALIAS,
60fb1a87 3997 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
efe4a274
PM
3998 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3999 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
b061a82b 4000 .writefn = scr_write },
60fb1a87
GB
4001 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4002 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4003 .access = PL3_RW, .resetvalue = 0,
4004 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4005 { .name = "SDER",
4006 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4007 .access = PL3_RW, .resetvalue = 0,
4008 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
60fb1a87 4009 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
efe4a274
PM
4010 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4011 .writefn = vbar_write, .resetvalue = 0,
60fb1a87 4012 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
7dd8c9af
FA
4013 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4014 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4015 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4016 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
11f136ee
FA
4017 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4018 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
4019 .access = PL3_RW,
4020 /* no .writefn needed as this can't cause an ASID change;
811595a2
PM
4021 * we must provide a .raw_writefn and .resetfn because we handle
4022 * reset and migration for the AArch32 TTBCR(S), which might be
4023 * using mask and base_mask.
6459b94c 4024 */
811595a2 4025 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee 4026 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
81547d66 4027 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 4028 .type = ARM_CP_ALIAS,
81547d66
EI
4029 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4030 .access = PL3_RW,
4031 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
f2c30f42 4032 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
4033 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4034 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
63b60551
EI
4035 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4036 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4037 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
81547d66 4038 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 4039 .type = ARM_CP_ALIAS,
81547d66 4040 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
4041 .access = PL3_RW,
4042 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
a1ba125c
EI
4043 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4044 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4045 .access = PL3_RW, .writefn = vbar_write,
4046 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4047 .resetvalue = 0 },
c6f19164
GB
4048 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4049 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4050 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4051 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4cfb8ad8
PM
4052 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4053 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4054 .access = PL3_RW, .resetvalue = 0,
4055 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
2179ef95
PM
4056 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4057 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4058 .access = PL3_RW, .type = ARM_CP_CONST,
4059 .resetvalue = 0 },
37cd6c24
PM
4060 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4061 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4062 .access = PL3_RW, .type = ARM_CP_CONST,
4063 .resetvalue = 0 },
4064 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4065 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4066 .access = PL3_RW, .type = ARM_CP_CONST,
4067 .resetvalue = 0 },
43efaa33
PM
4068 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4069 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4070 .access = PL3_W, .type = ARM_CP_NO_RAW,
4071 .writefn = tlbi_aa64_alle3is_write },
4072 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4073 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4074 .access = PL3_W, .type = ARM_CP_NO_RAW,
4075 .writefn = tlbi_aa64_vae3is_write },
4076 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4077 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4078 .access = PL3_W, .type = ARM_CP_NO_RAW,
4079 .writefn = tlbi_aa64_vae3is_write },
4080 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4081 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4082 .access = PL3_W, .type = ARM_CP_NO_RAW,
4083 .writefn = tlbi_aa64_alle3_write },
4084 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4085 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4086 .access = PL3_W, .type = ARM_CP_NO_RAW,
4087 .writefn = tlbi_aa64_vae3_write },
4088 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4089 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4090 .access = PL3_W, .type = ARM_CP_NO_RAW,
4091 .writefn = tlbi_aa64_vae3_write },
0f1a3b24
FA
4092 REGINFO_SENTINEL
4093};
4094
3f208fd7
PM
4095static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4096 bool isread)
7da845b0
PM
4097{
4098 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4099 * but the AArch32 CTR has its own reginfo struct)
4100 */
137feaa9 4101 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7da845b0
PM
4102 return CP_ACCESS_TRAP;
4103 }
4104 return CP_ACCESS_OK;
4105}
4106
1424ca8d
DM
4107static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4108 uint64_t value)
4109{
4110 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4111 * read via a bit in OSLSR_EL1.
4112 */
4113 int oslock;
4114
4115 if (ri->state == ARM_CP_STATE_AA32) {
4116 oslock = (value == 0xC5ACCE55);
4117 } else {
4118 oslock = value & 1;
4119 }
4120
4121 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4122}
4123
50300698 4124static const ARMCPRegInfo debug_cp_reginfo[] = {
50300698 4125 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
10aae104
PM
4126 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4127 * unlike DBGDRAR it is never accessible from EL0.
4128 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4129 * accessor.
50300698
PM
4130 */
4131 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
4132 .access = PL0_R, .accessfn = access_tdra,
4133 .type = ARM_CP_CONST, .resetvalue = 0 },
10aae104
PM
4134 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4135 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
91b0a238
PM
4136 .access = PL1_R, .accessfn = access_tdra,
4137 .type = ARM_CP_CONST, .resetvalue = 0 },
50300698 4138 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
4139 .access = PL0_R, .accessfn = access_tdra,
4140 .type = ARM_CP_CONST, .resetvalue = 0 },
17a9eb53 4141 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
10aae104
PM
4142 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4143 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
d6c8cf81 4144 .access = PL1_RW, .accessfn = access_tda,
0e5e8935
PM
4145 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4146 .resetvalue = 0 },
5e8b12ff
PM
4147 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4148 * We don't implement the configurable EL0 access.
4149 */
4150 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4151 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7a0e58fa 4152 .type = ARM_CP_ALIAS,
d6c8cf81 4153 .access = PL1_R, .accessfn = access_tda,
b061a82b 4154 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
10aae104
PM
4155 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4156 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1424ca8d 4157 .access = PL1_W, .type = ARM_CP_NO_RAW,
187f678d 4158 .accessfn = access_tdosa,
1424ca8d
DM
4159 .writefn = oslar_write },
4160 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4161 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4162 .access = PL1_R, .resetvalue = 10,
187f678d 4163 .accessfn = access_tdosa,
1424ca8d 4164 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5e8b12ff
PM
4165 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4166 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4167 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
187f678d
PM
4168 .access = PL1_RW, .accessfn = access_tdosa,
4169 .type = ARM_CP_NOP },
5e8b12ff
PM
4170 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4171 * implement vector catch debug events yet.
4172 */
4173 { .name = "DBGVCR",
4174 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
d6c8cf81
PM
4175 .access = PL1_RW, .accessfn = access_tda,
4176 .type = ARM_CP_NOP },
4d2ec4da
PM
4177 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4178 * to save and restore a 32-bit guest's DBGVCR)
4179 */
4180 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4181 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4182 .access = PL2_RW, .accessfn = access_tda,
4183 .type = ARM_CP_NOP },
5dbdc434
PM
4184 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4185 * Channel but Linux may try to access this register. The 32-bit
4186 * alias is DBGDCCINT.
4187 */
4188 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4189 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4190 .access = PL1_RW, .accessfn = access_tda,
4191 .type = ARM_CP_NOP },
50300698
PM
4192 REGINFO_SENTINEL
4193};
4194
4195static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4196 /* 64 bit access versions of the (dummy) debug registers */
4197 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4198 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4199 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4200 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4201 REGINFO_SENTINEL
4202};
4203
9ee98ce8
PM
4204void hw_watchpoint_update(ARMCPU *cpu, int n)
4205{
4206 CPUARMState *env = &cpu->env;
4207 vaddr len = 0;
4208 vaddr wvr = env->cp15.dbgwvr[n];
4209 uint64_t wcr = env->cp15.dbgwcr[n];
4210 int mask;
4211 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4212
4213 if (env->cpu_watchpoint[n]) {
4214 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4215 env->cpu_watchpoint[n] = NULL;
4216 }
4217
4218 if (!extract64(wcr, 0, 1)) {
4219 /* E bit clear : watchpoint disabled */
4220 return;
4221 }
4222
4223 switch (extract64(wcr, 3, 2)) {
4224 case 0:
4225 /* LSC 00 is reserved and must behave as if the wp is disabled */
4226 return;
4227 case 1:
4228 flags |= BP_MEM_READ;
4229 break;
4230 case 2:
4231 flags |= BP_MEM_WRITE;
4232 break;
4233 case 3:
4234 flags |= BP_MEM_ACCESS;
4235 break;
4236 }
4237
4238 /* Attempts to use both MASK and BAS fields simultaneously are
4239 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4240 * thus generating a watchpoint for every byte in the masked region.
4241 */
4242 mask = extract64(wcr, 24, 4);
4243 if (mask == 1 || mask == 2) {
4244 /* Reserved values of MASK; we must act as if the mask value was
4245 * some non-reserved value, or as if the watchpoint were disabled.
4246 * We choose the latter.
4247 */
4248 return;
4249 } else if (mask) {
4250 /* Watchpoint covers an aligned area up to 2GB in size */
4251 len = 1ULL << mask;
4252 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4253 * whether the watchpoint fires when the unmasked bits match; we opt
4254 * to generate the exceptions.
4255 */
4256 wvr &= ~(len - 1);
4257 } else {
4258 /* Watchpoint covers bytes defined by the byte address select bits */
4259 int bas = extract64(wcr, 5, 8);
4260 int basstart;
4261
4262 if (bas == 0) {
4263 /* This must act as if the watchpoint is disabled */
4264 return;
4265 }
4266
4267 if (extract64(wvr, 2, 1)) {
4268 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4269 * ignored, and BAS[3:0] define which bytes to watch.
4270 */
4271 bas &= 0xf;
4272 }
4273 /* The BAS bits are supposed to be programmed to indicate a contiguous
4274 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4275 * we fire for each byte in the word/doubleword addressed by the WVR.
4276 * We choose to ignore any non-zero bits after the first range of 1s.
4277 */
4278 basstart = ctz32(bas);
4279 len = cto32(bas >> basstart);
4280 wvr += basstart;
4281 }
4282
4283 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4284 &env->cpu_watchpoint[n]);
4285}
4286
4287void hw_watchpoint_update_all(ARMCPU *cpu)
4288{
4289 int i;
4290 CPUARMState *env = &cpu->env;
4291
4292 /* Completely clear out existing QEMU watchpoints and our array, to
4293 * avoid possible stale entries following migration load.
4294 */
4295 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4296 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4297
4298 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4299 hw_watchpoint_update(cpu, i);
4300 }
4301}
4302
4303static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4304 uint64_t value)
4305{
4306 ARMCPU *cpu = arm_env_get_cpu(env);
4307 int i = ri->crm;
4308
4309 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4310 * register reads and behaves as if values written are sign extended.
4311 * Bits [1:0] are RES0.
4312 */
4313 value = sextract64(value, 0, 49) & ~3ULL;
4314
4315 raw_write(env, ri, value);
4316 hw_watchpoint_update(cpu, i);
4317}
4318
4319static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4320 uint64_t value)
4321{
4322 ARMCPU *cpu = arm_env_get_cpu(env);
4323 int i = ri->crm;
4324
4325 raw_write(env, ri, value);
4326 hw_watchpoint_update(cpu, i);
4327}
4328
46747d15
PM
4329void hw_breakpoint_update(ARMCPU *cpu, int n)
4330{
4331 CPUARMState *env = &cpu->env;
4332 uint64_t bvr = env->cp15.dbgbvr[n];
4333 uint64_t bcr = env->cp15.dbgbcr[n];
4334 vaddr addr;
4335 int bt;
4336 int flags = BP_CPU;
4337
4338 if (env->cpu_breakpoint[n]) {
4339 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4340 env->cpu_breakpoint[n] = NULL;
4341 }
4342
4343 if (!extract64(bcr, 0, 1)) {
4344 /* E bit clear : watchpoint disabled */
4345 return;
4346 }
4347
4348 bt = extract64(bcr, 20, 4);
4349
4350 switch (bt) {
4351 case 4: /* unlinked address mismatch (reserved if AArch64) */
4352 case 5: /* linked address mismatch (reserved if AArch64) */
4353 qemu_log_mask(LOG_UNIMP,
4354 "arm: address mismatch breakpoint types not implemented");
4355 return;
4356 case 0: /* unlinked address match */
4357 case 1: /* linked address match */
4358 {
4359 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4360 * we behave as if the register was sign extended. Bits [1:0] are
4361 * RES0. The BAS field is used to allow setting breakpoints on 16
4362 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4363 * a bp will fire if the addresses covered by the bp and the addresses
4364 * covered by the insn overlap but the insn doesn't start at the
4365 * start of the bp address range. We choose to require the insn and
4366 * the bp to have the same address. The constraints on writing to
4367 * BAS enforced in dbgbcr_write mean we have only four cases:
4368 * 0b0000 => no breakpoint
4369 * 0b0011 => breakpoint on addr
4370 * 0b1100 => breakpoint on addr + 2
4371 * 0b1111 => breakpoint on addr
4372 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4373 */
4374 int bas = extract64(bcr, 5, 4);
4375 addr = sextract64(bvr, 0, 49) & ~3ULL;
4376 if (bas == 0) {
4377 return;
4378 }
4379 if (bas == 0xc) {
4380 addr += 2;
4381 }
4382 break;
4383 }
4384 case 2: /* unlinked context ID match */
4385 case 8: /* unlinked VMID match (reserved if no EL2) */
4386 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4387 qemu_log_mask(LOG_UNIMP,
4388 "arm: unlinked context breakpoint types not implemented");
4389 return;
4390 case 9: /* linked VMID match (reserved if no EL2) */
4391 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4392 case 3: /* linked context ID match */
4393 default:
4394 /* We must generate no events for Linked context matches (unless
4395 * they are linked to by some other bp/wp, which is handled in
4396 * updates for the linking bp/wp). We choose to also generate no events
4397 * for reserved values.
4398 */
4399 return;
4400 }
4401
4402 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4403}
4404
4405void hw_breakpoint_update_all(ARMCPU *cpu)
4406{
4407 int i;
4408 CPUARMState *env = &cpu->env;
4409
4410 /* Completely clear out existing QEMU breakpoints and our array, to
4411 * avoid possible stale entries following migration load.
4412 */
4413 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4414 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4415
4416 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4417 hw_breakpoint_update(cpu, i);
4418 }
4419}
4420
4421static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4422 uint64_t value)
4423{
4424 ARMCPU *cpu = arm_env_get_cpu(env);
4425 int i = ri->crm;
4426
4427 raw_write(env, ri, value);
4428 hw_breakpoint_update(cpu, i);
4429}
4430
4431static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4432 uint64_t value)
4433{
4434 ARMCPU *cpu = arm_env_get_cpu(env);
4435 int i = ri->crm;
4436
4437 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4438 * copy of BAS[0].
4439 */
4440 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4441 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4442
4443 raw_write(env, ri, value);
4444 hw_breakpoint_update(cpu, i);
4445}
4446
50300698 4447static void define_debug_regs(ARMCPU *cpu)
0b45451e 4448{
50300698
PM
4449 /* Define v7 and v8 architectural debug registers.
4450 * These are just dummy implementations for now.
0b45451e
PM
4451 */
4452 int i;
3ff6fc91 4453 int wrps, brps, ctx_cmps;
48eb3ae6
PM
4454 ARMCPRegInfo dbgdidr = {
4455 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
d6c8cf81
PM
4456 .access = PL0_R, .accessfn = access_tda,
4457 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
48eb3ae6
PM
4458 };
4459
3ff6fc91 4460 /* Note that all these register fields hold "number of Xs minus 1". */
48eb3ae6
PM
4461 brps = extract32(cpu->dbgdidr, 24, 4);
4462 wrps = extract32(cpu->dbgdidr, 28, 4);
3ff6fc91
PM
4463 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4464
4465 assert(ctx_cmps <= brps);
48eb3ae6
PM
4466
4467 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4468 * of the debug registers such as number of breakpoints;
4469 * check that if they both exist then they agree.
4470 */
4471 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4472 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4473 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3ff6fc91 4474 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
48eb3ae6 4475 }
0b45451e 4476
48eb3ae6 4477 define_one_arm_cp_reg(cpu, &dbgdidr);
50300698
PM
4478 define_arm_cp_regs(cpu, debug_cp_reginfo);
4479
4480 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4481 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4482 }
4483
48eb3ae6 4484 for (i = 0; i < brps + 1; i++) {
0b45451e 4485 ARMCPRegInfo dbgregs[] = {
10aae104
PM
4486 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4487 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
d6c8cf81 4488 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
4489 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4490 .writefn = dbgbvr_write, .raw_writefn = raw_write
4491 },
10aae104
PM
4492 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4493 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
d6c8cf81 4494 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
4495 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4496 .writefn = dbgbcr_write, .raw_writefn = raw_write
4497 },
48eb3ae6
PM
4498 REGINFO_SENTINEL
4499 };
4500 define_arm_cp_regs(cpu, dbgregs);
4501 }
4502
4503 for (i = 0; i < wrps + 1; i++) {
4504 ARMCPRegInfo dbgregs[] = {
10aae104
PM
4505 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4506 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
d6c8cf81 4507 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
4508 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4509 .writefn = dbgwvr_write, .raw_writefn = raw_write
4510 },
10aae104
PM
4511 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4512 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
d6c8cf81 4513 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
4514 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4515 .writefn = dbgwcr_write, .raw_writefn = raw_write
4516 },
4517 REGINFO_SENTINEL
0b45451e
PM
4518 };
4519 define_arm_cp_regs(cpu, dbgregs);
4520 }
4521}
4522
2ceb98c0
PM
4523void register_cp_regs_for_features(ARMCPU *cpu)
4524{
4525 /* Register all the coprocessor registers based on feature bits */
4526 CPUARMState *env = &cpu->env;
4527 if (arm_feature(env, ARM_FEATURE_M)) {
4528 /* M profile has no coprocessor registers */
4529 return;
4530 }
4531
e9aa6c21 4532 define_arm_cp_regs(cpu, cp_reginfo);
9449fdf6
PM
4533 if (!arm_feature(env, ARM_FEATURE_V8)) {
4534 /* Must go early as it is full of wildcards that may be
4535 * overridden by later definitions.
4536 */
4537 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4538 }
4539
7d57f408 4540 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
4541 /* The ID registers all have impdef reset values */
4542 ARMCPRegInfo v6_idregs[] = {
0ff644a7
PM
4543 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4544 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4545 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4546 .resetvalue = cpu->id_pfr0 },
0ff644a7
PM
4547 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4548 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4549 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4550 .resetvalue = cpu->id_pfr1 },
0ff644a7
PM
4551 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4552 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4553 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4554 .resetvalue = cpu->id_dfr0 },
0ff644a7
PM
4555 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4557 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4558 .resetvalue = cpu->id_afr0 },
0ff644a7
PM
4559 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4561 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4562 .resetvalue = cpu->id_mmfr0 },
0ff644a7
PM
4563 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4564 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4565 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4566 .resetvalue = cpu->id_mmfr1 },
0ff644a7
PM
4567 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4568 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4569 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4570 .resetvalue = cpu->id_mmfr2 },
0ff644a7
PM
4571 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4572 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4573 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4574 .resetvalue = cpu->id_mmfr3 },
0ff644a7
PM
4575 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4576 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4577 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4578 .resetvalue = cpu->id_isar0 },
0ff644a7
PM
4579 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4580 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4581 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4582 .resetvalue = cpu->id_isar1 },
0ff644a7
PM
4583 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4584 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4585 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4586 .resetvalue = cpu->id_isar2 },
0ff644a7
PM
4587 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4588 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4589 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4590 .resetvalue = cpu->id_isar3 },
0ff644a7
PM
4591 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4592 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4593 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4594 .resetvalue = cpu->id_isar4 },
0ff644a7
PM
4595 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4596 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4597 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4598 .resetvalue = cpu->id_isar5 },
e20d84c1
PM
4599 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4601 .access = PL1_R, .type = ARM_CP_CONST,
4602 .resetvalue = cpu->id_mmfr4 },
4603 /* 7 is as yet unallocated and must RAZ */
4604 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4605 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4606 .access = PL1_R, .type = ARM_CP_CONST,
8515a092
PM
4607 .resetvalue = 0 },
4608 REGINFO_SENTINEL
4609 };
4610 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
4611 define_arm_cp_regs(cpu, v6_cp_reginfo);
4612 } else {
4613 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4614 }
4d31c596
PM
4615 if (arm_feature(env, ARM_FEATURE_V6K)) {
4616 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4617 }
5e5cf9e3 4618 if (arm_feature(env, ARM_FEATURE_V7MP) &&
452a0955 4619 !arm_feature(env, ARM_FEATURE_PMSA)) {
995939a6
PM
4620 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4621 }
e9aa6c21 4622 if (arm_feature(env, ARM_FEATURE_V7)) {
200ac0ef 4623 /* v7 performance monitor control register: same implementor
7c2cb42b
AF
4624 * field as main ID register, and we implement only the cycle
4625 * count register.
200ac0ef 4626 */
7c2cb42b 4627#ifndef CONFIG_USER_ONLY
200ac0ef
PM
4628 ARMCPRegInfo pmcr = {
4629 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
8521466b 4630 .access = PL0_RW,
7a0e58fa 4631 .type = ARM_CP_IO | ARM_CP_ALIAS,
8521466b 4632 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
fcd25206
PM
4633 .accessfn = pmreg_access, .writefn = pmcr_write,
4634 .raw_writefn = raw_write,
200ac0ef 4635 };
8521466b
AF
4636 ARMCPRegInfo pmcr64 = {
4637 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4638 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4639 .access = PL0_RW, .accessfn = pmreg_access,
4640 .type = ARM_CP_IO,
4641 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4642 .resetvalue = cpu->midr & 0xff000000,
4643 .writefn = pmcr_write, .raw_writefn = raw_write,
4644 };
7c2cb42b 4645 define_one_arm_cp_reg(cpu, &pmcr);
8521466b 4646 define_one_arm_cp_reg(cpu, &pmcr64);
7c2cb42b 4647#endif
776d4e5c 4648 ARMCPRegInfo clidr = {
7da845b0
PM
4649 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4650 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
776d4e5c
PM
4651 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4652 };
776d4e5c 4653 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 4654 define_arm_cp_regs(cpu, v7_cp_reginfo);
50300698 4655 define_debug_regs(cpu);
7d57f408
PM
4656 } else {
4657 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 4658 }
b0d2b7d0 4659 if (arm_feature(env, ARM_FEATURE_V8)) {
e20d84c1
PM
4660 /* AArch64 ID registers, which all have impdef reset values.
4661 * Note that within the ID register ranges the unused slots
4662 * must all RAZ, not UNDEF; future architecture versions may
4663 * define new registers here.
4664 */
e60cef86
PM
4665 ARMCPRegInfo v8_idregs[] = {
4666 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4667 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4668 .access = PL1_R, .type = ARM_CP_CONST,
4669 .resetvalue = cpu->id_aa64pfr0 },
4670 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4672 .access = PL1_R, .type = ARM_CP_CONST,
4673 .resetvalue = cpu->id_aa64pfr1},
e20d84c1
PM
4674 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4675 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4676 .access = PL1_R, .type = ARM_CP_CONST,
4677 .resetvalue = 0 },
4678 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4679 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4680 .access = PL1_R, .type = ARM_CP_CONST,
4681 .resetvalue = 0 },
4682 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4683 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4684 .access = PL1_R, .type = ARM_CP_CONST,
4685 .resetvalue = 0 },
4686 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4688 .access = PL1_R, .type = ARM_CP_CONST,
4689 .resetvalue = 0 },
4690 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4691 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4692 .access = PL1_R, .type = ARM_CP_CONST,
4693 .resetvalue = 0 },
4694 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4696 .access = PL1_R, .type = ARM_CP_CONST,
4697 .resetvalue = 0 },
e60cef86
PM
4698 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4699 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4700 .access = PL1_R, .type = ARM_CP_CONST,
d6f02ce3 4701 .resetvalue = cpu->id_aa64dfr0 },
e60cef86
PM
4702 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4703 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4704 .access = PL1_R, .type = ARM_CP_CONST,
4705 .resetvalue = cpu->id_aa64dfr1 },
e20d84c1
PM
4706 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4708 .access = PL1_R, .type = ARM_CP_CONST,
4709 .resetvalue = 0 },
4710 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4711 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4712 .access = PL1_R, .type = ARM_CP_CONST,
4713 .resetvalue = 0 },
e60cef86
PM
4714 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4715 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4716 .access = PL1_R, .type = ARM_CP_CONST,
4717 .resetvalue = cpu->id_aa64afr0 },
4718 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4719 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4720 .access = PL1_R, .type = ARM_CP_CONST,
4721 .resetvalue = cpu->id_aa64afr1 },
e20d84c1
PM
4722 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4723 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4724 .access = PL1_R, .type = ARM_CP_CONST,
4725 .resetvalue = 0 },
4726 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4727 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4728 .access = PL1_R, .type = ARM_CP_CONST,
4729 .resetvalue = 0 },
e60cef86
PM
4730 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4732 .access = PL1_R, .type = ARM_CP_CONST,
4733 .resetvalue = cpu->id_aa64isar0 },
4734 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4735 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4736 .access = PL1_R, .type = ARM_CP_CONST,
4737 .resetvalue = cpu->id_aa64isar1 },
e20d84c1
PM
4738 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4739 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4740 .access = PL1_R, .type = ARM_CP_CONST,
4741 .resetvalue = 0 },
4742 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4743 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4744 .access = PL1_R, .type = ARM_CP_CONST,
4745 .resetvalue = 0 },
4746 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4748 .access = PL1_R, .type = ARM_CP_CONST,
4749 .resetvalue = 0 },
4750 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4751 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4752 .access = PL1_R, .type = ARM_CP_CONST,
4753 .resetvalue = 0 },
4754 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4756 .access = PL1_R, .type = ARM_CP_CONST,
4757 .resetvalue = 0 },
4758 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4760 .access = PL1_R, .type = ARM_CP_CONST,
4761 .resetvalue = 0 },
e60cef86
PM
4762 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4763 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4764 .access = PL1_R, .type = ARM_CP_CONST,
4765 .resetvalue = cpu->id_aa64mmfr0 },
4766 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4768 .access = PL1_R, .type = ARM_CP_CONST,
4769 .resetvalue = cpu->id_aa64mmfr1 },
e20d84c1
PM
4770 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4771 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4772 .access = PL1_R, .type = ARM_CP_CONST,
4773 .resetvalue = 0 },
4774 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4776 .access = PL1_R, .type = ARM_CP_CONST,
4777 .resetvalue = 0 },
4778 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4780 .access = PL1_R, .type = ARM_CP_CONST,
4781 .resetvalue = 0 },
4782 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4783 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4784 .access = PL1_R, .type = ARM_CP_CONST,
4785 .resetvalue = 0 },
4786 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4788 .access = PL1_R, .type = ARM_CP_CONST,
4789 .resetvalue = 0 },
4790 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4791 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4792 .access = PL1_R, .type = ARM_CP_CONST,
4793 .resetvalue = 0 },
a50c0f51
PM
4794 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4796 .access = PL1_R, .type = ARM_CP_CONST,
4797 .resetvalue = cpu->mvfr0 },
4798 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4800 .access = PL1_R, .type = ARM_CP_CONST,
4801 .resetvalue = cpu->mvfr1 },
4802 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4803 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4804 .access = PL1_R, .type = ARM_CP_CONST,
4805 .resetvalue = cpu->mvfr2 },
e20d84c1
PM
4806 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4808 .access = PL1_R, .type = ARM_CP_CONST,
4809 .resetvalue = 0 },
4810 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4811 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4812 .access = PL1_R, .type = ARM_CP_CONST,
4813 .resetvalue = 0 },
4814 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4815 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4816 .access = PL1_R, .type = ARM_CP_CONST,
4817 .resetvalue = 0 },
4818 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4819 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4820 .access = PL1_R, .type = ARM_CP_CONST,
4821 .resetvalue = 0 },
4822 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4823 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4824 .access = PL1_R, .type = ARM_CP_CONST,
4825 .resetvalue = 0 },
4054bfa9
AF
4826 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4827 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4828 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4829 .resetvalue = cpu->pmceid0 },
4830 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4831 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4832 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4833 .resetvalue = cpu->pmceid0 },
4834 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4835 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4836 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4837 .resetvalue = cpu->pmceid1 },
4838 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4839 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4840 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4841 .resetvalue = cpu->pmceid1 },
e60cef86
PM
4842 REGINFO_SENTINEL
4843 };
be8e8128
GB
4844 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4845 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4846 !arm_feature(env, ARM_FEATURE_EL2)) {
4847 ARMCPRegInfo rvbar = {
4848 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4849 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4850 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4851 };
4852 define_one_arm_cp_reg(cpu, &rvbar);
4853 }
e60cef86 4854 define_arm_cp_regs(cpu, v8_idregs);
b0d2b7d0
PM
4855 define_arm_cp_regs(cpu, v8_cp_reginfo);
4856 }
3b685ba7 4857 if (arm_feature(env, ARM_FEATURE_EL2)) {
f0d574d6 4858 uint64_t vmpidr_def = mpidr_read_val(env);
731de9e6
EI
4859 ARMCPRegInfo vpidr_regs[] = {
4860 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4861 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4862 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4863 .resetvalue = cpu->midr,
4864 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4865 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4866 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4867 .access = PL2_RW, .resetvalue = cpu->midr,
4868 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
4869 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4870 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4871 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4872 .resetvalue = vmpidr_def,
4873 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4874 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4875 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4876 .access = PL2_RW,
4877 .resetvalue = vmpidr_def,
4878 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
731de9e6
EI
4879 REGINFO_SENTINEL
4880 };
4881 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 4882 define_arm_cp_regs(cpu, el2_cp_reginfo);
be8e8128
GB
4883 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4884 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4885 ARMCPRegInfo rvbar = {
4886 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4887 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4888 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4889 };
4890 define_one_arm_cp_reg(cpu, &rvbar);
4891 }
d42e3c26
EI
4892 } else {
4893 /* If EL2 is missing but higher ELs are enabled, we need to
4894 * register the no_el2 reginfos.
4895 */
4896 if (arm_feature(env, ARM_FEATURE_EL3)) {
f0d574d6
EI
4897 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4898 * of MIDR_EL1 and MPIDR_EL1.
731de9e6
EI
4899 */
4900 ARMCPRegInfo vpidr_regs[] = {
4901 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4902 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4903 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4904 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4905 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
4906 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4907 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4908 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4909 .type = ARM_CP_NO_RAW,
4910 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
731de9e6
EI
4911 REGINFO_SENTINEL
4912 };
4913 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 4914 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
d42e3c26 4915 }
3b685ba7 4916 }
81547d66 4917 if (arm_feature(env, ARM_FEATURE_EL3)) {
0f1a3b24 4918 define_arm_cp_regs(cpu, el3_cp_reginfo);
e24fdd23
PM
4919 ARMCPRegInfo el3_regs[] = {
4920 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4921 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4922 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4923 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4924 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4925 .access = PL3_RW,
4926 .raw_writefn = raw_write, .writefn = sctlr_write,
4927 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4928 .resetvalue = cpu->reset_sctlr },
4929 REGINFO_SENTINEL
be8e8128 4930 };
e24fdd23
PM
4931
4932 define_arm_cp_regs(cpu, el3_regs);
81547d66 4933 }
2f027fc5
PM
4934 /* The behaviour of NSACR is sufficiently various that we don't
4935 * try to describe it in a single reginfo:
4936 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4937 * reads as constant 0xc00 from NS EL1 and NS EL2
4938 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4939 * if v7 without EL3, register doesn't exist
4940 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4941 */
4942 if (arm_feature(env, ARM_FEATURE_EL3)) {
4943 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4944 ARMCPRegInfo nsacr = {
4945 .name = "NSACR", .type = ARM_CP_CONST,
4946 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4947 .access = PL1_RW, .accessfn = nsacr_access,
4948 .resetvalue = 0xc00
4949 };
4950 define_one_arm_cp_reg(cpu, &nsacr);
4951 } else {
4952 ARMCPRegInfo nsacr = {
4953 .name = "NSACR",
4954 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4955 .access = PL3_RW | PL1_R,
4956 .resetvalue = 0,
4957 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4958 };
4959 define_one_arm_cp_reg(cpu, &nsacr);
4960 }
4961 } else {
4962 if (arm_feature(env, ARM_FEATURE_V8)) {
4963 ARMCPRegInfo nsacr = {
4964 .name = "NSACR", .type = ARM_CP_CONST,
4965 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4966 .access = PL1_R,
4967 .resetvalue = 0xc00
4968 };
4969 define_one_arm_cp_reg(cpu, &nsacr);
4970 }
4971 }
4972
452a0955 4973 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6cb0b013
PC
4974 if (arm_feature(env, ARM_FEATURE_V6)) {
4975 /* PMSAv6 not implemented */
4976 assert(arm_feature(env, ARM_FEATURE_V7));
4977 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4978 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4979 } else {
4980 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4981 }
18032bec 4982 } else {
8e5d75c9 4983 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
18032bec
PM
4984 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4985 }
c326b979
PM
4986 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4987 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4988 }
6cc7a3ae
PM
4989 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4990 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4991 }
4a501606
PM
4992 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4993 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4994 }
c4804214
PM
4995 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4996 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4997 }
4998 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4999 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5000 }
5001 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5002 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5003 }
18032bec
PM
5004 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5005 define_arm_cp_regs(cpu, omap_cp_reginfo);
5006 }
34f90529
PM
5007 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5008 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5009 }
1047b9d7
PM
5010 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5011 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5012 }
5013 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5014 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5015 }
7ac681cf
PM
5016 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5017 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5018 }
7884849c
PM
5019 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5020 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5021 * be read-only (ie write causes UNDEF exception).
5022 */
5023 {
00a29f3d
PM
5024 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5025 /* Pre-v8 MIDR space.
5026 * Note that the MIDR isn't a simple constant register because
7884849c
PM
5027 * of the TI925 behaviour where writes to another register can
5028 * cause the MIDR value to change.
97ce8d61
PC
5029 *
5030 * Unimplemented registers in the c15 0 0 0 space default to
5031 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5032 * and friends override accordingly.
7884849c
PM
5033 */
5034 { .name = "MIDR",
97ce8d61 5035 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7884849c 5036 .access = PL1_R, .resetvalue = cpu->midr,
d4e6df63 5037 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
731de9e6 5038 .readfn = midr_read,
97ce8d61
PC
5039 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5040 .type = ARM_CP_OVERRIDE },
7884849c
PM
5041 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5042 { .name = "DUMMY",
5043 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5044 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5045 { .name = "DUMMY",
5046 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5047 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5048 { .name = "DUMMY",
5049 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5050 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5051 { .name = "DUMMY",
5052 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5053 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5054 { .name = "DUMMY",
5055 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5056 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5057 REGINFO_SENTINEL
5058 };
00a29f3d 5059 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
00a29f3d
PM
5060 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5061 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
731de9e6
EI
5062 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5063 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5064 .readfn = midr_read },
ac00c79f
SF
5065 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5066 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5067 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5068 .access = PL1_R, .resetvalue = cpu->midr },
5069 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5070 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5071 .access = PL1_R, .resetvalue = cpu->midr },
00a29f3d
PM
5072 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5073 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
13b72b2b 5074 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
00a29f3d
PM
5075 REGINFO_SENTINEL
5076 };
5077 ARMCPRegInfo id_cp_reginfo[] = {
5078 /* These are common to v8 and pre-v8 */
5079 { .name = "CTR",
5080 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5081 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5082 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5083 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5084 .access = PL0_R, .accessfn = ctr_el0_access,
5085 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5086 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5087 { .name = "TCMTR",
5088 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5089 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
00a29f3d
PM
5090 REGINFO_SENTINEL
5091 };
8085ce63
PC
5092 /* TLBTR is specific to VMSA */
5093 ARMCPRegInfo id_tlbtr_reginfo = {
5094 .name = "TLBTR",
5095 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5096 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5097 };
3281af81
PC
5098 /* MPUIR is specific to PMSA V6+ */
5099 ARMCPRegInfo id_mpuir_reginfo = {
5100 .name = "MPUIR",
5101 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5102 .access = PL1_R, .type = ARM_CP_CONST,
5103 .resetvalue = cpu->pmsav7_dregion << 8
5104 };
7884849c
PM
5105 ARMCPRegInfo crn0_wi_reginfo = {
5106 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5107 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5108 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5109 };
5110 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5111 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5112 ARMCPRegInfo *r;
5113 /* Register the blanket "writes ignored" value first to cover the
a703eda1
PC
5114 * whole space. Then update the specific ID registers to allow write
5115 * access, so that they ignore writes rather than causing them to
5116 * UNDEF.
7884849c
PM
5117 */
5118 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
00a29f3d
PM
5119 for (r = id_pre_v8_midr_cp_reginfo;
5120 r->type != ARM_CP_SENTINEL; r++) {
5121 r->access = PL1_RW;
5122 }
7884849c
PM
5123 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5124 r->access = PL1_RW;
7884849c 5125 }
8085ce63 5126 id_tlbtr_reginfo.access = PL1_RW;
3281af81 5127 id_tlbtr_reginfo.access = PL1_RW;
7884849c 5128 }
00a29f3d
PM
5129 if (arm_feature(env, ARM_FEATURE_V8)) {
5130 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5131 } else {
5132 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5133 }
a703eda1 5134 define_arm_cp_regs(cpu, id_cp_reginfo);
452a0955 5135 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8085ce63 5136 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
3281af81
PC
5137 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5138 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8085ce63 5139 }
7884849c
PM
5140 }
5141
97ce8d61
PC
5142 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5143 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5144 }
5145
2771db27 5146 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
834a6c69
PM
5147 ARMCPRegInfo auxcr_reginfo[] = {
5148 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5149 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5150 .access = PL1_RW, .type = ARM_CP_CONST,
5151 .resetvalue = cpu->reset_auxcr },
5152 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5153 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5154 .access = PL2_RW, .type = ARM_CP_CONST,
5155 .resetvalue = 0 },
5156 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5157 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5158 .access = PL3_RW, .type = ARM_CP_CONST,
5159 .resetvalue = 0 },
5160 REGINFO_SENTINEL
2771db27 5161 };
834a6c69 5162 define_arm_cp_regs(cpu, auxcr_reginfo);
2771db27
PM
5163 }
5164
d8ba780b 5165 if (arm_feature(env, ARM_FEATURE_CBAR)) {
f318cec6
PM
5166 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5167 /* 32 bit view is [31:18] 0...0 [43:32]. */
5168 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5169 | extract64(cpu->reset_cbar, 32, 12);
5170 ARMCPRegInfo cbar_reginfo[] = {
5171 { .name = "CBAR",
5172 .type = ARM_CP_CONST,
5173 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5174 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5175 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5176 .type = ARM_CP_CONST,
5177 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5178 .access = PL1_R, .resetvalue = cbar32 },
5179 REGINFO_SENTINEL
5180 };
5181 /* We don't implement a r/w 64 bit CBAR currently */
5182 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5183 define_arm_cp_regs(cpu, cbar_reginfo);
5184 } else {
5185 ARMCPRegInfo cbar = {
5186 .name = "CBAR",
5187 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5188 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5189 .fieldoffset = offsetof(CPUARMState,
5190 cp15.c15_config_base_address)
5191 };
5192 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5193 cbar.access = PL1_R;
5194 cbar.fieldoffset = 0;
5195 cbar.type = ARM_CP_CONST;
5196 }
5197 define_one_arm_cp_reg(cpu, &cbar);
5198 }
d8ba780b
PC
5199 }
5200
91db4642
CLG
5201 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5202 ARMCPRegInfo vbar_cp_reginfo[] = {
5203 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5204 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5205 .access = PL1_RW, .writefn = vbar_write,
5206 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5207 offsetof(CPUARMState, cp15.vbar_ns) },
5208 .resetvalue = 0 },
5209 REGINFO_SENTINEL
5210 };
5211 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5212 }
5213
2771db27
PM
5214 /* Generic registers whose values depend on the implementation */
5215 {
5216 ARMCPRegInfo sctlr = {
5ebafdf3 5217 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
137feaa9
FA
5218 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5219 .access = PL1_RW,
5220 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5221 offsetof(CPUARMState, cp15.sctlr_ns) },
d4e6df63
PM
5222 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5223 .raw_writefn = raw_write,
2771db27
PM
5224 };
5225 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5226 /* Normally we would always end the TB on an SCTLR write, but Linux
5227 * arch/arm/mach-pxa/sleep.S expects two instructions following
5228 * an MMU enable to execute from cache. Imitate this behaviour.
5229 */
5230 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5231 }
5232 define_one_arm_cp_reg(cpu, &sctlr);
5233 }
2ceb98c0
PM
5234}
5235
14969266
AF
5236void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5237{
22169d41 5238 CPUState *cs = CPU(cpu);
14969266
AF
5239 CPUARMState *env = &cpu->env;
5240
6a669427
PM
5241 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5242 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5243 aarch64_fpu_gdb_set_reg,
5244 34, "aarch64-fpu.xml", 0);
5245 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
22169d41 5246 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
5247 51, "arm-neon.xml", 0);
5248 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
22169d41 5249 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
5250 35, "arm-vfp3.xml", 0);
5251 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
22169d41 5252 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
5253 19, "arm-vfp.xml", 0);
5254 }
40f137e1
PB
5255}
5256
777dc784
PM
5257/* Sort alphabetically by type name, except for "any". */
5258static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 5259{
777dc784
PM
5260 ObjectClass *class_a = (ObjectClass *)a;
5261 ObjectClass *class_b = (ObjectClass *)b;
5262 const char *name_a, *name_b;
5adb4839 5263
777dc784
PM
5264 name_a = object_class_get_name(class_a);
5265 name_b = object_class_get_name(class_b);
51492fd1 5266 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 5267 return 1;
51492fd1 5268 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
5269 return -1;
5270 } else {
5271 return strcmp(name_a, name_b);
5adb4839
PB
5272 }
5273}
5274
777dc784 5275static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 5276{
777dc784 5277 ObjectClass *oc = data;
92a31361 5278 CPUListState *s = user_data;
51492fd1
AF
5279 const char *typename;
5280 char *name;
3371d272 5281
51492fd1
AF
5282 typename = object_class_get_name(oc);
5283 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
777dc784 5284 (*s->cpu_fprintf)(s->file, " %s\n",
51492fd1
AF
5285 name);
5286 g_free(name);
777dc784
PM
5287}
5288
5289void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5290{
92a31361 5291 CPUListState s = {
777dc784
PM
5292 .file = f,
5293 .cpu_fprintf = cpu_fprintf,
5294 };
5295 GSList *list;
5296
5297 list = object_class_get_list(TYPE_ARM_CPU, false);
5298 list = g_slist_sort(list, arm_cpu_list_compare);
5299 (*cpu_fprintf)(f, "Available CPUs:\n");
5300 g_slist_foreach(list, arm_cpu_list_entry, &s);
5301 g_slist_free(list);
a96c0514
PM
5302#ifdef CONFIG_KVM
5303 /* The 'host' CPU type is dynamically registered only if KVM is
5304 * enabled, so we have to special-case it here:
5305 */
5306 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5307#endif
40f137e1
PB
5308}
5309
78027bb6
CR
5310static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5311{
5312 ObjectClass *oc = data;
5313 CpuDefinitionInfoList **cpu_list = user_data;
5314 CpuDefinitionInfoList *entry;
5315 CpuDefinitionInfo *info;
5316 const char *typename;
5317
5318 typename = object_class_get_name(oc);
5319 info = g_malloc0(sizeof(*info));
5320 info->name = g_strndup(typename,
5321 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8ed877b7 5322 info->q_typename = g_strdup(typename);
78027bb6
CR
5323
5324 entry = g_malloc0(sizeof(*entry));
5325 entry->value = info;
5326 entry->next = *cpu_list;
5327 *cpu_list = entry;
5328}
5329
5330CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5331{
5332 CpuDefinitionInfoList *cpu_list = NULL;
5333 GSList *list;
5334
5335 list = object_class_get_list(TYPE_ARM_CPU, false);
5336 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5337 g_slist_free(list);
5338
5339 return cpu_list;
5340}
5341
6e6efd61 5342static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
51a79b03 5343 void *opaque, int state, int secstate,
f5a0a5a5 5344 int crm, int opc1, int opc2)
6e6efd61
PM
5345{
5346 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5347 * add a single reginfo struct to the hash table.
5348 */
5349 uint32_t *key = g_new(uint32_t, 1);
5350 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5351 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3f3c82a5
FA
5352 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5353
5354 /* Reset the secure state to the specific incoming state. This is
5355 * necessary as the register may have been defined with both states.
5356 */
5357 r2->secure = secstate;
5358
5359 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5360 /* Register is banked (using both entries in array).
5361 * Overwriting fieldoffset as the array is only used to define
5362 * banked registers but later only fieldoffset is used.
f5a0a5a5 5363 */
3f3c82a5
FA
5364 r2->fieldoffset = r->bank_fieldoffsets[ns];
5365 }
5366
5367 if (state == ARM_CP_STATE_AA32) {
5368 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5369 /* If the register is banked then we don't need to migrate or
5370 * reset the 32-bit instance in certain cases:
5371 *
5372 * 1) If the register has both 32-bit and 64-bit instances then we
5373 * can count on the 64-bit instance taking care of the
5374 * non-secure bank.
5375 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5376 * taking care of the secure bank. This requires that separate
5377 * 32 and 64-bit definitions are provided.
5378 */
5379 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5380 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7a0e58fa 5381 r2->type |= ARM_CP_ALIAS;
3f3c82a5
FA
5382 }
5383 } else if ((secstate != r->secure) && !ns) {
5384 /* The register is not banked so we only want to allow migration of
5385 * the non-secure instance.
5386 */
7a0e58fa 5387 r2->type |= ARM_CP_ALIAS;
58a1d8ce 5388 }
3f3c82a5
FA
5389
5390 if (r->state == ARM_CP_STATE_BOTH) {
5391 /* We assume it is a cp15 register if the .cp field is left unset.
5392 */
5393 if (r2->cp == 0) {
5394 r2->cp = 15;
5395 }
5396
f5a0a5a5 5397#ifdef HOST_WORDS_BIGENDIAN
3f3c82a5
FA
5398 if (r2->fieldoffset) {
5399 r2->fieldoffset += sizeof(uint32_t);
5400 }
f5a0a5a5 5401#endif
3f3c82a5 5402 }
f5a0a5a5
PM
5403 }
5404 if (state == ARM_CP_STATE_AA64) {
5405 /* To allow abbreviation of ARMCPRegInfo
5406 * definitions, we treat cp == 0 as equivalent to
5407 * the value for "standard guest-visible sysreg".
58a1d8ce
PM
5408 * STATE_BOTH definitions are also always "standard
5409 * sysreg" in their AArch64 view (the .cp value may
5410 * be non-zero for the benefit of the AArch32 view).
f5a0a5a5 5411 */
58a1d8ce 5412 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
f5a0a5a5
PM
5413 r2->cp = CP_REG_ARM64_SYSREG_CP;
5414 }
5415 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5416 r2->opc0, opc1, opc2);
5417 } else {
51a79b03 5418 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
f5a0a5a5 5419 }
6e6efd61
PM
5420 if (opaque) {
5421 r2->opaque = opaque;
5422 }
67ed771d
PM
5423 /* reginfo passed to helpers is correct for the actual access,
5424 * and is never ARM_CP_STATE_BOTH:
5425 */
5426 r2->state = state;
6e6efd61
PM
5427 /* Make sure reginfo passed to helpers for wildcarded regs
5428 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5429 */
5430 r2->crm = crm;
5431 r2->opc1 = opc1;
5432 r2->opc2 = opc2;
5433 /* By convention, for wildcarded registers only the first
5434 * entry is used for migration; the others are marked as
7a0e58fa 5435 * ALIAS so we don't try to transfer the register
6e6efd61 5436 * multiple times. Special registers (ie NOP/WFI) are
7a0e58fa 5437 * never migratable and not even raw-accessible.
6e6efd61 5438 */
7a0e58fa
PM
5439 if ((r->type & ARM_CP_SPECIAL)) {
5440 r2->type |= ARM_CP_NO_RAW;
5441 }
5442 if (((r->crm == CP_ANY) && crm != 0) ||
6e6efd61
PM
5443 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5444 ((r->opc2 == CP_ANY) && opc2 != 0)) {
7a0e58fa 5445 r2->type |= ARM_CP_ALIAS;
6e6efd61
PM
5446 }
5447
375421cc
PM
5448 /* Check that raw accesses are either forbidden or handled. Note that
5449 * we can't assert this earlier because the setup of fieldoffset for
5450 * banked registers has to be done first.
5451 */
5452 if (!(r2->type & ARM_CP_NO_RAW)) {
5453 assert(!raw_accessors_invalid(r2));
5454 }
5455
6e6efd61
PM
5456 /* Overriding of an existing definition must be explicitly
5457 * requested.
5458 */
5459 if (!(r->type & ARM_CP_OVERRIDE)) {
5460 ARMCPRegInfo *oldreg;
5461 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5462 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5463 fprintf(stderr, "Register redefined: cp=%d %d bit "
5464 "crn=%d crm=%d opc1=%d opc2=%d, "
5465 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5466 r2->crn, r2->crm, r2->opc1, r2->opc2,
5467 oldreg->name, r2->name);
5468 g_assert_not_reached();
5469 }
5470 }
5471 g_hash_table_insert(cpu->cp_regs, key, r2);
5472}
5473
5474
4b6a83fb
PM
5475void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5476 const ARMCPRegInfo *r, void *opaque)
5477{
5478 /* Define implementations of coprocessor registers.
5479 * We store these in a hashtable because typically
5480 * there are less than 150 registers in a space which
5481 * is 16*16*16*8*8 = 262144 in size.
5482 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5483 * If a register is defined twice then the second definition is
5484 * used, so this can be used to define some generic registers and
5485 * then override them with implementation specific variations.
5486 * At least one of the original and the second definition should
5487 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5488 * against accidental use.
f5a0a5a5
PM
5489 *
5490 * The state field defines whether the register is to be
5491 * visible in the AArch32 or AArch64 execution state. If the
5492 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5493 * reginfo structure for the AArch32 view, which sees the lower
5494 * 32 bits of the 64 bit register.
5495 *
5496 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5497 * be wildcarded. AArch64 registers are always considered to be 64
5498 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5499 * the register, if any.
4b6a83fb 5500 */
f5a0a5a5 5501 int crm, opc1, opc2, state;
4b6a83fb
PM
5502 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5503 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5504 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5505 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5506 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5507 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5508 /* 64 bit registers have only CRm and Opc1 fields */
5509 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
f5a0a5a5
PM
5510 /* op0 only exists in the AArch64 encodings */
5511 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5512 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5513 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5514 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5515 * encodes a minimum access level for the register. We roll this
5516 * runtime check into our general permission check code, so check
5517 * here that the reginfo's specified permissions are strict enough
5518 * to encompass the generic architectural permission check.
5519 */
5520 if (r->state != ARM_CP_STATE_AA32) {
5521 int mask = 0;
5522 switch (r->opc1) {
5523 case 0: case 1: case 2:
5524 /* min_EL EL1 */
5525 mask = PL1_RW;
5526 break;
5527 case 3:
5528 /* min_EL EL0 */
5529 mask = PL0_RW;
5530 break;
5531 case 4:
5532 /* min_EL EL2 */
5533 mask = PL2_RW;
5534 break;
5535 case 5:
5536 /* unallocated encoding, so not possible */
5537 assert(false);
5538 break;
5539 case 6:
5540 /* min_EL EL3 */
5541 mask = PL3_RW;
5542 break;
5543 case 7:
5544 /* min_EL EL1, secure mode only (we don't check the latter) */
5545 mask = PL1_RW;
5546 break;
5547 default:
5548 /* broken reginfo with out-of-range opc1 */
5549 assert(false);
5550 break;
5551 }
5552 /* assert our permissions are not too lax (stricter is fine) */
5553 assert((r->access & ~mask) == 0);
5554 }
5555
4b6a83fb
PM
5556 /* Check that the register definition has enough info to handle
5557 * reads and writes if they are permitted.
5558 */
5559 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5560 if (r->access & PL3_R) {
3f3c82a5
FA
5561 assert((r->fieldoffset ||
5562 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5563 r->readfn);
4b6a83fb
PM
5564 }
5565 if (r->access & PL3_W) {
3f3c82a5
FA
5566 assert((r->fieldoffset ||
5567 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5568 r->writefn);
4b6a83fb
PM
5569 }
5570 }
5571 /* Bad type field probably means missing sentinel at end of reg list */
5572 assert(cptype_valid(r->type));
5573 for (crm = crmmin; crm <= crmmax; crm++) {
5574 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5575 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
f5a0a5a5
PM
5576 for (state = ARM_CP_STATE_AA32;
5577 state <= ARM_CP_STATE_AA64; state++) {
5578 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5579 continue;
5580 }
3f3c82a5
FA
5581 if (state == ARM_CP_STATE_AA32) {
5582 /* Under AArch32 CP registers can be common
5583 * (same for secure and non-secure world) or banked.
5584 */
5585 switch (r->secure) {
5586 case ARM_CP_SECSTATE_S:
5587 case ARM_CP_SECSTATE_NS:
5588 add_cpreg_to_hashtable(cpu, r, opaque, state,
5589 r->secure, crm, opc1, opc2);
5590 break;
5591 default:
5592 add_cpreg_to_hashtable(cpu, r, opaque, state,
5593 ARM_CP_SECSTATE_S,
5594 crm, opc1, opc2);
5595 add_cpreg_to_hashtable(cpu, r, opaque, state,
5596 ARM_CP_SECSTATE_NS,
5597 crm, opc1, opc2);
5598 break;
5599 }
5600 } else {
5601 /* AArch64 registers get mapped to non-secure instance
5602 * of AArch32 */
5603 add_cpreg_to_hashtable(cpu, r, opaque, state,
5604 ARM_CP_SECSTATE_NS,
5605 crm, opc1, opc2);
5606 }
f5a0a5a5 5607 }
4b6a83fb
PM
5608 }
5609 }
5610 }
5611}
5612
5613void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5614 const ARMCPRegInfo *regs, void *opaque)
5615{
5616 /* Define a whole list of registers */
5617 const ARMCPRegInfo *r;
5618 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5619 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5620 }
5621}
5622
60322b39 5623const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4b6a83fb 5624{
60322b39 5625 return g_hash_table_lookup(cpregs, &encoded_cp);
4b6a83fb
PM
5626}
5627
c4241c7d
PM
5628void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5629 uint64_t value)
4b6a83fb
PM
5630{
5631 /* Helper coprocessor write function for write-ignore registers */
4b6a83fb
PM
5632}
5633
c4241c7d 5634uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4b6a83fb
PM
5635{
5636 /* Helper coprocessor write function for read-as-zero registers */
4b6a83fb
PM
5637 return 0;
5638}
5639
f5a0a5a5
PM
5640void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5641{
5642 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5643}
5644
af393ffc 5645static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
37064a8b
PM
5646{
5647 /* Return true if it is not valid for us to switch to
5648 * this CPU mode (ie all the UNPREDICTABLE cases in
5649 * the ARM ARM CPSRWriteByInstr pseudocode).
5650 */
af393ffc
PM
5651
5652 /* Changes to or from Hyp via MSR and CPS are illegal. */
5653 if (write_type == CPSRWriteByInstr &&
5654 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5655 mode == ARM_CPU_MODE_HYP)) {
5656 return 1;
5657 }
5658
37064a8b
PM
5659 switch (mode) {
5660 case ARM_CPU_MODE_USR:
10eacda7 5661 return 0;
37064a8b
PM
5662 case ARM_CPU_MODE_SYS:
5663 case ARM_CPU_MODE_SVC:
5664 case ARM_CPU_MODE_ABT:
5665 case ARM_CPU_MODE_UND:
5666 case ARM_CPU_MODE_IRQ:
5667 case ARM_CPU_MODE_FIQ:
52ff951b
PM
5668 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5669 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5670 */
10eacda7
PM
5671 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5672 * and CPS are treated as illegal mode changes.
5673 */
5674 if (write_type == CPSRWriteByInstr &&
5675 (env->cp15.hcr_el2 & HCR_TGE) &&
5676 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5677 !arm_is_secure_below_el3(env)) {
5678 return 1;
5679 }
37064a8b 5680 return 0;
e6c8fc07
PM
5681 case ARM_CPU_MODE_HYP:
5682 return !arm_feature(env, ARM_FEATURE_EL2)
5683 || arm_current_el(env) < 2 || arm_is_secure(env);
027fc527 5684 case ARM_CPU_MODE_MON:
58ae2d1f 5685 return arm_current_el(env) < 3;
37064a8b
PM
5686 default:
5687 return 1;
5688 }
5689}
5690
2f4a40e5
AZ
5691uint32_t cpsr_read(CPUARMState *env)
5692{
5693 int ZF;
6fbe23d5
PB
5694 ZF = (env->ZF == 0);
5695 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
5696 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5697 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5698 | ((env->condexec_bits & 0xfc) << 8)
af519934 5699 | (env->GE << 16) | (env->daif & CPSR_AIF);
2f4a40e5
AZ
5700}
5701
50866ba5
PM
5702void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5703 CPSRWriteType write_type)
2f4a40e5 5704{
6e8801f9
FA
5705 uint32_t changed_daif;
5706
2f4a40e5 5707 if (mask & CPSR_NZCV) {
6fbe23d5
PB
5708 env->ZF = (~val) & CPSR_Z;
5709 env->NF = val;
2f4a40e5
AZ
5710 env->CF = (val >> 29) & 1;
5711 env->VF = (val << 3) & 0x80000000;
5712 }
5713 if (mask & CPSR_Q)
5714 env->QF = ((val & CPSR_Q) != 0);
5715 if (mask & CPSR_T)
5716 env->thumb = ((val & CPSR_T) != 0);
5717 if (mask & CPSR_IT_0_1) {
5718 env->condexec_bits &= ~3;
5719 env->condexec_bits |= (val >> 25) & 3;
5720 }
5721 if (mask & CPSR_IT_2_7) {
5722 env->condexec_bits &= 3;
5723 env->condexec_bits |= (val >> 8) & 0xfc;
5724 }
5725 if (mask & CPSR_GE) {
5726 env->GE = (val >> 16) & 0xf;
5727 }
5728
6e8801f9
FA
5729 /* In a V7 implementation that includes the security extensions but does
5730 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5731 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5732 * bits respectively.
5733 *
5734 * In a V8 implementation, it is permitted for privileged software to
5735 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5736 */
f8c88bbc 5737 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6e8801f9
FA
5738 arm_feature(env, ARM_FEATURE_EL3) &&
5739 !arm_feature(env, ARM_FEATURE_EL2) &&
5740 !arm_is_secure(env)) {
5741
5742 changed_daif = (env->daif ^ val) & mask;
5743
5744 if (changed_daif & CPSR_A) {
5745 /* Check to see if we are allowed to change the masking of async
5746 * abort exceptions from a non-secure state.
5747 */
5748 if (!(env->cp15.scr_el3 & SCR_AW)) {
5749 qemu_log_mask(LOG_GUEST_ERROR,
5750 "Ignoring attempt to switch CPSR_A flag from "
5751 "non-secure world with SCR.AW bit clear\n");
5752 mask &= ~CPSR_A;
5753 }
5754 }
5755
5756 if (changed_daif & CPSR_F) {
5757 /* Check to see if we are allowed to change the masking of FIQ
5758 * exceptions from a non-secure state.
5759 */
5760 if (!(env->cp15.scr_el3 & SCR_FW)) {
5761 qemu_log_mask(LOG_GUEST_ERROR,
5762 "Ignoring attempt to switch CPSR_F flag from "
5763 "non-secure world with SCR.FW bit clear\n");
5764 mask &= ~CPSR_F;
5765 }
5766
5767 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5768 * If this bit is set software is not allowed to mask
5769 * FIQs, but is allowed to set CPSR_F to 0.
5770 */
5771 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5772 (val & CPSR_F)) {
5773 qemu_log_mask(LOG_GUEST_ERROR,
5774 "Ignoring attempt to enable CPSR_F flag "
5775 "(non-maskable FIQ [NMFI] support enabled)\n");
5776 mask &= ~CPSR_F;
5777 }
5778 }
5779 }
5780
4cc35614
PM
5781 env->daif &= ~(CPSR_AIF & mask);
5782 env->daif |= val & CPSR_AIF & mask;
5783
f8c88bbc
PM
5784 if (write_type != CPSRWriteRaw &&
5785 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8c4f0eb9
PM
5786 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5787 /* Note that we can only get here in USR mode if this is a
5788 * gdb stub write; for this case we follow the architectural
5789 * behaviour for guest writes in USR mode of ignoring an attempt
5790 * to switch mode. (Those are caught by translate.c for writes
5791 * triggered by guest instructions.)
5792 */
5793 mask &= ~CPSR_M;
5794 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
81907a58
PM
5795 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5796 * v7, and has defined behaviour in v8:
5797 * + leave CPSR.M untouched
5798 * + allow changes to the other CPSR fields
5799 * + set PSTATE.IL
5800 * For user changes via the GDB stub, we don't set PSTATE.IL,
5801 * as this would be unnecessarily harsh for a user error.
37064a8b
PM
5802 */
5803 mask &= ~CPSR_M;
81907a58
PM
5804 if (write_type != CPSRWriteByGDBStub &&
5805 arm_feature(env, ARM_FEATURE_V8)) {
5806 mask |= CPSR_IL;
5807 val |= CPSR_IL;
5808 }
37064a8b
PM
5809 } else {
5810 switch_mode(env, val & CPSR_M);
5811 }
2f4a40e5
AZ
5812 }
5813 mask &= ~CACHED_CPSR_BITS;
5814 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5815}
5816
b26eefb6
PB
5817/* Sign/zero extend */
5818uint32_t HELPER(sxtb16)(uint32_t x)
5819{
5820 uint32_t res;
5821 res = (uint16_t)(int8_t)x;
5822 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5823 return res;
5824}
5825
5826uint32_t HELPER(uxtb16)(uint32_t x)
5827{
5828 uint32_t res;
5829 res = (uint16_t)(uint8_t)x;
5830 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5831 return res;
5832}
5833
3670669c
PB
5834int32_t HELPER(sdiv)(int32_t num, int32_t den)
5835{
5836 if (den == 0)
5837 return 0;
686eeb93
AJ
5838 if (num == INT_MIN && den == -1)
5839 return INT_MIN;
3670669c
PB
5840 return num / den;
5841}
5842
5843uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5844{
5845 if (den == 0)
5846 return 0;
5847 return num / den;
5848}
5849
5850uint32_t HELPER(rbit)(uint32_t x)
5851{
42fedbca 5852 return revbit32(x);
3670669c
PB
5853}
5854
5fafdf24 5855#if defined(CONFIG_USER_ONLY)
b5ff1b31 5856
9ee6e8bb 5857/* These should probably raise undefined insn exceptions. */
0ecb72a5 5858void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 5859{
a47dddd7
AF
5860 ARMCPU *cpu = arm_env_get_cpu(env);
5861
5862 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
9ee6e8bb
PB
5863}
5864
0ecb72a5 5865uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 5866{
a47dddd7
AF
5867 ARMCPU *cpu = arm_env_get_cpu(env);
5868
5869 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
9ee6e8bb
PB
5870 return 0;
5871}
5872
0ecb72a5 5873void switch_mode(CPUARMState *env, int mode)
b5ff1b31 5874{
a47dddd7
AF
5875 ARMCPU *cpu = arm_env_get_cpu(env);
5876
5877 if (mode != ARM_CPU_MODE_USR) {
5878 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5879 }
b5ff1b31
FB
5880}
5881
012a906b
GB
5882uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5883 uint32_t cur_el, bool secure)
9e729b57
EI
5884{
5885 return 1;
5886}
5887
ce02049d
GB
5888void aarch64_sync_64_to_32(CPUARMState *env)
5889{
5890 g_assert_not_reached();
5891}
5892
b5ff1b31
FB
5893#else
5894
0ecb72a5 5895void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
5896{
5897 int old_mode;
5898 int i;
5899
5900 old_mode = env->uncached_cpsr & CPSR_M;
5901 if (mode == old_mode)
5902 return;
5903
5904 if (old_mode == ARM_CPU_MODE_FIQ) {
5905 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5906 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5907 } else if (mode == ARM_CPU_MODE_FIQ) {
5908 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5909 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5910 }
5911
f5206413 5912 i = bank_number(old_mode);
b5ff1b31
FB
5913 env->banked_r13[i] = env->regs[13];
5914 env->banked_r14[i] = env->regs[14];
5915 env->banked_spsr[i] = env->spsr;
5916
f5206413 5917 i = bank_number(mode);
b5ff1b31
FB
5918 env->regs[13] = env->banked_r13[i];
5919 env->regs[14] = env->banked_r14[i];
5920 env->spsr = env->banked_spsr[i];
5921}
5922
0eeb17d6
GB
5923/* Physical Interrupt Target EL Lookup Table
5924 *
5925 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5926 *
5927 * The below multi-dimensional table is used for looking up the target
5928 * exception level given numerous condition criteria. Specifically, the
5929 * target EL is based on SCR and HCR routing controls as well as the
5930 * currently executing EL and secure state.
5931 *
5932 * Dimensions:
5933 * target_el_table[2][2][2][2][2][4]
5934 * | | | | | +--- Current EL
5935 * | | | | +------ Non-secure(0)/Secure(1)
5936 * | | | +--------- HCR mask override
5937 * | | +------------ SCR exec state control
5938 * | +--------------- SCR mask override
5939 * +------------------ 32-bit(0)/64-bit(1) EL3
5940 *
5941 * The table values are as such:
5942 * 0-3 = EL0-EL3
5943 * -1 = Cannot occur
5944 *
5945 * The ARM ARM target EL table includes entries indicating that an "exception
5946 * is not taken". The two cases where this is applicable are:
5947 * 1) An exception is taken from EL3 but the SCR does not have the exception
5948 * routed to EL3.
5949 * 2) An exception is taken from EL2 but the HCR does not have the exception
5950 * routed to EL2.
5951 * In these two cases, the below table contain a target of EL1. This value is
5952 * returned as it is expected that the consumer of the table data will check
5953 * for "target EL >= current EL" to ensure the exception is not taken.
5954 *
5955 * SCR HCR
5956 * 64 EA AMO From
5957 * BIT IRQ IMO Non-secure Secure
5958 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5959 */
82c39f6a 5960static const int8_t target_el_table[2][2][2][2][2][4] = {
0eeb17d6
GB
5961 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5962 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5963 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5964 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5965 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5966 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5967 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5968 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5969 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5970 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5971 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5972 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5973 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5974 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5975 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5976 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5977};
5978
5979/*
5980 * Determine the target EL for physical exceptions
5981 */
012a906b
GB
5982uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5983 uint32_t cur_el, bool secure)
0eeb17d6
GB
5984{
5985 CPUARMState *env = cs->env_ptr;
2cde031f 5986 int rw;
0eeb17d6
GB
5987 int scr;
5988 int hcr;
5989 int target_el;
2cde031f
SS
5990 /* Is the highest EL AArch64? */
5991 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5992
5993 if (arm_feature(env, ARM_FEATURE_EL3)) {
5994 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5995 } else {
5996 /* Either EL2 is the highest EL (and so the EL2 register width
5997 * is given by is64); or there is no EL2 or EL3, in which case
5998 * the value of 'rw' does not affect the table lookup anyway.
5999 */
6000 rw = is64;
6001 }
0eeb17d6
GB
6002
6003 switch (excp_idx) {
6004 case EXCP_IRQ:
6005 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6006 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6007 break;
6008 case EXCP_FIQ:
6009 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6010 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6011 break;
6012 default:
6013 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6014 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6015 break;
6016 };
6017
6018 /* If HCR.TGE is set then HCR is treated as being 1 */
6019 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6020
6021 /* Perform a table-lookup for the target EL given the current state */
6022 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6023
6024 assert(target_el > 0);
6025
6026 return target_el;
6027}
6028
9ee6e8bb
PB
6029static void v7m_push(CPUARMState *env, uint32_t val)
6030{
70d74660
AF
6031 CPUState *cs = CPU(arm_env_get_cpu(env));
6032
9ee6e8bb 6033 env->regs[13] -= 4;
ab1da857 6034 stl_phys(cs->as, env->regs[13], val);
9ee6e8bb
PB
6035}
6036
6037static uint32_t v7m_pop(CPUARMState *env)
6038{
70d74660 6039 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb 6040 uint32_t val;
70d74660 6041
fdfba1a2 6042 val = ldl_phys(cs->as, env->regs[13]);
9ee6e8bb
PB
6043 env->regs[13] += 4;
6044 return val;
6045}
6046
6047/* Switch to V7M main or process stack pointer. */
abc24d86 6048static void switch_v7m_sp(CPUARMState *env, bool new_spsel)
9ee6e8bb
PB
6049{
6050 uint32_t tmp;
abc24d86
MD
6051 bool old_spsel = env->v7m.control & R_V7M_CONTROL_SPSEL_MASK;
6052
6053 if (old_spsel != new_spsel) {
9ee6e8bb
PB
6054 tmp = env->v7m.other_sp;
6055 env->v7m.other_sp = env->regs[13];
6056 env->regs[13] = tmp;
abc24d86
MD
6057
6058 env->v7m.control = deposit32(env->v7m.control,
6059 R_V7M_CONTROL_SPSEL_SHIFT,
6060 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
9ee6e8bb
PB
6061 }
6062}
6063
39ae2474
PM
6064static uint32_t arm_v7m_load_vector(ARMCPU *cpu)
6065{
6066 CPUState *cs = CPU(cpu);
6067 CPUARMState *env = &cpu->env;
6068 MemTxResult result;
6069 hwaddr vec = env->v7m.vecbase + env->v7m.exception * 4;
6070 uint32_t addr;
6071
6072 addr = address_space_ldl(cs->as, vec,
6073 MEMTXATTRS_UNSPECIFIED, &result);
6074 if (result != MEMTX_OK) {
6075 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6076 * which would then be immediately followed by our failing to load
6077 * the entry vector for that HardFault, which is a Lockup case.
6078 * Since we don't model Lockup, we just report this guest error
6079 * via cpu_abort().
6080 */
6081 cpu_abort(cs, "Failed to read from exception vector table "
6082 "entry %08x\n", (unsigned)vec);
6083 }
6084 return addr;
6085}
6086
6087static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr)
6088{
6089 /* Do the "take the exception" parts of exception entry,
6090 * but not the pushing of state to the stack. This is
6091 * similar to the pseudocode ExceptionTaken() function.
6092 */
6093 CPUARMState *env = &cpu->env;
6094 uint32_t addr;
6095
6096 armv7m_nvic_acknowledge_irq(env->nvic);
6097 switch_v7m_sp(env, 0);
6098 /* Clear IT bits */
6099 env->condexec_bits = 0;
6100 env->regs[14] = lr;
6101 addr = arm_v7m_load_vector(cpu);
6102 env->regs[15] = addr & 0xfffffffe;
6103 env->thumb = addr & 1;
6104}
6105
6106static void v7m_push_stack(ARMCPU *cpu)
6107{
6108 /* Do the "set up stack frame" part of exception entry,
6109 * similar to pseudocode PushStack().
6110 */
6111 CPUARMState *env = &cpu->env;
6112 uint32_t xpsr = xpsr_read(env);
6113
6114 /* Align stack pointer if the guest wants that */
6115 if ((env->regs[13] & 4) && (env->v7m.ccr & R_V7M_CCR_STKALIGN_MASK)) {
6116 env->regs[13] -= 4;
987ab45e 6117 xpsr |= XPSR_SPREALIGN;
39ae2474
PM
6118 }
6119 /* Switch to the handler mode. */
6120 v7m_push(env, xpsr);
6121 v7m_push(env, env->regs[15]);
6122 v7m_push(env, env->regs[14]);
6123 v7m_push(env, env->regs[12]);
6124 v7m_push(env, env->regs[3]);
6125 v7m_push(env, env->regs[2]);
6126 v7m_push(env, env->regs[1]);
6127 v7m_push(env, env->regs[0]);
6128}
6129
aa488fe3 6130static void do_v7m_exception_exit(ARMCPU *cpu)
9ee6e8bb 6131{
aa488fe3 6132 CPUARMState *env = &cpu->env;
9ee6e8bb
PB
6133 uint32_t type;
6134 uint32_t xpsr;
aa488fe3
PM
6135 bool ufault = false;
6136 bool return_to_sp_process = false;
6137 bool return_to_handler = false;
6138 bool rettobase = false;
6139
6140 /* We can only get here from an EXCP_EXCEPTION_EXIT, and
9d17da4b 6141 * gen_bx_excret() enforces the architectural rule
aa488fe3
PM
6142 * that jumps to magic addresses don't have magic behaviour unless
6143 * we're in Handler mode (compare pseudocode BXWritePC()).
6144 */
15b3f556 6145 assert(arm_v7m_is_handler_mode(env));
aa488fe3
PM
6146
6147 /* In the spec pseudocode ExceptionReturn() is called directly
6148 * from BXWritePC() and gets the full target PC value including
6149 * bit zero. In QEMU's implementation we treat it as a normal
6150 * jump-to-register (which is then caught later on), and so split
6151 * the target value up between env->regs[15] and env->thumb in
6152 * gen_bx(). Reconstitute it.
6153 */
9ee6e8bb 6154 type = env->regs[15];
aa488fe3
PM
6155 if (env->thumb) {
6156 type |= 1;
6157 }
6158
6159 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6160 " previous exception %d\n",
6161 type, env->v7m.exception);
6162
6163 if (extract32(type, 5, 23) != extract32(-1, 5, 23)) {
6164 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6165 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", type);
6166 }
6167
a20ee600
MD
6168 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6169 /* Auto-clear FAULTMASK on return from other than NMI */
e6ae5981 6170 env->v7m.faultmask = 0;
a20ee600 6171 }
aa488fe3
PM
6172
6173 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception)) {
6174 case -1:
6175 /* attempt to exit an exception that isn't active */
6176 ufault = true;
6177 break;
6178 case 0:
6179 /* still an irq active now */
6180 break;
6181 case 1:
6182 /* we returned to base exception level, no nesting.
6183 * (In the pseudocode this is written using "NestedActivation != 1"
6184 * where we have 'rettobase == false'.)
6185 */
6186 rettobase = true;
6187 break;
6188 default:
6189 g_assert_not_reached();
6190 }
6191
6192 switch (type & 0xf) {
6193 case 1: /* Return to Handler */
6194 return_to_handler = true;
6195 break;
6196 case 13: /* Return to Thread using Process stack */
6197 return_to_sp_process = true;
6198 /* fall through */
6199 case 9: /* Return to Thread using Main stack */
6200 if (!rettobase &&
6201 !(env->v7m.ccr & R_V7M_CCR_NONBASETHRDENA_MASK)) {
6202 ufault = true;
6203 }
6204 break;
6205 default:
6206 ufault = true;
6207 }
6208
6209 if (ufault) {
6210 /* Bad exception return: instead of popping the exception
6211 * stack, directly take a usage fault on the current stack.
6212 */
6213 env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
6214 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6215 v7m_exception_taken(cpu, type | 0xf0000000);
6216 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6217 "stackframe: failed exception return integrity check\n");
6218 return;
a20ee600 6219 }
9ee6e8bb
PB
6220
6221 /* Switch to the target stack. */
aa488fe3 6222 switch_v7m_sp(env, return_to_sp_process);
9ee6e8bb
PB
6223 /* Pop registers. */
6224 env->regs[0] = v7m_pop(env);
6225 env->regs[1] = v7m_pop(env);
6226 env->regs[2] = v7m_pop(env);
6227 env->regs[3] = v7m_pop(env);
6228 env->regs[12] = v7m_pop(env);
6229 env->regs[14] = v7m_pop(env);
6230 env->regs[15] = v7m_pop(env);
fcf83ab1
PM
6231 if (env->regs[15] & 1) {
6232 qemu_log_mask(LOG_GUEST_ERROR,
6233 "M profile return from interrupt with misaligned "
6234 "PC is UNPREDICTABLE\n");
6235 /* Actual hardware seems to ignore the lsbit, and there are several
6236 * RTOSes out there which incorrectly assume the r15 in the stack
6237 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
6238 */
6239 env->regs[15] &= ~1U;
6240 }
9ee6e8bb 6241 xpsr = v7m_pop(env);
987ab45e 6242 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
9ee6e8bb 6243 /* Undo stack alignment. */
987ab45e 6244 if (xpsr & XPSR_SPREALIGN) {
9ee6e8bb 6245 env->regs[13] |= 4;
987ab45e 6246 }
aa488fe3
PM
6247
6248 /* The restored xPSR exception field will be zero if we're
6249 * resuming in Thread mode. If that doesn't match what the
6250 * exception return type specified then this is a UsageFault.
6251 */
15b3f556 6252 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
aa488fe3
PM
6253 /* Take an INVPC UsageFault by pushing the stack again. */
6254 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6255 env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
6256 v7m_push_stack(cpu);
6257 v7m_exception_taken(cpu, type | 0xf0000000);
6258 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6259 "failed exception return integrity check\n");
6260 return;
6261 }
6262
6263 /* Otherwise, we have a successful exception exit. */
6264 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
9ee6e8bb
PB
6265}
6266
27a7ea8a
PB
6267static void arm_log_exception(int idx)
6268{
6269 if (qemu_loglevel_mask(CPU_LOG_INT)) {
6270 const char *exc = NULL;
2c4a7cc5
PM
6271 static const char * const excnames[] = {
6272 [EXCP_UDEF] = "Undefined Instruction",
6273 [EXCP_SWI] = "SVC",
6274 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6275 [EXCP_DATA_ABORT] = "Data Abort",
6276 [EXCP_IRQ] = "IRQ",
6277 [EXCP_FIQ] = "FIQ",
6278 [EXCP_BKPT] = "Breakpoint",
6279 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6280 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6281 [EXCP_HVC] = "Hypervisor Call",
6282 [EXCP_HYP_TRAP] = "Hypervisor Trap",
6283 [EXCP_SMC] = "Secure Monitor Call",
6284 [EXCP_VIRQ] = "Virtual IRQ",
6285 [EXCP_VFIQ] = "Virtual FIQ",
6286 [EXCP_SEMIHOST] = "Semihosting call",
6287 [EXCP_NOCP] = "v7M NOCP UsageFault",
6288 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6289 };
27a7ea8a
PB
6290
6291 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6292 exc = excnames[idx];
6293 }
6294 if (!exc) {
6295 exc = "unknown";
6296 }
6297 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6298 }
6299}
6300
e6f010cc 6301void arm_v7m_cpu_do_interrupt(CPUState *cs)
9ee6e8bb 6302{
e6f010cc
AF
6303 ARMCPU *cpu = ARM_CPU(cs);
6304 CPUARMState *env = &cpu->env;
9ee6e8bb 6305 uint32_t lr;
9ee6e8bb 6306
27103424 6307 arm_log_exception(cs->exception_index);
3f1beaca 6308
9ee6e8bb
PB
6309 /* For exceptions we just mark as pending on the NVIC, and let that
6310 handle it. */
27103424 6311 switch (cs->exception_index) {
9ee6e8bb 6312 case EXCP_UDEF:
983fe826 6313 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
81dd9648 6314 env->v7m.cfsr |= R_V7M_CFSR_UNDEFINSTR_MASK;
a25dc805 6315 break;
7517748e
PM
6316 case EXCP_NOCP:
6317 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6318 env->v7m.cfsr |= R_V7M_CFSR_NOCP_MASK;
a25dc805 6319 break;
e13886e3
PM
6320 case EXCP_INVSTATE:
6321 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6322 env->v7m.cfsr |= R_V7M_CFSR_INVSTATE_MASK;
6323 break;
9ee6e8bb 6324 case EXCP_SWI:
314e2296 6325 /* The PC already points to the next instruction. */
983fe826 6326 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
a25dc805 6327 break;
9ee6e8bb
PB
6328 case EXCP_PREFETCH_ABORT:
6329 case EXCP_DATA_ABORT:
5dd0641d
MD
6330 /* Note that for M profile we don't have a guest facing FSR, but
6331 * the env->exception.fsr will be populated by the code that
6332 * raises the fault, in the A profile short-descriptor format.
abf1172f 6333 */
5dd0641d
MD
6334 switch (env->exception.fsr & 0xf) {
6335 case 0x8: /* External Abort */
6336 switch (cs->exception_index) {
6337 case EXCP_PREFETCH_ABORT:
6338 env->v7m.cfsr |= R_V7M_CFSR_PRECISERR_MASK;
6339 qemu_log_mask(CPU_LOG_INT, "...with CFSR.PRECISERR\n");
6340 break;
6341 case EXCP_DATA_ABORT:
6342 env->v7m.cfsr |=
6343 (R_V7M_CFSR_IBUSERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
6344 env->v7m.bfar = env->exception.vaddress;
6345 qemu_log_mask(CPU_LOG_INT,
6346 "...with CFSR.IBUSERR and BFAR 0x%x\n",
6347 env->v7m.bfar);
6348 break;
6349 }
6350 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS);
6351 break;
6352 default:
6353 /* All other FSR values are either MPU faults or "can't happen
6354 * for M profile" cases.
6355 */
6356 switch (cs->exception_index) {
6357 case EXCP_PREFETCH_ABORT:
6358 env->v7m.cfsr |= R_V7M_CFSR_IACCVIOL_MASK;
6359 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
6360 break;
6361 case EXCP_DATA_ABORT:
6362 env->v7m.cfsr |=
6363 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
6364 env->v7m.mmfar = env->exception.vaddress;
6365 qemu_log_mask(CPU_LOG_INT,
6366 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
6367 env->v7m.mmfar);
6368 break;
6369 }
6370 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
6371 break;
6372 }
a25dc805 6373 break;
9ee6e8bb 6374 case EXCP_BKPT:
cfe67cef 6375 if (semihosting_enabled()) {
2ad207d4 6376 int nr;
f9fd40eb 6377 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
2ad207d4
PB
6378 if (nr == 0xab) {
6379 env->regs[15] += 2;
205ace55
CC
6380 qemu_log_mask(CPU_LOG_INT,
6381 "...handling as semihosting call 0x%x\n",
6382 env->regs[0]);
2ad207d4
PB
6383 env->regs[0] = do_arm_semihosting(env);
6384 return;
6385 }
6386 }
983fe826 6387 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
a25dc805 6388 break;
9ee6e8bb 6389 case EXCP_IRQ:
9ee6e8bb
PB
6390 break;
6391 case EXCP_EXCEPTION_EXIT:
aa488fe3 6392 do_v7m_exception_exit(cpu);
9ee6e8bb
PB
6393 return;
6394 default:
a47dddd7 6395 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9ee6e8bb
PB
6396 return; /* Never happens. Keep compiler happy. */
6397 }
6398
bd70b29b
PM
6399 lr = 0xfffffff1;
6400 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
6401 lr |= 4;
6402 }
15b3f556 6403 if (!arm_v7m_is_handler_mode(env)) {
bd70b29b
PM
6404 lr |= 8;
6405 }
6406
39ae2474
PM
6407 v7m_push_stack(cpu);
6408 v7m_exception_taken(cpu, lr);
a25dc805 6409 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
9ee6e8bb
PB
6410}
6411
ce02049d
GB
6412/* Function used to synchronize QEMU's AArch64 register set with AArch32
6413 * register set. This is necessary when switching between AArch32 and AArch64
6414 * execution state.
6415 */
6416void aarch64_sync_32_to_64(CPUARMState *env)
6417{
6418 int i;
6419 uint32_t mode = env->uncached_cpsr & CPSR_M;
6420
6421 /* We can blanket copy R[0:7] to X[0:7] */
6422 for (i = 0; i < 8; i++) {
6423 env->xregs[i] = env->regs[i];
6424 }
6425
6426 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6427 * Otherwise, they come from the banked user regs.
6428 */
6429 if (mode == ARM_CPU_MODE_FIQ) {
6430 for (i = 8; i < 13; i++) {
6431 env->xregs[i] = env->usr_regs[i - 8];
6432 }
6433 } else {
6434 for (i = 8; i < 13; i++) {
6435 env->xregs[i] = env->regs[i];
6436 }
6437 }
6438
6439 /* Registers x13-x23 are the various mode SP and FP registers. Registers
6440 * r13 and r14 are only copied if we are in that mode, otherwise we copy
6441 * from the mode banked register.
6442 */
6443 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6444 env->xregs[13] = env->regs[13];
6445 env->xregs[14] = env->regs[14];
6446 } else {
6447 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6448 /* HYP is an exception in that it is copied from r14 */
6449 if (mode == ARM_CPU_MODE_HYP) {
6450 env->xregs[14] = env->regs[14];
6451 } else {
6452 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6453 }
6454 }
6455
6456 if (mode == ARM_CPU_MODE_HYP) {
6457 env->xregs[15] = env->regs[13];
6458 } else {
6459 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6460 }
6461
6462 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
6463 env->xregs[16] = env->regs[14];
6464 env->xregs[17] = env->regs[13];
ce02049d 6465 } else {
3a9148d0
SS
6466 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6467 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
ce02049d
GB
6468 }
6469
6470 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
6471 env->xregs[18] = env->regs[14];
6472 env->xregs[19] = env->regs[13];
ce02049d 6473 } else {
3a9148d0
SS
6474 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6475 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
ce02049d
GB
6476 }
6477
6478 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
6479 env->xregs[20] = env->regs[14];
6480 env->xregs[21] = env->regs[13];
ce02049d 6481 } else {
3a9148d0
SS
6482 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6483 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
ce02049d
GB
6484 }
6485
6486 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
6487 env->xregs[22] = env->regs[14];
6488 env->xregs[23] = env->regs[13];
ce02049d 6489 } else {
3a9148d0
SS
6490 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6491 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
ce02049d
GB
6492 }
6493
6494 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6495 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6496 * FIQ bank for r8-r14.
6497 */
6498 if (mode == ARM_CPU_MODE_FIQ) {
6499 for (i = 24; i < 31; i++) {
6500 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
6501 }
6502 } else {
6503 for (i = 24; i < 29; i++) {
6504 env->xregs[i] = env->fiq_regs[i - 24];
6505 }
6506 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6507 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6508 }
6509
6510 env->pc = env->regs[15];
6511}
6512
6513/* Function used to synchronize QEMU's AArch32 register set with AArch64
6514 * register set. This is necessary when switching between AArch32 and AArch64
6515 * execution state.
6516 */
6517void aarch64_sync_64_to_32(CPUARMState *env)
6518{
6519 int i;
6520 uint32_t mode = env->uncached_cpsr & CPSR_M;
6521
6522 /* We can blanket copy X[0:7] to R[0:7] */
6523 for (i = 0; i < 8; i++) {
6524 env->regs[i] = env->xregs[i];
6525 }
6526
6527 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6528 * Otherwise, we copy x8-x12 into the banked user regs.
6529 */
6530 if (mode == ARM_CPU_MODE_FIQ) {
6531 for (i = 8; i < 13; i++) {
6532 env->usr_regs[i - 8] = env->xregs[i];
6533 }
6534 } else {
6535 for (i = 8; i < 13; i++) {
6536 env->regs[i] = env->xregs[i];
6537 }
6538 }
6539
6540 /* Registers r13 & r14 depend on the current mode.
6541 * If we are in a given mode, we copy the corresponding x registers to r13
6542 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6543 * for the mode.
6544 */
6545 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6546 env->regs[13] = env->xregs[13];
6547 env->regs[14] = env->xregs[14];
6548 } else {
6549 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6550
6551 /* HYP is an exception in that it does not have its own banked r14 but
6552 * shares the USR r14
6553 */
6554 if (mode == ARM_CPU_MODE_HYP) {
6555 env->regs[14] = env->xregs[14];
6556 } else {
6557 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6558 }
6559 }
6560
6561 if (mode == ARM_CPU_MODE_HYP) {
6562 env->regs[13] = env->xregs[15];
6563 } else {
6564 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6565 }
6566
6567 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
6568 env->regs[14] = env->xregs[16];
6569 env->regs[13] = env->xregs[17];
ce02049d 6570 } else {
3a9148d0
SS
6571 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6572 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
ce02049d
GB
6573 }
6574
6575 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
6576 env->regs[14] = env->xregs[18];
6577 env->regs[13] = env->xregs[19];
ce02049d 6578 } else {
3a9148d0
SS
6579 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6580 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
ce02049d
GB
6581 }
6582
6583 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
6584 env->regs[14] = env->xregs[20];
6585 env->regs[13] = env->xregs[21];
ce02049d 6586 } else {
3a9148d0
SS
6587 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6588 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
ce02049d
GB
6589 }
6590
6591 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
6592 env->regs[14] = env->xregs[22];
6593 env->regs[13] = env->xregs[23];
ce02049d 6594 } else {
3a9148d0
SS
6595 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6596 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
ce02049d
GB
6597 }
6598
6599 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6600 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6601 * FIQ bank for r8-r14.
6602 */
6603 if (mode == ARM_CPU_MODE_FIQ) {
6604 for (i = 24; i < 31; i++) {
6605 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6606 }
6607 } else {
6608 for (i = 24; i < 29; i++) {
6609 env->fiq_regs[i - 24] = env->xregs[i];
6610 }
6611 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6612 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6613 }
6614
6615 env->regs[15] = env->pc;
6616}
6617
966f758c 6618static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
b5ff1b31 6619{
97a8ea5a
AF
6620 ARMCPU *cpu = ARM_CPU(cs);
6621 CPUARMState *env = &cpu->env;
b5ff1b31
FB
6622 uint32_t addr;
6623 uint32_t mask;
6624 int new_mode;
6625 uint32_t offset;
16a906fd 6626 uint32_t moe;
b5ff1b31 6627
16a906fd
PM
6628 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6629 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6630 case EC_BREAKPOINT:
6631 case EC_BREAKPOINT_SAME_EL:
6632 moe = 1;
6633 break;
6634 case EC_WATCHPOINT:
6635 case EC_WATCHPOINT_SAME_EL:
6636 moe = 10;
6637 break;
6638 case EC_AA32_BKPT:
6639 moe = 3;
6640 break;
6641 case EC_VECTORCATCH:
6642 moe = 5;
6643 break;
6644 default:
6645 moe = 0;
6646 break;
6647 }
6648
6649 if (moe) {
6650 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6651 }
6652
b5ff1b31 6653 /* TODO: Vectored interrupt controller. */
27103424 6654 switch (cs->exception_index) {
b5ff1b31
FB
6655 case EXCP_UDEF:
6656 new_mode = ARM_CPU_MODE_UND;
6657 addr = 0x04;
6658 mask = CPSR_I;
6659 if (env->thumb)
6660 offset = 2;
6661 else
6662 offset = 4;
6663 break;
6664 case EXCP_SWI:
6665 new_mode = ARM_CPU_MODE_SVC;
6666 addr = 0x08;
6667 mask = CPSR_I;
601d70b9 6668 /* The PC already points to the next instruction. */
b5ff1b31
FB
6669 offset = 0;
6670 break;
06c949e6 6671 case EXCP_BKPT:
abf1172f 6672 env->exception.fsr = 2;
9ee6e8bb
PB
6673 /* Fall through to prefetch abort. */
6674 case EXCP_PREFETCH_ABORT:
88ca1c2d 6675 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
b848ce2b 6676 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
3f1beaca 6677 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
88ca1c2d 6678 env->exception.fsr, (uint32_t)env->exception.vaddress);
b5ff1b31
FB
6679 new_mode = ARM_CPU_MODE_ABT;
6680 addr = 0x0c;
6681 mask = CPSR_A | CPSR_I;
6682 offset = 4;
6683 break;
6684 case EXCP_DATA_ABORT:
4a7e2d73 6685 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
b848ce2b 6686 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
3f1beaca 6687 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4a7e2d73 6688 env->exception.fsr,
6cd8a264 6689 (uint32_t)env->exception.vaddress);
b5ff1b31
FB
6690 new_mode = ARM_CPU_MODE_ABT;
6691 addr = 0x10;
6692 mask = CPSR_A | CPSR_I;
6693 offset = 8;
6694 break;
6695 case EXCP_IRQ:
6696 new_mode = ARM_CPU_MODE_IRQ;
6697 addr = 0x18;
6698 /* Disable IRQ and imprecise data aborts. */
6699 mask = CPSR_A | CPSR_I;
6700 offset = 4;
de38d23b
FA
6701 if (env->cp15.scr_el3 & SCR_IRQ) {
6702 /* IRQ routed to monitor mode */
6703 new_mode = ARM_CPU_MODE_MON;
6704 mask |= CPSR_F;
6705 }
b5ff1b31
FB
6706 break;
6707 case EXCP_FIQ:
6708 new_mode = ARM_CPU_MODE_FIQ;
6709 addr = 0x1c;
6710 /* Disable FIQ, IRQ and imprecise data aborts. */
6711 mask = CPSR_A | CPSR_I | CPSR_F;
de38d23b
FA
6712 if (env->cp15.scr_el3 & SCR_FIQ) {
6713 /* FIQ routed to monitor mode */
6714 new_mode = ARM_CPU_MODE_MON;
6715 }
b5ff1b31
FB
6716 offset = 4;
6717 break;
87a4b270
PM
6718 case EXCP_VIRQ:
6719 new_mode = ARM_CPU_MODE_IRQ;
6720 addr = 0x18;
6721 /* Disable IRQ and imprecise data aborts. */
6722 mask = CPSR_A | CPSR_I;
6723 offset = 4;
6724 break;
6725 case EXCP_VFIQ:
6726 new_mode = ARM_CPU_MODE_FIQ;
6727 addr = 0x1c;
6728 /* Disable FIQ, IRQ and imprecise data aborts. */
6729 mask = CPSR_A | CPSR_I | CPSR_F;
6730 offset = 4;
6731 break;
dbe9d163
FA
6732 case EXCP_SMC:
6733 new_mode = ARM_CPU_MODE_MON;
6734 addr = 0x08;
6735 mask = CPSR_A | CPSR_I | CPSR_F;
6736 offset = 0;
6737 break;
b5ff1b31 6738 default:
a47dddd7 6739 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
b5ff1b31
FB
6740 return; /* Never happens. Keep compiler happy. */
6741 }
e89e51a1
FA
6742
6743 if (new_mode == ARM_CPU_MODE_MON) {
6744 addr += env->cp15.mvbar;
137feaa9 6745 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
e89e51a1 6746 /* High vectors. When enabled, base address cannot be remapped. */
b5ff1b31 6747 addr += 0xffff0000;
8641136c
NR
6748 } else {
6749 /* ARM v7 architectures provide a vector base address register to remap
6750 * the interrupt vector table.
e89e51a1 6751 * This register is only followed in non-monitor mode, and is banked.
8641136c
NR
6752 * Note: only bits 31:5 are valid.
6753 */
fb6c91ba 6754 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
b5ff1b31 6755 }
dbe9d163
FA
6756
6757 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6758 env->cp15.scr_el3 &= ~SCR_NS;
6759 }
6760
b5ff1b31 6761 switch_mode (env, new_mode);
662cefb7
PM
6762 /* For exceptions taken to AArch32 we must clear the SS bit in both
6763 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6764 */
6765 env->uncached_cpsr &= ~PSTATE_SS;
b5ff1b31 6766 env->spsr = cpsr_read(env);
9ee6e8bb
PB
6767 /* Clear IT bits. */
6768 env->condexec_bits = 0;
30a8cac1 6769 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 6770 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
73462ddd
PC
6771 /* Set new mode endianness */
6772 env->uncached_cpsr &= ~CPSR_E;
6773 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
3823b9db 6774 env->uncached_cpsr |= CPSR_E;
73462ddd 6775 }
4cc35614 6776 env->daif |= mask;
be5e7a76
DES
6777 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6778 * and we should just guard the thumb mode on V4 */
6779 if (arm_feature(env, ARM_FEATURE_V4T)) {
137feaa9 6780 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
be5e7a76 6781 }
b5ff1b31
FB
6782 env->regs[14] = env->regs[15] + offset;
6783 env->regs[15] = addr;
b5ff1b31
FB
6784}
6785
966f758c
PM
6786/* Handle exception entry to a target EL which is using AArch64 */
6787static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
f3a9b694
PM
6788{
6789 ARMCPU *cpu = ARM_CPU(cs);
6790 CPUARMState *env = &cpu->env;
6791 unsigned int new_el = env->exception.target_el;
6792 target_ulong addr = env->cp15.vbar_el[new_el];
6793 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6794
6795 if (arm_current_el(env) < new_el) {
3d6f7617
PM
6796 /* Entry vector offset depends on whether the implemented EL
6797 * immediately lower than the target level is using AArch32 or AArch64
6798 */
6799 bool is_aa64;
6800
6801 switch (new_el) {
6802 case 3:
6803 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6804 break;
6805 case 2:
6806 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6807 break;
6808 case 1:
6809 is_aa64 = is_a64(env);
6810 break;
6811 default:
6812 g_assert_not_reached();
6813 }
6814
6815 if (is_aa64) {
f3a9b694
PM
6816 addr += 0x400;
6817 } else {
6818 addr += 0x600;
6819 }
6820 } else if (pstate_read(env) & PSTATE_SP) {
6821 addr += 0x200;
6822 }
6823
f3a9b694
PM
6824 switch (cs->exception_index) {
6825 case EXCP_PREFETCH_ABORT:
6826 case EXCP_DATA_ABORT:
6827 env->cp15.far_el[new_el] = env->exception.vaddress;
6828 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6829 env->cp15.far_el[new_el]);
6830 /* fall through */
6831 case EXCP_BKPT:
6832 case EXCP_UDEF:
6833 case EXCP_SWI:
6834 case EXCP_HVC:
6835 case EXCP_HYP_TRAP:
6836 case EXCP_SMC:
6837 env->cp15.esr_el[new_el] = env->exception.syndrome;
6838 break;
6839 case EXCP_IRQ:
6840 case EXCP_VIRQ:
6841 addr += 0x80;
6842 break;
6843 case EXCP_FIQ:
6844 case EXCP_VFIQ:
6845 addr += 0x100;
6846 break;
6847 case EXCP_SEMIHOST:
6848 qemu_log_mask(CPU_LOG_INT,
6849 "...handling as semihosting call 0x%" PRIx64 "\n",
6850 env->xregs[0]);
6851 env->xregs[0] = do_arm_semihosting(env);
6852 return;
6853 default:
6854 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6855 }
6856
6857 if (is_a64(env)) {
6858 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6859 aarch64_save_sp(env, arm_current_el(env));
6860 env->elr_el[new_el] = env->pc;
6861 } else {
6862 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
f3a9b694
PM
6863 env->elr_el[new_el] = env->regs[15];
6864
6865 aarch64_sync_32_to_64(env);
6866
6867 env->condexec_bits = 0;
6868 }
6869 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6870 env->elr_el[new_el]);
6871
6872 pstate_write(env, PSTATE_DAIF | new_mode);
6873 env->aarch64 = 1;
6874 aarch64_restore_sp(env, new_el);
6875
6876 env->pc = addr;
6877
6878 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6879 new_el, env->pc, pstate_read(env));
966f758c
PM
6880}
6881
904c04de
PM
6882static inline bool check_for_semihosting(CPUState *cs)
6883{
6884 /* Check whether this exception is a semihosting call; if so
6885 * then handle it and return true; otherwise return false.
6886 */
6887 ARMCPU *cpu = ARM_CPU(cs);
6888 CPUARMState *env = &cpu->env;
6889
6890 if (is_a64(env)) {
6891 if (cs->exception_index == EXCP_SEMIHOST) {
6892 /* This is always the 64-bit semihosting exception.
6893 * The "is this usermode" and "is semihosting enabled"
6894 * checks have been done at translate time.
6895 */
6896 qemu_log_mask(CPU_LOG_INT,
6897 "...handling as semihosting call 0x%" PRIx64 "\n",
6898 env->xregs[0]);
6899 env->xregs[0] = do_arm_semihosting(env);
6900 return true;
6901 }
6902 return false;
6903 } else {
6904 uint32_t imm;
6905
6906 /* Only intercept calls from privileged modes, to provide some
6907 * semblance of security.
6908 */
19a6e31c
PM
6909 if (cs->exception_index != EXCP_SEMIHOST &&
6910 (!semihosting_enabled() ||
6911 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
904c04de
PM
6912 return false;
6913 }
6914
6915 switch (cs->exception_index) {
19a6e31c
PM
6916 case EXCP_SEMIHOST:
6917 /* This is always a semihosting call; the "is this usermode"
6918 * and "is semihosting enabled" checks have been done at
6919 * translate time.
6920 */
6921 break;
904c04de
PM
6922 case EXCP_SWI:
6923 /* Check for semihosting interrupt. */
6924 if (env->thumb) {
f9fd40eb 6925 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
904c04de
PM
6926 & 0xff;
6927 if (imm == 0xab) {
6928 break;
6929 }
6930 } else {
f9fd40eb 6931 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
904c04de
PM
6932 & 0xffffff;
6933 if (imm == 0x123456) {
6934 break;
6935 }
6936 }
6937 return false;
6938 case EXCP_BKPT:
6939 /* See if this is a semihosting syscall. */
6940 if (env->thumb) {
f9fd40eb 6941 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
904c04de
PM
6942 & 0xff;
6943 if (imm == 0xab) {
6944 env->regs[15] += 2;
6945 break;
6946 }
6947 }
6948 return false;
6949 default:
6950 return false;
6951 }
6952
6953 qemu_log_mask(CPU_LOG_INT,
6954 "...handling as semihosting call 0x%x\n",
6955 env->regs[0]);
6956 env->regs[0] = do_arm_semihosting(env);
6957 return true;
6958 }
6959}
6960
966f758c
PM
6961/* Handle a CPU exception for A and R profile CPUs.
6962 * Do any appropriate logging, handle PSCI calls, and then hand off
6963 * to the AArch64-entry or AArch32-entry function depending on the
6964 * target exception level's register width.
6965 */
6966void arm_cpu_do_interrupt(CPUState *cs)
6967{
6968 ARMCPU *cpu = ARM_CPU(cs);
6969 CPUARMState *env = &cpu->env;
6970 unsigned int new_el = env->exception.target_el;
6971
531c60a9 6972 assert(!arm_feature(env, ARM_FEATURE_M));
966f758c
PM
6973
6974 arm_log_exception(cs->exception_index);
6975 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6976 new_el);
6977 if (qemu_loglevel_mask(CPU_LOG_INT)
6978 && !excp_is_internal(cs->exception_index)) {
6568da45 6979 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
966f758c
PM
6980 env->exception.syndrome >> ARM_EL_EC_SHIFT,
6981 env->exception.syndrome);
6982 }
6983
6984 if (arm_is_psci_call(cpu, cs->exception_index)) {
6985 arm_handle_psci_call(cpu);
6986 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6987 return;
6988 }
6989
904c04de
PM
6990 /* Semihosting semantics depend on the register width of the
6991 * code that caused the exception, not the target exception level,
6992 * so must be handled here.
966f758c 6993 */
904c04de
PM
6994 if (check_for_semihosting(cs)) {
6995 return;
6996 }
6997
6998 assert(!excp_is_internal(cs->exception_index));
6999 if (arm_el_is_aa64(env, new_el)) {
966f758c
PM
7000 arm_cpu_do_interrupt_aarch64(cs);
7001 } else {
7002 arm_cpu_do_interrupt_aarch32(cs);
7003 }
f3a9b694 7004
8d04fb55
JK
7005 /* Hooks may change global state so BQL should be held, also the
7006 * BQL needs to be held for any modification of
7007 * cs->interrupt_request.
7008 */
7009 g_assert(qemu_mutex_iothread_locked());
7010
bd7d00fc
PM
7011 arm_call_el_change_hook(cpu);
7012
f3a9b694
PM
7013 if (!kvm_enabled()) {
7014 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7015 }
7016}
0480f69a
PM
7017
7018/* Return the exception level which controls this address translation regime */
7019static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7020{
7021 switch (mmu_idx) {
7022 case ARMMMUIdx_S2NS:
7023 case ARMMMUIdx_S1E2:
7024 return 2;
7025 case ARMMMUIdx_S1E3:
7026 return 3;
7027 case ARMMMUIdx_S1SE0:
7028 return arm_el_is_aa64(env, 3) ? 1 : 3;
7029 case ARMMMUIdx_S1SE1:
7030 case ARMMMUIdx_S1NSE0:
7031 case ARMMMUIdx_S1NSE1:
e7b921c2 7032 case ARMMMUIdx_MPriv:
3bef7012 7033 case ARMMMUIdx_MNegPri:
e7b921c2 7034 case ARMMMUIdx_MUser:
66787c78
PM
7035 case ARMMMUIdx_MSPriv:
7036 case ARMMMUIdx_MSNegPri:
7037 case ARMMMUIdx_MSUser:
0480f69a
PM
7038 return 1;
7039 default:
7040 g_assert_not_reached();
7041 }
7042}
7043
8bf5b6a9
PM
7044/* Return true if this address translation regime is secure */
7045static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
7046{
7047 switch (mmu_idx) {
7048 case ARMMMUIdx_S12NSE0:
7049 case ARMMMUIdx_S12NSE1:
7050 case ARMMMUIdx_S1NSE0:
7051 case ARMMMUIdx_S1NSE1:
7052 case ARMMMUIdx_S1E2:
7053 case ARMMMUIdx_S2NS:
e7b921c2 7054 case ARMMMUIdx_MPriv:
3bef7012 7055 case ARMMMUIdx_MNegPri:
e7b921c2 7056 case ARMMMUIdx_MUser:
8bf5b6a9
PM
7057 return false;
7058 case ARMMMUIdx_S1E3:
7059 case ARMMMUIdx_S1SE0:
7060 case ARMMMUIdx_S1SE1:
66787c78
PM
7061 case ARMMMUIdx_MSPriv:
7062 case ARMMMUIdx_MSNegPri:
7063 case ARMMMUIdx_MSUser:
8bf5b6a9
PM
7064 return true;
7065 default:
7066 g_assert_not_reached();
7067 }
7068}
7069
0480f69a
PM
7070/* Return the SCTLR value which controls this address translation regime */
7071static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7072{
7073 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7074}
7075
7076/* Return true if the specified stage of address translation is disabled */
7077static inline bool regime_translation_disabled(CPUARMState *env,
7078 ARMMMUIdx mmu_idx)
7079{
29c483a5 7080 if (arm_feature(env, ARM_FEATURE_M)) {
3bef7012
PM
7081 switch (env->v7m.mpu_ctrl &
7082 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7083 case R_V7M_MPU_CTRL_ENABLE_MASK:
7084 /* Enabled, but not for HardFault and NMI */
66787c78
PM
7085 return mmu_idx == ARMMMUIdx_MNegPri ||
7086 mmu_idx == ARMMMUIdx_MSNegPri;
3bef7012
PM
7087 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7088 /* Enabled for all cases */
7089 return false;
7090 case 0:
7091 default:
7092 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7093 * we warned about that in armv7m_nvic.c when the guest set it.
7094 */
7095 return true;
7096 }
29c483a5
MD
7097 }
7098
0480f69a
PM
7099 if (mmu_idx == ARMMMUIdx_S2NS) {
7100 return (env->cp15.hcr_el2 & HCR_VM) == 0;
7101 }
7102 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7103}
7104
73462ddd
PC
7105static inline bool regime_translation_big_endian(CPUARMState *env,
7106 ARMMMUIdx mmu_idx)
7107{
7108 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7109}
7110
0480f69a
PM
7111/* Return the TCR controlling this translation regime */
7112static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7113{
7114 if (mmu_idx == ARMMMUIdx_S2NS) {
68e9c2fe 7115 return &env->cp15.vtcr_el2;
0480f69a
PM
7116 }
7117 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7118}
7119
8bd5c820
PM
7120/* Convert a possible stage1+2 MMU index into the appropriate
7121 * stage 1 MMU index
7122 */
7123static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7124{
7125 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7126 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7127 }
7128 return mmu_idx;
7129}
7130
86fb3fa4
TH
7131/* Returns TBI0 value for current regime el */
7132uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7133{
7134 TCR *tcr;
7135 uint32_t el;
7136
7137 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8bd5c820
PM
7138 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7139 */
7140 mmu_idx = stage_1_mmu_idx(mmu_idx);
86fb3fa4
TH
7141
7142 tcr = regime_tcr(env, mmu_idx);
7143 el = regime_el(env, mmu_idx);
7144
7145 if (el > 1) {
7146 return extract64(tcr->raw_tcr, 20, 1);
7147 } else {
7148 return extract64(tcr->raw_tcr, 37, 1);
7149 }
7150}
7151
7152/* Returns TBI1 value for current regime el */
7153uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7154{
7155 TCR *tcr;
7156 uint32_t el;
7157
7158 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8bd5c820
PM
7159 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7160 */
7161 mmu_idx = stage_1_mmu_idx(mmu_idx);
86fb3fa4
TH
7162
7163 tcr = regime_tcr(env, mmu_idx);
7164 el = regime_el(env, mmu_idx);
7165
7166 if (el > 1) {
7167 return 0;
7168 } else {
7169 return extract64(tcr->raw_tcr, 38, 1);
7170 }
7171}
7172
aef878be
GB
7173/* Return the TTBR associated with this translation regime */
7174static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7175 int ttbrn)
7176{
7177 if (mmu_idx == ARMMMUIdx_S2NS) {
b698e9cf 7178 return env->cp15.vttbr_el2;
aef878be
GB
7179 }
7180 if (ttbrn == 0) {
7181 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7182 } else {
7183 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7184 }
7185}
7186
0480f69a
PM
7187/* Return true if the translation regime is using LPAE format page tables */
7188static inline bool regime_using_lpae_format(CPUARMState *env,
7189 ARMMMUIdx mmu_idx)
7190{
7191 int el = regime_el(env, mmu_idx);
7192 if (el == 2 || arm_el_is_aa64(env, el)) {
7193 return true;
7194 }
7195 if (arm_feature(env, ARM_FEATURE_LPAE)
7196 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7197 return true;
7198 }
7199 return false;
7200}
7201
deb2db99
AR
7202/* Returns true if the stage 1 translation regime is using LPAE format page
7203 * tables. Used when raising alignment exceptions, whose FSR changes depending
7204 * on whether the long or short descriptor format is in use. */
7205bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
30901475 7206{
8bd5c820 7207 mmu_idx = stage_1_mmu_idx(mmu_idx);
deb2db99 7208
30901475
AB
7209 return regime_using_lpae_format(env, mmu_idx);
7210}
7211
0480f69a
PM
7212static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
7213{
7214 switch (mmu_idx) {
7215 case ARMMMUIdx_S1SE0:
7216 case ARMMMUIdx_S1NSE0:
e7b921c2 7217 case ARMMMUIdx_MUser:
0480f69a
PM
7218 return true;
7219 default:
7220 return false;
7221 case ARMMMUIdx_S12NSE0:
7222 case ARMMMUIdx_S12NSE1:
7223 g_assert_not_reached();
7224 }
7225}
7226
0fbf5238
AJ
7227/* Translate section/page access permissions to page
7228 * R/W protection flags
d76951b6
AJ
7229 *
7230 * @env: CPUARMState
7231 * @mmu_idx: MMU index indicating required translation regime
7232 * @ap: The 3-bit access permissions (AP[2:0])
7233 * @domain_prot: The 2-bit domain access permissions
0fbf5238
AJ
7234 */
7235static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
7236 int ap, int domain_prot)
7237{
554b0b09
PM
7238 bool is_user = regime_is_user(env, mmu_idx);
7239
7240 if (domain_prot == 3) {
7241 return PAGE_READ | PAGE_WRITE;
7242 }
7243
554b0b09
PM
7244 switch (ap) {
7245 case 0:
7246 if (arm_feature(env, ARM_FEATURE_V7)) {
7247 return 0;
7248 }
554b0b09
PM
7249 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
7250 case SCTLR_S:
7251 return is_user ? 0 : PAGE_READ;
7252 case SCTLR_R:
7253 return PAGE_READ;
7254 default:
7255 return 0;
7256 }
7257 case 1:
7258 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7259 case 2:
87c3d486 7260 if (is_user) {
0fbf5238 7261 return PAGE_READ;
87c3d486 7262 } else {
554b0b09 7263 return PAGE_READ | PAGE_WRITE;
87c3d486 7264 }
554b0b09
PM
7265 case 3:
7266 return PAGE_READ | PAGE_WRITE;
7267 case 4: /* Reserved. */
7268 return 0;
7269 case 5:
0fbf5238 7270 return is_user ? 0 : PAGE_READ;
554b0b09 7271 case 6:
0fbf5238 7272 return PAGE_READ;
554b0b09 7273 case 7:
87c3d486 7274 if (!arm_feature(env, ARM_FEATURE_V6K)) {
554b0b09 7275 return 0;
87c3d486 7276 }
0fbf5238 7277 return PAGE_READ;
554b0b09 7278 default:
0fbf5238 7279 g_assert_not_reached();
554b0b09 7280 }
b5ff1b31
FB
7281}
7282
d76951b6
AJ
7283/* Translate section/page access permissions to page
7284 * R/W protection flags.
7285 *
d76951b6 7286 * @ap: The 2-bit simple AP (AP[2:1])
d8e052b3 7287 * @is_user: TRUE if accessing from PL0
d76951b6 7288 */
d8e052b3 7289static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
d76951b6 7290{
d76951b6
AJ
7291 switch (ap) {
7292 case 0:
7293 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7294 case 1:
7295 return PAGE_READ | PAGE_WRITE;
7296 case 2:
7297 return is_user ? 0 : PAGE_READ;
7298 case 3:
7299 return PAGE_READ;
7300 default:
7301 g_assert_not_reached();
7302 }
7303}
7304
d8e052b3
AJ
7305static inline int
7306simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
7307{
7308 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
7309}
7310
6ab1a5ee
EI
7311/* Translate S2 section/page access permissions to protection flags
7312 *
7313 * @env: CPUARMState
7314 * @s2ap: The 2-bit stage2 access permissions (S2AP)
7315 * @xn: XN (execute-never) bit
7316 */
7317static int get_S2prot(CPUARMState *env, int s2ap, int xn)
7318{
7319 int prot = 0;
7320
7321 if (s2ap & 1) {
7322 prot |= PAGE_READ;
7323 }
7324 if (s2ap & 2) {
7325 prot |= PAGE_WRITE;
7326 }
7327 if (!xn) {
dfda6837
SS
7328 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
7329 prot |= PAGE_EXEC;
7330 }
6ab1a5ee
EI
7331 }
7332 return prot;
7333}
7334
d8e052b3
AJ
7335/* Translate section/page access permissions to protection flags
7336 *
7337 * @env: CPUARMState
7338 * @mmu_idx: MMU index indicating required translation regime
7339 * @is_aa64: TRUE if AArch64
7340 * @ap: The 2-bit simple AP (AP[2:1])
7341 * @ns: NS (non-secure) bit
7342 * @xn: XN (execute-never) bit
7343 * @pxn: PXN (privileged execute-never) bit
7344 */
7345static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
7346 int ap, int ns, int xn, int pxn)
7347{
7348 bool is_user = regime_is_user(env, mmu_idx);
7349 int prot_rw, user_rw;
7350 bool have_wxn;
7351 int wxn = 0;
7352
7353 assert(mmu_idx != ARMMMUIdx_S2NS);
7354
7355 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
7356 if (is_user) {
7357 prot_rw = user_rw;
7358 } else {
7359 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
7360 }
7361
7362 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
7363 return prot_rw;
7364 }
7365
7366 /* TODO have_wxn should be replaced with
7367 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7368 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7369 * compatible processors have EL2, which is required for [U]WXN.
7370 */
7371 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
7372
7373 if (have_wxn) {
7374 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7375 }
7376
7377 if (is_aa64) {
7378 switch (regime_el(env, mmu_idx)) {
7379 case 1:
7380 if (!is_user) {
7381 xn = pxn || (user_rw & PAGE_WRITE);
7382 }
7383 break;
7384 case 2:
7385 case 3:
7386 break;
7387 }
7388 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7389 switch (regime_el(env, mmu_idx)) {
7390 case 1:
7391 case 3:
7392 if (is_user) {
7393 xn = xn || !(user_rw & PAGE_READ);
7394 } else {
7395 int uwxn = 0;
7396 if (have_wxn) {
7397 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7398 }
7399 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7400 (uwxn && (user_rw & PAGE_WRITE));
7401 }
7402 break;
7403 case 2:
7404 break;
7405 }
7406 } else {
7407 xn = wxn = 0;
7408 }
7409
7410 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7411 return prot_rw;
7412 }
7413 return prot_rw | PAGE_EXEC;
7414}
7415
0480f69a
PM
7416static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7417 uint32_t *table, uint32_t address)
b2fa1797 7418{
0480f69a 7419 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
0480f69a 7420 TCR *tcr = regime_tcr(env, mmu_idx);
11f136ee 7421
11f136ee
FA
7422 if (address & tcr->mask) {
7423 if (tcr->raw_tcr & TTBCR_PD1) {
e389be16
FA
7424 /* Translation table walk disabled for TTBR1 */
7425 return false;
7426 }
aef878be 7427 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
e389be16 7428 } else {
11f136ee 7429 if (tcr->raw_tcr & TTBCR_PD0) {
e389be16
FA
7430 /* Translation table walk disabled for TTBR0 */
7431 return false;
7432 }
aef878be 7433 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
e389be16
FA
7434 }
7435 *table |= (address >> 18) & 0x3ffc;
7436 return true;
b2fa1797
PB
7437}
7438
37785977
EI
7439/* Translate a S1 pagetable walk through S2 if needed. */
7440static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7441 hwaddr addr, MemTxAttrs txattrs,
7442 uint32_t *fsr,
7443 ARMMMUFaultInfo *fi)
7444{
7445 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7446 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7447 target_ulong s2size;
7448 hwaddr s2pa;
7449 int s2prot;
7450 int ret;
7451
7452 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7453 &txattrs, &s2prot, &s2size, fsr, fi);
7454 if (ret) {
7455 fi->s2addr = addr;
7456 fi->stage2 = true;
7457 fi->s1ptw = true;
7458 return ~0;
7459 }
7460 addr = s2pa;
7461 }
7462 return addr;
7463}
7464
ebca90e4
PM
7465/* All loads done in the course of a page table walk go through here.
7466 * TODO: rather than ignoring errors from physical memory reads (which
7467 * are external aborts in ARM terminology) we should propagate this
7468 * error out so that we can turn it into a Data Abort if this walk
7469 * was being done for a CPU load/store or an address translation instruction
7470 * (but not if it was for a debug access).
7471 */
a614e698
EI
7472static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7473 ARMMMUIdx mmu_idx, uint32_t *fsr,
7474 ARMMMUFaultInfo *fi)
ebca90e4 7475{
a614e698
EI
7476 ARMCPU *cpu = ARM_CPU(cs);
7477 CPUARMState *env = &cpu->env;
ebca90e4 7478 MemTxAttrs attrs = {};
5ce4ff65 7479 AddressSpace *as;
ebca90e4
PM
7480
7481 attrs.secure = is_secure;
5ce4ff65 7482 as = arm_addressspace(cs, attrs);
a614e698
EI
7483 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7484 if (fi->s1ptw) {
7485 return 0;
7486 }
73462ddd
PC
7487 if (regime_translation_big_endian(env, mmu_idx)) {
7488 return address_space_ldl_be(as, addr, attrs, NULL);
7489 } else {
7490 return address_space_ldl_le(as, addr, attrs, NULL);
7491 }
ebca90e4
PM
7492}
7493
37785977
EI
7494static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7495 ARMMMUIdx mmu_idx, uint32_t *fsr,
7496 ARMMMUFaultInfo *fi)
ebca90e4 7497{
37785977
EI
7498 ARMCPU *cpu = ARM_CPU(cs);
7499 CPUARMState *env = &cpu->env;
ebca90e4 7500 MemTxAttrs attrs = {};
5ce4ff65 7501 AddressSpace *as;
ebca90e4
PM
7502
7503 attrs.secure = is_secure;
5ce4ff65 7504 as = arm_addressspace(cs, attrs);
37785977
EI
7505 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7506 if (fi->s1ptw) {
7507 return 0;
7508 }
73462ddd
PC
7509 if (regime_translation_big_endian(env, mmu_idx)) {
7510 return address_space_ldq_be(as, addr, attrs, NULL);
7511 } else {
7512 return address_space_ldq_le(as, addr, attrs, NULL);
7513 }
ebca90e4
PM
7514}
7515
b7cc4e82 7516static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
03ae85f8 7517 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 7518 hwaddr *phys_ptr, int *prot,
e14b5a23
EI
7519 target_ulong *page_size, uint32_t *fsr,
7520 ARMMMUFaultInfo *fi)
b5ff1b31 7521{
70d74660 7522 CPUState *cs = CPU(arm_env_get_cpu(env));
b5ff1b31
FB
7523 int code;
7524 uint32_t table;
7525 uint32_t desc;
7526 int type;
7527 int ap;
e389be16 7528 int domain = 0;
dd4ebc2e 7529 int domain_prot;
a8170e5e 7530 hwaddr phys_addr;
0480f69a 7531 uint32_t dacr;
b5ff1b31 7532
9ee6e8bb
PB
7533 /* Pagetable walk. */
7534 /* Lookup l1 descriptor. */
0480f69a 7535 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
7536 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7537 code = 5;
7538 goto do_fault;
7539 }
a614e698
EI
7540 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7541 mmu_idx, fsr, fi);
9ee6e8bb 7542 type = (desc & 3);
dd4ebc2e 7543 domain = (desc >> 5) & 0x0f;
0480f69a
PM
7544 if (regime_el(env, mmu_idx) == 1) {
7545 dacr = env->cp15.dacr_ns;
7546 } else {
7547 dacr = env->cp15.dacr_s;
7548 }
7549 domain_prot = (dacr >> (domain * 2)) & 3;
9ee6e8bb 7550 if (type == 0) {
601d70b9 7551 /* Section translation fault. */
9ee6e8bb
PB
7552 code = 5;
7553 goto do_fault;
7554 }
dd4ebc2e 7555 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
7556 if (type == 2)
7557 code = 9; /* Section domain fault. */
7558 else
7559 code = 11; /* Page domain fault. */
7560 goto do_fault;
7561 }
7562 if (type == 2) {
7563 /* 1Mb section. */
7564 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7565 ap = (desc >> 10) & 3;
7566 code = 13;
d4c430a8 7567 *page_size = 1024 * 1024;
9ee6e8bb
PB
7568 } else {
7569 /* Lookup l2 entry. */
554b0b09
PM
7570 if (type == 1) {
7571 /* Coarse pagetable. */
7572 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7573 } else {
7574 /* Fine pagetable. */
7575 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7576 }
a614e698
EI
7577 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7578 mmu_idx, fsr, fi);
9ee6e8bb
PB
7579 switch (desc & 3) {
7580 case 0: /* Page translation fault. */
7581 code = 7;
7582 goto do_fault;
7583 case 1: /* 64k page. */
7584 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7585 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 7586 *page_size = 0x10000;
ce819861 7587 break;
9ee6e8bb
PB
7588 case 2: /* 4k page. */
7589 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
c10f7fc3 7590 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
d4c430a8 7591 *page_size = 0x1000;
ce819861 7592 break;
fc1891c7 7593 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
554b0b09 7594 if (type == 1) {
fc1891c7
PM
7595 /* ARMv6/XScale extended small page format */
7596 if (arm_feature(env, ARM_FEATURE_XSCALE)
7597 || arm_feature(env, ARM_FEATURE_V6)) {
554b0b09 7598 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
fc1891c7 7599 *page_size = 0x1000;
554b0b09 7600 } else {
fc1891c7
PM
7601 /* UNPREDICTABLE in ARMv5; we choose to take a
7602 * page translation fault.
7603 */
554b0b09
PM
7604 code = 7;
7605 goto do_fault;
7606 }
7607 } else {
7608 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
fc1891c7 7609 *page_size = 0x400;
554b0b09 7610 }
9ee6e8bb 7611 ap = (desc >> 4) & 3;
ce819861
PB
7612 break;
7613 default:
9ee6e8bb
PB
7614 /* Never happens, but compiler isn't smart enough to tell. */
7615 abort();
ce819861 7616 }
9ee6e8bb
PB
7617 code = 15;
7618 }
0fbf5238
AJ
7619 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7620 *prot |= *prot ? PAGE_EXEC : 0;
7621 if (!(*prot & (1 << access_type))) {
9ee6e8bb
PB
7622 /* Access permission fault. */
7623 goto do_fault;
7624 }
7625 *phys_ptr = phys_addr;
b7cc4e82 7626 return false;
9ee6e8bb 7627do_fault:
b7cc4e82
PC
7628 *fsr = code | (domain << 4);
7629 return true;
9ee6e8bb
PB
7630}
7631
b7cc4e82 7632static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
03ae85f8 7633 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 7634 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
7635 target_ulong *page_size, uint32_t *fsr,
7636 ARMMMUFaultInfo *fi)
9ee6e8bb 7637{
70d74660 7638 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb
PB
7639 int code;
7640 uint32_t table;
7641 uint32_t desc;
7642 uint32_t xn;
de9b05b8 7643 uint32_t pxn = 0;
9ee6e8bb
PB
7644 int type;
7645 int ap;
de9b05b8 7646 int domain = 0;
dd4ebc2e 7647 int domain_prot;
a8170e5e 7648 hwaddr phys_addr;
0480f69a 7649 uint32_t dacr;
8bf5b6a9 7650 bool ns;
9ee6e8bb
PB
7651
7652 /* Pagetable walk. */
7653 /* Lookup l1 descriptor. */
0480f69a 7654 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
7655 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7656 code = 5;
7657 goto do_fault;
7658 }
a614e698
EI
7659 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7660 mmu_idx, fsr, fi);
9ee6e8bb 7661 type = (desc & 3);
de9b05b8
PM
7662 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7663 /* Section translation fault, or attempt to use the encoding
7664 * which is Reserved on implementations without PXN.
7665 */
9ee6e8bb 7666 code = 5;
9ee6e8bb 7667 goto do_fault;
de9b05b8
PM
7668 }
7669 if ((type == 1) || !(desc & (1 << 18))) {
7670 /* Page or Section. */
dd4ebc2e 7671 domain = (desc >> 5) & 0x0f;
9ee6e8bb 7672 }
0480f69a
PM
7673 if (regime_el(env, mmu_idx) == 1) {
7674 dacr = env->cp15.dacr_ns;
7675 } else {
7676 dacr = env->cp15.dacr_s;
7677 }
7678 domain_prot = (dacr >> (domain * 2)) & 3;
dd4ebc2e 7679 if (domain_prot == 0 || domain_prot == 2) {
de9b05b8 7680 if (type != 1) {
9ee6e8bb 7681 code = 9; /* Section domain fault. */
de9b05b8 7682 } else {
9ee6e8bb 7683 code = 11; /* Page domain fault. */
de9b05b8 7684 }
9ee6e8bb
PB
7685 goto do_fault;
7686 }
de9b05b8 7687 if (type != 1) {
9ee6e8bb
PB
7688 if (desc & (1 << 18)) {
7689 /* Supersection. */
7690 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
4e42a6ca
SF
7691 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7692 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
d4c430a8 7693 *page_size = 0x1000000;
b5ff1b31 7694 } else {
9ee6e8bb
PB
7695 /* Section. */
7696 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 7697 *page_size = 0x100000;
b5ff1b31 7698 }
9ee6e8bb
PB
7699 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7700 xn = desc & (1 << 4);
de9b05b8 7701 pxn = desc & 1;
9ee6e8bb 7702 code = 13;
8bf5b6a9 7703 ns = extract32(desc, 19, 1);
9ee6e8bb 7704 } else {
de9b05b8
PM
7705 if (arm_feature(env, ARM_FEATURE_PXN)) {
7706 pxn = (desc >> 2) & 1;
7707 }
8bf5b6a9 7708 ns = extract32(desc, 3, 1);
9ee6e8bb
PB
7709 /* Lookup l2 entry. */
7710 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
a614e698
EI
7711 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7712 mmu_idx, fsr, fi);
9ee6e8bb
PB
7713 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7714 switch (desc & 3) {
7715 case 0: /* Page translation fault. */
7716 code = 7;
b5ff1b31 7717 goto do_fault;
9ee6e8bb
PB
7718 case 1: /* 64k page. */
7719 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7720 xn = desc & (1 << 15);
d4c430a8 7721 *page_size = 0x10000;
9ee6e8bb
PB
7722 break;
7723 case 2: case 3: /* 4k page. */
7724 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7725 xn = desc & 1;
d4c430a8 7726 *page_size = 0x1000;
9ee6e8bb
PB
7727 break;
7728 default:
7729 /* Never happens, but compiler isn't smart enough to tell. */
7730 abort();
b5ff1b31 7731 }
9ee6e8bb
PB
7732 code = 15;
7733 }
dd4ebc2e 7734 if (domain_prot == 3) {
c0034328
JR
7735 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7736 } else {
0480f69a 7737 if (pxn && !regime_is_user(env, mmu_idx)) {
de9b05b8
PM
7738 xn = 1;
7739 }
03ae85f8 7740 if (xn && access_type == MMU_INST_FETCH)
c0034328 7741 goto do_fault;
9ee6e8bb 7742
d76951b6
AJ
7743 if (arm_feature(env, ARM_FEATURE_V6K) &&
7744 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7745 /* The simplified model uses AP[0] as an access control bit. */
7746 if ((ap & 1) == 0) {
7747 /* Access flag fault. */
7748 code = (code == 15) ? 6 : 3;
7749 goto do_fault;
7750 }
7751 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7752 } else {
7753 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
c0034328 7754 }
0fbf5238
AJ
7755 if (*prot && !xn) {
7756 *prot |= PAGE_EXEC;
7757 }
7758 if (!(*prot & (1 << access_type))) {
c0034328
JR
7759 /* Access permission fault. */
7760 goto do_fault;
7761 }
3ad493fc 7762 }
8bf5b6a9
PM
7763 if (ns) {
7764 /* The NS bit will (as required by the architecture) have no effect if
7765 * the CPU doesn't support TZ or this is a non-secure translation
7766 * regime, because the attribute will already be non-secure.
7767 */
7768 attrs->secure = false;
7769 }
9ee6e8bb 7770 *phys_ptr = phys_addr;
b7cc4e82 7771 return false;
b5ff1b31 7772do_fault:
b7cc4e82
PC
7773 *fsr = code | (domain << 4);
7774 return true;
b5ff1b31
FB
7775}
7776
3dde962f
PM
7777/* Fault type for long-descriptor MMU fault reporting; this corresponds
7778 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7779 */
7780typedef enum {
7781 translation_fault = 1,
7782 access_fault = 2,
7783 permission_fault = 3,
7784} MMUFaultType;
7785
1853d5a9 7786/*
a0e966c9 7787 * check_s2_mmu_setup
1853d5a9
EI
7788 * @cpu: ARMCPU
7789 * @is_aa64: True if the translation regime is in AArch64 state
7790 * @startlevel: Suggested starting level
7791 * @inputsize: Bitsize of IPAs
7792 * @stride: Page-table stride (See the ARM ARM)
7793 *
a0e966c9
EI
7794 * Returns true if the suggested S2 translation parameters are OK and
7795 * false otherwise.
1853d5a9 7796 */
a0e966c9
EI
7797static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7798 int inputsize, int stride)
1853d5a9 7799{
98d68ec2
EI
7800 const int grainsize = stride + 3;
7801 int startsizecheck;
7802
1853d5a9
EI
7803 /* Negative levels are never allowed. */
7804 if (level < 0) {
7805 return false;
7806 }
7807
98d68ec2
EI
7808 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7809 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7810 return false;
7811 }
7812
1853d5a9 7813 if (is_aa64) {
3526423e 7814 CPUARMState *env = &cpu->env;
1853d5a9
EI
7815 unsigned int pamax = arm_pamax(cpu);
7816
7817 switch (stride) {
7818 case 13: /* 64KB Pages. */
7819 if (level == 0 || (level == 1 && pamax <= 42)) {
7820 return false;
7821 }
7822 break;
7823 case 11: /* 16KB Pages. */
7824 if (level == 0 || (level == 1 && pamax <= 40)) {
7825 return false;
7826 }
7827 break;
7828 case 9: /* 4KB Pages. */
7829 if (level == 0 && pamax <= 42) {
7830 return false;
7831 }
7832 break;
7833 default:
7834 g_assert_not_reached();
7835 }
3526423e
EI
7836
7837 /* Inputsize checks. */
7838 if (inputsize > pamax &&
7839 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7840 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7841 return false;
7842 }
1853d5a9 7843 } else {
1853d5a9
EI
7844 /* AArch32 only supports 4KB pages. Assert on that. */
7845 assert(stride == 9);
7846
7847 if (level == 0) {
7848 return false;
7849 }
1853d5a9
EI
7850 }
7851 return true;
7852}
7853
b7cc4e82 7854static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
03ae85f8 7855 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 7856 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
e14b5a23
EI
7857 target_ulong *page_size_ptr, uint32_t *fsr,
7858 ARMMMUFaultInfo *fi)
3dde962f 7859{
1853d5a9
EI
7860 ARMCPU *cpu = arm_env_get_cpu(env);
7861 CPUState *cs = CPU(cpu);
3dde962f
PM
7862 /* Read an LPAE long-descriptor translation table. */
7863 MMUFaultType fault_type = translation_fault;
1b4093ea 7864 uint32_t level;
0c5fbf3b 7865 uint32_t epd = 0;
1f4c8c18 7866 int32_t t0sz, t1sz;
2c8dd318 7867 uint32_t tg;
3dde962f
PM
7868 uint64_t ttbr;
7869 int ttbr_select;
dddb5223 7870 hwaddr descaddr, indexmask, indexmask_grainsize;
3dde962f
PM
7871 uint32_t tableattrs;
7872 target_ulong page_size;
7873 uint32_t attrs;
973a5434 7874 int32_t stride = 9;
6e99f762 7875 int32_t addrsize;
4ca6a051 7876 int inputsize;
2c8dd318 7877 int32_t tbi = 0;
0480f69a 7878 TCR *tcr = regime_tcr(env, mmu_idx);
d8e052b3 7879 int ap, ns, xn, pxn;
88e8add8
GB
7880 uint32_t el = regime_el(env, mmu_idx);
7881 bool ttbr1_valid = true;
6109769a 7882 uint64_t descaddrmask;
6e99f762 7883 bool aarch64 = arm_el_is_aa64(env, el);
0480f69a
PM
7884
7885 /* TODO:
88e8add8
GB
7886 * This code does not handle the different format TCR for VTCR_EL2.
7887 * This code also does not support shareability levels.
7888 * Attribute and permission bit handling should also be checked when adding
7889 * support for those page table walks.
0480f69a 7890 */
6e99f762 7891 if (aarch64) {
1b4093ea 7892 level = 0;
6e99f762 7893 addrsize = 64;
88e8add8 7894 if (el > 1) {
1edee470
EI
7895 if (mmu_idx != ARMMMUIdx_S2NS) {
7896 tbi = extract64(tcr->raw_tcr, 20, 1);
7897 }
88e8add8
GB
7898 } else {
7899 if (extract64(address, 55, 1)) {
7900 tbi = extract64(tcr->raw_tcr, 38, 1);
7901 } else {
7902 tbi = extract64(tcr->raw_tcr, 37, 1);
7903 }
7904 }
2c8dd318 7905 tbi *= 8;
88e8add8
GB
7906
7907 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7908 * invalid.
7909 */
7910 if (el > 1) {
7911 ttbr1_valid = false;
7912 }
d0a2cbce 7913 } else {
1b4093ea 7914 level = 1;
6e99f762 7915 addrsize = 32;
d0a2cbce
PM
7916 /* There is no TTBR1 for EL2 */
7917 if (el == 2) {
7918 ttbr1_valid = false;
7919 }
2c8dd318 7920 }
3dde962f
PM
7921
7922 /* Determine whether this address is in the region controlled by
7923 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7924 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7925 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7926 */
6e99f762 7927 if (aarch64) {
4ee38098
EI
7928 /* AArch64 translation. */
7929 t0sz = extract32(tcr->raw_tcr, 0, 6);
2c8dd318
RH
7930 t0sz = MIN(t0sz, 39);
7931 t0sz = MAX(t0sz, 16);
4ee38098
EI
7932 } else if (mmu_idx != ARMMMUIdx_S2NS) {
7933 /* AArch32 stage 1 translation. */
7934 t0sz = extract32(tcr->raw_tcr, 0, 3);
7935 } else {
7936 /* AArch32 stage 2 translation. */
7937 bool sext = extract32(tcr->raw_tcr, 4, 1);
7938 bool sign = extract32(tcr->raw_tcr, 3, 1);
6e99f762
SS
7939 /* Address size is 40-bit for a stage 2 translation,
7940 * and t0sz can be negative (from -8 to 7),
7941 * so we need to adjust it to use the TTBR selecting logic below.
7942 */
7943 addrsize = 40;
7944 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
4ee38098
EI
7945
7946 /* If the sign-extend bit is not the same as t0sz[3], the result
7947 * is unpredictable. Flag this as a guest error. */
7948 if (sign != sext) {
7949 qemu_log_mask(LOG_GUEST_ERROR,
39cba610 7950 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
4ee38098 7951 }
2c8dd318 7952 }
1f4c8c18 7953 t1sz = extract32(tcr->raw_tcr, 16, 6);
6e99f762 7954 if (aarch64) {
2c8dd318
RH
7955 t1sz = MIN(t1sz, 39);
7956 t1sz = MAX(t1sz, 16);
7957 }
6e99f762 7958 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
3dde962f
PM
7959 /* there is a ttbr0 region and we are in it (high bits all zero) */
7960 ttbr_select = 0;
88e8add8 7961 } else if (ttbr1_valid && t1sz &&
6e99f762 7962 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
3dde962f
PM
7963 /* there is a ttbr1 region and we are in it (high bits all one) */
7964 ttbr_select = 1;
7965 } else if (!t0sz) {
7966 /* ttbr0 region is "everything not in the ttbr1 region" */
7967 ttbr_select = 0;
88e8add8 7968 } else if (!t1sz && ttbr1_valid) {
3dde962f
PM
7969 /* ttbr1 region is "everything not in the ttbr0 region" */
7970 ttbr_select = 1;
7971 } else {
7972 /* in the gap between the two regions, this is a Translation fault */
7973 fault_type = translation_fault;
7974 goto do_fault;
7975 }
7976
7977 /* Note that QEMU ignores shareability and cacheability attributes,
7978 * so we don't need to do anything with the SH, ORGN, IRGN fields
7979 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7980 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7981 * implement any ASID-like capability so we can ignore it (instead
7982 * we will always flush the TLB any time the ASID is changed).
7983 */
7984 if (ttbr_select == 0) {
aef878be 7985 ttbr = regime_ttbr(env, mmu_idx, 0);
0c5fbf3b
EI
7986 if (el < 2) {
7987 epd = extract32(tcr->raw_tcr, 7, 1);
7988 }
6e99f762 7989 inputsize = addrsize - t0sz;
2c8dd318 7990
11f136ee 7991 tg = extract32(tcr->raw_tcr, 14, 2);
2c8dd318 7992 if (tg == 1) { /* 64KB pages */
973a5434 7993 stride = 13;
2c8dd318
RH
7994 }
7995 if (tg == 2) { /* 16KB pages */
973a5434 7996 stride = 11;
2c8dd318 7997 }
3dde962f 7998 } else {
88e8add8
GB
7999 /* We should only be here if TTBR1 is valid */
8000 assert(ttbr1_valid);
8001
aef878be 8002 ttbr = regime_ttbr(env, mmu_idx, 1);
11f136ee 8003 epd = extract32(tcr->raw_tcr, 23, 1);
6e99f762 8004 inputsize = addrsize - t1sz;
2c8dd318 8005
11f136ee 8006 tg = extract32(tcr->raw_tcr, 30, 2);
2c8dd318 8007 if (tg == 3) { /* 64KB pages */
973a5434 8008 stride = 13;
2c8dd318
RH
8009 }
8010 if (tg == 1) { /* 16KB pages */
973a5434 8011 stride = 11;
2c8dd318 8012 }
3dde962f
PM
8013 }
8014
0480f69a 8015 /* Here we should have set up all the parameters for the translation:
6e99f762 8016 * inputsize, ttbr, epd, stride, tbi
0480f69a
PM
8017 */
8018
3dde962f 8019 if (epd) {
88e8add8
GB
8020 /* Translation table walk disabled => Translation fault on TLB miss
8021 * Note: This is always 0 on 64-bit EL2 and EL3.
8022 */
3dde962f
PM
8023 goto do_fault;
8024 }
8025
1853d5a9
EI
8026 if (mmu_idx != ARMMMUIdx_S2NS) {
8027 /* The starting level depends on the virtual address size (which can
8028 * be up to 48 bits) and the translation granule size. It indicates
8029 * the number of strides (stride bits at a time) needed to
8030 * consume the bits of the input address. In the pseudocode this is:
8031 * level = 4 - RoundUp((inputsize - grainsize) / stride)
8032 * where their 'inputsize' is our 'inputsize', 'grainsize' is
8033 * our 'stride + 3' and 'stride' is our 'stride'.
8034 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8035 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8036 * = 4 - (inputsize - 4) / stride;
8037 */
8038 level = 4 - (inputsize - 4) / stride;
8039 } else {
8040 /* For stage 2 translations the starting level is specified by the
8041 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8042 */
1b4093ea
SS
8043 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8044 uint32_t startlevel;
1853d5a9
EI
8045 bool ok;
8046
6e99f762 8047 if (!aarch64 || stride == 9) {
1853d5a9 8048 /* AArch32 or 4KB pages */
1b4093ea 8049 startlevel = 2 - sl0;
1853d5a9
EI
8050 } else {
8051 /* 16KB or 64KB pages */
1b4093ea 8052 startlevel = 3 - sl0;
1853d5a9
EI
8053 }
8054
8055 /* Check that the starting level is valid. */
6e99f762 8056 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1b4093ea 8057 inputsize, stride);
1853d5a9 8058 if (!ok) {
1853d5a9
EI
8059 fault_type = translation_fault;
8060 goto do_fault;
8061 }
1b4093ea 8062 level = startlevel;
1853d5a9 8063 }
3dde962f 8064
dddb5223
SS
8065 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8066 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
3dde962f
PM
8067
8068 /* Now we can extract the actual base address from the TTBR */
2c8dd318 8069 descaddr = extract64(ttbr, 0, 48);
dddb5223 8070 descaddr &= ~indexmask;
3dde962f 8071
6109769a 8072 /* The address field in the descriptor goes up to bit 39 for ARMv7
dddb5223
SS
8073 * but up to bit 47 for ARMv8, but we use the descaddrmask
8074 * up to bit 39 for AArch32, because we don't need other bits in that case
8075 * to construct next descriptor address (anyway they should be all zeroes).
6109769a 8076 */
6e99f762 8077 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
dddb5223 8078 ~indexmask_grainsize;
6109769a 8079
ebca90e4
PM
8080 /* Secure accesses start with the page table in secure memory and
8081 * can be downgraded to non-secure at any step. Non-secure accesses
8082 * remain non-secure. We implement this by just ORing in the NSTable/NS
8083 * bits at each step.
8084 */
8085 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
3dde962f
PM
8086 for (;;) {
8087 uint64_t descriptor;
ebca90e4 8088 bool nstable;
3dde962f 8089
dddb5223 8090 descaddr |= (address >> (stride * (4 - level))) & indexmask;
2c8dd318 8091 descaddr &= ~7ULL;
ebca90e4 8092 nstable = extract32(tableattrs, 4, 1);
37785977
EI
8093 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
8094 if (fi->s1ptw) {
8095 goto do_fault;
8096 }
8097
3dde962f
PM
8098 if (!(descriptor & 1) ||
8099 (!(descriptor & 2) && (level == 3))) {
8100 /* Invalid, or the Reserved level 3 encoding */
8101 goto do_fault;
8102 }
6109769a 8103 descaddr = descriptor & descaddrmask;
3dde962f
PM
8104
8105 if ((descriptor & 2) && (level < 3)) {
8106 /* Table entry. The top five bits are attributes which may
8107 * propagate down through lower levels of the table (and
8108 * which are all arranged so that 0 means "no effect", so
8109 * we can gather them up by ORing in the bits at each level).
8110 */
8111 tableattrs |= extract64(descriptor, 59, 5);
8112 level++;
dddb5223 8113 indexmask = indexmask_grainsize;
3dde962f
PM
8114 continue;
8115 }
8116 /* Block entry at level 1 or 2, or page entry at level 3.
8117 * These are basically the same thing, although the number
8118 * of bits we pull in from the vaddr varies.
8119 */
973a5434 8120 page_size = (1ULL << ((stride * (4 - level)) + 3));
3dde962f 8121 descaddr |= (address & (page_size - 1));
6ab1a5ee 8122 /* Extract attributes from the descriptor */
d615efac
IC
8123 attrs = extract64(descriptor, 2, 10)
8124 | (extract64(descriptor, 52, 12) << 10);
6ab1a5ee
EI
8125
8126 if (mmu_idx == ARMMMUIdx_S2NS) {
8127 /* Stage 2 table descriptors do not include any attribute fields */
8128 break;
8129 }
8130 /* Merge in attributes from table descriptors */
3dde962f
PM
8131 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8132 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8133 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8134 * means "force PL1 access only", which means forcing AP[1] to 0.
8135 */
8136 if (extract32(tableattrs, 2, 1)) {
8137 attrs &= ~(1 << 4);
8138 }
ebca90e4 8139 attrs |= nstable << 3; /* NS */
3dde962f
PM
8140 break;
8141 }
8142 /* Here descaddr is the final physical address, and attributes
8143 * are all in attrs.
8144 */
8145 fault_type = access_fault;
8146 if ((attrs & (1 << 8)) == 0) {
8147 /* Access flag */
8148 goto do_fault;
8149 }
d8e052b3
AJ
8150
8151 ap = extract32(attrs, 4, 2);
d8e052b3 8152 xn = extract32(attrs, 12, 1);
d8e052b3 8153
6ab1a5ee
EI
8154 if (mmu_idx == ARMMMUIdx_S2NS) {
8155 ns = true;
8156 *prot = get_S2prot(env, ap, xn);
8157 } else {
8158 ns = extract32(attrs, 3, 1);
8159 pxn = extract32(attrs, 11, 1);
6e99f762 8160 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
6ab1a5ee 8161 }
d8e052b3 8162
3dde962f 8163 fault_type = permission_fault;
d8e052b3 8164 if (!(*prot & (1 << access_type))) {
3dde962f
PM
8165 goto do_fault;
8166 }
3dde962f 8167
8bf5b6a9
PM
8168 if (ns) {
8169 /* The NS bit will (as required by the architecture) have no effect if
8170 * the CPU doesn't support TZ or this is a non-secure translation
8171 * regime, because the attribute will already be non-secure.
8172 */
8173 txattrs->secure = false;
8174 }
3dde962f
PM
8175 *phys_ptr = descaddr;
8176 *page_size_ptr = page_size;
b7cc4e82 8177 return false;
3dde962f
PM
8178
8179do_fault:
8180 /* Long-descriptor format IFSR/DFSR value */
b7cc4e82 8181 *fsr = (1 << 9) | (fault_type << 2) | level;
37785977
EI
8182 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
8183 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
b7cc4e82 8184 return true;
3dde962f
PM
8185}
8186
f6bda88f
PC
8187static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
8188 ARMMMUIdx mmu_idx,
8189 int32_t address, int *prot)
8190{
3a00d560
MD
8191 if (!arm_feature(env, ARM_FEATURE_M)) {
8192 *prot = PAGE_READ | PAGE_WRITE;
8193 switch (address) {
8194 case 0xF0000000 ... 0xFFFFFFFF:
8195 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
8196 /* hivecs execing is ok */
8197 *prot |= PAGE_EXEC;
8198 }
8199 break;
8200 case 0x00000000 ... 0x7FFFFFFF:
f6bda88f 8201 *prot |= PAGE_EXEC;
3a00d560
MD
8202 break;
8203 }
8204 } else {
8205 /* Default system address map for M profile cores.
8206 * The architecture specifies which regions are execute-never;
8207 * at the MPU level no other checks are defined.
8208 */
8209 switch (address) {
8210 case 0x00000000 ... 0x1fffffff: /* ROM */
8211 case 0x20000000 ... 0x3fffffff: /* SRAM */
8212 case 0x60000000 ... 0x7fffffff: /* RAM */
8213 case 0x80000000 ... 0x9fffffff: /* RAM */
8214 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8215 break;
8216 case 0x40000000 ... 0x5fffffff: /* Peripheral */
8217 case 0xa0000000 ... 0xbfffffff: /* Device */
8218 case 0xc0000000 ... 0xdfffffff: /* Device */
8219 case 0xe0000000 ... 0xffffffff: /* System */
8220 *prot = PAGE_READ | PAGE_WRITE;
8221 break;
8222 default:
8223 g_assert_not_reached();
f6bda88f 8224 }
f6bda88f 8225 }
f6bda88f
PC
8226}
8227
29c483a5
MD
8228static bool pmsav7_use_background_region(ARMCPU *cpu,
8229 ARMMMUIdx mmu_idx, bool is_user)
8230{
8231 /* Return true if we should use the default memory map as a
8232 * "background" region if there are no hits against any MPU regions.
8233 */
8234 CPUARMState *env = &cpu->env;
8235
8236 if (is_user) {
8237 return false;
8238 }
8239
8240 if (arm_feature(env, ARM_FEATURE_M)) {
8241 return env->v7m.mpu_ctrl & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
8242 } else {
8243 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
8244 }
8245}
8246
38aaa60c
PM
8247static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
8248{
8249 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
8250 return arm_feature(env, ARM_FEATURE_M) &&
8251 extract32(address, 20, 12) == 0xe00;
8252}
8253
bf446a11
PM
8254static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
8255{
8256 /* True if address is in the M profile system region
8257 * 0xe0000000 - 0xffffffff
8258 */
8259 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
8260}
8261
f6bda88f 8262static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
03ae85f8 8263 MMUAccessType access_type, ARMMMUIdx mmu_idx,
f6bda88f
PC
8264 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8265{
8266 ARMCPU *cpu = arm_env_get_cpu(env);
8267 int n;
8268 bool is_user = regime_is_user(env, mmu_idx);
8269
8270 *phys_ptr = address;
8271 *prot = 0;
8272
38aaa60c
PM
8273 if (regime_translation_disabled(env, mmu_idx) ||
8274 m_is_ppb_region(env, address)) {
8275 /* MPU disabled or M profile PPB access: use default memory map.
8276 * The other case which uses the default memory map in the
8277 * v7M ARM ARM pseudocode is exception vector reads from the vector
8278 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
8279 * which always does a direct read using address_space_ldl(), rather
8280 * than going via this function, so we don't need to check that here.
8281 */
f6bda88f
PC
8282 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8283 } else { /* MPU enabled */
8284 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8285 /* region search */
8286 uint32_t base = env->pmsav7.drbar[n];
8287 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
8288 uint32_t rmask;
8289 bool srdis = false;
8290
8291 if (!(env->pmsav7.drsr[n] & 0x1)) {
8292 continue;
8293 }
8294
8295 if (!rsize) {
c9f9f124
MD
8296 qemu_log_mask(LOG_GUEST_ERROR,
8297 "DRSR[%d]: Rsize field cannot be 0\n", n);
f6bda88f
PC
8298 continue;
8299 }
8300 rsize++;
8301 rmask = (1ull << rsize) - 1;
8302
8303 if (base & rmask) {
c9f9f124
MD
8304 qemu_log_mask(LOG_GUEST_ERROR,
8305 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
8306 "to DRSR region size, mask = 0x%" PRIx32 "\n",
8307 n, base, rmask);
f6bda88f
PC
8308 continue;
8309 }
8310
8311 if (address < base || address > base + rmask) {
8312 continue;
8313 }
8314
8315 /* Region matched */
8316
8317 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
8318 int i, snd;
8319 uint32_t srdis_mask;
8320
8321 rsize -= 3; /* sub region size (power of 2) */
8322 snd = ((address - base) >> rsize) & 0x7;
8323 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
8324
8325 srdis_mask = srdis ? 0x3 : 0x0;
8326 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
8327 /* This will check in groups of 2, 4 and then 8, whether
8328 * the subregion bits are consistent. rsize is incremented
8329 * back up to give the region size, considering consistent
8330 * adjacent subregions as one region. Stop testing if rsize
8331 * is already big enough for an entire QEMU page.
8332 */
8333 int snd_rounded = snd & ~(i - 1);
8334 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
8335 snd_rounded + 8, i);
8336 if (srdis_mask ^ srdis_multi) {
8337 break;
8338 }
8339 srdis_mask = (srdis_mask << i) | srdis_mask;
8340 rsize++;
8341 }
8342 }
8343 if (rsize < TARGET_PAGE_BITS) {
c9f9f124
MD
8344 qemu_log_mask(LOG_UNIMP,
8345 "DRSR[%d]: No support for MPU (sub)region "
f6bda88f 8346 "alignment of %" PRIu32 " bits. Minimum is %d\n",
c9f9f124 8347 n, rsize, TARGET_PAGE_BITS);
f6bda88f
PC
8348 continue;
8349 }
8350 if (srdis) {
8351 continue;
8352 }
8353 break;
8354 }
8355
8356 if (n == -1) { /* no hits */
29c483a5 8357 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
f6bda88f
PC
8358 /* background fault */
8359 *fsr = 0;
8360 return true;
8361 }
8362 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8363 } else { /* a MPU hit! */
8364 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
bf446a11
PM
8365 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
8366
8367 if (m_is_system_region(env, address)) {
8368 /* System space is always execute never */
8369 xn = 1;
8370 }
f6bda88f
PC
8371
8372 if (is_user) { /* User mode AP bit decoding */
8373 switch (ap) {
8374 case 0:
8375 case 1:
8376 case 5:
8377 break; /* no access */
8378 case 3:
8379 *prot |= PAGE_WRITE;
8380 /* fall through */
8381 case 2:
8382 case 6:
8383 *prot |= PAGE_READ | PAGE_EXEC;
8384 break;
8385 default:
8386 qemu_log_mask(LOG_GUEST_ERROR,
c9f9f124
MD
8387 "DRACR[%d]: Bad value for AP bits: 0x%"
8388 PRIx32 "\n", n, ap);
f6bda88f
PC
8389 }
8390 } else { /* Priv. mode AP bits decoding */
8391 switch (ap) {
8392 case 0:
8393 break; /* no access */
8394 case 1:
8395 case 2:
8396 case 3:
8397 *prot |= PAGE_WRITE;
8398 /* fall through */
8399 case 5:
8400 case 6:
8401 *prot |= PAGE_READ | PAGE_EXEC;
8402 break;
8403 default:
8404 qemu_log_mask(LOG_GUEST_ERROR,
c9f9f124
MD
8405 "DRACR[%d]: Bad value for AP bits: 0x%"
8406 PRIx32 "\n", n, ap);
f6bda88f
PC
8407 }
8408 }
8409
8410 /* execute never */
bf446a11 8411 if (xn) {
f6bda88f
PC
8412 *prot &= ~PAGE_EXEC;
8413 }
8414 }
8415 }
8416
8417 *fsr = 0x00d; /* Permission fault */
8418 return !(*prot & (1 << access_type));
8419}
8420
504e3cc3
PM
8421static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
8422 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8423 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8424{
8425 ARMCPU *cpu = arm_env_get_cpu(env);
8426 bool is_user = regime_is_user(env, mmu_idx);
8427 int n;
8428 int matchregion = -1;
8429 bool hit = false;
8430
8431 *phys_ptr = address;
8432 *prot = 0;
8433
8434 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
8435 * was an exception vector read from the vector table (which is always
8436 * done using the default system address map), because those accesses
8437 * are done in arm_v7m_load_vector(), which always does a direct
8438 * read using address_space_ldl(), rather than going via this function.
8439 */
8440 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
8441 hit = true;
8442 } else if (m_is_ppb_region(env, address)) {
8443 hit = true;
8444 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
8445 hit = true;
8446 } else {
8447 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8448 /* region search */
8449 /* Note that the base address is bits [31:5] from the register
8450 * with bits [4:0] all zeroes, but the limit address is bits
8451 * [31:5] from the register with bits [4:0] all ones.
8452 */
8453 uint32_t base = env->pmsav8.rbar[n] & ~0x1f;
8454 uint32_t limit = env->pmsav8.rlar[n] | 0x1f;
8455
8456 if (!(env->pmsav8.rlar[n] & 0x1)) {
8457 /* Region disabled */
8458 continue;
8459 }
8460
8461 if (address < base || address > limit) {
8462 continue;
8463 }
8464
8465 if (hit) {
8466 /* Multiple regions match -- always a failure (unlike
8467 * PMSAv7 where highest-numbered-region wins)
8468 */
8469 *fsr = 0x00d; /* permission fault */
8470 return true;
8471 }
8472
8473 matchregion = n;
8474 hit = true;
8475
8476 if (base & ~TARGET_PAGE_MASK) {
8477 qemu_log_mask(LOG_UNIMP,
8478 "MPU_RBAR[%d]: No support for MPU region base"
8479 "address of 0x%" PRIx32 ". Minimum alignment is "
8480 "%d\n",
8481 n, base, TARGET_PAGE_BITS);
8482 continue;
8483 }
8484 if ((limit + 1) & ~TARGET_PAGE_MASK) {
8485 qemu_log_mask(LOG_UNIMP,
8486 "MPU_RBAR[%d]: No support for MPU region limit"
8487 "address of 0x%" PRIx32 ". Minimum alignment is "
8488 "%d\n",
8489 n, limit, TARGET_PAGE_BITS);
8490 continue;
8491 }
8492 }
8493 }
8494
8495 if (!hit) {
8496 /* background fault */
8497 *fsr = 0;
8498 return true;
8499 }
8500
8501 if (matchregion == -1) {
8502 /* hit using the background region */
8503 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8504 } else {
8505 uint32_t ap = extract32(env->pmsav8.rbar[matchregion], 1, 2);
8506 uint32_t xn = extract32(env->pmsav8.rbar[matchregion], 0, 1);
8507
8508 if (m_is_system_region(env, address)) {
8509 /* System space is always execute never */
8510 xn = 1;
8511 }
8512
8513 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
8514 if (*prot && !xn) {
8515 *prot |= PAGE_EXEC;
8516 }
8517 /* We don't need to look the attribute up in the MAIR0/MAIR1
8518 * registers because that only tells us about cacheability.
8519 */
8520 }
8521
8522 *fsr = 0x00d; /* Permission fault */
8523 return !(*prot & (1 << access_type));
8524}
8525
13689d43 8526static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
03ae85f8 8527 MMUAccessType access_type, ARMMMUIdx mmu_idx,
13689d43 8528 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9ee6e8bb
PB
8529{
8530 int n;
8531 uint32_t mask;
8532 uint32_t base;
0480f69a 8533 bool is_user = regime_is_user(env, mmu_idx);
9ee6e8bb 8534
3279adb9
PM
8535 if (regime_translation_disabled(env, mmu_idx)) {
8536 /* MPU disabled. */
8537 *phys_ptr = address;
8538 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8539 return false;
8540 }
8541
9ee6e8bb
PB
8542 *phys_ptr = address;
8543 for (n = 7; n >= 0; n--) {
554b0b09 8544 base = env->cp15.c6_region[n];
87c3d486 8545 if ((base & 1) == 0) {
554b0b09 8546 continue;
87c3d486 8547 }
554b0b09
PM
8548 mask = 1 << ((base >> 1) & 0x1f);
8549 /* Keep this shift separate from the above to avoid an
8550 (undefined) << 32. */
8551 mask = (mask << 1) - 1;
87c3d486 8552 if (((base ^ address) & ~mask) == 0) {
554b0b09 8553 break;
87c3d486 8554 }
9ee6e8bb 8555 }
87c3d486 8556 if (n < 0) {
b7cc4e82
PC
8557 *fsr = 2;
8558 return true;
87c3d486 8559 }
9ee6e8bb 8560
03ae85f8 8561 if (access_type == MMU_INST_FETCH) {
7e09797c 8562 mask = env->cp15.pmsav5_insn_ap;
9ee6e8bb 8563 } else {
7e09797c 8564 mask = env->cp15.pmsav5_data_ap;
9ee6e8bb
PB
8565 }
8566 mask = (mask >> (n * 4)) & 0xf;
8567 switch (mask) {
8568 case 0:
b7cc4e82
PC
8569 *fsr = 1;
8570 return true;
9ee6e8bb 8571 case 1:
87c3d486 8572 if (is_user) {
b7cc4e82
PC
8573 *fsr = 1;
8574 return true;
87c3d486 8575 }
554b0b09
PM
8576 *prot = PAGE_READ | PAGE_WRITE;
8577 break;
9ee6e8bb 8578 case 2:
554b0b09 8579 *prot = PAGE_READ;
87c3d486 8580 if (!is_user) {
554b0b09 8581 *prot |= PAGE_WRITE;
87c3d486 8582 }
554b0b09 8583 break;
9ee6e8bb 8584 case 3:
554b0b09
PM
8585 *prot = PAGE_READ | PAGE_WRITE;
8586 break;
9ee6e8bb 8587 case 5:
87c3d486 8588 if (is_user) {
b7cc4e82
PC
8589 *fsr = 1;
8590 return true;
87c3d486 8591 }
554b0b09
PM
8592 *prot = PAGE_READ;
8593 break;
9ee6e8bb 8594 case 6:
554b0b09
PM
8595 *prot = PAGE_READ;
8596 break;
9ee6e8bb 8597 default:
554b0b09 8598 /* Bad permission. */
b7cc4e82
PC
8599 *fsr = 1;
8600 return true;
9ee6e8bb 8601 }
3ad493fc 8602 *prot |= PAGE_EXEC;
b7cc4e82 8603 return false;
9ee6e8bb
PB
8604}
8605
702a9357
PM
8606/* get_phys_addr - get the physical address for this virtual address
8607 *
8608 * Find the physical address corresponding to the given virtual address,
8609 * by doing a translation table walk on MMU based systems or using the
8610 * MPU state on MPU based systems.
8611 *
b7cc4e82
PC
8612 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
8613 * prot and page_size may not be filled in, and the populated fsr value provides
702a9357
PM
8614 * information on why the translation aborted, in the format of a
8615 * DFSR/IFSR fault register, with the following caveats:
8616 * * we honour the short vs long DFSR format differences.
8617 * * the WnR bit is never set (the caller must do this).
f6bda88f 8618 * * for PSMAv5 based systems we don't bother to return a full FSR format
702a9357
PM
8619 * value.
8620 *
8621 * @env: CPUARMState
8622 * @address: virtual address to get physical address for
8623 * @access_type: 0 for read, 1 for write, 2 for execute
d3649702 8624 * @mmu_idx: MMU index indicating required translation regime
702a9357 8625 * @phys_ptr: set to the physical address corresponding to the virtual address
8bf5b6a9 8626 * @attrs: set to the memory transaction attributes to use
702a9357
PM
8627 * @prot: set to the permissions for the page containing phys_ptr
8628 * @page_size: set to the size of the page containing phys_ptr
b7cc4e82 8629 * @fsr: set to the DFSR/IFSR value on failure
702a9357 8630 */
af51f566 8631static bool get_phys_addr(CPUARMState *env, target_ulong address,
03ae85f8 8632 MMUAccessType access_type, ARMMMUIdx mmu_idx,
af51f566 8633 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
8634 target_ulong *page_size, uint32_t *fsr,
8635 ARMMMUFaultInfo *fi)
9ee6e8bb 8636{
0480f69a 8637 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9b539263
EI
8638 /* Call ourselves recursively to do the stage 1 and then stage 2
8639 * translations.
0480f69a 8640 */
9b539263
EI
8641 if (arm_feature(env, ARM_FEATURE_EL2)) {
8642 hwaddr ipa;
8643 int s2_prot;
8644 int ret;
8645
8646 ret = get_phys_addr(env, address, access_type,
8bd5c820 8647 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
9b539263
EI
8648 prot, page_size, fsr, fi);
8649
8650 /* If S1 fails or S2 is disabled, return early. */
8651 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8652 *phys_ptr = ipa;
8653 return ret;
8654 }
8655
8656 /* S1 is done. Now do S2 translation. */
8657 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8658 phys_ptr, attrs, &s2_prot,
8659 page_size, fsr, fi);
8660 fi->s2addr = ipa;
8661 /* Combine the S1 and S2 perms. */
8662 *prot &= s2_prot;
8663 return ret;
8664 } else {
8665 /*
8666 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8667 */
8bd5c820 8668 mmu_idx = stage_1_mmu_idx(mmu_idx);
9b539263 8669 }
0480f69a 8670 }
d3649702 8671
8bf5b6a9
PM
8672 /* The page table entries may downgrade secure to non-secure, but
8673 * cannot upgrade an non-secure translation regime's attributes
8674 * to secure.
8675 */
8676 attrs->secure = regime_is_secure(env, mmu_idx);
0995bf8c 8677 attrs->user = regime_is_user(env, mmu_idx);
8bf5b6a9 8678
0480f69a
PM
8679 /* Fast Context Switch Extension. This doesn't exist at all in v8.
8680 * In v7 and earlier it affects all stage 1 translations.
8681 */
8682 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8683 && !arm_feature(env, ARM_FEATURE_V8)) {
8684 if (regime_el(env, mmu_idx) == 3) {
8685 address += env->cp15.fcseidr_s;
8686 } else {
8687 address += env->cp15.fcseidr_ns;
8688 }
54bf36ed 8689 }
9ee6e8bb 8690
3279adb9 8691 if (arm_feature(env, ARM_FEATURE_PMSA)) {
c9f9f124 8692 bool ret;
f6bda88f 8693 *page_size = TARGET_PAGE_SIZE;
3279adb9 8694
504e3cc3
PM
8695 if (arm_feature(env, ARM_FEATURE_V8)) {
8696 /* PMSAv8 */
8697 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
8698 phys_ptr, prot, fsr);
8699 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3279adb9
PM
8700 /* PMSAv7 */
8701 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8702 phys_ptr, prot, fsr);
8703 } else {
8704 /* Pre-v7 MPU */
8705 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8706 phys_ptr, prot, fsr);
8707 }
8708 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
c9f9f124 8709 " mmu_idx %u -> %s (prot %c%c%c)\n",
709e4407
PM
8710 access_type == MMU_DATA_LOAD ? "reading" :
8711 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
c9f9f124
MD
8712 (uint32_t)address, mmu_idx,
8713 ret ? "Miss" : "Hit",
8714 *prot & PAGE_READ ? 'r' : '-',
8715 *prot & PAGE_WRITE ? 'w' : '-',
8716 *prot & PAGE_EXEC ? 'x' : '-');
8717
8718 return ret;
f6bda88f
PC
8719 }
8720
3279adb9
PM
8721 /* Definitely a real MMU, not an MPU */
8722
0480f69a 8723 if (regime_translation_disabled(env, mmu_idx)) {
3279adb9 8724 /* MMU disabled. */
9ee6e8bb 8725 *phys_ptr = address;
3ad493fc 8726 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 8727 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb 8728 return 0;
0480f69a
PM
8729 }
8730
0480f69a
PM
8731 if (regime_using_lpae_format(env, mmu_idx)) {
8732 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 8733 attrs, prot, page_size, fsr, fi);
0480f69a
PM
8734 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8735 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 8736 attrs, prot, page_size, fsr, fi);
9ee6e8bb 8737 } else {
0480f69a 8738 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 8739 prot, page_size, fsr, fi);
9ee6e8bb
PB
8740 }
8741}
8742
8c6084bf 8743/* Walk the page table and (if the mapping exists) add the page
b7cc4e82
PC
8744 * to the TLB. Return false on success, or true on failure. Populate
8745 * fsr with ARM DFSR/IFSR fault register format value on failure.
8c6084bf 8746 */
b7cc4e82 8747bool arm_tlb_fill(CPUState *cs, vaddr address,
03ae85f8 8748 MMUAccessType access_type, int mmu_idx, uint32_t *fsr,
e14b5a23 8749 ARMMMUFaultInfo *fi)
b5ff1b31 8750{
7510454e
AF
8751 ARMCPU *cpu = ARM_CPU(cs);
8752 CPUARMState *env = &cpu->env;
a8170e5e 8753 hwaddr phys_addr;
d4c430a8 8754 target_ulong page_size;
b5ff1b31 8755 int prot;
d3649702 8756 int ret;
8bf5b6a9 8757 MemTxAttrs attrs = {};
b5ff1b31 8758
8bd5c820
PM
8759 ret = get_phys_addr(env, address, access_type,
8760 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
e14b5a23 8761 &attrs, &prot, &page_size, fsr, fi);
b7cc4e82 8762 if (!ret) {
b5ff1b31 8763 /* Map a single [sub]page. */
dcd82c11
AB
8764 phys_addr &= TARGET_PAGE_MASK;
8765 address &= TARGET_PAGE_MASK;
8bf5b6a9
PM
8766 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8767 prot, mmu_idx, page_size);
d4c430a8 8768 return 0;
b5ff1b31
FB
8769 }
8770
8c6084bf 8771 return ret;
b5ff1b31
FB
8772}
8773
0faea0c7
PM
8774hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8775 MemTxAttrs *attrs)
b5ff1b31 8776{
00b941e5 8777 ARMCPU *cpu = ARM_CPU(cs);
d3649702 8778 CPUARMState *env = &cpu->env;
a8170e5e 8779 hwaddr phys_addr;
d4c430a8 8780 target_ulong page_size;
b5ff1b31 8781 int prot;
b7cc4e82
PC
8782 bool ret;
8783 uint32_t fsr;
e14b5a23 8784 ARMMMUFaultInfo fi = {};
8bd5c820 8785 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
b5ff1b31 8786
0faea0c7
PM
8787 *attrs = (MemTxAttrs) {};
8788
8bd5c820 8789 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
0faea0c7 8790 attrs, &prot, &page_size, &fsr, &fi);
b5ff1b31 8791
b7cc4e82 8792 if (ret) {
b5ff1b31 8793 return -1;
00b941e5 8794 }
b5ff1b31
FB
8795 return phys_addr;
8796}
8797
0ecb72a5 8798uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 8799{
58117c9b
MD
8800 uint32_t mask;
8801 unsigned el = arm_current_el(env);
8802
8803 /* First handle registers which unprivileged can read */
8804
8805 switch (reg) {
8806 case 0 ... 7: /* xPSR sub-fields */
8807 mask = 0;
8808 if ((reg & 1) && el) {
987ab45e 8809 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
58117c9b
MD
8810 }
8811 if (!(reg & 4)) {
987ab45e 8812 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
58117c9b
MD
8813 }
8814 /* EPSR reads as zero */
8815 return xpsr_read(env) & mask;
8816 break;
8817 case 20: /* CONTROL */
8818 return env->v7m.control;
8819 }
8820
8821 if (el == 0) {
8822 return 0; /* unprivileged reads others as zero */
8823 }
a47dddd7 8824
9ee6e8bb 8825 switch (reg) {
9ee6e8bb 8826 case 8: /* MSP */
abc24d86
MD
8827 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8828 env->v7m.other_sp : env->regs[13];
9ee6e8bb 8829 case 9: /* PSP */
abc24d86
MD
8830 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8831 env->regs[13] : env->v7m.other_sp;
9ee6e8bb 8832 case 16: /* PRIMASK */
e6ae5981 8833 return env->v7m.primask;
82845826
SH
8834 case 17: /* BASEPRI */
8835 case 18: /* BASEPRI_MAX */
9ee6e8bb 8836 return env->v7m.basepri;
82845826 8837 case 19: /* FAULTMASK */
e6ae5981 8838 return env->v7m.faultmask;
9ee6e8bb 8839 default:
58117c9b
MD
8840 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
8841 " register %d\n", reg);
9ee6e8bb
PB
8842 return 0;
8843 }
8844}
8845
b28b3377
PM
8846void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
8847{
8848 /* We're passed bits [11..0] of the instruction; extract
8849 * SYSm and the mask bits.
8850 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
8851 * we choose to treat them as if the mask bits were valid.
8852 * NB that the pseudocode 'mask' variable is bits [11..10],
8853 * whereas ours is [11..8].
8854 */
8855 uint32_t mask = extract32(maskreg, 8, 4);
8856 uint32_t reg = extract32(maskreg, 0, 8);
8857
58117c9b
MD
8858 if (arm_current_el(env) == 0 && reg > 7) {
8859 /* only xPSR sub-fields may be written by unprivileged */
8860 return;
8861 }
a47dddd7 8862
9ee6e8bb 8863 switch (reg) {
58117c9b
MD
8864 case 0 ... 7: /* xPSR sub-fields */
8865 /* only APSR is actually writable */
b28b3377
PM
8866 if (!(reg & 4)) {
8867 uint32_t apsrmask = 0;
8868
8869 if (mask & 8) {
987ab45e 8870 apsrmask |= XPSR_NZCV | XPSR_Q;
b28b3377
PM
8871 }
8872 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
987ab45e 8873 apsrmask |= XPSR_GE;
b28b3377
PM
8874 }
8875 xpsr_write(env, val, apsrmask);
58117c9b 8876 }
9ee6e8bb
PB
8877 break;
8878 case 8: /* MSP */
abc24d86 8879 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
9ee6e8bb 8880 env->v7m.other_sp = val;
abc24d86 8881 } else {
9ee6e8bb 8882 env->regs[13] = val;
abc24d86 8883 }
9ee6e8bb
PB
8884 break;
8885 case 9: /* PSP */
abc24d86 8886 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
9ee6e8bb 8887 env->regs[13] = val;
abc24d86 8888 } else {
9ee6e8bb 8889 env->v7m.other_sp = val;
abc24d86 8890 }
9ee6e8bb
PB
8891 break;
8892 case 16: /* PRIMASK */
e6ae5981 8893 env->v7m.primask = val & 1;
9ee6e8bb 8894 break;
82845826 8895 case 17: /* BASEPRI */
9ee6e8bb
PB
8896 env->v7m.basepri = val & 0xff;
8897 break;
82845826 8898 case 18: /* BASEPRI_MAX */
9ee6e8bb
PB
8899 val &= 0xff;
8900 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
8901 env->v7m.basepri = val;
8902 break;
82845826 8903 case 19: /* FAULTMASK */
e6ae5981 8904 env->v7m.faultmask = val & 1;
82845826 8905 break;
9ee6e8bb 8906 case 20: /* CONTROL */
792dac30
PM
8907 /* Writing to the SPSEL bit only has an effect if we are in
8908 * thread mode; other bits can be updated by any privileged code.
8909 * switch_v7m_sp() deals with updating the SPSEL bit in
8910 * env->v7m.control, so we only need update the others.
8911 */
15b3f556 8912 if (!arm_v7m_is_handler_mode(env)) {
792dac30
PM
8913 switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
8914 }
8915 env->v7m.control &= ~R_V7M_CONTROL_NPRIV_MASK;
8916 env->v7m.control |= val & R_V7M_CONTROL_NPRIV_MASK;
9ee6e8bb
PB
8917 break;
8918 default:
58117c9b
MD
8919 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
8920 " register %d\n", reg);
9ee6e8bb
PB
8921 return;
8922 }
8923}
8924
b5ff1b31 8925#endif
6ddbc6e4 8926
aca3f40b
PM
8927void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
8928{
8929 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8930 * Note that we do not implement the (architecturally mandated)
8931 * alignment fault for attempts to use this on Device memory
8932 * (which matches the usual QEMU behaviour of not implementing either
8933 * alignment faults or any memory attribute handling).
8934 */
8935
8936 ARMCPU *cpu = arm_env_get_cpu(env);
8937 uint64_t blocklen = 4 << cpu->dcz_blocksize;
8938 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
8939
8940#ifndef CONFIG_USER_ONLY
8941 {
8942 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8943 * the block size so we might have to do more than one TLB lookup.
8944 * We know that in fact for any v8 CPU the page size is at least 4K
8945 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8946 * 1K as an artefact of legacy v5 subpage support being present in the
8947 * same QEMU executable.
8948 */
8949 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
8950 void *hostaddr[maxidx];
8951 int try, i;
97ed5ccd 8952 unsigned mmu_idx = cpu_mmu_index(env, false);
3972ef6f 8953 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
aca3f40b
PM
8954
8955 for (try = 0; try < 2; try++) {
8956
8957 for (i = 0; i < maxidx; i++) {
8958 hostaddr[i] = tlb_vaddr_to_host(env,
8959 vaddr + TARGET_PAGE_SIZE * i,
3972ef6f 8960 1, mmu_idx);
aca3f40b
PM
8961 if (!hostaddr[i]) {
8962 break;
8963 }
8964 }
8965 if (i == maxidx) {
8966 /* If it's all in the TLB it's fair game for just writing to;
8967 * we know we don't need to update dirty status, etc.
8968 */
8969 for (i = 0; i < maxidx - 1; i++) {
8970 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
8971 }
8972 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
8973 return;
8974 }
8975 /* OK, try a store and see if we can populate the tlb. This
8976 * might cause an exception if the memory isn't writable,
8977 * in which case we will longjmp out of here. We must for
8978 * this purpose use the actual register value passed to us
8979 * so that we get the fault address right.
8980 */
01ecaf43 8981 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
aca3f40b
PM
8982 /* Now we can populate the other TLB entries, if any */
8983 for (i = 0; i < maxidx; i++) {
8984 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
8985 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
01ecaf43 8986 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
aca3f40b
PM
8987 }
8988 }
8989 }
8990
8991 /* Slow path (probably attempt to do this to an I/O device or
8992 * similar, or clearing of a block of code we have translations
8993 * cached for). Just do a series of byte writes as the architecture
8994 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8995 * memset(), unmap() sequence here because:
8996 * + we'd need to account for the blocksize being larger than a page
8997 * + the direct-RAM access case is almost always going to be dealt
8998 * with in the fastpath code above, so there's no speed benefit
8999 * + we would have to deal with the map returning NULL because the
9000 * bounce buffer was in use
9001 */
9002 for (i = 0; i < blocklen; i++) {
01ecaf43 9003 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
aca3f40b
PM
9004 }
9005 }
9006#else
9007 memset(g2h(vaddr), 0, blocklen);
9008#endif
9009}
9010
6ddbc6e4
PB
9011/* Note that signed overflow is undefined in C. The following routines are
9012 careful to use unsigned types where modulo arithmetic is required.
9013 Failure to do so _will_ break on newer gcc. */
9014
9015/* Signed saturating arithmetic. */
9016
1654b2d6 9017/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
9018static inline uint16_t add16_sat(uint16_t a, uint16_t b)
9019{
9020 uint16_t res;
9021
9022 res = a + b;
9023 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
9024 if (a & 0x8000)
9025 res = 0x8000;
9026 else
9027 res = 0x7fff;
9028 }
9029 return res;
9030}
9031
1654b2d6 9032/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
9033static inline uint8_t add8_sat(uint8_t a, uint8_t b)
9034{
9035 uint8_t res;
9036
9037 res = a + b;
9038 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
9039 if (a & 0x80)
9040 res = 0x80;
9041 else
9042 res = 0x7f;
9043 }
9044 return res;
9045}
9046
1654b2d6 9047/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
9048static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
9049{
9050 uint16_t res;
9051
9052 res = a - b;
9053 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
9054 if (a & 0x8000)
9055 res = 0x8000;
9056 else
9057 res = 0x7fff;
9058 }
9059 return res;
9060}
9061
1654b2d6 9062/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
9063static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
9064{
9065 uint8_t res;
9066
9067 res = a - b;
9068 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
9069 if (a & 0x80)
9070 res = 0x80;
9071 else
9072 res = 0x7f;
9073 }
9074 return res;
9075}
9076
9077#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
9078#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
9079#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
9080#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
9081#define PFX q
9082
9083#include "op_addsub.h"
9084
9085/* Unsigned saturating arithmetic. */
460a09c1 9086static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
9087{
9088 uint16_t res;
9089 res = a + b;
9090 if (res < a)
9091 res = 0xffff;
9092 return res;
9093}
9094
460a09c1 9095static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 9096{
4c4fd3f8 9097 if (a > b)
6ddbc6e4
PB
9098 return a - b;
9099 else
9100 return 0;
9101}
9102
9103static inline uint8_t add8_usat(uint8_t a, uint8_t b)
9104{
9105 uint8_t res;
9106 res = a + b;
9107 if (res < a)
9108 res = 0xff;
9109 return res;
9110}
9111
9112static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
9113{
4c4fd3f8 9114 if (a > b)
6ddbc6e4
PB
9115 return a - b;
9116 else
9117 return 0;
9118}
9119
9120#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
9121#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
9122#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
9123#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
9124#define PFX uq
9125
9126#include "op_addsub.h"
9127
9128/* Signed modulo arithmetic. */
9129#define SARITH16(a, b, n, op) do { \
9130 int32_t sum; \
db6e2e65 9131 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
9132 RESULT(sum, n, 16); \
9133 if (sum >= 0) \
9134 ge |= 3 << (n * 2); \
9135 } while(0)
9136
9137#define SARITH8(a, b, n, op) do { \
9138 int32_t sum; \
db6e2e65 9139 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
9140 RESULT(sum, n, 8); \
9141 if (sum >= 0) \
9142 ge |= 1 << n; \
9143 } while(0)
9144
9145
9146#define ADD16(a, b, n) SARITH16(a, b, n, +)
9147#define SUB16(a, b, n) SARITH16(a, b, n, -)
9148#define ADD8(a, b, n) SARITH8(a, b, n, +)
9149#define SUB8(a, b, n) SARITH8(a, b, n, -)
9150#define PFX s
9151#define ARITH_GE
9152
9153#include "op_addsub.h"
9154
9155/* Unsigned modulo arithmetic. */
9156#define ADD16(a, b, n) do { \
9157 uint32_t sum; \
9158 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
9159 RESULT(sum, n, 16); \
a87aa10b 9160 if ((sum >> 16) == 1) \
6ddbc6e4
PB
9161 ge |= 3 << (n * 2); \
9162 } while(0)
9163
9164#define ADD8(a, b, n) do { \
9165 uint32_t sum; \
9166 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
9167 RESULT(sum, n, 8); \
a87aa10b
AZ
9168 if ((sum >> 8) == 1) \
9169 ge |= 1 << n; \
6ddbc6e4
PB
9170 } while(0)
9171
9172#define SUB16(a, b, n) do { \
9173 uint32_t sum; \
9174 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
9175 RESULT(sum, n, 16); \
9176 if ((sum >> 16) == 0) \
9177 ge |= 3 << (n * 2); \
9178 } while(0)
9179
9180#define SUB8(a, b, n) do { \
9181 uint32_t sum; \
9182 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
9183 RESULT(sum, n, 8); \
9184 if ((sum >> 8) == 0) \
a87aa10b 9185 ge |= 1 << n; \
6ddbc6e4
PB
9186 } while(0)
9187
9188#define PFX u
9189#define ARITH_GE
9190
9191#include "op_addsub.h"
9192
9193/* Halved signed arithmetic. */
9194#define ADD16(a, b, n) \
9195 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
9196#define SUB16(a, b, n) \
9197 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
9198#define ADD8(a, b, n) \
9199 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
9200#define SUB8(a, b, n) \
9201 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
9202#define PFX sh
9203
9204#include "op_addsub.h"
9205
9206/* Halved unsigned arithmetic. */
9207#define ADD16(a, b, n) \
9208 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9209#define SUB16(a, b, n) \
9210 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9211#define ADD8(a, b, n) \
9212 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9213#define SUB8(a, b, n) \
9214 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9215#define PFX uh
9216
9217#include "op_addsub.h"
9218
9219static inline uint8_t do_usad(uint8_t a, uint8_t b)
9220{
9221 if (a > b)
9222 return a - b;
9223 else
9224 return b - a;
9225}
9226
9227/* Unsigned sum of absolute byte differences. */
9228uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
9229{
9230 uint32_t sum;
9231 sum = do_usad(a, b);
9232 sum += do_usad(a >> 8, b >> 8);
9233 sum += do_usad(a >> 16, b >>16);
9234 sum += do_usad(a >> 24, b >> 24);
9235 return sum;
9236}
9237
9238/* For ARMv6 SEL instruction. */
9239uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
9240{
9241 uint32_t mask;
9242
9243 mask = 0;
9244 if (flags & 1)
9245 mask |= 0xff;
9246 if (flags & 2)
9247 mask |= 0xff00;
9248 if (flags & 4)
9249 mask |= 0xff0000;
9250 if (flags & 8)
9251 mask |= 0xff000000;
9252 return (a & mask) | (b & ~mask);
9253}
9254
b90372ad
PM
9255/* VFP support. We follow the convention used for VFP instructions:
9256 Single precision routines have a "s" suffix, double precision a
4373f3ce
PB
9257 "d" suffix. */
9258
9259/* Convert host exception flags to vfp form. */
9260static inline int vfp_exceptbits_from_host(int host_bits)
9261{
9262 int target_bits = 0;
9263
9264 if (host_bits & float_flag_invalid)
9265 target_bits |= 1;
9266 if (host_bits & float_flag_divbyzero)
9267 target_bits |= 2;
9268 if (host_bits & float_flag_overflow)
9269 target_bits |= 4;
36802b6b 9270 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4373f3ce
PB
9271 target_bits |= 8;
9272 if (host_bits & float_flag_inexact)
9273 target_bits |= 0x10;
cecd8504
PM
9274 if (host_bits & float_flag_input_denormal)
9275 target_bits |= 0x80;
4373f3ce
PB
9276 return target_bits;
9277}
9278
0ecb72a5 9279uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4373f3ce
PB
9280{
9281 int i;
9282 uint32_t fpscr;
9283
9284 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
9285 | (env->vfp.vec_len << 16)
9286 | (env->vfp.vec_stride << 20);
9287 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 9288 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4373f3ce
PB
9289 fpscr |= vfp_exceptbits_from_host(i);
9290 return fpscr;
9291}
9292
0ecb72a5 9293uint32_t vfp_get_fpscr(CPUARMState *env)
01653295
PM
9294{
9295 return HELPER(vfp_get_fpscr)(env);
9296}
9297
4373f3ce
PB
9298/* Convert vfp exception flags to target form. */
9299static inline int vfp_exceptbits_to_host(int target_bits)
9300{
9301 int host_bits = 0;
9302
9303 if (target_bits & 1)
9304 host_bits |= float_flag_invalid;
9305 if (target_bits & 2)
9306 host_bits |= float_flag_divbyzero;
9307 if (target_bits & 4)
9308 host_bits |= float_flag_overflow;
9309 if (target_bits & 8)
9310 host_bits |= float_flag_underflow;
9311 if (target_bits & 0x10)
9312 host_bits |= float_flag_inexact;
cecd8504
PM
9313 if (target_bits & 0x80)
9314 host_bits |= float_flag_input_denormal;
4373f3ce
PB
9315 return host_bits;
9316}
9317
0ecb72a5 9318void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4373f3ce
PB
9319{
9320 int i;
9321 uint32_t changed;
9322
9323 changed = env->vfp.xregs[ARM_VFP_FPSCR];
9324 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
9325 env->vfp.vec_len = (val >> 16) & 7;
9326 env->vfp.vec_stride = (val >> 20) & 3;
9327
9328 changed ^= val;
9329 if (changed & (3 << 22)) {
9330 i = (val >> 22) & 3;
9331 switch (i) {
4d3da0f3 9332 case FPROUNDING_TIEEVEN:
4373f3ce
PB
9333 i = float_round_nearest_even;
9334 break;
4d3da0f3 9335 case FPROUNDING_POSINF:
4373f3ce
PB
9336 i = float_round_up;
9337 break;
4d3da0f3 9338 case FPROUNDING_NEGINF:
4373f3ce
PB
9339 i = float_round_down;
9340 break;
4d3da0f3 9341 case FPROUNDING_ZERO:
4373f3ce
PB
9342 i = float_round_to_zero;
9343 break;
9344 }
9345 set_float_rounding_mode(i, &env->vfp.fp_status);
9346 }
cecd8504 9347 if (changed & (1 << 24)) {
fe76d976 9348 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
cecd8504
PM
9349 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9350 }
5c7908ed
PB
9351 if (changed & (1 << 25))
9352 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce 9353
b12c390b 9354 i = vfp_exceptbits_to_host(val);
4373f3ce 9355 set_float_exception_flags(i, &env->vfp.fp_status);
3a492f3a 9356 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
9357}
9358
0ecb72a5 9359void vfp_set_fpscr(CPUARMState *env, uint32_t val)
01653295
PM
9360{
9361 HELPER(vfp_set_fpscr)(env, val);
9362}
9363
4373f3ce
PB
9364#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
9365
9366#define VFP_BINOP(name) \
ae1857ec 9367float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4373f3ce 9368{ \
ae1857ec
PM
9369 float_status *fpst = fpstp; \
9370 return float32_ ## name(a, b, fpst); \
4373f3ce 9371} \
ae1857ec 9372float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4373f3ce 9373{ \
ae1857ec
PM
9374 float_status *fpst = fpstp; \
9375 return float64_ ## name(a, b, fpst); \
4373f3ce
PB
9376}
9377VFP_BINOP(add)
9378VFP_BINOP(sub)
9379VFP_BINOP(mul)
9380VFP_BINOP(div)
f71a2ae5
PM
9381VFP_BINOP(min)
9382VFP_BINOP(max)
9383VFP_BINOP(minnum)
9384VFP_BINOP(maxnum)
4373f3ce
PB
9385#undef VFP_BINOP
9386
9387float32 VFP_HELPER(neg, s)(float32 a)
9388{
9389 return float32_chs(a);
9390}
9391
9392float64 VFP_HELPER(neg, d)(float64 a)
9393{
66230e0d 9394 return float64_chs(a);
4373f3ce
PB
9395}
9396
9397float32 VFP_HELPER(abs, s)(float32 a)
9398{
9399 return float32_abs(a);
9400}
9401
9402float64 VFP_HELPER(abs, d)(float64 a)
9403{
66230e0d 9404 return float64_abs(a);
4373f3ce
PB
9405}
9406
0ecb72a5 9407float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4373f3ce
PB
9408{
9409 return float32_sqrt(a, &env->vfp.fp_status);
9410}
9411
0ecb72a5 9412float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4373f3ce
PB
9413{
9414 return float64_sqrt(a, &env->vfp.fp_status);
9415}
9416
9417/* XXX: check quiet/signaling case */
9418#define DO_VFP_cmp(p, type) \
0ecb72a5 9419void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
9420{ \
9421 uint32_t flags; \
9422 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
9423 case 0: flags = 0x6; break; \
9424 case -1: flags = 0x8; break; \
9425 case 1: flags = 0x2; break; \
9426 default: case 2: flags = 0x3; break; \
9427 } \
9428 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9429 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9430} \
0ecb72a5 9431void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
9432{ \
9433 uint32_t flags; \
9434 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
9435 case 0: flags = 0x6; break; \
9436 case -1: flags = 0x8; break; \
9437 case 1: flags = 0x2; break; \
9438 default: case 2: flags = 0x3; break; \
9439 } \
9440 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9441 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9442}
9443DO_VFP_cmp(s, float32)
9444DO_VFP_cmp(d, float64)
9445#undef DO_VFP_cmp
9446
5500b06c 9447/* Integer to float and float to integer conversions */
4373f3ce 9448
5500b06c
PM
9449#define CONV_ITOF(name, fsz, sign) \
9450 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
9451{ \
9452 float_status *fpst = fpstp; \
85836979 9453 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4373f3ce
PB
9454}
9455
5500b06c
PM
9456#define CONV_FTOI(name, fsz, sign, round) \
9457uint32_t HELPER(name)(float##fsz x, void *fpstp) \
9458{ \
9459 float_status *fpst = fpstp; \
9460 if (float##fsz##_is_any_nan(x)) { \
9461 float_raise(float_flag_invalid, fpst); \
9462 return 0; \
9463 } \
9464 return float##fsz##_to_##sign##int32##round(x, fpst); \
4373f3ce
PB
9465}
9466
5500b06c
PM
9467#define FLOAT_CONVS(name, p, fsz, sign) \
9468CONV_ITOF(vfp_##name##to##p, fsz, sign) \
9469CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
9470CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4373f3ce 9471
5500b06c
PM
9472FLOAT_CONVS(si, s, 32, )
9473FLOAT_CONVS(si, d, 64, )
9474FLOAT_CONVS(ui, s, 32, u)
9475FLOAT_CONVS(ui, d, 64, u)
4373f3ce 9476
5500b06c
PM
9477#undef CONV_ITOF
9478#undef CONV_FTOI
9479#undef FLOAT_CONVS
4373f3ce
PB
9480
9481/* floating point conversion */
0ecb72a5 9482float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4373f3ce 9483{
2d627737
PM
9484 float64 r = float32_to_float64(x, &env->vfp.fp_status);
9485 /* ARM requires that S<->D conversion of any kind of NaN generates
9486 * a quiet NaN by forcing the most significant frac bit to 1.
9487 */
af39bc8c 9488 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
4373f3ce
PB
9489}
9490
0ecb72a5 9491float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4373f3ce 9492{
2d627737
PM
9493 float32 r = float64_to_float32(x, &env->vfp.fp_status);
9494 /* ARM requires that S<->D conversion of any kind of NaN generates
9495 * a quiet NaN by forcing the most significant frac bit to 1.
9496 */
af39bc8c 9497 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
4373f3ce
PB
9498}
9499
9500/* VFP3 fixed point conversion. */
16d5b3ca 9501#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8ed697e8
WN
9502float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
9503 void *fpstp) \
4373f3ce 9504{ \
5500b06c 9505 float_status *fpst = fpstp; \
622465e1 9506 float##fsz tmp; \
8ed697e8 9507 tmp = itype##_to_##float##fsz(x, fpst); \
5500b06c 9508 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
16d5b3ca
WN
9509}
9510
abe66f70
PM
9511/* Notice that we want only input-denormal exception flags from the
9512 * scalbn operation: the other possible flags (overflow+inexact if
9513 * we overflow to infinity, output-denormal) aren't correct for the
9514 * complete scale-and-convert operation.
9515 */
16d5b3ca
WN
9516#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
9517uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
9518 uint32_t shift, \
9519 void *fpstp) \
4373f3ce 9520{ \
5500b06c 9521 float_status *fpst = fpstp; \
abe66f70 9522 int old_exc_flags = get_float_exception_flags(fpst); \
622465e1
PM
9523 float##fsz tmp; \
9524 if (float##fsz##_is_any_nan(x)) { \
5500b06c 9525 float_raise(float_flag_invalid, fpst); \
622465e1 9526 return 0; \
09d9487f 9527 } \
5500b06c 9528 tmp = float##fsz##_scalbn(x, shift, fpst); \
abe66f70
PM
9529 old_exc_flags |= get_float_exception_flags(fpst) \
9530 & float_flag_input_denormal; \
9531 set_float_exception_flags(old_exc_flags, fpst); \
16d5b3ca 9532 return float##fsz##_to_##itype##round(tmp, fpst); \
622465e1
PM
9533}
9534
16d5b3ca
WN
9535#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
9536VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
3c6a074a
WN
9537VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
9538VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9539
9540#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
9541VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9542VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
16d5b3ca 9543
8ed697e8
WN
9544VFP_CONV_FIX(sh, d, 64, 64, int16)
9545VFP_CONV_FIX(sl, d, 64, 64, int32)
3c6a074a 9546VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8ed697e8
WN
9547VFP_CONV_FIX(uh, d, 64, 64, uint16)
9548VFP_CONV_FIX(ul, d, 64, 64, uint32)
3c6a074a 9549VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8ed697e8
WN
9550VFP_CONV_FIX(sh, s, 32, 32, int16)
9551VFP_CONV_FIX(sl, s, 32, 32, int32)
3c6a074a 9552VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8ed697e8
WN
9553VFP_CONV_FIX(uh, s, 32, 32, uint16)
9554VFP_CONV_FIX(ul, s, 32, 32, uint32)
3c6a074a 9555VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4373f3ce 9556#undef VFP_CONV_FIX
16d5b3ca
WN
9557#undef VFP_CONV_FIX_FLOAT
9558#undef VFP_CONV_FLOAT_FIX_ROUND
4373f3ce 9559
52a1f6a3
AG
9560/* Set the current fp rounding mode and return the old one.
9561 * The argument is a softfloat float_round_ value.
9562 */
9563uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
9564{
9565 float_status *fp_status = &env->vfp.fp_status;
9566
9567 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9568 set_float_rounding_mode(rmode, fp_status);
9569
9570 return prev_rmode;
9571}
9572
43630e58
WN
9573/* Set the current fp rounding mode in the standard fp status and return
9574 * the old one. This is for NEON instructions that need to change the
9575 * rounding mode but wish to use the standard FPSCR values for everything
9576 * else. Always set the rounding mode back to the correct value after
9577 * modifying it.
9578 * The argument is a softfloat float_round_ value.
9579 */
9580uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
9581{
9582 float_status *fp_status = &env->vfp.standard_fp_status;
9583
9584 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9585 set_float_rounding_mode(rmode, fp_status);
9586
9587 return prev_rmode;
9588}
9589
60011498 9590/* Half precision conversions. */
0ecb72a5 9591static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
60011498 9592{
60011498 9593 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
9594 float32 r = float16_to_float32(make_float16(a), ieee, s);
9595 if (ieee) {
af39bc8c 9596 return float32_maybe_silence_nan(r, s);
fb91678d
PM
9597 }
9598 return r;
60011498
PB
9599}
9600
0ecb72a5 9601static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
60011498 9602{
60011498 9603 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
9604 float16 r = float32_to_float16(a, ieee, s);
9605 if (ieee) {
af39bc8c 9606 r = float16_maybe_silence_nan(r, s);
fb91678d
PM
9607 }
9608 return float16_val(r);
60011498
PB
9609}
9610
0ecb72a5 9611float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
9612{
9613 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
9614}
9615
0ecb72a5 9616uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
9617{
9618 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
9619}
9620
0ecb72a5 9621float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
9622{
9623 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
9624}
9625
0ecb72a5 9626uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
9627{
9628 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
9629}
9630
8900aad2
PM
9631float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
9632{
9633 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9634 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
9635 if (ieee) {
af39bc8c 9636 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
8900aad2
PM
9637 }
9638 return r;
9639}
9640
9641uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
9642{
9643 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9644 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
9645 if (ieee) {
af39bc8c 9646 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
8900aad2
PM
9647 }
9648 return float16_val(r);
9649}
9650
dda3ec49 9651#define float32_two make_float32(0x40000000)
6aae3df1
PM
9652#define float32_three make_float32(0x40400000)
9653#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 9654
0ecb72a5 9655float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 9656{
dda3ec49
PM
9657 float_status *s = &env->vfp.standard_fp_status;
9658 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9659 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
9660 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9661 float_raise(float_flag_input_denormal, s);
9662 }
dda3ec49
PM
9663 return float32_two;
9664 }
9665 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
9666}
9667
0ecb72a5 9668float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 9669{
71826966 9670 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
9671 float32 product;
9672 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9673 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
9674 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9675 float_raise(float_flag_input_denormal, s);
9676 }
6aae3df1 9677 return float32_one_point_five;
9ea62f57 9678 }
6aae3df1
PM
9679 product = float32_mul(a, b, s);
9680 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
9681}
9682
8f8e3aa4
PB
9683/* NEON helpers. */
9684
56bf4fe2
CL
9685/* Constants 256 and 512 are used in some helpers; we avoid relying on
9686 * int->float conversions at run-time. */
9687#define float64_256 make_float64(0x4070000000000000LL)
9688#define float64_512 make_float64(0x4080000000000000LL)
b6d4443a
AB
9689#define float32_maxnorm make_float32(0x7f7fffff)
9690#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
56bf4fe2 9691
b6d4443a
AB
9692/* Reciprocal functions
9693 *
9694 * The algorithm that must be used to calculate the estimate
9695 * is specified by the ARM ARM, see FPRecipEstimate()
fe0e4872 9696 */
b6d4443a
AB
9697
9698static float64 recip_estimate(float64 a, float_status *real_fp_status)
fe0e4872 9699{
1146a817
PM
9700 /* These calculations mustn't set any fp exception flags,
9701 * so we use a local copy of the fp_status.
9702 */
b6d4443a 9703 float_status dummy_status = *real_fp_status;
1146a817 9704 float_status *s = &dummy_status;
fe0e4872
CL
9705 /* q = (int)(a * 512.0) */
9706 float64 q = float64_mul(float64_512, a, s);
9707 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9708
9709 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9710 q = int64_to_float64(q_int, s);
9711 q = float64_add(q, float64_half, s);
9712 q = float64_div(q, float64_512, s);
9713 q = float64_div(float64_one, q, s);
9714
9715 /* s = (int)(256.0 * r + 0.5) */
9716 q = float64_mul(q, float64_256, s);
9717 q = float64_add(q, float64_half, s);
9718 q_int = float64_to_int64_round_to_zero(q, s);
9719
9720 /* return (double)s / 256.0 */
9721 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9722}
9723
b6d4443a
AB
9724/* Common wrapper to call recip_estimate */
9725static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
4373f3ce 9726{
b6d4443a
AB
9727 uint64_t val64 = float64_val(num);
9728 uint64_t frac = extract64(val64, 0, 52);
9729 int64_t exp = extract64(val64, 52, 11);
9730 uint64_t sbit;
9731 float64 scaled, estimate;
fe0e4872 9732
b6d4443a
AB
9733 /* Generate the scaled number for the estimate function */
9734 if (exp == 0) {
9735 if (extract64(frac, 51, 1) == 0) {
9736 exp = -1;
9737 frac = extract64(frac, 0, 50) << 2;
9738 } else {
9739 frac = extract64(frac, 0, 51) << 1;
9740 }
9741 }
fe0e4872 9742
b6d4443a
AB
9743 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9744 scaled = make_float64((0x3feULL << 52)
9745 | extract64(frac, 44, 8) << 44);
9746
9747 estimate = recip_estimate(scaled, fpst);
9748
9749 /* Build new result */
9750 val64 = float64_val(estimate);
9751 sbit = 0x8000000000000000ULL & val64;
9752 exp = off - exp;
9753 frac = extract64(val64, 0, 52);
9754
9755 if (exp == 0) {
9756 frac = 1ULL << 51 | extract64(frac, 1, 51);
9757 } else if (exp == -1) {
9758 frac = 1ULL << 50 | extract64(frac, 2, 50);
9759 exp = 0;
9760 }
9761
9762 return make_float64(sbit | (exp << 52) | frac);
9763}
9764
9765static bool round_to_inf(float_status *fpst, bool sign_bit)
9766{
9767 switch (fpst->float_rounding_mode) {
9768 case float_round_nearest_even: /* Round to Nearest */
9769 return true;
9770 case float_round_up: /* Round to +Inf */
9771 return !sign_bit;
9772 case float_round_down: /* Round to -Inf */
9773 return sign_bit;
9774 case float_round_to_zero: /* Round to Zero */
9775 return false;
9776 }
9777
9778 g_assert_not_reached();
9779}
9780
9781float32 HELPER(recpe_f32)(float32 input, void *fpstp)
9782{
9783 float_status *fpst = fpstp;
9784 float32 f32 = float32_squash_input_denormal(input, fpst);
9785 uint32_t f32_val = float32_val(f32);
9786 uint32_t f32_sbit = 0x80000000ULL & f32_val;
9787 int32_t f32_exp = extract32(f32_val, 23, 8);
9788 uint32_t f32_frac = extract32(f32_val, 0, 23);
9789 float64 f64, r64;
9790 uint64_t r64_val;
9791 int64_t r64_exp;
9792 uint64_t r64_frac;
9793
9794 if (float32_is_any_nan(f32)) {
9795 float32 nan = f32;
af39bc8c 9796 if (float32_is_signaling_nan(f32, fpst)) {
b6d4443a 9797 float_raise(float_flag_invalid, fpst);
af39bc8c 9798 nan = float32_maybe_silence_nan(f32, fpst);
fe0e4872 9799 }
b6d4443a 9800 if (fpst->default_nan_mode) {
af39bc8c 9801 nan = float32_default_nan(fpst);
43fe9bdb 9802 }
b6d4443a
AB
9803 return nan;
9804 } else if (float32_is_infinity(f32)) {
9805 return float32_set_sign(float32_zero, float32_is_neg(f32));
9806 } else if (float32_is_zero(f32)) {
9807 float_raise(float_flag_divbyzero, fpst);
9808 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9809 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
9810 /* Abs(value) < 2.0^-128 */
9811 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9812 if (round_to_inf(fpst, f32_sbit)) {
9813 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9814 } else {
9815 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
9816 }
9817 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
9818 float_raise(float_flag_underflow, fpst);
9819 return float32_set_sign(float32_zero, float32_is_neg(f32));
fe0e4872
CL
9820 }
9821
fe0e4872 9822
b6d4443a
AB
9823 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
9824 r64 = call_recip_estimate(f64, 253, fpst);
9825 r64_val = float64_val(r64);
9826 r64_exp = extract64(r64_val, 52, 11);
9827 r64_frac = extract64(r64_val, 0, 52);
9828
9829 /* result = sign : result_exp<7:0> : fraction<51:29>; */
9830 return make_float32(f32_sbit |
9831 (r64_exp & 0xff) << 23 |
9832 extract64(r64_frac, 29, 24));
9833}
9834
9835float64 HELPER(recpe_f64)(float64 input, void *fpstp)
9836{
9837 float_status *fpst = fpstp;
9838 float64 f64 = float64_squash_input_denormal(input, fpst);
9839 uint64_t f64_val = float64_val(f64);
9840 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
9841 int64_t f64_exp = extract64(f64_val, 52, 11);
9842 float64 r64;
9843 uint64_t r64_val;
9844 int64_t r64_exp;
9845 uint64_t r64_frac;
9846
9847 /* Deal with any special cases */
9848 if (float64_is_any_nan(f64)) {
9849 float64 nan = f64;
af39bc8c 9850 if (float64_is_signaling_nan(f64, fpst)) {
b6d4443a 9851 float_raise(float_flag_invalid, fpst);
af39bc8c 9852 nan = float64_maybe_silence_nan(f64, fpst);
b6d4443a
AB
9853 }
9854 if (fpst->default_nan_mode) {
af39bc8c 9855 nan = float64_default_nan(fpst);
b6d4443a
AB
9856 }
9857 return nan;
9858 } else if (float64_is_infinity(f64)) {
9859 return float64_set_sign(float64_zero, float64_is_neg(f64));
9860 } else if (float64_is_zero(f64)) {
9861 float_raise(float_flag_divbyzero, fpst);
9862 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9863 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
9864 /* Abs(value) < 2.0^-1024 */
9865 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9866 if (round_to_inf(fpst, f64_sbit)) {
9867 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9868 } else {
9869 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9870 }
fc1792e9 9871 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
b6d4443a
AB
9872 float_raise(float_flag_underflow, fpst);
9873 return float64_set_sign(float64_zero, float64_is_neg(f64));
9874 }
fe0e4872 9875
b6d4443a
AB
9876 r64 = call_recip_estimate(f64, 2045, fpst);
9877 r64_val = float64_val(r64);
9878 r64_exp = extract64(r64_val, 52, 11);
9879 r64_frac = extract64(r64_val, 0, 52);
fe0e4872 9880
b6d4443a
AB
9881 /* result = sign : result_exp<10:0> : fraction<51:0> */
9882 return make_float64(f64_sbit |
9883 ((r64_exp & 0x7ff) << 52) |
9884 r64_frac);
4373f3ce
PB
9885}
9886
e07be5d2
CL
9887/* The algorithm that must be used to calculate the estimate
9888 * is specified by the ARM ARM.
9889 */
c2fb418e 9890static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
e07be5d2 9891{
1146a817
PM
9892 /* These calculations mustn't set any fp exception flags,
9893 * so we use a local copy of the fp_status.
9894 */
c2fb418e 9895 float_status dummy_status = *real_fp_status;
1146a817 9896 float_status *s = &dummy_status;
e07be5d2
CL
9897 float64 q;
9898 int64_t q_int;
9899
9900 if (float64_lt(a, float64_half, s)) {
9901 /* range 0.25 <= a < 0.5 */
9902
9903 /* a in units of 1/512 rounded down */
9904 /* q0 = (int)(a * 512.0); */
9905 q = float64_mul(float64_512, a, s);
9906 q_int = float64_to_int64_round_to_zero(q, s);
9907
9908 /* reciprocal root r */
9909 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9910 q = int64_to_float64(q_int, s);
9911 q = float64_add(q, float64_half, s);
9912 q = float64_div(q, float64_512, s);
9913 q = float64_sqrt(q, s);
9914 q = float64_div(float64_one, q, s);
9915 } else {
9916 /* range 0.5 <= a < 1.0 */
9917
9918 /* a in units of 1/256 rounded down */
9919 /* q1 = (int)(a * 256.0); */
9920 q = float64_mul(float64_256, a, s);
9921 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9922
9923 /* reciprocal root r */
9924 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9925 q = int64_to_float64(q_int, s);
9926 q = float64_add(q, float64_half, s);
9927 q = float64_div(q, float64_256, s);
9928 q = float64_sqrt(q, s);
9929 q = float64_div(float64_one, q, s);
9930 }
9931 /* r in units of 1/256 rounded to nearest */
9932 /* s = (int)(256.0 * r + 0.5); */
9933
9934 q = float64_mul(q, float64_256,s );
9935 q = float64_add(q, float64_half, s);
9936 q_int = float64_to_int64_round_to_zero(q, s);
9937
9938 /* return (double)s / 256.0;*/
9939 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9940}
9941
c2fb418e 9942float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
4373f3ce 9943{
c2fb418e
AB
9944 float_status *s = fpstp;
9945 float32 f32 = float32_squash_input_denormal(input, s);
9946 uint32_t val = float32_val(f32);
9947 uint32_t f32_sbit = 0x80000000 & val;
9948 int32_t f32_exp = extract32(val, 23, 8);
9949 uint32_t f32_frac = extract32(val, 0, 23);
9950 uint64_t f64_frac;
9951 uint64_t val64;
e07be5d2
CL
9952 int result_exp;
9953 float64 f64;
e07be5d2 9954
c2fb418e
AB
9955 if (float32_is_any_nan(f32)) {
9956 float32 nan = f32;
af39bc8c 9957 if (float32_is_signaling_nan(f32, s)) {
e07be5d2 9958 float_raise(float_flag_invalid, s);
af39bc8c 9959 nan = float32_maybe_silence_nan(f32, s);
e07be5d2 9960 }
c2fb418e 9961 if (s->default_nan_mode) {
af39bc8c 9962 nan = float32_default_nan(s);
43fe9bdb 9963 }
c2fb418e
AB
9964 return nan;
9965 } else if (float32_is_zero(f32)) {
e07be5d2 9966 float_raise(float_flag_divbyzero, s);
c2fb418e
AB
9967 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9968 } else if (float32_is_neg(f32)) {
e07be5d2 9969 float_raise(float_flag_invalid, s);
af39bc8c 9970 return float32_default_nan(s);
c2fb418e 9971 } else if (float32_is_infinity(f32)) {
e07be5d2
CL
9972 return float32_zero;
9973 }
9974
c2fb418e 9975 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
e07be5d2 9976 * preserving the parity of the exponent. */
c2fb418e
AB
9977
9978 f64_frac = ((uint64_t) f32_frac) << 29;
9979 if (f32_exp == 0) {
9980 while (extract64(f64_frac, 51, 1) == 0) {
9981 f64_frac = f64_frac << 1;
9982 f32_exp = f32_exp-1;
9983 }
9984 f64_frac = extract64(f64_frac, 0, 51) << 1;
9985 }
9986
9987 if (extract64(f32_exp, 0, 1) == 0) {
9988 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 9989 | (0x3feULL << 52)
c2fb418e 9990 | f64_frac);
e07be5d2 9991 } else {
c2fb418e 9992 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 9993 | (0x3fdULL << 52)
c2fb418e 9994 | f64_frac);
e07be5d2
CL
9995 }
9996
c2fb418e 9997 result_exp = (380 - f32_exp) / 2;
e07be5d2 9998
c2fb418e 9999 f64 = recip_sqrt_estimate(f64, s);
e07be5d2
CL
10000
10001 val64 = float64_val(f64);
10002
26cc6abf 10003 val = ((result_exp & 0xff) << 23)
e07be5d2
CL
10004 | ((val64 >> 29) & 0x7fffff);
10005 return make_float32(val);
4373f3ce
PB
10006}
10007
c2fb418e
AB
10008float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
10009{
10010 float_status *s = fpstp;
10011 float64 f64 = float64_squash_input_denormal(input, s);
10012 uint64_t val = float64_val(f64);
10013 uint64_t f64_sbit = 0x8000000000000000ULL & val;
10014 int64_t f64_exp = extract64(val, 52, 11);
10015 uint64_t f64_frac = extract64(val, 0, 52);
10016 int64_t result_exp;
10017 uint64_t result_frac;
10018
10019 if (float64_is_any_nan(f64)) {
10020 float64 nan = f64;
af39bc8c 10021 if (float64_is_signaling_nan(f64, s)) {
c2fb418e 10022 float_raise(float_flag_invalid, s);
af39bc8c 10023 nan = float64_maybe_silence_nan(f64, s);
c2fb418e
AB
10024 }
10025 if (s->default_nan_mode) {
af39bc8c 10026 nan = float64_default_nan(s);
c2fb418e
AB
10027 }
10028 return nan;
10029 } else if (float64_is_zero(f64)) {
10030 float_raise(float_flag_divbyzero, s);
10031 return float64_set_sign(float64_infinity, float64_is_neg(f64));
10032 } else if (float64_is_neg(f64)) {
10033 float_raise(float_flag_invalid, s);
af39bc8c 10034 return float64_default_nan(s);
c2fb418e
AB
10035 } else if (float64_is_infinity(f64)) {
10036 return float64_zero;
10037 }
10038
10039 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
10040 * preserving the parity of the exponent. */
10041
10042 if (f64_exp == 0) {
10043 while (extract64(f64_frac, 51, 1) == 0) {
10044 f64_frac = f64_frac << 1;
10045 f64_exp = f64_exp - 1;
10046 }
10047 f64_frac = extract64(f64_frac, 0, 51) << 1;
10048 }
10049
10050 if (extract64(f64_exp, 0, 1) == 0) {
10051 f64 = make_float64(f64_sbit
10052 | (0x3feULL << 52)
10053 | f64_frac);
10054 } else {
10055 f64 = make_float64(f64_sbit
10056 | (0x3fdULL << 52)
10057 | f64_frac);
10058 }
10059
10060 result_exp = (3068 - f64_exp) / 2;
10061
10062 f64 = recip_sqrt_estimate(f64, s);
10063
10064 result_frac = extract64(float64_val(f64), 0, 52);
10065
10066 return make_float64(f64_sbit |
10067 ((result_exp & 0x7ff) << 52) |
10068 result_frac);
10069}
10070
b6d4443a 10071uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
4373f3ce 10072{
b6d4443a 10073 float_status *s = fpstp;
fe0e4872
CL
10074 float64 f64;
10075
10076 if ((a & 0x80000000) == 0) {
10077 return 0xffffffff;
10078 }
10079
10080 f64 = make_float64((0x3feULL << 52)
10081 | ((int64_t)(a & 0x7fffffff) << 21));
10082
b6d4443a 10083 f64 = recip_estimate(f64, s);
fe0e4872
CL
10084
10085 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce
PB
10086}
10087
c2fb418e 10088uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
4373f3ce 10089{
c2fb418e 10090 float_status *fpst = fpstp;
e07be5d2
CL
10091 float64 f64;
10092
10093 if ((a & 0xc0000000) == 0) {
10094 return 0xffffffff;
10095 }
10096
10097 if (a & 0x80000000) {
10098 f64 = make_float64((0x3feULL << 52)
10099 | ((uint64_t)(a & 0x7fffffff) << 21));
10100 } else { /* bits 31-30 == '01' */
10101 f64 = make_float64((0x3fdULL << 52)
10102 | ((uint64_t)(a & 0x3fffffff) << 22));
10103 }
10104
c2fb418e 10105 f64 = recip_sqrt_estimate(f64, fpst);
e07be5d2
CL
10106
10107 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce 10108}
fe1479c3 10109
da97f52c
PM
10110/* VFPv4 fused multiply-accumulate */
10111float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
10112{
10113 float_status *fpst = fpstp;
10114 return float32_muladd(a, b, c, 0, fpst);
10115}
10116
10117float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
10118{
10119 float_status *fpst = fpstp;
10120 return float64_muladd(a, b, c, 0, fpst);
10121}
d9b0848d
PM
10122
10123/* ARMv8 round to integral */
10124float32 HELPER(rints_exact)(float32 x, void *fp_status)
10125{
10126 return float32_round_to_int(x, fp_status);
10127}
10128
10129float64 HELPER(rintd_exact)(float64 x, void *fp_status)
10130{
10131 return float64_round_to_int(x, fp_status);
10132}
10133
10134float32 HELPER(rints)(float32 x, void *fp_status)
10135{
10136 int old_flags = get_float_exception_flags(fp_status), new_flags;
10137 float32 ret;
10138
10139 ret = float32_round_to_int(x, fp_status);
10140
10141 /* Suppress any inexact exceptions the conversion produced */
10142 if (!(old_flags & float_flag_inexact)) {
10143 new_flags = get_float_exception_flags(fp_status);
10144 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10145 }
10146
10147 return ret;
10148}
10149
10150float64 HELPER(rintd)(float64 x, void *fp_status)
10151{
10152 int old_flags = get_float_exception_flags(fp_status), new_flags;
10153 float64 ret;
10154
10155 ret = float64_round_to_int(x, fp_status);
10156
10157 new_flags = get_float_exception_flags(fp_status);
10158
10159 /* Suppress any inexact exceptions the conversion produced */
10160 if (!(old_flags & float_flag_inexact)) {
10161 new_flags = get_float_exception_flags(fp_status);
10162 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10163 }
10164
10165 return ret;
10166}
9972da66
WN
10167
10168/* Convert ARM rounding mode to softfloat */
10169int arm_rmode_to_sf(int rmode)
10170{
10171 switch (rmode) {
10172 case FPROUNDING_TIEAWAY:
10173 rmode = float_round_ties_away;
10174 break;
10175 case FPROUNDING_ODD:
10176 /* FIXME: add support for TIEAWAY and ODD */
10177 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
10178 rmode);
10179 case FPROUNDING_TIEEVEN:
10180 default:
10181 rmode = float_round_nearest_even;
10182 break;
10183 case FPROUNDING_POSINF:
10184 rmode = float_round_up;
10185 break;
10186 case FPROUNDING_NEGINF:
10187 rmode = float_round_down;
10188 break;
10189 case FPROUNDING_ZERO:
10190 rmode = float_round_to_zero;
10191 break;
10192 }
10193 return rmode;
10194}
eb0ecd5a 10195
aa633469
PM
10196/* CRC helpers.
10197 * The upper bytes of val (above the number specified by 'bytes') must have
10198 * been zeroed out by the caller.
10199 */
eb0ecd5a
WN
10200uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10201{
10202 uint8_t buf[4];
10203
aa633469 10204 stl_le_p(buf, val);
eb0ecd5a
WN
10205
10206 /* zlib crc32 converts the accumulator and output to one's complement. */
10207 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10208}
10209
10210uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10211{
10212 uint8_t buf[4];
10213
aa633469 10214 stl_le_p(buf, val);
eb0ecd5a
WN
10215
10216 /* Linux crc32c converts the output to one's complement. */
10217 return crc32c(acc, buf, bytes) ^ 0xffffffff;
10218}