]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/helper.c
nvic: Clear the vector arrays and prigroup on reset
[mirror_qemu.git] / target / arm / helper.c
CommitLineData
74c21bd0 1#include "qemu/osdep.h"
194cbc49 2#include "trace.h"
b5ff1b31 3#include "cpu.h"
ccd38087 4#include "internals.h"
022c62cb 5#include "exec/gdbstub.h"
2ef6175a 6#include "exec/helper-proto.h"
1de7afc9 7#include "qemu/host-utils.h"
78027bb6 8#include "sysemu/arch_init.h"
9c17d615 9#include "sysemu/sysemu.h"
1de7afc9 10#include "qemu/bitops.h"
eb0ecd5a 11#include "qemu/crc32c.h"
63c91552 12#include "exec/exec-all.h"
f08b6170 13#include "exec/cpu_ldst.h"
1d854765 14#include "arm_ldst.h"
eb0ecd5a 15#include <zlib.h> /* For crc32 */
cfe67cef 16#include "exec/semihost.h"
f3a9b694 17#include "sysemu/kvm.h"
0b03bdfc 18
352c98e5
LV
19#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20
4a501606 21#ifndef CONFIG_USER_ONLY
af51f566 22static bool get_phys_addr(CPUARMState *env, target_ulong address,
03ae85f8 23 MMUAccessType access_type, ARMMMUIdx mmu_idx,
af51f566 24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
25 target_ulong *page_size, uint32_t *fsr,
26 ARMMMUFaultInfo *fi);
7c2cb42b 27
37785977 28static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
03ae85f8 29 MMUAccessType access_type, ARMMMUIdx mmu_idx,
37785977
EI
30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31 target_ulong *page_size_ptr, uint32_t *fsr,
32 ARMMMUFaultInfo *fi);
33
7c2cb42b
AF
34/* Definitions for the PMCCNTR and PMCR registers */
35#define PMCRD 0x8
36#define PMCRC 0x4
37#define PMCRE 0x1
4a501606
PM
38#endif
39
0ecb72a5 40static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
41{
42 int nregs;
43
44 /* VFP data registers are always little-endian. */
45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46 if (reg < nregs) {
47 stfq_le_p(buf, env->vfp.regs[reg]);
48 return 8;
49 }
50 if (arm_feature(env, ARM_FEATURE_NEON)) {
51 /* Aliases for Q regs. */
52 nregs += 16;
53 if (reg < nregs) {
54 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
55 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
56 return 16;
57 }
58 }
59 switch (reg - nregs) {
60 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
61 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
62 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
63 }
64 return 0;
65}
66
0ecb72a5 67static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
68{
69 int nregs;
70
71 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
72 if (reg < nregs) {
73 env->vfp.regs[reg] = ldfq_le_p(buf);
74 return 8;
75 }
76 if (arm_feature(env, ARM_FEATURE_NEON)) {
77 nregs += 16;
78 if (reg < nregs) {
79 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
80 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
81 return 16;
82 }
83 }
84 switch (reg - nregs) {
85 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
86 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 87 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
88 }
89 return 0;
90}
91
6a669427
PM
92static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
93{
94 switch (reg) {
95 case 0 ... 31:
96 /* 128 bit FP register */
97 stfq_le_p(buf, env->vfp.regs[reg * 2]);
98 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
99 return 16;
100 case 32:
101 /* FPSR */
102 stl_p(buf, vfp_get_fpsr(env));
103 return 4;
104 case 33:
105 /* FPCR */
106 stl_p(buf, vfp_get_fpcr(env));
107 return 4;
108 default:
109 return 0;
110 }
111}
112
113static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
114{
115 switch (reg) {
116 case 0 ... 31:
117 /* 128 bit FP register */
118 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
119 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
120 return 16;
121 case 32:
122 /* FPSR */
123 vfp_set_fpsr(env, ldl_p(buf));
124 return 4;
125 case 33:
126 /* FPCR */
127 vfp_set_fpcr(env, ldl_p(buf));
128 return 4;
129 default:
130 return 0;
131 }
132}
133
c4241c7d 134static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
d4e6df63 135{
375421cc 136 assert(ri->fieldoffset);
67ed771d 137 if (cpreg_field_is_64bit(ri)) {
c4241c7d 138 return CPREG_FIELD64(env, ri);
22d9e1a9 139 } else {
c4241c7d 140 return CPREG_FIELD32(env, ri);
22d9e1a9 141 }
d4e6df63
PM
142}
143
c4241c7d
PM
144static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
145 uint64_t value)
d4e6df63 146{
375421cc 147 assert(ri->fieldoffset);
67ed771d 148 if (cpreg_field_is_64bit(ri)) {
22d9e1a9
PM
149 CPREG_FIELD64(env, ri) = value;
150 } else {
151 CPREG_FIELD32(env, ri) = value;
152 }
d4e6df63
PM
153}
154
11f136ee
FA
155static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
156{
157 return (char *)env + ri->fieldoffset;
158}
159
49a66191 160uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
721fae12 161{
59a1c327 162 /* Raw read of a coprocessor register (as needed for migration, etc). */
721fae12 163 if (ri->type & ARM_CP_CONST) {
59a1c327 164 return ri->resetvalue;
721fae12 165 } else if (ri->raw_readfn) {
59a1c327 166 return ri->raw_readfn(env, ri);
721fae12 167 } else if (ri->readfn) {
59a1c327 168 return ri->readfn(env, ri);
721fae12 169 } else {
59a1c327 170 return raw_read(env, ri);
721fae12 171 }
721fae12
PM
172}
173
59a1c327 174static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
7900e9f1 175 uint64_t v)
721fae12
PM
176{
177 /* Raw write of a coprocessor register (as needed for migration, etc).
721fae12
PM
178 * Note that constant registers are treated as write-ignored; the
179 * caller should check for success by whether a readback gives the
180 * value written.
181 */
182 if (ri->type & ARM_CP_CONST) {
59a1c327 183 return;
721fae12 184 } else if (ri->raw_writefn) {
c4241c7d 185 ri->raw_writefn(env, ri, v);
721fae12 186 } else if (ri->writefn) {
c4241c7d 187 ri->writefn(env, ri, v);
721fae12 188 } else {
afb2530f 189 raw_write(env, ri, v);
721fae12 190 }
721fae12
PM
191}
192
375421cc
PM
193static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
194{
195 /* Return true if the regdef would cause an assertion if you called
196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197 * program bug for it not to have the NO_RAW flag).
198 * NB that returning false here doesn't necessarily mean that calling
199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200 * read/write access functions which are safe for raw use" from "has
201 * read/write access functions which have side effects but has forgotten
202 * to provide raw access functions".
203 * The tests here line up with the conditions in read/write_raw_cp_reg()
204 * and assertions in raw_read()/raw_write().
205 */
206 if ((ri->type & ARM_CP_CONST) ||
207 ri->fieldoffset ||
208 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
209 return false;
210 }
211 return true;
212}
213
721fae12
PM
214bool write_cpustate_to_list(ARMCPU *cpu)
215{
216 /* Write the coprocessor state from cpu->env to the (index,value) list. */
217 int i;
218 bool ok = true;
219
220 for (i = 0; i < cpu->cpreg_array_len; i++) {
221 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
222 const ARMCPRegInfo *ri;
59a1c327 223
60322b39 224 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
225 if (!ri) {
226 ok = false;
227 continue;
228 }
7a0e58fa 229 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
230 continue;
231 }
59a1c327 232 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
721fae12
PM
233 }
234 return ok;
235}
236
237bool write_list_to_cpustate(ARMCPU *cpu)
238{
239 int i;
240 bool ok = true;
241
242 for (i = 0; i < cpu->cpreg_array_len; i++) {
243 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
244 uint64_t v = cpu->cpreg_values[i];
721fae12
PM
245 const ARMCPRegInfo *ri;
246
60322b39 247 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
248 if (!ri) {
249 ok = false;
250 continue;
251 }
7a0e58fa 252 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
253 continue;
254 }
255 /* Write value and confirm it reads back as written
256 * (to catch read-only registers and partially read-only
257 * registers where the incoming migration value doesn't match)
258 */
59a1c327
PM
259 write_raw_cp_reg(&cpu->env, ri, v);
260 if (read_raw_cp_reg(&cpu->env, ri) != v) {
721fae12
PM
261 ok = false;
262 }
263 }
264 return ok;
265}
266
267static void add_cpreg_to_list(gpointer key, gpointer opaque)
268{
269 ARMCPU *cpu = opaque;
270 uint64_t regidx;
271 const ARMCPRegInfo *ri;
272
273 regidx = *(uint32_t *)key;
60322b39 274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 275
7a0e58fa 276 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
277 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
278 /* The value array need not be initialized at this point */
279 cpu->cpreg_array_len++;
280 }
281}
282
283static void count_cpreg(gpointer key, gpointer opaque)
284{
285 ARMCPU *cpu = opaque;
286 uint64_t regidx;
287 const ARMCPRegInfo *ri;
288
289 regidx = *(uint32_t *)key;
60322b39 290 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 291
7a0e58fa 292 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
293 cpu->cpreg_array_len++;
294 }
295}
296
297static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
298{
cbf239b7
AR
299 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
300 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
721fae12 301
cbf239b7
AR
302 if (aidx > bidx) {
303 return 1;
304 }
305 if (aidx < bidx) {
306 return -1;
307 }
308 return 0;
721fae12
PM
309}
310
311void init_cpreg_list(ARMCPU *cpu)
312{
313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314 * Note that we require cpreg_tuples[] to be sorted by key ID.
315 */
57b6d95e 316 GList *keys;
721fae12
PM
317 int arraylen;
318
57b6d95e 319 keys = g_hash_table_get_keys(cpu->cp_regs);
721fae12
PM
320 keys = g_list_sort(keys, cpreg_key_compare);
321
322 cpu->cpreg_array_len = 0;
323
324 g_list_foreach(keys, count_cpreg, cpu);
325
326 arraylen = cpu->cpreg_array_len;
327 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
330 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
331 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
332 cpu->cpreg_array_len = 0;
333
334 g_list_foreach(keys, add_cpreg_to_list, cpu);
335
336 assert(cpu->cpreg_array_len == arraylen);
337
338 g_list_free(keys);
339}
340
68e9c2fe
EI
341/*
342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
344 *
345 * access_el3_aa32ns: Used to check AArch32 register views.
346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
347 */
348static CPAccessResult access_el3_aa32ns(CPUARMState *env,
3f208fd7
PM
349 const ARMCPRegInfo *ri,
350 bool isread)
68e9c2fe
EI
351{
352 bool secure = arm_is_secure_below_el3(env);
353
354 assert(!arm_el_is_aa64(env, 3));
355 if (secure) {
356 return CP_ACCESS_TRAP_UNCATEGORIZED;
357 }
358 return CP_ACCESS_OK;
359}
360
361static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
3f208fd7
PM
362 const ARMCPRegInfo *ri,
363 bool isread)
68e9c2fe
EI
364{
365 if (!arm_el_is_aa64(env, 3)) {
3f208fd7 366 return access_el3_aa32ns(env, ri, isread);
68e9c2fe
EI
367 }
368 return CP_ACCESS_OK;
369}
370
5513c3ab
PM
371/* Some secure-only AArch32 registers trap to EL3 if used from
372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374 * We assume that the .access field is set to PL1_RW.
375 */
376static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
3f208fd7
PM
377 const ARMCPRegInfo *ri,
378 bool isread)
5513c3ab
PM
379{
380 if (arm_current_el(env) == 3) {
381 return CP_ACCESS_OK;
382 }
383 if (arm_is_secure_below_el3(env)) {
384 return CP_ACCESS_TRAP_EL3;
385 }
386 /* This will be EL1 NS and EL2 NS, which just UNDEF */
387 return CP_ACCESS_TRAP_UNCATEGORIZED;
388}
389
187f678d
PM
390/* Check for traps to "powerdown debug" registers, which are controlled
391 * by MDCR.TDOSA
392 */
393static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
394 bool isread)
395{
396 int el = arm_current_el(env);
397
398 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
399 && !arm_is_secure_below_el3(env)) {
400 return CP_ACCESS_TRAP_EL2;
401 }
402 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
403 return CP_ACCESS_TRAP_EL3;
404 }
405 return CP_ACCESS_OK;
406}
407
91b0a238
PM
408/* Check for traps to "debug ROM" registers, which are controlled
409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
410 */
411static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
412 bool isread)
413{
414 int el = arm_current_el(env);
415
416 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
417 && !arm_is_secure_below_el3(env)) {
418 return CP_ACCESS_TRAP_EL2;
419 }
420 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
421 return CP_ACCESS_TRAP_EL3;
422 }
423 return CP_ACCESS_OK;
424}
425
d6c8cf81
PM
426/* Check for traps to general debug registers, which are controlled
427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
428 */
429static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
430 bool isread)
431{
432 int el = arm_current_el(env);
433
434 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
435 && !arm_is_secure_below_el3(env)) {
436 return CP_ACCESS_TRAP_EL2;
437 }
438 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
439 return CP_ACCESS_TRAP_EL3;
440 }
441 return CP_ACCESS_OK;
442}
443
1fce1ba9
PM
444/* Check for traps to performance monitor registers, which are controlled
445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
446 */
447static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
448 bool isread)
449{
450 int el = arm_current_el(env);
451
452 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
453 && !arm_is_secure_below_el3(env)) {
454 return CP_ACCESS_TRAP_EL2;
455 }
456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
457 return CP_ACCESS_TRAP_EL3;
458 }
459 return CP_ACCESS_OK;
460}
461
c4241c7d 462static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
c983fe6c 463{
00c8cb0a
AF
464 ARMCPU *cpu = arm_env_get_cpu(env);
465
8d5c773e 466 raw_write(env, ri, value);
d10eb08f 467 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
c983fe6c
PM
468}
469
c4241c7d 470static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
08de207b 471{
00c8cb0a
AF
472 ARMCPU *cpu = arm_env_get_cpu(env);
473
8d5c773e 474 if (raw_read(env, ri) != value) {
08de207b
PM
475 /* Unlike real hardware the qemu TLB uses virtual addresses,
476 * not modified virtual addresses, so this causes a TLB flush.
477 */
d10eb08f 478 tlb_flush(CPU(cpu));
8d5c773e 479 raw_write(env, ri, value);
08de207b 480 }
08de207b 481}
c4241c7d
PM
482
483static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484 uint64_t value)
08de207b 485{
00c8cb0a
AF
486 ARMCPU *cpu = arm_env_get_cpu(env);
487
452a0955 488 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
014406b5 489 && !extended_addresses_enabled(env)) {
08de207b
PM
490 /* For VMSA (when not using the LPAE long descriptor page table
491 * format) this register includes the ASID, so do a TLB flush.
492 * For PMSA it is purely a process ID and no action is needed.
493 */
d10eb08f 494 tlb_flush(CPU(cpu));
08de207b 495 }
8d5c773e 496 raw_write(env, ri, value);
08de207b
PM
497}
498
c4241c7d
PM
499static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
d929823f
PM
501{
502 /* Invalidate all (TLBIALL) */
00c8cb0a
AF
503 ARMCPU *cpu = arm_env_get_cpu(env);
504
d10eb08f 505 tlb_flush(CPU(cpu));
d929823f
PM
506}
507
c4241c7d
PM
508static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
509 uint64_t value)
d929823f
PM
510{
511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
31b030d4
AF
512 ARMCPU *cpu = arm_env_get_cpu(env);
513
514 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
515}
516
c4241c7d
PM
517static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
518 uint64_t value)
d929823f
PM
519{
520 /* Invalidate by ASID (TLBIASID) */
00c8cb0a
AF
521 ARMCPU *cpu = arm_env_get_cpu(env);
522
d10eb08f 523 tlb_flush(CPU(cpu));
d929823f
PM
524}
525
c4241c7d
PM
526static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
d929823f
PM
528{
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
31b030d4
AF
530 ARMCPU *cpu = arm_env_get_cpu(env);
531
532 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
533}
534
fa439fc5
PM
535/* IS variants of TLB operations must affect all cores */
536static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
537 uint64_t value)
538{
a67cf277 539 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 540
a67cf277 541 tlb_flush_all_cpus_synced(cs);
fa439fc5
PM
542}
543
544static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
545 uint64_t value)
546{
a67cf277 547 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 548
a67cf277 549 tlb_flush_all_cpus_synced(cs);
fa439fc5
PM
550}
551
552static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
553 uint64_t value)
554{
a67cf277 555 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 556
a67cf277 557 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
fa439fc5
PM
558}
559
560static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
561 uint64_t value)
562{
a67cf277 563 CPUState *cs = ENV_GET_CPU(env);
fa439fc5 564
a67cf277 565 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
fa439fc5
PM
566}
567
541ef8c2
SS
568static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
569 uint64_t value)
570{
571 CPUState *cs = ENV_GET_CPU(env);
572
0336cbf8 573 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
574 ARMMMUIdxBit_S12NSE1 |
575 ARMMMUIdxBit_S12NSE0 |
576 ARMMMUIdxBit_S2NS);
541ef8c2
SS
577}
578
579static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
580 uint64_t value)
581{
a67cf277 582 CPUState *cs = ENV_GET_CPU(env);
541ef8c2 583
a67cf277 584 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
585 ARMMMUIdxBit_S12NSE1 |
586 ARMMMUIdxBit_S12NSE0 |
587 ARMMMUIdxBit_S2NS);
541ef8c2
SS
588}
589
590static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
591 uint64_t value)
592{
593 /* Invalidate by IPA. This has to invalidate any structures that
594 * contain only stage 2 translation information, but does not need
595 * to apply to structures that contain combined stage 1 and stage 2
596 * translation information.
597 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
598 */
599 CPUState *cs = ENV_GET_CPU(env);
600 uint64_t pageaddr;
601
602 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
603 return;
604 }
605
606 pageaddr = sextract64(value << 12, 0, 40);
607
8bd5c820 608 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
541ef8c2
SS
609}
610
611static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
612 uint64_t value)
613{
a67cf277 614 CPUState *cs = ENV_GET_CPU(env);
541ef8c2
SS
615 uint64_t pageaddr;
616
617 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
618 return;
619 }
620
621 pageaddr = sextract64(value << 12, 0, 40);
622
a67cf277 623 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 624 ARMMMUIdxBit_S2NS);
541ef8c2
SS
625}
626
627static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
628 uint64_t value)
629{
630 CPUState *cs = ENV_GET_CPU(env);
631
8bd5c820 632 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
541ef8c2
SS
633}
634
635static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
636 uint64_t value)
637{
a67cf277 638 CPUState *cs = ENV_GET_CPU(env);
541ef8c2 639
8bd5c820 640 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
541ef8c2
SS
641}
642
643static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
644 uint64_t value)
645{
646 CPUState *cs = ENV_GET_CPU(env);
647 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
648
8bd5c820 649 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
541ef8c2
SS
650}
651
652static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
653 uint64_t value)
654{
a67cf277 655 CPUState *cs = ENV_GET_CPU(env);
541ef8c2
SS
656 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
657
a67cf277 658 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 659 ARMMMUIdxBit_S1E2);
541ef8c2
SS
660}
661
e9aa6c21 662static const ARMCPRegInfo cp_reginfo[] = {
54bf36ed
FA
663 /* Define the secure and non-secure FCSE identifier CP registers
664 * separately because there is no secure bank in V8 (no _EL3). This allows
665 * the secure register to be properly reset and migrated. There is also no
666 * v8 EL1 version of the register so the non-secure instance stands alone.
667 */
668 { .name = "FCSEIDR(NS)",
669 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
670 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
671 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
672 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
673 { .name = "FCSEIDR(S)",
674 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
675 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
676 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
d4e6df63 677 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
54bf36ed
FA
678 /* Define the secure and non-secure context identifier CP registers
679 * separately because there is no secure bank in V8 (no _EL3). This allows
680 * the secure register to be properly reset and migrated. In the
681 * non-secure case, the 32-bit register will have reset and migration
682 * disabled during registration as it is handled by the 64-bit instance.
683 */
684 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
014406b5 685 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
54bf36ed
FA
686 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
687 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
688 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
689 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
690 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
691 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
692 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
d4e6df63 693 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9449fdf6
PM
694 REGINFO_SENTINEL
695};
696
697static const ARMCPRegInfo not_v8_cp_reginfo[] = {
698 /* NB: Some of these registers exist in v8 but with more precise
699 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
700 */
701 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
702 { .name = "DACR",
703 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
704 .access = PL1_RW, .resetvalue = 0,
705 .writefn = dacr_write, .raw_writefn = raw_write,
706 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
707 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a903c449
EI
708 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
709 * For v6 and v5, these mappings are overly broad.
4fdd17dd 710 */
a903c449
EI
711 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
712 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
713 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
714 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
715 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
716 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
717 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
4fdd17dd 718 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
c4804214
PM
719 /* Cache maintenance ops; some of this space may be overridden later. */
720 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
721 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
722 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
723 REGINFO_SENTINEL
724};
725
7d57f408
PM
726static const ARMCPRegInfo not_v6_cp_reginfo[] = {
727 /* Not all pre-v6 cores implemented this WFI, so this is slightly
728 * over-broad.
729 */
730 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
731 .access = PL1_W, .type = ARM_CP_WFI },
732 REGINFO_SENTINEL
733};
734
735static const ARMCPRegInfo not_v7_cp_reginfo[] = {
736 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
737 * is UNPREDICTABLE; we choose to NOP as most implementations do).
738 */
739 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
740 .access = PL1_W, .type = ARM_CP_WFI },
34f90529
PM
741 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
742 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
743 * OMAPCP will override this space.
744 */
745 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
746 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
747 .resetvalue = 0 },
748 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
749 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
750 .resetvalue = 0 },
776d4e5c
PM
751 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
752 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
7a0e58fa 753 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 754 .resetvalue = 0 },
50300698
PM
755 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
756 * implementing it as RAZ means the "debug architecture version" bits
757 * will read as a reserved value, which should cause Linux to not try
758 * to use the debug hardware.
759 */
760 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
761 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
995939a6
PM
762 /* MMU TLB control. Note that the wildcarding means we cover not just
763 * the unified TLB ops but also the dside/iside/inner-shareable variants.
764 */
765 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
766 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
7a0e58fa 767 .type = ARM_CP_NO_RAW },
995939a6
PM
768 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
769 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
7a0e58fa 770 .type = ARM_CP_NO_RAW },
995939a6
PM
771 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
772 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
7a0e58fa 773 .type = ARM_CP_NO_RAW },
995939a6
PM
774 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
775 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
7a0e58fa 776 .type = ARM_CP_NO_RAW },
a903c449
EI
777 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
778 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
779 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
780 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
7d57f408
PM
781 REGINFO_SENTINEL
782};
783
c4241c7d
PM
784static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
785 uint64_t value)
2771db27 786{
f0aff255
FA
787 uint32_t mask = 0;
788
789 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
790 if (!arm_feature(env, ARM_FEATURE_V8)) {
791 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
792 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
793 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
794 */
795 if (arm_feature(env, ARM_FEATURE_VFP)) {
796 /* VFP coprocessor: cp10 & cp11 [23:20] */
797 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
798
799 if (!arm_feature(env, ARM_FEATURE_NEON)) {
800 /* ASEDIS [31] bit is RAO/WI */
801 value |= (1 << 31);
802 }
803
804 /* VFPv3 and upwards with NEON implement 32 double precision
805 * registers (D0-D31).
806 */
807 if (!arm_feature(env, ARM_FEATURE_NEON) ||
808 !arm_feature(env, ARM_FEATURE_VFP3)) {
809 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
810 value |= (1 << 30);
811 }
812 }
813 value &= mask;
2771db27 814 }
7ebd5f2e 815 env->cp15.cpacr_el1 = value;
2771db27
PM
816}
817
3f208fd7
PM
818static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
819 bool isread)
c6f19164
GB
820{
821 if (arm_feature(env, ARM_FEATURE_V8)) {
822 /* Check if CPACR accesses are to be trapped to EL2 */
823 if (arm_current_el(env) == 1 &&
824 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
825 return CP_ACCESS_TRAP_EL2;
826 /* Check if CPACR accesses are to be trapped to EL3 */
827 } else if (arm_current_el(env) < 3 &&
828 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
829 return CP_ACCESS_TRAP_EL3;
830 }
831 }
832
833 return CP_ACCESS_OK;
834}
835
3f208fd7
PM
836static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
837 bool isread)
c6f19164
GB
838{
839 /* Check if CPTR accesses are set to trap to EL3 */
840 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
841 return CP_ACCESS_TRAP_EL3;
842 }
843
844 return CP_ACCESS_OK;
845}
846
7d57f408
PM
847static const ARMCPRegInfo v6_cp_reginfo[] = {
848 /* prefetch by MVA in v6, NOP in v7 */
849 { .name = "MVA_prefetch",
850 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
851 .access = PL1_W, .type = ARM_CP_NOP },
6df99dec
SS
852 /* We need to break the TB after ISB to execute self-modifying code
853 * correctly and also to take any pending interrupts immediately.
854 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
855 */
7d57f408 856 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
6df99dec 857 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
091fd17c 858 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 859 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 860 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 861 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31 862 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
6cd8a264 863 .access = PL1_RW,
b848ce2b
FA
864 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
865 offsetof(CPUARMState, cp15.ifar_ns) },
06d76f31
PM
866 .resetvalue = 0, },
867 /* Watchpoint Fault Address Register : should actually only be present
868 * for 1136, 1176, 11MPCore.
869 */
870 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
871 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
34222fb8 872 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
c6f19164 873 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
7ebd5f2e 874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
2771db27 875 .resetvalue = 0, .writefn = cpacr_write },
7d57f408
PM
876 REGINFO_SENTINEL
877};
878
3f208fd7
PM
879static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
880 bool isread)
200ac0ef 881{
3b163b01 882 /* Performance monitor registers user accessibility is controlled
1fce1ba9
PM
883 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
884 * trapping to EL2 or EL3 for other accesses.
200ac0ef 885 */
1fce1ba9
PM
886 int el = arm_current_el(env);
887
6ecd0b6b 888 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
fcd25206 889 return CP_ACCESS_TRAP;
200ac0ef 890 }
1fce1ba9
PM
891 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
892 && !arm_is_secure_below_el3(env)) {
893 return CP_ACCESS_TRAP_EL2;
894 }
895 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
896 return CP_ACCESS_TRAP_EL3;
897 }
898
fcd25206 899 return CP_ACCESS_OK;
200ac0ef
PM
900}
901
6ecd0b6b
AB
902static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
903 const ARMCPRegInfo *ri,
904 bool isread)
905{
906 /* ER: event counter read trap control */
907 if (arm_feature(env, ARM_FEATURE_V8)
908 && arm_current_el(env) == 0
909 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
910 && isread) {
911 return CP_ACCESS_OK;
912 }
913
914 return pmreg_access(env, ri, isread);
915}
916
917static CPAccessResult pmreg_access_swinc(CPUARMState *env,
918 const ARMCPRegInfo *ri,
919 bool isread)
920{
921 /* SW: software increment write trap control */
922 if (arm_feature(env, ARM_FEATURE_V8)
923 && arm_current_el(env) == 0
924 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
925 && !isread) {
926 return CP_ACCESS_OK;
927 }
928
929 return pmreg_access(env, ri, isread);
930}
931
7c2cb42b 932#ifndef CONFIG_USER_ONLY
87124fde 933
6ecd0b6b
AB
934static CPAccessResult pmreg_access_selr(CPUARMState *env,
935 const ARMCPRegInfo *ri,
936 bool isread)
937{
938 /* ER: event counter read trap control */
939 if (arm_feature(env, ARM_FEATURE_V8)
940 && arm_current_el(env) == 0
941 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
942 return CP_ACCESS_OK;
943 }
944
945 return pmreg_access(env, ri, isread);
946}
947
948static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
949 const ARMCPRegInfo *ri,
950 bool isread)
951{
952 /* CR: cycle counter read trap control */
953 if (arm_feature(env, ARM_FEATURE_V8)
954 && arm_current_el(env) == 0
955 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
956 && isread) {
957 return CP_ACCESS_OK;
958 }
959
960 return pmreg_access(env, ri, isread);
961}
962
87124fde
AF
963static inline bool arm_ccnt_enabled(CPUARMState *env)
964{
965 /* This does not support checking PMCCFILTR_EL0 register */
966
967 if (!(env->cp15.c9_pmcr & PMCRE)) {
968 return false;
969 }
970
971 return true;
972}
973
ec7b4ce4
AF
974void pmccntr_sync(CPUARMState *env)
975{
976 uint64_t temp_ticks;
977
352c98e5
LV
978 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
979 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
ec7b4ce4
AF
980
981 if (env->cp15.c9_pmcr & PMCRD) {
982 /* Increment once every 64 processor clock cycles */
983 temp_ticks /= 64;
984 }
985
986 if (arm_ccnt_enabled(env)) {
987 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
988 }
989}
990
c4241c7d
PM
991static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
992 uint64_t value)
200ac0ef 993{
942a155b 994 pmccntr_sync(env);
7c2cb42b
AF
995
996 if (value & PMCRC) {
997 /* The counter has been reset */
998 env->cp15.c15_ccnt = 0;
999 }
1000
200ac0ef
PM
1001 /* only the DP, X, D and E bits are writable */
1002 env->cp15.c9_pmcr &= ~0x39;
1003 env->cp15.c9_pmcr |= (value & 0x39);
7c2cb42b 1004
942a155b 1005 pmccntr_sync(env);
7c2cb42b
AF
1006}
1007
1008static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1009{
c92c0687 1010 uint64_t total_ticks;
7c2cb42b 1011
942a155b 1012 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
1013 /* Counter is disabled, do not change value */
1014 return env->cp15.c15_ccnt;
1015 }
1016
352c98e5
LV
1017 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1018 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
7c2cb42b
AF
1019
1020 if (env->cp15.c9_pmcr & PMCRD) {
1021 /* Increment once every 64 processor clock cycles */
1022 total_ticks /= 64;
1023 }
1024 return total_ticks - env->cp15.c15_ccnt;
1025}
1026
6b040780
WH
1027static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1028 uint64_t value)
1029{
1030 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1031 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1032 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1033 * accessed.
1034 */
1035 env->cp15.c9_pmselr = value & 0x1f;
1036}
1037
7c2cb42b
AF
1038static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1039 uint64_t value)
1040{
c92c0687 1041 uint64_t total_ticks;
7c2cb42b 1042
942a155b 1043 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
1044 /* Counter is disabled, set the absolute value */
1045 env->cp15.c15_ccnt = value;
1046 return;
1047 }
1048
352c98e5
LV
1049 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1050 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
7c2cb42b
AF
1051
1052 if (env->cp15.c9_pmcr & PMCRD) {
1053 /* Increment once every 64 processor clock cycles */
1054 total_ticks /= 64;
1055 }
1056 env->cp15.c15_ccnt = total_ticks - value;
200ac0ef 1057}
421c7ebd
PC
1058
1059static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1060 uint64_t value)
1061{
1062 uint64_t cur_val = pmccntr_read(env, NULL);
1063
1064 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1065}
1066
ec7b4ce4
AF
1067#else /* CONFIG_USER_ONLY */
1068
1069void pmccntr_sync(CPUARMState *env)
1070{
1071}
1072
7c2cb42b 1073#endif
200ac0ef 1074
0614601c
AF
1075static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1076 uint64_t value)
1077{
1078 pmccntr_sync(env);
1079 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1080 pmccntr_sync(env);
1081}
1082
c4241c7d 1083static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1084 uint64_t value)
1085{
200ac0ef
PM
1086 value &= (1 << 31);
1087 env->cp15.c9_pmcnten |= value;
200ac0ef
PM
1088}
1089
c4241c7d
PM
1090static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1091 uint64_t value)
200ac0ef 1092{
200ac0ef
PM
1093 value &= (1 << 31);
1094 env->cp15.c9_pmcnten &= ~value;
200ac0ef
PM
1095}
1096
c4241c7d
PM
1097static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1098 uint64_t value)
200ac0ef 1099{
200ac0ef 1100 env->cp15.c9_pmovsr &= ~value;
200ac0ef
PM
1101}
1102
c4241c7d
PM
1103static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104 uint64_t value)
200ac0ef 1105{
fdb86656
WH
1106 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1107 * PMSELR value is equal to or greater than the number of implemented
1108 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1109 */
1110 if (env->cp15.c9_pmselr == 0x1f) {
1111 pmccfiltr_write(env, ri, value);
1112 }
1113}
1114
1115static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1116{
1117 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1118 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1119 */
1120 if (env->cp15.c9_pmselr == 0x1f) {
1121 return env->cp15.pmccfiltr_el0;
1122 } else {
1123 return 0;
1124 }
200ac0ef
PM
1125}
1126
c4241c7d 1127static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1128 uint64_t value)
1129{
6ecd0b6b
AB
1130 if (arm_feature(env, ARM_FEATURE_V8)) {
1131 env->cp15.c9_pmuserenr = value & 0xf;
1132 } else {
1133 env->cp15.c9_pmuserenr = value & 1;
1134 }
200ac0ef
PM
1135}
1136
c4241c7d
PM
1137static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1138 uint64_t value)
200ac0ef
PM
1139{
1140 /* We have no event counters so only the C bit can be changed */
1141 value &= (1 << 31);
1142 env->cp15.c9_pminten |= value;
200ac0ef
PM
1143}
1144
c4241c7d
PM
1145static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1146 uint64_t value)
200ac0ef
PM
1147{
1148 value &= (1 << 31);
1149 env->cp15.c9_pminten &= ~value;
200ac0ef
PM
1150}
1151
c4241c7d
PM
1152static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1153 uint64_t value)
8641136c 1154{
a505d7fe
PM
1155 /* Note that even though the AArch64 view of this register has bits
1156 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1157 * architectural requirements for bits which are RES0 only in some
1158 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1159 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1160 */
855ea66d 1161 raw_write(env, ri, value & ~0x1FULL);
8641136c
NR
1162}
1163
64e0e2de
EI
1164static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1165{
1166 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1167 * For bits that vary between AArch32/64, code needs to check the
1168 * current execution mode before directly using the feature bit.
1169 */
1170 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1171
1172 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1173 valid_mask &= ~SCR_HCE;
1174
1175 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1176 * supported if EL2 exists. The bit is UNK/SBZP when
1177 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1178 * when EL2 is unavailable.
4eb27640 1179 * On ARMv8, this bit is always available.
64e0e2de 1180 */
4eb27640
GB
1181 if (arm_feature(env, ARM_FEATURE_V7) &&
1182 !arm_feature(env, ARM_FEATURE_V8)) {
64e0e2de
EI
1183 valid_mask &= ~SCR_SMD;
1184 }
1185 }
1186
1187 /* Clear all-context RES0 bits. */
1188 value &= valid_mask;
1189 raw_write(env, ri, value);
1190}
1191
c4241c7d 1192static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
776d4e5c
PM
1193{
1194 ARMCPU *cpu = arm_env_get_cpu(env);
b85a1fd6
FA
1195
1196 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1197 * bank
1198 */
1199 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1200 ri->secure & ARM_CP_SECSTATE_S);
1201
1202 return cpu->ccsidr[index];
776d4e5c
PM
1203}
1204
c4241c7d
PM
1205static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1206 uint64_t value)
776d4e5c 1207{
8d5c773e 1208 raw_write(env, ri, value & 0xf);
776d4e5c
PM
1209}
1210
1090b9c6
PM
1211static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1212{
1213 CPUState *cs = ENV_GET_CPU(env);
1214 uint64_t ret = 0;
1215
1216 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1217 ret |= CPSR_I;
1218 }
1219 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1220 ret |= CPSR_F;
1221 }
1222 /* External aborts are not possible in QEMU so A bit is always clear */
1223 return ret;
1224}
1225
e9aa6c21 1226static const ARMCPRegInfo v7_cp_reginfo[] = {
7d57f408
PM
1227 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1228 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1229 .access = PL1_W, .type = ARM_CP_NOP },
200ac0ef
PM
1230 /* Performance monitors are implementation defined in v7,
1231 * but with an ARM recommended set of registers, which we
1232 * follow (although we don't actually implement any counters)
1233 *
1234 * Performance registers fall into three categories:
1235 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1236 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1237 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1238 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1239 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1240 */
1241 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
7a0e58fa 1242 .access = PL0_RW, .type = ARM_CP_ALIAS,
8521466b 1243 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1244 .writefn = pmcntenset_write,
1245 .accessfn = pmreg_access,
1246 .raw_writefn = raw_write },
8521466b
AF
1247 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1248 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1249 .access = PL0_RW, .accessfn = pmreg_access,
1250 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1251 .writefn = pmcntenset_write, .raw_writefn = raw_write },
200ac0ef 1252 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
8521466b
AF
1253 .access = PL0_RW,
1254 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1255 .accessfn = pmreg_access,
1256 .writefn = pmcntenclr_write,
7a0e58fa 1257 .type = ARM_CP_ALIAS },
8521466b
AF
1258 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1259 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1260 .access = PL0_RW, .accessfn = pmreg_access,
7a0e58fa 1261 .type = ARM_CP_ALIAS,
8521466b
AF
1262 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1263 .writefn = pmcntenclr_write },
200ac0ef
PM
1264 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1265 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
fcd25206
PM
1266 .accessfn = pmreg_access,
1267 .writefn = pmovsr_write,
1268 .raw_writefn = raw_write },
978364f1
AF
1269 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1270 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1271 .access = PL0_RW, .accessfn = pmreg_access,
1272 .type = ARM_CP_ALIAS,
1273 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1274 .writefn = pmovsr_write,
1275 .raw_writefn = raw_write },
fcd25206 1276 /* Unimplemented so WI. */
200ac0ef 1277 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
6ecd0b6b 1278 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
7c2cb42b 1279#ifndef CONFIG_USER_ONLY
6b040780
WH
1280 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1281 .access = PL0_RW, .type = ARM_CP_ALIAS,
1282 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
6ecd0b6b 1283 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
6b040780
WH
1284 .raw_writefn = raw_write},
1285 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1286 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
6ecd0b6b 1287 .access = PL0_RW, .accessfn = pmreg_access_selr,
6b040780
WH
1288 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1289 .writefn = pmselr_write, .raw_writefn = raw_write, },
200ac0ef 1290 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
7c2cb42b 1291 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
421c7ebd 1292 .readfn = pmccntr_read, .writefn = pmccntr_write32,
6ecd0b6b 1293 .accessfn = pmreg_access_ccntr },
8521466b
AF
1294 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1295 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
6ecd0b6b 1296 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
8521466b
AF
1297 .type = ARM_CP_IO,
1298 .readfn = pmccntr_read, .writefn = pmccntr_write, },
7c2cb42b 1299#endif
8521466b
AF
1300 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1301 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
0614601c 1302 .writefn = pmccfiltr_write,
8521466b
AF
1303 .access = PL0_RW, .accessfn = pmreg_access,
1304 .type = ARM_CP_IO,
1305 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1306 .resetvalue = 0, },
200ac0ef 1307 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
fdb86656
WH
1308 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1309 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1310 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1311 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1312 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1313 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
fcd25206 1314 /* Unimplemented, RAZ/WI. */
200ac0ef 1315 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
fcd25206 1316 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
6ecd0b6b 1317 .accessfn = pmreg_access_xevcntr },
200ac0ef 1318 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1fce1ba9 1319 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
200ac0ef
PM
1320 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1321 .resetvalue = 0,
d4e6df63 1322 .writefn = pmuserenr_write, .raw_writefn = raw_write },
8a83ffc2
AF
1323 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1324 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1fce1ba9 1325 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
8a83ffc2
AF
1326 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1327 .resetvalue = 0,
1328 .writefn = pmuserenr_write, .raw_writefn = raw_write },
200ac0ef 1329 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1fce1ba9 1330 .access = PL1_RW, .accessfn = access_tpm,
e6ec5457
WH
1331 .type = ARM_CP_ALIAS,
1332 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
200ac0ef 1333 .resetvalue = 0,
d4e6df63 1334 .writefn = pmintenset_write, .raw_writefn = raw_write },
e6ec5457
WH
1335 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1336 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1337 .access = PL1_RW, .accessfn = access_tpm,
1338 .type = ARM_CP_IO,
1339 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1340 .writefn = pmintenset_write, .raw_writefn = raw_write,
1341 .resetvalue = 0x0 },
200ac0ef 1342 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1fce1ba9 1343 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
200ac0ef 1344 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
b061a82b 1345 .writefn = pmintenclr_write, },
978364f1
AF
1346 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1347 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1fce1ba9 1348 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
978364f1
AF
1349 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1350 .writefn = pmintenclr_write },
7da845b0
PM
1351 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1352 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
7a0e58fa 1353 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
7da845b0
PM
1354 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1355 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
b85a1fd6
FA
1356 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1357 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1358 offsetof(CPUARMState, cp15.csselr_ns) } },
776d4e5c
PM
1359 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1360 * just RAZ for all cores:
1361 */
0ff644a7
PM
1362 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1363 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
776d4e5c 1364 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
f32cdad5
PM
1365 /* Auxiliary fault status registers: these also are IMPDEF, and we
1366 * choose to RAZ/WI for all cores.
1367 */
1368 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1369 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1370 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1371 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1372 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1373 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b0fe2427
PM
1374 /* MAIR can just read-as-written because we don't implement caches
1375 * and so don't need to care about memory attributes.
1376 */
1377 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1378 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
be693c87 1379 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
b0fe2427 1380 .resetvalue = 0 },
4cfb8ad8
PM
1381 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1382 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1383 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1384 .resetvalue = 0 },
b0fe2427
PM
1385 /* For non-long-descriptor page tables these are PRRR and NMRR;
1386 * regardless they still act as reads-as-written for QEMU.
b0fe2427 1387 */
1281f8e3 1388 /* MAIR0/1 are defined separately from their 64-bit counterpart which
be693c87
GB
1389 * allows them to assign the correct fieldoffset based on the endianness
1390 * handled in the field definitions.
1391 */
a903c449 1392 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
b0fe2427 1393 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
be693c87
GB
1394 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1395 offsetof(CPUARMState, cp15.mair0_ns) },
b0fe2427 1396 .resetfn = arm_cp_reset_ignore },
a903c449 1397 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
b0fe2427 1398 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
be693c87
GB
1399 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1400 offsetof(CPUARMState, cp15.mair1_ns) },
b0fe2427 1401 .resetfn = arm_cp_reset_ignore },
1090b9c6
PM
1402 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1403 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
7a0e58fa 1404 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
995939a6
PM
1405 /* 32 bit ITLB invalidates */
1406 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
7a0e58fa 1407 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1408 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7a0e58fa 1409 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1410 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
7a0e58fa 1411 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1412 /* 32 bit DTLB invalidates */
1413 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
7a0e58fa 1414 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1415 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7a0e58fa 1416 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1417 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
7a0e58fa 1418 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1419 /* 32 bit TLB invalidates */
1420 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 1421 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1422 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 1423 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1424 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 1425 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6 1426 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 1427 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
995939a6
PM
1428 REGINFO_SENTINEL
1429};
1430
1431static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1432 /* 32 bit TLB invalidates, Inner Shareable */
1433 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 1434 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
995939a6 1435 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 1436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
995939a6 1437 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 1438 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1439 .writefn = tlbiasid_is_write },
995939a6 1440 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 1441 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1442 .writefn = tlbimvaa_is_write },
e9aa6c21
PM
1443 REGINFO_SENTINEL
1444};
1445
c4241c7d
PM
1446static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1447 uint64_t value)
c326b979
PM
1448{
1449 value &= 1;
1450 env->teecr = value;
c326b979
PM
1451}
1452
3f208fd7
PM
1453static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1454 bool isread)
c326b979 1455{
dcbff19b 1456 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
92611c00 1457 return CP_ACCESS_TRAP;
c326b979 1458 }
92611c00 1459 return CP_ACCESS_OK;
c326b979
PM
1460}
1461
1462static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1463 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1464 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1465 .resetvalue = 0,
1466 .writefn = teecr_write },
1467 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1468 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
92611c00 1469 .accessfn = teehbr_access, .resetvalue = 0 },
c326b979
PM
1470 REGINFO_SENTINEL
1471};
1472
4d31c596 1473static const ARMCPRegInfo v6k_cp_reginfo[] = {
e4fe830b
PM
1474 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1475 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1476 .access = PL0_RW,
54bf36ed 1477 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
4d31c596
PM
1478 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1479 .access = PL0_RW,
54bf36ed
FA
1480 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1481 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
e4fe830b
PM
1482 .resetfn = arm_cp_reset_ignore },
1483 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1484 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1485 .access = PL0_R|PL1_W,
54bf36ed
FA
1486 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1487 .resetvalue = 0},
4d31c596
PM
1488 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1489 .access = PL0_R|PL1_W,
54bf36ed
FA
1490 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1491 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
e4fe830b 1492 .resetfn = arm_cp_reset_ignore },
54bf36ed 1493 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
e4fe830b 1494 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
4d31c596 1495 .access = PL1_RW,
54bf36ed
FA
1496 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1497 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1498 .access = PL1_RW,
1499 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1500 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1501 .resetvalue = 0 },
4d31c596
PM
1502 REGINFO_SENTINEL
1503};
1504
55d284af
PM
1505#ifndef CONFIG_USER_ONLY
1506
3f208fd7
PM
1507static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1508 bool isread)
00108f2d 1509{
75502672
PM
1510 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1511 * Writable only at the highest implemented exception level.
1512 */
1513 int el = arm_current_el(env);
1514
1515 switch (el) {
1516 case 0:
1517 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1518 return CP_ACCESS_TRAP;
1519 }
1520 break;
1521 case 1:
1522 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1523 arm_is_secure_below_el3(env)) {
1524 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1525 return CP_ACCESS_TRAP_UNCATEGORIZED;
1526 }
1527 break;
1528 case 2:
1529 case 3:
1530 break;
00108f2d 1531 }
75502672
PM
1532
1533 if (!isread && el < arm_highest_el(env)) {
1534 return CP_ACCESS_TRAP_UNCATEGORIZED;
1535 }
1536
00108f2d
PM
1537 return CP_ACCESS_OK;
1538}
1539
3f208fd7
PM
1540static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1541 bool isread)
00108f2d 1542{
0b6440af
EI
1543 unsigned int cur_el = arm_current_el(env);
1544 bool secure = arm_is_secure(env);
1545
00108f2d 1546 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
0b6440af 1547 if (cur_el == 0 &&
00108f2d
PM
1548 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1549 return CP_ACCESS_TRAP;
1550 }
0b6440af
EI
1551
1552 if (arm_feature(env, ARM_FEATURE_EL2) &&
1553 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1554 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1555 return CP_ACCESS_TRAP_EL2;
1556 }
00108f2d
PM
1557 return CP_ACCESS_OK;
1558}
1559
3f208fd7
PM
1560static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1561 bool isread)
00108f2d 1562{
0b6440af
EI
1563 unsigned int cur_el = arm_current_el(env);
1564 bool secure = arm_is_secure(env);
1565
00108f2d
PM
1566 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1567 * EL0[PV]TEN is zero.
1568 */
0b6440af 1569 if (cur_el == 0 &&
00108f2d
PM
1570 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1571 return CP_ACCESS_TRAP;
1572 }
0b6440af
EI
1573
1574 if (arm_feature(env, ARM_FEATURE_EL2) &&
1575 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1576 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1577 return CP_ACCESS_TRAP_EL2;
1578 }
00108f2d
PM
1579 return CP_ACCESS_OK;
1580}
1581
1582static CPAccessResult gt_pct_access(CPUARMState *env,
3f208fd7
PM
1583 const ARMCPRegInfo *ri,
1584 bool isread)
00108f2d 1585{
3f208fd7 1586 return gt_counter_access(env, GTIMER_PHYS, isread);
00108f2d
PM
1587}
1588
1589static CPAccessResult gt_vct_access(CPUARMState *env,
3f208fd7
PM
1590 const ARMCPRegInfo *ri,
1591 bool isread)
00108f2d 1592{
3f208fd7 1593 return gt_counter_access(env, GTIMER_VIRT, isread);
00108f2d
PM
1594}
1595
3f208fd7
PM
1596static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1597 bool isread)
00108f2d 1598{
3f208fd7 1599 return gt_timer_access(env, GTIMER_PHYS, isread);
00108f2d
PM
1600}
1601
3f208fd7
PM
1602static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1603 bool isread)
00108f2d 1604{
3f208fd7 1605 return gt_timer_access(env, GTIMER_VIRT, isread);
00108f2d
PM
1606}
1607
b4d3978c 1608static CPAccessResult gt_stimer_access(CPUARMState *env,
3f208fd7
PM
1609 const ARMCPRegInfo *ri,
1610 bool isread)
b4d3978c
PM
1611{
1612 /* The AArch64 register view of the secure physical timer is
1613 * always accessible from EL3, and configurably accessible from
1614 * Secure EL1.
1615 */
1616 switch (arm_current_el(env)) {
1617 case 1:
1618 if (!arm_is_secure(env)) {
1619 return CP_ACCESS_TRAP;
1620 }
1621 if (!(env->cp15.scr_el3 & SCR_ST)) {
1622 return CP_ACCESS_TRAP_EL3;
1623 }
1624 return CP_ACCESS_OK;
1625 case 0:
1626 case 2:
1627 return CP_ACCESS_TRAP;
1628 case 3:
1629 return CP_ACCESS_OK;
1630 default:
1631 g_assert_not_reached();
1632 }
1633}
1634
55d284af
PM
1635static uint64_t gt_get_countervalue(CPUARMState *env)
1636{
bc72ad67 1637 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
55d284af
PM
1638}
1639
1640static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1641{
1642 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1643
1644 if (gt->ctl & 1) {
1645 /* Timer enabled: calculate and set current ISTATUS, irq, and
1646 * reset timer to when ISTATUS next has to change
1647 */
edac4d8a
EI
1648 uint64_t offset = timeridx == GTIMER_VIRT ?
1649 cpu->env.cp15.cntvoff_el2 : 0;
55d284af
PM
1650 uint64_t count = gt_get_countervalue(&cpu->env);
1651 /* Note that this must be unsigned 64 bit arithmetic: */
edac4d8a 1652 int istatus = count - offset >= gt->cval;
55d284af 1653 uint64_t nexttick;
194cbc49 1654 int irqstate;
55d284af
PM
1655
1656 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
194cbc49
PM
1657
1658 irqstate = (istatus && !(gt->ctl & 2));
1659 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1660
55d284af
PM
1661 if (istatus) {
1662 /* Next transition is when count rolls back over to zero */
1663 nexttick = UINT64_MAX;
1664 } else {
1665 /* Next transition is when we hit cval */
edac4d8a 1666 nexttick = gt->cval + offset;
55d284af
PM
1667 }
1668 /* Note that the desired next expiry time might be beyond the
1669 * signed-64-bit range of a QEMUTimer -- in this case we just
1670 * set the timer for as far in the future as possible. When the
1671 * timer expires we will reset the timer for any remaining period.
1672 */
1673 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1674 nexttick = INT64_MAX / GTIMER_SCALE;
1675 }
bc72ad67 1676 timer_mod(cpu->gt_timer[timeridx], nexttick);
194cbc49 1677 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
55d284af
PM
1678 } else {
1679 /* Timer disabled: ISTATUS and timer output always clear */
1680 gt->ctl &= ~4;
1681 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
bc72ad67 1682 timer_del(cpu->gt_timer[timeridx]);
194cbc49 1683 trace_arm_gt_recalc_disabled(timeridx);
55d284af
PM
1684 }
1685}
1686
0e3eca4c
EI
1687static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1688 int timeridx)
55d284af
PM
1689{
1690 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af 1691
bc72ad67 1692 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
1693}
1694
c4241c7d 1695static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af 1696{
c4241c7d 1697 return gt_get_countervalue(env);
55d284af
PM
1698}
1699
edac4d8a
EI
1700static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1701{
1702 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1703}
1704
c4241c7d 1705static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1706 int timeridx,
c4241c7d 1707 uint64_t value)
55d284af 1708{
194cbc49 1709 trace_arm_gt_cval_write(timeridx, value);
55d284af
PM
1710 env->cp15.c14_timer[timeridx].cval = value;
1711 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af 1712}
c4241c7d 1713
0e3eca4c
EI
1714static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1715 int timeridx)
55d284af 1716{
edac4d8a 1717 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1718
c4241c7d 1719 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
edac4d8a 1720 (gt_get_countervalue(env) - offset));
55d284af
PM
1721}
1722
c4241c7d 1723static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1724 int timeridx,
c4241c7d 1725 uint64_t value)
55d284af 1726{
edac4d8a 1727 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1728
194cbc49 1729 trace_arm_gt_tval_write(timeridx, value);
edac4d8a 1730 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
18084b2f 1731 sextract64(value, 0, 32);
55d284af 1732 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af
PM
1733}
1734
c4241c7d 1735static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1736 int timeridx,
c4241c7d 1737 uint64_t value)
55d284af
PM
1738{
1739 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af
PM
1740 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1741
194cbc49 1742 trace_arm_gt_ctl_write(timeridx, value);
d3afacc7 1743 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
55d284af
PM
1744 if ((oldval ^ value) & 1) {
1745 /* Enable toggled */
1746 gt_recalc_timer(cpu, timeridx);
d3afacc7 1747 } else if ((oldval ^ value) & 2) {
55d284af
PM
1748 /* IMASK toggled: don't need to recalculate,
1749 * just set the interrupt line based on ISTATUS
1750 */
194cbc49
PM
1751 int irqstate = (oldval & 4) && !(value & 2);
1752
1753 trace_arm_gt_imask_toggle(timeridx, irqstate);
1754 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
55d284af 1755 }
55d284af
PM
1756}
1757
0e3eca4c
EI
1758static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1759{
1760 gt_timer_reset(env, ri, GTIMER_PHYS);
1761}
1762
1763static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764 uint64_t value)
1765{
1766 gt_cval_write(env, ri, GTIMER_PHYS, value);
1767}
1768
1769static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1770{
1771 return gt_tval_read(env, ri, GTIMER_PHYS);
1772}
1773
1774static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1775 uint64_t value)
1776{
1777 gt_tval_write(env, ri, GTIMER_PHYS, value);
1778}
1779
1780static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1781 uint64_t value)
1782{
1783 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1784}
1785
1786static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1787{
1788 gt_timer_reset(env, ri, GTIMER_VIRT);
1789}
1790
1791static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792 uint64_t value)
1793{
1794 gt_cval_write(env, ri, GTIMER_VIRT, value);
1795}
1796
1797static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1798{
1799 return gt_tval_read(env, ri, GTIMER_VIRT);
1800}
1801
1802static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1803 uint64_t value)
1804{
1805 gt_tval_write(env, ri, GTIMER_VIRT, value);
1806}
1807
1808static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1809 uint64_t value)
1810{
1811 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1812}
1813
edac4d8a
EI
1814static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value)
1816{
1817 ARMCPU *cpu = arm_env_get_cpu(env);
1818
194cbc49 1819 trace_arm_gt_cntvoff_write(value);
edac4d8a
EI
1820 raw_write(env, ri, value);
1821 gt_recalc_timer(cpu, GTIMER_VIRT);
1822}
1823
b0e66d95
EI
1824static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1825{
1826 gt_timer_reset(env, ri, GTIMER_HYP);
1827}
1828
1829static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1830 uint64_t value)
1831{
1832 gt_cval_write(env, ri, GTIMER_HYP, value);
1833}
1834
1835static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1836{
1837 return gt_tval_read(env, ri, GTIMER_HYP);
1838}
1839
1840static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841 uint64_t value)
1842{
1843 gt_tval_write(env, ri, GTIMER_HYP, value);
1844}
1845
1846static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847 uint64_t value)
1848{
1849 gt_ctl_write(env, ri, GTIMER_HYP, value);
1850}
1851
b4d3978c
PM
1852static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1853{
1854 gt_timer_reset(env, ri, GTIMER_SEC);
1855}
1856
1857static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858 uint64_t value)
1859{
1860 gt_cval_write(env, ri, GTIMER_SEC, value);
1861}
1862
1863static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1864{
1865 return gt_tval_read(env, ri, GTIMER_SEC);
1866}
1867
1868static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1869 uint64_t value)
1870{
1871 gt_tval_write(env, ri, GTIMER_SEC, value);
1872}
1873
1874static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875 uint64_t value)
1876{
1877 gt_ctl_write(env, ri, GTIMER_SEC, value);
1878}
1879
55d284af
PM
1880void arm_gt_ptimer_cb(void *opaque)
1881{
1882 ARMCPU *cpu = opaque;
1883
1884 gt_recalc_timer(cpu, GTIMER_PHYS);
1885}
1886
1887void arm_gt_vtimer_cb(void *opaque)
1888{
1889 ARMCPU *cpu = opaque;
1890
1891 gt_recalc_timer(cpu, GTIMER_VIRT);
1892}
1893
b0e66d95
EI
1894void arm_gt_htimer_cb(void *opaque)
1895{
1896 ARMCPU *cpu = opaque;
1897
1898 gt_recalc_timer(cpu, GTIMER_HYP);
1899}
1900
b4d3978c
PM
1901void arm_gt_stimer_cb(void *opaque)
1902{
1903 ARMCPU *cpu = opaque;
1904
1905 gt_recalc_timer(cpu, GTIMER_SEC);
1906}
1907
55d284af
PM
1908static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1909 /* Note that CNTFRQ is purely reads-as-written for the benefit
1910 * of software; writing it doesn't actually change the timer frequency.
1911 * Our reset value matches the fixed frequency we implement the timer at.
1912 */
1913 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 1914 .type = ARM_CP_ALIAS,
a7adc4b7
PM
1915 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1916 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
a7adc4b7
PM
1917 },
1918 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1919 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1920 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
55d284af
PM
1921 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1922 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
55d284af
PM
1923 },
1924 /* overall control: mostly access permissions */
a7adc4b7
PM
1925 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1926 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
55d284af
PM
1927 .access = PL1_RW,
1928 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1929 .resetvalue = 0,
1930 },
1931 /* per-timer control */
1932 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
9ff9dd3c 1933 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1934 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1935 .accessfn = gt_ptimer_access,
1936 .fieldoffset = offsetoflow32(CPUARMState,
1937 cp15.c14_timer[GTIMER_PHYS].ctl),
0e3eca4c 1938 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
a7adc4b7 1939 },
9ff9dd3c
PM
1940 { .name = "CNTP_CTL(S)",
1941 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1942 .secure = ARM_CP_SECSTATE_S,
1943 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1944 .accessfn = gt_ptimer_access,
1945 .fieldoffset = offsetoflow32(CPUARMState,
1946 cp15.c14_timer[GTIMER_SEC].ctl),
1947 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1948 },
a7adc4b7
PM
1949 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1950 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
55d284af 1951 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1952 .accessfn = gt_ptimer_access,
55d284af
PM
1953 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1954 .resetvalue = 0,
0e3eca4c 1955 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1956 },
1957 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
7a0e58fa 1958 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1959 .accessfn = gt_vtimer_access,
1960 .fieldoffset = offsetoflow32(CPUARMState,
1961 cp15.c14_timer[GTIMER_VIRT].ctl),
0e3eca4c 1962 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
a7adc4b7
PM
1963 },
1964 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1965 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
55d284af 1966 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1967 .accessfn = gt_vtimer_access,
55d284af
PM
1968 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1969 .resetvalue = 0,
0e3eca4c 1970 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1971 },
1972 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1973 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
9ff9dd3c 1974 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1975 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1976 .accessfn = gt_ptimer_access,
0e3eca4c 1977 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
55d284af 1978 },
9ff9dd3c
PM
1979 { .name = "CNTP_TVAL(S)",
1980 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1981 .secure = ARM_CP_SECSTATE_S,
1982 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1983 .accessfn = gt_ptimer_access,
1984 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1985 },
a7adc4b7
PM
1986 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1987 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
7a0e58fa 1988 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
1989 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1990 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
a7adc4b7 1991 },
55d284af 1992 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
7a0e58fa 1993 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1994 .accessfn = gt_vtimer_access,
0e3eca4c 1995 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
55d284af 1996 },
a7adc4b7
PM
1997 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1998 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
7a0e58fa 1999 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
2000 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2001 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
a7adc4b7 2002 },
55d284af
PM
2003 /* The counter itself */
2004 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
7a0e58fa 2005 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 2006 .accessfn = gt_pct_access,
a7adc4b7
PM
2007 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2008 },
2009 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2010 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
7a0e58fa 2011 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 2012 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
55d284af
PM
2013 },
2014 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
7a0e58fa 2015 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 2016 .accessfn = gt_vct_access,
edac4d8a 2017 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
a7adc4b7
PM
2018 },
2019 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2020 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
7a0e58fa 2021 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 2022 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
55d284af
PM
2023 },
2024 /* Comparison value, indicating when the timer goes off */
2025 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 2026 .secure = ARM_CP_SECSTATE_NS,
55d284af 2027 .access = PL1_RW | PL0_R,
7a0e58fa 2028 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 2029 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
b061a82b 2030 .accessfn = gt_ptimer_access,
0e3eca4c 2031 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
a7adc4b7 2032 },
9ff9dd3c
PM
2033 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2034 .secure = ARM_CP_SECSTATE_S,
2035 .access = PL1_RW | PL0_R,
2036 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2037 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2038 .accessfn = gt_ptimer_access,
2039 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2040 },
a7adc4b7
PM
2041 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2043 .access = PL1_RW | PL0_R,
2044 .type = ARM_CP_IO,
2045 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
12cde08a 2046 .resetvalue = 0, .accessfn = gt_ptimer_access,
0e3eca4c 2047 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
55d284af
PM
2048 },
2049 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2050 .access = PL1_RW | PL0_R,
7a0e58fa 2051 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 2052 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
b061a82b 2053 .accessfn = gt_vtimer_access,
0e3eca4c 2054 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
a7adc4b7
PM
2055 },
2056 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2057 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2058 .access = PL1_RW | PL0_R,
2059 .type = ARM_CP_IO,
2060 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2061 .resetvalue = 0, .accessfn = gt_vtimer_access,
0e3eca4c 2062 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
55d284af 2063 },
b4d3978c
PM
2064 /* Secure timer -- this is actually restricted to only EL3
2065 * and configurably Secure-EL1 via the accessfn.
2066 */
2067 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2068 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2069 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2070 .accessfn = gt_stimer_access,
2071 .readfn = gt_sec_tval_read,
2072 .writefn = gt_sec_tval_write,
2073 .resetfn = gt_sec_timer_reset,
2074 },
2075 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2076 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2077 .type = ARM_CP_IO, .access = PL1_RW,
2078 .accessfn = gt_stimer_access,
2079 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2080 .resetvalue = 0,
2081 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2082 },
2083 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2084 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2085 .type = ARM_CP_IO, .access = PL1_RW,
2086 .accessfn = gt_stimer_access,
2087 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2088 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2089 },
55d284af
PM
2090 REGINFO_SENTINEL
2091};
2092
2093#else
2094/* In user-mode none of the generic timer registers are accessible,
bc72ad67 2095 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
55d284af
PM
2096 * so instead just don't register any of them.
2097 */
6cc7a3ae 2098static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
6cc7a3ae
PM
2099 REGINFO_SENTINEL
2100};
2101
55d284af
PM
2102#endif
2103
c4241c7d 2104static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 2105{
891a2fe7 2106 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8d5c773e 2107 raw_write(env, ri, value);
891a2fe7 2108 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8d5c773e 2109 raw_write(env, ri, value & 0xfffff6ff);
4a501606 2110 } else {
8d5c773e 2111 raw_write(env, ri, value & 0xfffff1ff);
4a501606 2112 }
4a501606
PM
2113}
2114
2115#ifndef CONFIG_USER_ONLY
2116/* get_phys_addr() isn't present for user-mode-only targets */
702a9357 2117
3f208fd7
PM
2118static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2119 bool isread)
92611c00
PM
2120{
2121 if (ri->opc2 & 4) {
87562e4f
PM
2122 /* The ATS12NSO* operations must trap to EL3 if executed in
2123 * Secure EL1 (which can only happen if EL3 is AArch64).
2124 * They are simply UNDEF if executed from NS EL1.
2125 * They function normally from EL2 or EL3.
92611c00 2126 */
87562e4f
PM
2127 if (arm_current_el(env) == 1) {
2128 if (arm_is_secure_below_el3(env)) {
2129 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2130 }
2131 return CP_ACCESS_TRAP_UNCATEGORIZED;
2132 }
92611c00
PM
2133 }
2134 return CP_ACCESS_OK;
2135}
2136
060e8a48 2137static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
03ae85f8 2138 MMUAccessType access_type, ARMMMUIdx mmu_idx)
4a501606 2139{
a8170e5e 2140 hwaddr phys_addr;
4a501606
PM
2141 target_ulong page_size;
2142 int prot;
b7cc4e82
PC
2143 uint32_t fsr;
2144 bool ret;
01c097f7 2145 uint64_t par64;
8bf5b6a9 2146 MemTxAttrs attrs = {};
e14b5a23 2147 ARMMMUFaultInfo fi = {};
4a501606 2148
d3649702 2149 ret = get_phys_addr(env, value, access_type, mmu_idx,
e14b5a23 2150 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
702a9357 2151 if (extended_addresses_enabled(env)) {
b7cc4e82 2152 /* fsr is a DFSR/IFSR value for the long descriptor
702a9357
PM
2153 * translation table format, but with WnR always clear.
2154 * Convert it to a 64-bit PAR.
2155 */
01c097f7 2156 par64 = (1 << 11); /* LPAE bit always set */
b7cc4e82 2157 if (!ret) {
702a9357 2158 par64 |= phys_addr & ~0xfffULL;
8bf5b6a9
PM
2159 if (!attrs.secure) {
2160 par64 |= (1 << 9); /* NS */
2161 }
702a9357 2162 /* We don't set the ATTR or SH fields in the PAR. */
4a501606 2163 } else {
702a9357 2164 par64 |= 1; /* F */
b7cc4e82 2165 par64 |= (fsr & 0x3f) << 1; /* FS */
702a9357
PM
2166 /* Note that S2WLK and FSTAGE are always zero, because we don't
2167 * implement virtualization and therefore there can't be a stage 2
2168 * fault.
2169 */
4a501606
PM
2170 }
2171 } else {
b7cc4e82 2172 /* fsr is a DFSR/IFSR value for the short descriptor
702a9357
PM
2173 * translation table format (with WnR always clear).
2174 * Convert it to a 32-bit PAR.
2175 */
b7cc4e82 2176 if (!ret) {
702a9357
PM
2177 /* We do not set any attribute bits in the PAR */
2178 if (page_size == (1 << 24)
2179 && arm_feature(env, ARM_FEATURE_V7)) {
01c097f7 2180 par64 = (phys_addr & 0xff000000) | (1 << 1);
702a9357 2181 } else {
01c097f7 2182 par64 = phys_addr & 0xfffff000;
702a9357 2183 }
8bf5b6a9
PM
2184 if (!attrs.secure) {
2185 par64 |= (1 << 9); /* NS */
2186 }
702a9357 2187 } else {
b7cc4e82
PC
2188 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2189 ((fsr & 0xf) << 1) | 1;
702a9357 2190 }
4a501606 2191 }
060e8a48
PM
2192 return par64;
2193}
2194
2195static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2196{
03ae85f8 2197 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
060e8a48 2198 uint64_t par64;
d3649702
PM
2199 ARMMMUIdx mmu_idx;
2200 int el = arm_current_el(env);
2201 bool secure = arm_is_secure_below_el3(env);
060e8a48 2202
d3649702
PM
2203 switch (ri->opc2 & 6) {
2204 case 0:
2205 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2206 switch (el) {
2207 case 3:
2208 mmu_idx = ARMMMUIdx_S1E3;
2209 break;
2210 case 2:
2211 mmu_idx = ARMMMUIdx_S1NSE1;
2212 break;
2213 case 1:
2214 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2215 break;
2216 default:
2217 g_assert_not_reached();
2218 }
2219 break;
2220 case 2:
2221 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2222 switch (el) {
2223 case 3:
2224 mmu_idx = ARMMMUIdx_S1SE0;
2225 break;
2226 case 2:
2227 mmu_idx = ARMMMUIdx_S1NSE0;
2228 break;
2229 case 1:
2230 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2231 break;
2232 default:
2233 g_assert_not_reached();
2234 }
2235 break;
2236 case 4:
2237 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2238 mmu_idx = ARMMMUIdx_S12NSE1;
2239 break;
2240 case 6:
2241 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2242 mmu_idx = ARMMMUIdx_S12NSE0;
2243 break;
2244 default:
2245 g_assert_not_reached();
2246 }
2247
2248 par64 = do_ats_write(env, value, access_type, mmu_idx);
01c097f7
FA
2249
2250 A32_BANKED_CURRENT_REG_SET(env, par, par64);
4a501606 2251}
060e8a48 2252
14db7fe0
PM
2253static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2254 uint64_t value)
2255{
03ae85f8 2256 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
14db7fe0
PM
2257 uint64_t par64;
2258
2259 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2260
2261 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2262}
2263
3f208fd7
PM
2264static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2265 bool isread)
2a47df95
PM
2266{
2267 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2268 return CP_ACCESS_TRAP;
2269 }
2270 return CP_ACCESS_OK;
2271}
2272
060e8a48
PM
2273static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2274 uint64_t value)
2275{
03ae85f8 2276 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
d3649702
PM
2277 ARMMMUIdx mmu_idx;
2278 int secure = arm_is_secure_below_el3(env);
2279
2280 switch (ri->opc2 & 6) {
2281 case 0:
2282 switch (ri->opc1) {
2283 case 0: /* AT S1E1R, AT S1E1W */
2284 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2285 break;
2286 case 4: /* AT S1E2R, AT S1E2W */
2287 mmu_idx = ARMMMUIdx_S1E2;
2288 break;
2289 case 6: /* AT S1E3R, AT S1E3W */
2290 mmu_idx = ARMMMUIdx_S1E3;
2291 break;
2292 default:
2293 g_assert_not_reached();
2294 }
2295 break;
2296 case 2: /* AT S1E0R, AT S1E0W */
2297 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2298 break;
2299 case 4: /* AT S12E1R, AT S12E1W */
2a47df95 2300 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
d3649702
PM
2301 break;
2302 case 6: /* AT S12E0R, AT S12E0W */
2a47df95 2303 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
d3649702
PM
2304 break;
2305 default:
2306 g_assert_not_reached();
2307 }
060e8a48 2308
d3649702 2309 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
060e8a48 2310}
4a501606
PM
2311#endif
2312
2313static const ARMCPRegInfo vapa_cp_reginfo[] = {
2314 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2315 .access = PL1_RW, .resetvalue = 0,
01c097f7
FA
2316 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2317 offsetoflow32(CPUARMState, cp15.par_ns) },
4a501606
PM
2318 .writefn = par_write },
2319#ifndef CONFIG_USER_ONLY
87562e4f 2320 /* This underdecoding is safe because the reginfo is NO_RAW. */
4a501606 2321 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
92611c00 2322 .access = PL1_W, .accessfn = ats_access,
7a0e58fa 2323 .writefn = ats_write, .type = ARM_CP_NO_RAW },
4a501606
PM
2324#endif
2325 REGINFO_SENTINEL
2326};
2327
18032bec
PM
2328/* Return basic MPU access permission bits. */
2329static uint32_t simple_mpu_ap_bits(uint32_t val)
2330{
2331 uint32_t ret;
2332 uint32_t mask;
2333 int i;
2334 ret = 0;
2335 mask = 3;
2336 for (i = 0; i < 16; i += 2) {
2337 ret |= (val >> i) & mask;
2338 mask <<= 2;
2339 }
2340 return ret;
2341}
2342
2343/* Pad basic MPU access permission bits to extended format. */
2344static uint32_t extended_mpu_ap_bits(uint32_t val)
2345{
2346 uint32_t ret;
2347 uint32_t mask;
2348 int i;
2349 ret = 0;
2350 mask = 3;
2351 for (i = 0; i < 16; i += 2) {
2352 ret |= (val & mask) << i;
2353 mask <<= 2;
2354 }
2355 return ret;
2356}
2357
c4241c7d
PM
2358static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2359 uint64_t value)
18032bec 2360{
7e09797c 2361 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
18032bec
PM
2362}
2363
c4241c7d 2364static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 2365{
7e09797c 2366 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
18032bec
PM
2367}
2368
c4241c7d
PM
2369static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2370 uint64_t value)
18032bec 2371{
7e09797c 2372 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
18032bec
PM
2373}
2374
c4241c7d 2375static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 2376{
7e09797c 2377 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
18032bec
PM
2378}
2379
6cb0b013
PC
2380static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2381{
2382 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2383
2384 if (!u32p) {
2385 return 0;
2386 }
2387
1bc04a88 2388 u32p += env->pmsav7.rnr[M_REG_NS];
6cb0b013
PC
2389 return *u32p;
2390}
2391
2392static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2393 uint64_t value)
2394{
2395 ARMCPU *cpu = arm_env_get_cpu(env);
2396 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2397
2398 if (!u32p) {
2399 return;
2400 }
2401
1bc04a88 2402 u32p += env->pmsav7.rnr[M_REG_NS];
d10eb08f 2403 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
6cb0b013
PC
2404 *u32p = value;
2405}
2406
6cb0b013
PC
2407static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2408 uint64_t value)
2409{
2410 ARMCPU *cpu = arm_env_get_cpu(env);
2411 uint32_t nrgs = cpu->pmsav7_dregion;
2412
2413 if (value >= nrgs) {
2414 qemu_log_mask(LOG_GUEST_ERROR,
2415 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2416 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2417 return;
2418 }
2419
2420 raw_write(env, ri, value);
2421}
2422
2423static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
69ceea64
PM
2424 /* Reset for all these registers is handled in arm_cpu_reset(),
2425 * because the PMSAv7 is also used by M-profile CPUs, which do
2426 * not register cpregs but still need the state to be reset.
2427 */
6cb0b013
PC
2428 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2429 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2430 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
69ceea64
PM
2431 .readfn = pmsav7_read, .writefn = pmsav7_write,
2432 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
2433 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2434 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2435 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
69ceea64
PM
2436 .readfn = pmsav7_read, .writefn = pmsav7_write,
2437 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
2438 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2439 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2440 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
69ceea64
PM
2441 .readfn = pmsav7_read, .writefn = pmsav7_write,
2442 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
2443 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2444 .access = PL1_RW,
1bc04a88 2445 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
69ceea64
PM
2446 .writefn = pmsav7_rgnr_write,
2447 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
2448 REGINFO_SENTINEL
2449};
2450
18032bec
PM
2451static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2452 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2453 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2454 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
18032bec
PM
2455 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2456 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
7a0e58fa 2457 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2458 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
18032bec
PM
2459 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2460 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2461 .access = PL1_RW,
7e09797c
PM
2462 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2463 .resetvalue = 0, },
18032bec
PM
2464 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2465 .access = PL1_RW,
7e09797c
PM
2466 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2467 .resetvalue = 0, },
ecce5c3c
PM
2468 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2469 .access = PL1_RW,
2470 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2471 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2472 .access = PL1_RW,
2473 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31 2474 /* Protection region base and size registers */
e508a92b
PM
2475 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2476 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2477 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2478 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2479 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2480 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2481 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2482 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2483 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2484 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2485 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2486 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2487 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2488 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2489 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2490 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2491 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2492 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2493 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2494 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2495 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2496 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2497 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2498 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
18032bec
PM
2499 REGINFO_SENTINEL
2500};
2501
c4241c7d
PM
2502static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2503 uint64_t value)
ecce5c3c 2504{
11f136ee 2505 TCR *tcr = raw_ptr(env, ri);
2ebcebe2
PM
2506 int maskshift = extract32(value, 0, 3);
2507
e389be16
FA
2508 if (!arm_feature(env, ARM_FEATURE_V8)) {
2509 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2510 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2511 * using Long-desciptor translation table format */
2512 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2513 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2514 /* In an implementation that includes the Security Extensions
2515 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2516 * Short-descriptor translation table format.
2517 */
2518 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2519 } else {
2520 value &= TTBCR_N;
2521 }
e42c4db3 2522 }
e389be16 2523
b6af0975 2524 /* Update the masks corresponding to the TCR bank being written
11f136ee 2525 * Note that we always calculate mask and base_mask, but
e42c4db3 2526 * they are only used for short-descriptor tables (ie if EAE is 0);
11f136ee
FA
2527 * for long-descriptor tables the TCR fields are used differently
2528 * and the mask and base_mask values are meaningless.
e42c4db3 2529 */
11f136ee
FA
2530 tcr->raw_tcr = value;
2531 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2532 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
ecce5c3c
PM
2533}
2534
c4241c7d
PM
2535static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2536 uint64_t value)
d4e6df63 2537{
00c8cb0a
AF
2538 ARMCPU *cpu = arm_env_get_cpu(env);
2539
d4e6df63
PM
2540 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2541 /* With LPAE the TTBCR could result in a change of ASID
2542 * via the TTBCR.A1 bit, so do a TLB flush.
2543 */
d10eb08f 2544 tlb_flush(CPU(cpu));
d4e6df63 2545 }
c4241c7d 2546 vmsa_ttbcr_raw_write(env, ri, value);
d4e6df63
PM
2547}
2548
ecce5c3c
PM
2549static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2550{
11f136ee
FA
2551 TCR *tcr = raw_ptr(env, ri);
2552
2553 /* Reset both the TCR as well as the masks corresponding to the bank of
2554 * the TCR being reset.
2555 */
2556 tcr->raw_tcr = 0;
2557 tcr->mask = 0;
2558 tcr->base_mask = 0xffffc000u;
ecce5c3c
PM
2559}
2560
cb2e37df
PM
2561static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2562 uint64_t value)
2563{
00c8cb0a 2564 ARMCPU *cpu = arm_env_get_cpu(env);
11f136ee 2565 TCR *tcr = raw_ptr(env, ri);
00c8cb0a 2566
cb2e37df 2567 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
d10eb08f 2568 tlb_flush(CPU(cpu));
11f136ee 2569 tcr->raw_tcr = value;
cb2e37df
PM
2570}
2571
327ed10f
PM
2572static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2573 uint64_t value)
2574{
2575 /* 64 bit accesses to the TTBRs can change the ASID and so we
2576 * must flush the TLB.
2577 */
2578 if (cpreg_field_is_64bit(ri)) {
00c8cb0a
AF
2579 ARMCPU *cpu = arm_env_get_cpu(env);
2580
d10eb08f 2581 tlb_flush(CPU(cpu));
327ed10f
PM
2582 }
2583 raw_write(env, ri, value);
2584}
2585
b698e9cf
EI
2586static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2587 uint64_t value)
2588{
2589 ARMCPU *cpu = arm_env_get_cpu(env);
2590 CPUState *cs = CPU(cpu);
2591
2592 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2593 if (raw_read(env, ri) != value) {
0336cbf8 2594 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2595 ARMMMUIdxBit_S12NSE1 |
2596 ARMMMUIdxBit_S12NSE0 |
2597 ARMMMUIdxBit_S2NS);
b698e9cf
EI
2598 raw_write(env, ri, value);
2599 }
2600}
2601
8e5d75c9 2602static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
18032bec 2603 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2604 .access = PL1_RW, .type = ARM_CP_ALIAS,
4a7e2d73 2605 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
b061a82b 2606 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
18032bec 2607 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
88ca1c2d
FA
2608 .access = PL1_RW, .resetvalue = 0,
2609 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2610 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
8e5d75c9
PC
2611 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2612 .access = PL1_RW, .resetvalue = 0,
2613 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2614 offsetof(CPUARMState, cp15.dfar_ns) } },
2615 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2616 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2617 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2618 .resetvalue = 0, },
2619 REGINFO_SENTINEL
2620};
2621
2622static const ARMCPRegInfo vmsa_cp_reginfo[] = {
6cd8a264
RH
2623 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2624 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2625 .access = PL1_RW,
d81c519c 2626 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
327ed10f 2627 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2628 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2629 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2630 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2631 offsetof(CPUARMState, cp15.ttbr0_ns) } },
327ed10f 2632 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2633 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2634 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2635 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2636 offsetof(CPUARMState, cp15.ttbr1_ns) } },
cb2e37df
PM
2637 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2638 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2639 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2640 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
11f136ee 2641 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
cb2e37df 2642 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
7a0e58fa 2643 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
b061a82b 2644 .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee
FA
2645 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2646 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
18032bec
PM
2647 REGINFO_SENTINEL
2648};
2649
c4241c7d
PM
2650static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2651 uint64_t value)
1047b9d7
PM
2652{
2653 env->cp15.c15_ticonfig = value & 0xe7;
2654 /* The OS_TYPE bit in this register changes the reported CPUID! */
2655 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2656 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1047b9d7
PM
2657}
2658
c4241c7d
PM
2659static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2660 uint64_t value)
1047b9d7
PM
2661{
2662 env->cp15.c15_threadid = value & 0xffff;
1047b9d7
PM
2663}
2664
c4241c7d
PM
2665static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2666 uint64_t value)
1047b9d7
PM
2667{
2668 /* Wait-for-interrupt (deprecated) */
c3affe56 2669 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1047b9d7
PM
2670}
2671
c4241c7d
PM
2672static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2673 uint64_t value)
c4804214
PM
2674{
2675 /* On OMAP there are registers indicating the max/min index of dcache lines
2676 * containing a dirty line; cache flush operations have to reset these.
2677 */
2678 env->cp15.c15_i_max = 0x000;
2679 env->cp15.c15_i_min = 0xff0;
c4804214
PM
2680}
2681
18032bec
PM
2682static const ARMCPRegInfo omap_cp_reginfo[] = {
2683 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2684 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
d81c519c 2685 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
6cd8a264 2686 .resetvalue = 0, },
1047b9d7
PM
2687 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2688 .access = PL1_RW, .type = ARM_CP_NOP },
2689 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2690 .access = PL1_RW,
2691 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2692 .writefn = omap_ticonfig_write },
2693 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2694 .access = PL1_RW,
2695 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2696 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2697 .access = PL1_RW, .resetvalue = 0xff0,
2698 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2699 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2700 .access = PL1_RW,
2701 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2702 .writefn = omap_threadid_write },
2703 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2704 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
7a0e58fa 2705 .type = ARM_CP_NO_RAW,
1047b9d7
PM
2706 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2707 /* TODO: Peripheral port remap register:
2708 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2709 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2710 * when MMU is off.
2711 */
c4804214 2712 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
d4e6df63 2713 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
7a0e58fa 2714 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
c4804214 2715 .writefn = omap_cachemaint_write },
34f90529
PM
2716 { .name = "C9", .cp = 15, .crn = 9,
2717 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2718 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
2719 REGINFO_SENTINEL
2720};
2721
c4241c7d
PM
2722static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2723 uint64_t value)
1047b9d7 2724{
c0f4af17 2725 env->cp15.c15_cpar = value & 0x3fff;
1047b9d7
PM
2726}
2727
2728static const ARMCPRegInfo xscale_cp_reginfo[] = {
2729 { .name = "XSCALE_CPAR",
2730 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2731 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2732 .writefn = xscale_cpar_write, },
2771db27
PM
2733 { .name = "XSCALE_AUXCR",
2734 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2735 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2736 .resetvalue = 0, },
3b771579
PM
2737 /* XScale specific cache-lockdown: since we have no cache we NOP these
2738 * and hope the guest does not really rely on cache behaviour.
2739 */
2740 { .name = "XSCALE_LOCK_ICACHE_LINE",
2741 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2742 .access = PL1_W, .type = ARM_CP_NOP },
2743 { .name = "XSCALE_UNLOCK_ICACHE",
2744 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2745 .access = PL1_W, .type = ARM_CP_NOP },
2746 { .name = "XSCALE_DCACHE_LOCK",
2747 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2748 .access = PL1_RW, .type = ARM_CP_NOP },
2749 { .name = "XSCALE_UNLOCK_DCACHE",
2750 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2751 .access = PL1_W, .type = ARM_CP_NOP },
1047b9d7
PM
2752 REGINFO_SENTINEL
2753};
2754
2755static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2756 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2757 * implementation of this implementation-defined space.
2758 * Ideally this should eventually disappear in favour of actually
2759 * implementing the correct behaviour for all cores.
2760 */
2761 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2762 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671cd87 2763 .access = PL1_RW,
7a0e58fa 2764 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
d4e6df63 2765 .resetvalue = 0 },
18032bec
PM
2766 REGINFO_SENTINEL
2767};
2768
c4804214
PM
2769static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2770 /* Cache status: RAZ because we have no cache so it's always clean */
2771 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
7a0e58fa 2772 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2773 .resetvalue = 0 },
c4804214
PM
2774 REGINFO_SENTINEL
2775};
2776
2777static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2778 /* We never have a a block transfer operation in progress */
2779 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
7a0e58fa 2780 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2781 .resetvalue = 0 },
30b05bba
PM
2782 /* The cache ops themselves: these all NOP for QEMU */
2783 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2784 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2785 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2786 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2787 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2788 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2789 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2790 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2791 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2792 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2793 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2794 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
c4804214
PM
2795 REGINFO_SENTINEL
2796};
2797
2798static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2799 /* The cache test-and-clean instructions always return (1 << 30)
2800 * to indicate that there are no dirty cache lines.
2801 */
2802 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
7a0e58fa 2803 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2804 .resetvalue = (1 << 30) },
c4804214 2805 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
7a0e58fa 2806 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2807 .resetvalue = (1 << 30) },
c4804214
PM
2808 REGINFO_SENTINEL
2809};
2810
34f90529
PM
2811static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2812 /* Ignore ReadBuffer accesses */
2813 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2814 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
d4e6df63 2815 .access = PL1_RW, .resetvalue = 0,
7a0e58fa 2816 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
34f90529
PM
2817 REGINFO_SENTINEL
2818};
2819
731de9e6
EI
2820static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2821{
2822 ARMCPU *cpu = arm_env_get_cpu(env);
2823 unsigned int cur_el = arm_current_el(env);
2824 bool secure = arm_is_secure(env);
2825
2826 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2827 return env->cp15.vpidr_el2;
2828 }
2829 return raw_read(env, ri);
2830}
2831
06a7e647 2832static uint64_t mpidr_read_val(CPUARMState *env)
81bdde9d 2833{
eb5e1d3c
PF
2834 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2835 uint64_t mpidr = cpu->mp_affinity;
2836
81bdde9d 2837 if (arm_feature(env, ARM_FEATURE_V7MP)) {
78dbbbe4 2838 mpidr |= (1U << 31);
81bdde9d
PM
2839 /* Cores which are uniprocessor (non-coherent)
2840 * but still implement the MP extensions set
a8e81b31 2841 * bit 30. (For instance, Cortex-R5).
81bdde9d 2842 */
a8e81b31
PC
2843 if (cpu->mp_is_up) {
2844 mpidr |= (1u << 30);
2845 }
81bdde9d 2846 }
c4241c7d 2847 return mpidr;
81bdde9d
PM
2848}
2849
06a7e647
EI
2850static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2851{
f0d574d6
EI
2852 unsigned int cur_el = arm_current_el(env);
2853 bool secure = arm_is_secure(env);
2854
2855 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2856 return env->cp15.vmpidr_el2;
2857 }
06a7e647
EI
2858 return mpidr_read_val(env);
2859}
2860
81bdde9d 2861static const ARMCPRegInfo mpidr_cp_reginfo[] = {
4b7fff2f
PM
2862 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2863 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7a0e58fa 2864 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
81bdde9d
PM
2865 REGINFO_SENTINEL
2866};
2867
7ac681cf 2868static const ARMCPRegInfo lpae_cp_reginfo[] = {
a903c449 2869 /* NOP AMAIR0/1 */
b0fe2427
PM
2870 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2871 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
a903c449 2872 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2873 .resetvalue = 0 },
b0fe2427 2874 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
7ac681cf 2875 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
a903c449 2876 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2877 .resetvalue = 0 },
891a2fe7 2878 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
01c097f7
FA
2879 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2880 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2881 offsetof(CPUARMState, cp15.par_ns)} },
891a2fe7 2882 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
7a0e58fa 2883 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2884 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2885 offsetof(CPUARMState, cp15.ttbr0_ns) },
b061a82b 2886 .writefn = vmsa_ttbr_write, },
891a2fe7 2887 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
7a0e58fa 2888 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2889 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2890 offsetof(CPUARMState, cp15.ttbr1_ns) },
b061a82b 2891 .writefn = vmsa_ttbr_write, },
7ac681cf
PM
2892 REGINFO_SENTINEL
2893};
2894
c4241c7d 2895static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2896{
c4241c7d 2897 return vfp_get_fpcr(env);
b0d2b7d0
PM
2898}
2899
c4241c7d
PM
2900static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2901 uint64_t value)
b0d2b7d0
PM
2902{
2903 vfp_set_fpcr(env, value);
b0d2b7d0
PM
2904}
2905
c4241c7d 2906static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2907{
c4241c7d 2908 return vfp_get_fpsr(env);
b0d2b7d0
PM
2909}
2910
c4241c7d
PM
2911static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2912 uint64_t value)
b0d2b7d0
PM
2913{
2914 vfp_set_fpsr(env, value);
b0d2b7d0
PM
2915}
2916
3f208fd7
PM
2917static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2918 bool isread)
c2b820fe 2919{
137feaa9 2920 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
c2b820fe
PM
2921 return CP_ACCESS_TRAP;
2922 }
2923 return CP_ACCESS_OK;
2924}
2925
2926static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2927 uint64_t value)
2928{
2929 env->daif = value & PSTATE_DAIF;
2930}
2931
8af35c37 2932static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3f208fd7
PM
2933 const ARMCPRegInfo *ri,
2934 bool isread)
8af35c37
PM
2935{
2936 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2937 * SCTLR_EL1.UCI is set.
2938 */
137feaa9 2939 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
8af35c37
PM
2940 return CP_ACCESS_TRAP;
2941 }
2942 return CP_ACCESS_OK;
2943}
2944
dbb1fb27
AB
2945/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2946 * Page D4-1736 (DDI0487A.b)
2947 */
2948
fd3ed969
PM
2949static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2950 uint64_t value)
168aa23b 2951{
a67cf277 2952 CPUState *cs = ENV_GET_CPU(env);
dbb1fb27 2953
fd3ed969 2954 if (arm_is_secure_below_el3(env)) {
0336cbf8 2955 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2956 ARMMMUIdxBit_S1SE1 |
2957 ARMMMUIdxBit_S1SE0);
fd3ed969 2958 } else {
0336cbf8 2959 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2960 ARMMMUIdxBit_S12NSE1 |
2961 ARMMMUIdxBit_S12NSE0);
fd3ed969 2962 }
168aa23b
PM
2963}
2964
fd3ed969
PM
2965static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2966 uint64_t value)
168aa23b 2967{
a67cf277 2968 CPUState *cs = ENV_GET_CPU(env);
fd3ed969 2969 bool sec = arm_is_secure_below_el3(env);
dbb1fb27 2970
a67cf277
AB
2971 if (sec) {
2972 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
2973 ARMMMUIdxBit_S1SE1 |
2974 ARMMMUIdxBit_S1SE0);
a67cf277
AB
2975 } else {
2976 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
2977 ARMMMUIdxBit_S12NSE1 |
2978 ARMMMUIdxBit_S12NSE0);
fd3ed969 2979 }
168aa23b
PM
2980}
2981
fd3ed969
PM
2982static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2983 uint64_t value)
168aa23b 2984{
fd3ed969
PM
2985 /* Note that the 'ALL' scope must invalidate both stage 1 and
2986 * stage 2 translations, whereas most other scopes only invalidate
2987 * stage 1 translations.
2988 */
00c8cb0a 2989 ARMCPU *cpu = arm_env_get_cpu(env);
fd3ed969
PM
2990 CPUState *cs = CPU(cpu);
2991
2992 if (arm_is_secure_below_el3(env)) {
0336cbf8 2993 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2994 ARMMMUIdxBit_S1SE1 |
2995 ARMMMUIdxBit_S1SE0);
fd3ed969
PM
2996 } else {
2997 if (arm_feature(env, ARM_FEATURE_EL2)) {
0336cbf8 2998 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
2999 ARMMMUIdxBit_S12NSE1 |
3000 ARMMMUIdxBit_S12NSE0 |
3001 ARMMMUIdxBit_S2NS);
fd3ed969 3002 } else {
0336cbf8 3003 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3004 ARMMMUIdxBit_S12NSE1 |
3005 ARMMMUIdxBit_S12NSE0);
fd3ed969
PM
3006 }
3007 }
168aa23b
PM
3008}
3009
fd3ed969 3010static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
fa439fc5
PM
3011 uint64_t value)
3012{
fd3ed969
PM
3013 ARMCPU *cpu = arm_env_get_cpu(env);
3014 CPUState *cs = CPU(cpu);
3015
8bd5c820 3016 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
fd3ed969
PM
3017}
3018
43efaa33
PM
3019static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3020 uint64_t value)
3021{
3022 ARMCPU *cpu = arm_env_get_cpu(env);
3023 CPUState *cs = CPU(cpu);
3024
8bd5c820 3025 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
43efaa33
PM
3026}
3027
fd3ed969
PM
3028static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3029 uint64_t value)
3030{
3031 /* Note that the 'ALL' scope must invalidate both stage 1 and
3032 * stage 2 translations, whereas most other scopes only invalidate
3033 * stage 1 translations.
3034 */
a67cf277 3035 CPUState *cs = ENV_GET_CPU(env);
fd3ed969
PM
3036 bool sec = arm_is_secure_below_el3(env);
3037 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
a67cf277
AB
3038
3039 if (sec) {
3040 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3041 ARMMMUIdxBit_S1SE1 |
3042 ARMMMUIdxBit_S1SE0);
a67cf277
AB
3043 } else if (has_el2) {
3044 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3045 ARMMMUIdxBit_S12NSE1 |
3046 ARMMMUIdxBit_S12NSE0 |
3047 ARMMMUIdxBit_S2NS);
a67cf277
AB
3048 } else {
3049 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3050 ARMMMUIdxBit_S12NSE1 |
3051 ARMMMUIdxBit_S12NSE0);
fa439fc5
PM
3052 }
3053}
3054
2bfb9d75
PM
3055static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3056 uint64_t value)
3057{
a67cf277 3058 CPUState *cs = ENV_GET_CPU(env);
2bfb9d75 3059
8bd5c820 3060 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
2bfb9d75
PM
3061}
3062
43efaa33
PM
3063static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064 uint64_t value)
3065{
a67cf277 3066 CPUState *cs = ENV_GET_CPU(env);
43efaa33 3067
8bd5c820 3068 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
43efaa33
PM
3069}
3070
fd3ed969
PM
3071static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3072 uint64_t value)
3073{
3074 /* Invalidate by VA, EL1&0 (AArch64 version).
3075 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3076 * since we don't support flush-for-specific-ASID-only or
3077 * flush-last-level-only.
3078 */
3079 ARMCPU *cpu = arm_env_get_cpu(env);
3080 CPUState *cs = CPU(cpu);
3081 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3082
3083 if (arm_is_secure_below_el3(env)) {
0336cbf8 3084 tlb_flush_page_by_mmuidx(cs, pageaddr,
8bd5c820
PM
3085 ARMMMUIdxBit_S1SE1 |
3086 ARMMMUIdxBit_S1SE0);
fd3ed969 3087 } else {
0336cbf8 3088 tlb_flush_page_by_mmuidx(cs, pageaddr,
8bd5c820
PM
3089 ARMMMUIdxBit_S12NSE1 |
3090 ARMMMUIdxBit_S12NSE0);
fd3ed969
PM
3091 }
3092}
3093
3094static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3095 uint64_t value)
fa439fc5 3096{
fd3ed969
PM
3097 /* Invalidate by VA, EL2
3098 * Currently handles both VAE2 and VALE2, since we don't support
3099 * flush-last-level-only.
3100 */
3101 ARMCPU *cpu = arm_env_get_cpu(env);
3102 CPUState *cs = CPU(cpu);
3103 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3104
8bd5c820 3105 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
fd3ed969
PM
3106}
3107
43efaa33
PM
3108static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109 uint64_t value)
3110{
3111 /* Invalidate by VA, EL3
3112 * Currently handles both VAE3 and VALE3, since we don't support
3113 * flush-last-level-only.
3114 */
3115 ARMCPU *cpu = arm_env_get_cpu(env);
3116 CPUState *cs = CPU(cpu);
3117 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3118
8bd5c820 3119 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
43efaa33
PM
3120}
3121
fd3ed969
PM
3122static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3123 uint64_t value)
3124{
a67cf277
AB
3125 ARMCPU *cpu = arm_env_get_cpu(env);
3126 CPUState *cs = CPU(cpu);
fd3ed969 3127 bool sec = arm_is_secure_below_el3(env);
fa439fc5
PM
3128 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3129
a67cf277
AB
3130 if (sec) {
3131 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820
PM
3132 ARMMMUIdxBit_S1SE1 |
3133 ARMMMUIdxBit_S1SE0);
a67cf277
AB
3134 } else {
3135 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820
PM
3136 ARMMMUIdxBit_S12NSE1 |
3137 ARMMMUIdxBit_S12NSE0);
fa439fc5
PM
3138 }
3139}
3140
fd3ed969
PM
3141static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3142 uint64_t value)
fa439fc5 3143{
a67cf277 3144 CPUState *cs = ENV_GET_CPU(env);
fd3ed969 3145 uint64_t pageaddr = sextract64(value << 12, 0, 56);
fa439fc5 3146
a67cf277 3147 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3148 ARMMMUIdxBit_S1E2);
fa439fc5
PM
3149}
3150
43efaa33
PM
3151static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3152 uint64_t value)
3153{
a67cf277 3154 CPUState *cs = ENV_GET_CPU(env);
43efaa33
PM
3155 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3156
a67cf277 3157 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3158 ARMMMUIdxBit_S1E3);
43efaa33
PM
3159}
3160
cea66e91
PM
3161static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3162 uint64_t value)
3163{
3164 /* Invalidate by IPA. This has to invalidate any structures that
3165 * contain only stage 2 translation information, but does not need
3166 * to apply to structures that contain combined stage 1 and stage 2
3167 * translation information.
3168 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3169 */
3170 ARMCPU *cpu = arm_env_get_cpu(env);
3171 CPUState *cs = CPU(cpu);
3172 uint64_t pageaddr;
3173
3174 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3175 return;
3176 }
3177
3178 pageaddr = sextract64(value << 12, 0, 48);
3179
8bd5c820 3180 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
cea66e91
PM
3181}
3182
3183static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3184 uint64_t value)
3185{
a67cf277 3186 CPUState *cs = ENV_GET_CPU(env);
cea66e91
PM
3187 uint64_t pageaddr;
3188
3189 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3190 return;
3191 }
3192
3193 pageaddr = sextract64(value << 12, 0, 48);
3194
a67cf277 3195 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3196 ARMMMUIdxBit_S2NS);
cea66e91
PM
3197}
3198
3f208fd7
PM
3199static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3200 bool isread)
aca3f40b
PM
3201{
3202 /* We don't implement EL2, so the only control on DC ZVA is the
3203 * bit in the SCTLR which can prohibit access for EL0.
3204 */
137feaa9 3205 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
aca3f40b
PM
3206 return CP_ACCESS_TRAP;
3207 }
3208 return CP_ACCESS_OK;
3209}
3210
3211static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3212{
3213 ARMCPU *cpu = arm_env_get_cpu(env);
3214 int dzp_bit = 1 << 4;
3215
3216 /* DZP indicates whether DC ZVA access is allowed */
3f208fd7 3217 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
aca3f40b
PM
3218 dzp_bit = 0;
3219 }
3220 return cpu->dcz_blocksize | dzp_bit;
3221}
3222
3f208fd7
PM
3223static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3224 bool isread)
f502cfc2 3225{
cdcf1405 3226 if (!(env->pstate & PSTATE_SP)) {
f502cfc2
PM
3227 /* Access to SP_EL0 is undefined if it's being used as
3228 * the stack pointer.
3229 */
3230 return CP_ACCESS_TRAP_UNCATEGORIZED;
3231 }
3232 return CP_ACCESS_OK;
3233}
3234
3235static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3236{
3237 return env->pstate & PSTATE_SP;
3238}
3239
3240static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3241{
3242 update_spsel(env, val);
3243}
3244
137feaa9
FA
3245static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3246 uint64_t value)
3247{
3248 ARMCPU *cpu = arm_env_get_cpu(env);
3249
3250 if (raw_read(env, ri) == value) {
3251 /* Skip the TLB flush if nothing actually changed; Linux likes
3252 * to do a lot of pointless SCTLR writes.
3253 */
3254 return;
3255 }
3256
06312feb
PM
3257 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3258 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3259 value &= ~SCTLR_M;
3260 }
3261
137feaa9
FA
3262 raw_write(env, ri, value);
3263 /* ??? Lots of these bits are not implemented. */
3264 /* This may enable/disable the MMU, so do a TLB flush. */
d10eb08f 3265 tlb_flush(CPU(cpu));
137feaa9
FA
3266}
3267
3f208fd7
PM
3268static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3269 bool isread)
03fbf20f
PM
3270{
3271 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
f2cae609 3272 return CP_ACCESS_TRAP_FP_EL2;
03fbf20f
PM
3273 }
3274 if (env->cp15.cptr_el[3] & CPTR_TFP) {
f2cae609 3275 return CP_ACCESS_TRAP_FP_EL3;
03fbf20f
PM
3276 }
3277 return CP_ACCESS_OK;
3278}
3279
a8d64e73
PM
3280static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3281 uint64_t value)
3282{
3283 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3284}
3285
b0d2b7d0
PM
3286static const ARMCPRegInfo v8_cp_reginfo[] = {
3287 /* Minimal set of EL0-visible registers. This will need to be expanded
3288 * significantly for system emulation of AArch64 CPUs.
3289 */
3290 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3291 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3292 .access = PL0_RW, .type = ARM_CP_NZCV },
c2b820fe
PM
3293 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3294 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
7a0e58fa 3295 .type = ARM_CP_NO_RAW,
c2b820fe
PM
3296 .access = PL0_RW, .accessfn = aa64_daif_access,
3297 .fieldoffset = offsetof(CPUARMState, daif),
3298 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
b0d2b7d0
PM
3299 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3300 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3301 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3302 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3303 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3304 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
b0d2b7d0
PM
3305 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3306 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
7a0e58fa 3307 .access = PL0_R, .type = ARM_CP_NO_RAW,
aca3f40b
PM
3308 .readfn = aa64_dczid_read },
3309 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3310 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3311 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3312#ifndef CONFIG_USER_ONLY
3313 /* Avoid overhead of an access check that always passes in user-mode */
3314 .accessfn = aa64_zva_access,
3315#endif
3316 },
0eef9d98
PM
3317 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3318 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3319 .access = PL1_R, .type = ARM_CP_CURRENTEL },
8af35c37
PM
3320 /* Cache ops: all NOPs since we don't emulate caches */
3321 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3322 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3323 .access = PL1_W, .type = ARM_CP_NOP },
3324 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3325 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3326 .access = PL1_W, .type = ARM_CP_NOP },
3327 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3328 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3329 .access = PL0_W, .type = ARM_CP_NOP,
3330 .accessfn = aa64_cacheop_access },
3331 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3333 .access = PL1_W, .type = ARM_CP_NOP },
3334 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3335 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3336 .access = PL1_W, .type = ARM_CP_NOP },
3337 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3338 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3339 .access = PL0_W, .type = ARM_CP_NOP,
3340 .accessfn = aa64_cacheop_access },
3341 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3342 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3343 .access = PL1_W, .type = ARM_CP_NOP },
3344 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3345 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3346 .access = PL0_W, .type = ARM_CP_NOP,
3347 .accessfn = aa64_cacheop_access },
3348 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3349 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3350 .access = PL0_W, .type = ARM_CP_NOP,
3351 .accessfn = aa64_cacheop_access },
3352 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3353 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3354 .access = PL1_W, .type = ARM_CP_NOP },
168aa23b
PM
3355 /* TLBI operations */
3356 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3357 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 3358 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3359 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 3360 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3361 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 3362 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3363 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3364 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3365 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 3366 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3367 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 3368 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3369 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 3370 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3371 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3372 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3373 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 3374 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3375 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3376 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3377 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 3378 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3379 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3380 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3381 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 3382 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3383 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 3384 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3385 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 3386 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3387 .writefn = tlbi_aa64_vae1_write },
168aa23b 3388 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3389 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 3390 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3391 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 3392 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3393 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 3394 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3395 .writefn = tlbi_aa64_vae1_write },
168aa23b 3396 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3397 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 3398 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3399 .writefn = tlbi_aa64_vae1_write },
168aa23b 3400 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3401 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 3402 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3403 .writefn = tlbi_aa64_vae1_write },
cea66e91
PM
3404 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3405 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3406 .access = PL2_W, .type = ARM_CP_NO_RAW,
3407 .writefn = tlbi_aa64_ipas2e1is_write },
3408 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3409 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3410 .access = PL2_W, .type = ARM_CP_NO_RAW,
3411 .writefn = tlbi_aa64_ipas2e1is_write },
83ddf975
PM
3412 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3413 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3414 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 3415 .writefn = tlbi_aa64_alle1is_write },
43efaa33
PM
3416 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3417 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3418 .access = PL2_W, .type = ARM_CP_NO_RAW,
3419 .writefn = tlbi_aa64_alle1is_write },
cea66e91
PM
3420 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3421 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3422 .access = PL2_W, .type = ARM_CP_NO_RAW,
3423 .writefn = tlbi_aa64_ipas2e1_write },
3424 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3425 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3426 .access = PL2_W, .type = ARM_CP_NO_RAW,
3427 .writefn = tlbi_aa64_ipas2e1_write },
83ddf975
PM
3428 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3429 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3430 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 3431 .writefn = tlbi_aa64_alle1_write },
43efaa33
PM
3432 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3433 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3434 .access = PL2_W, .type = ARM_CP_NO_RAW,
3435 .writefn = tlbi_aa64_alle1is_write },
19525524
PM
3436#ifndef CONFIG_USER_ONLY
3437 /* 64 bit address translation operations */
3438 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3439 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
060e8a48 3440 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3441 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3442 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
060e8a48 3443 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3444 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3445 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
060e8a48 3446 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3447 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3448 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
060e8a48 3449 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2a47df95 3450 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
7a379c7e 3451 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
2a47df95
PM
3452 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3453 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
7a379c7e 3454 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
2a47df95
PM
3455 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3456 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
7a379c7e 3457 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
2a47df95
PM
3458 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3459 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
7a379c7e 3460 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
2a47df95
PM
3461 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3462 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3463 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3464 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3465 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3466 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3467 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3468 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
c96fc9b5
EI
3469 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3470 .type = ARM_CP_ALIAS,
3471 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3472 .access = PL1_RW, .resetvalue = 0,
3473 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3474 .writefn = par_write },
19525524 3475#endif
995939a6 3476 /* TLB invalidate last level of translation table walk */
9449fdf6 3477 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 3478 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
9449fdf6 3479 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 3480 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 3481 .writefn = tlbimvaa_is_write },
9449fdf6 3482 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 3483 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
9449fdf6 3484 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 3485 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
541ef8c2
SS
3486 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3487 .type = ARM_CP_NO_RAW, .access = PL2_W,
3488 .writefn = tlbimva_hyp_write },
3489 { .name = "TLBIMVALHIS",
3490 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3491 .type = ARM_CP_NO_RAW, .access = PL2_W,
3492 .writefn = tlbimva_hyp_is_write },
3493 { .name = "TLBIIPAS2",
3494 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3495 .type = ARM_CP_NO_RAW, .access = PL2_W,
3496 .writefn = tlbiipas2_write },
3497 { .name = "TLBIIPAS2IS",
3498 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3499 .type = ARM_CP_NO_RAW, .access = PL2_W,
3500 .writefn = tlbiipas2_is_write },
3501 { .name = "TLBIIPAS2L",
3502 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3503 .type = ARM_CP_NO_RAW, .access = PL2_W,
3504 .writefn = tlbiipas2_write },
3505 { .name = "TLBIIPAS2LIS",
3506 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3507 .type = ARM_CP_NO_RAW, .access = PL2_W,
3508 .writefn = tlbiipas2_is_write },
9449fdf6
PM
3509 /* 32 bit cache operations */
3510 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3511 .type = ARM_CP_NOP, .access = PL1_W },
3512 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3513 .type = ARM_CP_NOP, .access = PL1_W },
3514 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3515 .type = ARM_CP_NOP, .access = PL1_W },
3516 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3517 .type = ARM_CP_NOP, .access = PL1_W },
3518 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3519 .type = ARM_CP_NOP, .access = PL1_W },
3520 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3521 .type = ARM_CP_NOP, .access = PL1_W },
3522 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3523 .type = ARM_CP_NOP, .access = PL1_W },
3524 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3525 .type = ARM_CP_NOP, .access = PL1_W },
3526 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3527 .type = ARM_CP_NOP, .access = PL1_W },
3528 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3529 .type = ARM_CP_NOP, .access = PL1_W },
3530 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3531 .type = ARM_CP_NOP, .access = PL1_W },
3532 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3533 .type = ARM_CP_NOP, .access = PL1_W },
3534 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3535 .type = ARM_CP_NOP, .access = PL1_W },
3536 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
3537 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3538 .access = PL1_RW, .resetvalue = 0,
3539 .writefn = dacr_write, .raw_writefn = raw_write,
3540 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3541 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a0618a19 3542 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3543 .type = ARM_CP_ALIAS,
a0618a19 3544 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
6947f059
EI
3545 .access = PL1_RW,
3546 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
a65f1de9 3547 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3548 .type = ARM_CP_ALIAS,
a65f1de9 3549 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3550 .access = PL1_RW,
3551 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
f502cfc2
PM
3552 /* We rely on the access checks not allowing the guest to write to the
3553 * state field when SPSel indicates that it's being used as the stack
3554 * pointer.
3555 */
3556 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3557 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3558 .access = PL1_RW, .accessfn = sp_el0_access,
7a0e58fa 3559 .type = ARM_CP_ALIAS,
f502cfc2 3560 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
884b4dee
GB
3561 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3562 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3563 .access = PL2_RW, .type = ARM_CP_ALIAS,
884b4dee 3564 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
f502cfc2
PM
3565 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3566 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
7a0e58fa 3567 .type = ARM_CP_NO_RAW,
f502cfc2 3568 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
03fbf20f
PM
3569 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3570 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3571 .type = ARM_CP_ALIAS,
3572 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3573 .access = PL2_RW, .accessfn = fpexc32_access },
6a43e0b6
PM
3574 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3575 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3576 .access = PL2_RW, .resetvalue = 0,
3577 .writefn = dacr_write, .raw_writefn = raw_write,
3578 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3579 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3580 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3581 .access = PL2_RW, .resetvalue = 0,
3582 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3583 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3584 .type = ARM_CP_ALIAS,
3585 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3586 .access = PL2_RW,
3587 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3588 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3589 .type = ARM_CP_ALIAS,
3590 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3591 .access = PL2_RW,
3592 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3593 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3594 .type = ARM_CP_ALIAS,
3595 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3596 .access = PL2_RW,
3597 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3598 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3599 .type = ARM_CP_ALIAS,
3600 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3601 .access = PL2_RW,
3602 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
a8d64e73
PM
3603 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3604 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3605 .resetvalue = 0,
3606 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3607 { .name = "SDCR", .type = ARM_CP_ALIAS,
3608 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3609 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3610 .writefn = sdcr_write,
3611 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
b0d2b7d0
PM
3612 REGINFO_SENTINEL
3613};
3614
d42e3c26 3615/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4771cd01 3616static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
d42e3c26
EI
3617 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3618 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3619 .access = PL2_RW,
3620 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
f149e3e8 3621 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3622 .type = ARM_CP_NO_RAW,
f149e3e8
EI
3623 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3624 .access = PL2_RW,
3625 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
c6f19164
GB
3626 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3627 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3628 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
95f949ac
EI
3629 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3630 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3631 .access = PL2_RW, .type = ARM_CP_CONST,
3632 .resetvalue = 0 },
3633 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3634 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3635 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2179ef95
PM
3636 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3637 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3638 .access = PL2_RW, .type = ARM_CP_CONST,
3639 .resetvalue = 0 },
3640 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3641 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3642 .access = PL2_RW, .type = ARM_CP_CONST,
3643 .resetvalue = 0 },
37cd6c24
PM
3644 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3645 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3646 .access = PL2_RW, .type = ARM_CP_CONST,
3647 .resetvalue = 0 },
3648 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3649 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3650 .access = PL2_RW, .type = ARM_CP_CONST,
3651 .resetvalue = 0 },
06ec4c8c
EI
3652 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3653 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3654 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
68e9c2fe
EI
3655 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3656 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3657 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3658 .type = ARM_CP_CONST, .resetvalue = 0 },
b698e9cf
EI
3659 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3660 .cp = 15, .opc1 = 6, .crm = 2,
3661 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3662 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3663 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3664 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3665 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b9cb5323
EI
3666 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3667 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3668 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
ff05f37b
EI
3669 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3670 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3671 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
a57633c0
EI
3672 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3673 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3674 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3675 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3676 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3677 .resetvalue = 0 },
0b6440af
EI
3678 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3679 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3680 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
edac4d8a
EI
3681 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3682 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3683 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3684 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3685 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3686 .resetvalue = 0 },
b0e66d95
EI
3687 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3688 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3689 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3690 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3691 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3692 .resetvalue = 0 },
3693 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3694 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3695 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3696 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3697 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3698 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
14cc7b54
SF
3699 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3700 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
d6c8cf81
PM
3701 .access = PL2_RW, .accessfn = access_tda,
3702 .type = ARM_CP_CONST, .resetvalue = 0 },
59e05530
EI
3703 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3704 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3705 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3706 .type = ARM_CP_CONST, .resetvalue = 0 },
2a5a9abd
AF
3707 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3708 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3709 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
d42e3c26
EI
3710 REGINFO_SENTINEL
3711};
3712
f149e3e8
EI
3713static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3714{
3715 ARMCPU *cpu = arm_env_get_cpu(env);
3716 uint64_t valid_mask = HCR_MASK;
3717
3718 if (arm_feature(env, ARM_FEATURE_EL3)) {
3719 valid_mask &= ~HCR_HCD;
77077a83
JK
3720 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3721 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3722 * However, if we're using the SMC PSCI conduit then QEMU is
3723 * effectively acting like EL3 firmware and so the guest at
3724 * EL2 should retain the ability to prevent EL1 from being
3725 * able to make SMC calls into the ersatz firmware, so in
3726 * that case HCR.TSC should be read/write.
3727 */
f149e3e8
EI
3728 valid_mask &= ~HCR_TSC;
3729 }
3730
3731 /* Clear RES0 bits. */
3732 value &= valid_mask;
3733
3734 /* These bits change the MMU setup:
3735 * HCR_VM enables stage 2 translation
3736 * HCR_PTW forbids certain page-table setups
3737 * HCR_DC Disables stage1 and enables stage2 translation
3738 */
3739 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
d10eb08f 3740 tlb_flush(CPU(cpu));
f149e3e8
EI
3741 }
3742 raw_write(env, ri, value);
3743}
3744
4771cd01 3745static const ARMCPRegInfo el2_cp_reginfo[] = {
f149e3e8
EI
3746 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3747 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3748 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3749 .writefn = hcr_write },
3b685ba7 3750 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3751 .type = ARM_CP_ALIAS,
3b685ba7
EI
3752 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3753 .access = PL2_RW,
3754 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
f2c30f42 3755 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
3756 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3757 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
63b60551
EI
3758 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3759 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3760 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3b685ba7 3761 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3762 .type = ARM_CP_ALIAS,
3b685ba7 3763 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3764 .access = PL2_RW,
3765 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
d42e3c26
EI
3766 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3767 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3768 .access = PL2_RW, .writefn = vbar_write,
3769 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3770 .resetvalue = 0 },
884b4dee
GB
3771 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3772 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3773 .access = PL3_RW, .type = ARM_CP_ALIAS,
884b4dee 3774 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
c6f19164
GB
3775 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3776 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3777 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3778 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
95f949ac
EI
3779 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3780 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3781 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3782 .resetvalue = 0 },
3783 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3784 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3785 .access = PL2_RW, .type = ARM_CP_ALIAS,
3786 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2179ef95
PM
3787 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3788 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3789 .access = PL2_RW, .type = ARM_CP_CONST,
3790 .resetvalue = 0 },
3791 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3792 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3793 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3794 .access = PL2_RW, .type = ARM_CP_CONST,
3795 .resetvalue = 0 },
37cd6c24
PM
3796 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3797 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3798 .access = PL2_RW, .type = ARM_CP_CONST,
3799 .resetvalue = 0 },
3800 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3801 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3802 .access = PL2_RW, .type = ARM_CP_CONST,
3803 .resetvalue = 0 },
06ec4c8c
EI
3804 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3805 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
3806 .access = PL2_RW,
3807 /* no .writefn needed as this can't cause an ASID change;
3808 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3809 */
06ec4c8c 3810 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
68e9c2fe
EI
3811 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3812 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112 3813 .type = ARM_CP_ALIAS,
68e9c2fe
EI
3814 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3815 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3816 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3817 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112
PM
3818 .access = PL2_RW,
3819 /* no .writefn needed as this can't cause an ASID change;
3820 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3821 */
68e9c2fe 3822 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
b698e9cf
EI
3823 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3824 .cp = 15, .opc1 = 6, .crm = 2,
3825 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3826 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3827 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3828 .writefn = vttbr_write },
3829 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3830 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3831 .access = PL2_RW, .writefn = vttbr_write,
3832 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
b9cb5323
EI
3833 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3834 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3835 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3836 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
ff05f37b
EI
3837 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3838 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3839 .access = PL2_RW, .resetvalue = 0,
3840 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
a57633c0
EI
3841 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3842 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3843 .access = PL2_RW, .resetvalue = 0,
3844 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3845 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3846 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
a57633c0 3847 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
541ef8c2
SS
3848 { .name = "TLBIALLNSNH",
3849 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3850 .type = ARM_CP_NO_RAW, .access = PL2_W,
3851 .writefn = tlbiall_nsnh_write },
3852 { .name = "TLBIALLNSNHIS",
3853 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3854 .type = ARM_CP_NO_RAW, .access = PL2_W,
3855 .writefn = tlbiall_nsnh_is_write },
3856 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3857 .type = ARM_CP_NO_RAW, .access = PL2_W,
3858 .writefn = tlbiall_hyp_write },
3859 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3860 .type = ARM_CP_NO_RAW, .access = PL2_W,
3861 .writefn = tlbiall_hyp_is_write },
3862 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3863 .type = ARM_CP_NO_RAW, .access = PL2_W,
3864 .writefn = tlbimva_hyp_write },
3865 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3866 .type = ARM_CP_NO_RAW, .access = PL2_W,
3867 .writefn = tlbimva_hyp_is_write },
51da9014
EI
3868 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3869 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3870 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3871 .writefn = tlbi_aa64_alle2_write },
8742d49d
EI
3872 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3873 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3874 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3875 .writefn = tlbi_aa64_vae2_write },
2bfb9d75
PM
3876 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3877 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3878 .access = PL2_W, .type = ARM_CP_NO_RAW,
3879 .writefn = tlbi_aa64_vae2_write },
3880 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3881 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3882 .access = PL2_W, .type = ARM_CP_NO_RAW,
3883 .writefn = tlbi_aa64_alle2is_write },
8742d49d
EI
3884 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3885 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3886 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3887 .writefn = tlbi_aa64_vae2is_write },
2bfb9d75
PM
3888 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3889 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3890 .access = PL2_W, .type = ARM_CP_NO_RAW,
3891 .writefn = tlbi_aa64_vae2is_write },
edac4d8a 3892#ifndef CONFIG_USER_ONLY
2a47df95
PM
3893 /* Unlike the other EL2-related AT operations, these must
3894 * UNDEF from EL3 if EL2 is not implemented, which is why we
3895 * define them here rather than with the rest of the AT ops.
3896 */
3897 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3898 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3899 .access = PL2_W, .accessfn = at_s1e2_access,
3900 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3901 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3902 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3903 .access = PL2_W, .accessfn = at_s1e2_access,
3904 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
14db7fe0
PM
3905 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3906 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3907 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3908 * to behave as if SCR.NS was 1.
3909 */
3910 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3911 .access = PL2_W,
3912 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3913 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3914 .access = PL2_W,
3915 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
0b6440af
EI
3916 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3917 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3918 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3919 * reset values as IMPDEF. We choose to reset to 3 to comply with
3920 * both ARMv7 and ARMv8.
3921 */
3922 .access = PL2_RW, .resetvalue = 3,
3923 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
edac4d8a
EI
3924 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3925 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3926 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3927 .writefn = gt_cntvoff_write,
3928 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3929 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3930 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3931 .writefn = gt_cntvoff_write,
3932 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
b0e66d95
EI
3933 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3934 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3935 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3936 .type = ARM_CP_IO, .access = PL2_RW,
3937 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3938 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3939 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3940 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3941 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3942 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3943 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
d44ec156 3944 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
b0e66d95
EI
3945 .resetfn = gt_hyp_timer_reset,
3946 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3947 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3948 .type = ARM_CP_IO,
3949 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3950 .access = PL2_RW,
3951 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3952 .resetvalue = 0,
3953 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
edac4d8a 3954#endif
14cc7b54
SF
3955 /* The only field of MDCR_EL2 that has a defined architectural reset value
3956 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3957 * don't impelment any PMU event counters, so using zero as a reset
3958 * value for MDCR_EL2 is okay
3959 */
3960 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3961 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3962 .access = PL2_RW, .resetvalue = 0,
3963 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
59e05530
EI
3964 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3965 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3966 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3967 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3968 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3969 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3970 .access = PL2_RW,
3971 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
2a5a9abd
AF
3972 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3973 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3974 .access = PL2_RW,
3975 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3b685ba7
EI
3976 REGINFO_SENTINEL
3977};
3978
2f027fc5
PM
3979static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3980 bool isread)
3981{
3982 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3983 * At Secure EL1 it traps to EL3.
3984 */
3985 if (arm_current_el(env) == 3) {
3986 return CP_ACCESS_OK;
3987 }
3988 if (arm_is_secure_below_el3(env)) {
3989 return CP_ACCESS_TRAP_EL3;
3990 }
3991 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3992 if (isread) {
3993 return CP_ACCESS_OK;
3994 }
3995 return CP_ACCESS_TRAP_UNCATEGORIZED;
3996}
3997
60fb1a87
GB
3998static const ARMCPRegInfo el3_cp_reginfo[] = {
3999 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4000 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4001 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4002 .resetvalue = 0, .writefn = scr_write },
7a0e58fa 4003 { .name = "SCR", .type = ARM_CP_ALIAS,
60fb1a87 4004 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
efe4a274
PM
4005 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4006 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
b061a82b 4007 .writefn = scr_write },
60fb1a87
GB
4008 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4009 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4010 .access = PL3_RW, .resetvalue = 0,
4011 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4012 { .name = "SDER",
4013 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4014 .access = PL3_RW, .resetvalue = 0,
4015 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
60fb1a87 4016 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
efe4a274
PM
4017 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4018 .writefn = vbar_write, .resetvalue = 0,
60fb1a87 4019 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
7dd8c9af
FA
4020 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4021 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4022 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4023 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
11f136ee
FA
4024 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4025 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
4026 .access = PL3_RW,
4027 /* no .writefn needed as this can't cause an ASID change;
811595a2
PM
4028 * we must provide a .raw_writefn and .resetfn because we handle
4029 * reset and migration for the AArch32 TTBCR(S), which might be
4030 * using mask and base_mask.
6459b94c 4031 */
811595a2 4032 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee 4033 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
81547d66 4034 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 4035 .type = ARM_CP_ALIAS,
81547d66
EI
4036 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4037 .access = PL3_RW,
4038 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
f2c30f42 4039 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
4040 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4041 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
63b60551
EI
4042 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4043 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4044 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
81547d66 4045 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 4046 .type = ARM_CP_ALIAS,
81547d66 4047 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
4048 .access = PL3_RW,
4049 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
a1ba125c
EI
4050 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4051 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4052 .access = PL3_RW, .writefn = vbar_write,
4053 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4054 .resetvalue = 0 },
c6f19164
GB
4055 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4056 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4057 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4058 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4cfb8ad8
PM
4059 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4060 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4061 .access = PL3_RW, .resetvalue = 0,
4062 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
2179ef95
PM
4063 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4064 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4065 .access = PL3_RW, .type = ARM_CP_CONST,
4066 .resetvalue = 0 },
37cd6c24
PM
4067 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4068 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4069 .access = PL3_RW, .type = ARM_CP_CONST,
4070 .resetvalue = 0 },
4071 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4072 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4073 .access = PL3_RW, .type = ARM_CP_CONST,
4074 .resetvalue = 0 },
43efaa33
PM
4075 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4076 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4077 .access = PL3_W, .type = ARM_CP_NO_RAW,
4078 .writefn = tlbi_aa64_alle3is_write },
4079 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4080 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4081 .access = PL3_W, .type = ARM_CP_NO_RAW,
4082 .writefn = tlbi_aa64_vae3is_write },
4083 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4084 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4085 .access = PL3_W, .type = ARM_CP_NO_RAW,
4086 .writefn = tlbi_aa64_vae3is_write },
4087 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4088 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4089 .access = PL3_W, .type = ARM_CP_NO_RAW,
4090 .writefn = tlbi_aa64_alle3_write },
4091 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4092 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4093 .access = PL3_W, .type = ARM_CP_NO_RAW,
4094 .writefn = tlbi_aa64_vae3_write },
4095 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4096 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4097 .access = PL3_W, .type = ARM_CP_NO_RAW,
4098 .writefn = tlbi_aa64_vae3_write },
0f1a3b24
FA
4099 REGINFO_SENTINEL
4100};
4101
3f208fd7
PM
4102static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4103 bool isread)
7da845b0
PM
4104{
4105 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4106 * but the AArch32 CTR has its own reginfo struct)
4107 */
137feaa9 4108 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7da845b0
PM
4109 return CP_ACCESS_TRAP;
4110 }
4111 return CP_ACCESS_OK;
4112}
4113
1424ca8d
DM
4114static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4115 uint64_t value)
4116{
4117 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4118 * read via a bit in OSLSR_EL1.
4119 */
4120 int oslock;
4121
4122 if (ri->state == ARM_CP_STATE_AA32) {
4123 oslock = (value == 0xC5ACCE55);
4124 } else {
4125 oslock = value & 1;
4126 }
4127
4128 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4129}
4130
50300698 4131static const ARMCPRegInfo debug_cp_reginfo[] = {
50300698 4132 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
10aae104
PM
4133 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4134 * unlike DBGDRAR it is never accessible from EL0.
4135 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4136 * accessor.
50300698
PM
4137 */
4138 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
4139 .access = PL0_R, .accessfn = access_tdra,
4140 .type = ARM_CP_CONST, .resetvalue = 0 },
10aae104
PM
4141 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4142 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
91b0a238
PM
4143 .access = PL1_R, .accessfn = access_tdra,
4144 .type = ARM_CP_CONST, .resetvalue = 0 },
50300698 4145 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
4146 .access = PL0_R, .accessfn = access_tdra,
4147 .type = ARM_CP_CONST, .resetvalue = 0 },
17a9eb53 4148 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
10aae104
PM
4149 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4150 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
d6c8cf81 4151 .access = PL1_RW, .accessfn = access_tda,
0e5e8935
PM
4152 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4153 .resetvalue = 0 },
5e8b12ff
PM
4154 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4155 * We don't implement the configurable EL0 access.
4156 */
4157 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4158 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7a0e58fa 4159 .type = ARM_CP_ALIAS,
d6c8cf81 4160 .access = PL1_R, .accessfn = access_tda,
b061a82b 4161 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
10aae104
PM
4162 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4163 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1424ca8d 4164 .access = PL1_W, .type = ARM_CP_NO_RAW,
187f678d 4165 .accessfn = access_tdosa,
1424ca8d
DM
4166 .writefn = oslar_write },
4167 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4168 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4169 .access = PL1_R, .resetvalue = 10,
187f678d 4170 .accessfn = access_tdosa,
1424ca8d 4171 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5e8b12ff
PM
4172 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4173 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4174 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
187f678d
PM
4175 .access = PL1_RW, .accessfn = access_tdosa,
4176 .type = ARM_CP_NOP },
5e8b12ff
PM
4177 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4178 * implement vector catch debug events yet.
4179 */
4180 { .name = "DBGVCR",
4181 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
d6c8cf81
PM
4182 .access = PL1_RW, .accessfn = access_tda,
4183 .type = ARM_CP_NOP },
4d2ec4da
PM
4184 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4185 * to save and restore a 32-bit guest's DBGVCR)
4186 */
4187 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4188 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4189 .access = PL2_RW, .accessfn = access_tda,
4190 .type = ARM_CP_NOP },
5dbdc434
PM
4191 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4192 * Channel but Linux may try to access this register. The 32-bit
4193 * alias is DBGDCCINT.
4194 */
4195 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4196 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4197 .access = PL1_RW, .accessfn = access_tda,
4198 .type = ARM_CP_NOP },
50300698
PM
4199 REGINFO_SENTINEL
4200};
4201
4202static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4203 /* 64 bit access versions of the (dummy) debug registers */
4204 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4205 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4206 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4207 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4208 REGINFO_SENTINEL
4209};
4210
9ee98ce8
PM
4211void hw_watchpoint_update(ARMCPU *cpu, int n)
4212{
4213 CPUARMState *env = &cpu->env;
4214 vaddr len = 0;
4215 vaddr wvr = env->cp15.dbgwvr[n];
4216 uint64_t wcr = env->cp15.dbgwcr[n];
4217 int mask;
4218 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4219
4220 if (env->cpu_watchpoint[n]) {
4221 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4222 env->cpu_watchpoint[n] = NULL;
4223 }
4224
4225 if (!extract64(wcr, 0, 1)) {
4226 /* E bit clear : watchpoint disabled */
4227 return;
4228 }
4229
4230 switch (extract64(wcr, 3, 2)) {
4231 case 0:
4232 /* LSC 00 is reserved and must behave as if the wp is disabled */
4233 return;
4234 case 1:
4235 flags |= BP_MEM_READ;
4236 break;
4237 case 2:
4238 flags |= BP_MEM_WRITE;
4239 break;
4240 case 3:
4241 flags |= BP_MEM_ACCESS;
4242 break;
4243 }
4244
4245 /* Attempts to use both MASK and BAS fields simultaneously are
4246 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4247 * thus generating a watchpoint for every byte in the masked region.
4248 */
4249 mask = extract64(wcr, 24, 4);
4250 if (mask == 1 || mask == 2) {
4251 /* Reserved values of MASK; we must act as if the mask value was
4252 * some non-reserved value, or as if the watchpoint were disabled.
4253 * We choose the latter.
4254 */
4255 return;
4256 } else if (mask) {
4257 /* Watchpoint covers an aligned area up to 2GB in size */
4258 len = 1ULL << mask;
4259 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4260 * whether the watchpoint fires when the unmasked bits match; we opt
4261 * to generate the exceptions.
4262 */
4263 wvr &= ~(len - 1);
4264 } else {
4265 /* Watchpoint covers bytes defined by the byte address select bits */
4266 int bas = extract64(wcr, 5, 8);
4267 int basstart;
4268
4269 if (bas == 0) {
4270 /* This must act as if the watchpoint is disabled */
4271 return;
4272 }
4273
4274 if (extract64(wvr, 2, 1)) {
4275 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4276 * ignored, and BAS[3:0] define which bytes to watch.
4277 */
4278 bas &= 0xf;
4279 }
4280 /* The BAS bits are supposed to be programmed to indicate a contiguous
4281 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4282 * we fire for each byte in the word/doubleword addressed by the WVR.
4283 * We choose to ignore any non-zero bits after the first range of 1s.
4284 */
4285 basstart = ctz32(bas);
4286 len = cto32(bas >> basstart);
4287 wvr += basstart;
4288 }
4289
4290 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4291 &env->cpu_watchpoint[n]);
4292}
4293
4294void hw_watchpoint_update_all(ARMCPU *cpu)
4295{
4296 int i;
4297 CPUARMState *env = &cpu->env;
4298
4299 /* Completely clear out existing QEMU watchpoints and our array, to
4300 * avoid possible stale entries following migration load.
4301 */
4302 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4303 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4304
4305 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4306 hw_watchpoint_update(cpu, i);
4307 }
4308}
4309
4310static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4311 uint64_t value)
4312{
4313 ARMCPU *cpu = arm_env_get_cpu(env);
4314 int i = ri->crm;
4315
4316 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4317 * register reads and behaves as if values written are sign extended.
4318 * Bits [1:0] are RES0.
4319 */
4320 value = sextract64(value, 0, 49) & ~3ULL;
4321
4322 raw_write(env, ri, value);
4323 hw_watchpoint_update(cpu, i);
4324}
4325
4326static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4327 uint64_t value)
4328{
4329 ARMCPU *cpu = arm_env_get_cpu(env);
4330 int i = ri->crm;
4331
4332 raw_write(env, ri, value);
4333 hw_watchpoint_update(cpu, i);
4334}
4335
46747d15
PM
4336void hw_breakpoint_update(ARMCPU *cpu, int n)
4337{
4338 CPUARMState *env = &cpu->env;
4339 uint64_t bvr = env->cp15.dbgbvr[n];
4340 uint64_t bcr = env->cp15.dbgbcr[n];
4341 vaddr addr;
4342 int bt;
4343 int flags = BP_CPU;
4344
4345 if (env->cpu_breakpoint[n]) {
4346 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4347 env->cpu_breakpoint[n] = NULL;
4348 }
4349
4350 if (!extract64(bcr, 0, 1)) {
4351 /* E bit clear : watchpoint disabled */
4352 return;
4353 }
4354
4355 bt = extract64(bcr, 20, 4);
4356
4357 switch (bt) {
4358 case 4: /* unlinked address mismatch (reserved if AArch64) */
4359 case 5: /* linked address mismatch (reserved if AArch64) */
4360 qemu_log_mask(LOG_UNIMP,
4361 "arm: address mismatch breakpoint types not implemented");
4362 return;
4363 case 0: /* unlinked address match */
4364 case 1: /* linked address match */
4365 {
4366 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4367 * we behave as if the register was sign extended. Bits [1:0] are
4368 * RES0. The BAS field is used to allow setting breakpoints on 16
4369 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4370 * a bp will fire if the addresses covered by the bp and the addresses
4371 * covered by the insn overlap but the insn doesn't start at the
4372 * start of the bp address range. We choose to require the insn and
4373 * the bp to have the same address. The constraints on writing to
4374 * BAS enforced in dbgbcr_write mean we have only four cases:
4375 * 0b0000 => no breakpoint
4376 * 0b0011 => breakpoint on addr
4377 * 0b1100 => breakpoint on addr + 2
4378 * 0b1111 => breakpoint on addr
4379 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4380 */
4381 int bas = extract64(bcr, 5, 4);
4382 addr = sextract64(bvr, 0, 49) & ~3ULL;
4383 if (bas == 0) {
4384 return;
4385 }
4386 if (bas == 0xc) {
4387 addr += 2;
4388 }
4389 break;
4390 }
4391 case 2: /* unlinked context ID match */
4392 case 8: /* unlinked VMID match (reserved if no EL2) */
4393 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4394 qemu_log_mask(LOG_UNIMP,
4395 "arm: unlinked context breakpoint types not implemented");
4396 return;
4397 case 9: /* linked VMID match (reserved if no EL2) */
4398 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4399 case 3: /* linked context ID match */
4400 default:
4401 /* We must generate no events for Linked context matches (unless
4402 * they are linked to by some other bp/wp, which is handled in
4403 * updates for the linking bp/wp). We choose to also generate no events
4404 * for reserved values.
4405 */
4406 return;
4407 }
4408
4409 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4410}
4411
4412void hw_breakpoint_update_all(ARMCPU *cpu)
4413{
4414 int i;
4415 CPUARMState *env = &cpu->env;
4416
4417 /* Completely clear out existing QEMU breakpoints and our array, to
4418 * avoid possible stale entries following migration load.
4419 */
4420 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4421 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4422
4423 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4424 hw_breakpoint_update(cpu, i);
4425 }
4426}
4427
4428static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4429 uint64_t value)
4430{
4431 ARMCPU *cpu = arm_env_get_cpu(env);
4432 int i = ri->crm;
4433
4434 raw_write(env, ri, value);
4435 hw_breakpoint_update(cpu, i);
4436}
4437
4438static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4439 uint64_t value)
4440{
4441 ARMCPU *cpu = arm_env_get_cpu(env);
4442 int i = ri->crm;
4443
4444 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4445 * copy of BAS[0].
4446 */
4447 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4448 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4449
4450 raw_write(env, ri, value);
4451 hw_breakpoint_update(cpu, i);
4452}
4453
50300698 4454static void define_debug_regs(ARMCPU *cpu)
0b45451e 4455{
50300698
PM
4456 /* Define v7 and v8 architectural debug registers.
4457 * These are just dummy implementations for now.
0b45451e
PM
4458 */
4459 int i;
3ff6fc91 4460 int wrps, brps, ctx_cmps;
48eb3ae6
PM
4461 ARMCPRegInfo dbgdidr = {
4462 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
d6c8cf81
PM
4463 .access = PL0_R, .accessfn = access_tda,
4464 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
48eb3ae6
PM
4465 };
4466
3ff6fc91 4467 /* Note that all these register fields hold "number of Xs minus 1". */
48eb3ae6
PM
4468 brps = extract32(cpu->dbgdidr, 24, 4);
4469 wrps = extract32(cpu->dbgdidr, 28, 4);
3ff6fc91
PM
4470 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4471
4472 assert(ctx_cmps <= brps);
48eb3ae6
PM
4473
4474 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4475 * of the debug registers such as number of breakpoints;
4476 * check that if they both exist then they agree.
4477 */
4478 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4479 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4480 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3ff6fc91 4481 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
48eb3ae6 4482 }
0b45451e 4483
48eb3ae6 4484 define_one_arm_cp_reg(cpu, &dbgdidr);
50300698
PM
4485 define_arm_cp_regs(cpu, debug_cp_reginfo);
4486
4487 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4488 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4489 }
4490
48eb3ae6 4491 for (i = 0; i < brps + 1; i++) {
0b45451e 4492 ARMCPRegInfo dbgregs[] = {
10aae104
PM
4493 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4494 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
d6c8cf81 4495 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
4496 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4497 .writefn = dbgbvr_write, .raw_writefn = raw_write
4498 },
10aae104
PM
4499 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4500 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
d6c8cf81 4501 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
4502 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4503 .writefn = dbgbcr_write, .raw_writefn = raw_write
4504 },
48eb3ae6
PM
4505 REGINFO_SENTINEL
4506 };
4507 define_arm_cp_regs(cpu, dbgregs);
4508 }
4509
4510 for (i = 0; i < wrps + 1; i++) {
4511 ARMCPRegInfo dbgregs[] = {
10aae104
PM
4512 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4513 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
d6c8cf81 4514 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
4515 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4516 .writefn = dbgwvr_write, .raw_writefn = raw_write
4517 },
10aae104
PM
4518 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4519 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
d6c8cf81 4520 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
4521 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4522 .writefn = dbgwcr_write, .raw_writefn = raw_write
4523 },
4524 REGINFO_SENTINEL
0b45451e
PM
4525 };
4526 define_arm_cp_regs(cpu, dbgregs);
4527 }
4528}
4529
2ceb98c0
PM
4530void register_cp_regs_for_features(ARMCPU *cpu)
4531{
4532 /* Register all the coprocessor registers based on feature bits */
4533 CPUARMState *env = &cpu->env;
4534 if (arm_feature(env, ARM_FEATURE_M)) {
4535 /* M profile has no coprocessor registers */
4536 return;
4537 }
4538
e9aa6c21 4539 define_arm_cp_regs(cpu, cp_reginfo);
9449fdf6
PM
4540 if (!arm_feature(env, ARM_FEATURE_V8)) {
4541 /* Must go early as it is full of wildcards that may be
4542 * overridden by later definitions.
4543 */
4544 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4545 }
4546
7d57f408 4547 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
4548 /* The ID registers all have impdef reset values */
4549 ARMCPRegInfo v6_idregs[] = {
0ff644a7
PM
4550 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4552 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4553 .resetvalue = cpu->id_pfr0 },
0ff644a7
PM
4554 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4556 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4557 .resetvalue = cpu->id_pfr1 },
0ff644a7
PM
4558 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4559 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4560 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4561 .resetvalue = cpu->id_dfr0 },
0ff644a7
PM
4562 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4563 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4564 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4565 .resetvalue = cpu->id_afr0 },
0ff644a7
PM
4566 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4567 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4568 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4569 .resetvalue = cpu->id_mmfr0 },
0ff644a7
PM
4570 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4572 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4573 .resetvalue = cpu->id_mmfr1 },
0ff644a7
PM
4574 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4575 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4576 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4577 .resetvalue = cpu->id_mmfr2 },
0ff644a7
PM
4578 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4579 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4580 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4581 .resetvalue = cpu->id_mmfr3 },
0ff644a7
PM
4582 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4583 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4584 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4585 .resetvalue = cpu->id_isar0 },
0ff644a7
PM
4586 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4588 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4589 .resetvalue = cpu->id_isar1 },
0ff644a7
PM
4590 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4592 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4593 .resetvalue = cpu->id_isar2 },
0ff644a7
PM
4594 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4595 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4596 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4597 .resetvalue = cpu->id_isar3 },
0ff644a7
PM
4598 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4599 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4600 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4601 .resetvalue = cpu->id_isar4 },
0ff644a7
PM
4602 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4603 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4604 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4605 .resetvalue = cpu->id_isar5 },
e20d84c1
PM
4606 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4608 .access = PL1_R, .type = ARM_CP_CONST,
4609 .resetvalue = cpu->id_mmfr4 },
4610 /* 7 is as yet unallocated and must RAZ */
4611 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4612 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4613 .access = PL1_R, .type = ARM_CP_CONST,
8515a092
PM
4614 .resetvalue = 0 },
4615 REGINFO_SENTINEL
4616 };
4617 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
4618 define_arm_cp_regs(cpu, v6_cp_reginfo);
4619 } else {
4620 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4621 }
4d31c596
PM
4622 if (arm_feature(env, ARM_FEATURE_V6K)) {
4623 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4624 }
5e5cf9e3 4625 if (arm_feature(env, ARM_FEATURE_V7MP) &&
452a0955 4626 !arm_feature(env, ARM_FEATURE_PMSA)) {
995939a6
PM
4627 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4628 }
e9aa6c21 4629 if (arm_feature(env, ARM_FEATURE_V7)) {
200ac0ef 4630 /* v7 performance monitor control register: same implementor
7c2cb42b
AF
4631 * field as main ID register, and we implement only the cycle
4632 * count register.
200ac0ef 4633 */
7c2cb42b 4634#ifndef CONFIG_USER_ONLY
200ac0ef
PM
4635 ARMCPRegInfo pmcr = {
4636 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
8521466b 4637 .access = PL0_RW,
7a0e58fa 4638 .type = ARM_CP_IO | ARM_CP_ALIAS,
8521466b 4639 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
fcd25206
PM
4640 .accessfn = pmreg_access, .writefn = pmcr_write,
4641 .raw_writefn = raw_write,
200ac0ef 4642 };
8521466b
AF
4643 ARMCPRegInfo pmcr64 = {
4644 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4645 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4646 .access = PL0_RW, .accessfn = pmreg_access,
4647 .type = ARM_CP_IO,
4648 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4649 .resetvalue = cpu->midr & 0xff000000,
4650 .writefn = pmcr_write, .raw_writefn = raw_write,
4651 };
7c2cb42b 4652 define_one_arm_cp_reg(cpu, &pmcr);
8521466b 4653 define_one_arm_cp_reg(cpu, &pmcr64);
7c2cb42b 4654#endif
776d4e5c 4655 ARMCPRegInfo clidr = {
7da845b0
PM
4656 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4657 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
776d4e5c
PM
4658 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4659 };
776d4e5c 4660 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 4661 define_arm_cp_regs(cpu, v7_cp_reginfo);
50300698 4662 define_debug_regs(cpu);
7d57f408
PM
4663 } else {
4664 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 4665 }
b0d2b7d0 4666 if (arm_feature(env, ARM_FEATURE_V8)) {
e20d84c1
PM
4667 /* AArch64 ID registers, which all have impdef reset values.
4668 * Note that within the ID register ranges the unused slots
4669 * must all RAZ, not UNDEF; future architecture versions may
4670 * define new registers here.
4671 */
e60cef86
PM
4672 ARMCPRegInfo v8_idregs[] = {
4673 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4674 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4675 .access = PL1_R, .type = ARM_CP_CONST,
4676 .resetvalue = cpu->id_aa64pfr0 },
4677 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4678 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4679 .access = PL1_R, .type = ARM_CP_CONST,
4680 .resetvalue = cpu->id_aa64pfr1},
e20d84c1
PM
4681 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4682 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4683 .access = PL1_R, .type = ARM_CP_CONST,
4684 .resetvalue = 0 },
4685 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4686 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4687 .access = PL1_R, .type = ARM_CP_CONST,
4688 .resetvalue = 0 },
4689 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4691 .access = PL1_R, .type = ARM_CP_CONST,
4692 .resetvalue = 0 },
4693 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4694 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4695 .access = PL1_R, .type = ARM_CP_CONST,
4696 .resetvalue = 0 },
4697 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4698 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4699 .access = PL1_R, .type = ARM_CP_CONST,
4700 .resetvalue = 0 },
4701 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4702 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4703 .access = PL1_R, .type = ARM_CP_CONST,
4704 .resetvalue = 0 },
e60cef86
PM
4705 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4706 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4707 .access = PL1_R, .type = ARM_CP_CONST,
d6f02ce3 4708 .resetvalue = cpu->id_aa64dfr0 },
e60cef86
PM
4709 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4710 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4711 .access = PL1_R, .type = ARM_CP_CONST,
4712 .resetvalue = cpu->id_aa64dfr1 },
e20d84c1
PM
4713 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4714 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4715 .access = PL1_R, .type = ARM_CP_CONST,
4716 .resetvalue = 0 },
4717 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4718 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4719 .access = PL1_R, .type = ARM_CP_CONST,
4720 .resetvalue = 0 },
e60cef86
PM
4721 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4723 .access = PL1_R, .type = ARM_CP_CONST,
4724 .resetvalue = cpu->id_aa64afr0 },
4725 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4726 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4727 .access = PL1_R, .type = ARM_CP_CONST,
4728 .resetvalue = cpu->id_aa64afr1 },
e20d84c1
PM
4729 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4731 .access = PL1_R, .type = ARM_CP_CONST,
4732 .resetvalue = 0 },
4733 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4734 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4735 .access = PL1_R, .type = ARM_CP_CONST,
4736 .resetvalue = 0 },
e60cef86
PM
4737 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4738 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4739 .access = PL1_R, .type = ARM_CP_CONST,
4740 .resetvalue = cpu->id_aa64isar0 },
4741 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4743 .access = PL1_R, .type = ARM_CP_CONST,
4744 .resetvalue = cpu->id_aa64isar1 },
e20d84c1
PM
4745 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4746 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4747 .access = PL1_R, .type = ARM_CP_CONST,
4748 .resetvalue = 0 },
4749 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4751 .access = PL1_R, .type = ARM_CP_CONST,
4752 .resetvalue = 0 },
4753 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4754 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4755 .access = PL1_R, .type = ARM_CP_CONST,
4756 .resetvalue = 0 },
4757 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4758 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4759 .access = PL1_R, .type = ARM_CP_CONST,
4760 .resetvalue = 0 },
4761 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4763 .access = PL1_R, .type = ARM_CP_CONST,
4764 .resetvalue = 0 },
4765 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4766 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4767 .access = PL1_R, .type = ARM_CP_CONST,
4768 .resetvalue = 0 },
e60cef86
PM
4769 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4771 .access = PL1_R, .type = ARM_CP_CONST,
4772 .resetvalue = cpu->id_aa64mmfr0 },
4773 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4774 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4775 .access = PL1_R, .type = ARM_CP_CONST,
4776 .resetvalue = cpu->id_aa64mmfr1 },
e20d84c1
PM
4777 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4778 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4779 .access = PL1_R, .type = ARM_CP_CONST,
4780 .resetvalue = 0 },
4781 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4783 .access = PL1_R, .type = ARM_CP_CONST,
4784 .resetvalue = 0 },
4785 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4786 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4787 .access = PL1_R, .type = ARM_CP_CONST,
4788 .resetvalue = 0 },
4789 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4791 .access = PL1_R, .type = ARM_CP_CONST,
4792 .resetvalue = 0 },
4793 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4795 .access = PL1_R, .type = ARM_CP_CONST,
4796 .resetvalue = 0 },
4797 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4798 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4799 .access = PL1_R, .type = ARM_CP_CONST,
4800 .resetvalue = 0 },
a50c0f51
PM
4801 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4803 .access = PL1_R, .type = ARM_CP_CONST,
4804 .resetvalue = cpu->mvfr0 },
4805 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4807 .access = PL1_R, .type = ARM_CP_CONST,
4808 .resetvalue = cpu->mvfr1 },
4809 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4811 .access = PL1_R, .type = ARM_CP_CONST,
4812 .resetvalue = cpu->mvfr2 },
e20d84c1
PM
4813 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4814 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4815 .access = PL1_R, .type = ARM_CP_CONST,
4816 .resetvalue = 0 },
4817 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4818 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4819 .access = PL1_R, .type = ARM_CP_CONST,
4820 .resetvalue = 0 },
4821 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4823 .access = PL1_R, .type = ARM_CP_CONST,
4824 .resetvalue = 0 },
4825 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4826 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4827 .access = PL1_R, .type = ARM_CP_CONST,
4828 .resetvalue = 0 },
4829 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4830 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4831 .access = PL1_R, .type = ARM_CP_CONST,
4832 .resetvalue = 0 },
4054bfa9
AF
4833 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4834 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4835 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4836 .resetvalue = cpu->pmceid0 },
4837 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4838 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4839 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4840 .resetvalue = cpu->pmceid0 },
4841 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4842 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4843 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4844 .resetvalue = cpu->pmceid1 },
4845 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4846 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4847 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4848 .resetvalue = cpu->pmceid1 },
e60cef86
PM
4849 REGINFO_SENTINEL
4850 };
be8e8128
GB
4851 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4852 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4853 !arm_feature(env, ARM_FEATURE_EL2)) {
4854 ARMCPRegInfo rvbar = {
4855 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4856 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4857 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4858 };
4859 define_one_arm_cp_reg(cpu, &rvbar);
4860 }
e60cef86 4861 define_arm_cp_regs(cpu, v8_idregs);
b0d2b7d0
PM
4862 define_arm_cp_regs(cpu, v8_cp_reginfo);
4863 }
3b685ba7 4864 if (arm_feature(env, ARM_FEATURE_EL2)) {
f0d574d6 4865 uint64_t vmpidr_def = mpidr_read_val(env);
731de9e6
EI
4866 ARMCPRegInfo vpidr_regs[] = {
4867 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4868 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4869 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4870 .resetvalue = cpu->midr,
4871 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4872 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4873 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4874 .access = PL2_RW, .resetvalue = cpu->midr,
4875 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
4876 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4877 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4878 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4879 .resetvalue = vmpidr_def,
4880 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4881 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4882 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4883 .access = PL2_RW,
4884 .resetvalue = vmpidr_def,
4885 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
731de9e6
EI
4886 REGINFO_SENTINEL
4887 };
4888 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 4889 define_arm_cp_regs(cpu, el2_cp_reginfo);
be8e8128
GB
4890 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4891 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4892 ARMCPRegInfo rvbar = {
4893 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4894 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4895 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4896 };
4897 define_one_arm_cp_reg(cpu, &rvbar);
4898 }
d42e3c26
EI
4899 } else {
4900 /* If EL2 is missing but higher ELs are enabled, we need to
4901 * register the no_el2 reginfos.
4902 */
4903 if (arm_feature(env, ARM_FEATURE_EL3)) {
f0d574d6
EI
4904 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4905 * of MIDR_EL1 and MPIDR_EL1.
731de9e6
EI
4906 */
4907 ARMCPRegInfo vpidr_regs[] = {
4908 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4909 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4910 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4911 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4912 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
4913 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4914 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4915 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4916 .type = ARM_CP_NO_RAW,
4917 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
731de9e6
EI
4918 REGINFO_SENTINEL
4919 };
4920 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 4921 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
d42e3c26 4922 }
3b685ba7 4923 }
81547d66 4924 if (arm_feature(env, ARM_FEATURE_EL3)) {
0f1a3b24 4925 define_arm_cp_regs(cpu, el3_cp_reginfo);
e24fdd23
PM
4926 ARMCPRegInfo el3_regs[] = {
4927 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4928 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4929 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4930 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4931 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4932 .access = PL3_RW,
4933 .raw_writefn = raw_write, .writefn = sctlr_write,
4934 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4935 .resetvalue = cpu->reset_sctlr },
4936 REGINFO_SENTINEL
be8e8128 4937 };
e24fdd23
PM
4938
4939 define_arm_cp_regs(cpu, el3_regs);
81547d66 4940 }
2f027fc5
PM
4941 /* The behaviour of NSACR is sufficiently various that we don't
4942 * try to describe it in a single reginfo:
4943 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4944 * reads as constant 0xc00 from NS EL1 and NS EL2
4945 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4946 * if v7 without EL3, register doesn't exist
4947 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4948 */
4949 if (arm_feature(env, ARM_FEATURE_EL3)) {
4950 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4951 ARMCPRegInfo nsacr = {
4952 .name = "NSACR", .type = ARM_CP_CONST,
4953 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4954 .access = PL1_RW, .accessfn = nsacr_access,
4955 .resetvalue = 0xc00
4956 };
4957 define_one_arm_cp_reg(cpu, &nsacr);
4958 } else {
4959 ARMCPRegInfo nsacr = {
4960 .name = "NSACR",
4961 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4962 .access = PL3_RW | PL1_R,
4963 .resetvalue = 0,
4964 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4965 };
4966 define_one_arm_cp_reg(cpu, &nsacr);
4967 }
4968 } else {
4969 if (arm_feature(env, ARM_FEATURE_V8)) {
4970 ARMCPRegInfo nsacr = {
4971 .name = "NSACR", .type = ARM_CP_CONST,
4972 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4973 .access = PL1_R,
4974 .resetvalue = 0xc00
4975 };
4976 define_one_arm_cp_reg(cpu, &nsacr);
4977 }
4978 }
4979
452a0955 4980 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6cb0b013
PC
4981 if (arm_feature(env, ARM_FEATURE_V6)) {
4982 /* PMSAv6 not implemented */
4983 assert(arm_feature(env, ARM_FEATURE_V7));
4984 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4985 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4986 } else {
4987 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4988 }
18032bec 4989 } else {
8e5d75c9 4990 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
18032bec
PM
4991 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4992 }
c326b979
PM
4993 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4994 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4995 }
6cc7a3ae
PM
4996 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4997 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4998 }
4a501606
PM
4999 if (arm_feature(env, ARM_FEATURE_VAPA)) {
5000 define_arm_cp_regs(cpu, vapa_cp_reginfo);
5001 }
c4804214
PM
5002 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5003 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5004 }
5005 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5006 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5007 }
5008 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5009 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5010 }
18032bec
PM
5011 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5012 define_arm_cp_regs(cpu, omap_cp_reginfo);
5013 }
34f90529
PM
5014 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5015 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5016 }
1047b9d7
PM
5017 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5018 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5019 }
5020 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5021 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5022 }
7ac681cf
PM
5023 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5024 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5025 }
7884849c
PM
5026 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5027 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5028 * be read-only (ie write causes UNDEF exception).
5029 */
5030 {
00a29f3d
PM
5031 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5032 /* Pre-v8 MIDR space.
5033 * Note that the MIDR isn't a simple constant register because
7884849c
PM
5034 * of the TI925 behaviour where writes to another register can
5035 * cause the MIDR value to change.
97ce8d61
PC
5036 *
5037 * Unimplemented registers in the c15 0 0 0 space default to
5038 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5039 * and friends override accordingly.
7884849c
PM
5040 */
5041 { .name = "MIDR",
97ce8d61 5042 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7884849c 5043 .access = PL1_R, .resetvalue = cpu->midr,
d4e6df63 5044 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
731de9e6 5045 .readfn = midr_read,
97ce8d61
PC
5046 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5047 .type = ARM_CP_OVERRIDE },
7884849c
PM
5048 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5049 { .name = "DUMMY",
5050 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5051 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5052 { .name = "DUMMY",
5053 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5054 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5055 { .name = "DUMMY",
5056 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5057 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5058 { .name = "DUMMY",
5059 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5060 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5061 { .name = "DUMMY",
5062 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5063 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5064 REGINFO_SENTINEL
5065 };
00a29f3d 5066 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
00a29f3d
PM
5067 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5068 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
731de9e6
EI
5069 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5070 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5071 .readfn = midr_read },
ac00c79f
SF
5072 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5073 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5074 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5075 .access = PL1_R, .resetvalue = cpu->midr },
5076 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5077 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5078 .access = PL1_R, .resetvalue = cpu->midr },
00a29f3d
PM
5079 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5080 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
13b72b2b 5081 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
00a29f3d
PM
5082 REGINFO_SENTINEL
5083 };
5084 ARMCPRegInfo id_cp_reginfo[] = {
5085 /* These are common to v8 and pre-v8 */
5086 { .name = "CTR",
5087 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5088 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5089 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5090 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5091 .access = PL0_R, .accessfn = ctr_el0_access,
5092 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5093 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5094 { .name = "TCMTR",
5095 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5096 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
00a29f3d
PM
5097 REGINFO_SENTINEL
5098 };
8085ce63
PC
5099 /* TLBTR is specific to VMSA */
5100 ARMCPRegInfo id_tlbtr_reginfo = {
5101 .name = "TLBTR",
5102 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5103 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5104 };
3281af81
PC
5105 /* MPUIR is specific to PMSA V6+ */
5106 ARMCPRegInfo id_mpuir_reginfo = {
5107 .name = "MPUIR",
5108 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5109 .access = PL1_R, .type = ARM_CP_CONST,
5110 .resetvalue = cpu->pmsav7_dregion << 8
5111 };
7884849c
PM
5112 ARMCPRegInfo crn0_wi_reginfo = {
5113 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5114 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5115 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5116 };
5117 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5118 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5119 ARMCPRegInfo *r;
5120 /* Register the blanket "writes ignored" value first to cover the
a703eda1
PC
5121 * whole space. Then update the specific ID registers to allow write
5122 * access, so that they ignore writes rather than causing them to
5123 * UNDEF.
7884849c
PM
5124 */
5125 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
00a29f3d
PM
5126 for (r = id_pre_v8_midr_cp_reginfo;
5127 r->type != ARM_CP_SENTINEL; r++) {
5128 r->access = PL1_RW;
5129 }
7884849c
PM
5130 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5131 r->access = PL1_RW;
7884849c 5132 }
8085ce63 5133 id_tlbtr_reginfo.access = PL1_RW;
3281af81 5134 id_tlbtr_reginfo.access = PL1_RW;
7884849c 5135 }
00a29f3d
PM
5136 if (arm_feature(env, ARM_FEATURE_V8)) {
5137 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5138 } else {
5139 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5140 }
a703eda1 5141 define_arm_cp_regs(cpu, id_cp_reginfo);
452a0955 5142 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8085ce63 5143 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
3281af81
PC
5144 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5145 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8085ce63 5146 }
7884849c
PM
5147 }
5148
97ce8d61
PC
5149 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5150 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5151 }
5152
2771db27 5153 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
834a6c69
PM
5154 ARMCPRegInfo auxcr_reginfo[] = {
5155 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5156 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5157 .access = PL1_RW, .type = ARM_CP_CONST,
5158 .resetvalue = cpu->reset_auxcr },
5159 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5160 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5161 .access = PL2_RW, .type = ARM_CP_CONST,
5162 .resetvalue = 0 },
5163 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5164 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5165 .access = PL3_RW, .type = ARM_CP_CONST,
5166 .resetvalue = 0 },
5167 REGINFO_SENTINEL
2771db27 5168 };
834a6c69 5169 define_arm_cp_regs(cpu, auxcr_reginfo);
2771db27
PM
5170 }
5171
d8ba780b 5172 if (arm_feature(env, ARM_FEATURE_CBAR)) {
f318cec6
PM
5173 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5174 /* 32 bit view is [31:18] 0...0 [43:32]. */
5175 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5176 | extract64(cpu->reset_cbar, 32, 12);
5177 ARMCPRegInfo cbar_reginfo[] = {
5178 { .name = "CBAR",
5179 .type = ARM_CP_CONST,
5180 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5181 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5182 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5183 .type = ARM_CP_CONST,
5184 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5185 .access = PL1_R, .resetvalue = cbar32 },
5186 REGINFO_SENTINEL
5187 };
5188 /* We don't implement a r/w 64 bit CBAR currently */
5189 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5190 define_arm_cp_regs(cpu, cbar_reginfo);
5191 } else {
5192 ARMCPRegInfo cbar = {
5193 .name = "CBAR",
5194 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5195 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5196 .fieldoffset = offsetof(CPUARMState,
5197 cp15.c15_config_base_address)
5198 };
5199 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5200 cbar.access = PL1_R;
5201 cbar.fieldoffset = 0;
5202 cbar.type = ARM_CP_CONST;
5203 }
5204 define_one_arm_cp_reg(cpu, &cbar);
5205 }
d8ba780b
PC
5206 }
5207
91db4642
CLG
5208 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5209 ARMCPRegInfo vbar_cp_reginfo[] = {
5210 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5211 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5212 .access = PL1_RW, .writefn = vbar_write,
5213 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5214 offsetof(CPUARMState, cp15.vbar_ns) },
5215 .resetvalue = 0 },
5216 REGINFO_SENTINEL
5217 };
5218 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5219 }
5220
2771db27
PM
5221 /* Generic registers whose values depend on the implementation */
5222 {
5223 ARMCPRegInfo sctlr = {
5ebafdf3 5224 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
137feaa9
FA
5225 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5226 .access = PL1_RW,
5227 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5228 offsetof(CPUARMState, cp15.sctlr_ns) },
d4e6df63
PM
5229 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5230 .raw_writefn = raw_write,
2771db27
PM
5231 };
5232 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5233 /* Normally we would always end the TB on an SCTLR write, but Linux
5234 * arch/arm/mach-pxa/sleep.S expects two instructions following
5235 * an MMU enable to execute from cache. Imitate this behaviour.
5236 */
5237 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5238 }
5239 define_one_arm_cp_reg(cpu, &sctlr);
5240 }
2ceb98c0
PM
5241}
5242
14969266
AF
5243void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5244{
22169d41 5245 CPUState *cs = CPU(cpu);
14969266
AF
5246 CPUARMState *env = &cpu->env;
5247
6a669427
PM
5248 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5249 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5250 aarch64_fpu_gdb_set_reg,
5251 34, "aarch64-fpu.xml", 0);
5252 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
22169d41 5253 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
5254 51, "arm-neon.xml", 0);
5255 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
22169d41 5256 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
5257 35, "arm-vfp3.xml", 0);
5258 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
22169d41 5259 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
5260 19, "arm-vfp.xml", 0);
5261 }
40f137e1
PB
5262}
5263
777dc784
PM
5264/* Sort alphabetically by type name, except for "any". */
5265static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 5266{
777dc784
PM
5267 ObjectClass *class_a = (ObjectClass *)a;
5268 ObjectClass *class_b = (ObjectClass *)b;
5269 const char *name_a, *name_b;
5adb4839 5270
777dc784
PM
5271 name_a = object_class_get_name(class_a);
5272 name_b = object_class_get_name(class_b);
51492fd1 5273 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 5274 return 1;
51492fd1 5275 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
5276 return -1;
5277 } else {
5278 return strcmp(name_a, name_b);
5adb4839
PB
5279 }
5280}
5281
777dc784 5282static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 5283{
777dc784 5284 ObjectClass *oc = data;
92a31361 5285 CPUListState *s = user_data;
51492fd1
AF
5286 const char *typename;
5287 char *name;
3371d272 5288
51492fd1
AF
5289 typename = object_class_get_name(oc);
5290 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
777dc784 5291 (*s->cpu_fprintf)(s->file, " %s\n",
51492fd1
AF
5292 name);
5293 g_free(name);
777dc784
PM
5294}
5295
5296void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5297{
92a31361 5298 CPUListState s = {
777dc784
PM
5299 .file = f,
5300 .cpu_fprintf = cpu_fprintf,
5301 };
5302 GSList *list;
5303
5304 list = object_class_get_list(TYPE_ARM_CPU, false);
5305 list = g_slist_sort(list, arm_cpu_list_compare);
5306 (*cpu_fprintf)(f, "Available CPUs:\n");
5307 g_slist_foreach(list, arm_cpu_list_entry, &s);
5308 g_slist_free(list);
a96c0514
PM
5309#ifdef CONFIG_KVM
5310 /* The 'host' CPU type is dynamically registered only if KVM is
5311 * enabled, so we have to special-case it here:
5312 */
5313 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5314#endif
40f137e1
PB
5315}
5316
78027bb6
CR
5317static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5318{
5319 ObjectClass *oc = data;
5320 CpuDefinitionInfoList **cpu_list = user_data;
5321 CpuDefinitionInfoList *entry;
5322 CpuDefinitionInfo *info;
5323 const char *typename;
5324
5325 typename = object_class_get_name(oc);
5326 info = g_malloc0(sizeof(*info));
5327 info->name = g_strndup(typename,
5328 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8ed877b7 5329 info->q_typename = g_strdup(typename);
78027bb6
CR
5330
5331 entry = g_malloc0(sizeof(*entry));
5332 entry->value = info;
5333 entry->next = *cpu_list;
5334 *cpu_list = entry;
5335}
5336
5337CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5338{
5339 CpuDefinitionInfoList *cpu_list = NULL;
5340 GSList *list;
5341
5342 list = object_class_get_list(TYPE_ARM_CPU, false);
5343 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5344 g_slist_free(list);
5345
5346 return cpu_list;
5347}
5348
6e6efd61 5349static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
51a79b03 5350 void *opaque, int state, int secstate,
f5a0a5a5 5351 int crm, int opc1, int opc2)
6e6efd61
PM
5352{
5353 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5354 * add a single reginfo struct to the hash table.
5355 */
5356 uint32_t *key = g_new(uint32_t, 1);
5357 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5358 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3f3c82a5
FA
5359 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5360
5361 /* Reset the secure state to the specific incoming state. This is
5362 * necessary as the register may have been defined with both states.
5363 */
5364 r2->secure = secstate;
5365
5366 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5367 /* Register is banked (using both entries in array).
5368 * Overwriting fieldoffset as the array is only used to define
5369 * banked registers but later only fieldoffset is used.
f5a0a5a5 5370 */
3f3c82a5
FA
5371 r2->fieldoffset = r->bank_fieldoffsets[ns];
5372 }
5373
5374 if (state == ARM_CP_STATE_AA32) {
5375 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5376 /* If the register is banked then we don't need to migrate or
5377 * reset the 32-bit instance in certain cases:
5378 *
5379 * 1) If the register has both 32-bit and 64-bit instances then we
5380 * can count on the 64-bit instance taking care of the
5381 * non-secure bank.
5382 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5383 * taking care of the secure bank. This requires that separate
5384 * 32 and 64-bit definitions are provided.
5385 */
5386 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5387 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7a0e58fa 5388 r2->type |= ARM_CP_ALIAS;
3f3c82a5
FA
5389 }
5390 } else if ((secstate != r->secure) && !ns) {
5391 /* The register is not banked so we only want to allow migration of
5392 * the non-secure instance.
5393 */
7a0e58fa 5394 r2->type |= ARM_CP_ALIAS;
58a1d8ce 5395 }
3f3c82a5
FA
5396
5397 if (r->state == ARM_CP_STATE_BOTH) {
5398 /* We assume it is a cp15 register if the .cp field is left unset.
5399 */
5400 if (r2->cp == 0) {
5401 r2->cp = 15;
5402 }
5403
f5a0a5a5 5404#ifdef HOST_WORDS_BIGENDIAN
3f3c82a5
FA
5405 if (r2->fieldoffset) {
5406 r2->fieldoffset += sizeof(uint32_t);
5407 }
f5a0a5a5 5408#endif
3f3c82a5 5409 }
f5a0a5a5
PM
5410 }
5411 if (state == ARM_CP_STATE_AA64) {
5412 /* To allow abbreviation of ARMCPRegInfo
5413 * definitions, we treat cp == 0 as equivalent to
5414 * the value for "standard guest-visible sysreg".
58a1d8ce
PM
5415 * STATE_BOTH definitions are also always "standard
5416 * sysreg" in their AArch64 view (the .cp value may
5417 * be non-zero for the benefit of the AArch32 view).
f5a0a5a5 5418 */
58a1d8ce 5419 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
f5a0a5a5
PM
5420 r2->cp = CP_REG_ARM64_SYSREG_CP;
5421 }
5422 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5423 r2->opc0, opc1, opc2);
5424 } else {
51a79b03 5425 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
f5a0a5a5 5426 }
6e6efd61
PM
5427 if (opaque) {
5428 r2->opaque = opaque;
5429 }
67ed771d
PM
5430 /* reginfo passed to helpers is correct for the actual access,
5431 * and is never ARM_CP_STATE_BOTH:
5432 */
5433 r2->state = state;
6e6efd61
PM
5434 /* Make sure reginfo passed to helpers for wildcarded regs
5435 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5436 */
5437 r2->crm = crm;
5438 r2->opc1 = opc1;
5439 r2->opc2 = opc2;
5440 /* By convention, for wildcarded registers only the first
5441 * entry is used for migration; the others are marked as
7a0e58fa 5442 * ALIAS so we don't try to transfer the register
6e6efd61 5443 * multiple times. Special registers (ie NOP/WFI) are
7a0e58fa 5444 * never migratable and not even raw-accessible.
6e6efd61 5445 */
7a0e58fa
PM
5446 if ((r->type & ARM_CP_SPECIAL)) {
5447 r2->type |= ARM_CP_NO_RAW;
5448 }
5449 if (((r->crm == CP_ANY) && crm != 0) ||
6e6efd61
PM
5450 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5451 ((r->opc2 == CP_ANY) && opc2 != 0)) {
7a0e58fa 5452 r2->type |= ARM_CP_ALIAS;
6e6efd61
PM
5453 }
5454
375421cc
PM
5455 /* Check that raw accesses are either forbidden or handled. Note that
5456 * we can't assert this earlier because the setup of fieldoffset for
5457 * banked registers has to be done first.
5458 */
5459 if (!(r2->type & ARM_CP_NO_RAW)) {
5460 assert(!raw_accessors_invalid(r2));
5461 }
5462
6e6efd61
PM
5463 /* Overriding of an existing definition must be explicitly
5464 * requested.
5465 */
5466 if (!(r->type & ARM_CP_OVERRIDE)) {
5467 ARMCPRegInfo *oldreg;
5468 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5469 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5470 fprintf(stderr, "Register redefined: cp=%d %d bit "
5471 "crn=%d crm=%d opc1=%d opc2=%d, "
5472 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5473 r2->crn, r2->crm, r2->opc1, r2->opc2,
5474 oldreg->name, r2->name);
5475 g_assert_not_reached();
5476 }
5477 }
5478 g_hash_table_insert(cpu->cp_regs, key, r2);
5479}
5480
5481
4b6a83fb
PM
5482void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5483 const ARMCPRegInfo *r, void *opaque)
5484{
5485 /* Define implementations of coprocessor registers.
5486 * We store these in a hashtable because typically
5487 * there are less than 150 registers in a space which
5488 * is 16*16*16*8*8 = 262144 in size.
5489 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5490 * If a register is defined twice then the second definition is
5491 * used, so this can be used to define some generic registers and
5492 * then override them with implementation specific variations.
5493 * At least one of the original and the second definition should
5494 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5495 * against accidental use.
f5a0a5a5
PM
5496 *
5497 * The state field defines whether the register is to be
5498 * visible in the AArch32 or AArch64 execution state. If the
5499 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5500 * reginfo structure for the AArch32 view, which sees the lower
5501 * 32 bits of the 64 bit register.
5502 *
5503 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5504 * be wildcarded. AArch64 registers are always considered to be 64
5505 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5506 * the register, if any.
4b6a83fb 5507 */
f5a0a5a5 5508 int crm, opc1, opc2, state;
4b6a83fb
PM
5509 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5510 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5511 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5512 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5513 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5514 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5515 /* 64 bit registers have only CRm and Opc1 fields */
5516 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
f5a0a5a5
PM
5517 /* op0 only exists in the AArch64 encodings */
5518 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5519 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5520 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5521 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5522 * encodes a minimum access level for the register. We roll this
5523 * runtime check into our general permission check code, so check
5524 * here that the reginfo's specified permissions are strict enough
5525 * to encompass the generic architectural permission check.
5526 */
5527 if (r->state != ARM_CP_STATE_AA32) {
5528 int mask = 0;
5529 switch (r->opc1) {
5530 case 0: case 1: case 2:
5531 /* min_EL EL1 */
5532 mask = PL1_RW;
5533 break;
5534 case 3:
5535 /* min_EL EL0 */
5536 mask = PL0_RW;
5537 break;
5538 case 4:
5539 /* min_EL EL2 */
5540 mask = PL2_RW;
5541 break;
5542 case 5:
5543 /* unallocated encoding, so not possible */
5544 assert(false);
5545 break;
5546 case 6:
5547 /* min_EL EL3 */
5548 mask = PL3_RW;
5549 break;
5550 case 7:
5551 /* min_EL EL1, secure mode only (we don't check the latter) */
5552 mask = PL1_RW;
5553 break;
5554 default:
5555 /* broken reginfo with out-of-range opc1 */
5556 assert(false);
5557 break;
5558 }
5559 /* assert our permissions are not too lax (stricter is fine) */
5560 assert((r->access & ~mask) == 0);
5561 }
5562
4b6a83fb
PM
5563 /* Check that the register definition has enough info to handle
5564 * reads and writes if they are permitted.
5565 */
5566 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5567 if (r->access & PL3_R) {
3f3c82a5
FA
5568 assert((r->fieldoffset ||
5569 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5570 r->readfn);
4b6a83fb
PM
5571 }
5572 if (r->access & PL3_W) {
3f3c82a5
FA
5573 assert((r->fieldoffset ||
5574 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5575 r->writefn);
4b6a83fb
PM
5576 }
5577 }
5578 /* Bad type field probably means missing sentinel at end of reg list */
5579 assert(cptype_valid(r->type));
5580 for (crm = crmmin; crm <= crmmax; crm++) {
5581 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5582 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
f5a0a5a5
PM
5583 for (state = ARM_CP_STATE_AA32;
5584 state <= ARM_CP_STATE_AA64; state++) {
5585 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5586 continue;
5587 }
3f3c82a5
FA
5588 if (state == ARM_CP_STATE_AA32) {
5589 /* Under AArch32 CP registers can be common
5590 * (same for secure and non-secure world) or banked.
5591 */
5592 switch (r->secure) {
5593 case ARM_CP_SECSTATE_S:
5594 case ARM_CP_SECSTATE_NS:
5595 add_cpreg_to_hashtable(cpu, r, opaque, state,
5596 r->secure, crm, opc1, opc2);
5597 break;
5598 default:
5599 add_cpreg_to_hashtable(cpu, r, opaque, state,
5600 ARM_CP_SECSTATE_S,
5601 crm, opc1, opc2);
5602 add_cpreg_to_hashtable(cpu, r, opaque, state,
5603 ARM_CP_SECSTATE_NS,
5604 crm, opc1, opc2);
5605 break;
5606 }
5607 } else {
5608 /* AArch64 registers get mapped to non-secure instance
5609 * of AArch32 */
5610 add_cpreg_to_hashtable(cpu, r, opaque, state,
5611 ARM_CP_SECSTATE_NS,
5612 crm, opc1, opc2);
5613 }
f5a0a5a5 5614 }
4b6a83fb
PM
5615 }
5616 }
5617 }
5618}
5619
5620void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5621 const ARMCPRegInfo *regs, void *opaque)
5622{
5623 /* Define a whole list of registers */
5624 const ARMCPRegInfo *r;
5625 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5626 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5627 }
5628}
5629
60322b39 5630const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4b6a83fb 5631{
60322b39 5632 return g_hash_table_lookup(cpregs, &encoded_cp);
4b6a83fb
PM
5633}
5634
c4241c7d
PM
5635void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5636 uint64_t value)
4b6a83fb
PM
5637{
5638 /* Helper coprocessor write function for write-ignore registers */
4b6a83fb
PM
5639}
5640
c4241c7d 5641uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4b6a83fb
PM
5642{
5643 /* Helper coprocessor write function for read-as-zero registers */
4b6a83fb
PM
5644 return 0;
5645}
5646
f5a0a5a5
PM
5647void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5648{
5649 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5650}
5651
af393ffc 5652static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
37064a8b
PM
5653{
5654 /* Return true if it is not valid for us to switch to
5655 * this CPU mode (ie all the UNPREDICTABLE cases in
5656 * the ARM ARM CPSRWriteByInstr pseudocode).
5657 */
af393ffc
PM
5658
5659 /* Changes to or from Hyp via MSR and CPS are illegal. */
5660 if (write_type == CPSRWriteByInstr &&
5661 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5662 mode == ARM_CPU_MODE_HYP)) {
5663 return 1;
5664 }
5665
37064a8b
PM
5666 switch (mode) {
5667 case ARM_CPU_MODE_USR:
10eacda7 5668 return 0;
37064a8b
PM
5669 case ARM_CPU_MODE_SYS:
5670 case ARM_CPU_MODE_SVC:
5671 case ARM_CPU_MODE_ABT:
5672 case ARM_CPU_MODE_UND:
5673 case ARM_CPU_MODE_IRQ:
5674 case ARM_CPU_MODE_FIQ:
52ff951b
PM
5675 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5676 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5677 */
10eacda7
PM
5678 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5679 * and CPS are treated as illegal mode changes.
5680 */
5681 if (write_type == CPSRWriteByInstr &&
5682 (env->cp15.hcr_el2 & HCR_TGE) &&
5683 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5684 !arm_is_secure_below_el3(env)) {
5685 return 1;
5686 }
37064a8b 5687 return 0;
e6c8fc07
PM
5688 case ARM_CPU_MODE_HYP:
5689 return !arm_feature(env, ARM_FEATURE_EL2)
5690 || arm_current_el(env) < 2 || arm_is_secure(env);
027fc527 5691 case ARM_CPU_MODE_MON:
58ae2d1f 5692 return arm_current_el(env) < 3;
37064a8b
PM
5693 default:
5694 return 1;
5695 }
5696}
5697
2f4a40e5
AZ
5698uint32_t cpsr_read(CPUARMState *env)
5699{
5700 int ZF;
6fbe23d5
PB
5701 ZF = (env->ZF == 0);
5702 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
5703 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5704 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5705 | ((env->condexec_bits & 0xfc) << 8)
af519934 5706 | (env->GE << 16) | (env->daif & CPSR_AIF);
2f4a40e5
AZ
5707}
5708
50866ba5
PM
5709void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5710 CPSRWriteType write_type)
2f4a40e5 5711{
6e8801f9
FA
5712 uint32_t changed_daif;
5713
2f4a40e5 5714 if (mask & CPSR_NZCV) {
6fbe23d5
PB
5715 env->ZF = (~val) & CPSR_Z;
5716 env->NF = val;
2f4a40e5
AZ
5717 env->CF = (val >> 29) & 1;
5718 env->VF = (val << 3) & 0x80000000;
5719 }
5720 if (mask & CPSR_Q)
5721 env->QF = ((val & CPSR_Q) != 0);
5722 if (mask & CPSR_T)
5723 env->thumb = ((val & CPSR_T) != 0);
5724 if (mask & CPSR_IT_0_1) {
5725 env->condexec_bits &= ~3;
5726 env->condexec_bits |= (val >> 25) & 3;
5727 }
5728 if (mask & CPSR_IT_2_7) {
5729 env->condexec_bits &= 3;
5730 env->condexec_bits |= (val >> 8) & 0xfc;
5731 }
5732 if (mask & CPSR_GE) {
5733 env->GE = (val >> 16) & 0xf;
5734 }
5735
6e8801f9
FA
5736 /* In a V7 implementation that includes the security extensions but does
5737 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5738 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5739 * bits respectively.
5740 *
5741 * In a V8 implementation, it is permitted for privileged software to
5742 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5743 */
f8c88bbc 5744 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6e8801f9
FA
5745 arm_feature(env, ARM_FEATURE_EL3) &&
5746 !arm_feature(env, ARM_FEATURE_EL2) &&
5747 !arm_is_secure(env)) {
5748
5749 changed_daif = (env->daif ^ val) & mask;
5750
5751 if (changed_daif & CPSR_A) {
5752 /* Check to see if we are allowed to change the masking of async
5753 * abort exceptions from a non-secure state.
5754 */
5755 if (!(env->cp15.scr_el3 & SCR_AW)) {
5756 qemu_log_mask(LOG_GUEST_ERROR,
5757 "Ignoring attempt to switch CPSR_A flag from "
5758 "non-secure world with SCR.AW bit clear\n");
5759 mask &= ~CPSR_A;
5760 }
5761 }
5762
5763 if (changed_daif & CPSR_F) {
5764 /* Check to see if we are allowed to change the masking of FIQ
5765 * exceptions from a non-secure state.
5766 */
5767 if (!(env->cp15.scr_el3 & SCR_FW)) {
5768 qemu_log_mask(LOG_GUEST_ERROR,
5769 "Ignoring attempt to switch CPSR_F flag from "
5770 "non-secure world with SCR.FW bit clear\n");
5771 mask &= ~CPSR_F;
5772 }
5773
5774 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5775 * If this bit is set software is not allowed to mask
5776 * FIQs, but is allowed to set CPSR_F to 0.
5777 */
5778 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5779 (val & CPSR_F)) {
5780 qemu_log_mask(LOG_GUEST_ERROR,
5781 "Ignoring attempt to enable CPSR_F flag "
5782 "(non-maskable FIQ [NMFI] support enabled)\n");
5783 mask &= ~CPSR_F;
5784 }
5785 }
5786 }
5787
4cc35614
PM
5788 env->daif &= ~(CPSR_AIF & mask);
5789 env->daif |= val & CPSR_AIF & mask;
5790
f8c88bbc
PM
5791 if (write_type != CPSRWriteRaw &&
5792 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8c4f0eb9
PM
5793 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5794 /* Note that we can only get here in USR mode if this is a
5795 * gdb stub write; for this case we follow the architectural
5796 * behaviour for guest writes in USR mode of ignoring an attempt
5797 * to switch mode. (Those are caught by translate.c for writes
5798 * triggered by guest instructions.)
5799 */
5800 mask &= ~CPSR_M;
5801 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
81907a58
PM
5802 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5803 * v7, and has defined behaviour in v8:
5804 * + leave CPSR.M untouched
5805 * + allow changes to the other CPSR fields
5806 * + set PSTATE.IL
5807 * For user changes via the GDB stub, we don't set PSTATE.IL,
5808 * as this would be unnecessarily harsh for a user error.
37064a8b
PM
5809 */
5810 mask &= ~CPSR_M;
81907a58
PM
5811 if (write_type != CPSRWriteByGDBStub &&
5812 arm_feature(env, ARM_FEATURE_V8)) {
5813 mask |= CPSR_IL;
5814 val |= CPSR_IL;
5815 }
37064a8b
PM
5816 } else {
5817 switch_mode(env, val & CPSR_M);
5818 }
2f4a40e5
AZ
5819 }
5820 mask &= ~CACHED_CPSR_BITS;
5821 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5822}
5823
b26eefb6
PB
5824/* Sign/zero extend */
5825uint32_t HELPER(sxtb16)(uint32_t x)
5826{
5827 uint32_t res;
5828 res = (uint16_t)(int8_t)x;
5829 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5830 return res;
5831}
5832
5833uint32_t HELPER(uxtb16)(uint32_t x)
5834{
5835 uint32_t res;
5836 res = (uint16_t)(uint8_t)x;
5837 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5838 return res;
5839}
5840
3670669c
PB
5841int32_t HELPER(sdiv)(int32_t num, int32_t den)
5842{
5843 if (den == 0)
5844 return 0;
686eeb93
AJ
5845 if (num == INT_MIN && den == -1)
5846 return INT_MIN;
3670669c
PB
5847 return num / den;
5848}
5849
5850uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5851{
5852 if (den == 0)
5853 return 0;
5854 return num / den;
5855}
5856
5857uint32_t HELPER(rbit)(uint32_t x)
5858{
42fedbca 5859 return revbit32(x);
3670669c
PB
5860}
5861
5fafdf24 5862#if defined(CONFIG_USER_ONLY)
b5ff1b31 5863
9ee6e8bb 5864/* These should probably raise undefined insn exceptions. */
0ecb72a5 5865void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 5866{
a47dddd7
AF
5867 ARMCPU *cpu = arm_env_get_cpu(env);
5868
5869 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
9ee6e8bb
PB
5870}
5871
0ecb72a5 5872uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 5873{
a47dddd7
AF
5874 ARMCPU *cpu = arm_env_get_cpu(env);
5875
5876 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
9ee6e8bb
PB
5877 return 0;
5878}
5879
fb602cb7
PM
5880void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
5881{
5882 /* translate.c should never generate calls here in user-only mode */
5883 g_assert_not_reached();
5884}
5885
0ecb72a5 5886void switch_mode(CPUARMState *env, int mode)
b5ff1b31 5887{
a47dddd7
AF
5888 ARMCPU *cpu = arm_env_get_cpu(env);
5889
5890 if (mode != ARM_CPU_MODE_USR) {
5891 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5892 }
b5ff1b31
FB
5893}
5894
012a906b
GB
5895uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5896 uint32_t cur_el, bool secure)
9e729b57
EI
5897{
5898 return 1;
5899}
5900
ce02049d
GB
5901void aarch64_sync_64_to_32(CPUARMState *env)
5902{
5903 g_assert_not_reached();
5904}
5905
b5ff1b31
FB
5906#else
5907
0ecb72a5 5908void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
5909{
5910 int old_mode;
5911 int i;
5912
5913 old_mode = env->uncached_cpsr & CPSR_M;
5914 if (mode == old_mode)
5915 return;
5916
5917 if (old_mode == ARM_CPU_MODE_FIQ) {
5918 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5919 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5920 } else if (mode == ARM_CPU_MODE_FIQ) {
5921 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5922 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5923 }
5924
f5206413 5925 i = bank_number(old_mode);
b5ff1b31
FB
5926 env->banked_r13[i] = env->regs[13];
5927 env->banked_r14[i] = env->regs[14];
5928 env->banked_spsr[i] = env->spsr;
5929
f5206413 5930 i = bank_number(mode);
b5ff1b31
FB
5931 env->regs[13] = env->banked_r13[i];
5932 env->regs[14] = env->banked_r14[i];
5933 env->spsr = env->banked_spsr[i];
5934}
5935
0eeb17d6
GB
5936/* Physical Interrupt Target EL Lookup Table
5937 *
5938 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5939 *
5940 * The below multi-dimensional table is used for looking up the target
5941 * exception level given numerous condition criteria. Specifically, the
5942 * target EL is based on SCR and HCR routing controls as well as the
5943 * currently executing EL and secure state.
5944 *
5945 * Dimensions:
5946 * target_el_table[2][2][2][2][2][4]
5947 * | | | | | +--- Current EL
5948 * | | | | +------ Non-secure(0)/Secure(1)
5949 * | | | +--------- HCR mask override
5950 * | | +------------ SCR exec state control
5951 * | +--------------- SCR mask override
5952 * +------------------ 32-bit(0)/64-bit(1) EL3
5953 *
5954 * The table values are as such:
5955 * 0-3 = EL0-EL3
5956 * -1 = Cannot occur
5957 *
5958 * The ARM ARM target EL table includes entries indicating that an "exception
5959 * is not taken". The two cases where this is applicable are:
5960 * 1) An exception is taken from EL3 but the SCR does not have the exception
5961 * routed to EL3.
5962 * 2) An exception is taken from EL2 but the HCR does not have the exception
5963 * routed to EL2.
5964 * In these two cases, the below table contain a target of EL1. This value is
5965 * returned as it is expected that the consumer of the table data will check
5966 * for "target EL >= current EL" to ensure the exception is not taken.
5967 *
5968 * SCR HCR
5969 * 64 EA AMO From
5970 * BIT IRQ IMO Non-secure Secure
5971 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5972 */
82c39f6a 5973static const int8_t target_el_table[2][2][2][2][2][4] = {
0eeb17d6
GB
5974 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5975 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5976 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5977 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5978 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5979 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5980 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5981 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5982 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5983 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5984 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5985 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5986 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5987 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5988 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5989 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5990};
5991
5992/*
5993 * Determine the target EL for physical exceptions
5994 */
012a906b
GB
5995uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5996 uint32_t cur_el, bool secure)
0eeb17d6
GB
5997{
5998 CPUARMState *env = cs->env_ptr;
2cde031f 5999 int rw;
0eeb17d6
GB
6000 int scr;
6001 int hcr;
6002 int target_el;
2cde031f
SS
6003 /* Is the highest EL AArch64? */
6004 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6005
6006 if (arm_feature(env, ARM_FEATURE_EL3)) {
6007 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6008 } else {
6009 /* Either EL2 is the highest EL (and so the EL2 register width
6010 * is given by is64); or there is no EL2 or EL3, in which case
6011 * the value of 'rw' does not affect the table lookup anyway.
6012 */
6013 rw = is64;
6014 }
0eeb17d6
GB
6015
6016 switch (excp_idx) {
6017 case EXCP_IRQ:
6018 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6019 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6020 break;
6021 case EXCP_FIQ:
6022 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6023 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6024 break;
6025 default:
6026 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6027 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6028 break;
6029 };
6030
6031 /* If HCR.TGE is set then HCR is treated as being 1 */
6032 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6033
6034 /* Perform a table-lookup for the target EL given the current state */
6035 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6036
6037 assert(target_el > 0);
6038
6039 return target_el;
6040}
6041
9ee6e8bb
PB
6042static void v7m_push(CPUARMState *env, uint32_t val)
6043{
70d74660
AF
6044 CPUState *cs = CPU(arm_env_get_cpu(env));
6045
9ee6e8bb 6046 env->regs[13] -= 4;
ab1da857 6047 stl_phys(cs->as, env->regs[13], val);
9ee6e8bb
PB
6048}
6049
6050static uint32_t v7m_pop(CPUARMState *env)
6051{
70d74660 6052 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb 6053 uint32_t val;
70d74660 6054
fdfba1a2 6055 val = ldl_phys(cs->as, env->regs[13]);
9ee6e8bb
PB
6056 env->regs[13] += 4;
6057 return val;
6058}
6059
fb602cb7
PM
6060/* Return true if we're using the process stack pointer (not the MSP) */
6061static bool v7m_using_psp(CPUARMState *env)
6062{
6063 /* Handler mode always uses the main stack; for thread mode
6064 * the CONTROL.SPSEL bit determines the answer.
6065 * Note that in v7M it is not possible to be in Handler mode with
6066 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6067 */
6068 return !arm_v7m_is_handler_mode(env) &&
6069 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6070}
6071
9ee6e8bb 6072/* Switch to V7M main or process stack pointer. */
abc24d86 6073static void switch_v7m_sp(CPUARMState *env, bool new_spsel)
9ee6e8bb
PB
6074{
6075 uint32_t tmp;
8bfc26ea
PM
6076 uint32_t old_control = env->v7m.control[env->v7m.secure];
6077 bool old_spsel = old_control & R_V7M_CONTROL_SPSEL_MASK;
abc24d86
MD
6078
6079 if (old_spsel != new_spsel) {
9ee6e8bb
PB
6080 tmp = env->v7m.other_sp;
6081 env->v7m.other_sp = env->regs[13];
6082 env->regs[13] = tmp;
abc24d86 6083
8bfc26ea 6084 env->v7m.control[env->v7m.secure] = deposit32(old_control,
abc24d86
MD
6085 R_V7M_CONTROL_SPSEL_SHIFT,
6086 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
9ee6e8bb
PB
6087 }
6088}
6089
fb602cb7
PM
6090/* Switch M profile security state between NS and S */
6091static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6092{
6093 uint32_t new_ss_msp, new_ss_psp;
6094
6095 if (env->v7m.secure == new_secstate) {
6096 return;
6097 }
6098
6099 /* All the banked state is accessed by looking at env->v7m.secure
6100 * except for the stack pointer; rearrange the SP appropriately.
6101 */
6102 new_ss_msp = env->v7m.other_ss_msp;
6103 new_ss_psp = env->v7m.other_ss_psp;
6104
6105 if (v7m_using_psp(env)) {
6106 env->v7m.other_ss_psp = env->regs[13];
6107 env->v7m.other_ss_msp = env->v7m.other_sp;
6108 } else {
6109 env->v7m.other_ss_msp = env->regs[13];
6110 env->v7m.other_ss_psp = env->v7m.other_sp;
6111 }
6112
6113 env->v7m.secure = new_secstate;
6114
6115 if (v7m_using_psp(env)) {
6116 env->regs[13] = new_ss_psp;
6117 env->v7m.other_sp = new_ss_msp;
6118 } else {
6119 env->regs[13] = new_ss_msp;
6120 env->v7m.other_sp = new_ss_psp;
6121 }
6122}
6123
6124void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6125{
6126 /* Handle v7M BXNS:
6127 * - if the return value is a magic value, do exception return (like BX)
6128 * - otherwise bit 0 of the return value is the target security state
6129 */
6130 if (dest >= 0xff000000) {
6131 /* This is an exception return magic value; put it where
6132 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6133 * Note that if we ever add gen_ss_advance() singlestep support to
6134 * M profile this should count as an "instruction execution complete"
6135 * event (compare gen_bx_excret_final_code()).
6136 */
6137 env->regs[15] = dest & ~1;
6138 env->thumb = dest & 1;
6139 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6140 /* notreached */
6141 }
6142
6143 /* translate.c should have made BXNS UNDEF unless we're secure */
6144 assert(env->v7m.secure);
6145
6146 switch_v7m_security_state(env, dest & 1);
6147 env->thumb = 1;
6148 env->regs[15] = dest & ~1;
6149}
6150
39ae2474
PM
6151static uint32_t arm_v7m_load_vector(ARMCPU *cpu)
6152{
6153 CPUState *cs = CPU(cpu);
6154 CPUARMState *env = &cpu->env;
6155 MemTxResult result;
45db7ba6 6156 hwaddr vec = env->v7m.vecbase[env->v7m.secure] + env->v7m.exception * 4;
39ae2474
PM
6157 uint32_t addr;
6158
6159 addr = address_space_ldl(cs->as, vec,
6160 MEMTXATTRS_UNSPECIFIED, &result);
6161 if (result != MEMTX_OK) {
6162 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6163 * which would then be immediately followed by our failing to load
6164 * the entry vector for that HardFault, which is a Lockup case.
6165 * Since we don't model Lockup, we just report this guest error
6166 * via cpu_abort().
6167 */
6168 cpu_abort(cs, "Failed to read from exception vector table "
6169 "entry %08x\n", (unsigned)vec);
6170 }
6171 return addr;
6172}
6173
6174static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr)
6175{
6176 /* Do the "take the exception" parts of exception entry,
6177 * but not the pushing of state to the stack. This is
6178 * similar to the pseudocode ExceptionTaken() function.
6179 */
6180 CPUARMState *env = &cpu->env;
6181 uint32_t addr;
6182
6183 armv7m_nvic_acknowledge_irq(env->nvic);
6184 switch_v7m_sp(env, 0);
dc3c4c14 6185 arm_clear_exclusive(env);
39ae2474
PM
6186 /* Clear IT bits */
6187 env->condexec_bits = 0;
6188 env->regs[14] = lr;
6189 addr = arm_v7m_load_vector(cpu);
6190 env->regs[15] = addr & 0xfffffffe;
6191 env->thumb = addr & 1;
6192}
6193
6194static void v7m_push_stack(ARMCPU *cpu)
6195{
6196 /* Do the "set up stack frame" part of exception entry,
6197 * similar to pseudocode PushStack().
6198 */
6199 CPUARMState *env = &cpu->env;
6200 uint32_t xpsr = xpsr_read(env);
6201
6202 /* Align stack pointer if the guest wants that */
9d40cd8a
PM
6203 if ((env->regs[13] & 4) &&
6204 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
39ae2474 6205 env->regs[13] -= 4;
987ab45e 6206 xpsr |= XPSR_SPREALIGN;
39ae2474
PM
6207 }
6208 /* Switch to the handler mode. */
6209 v7m_push(env, xpsr);
6210 v7m_push(env, env->regs[15]);
6211 v7m_push(env, env->regs[14]);
6212 v7m_push(env, env->regs[12]);
6213 v7m_push(env, env->regs[3]);
6214 v7m_push(env, env->regs[2]);
6215 v7m_push(env, env->regs[1]);
6216 v7m_push(env, env->regs[0]);
6217}
6218
aa488fe3 6219static void do_v7m_exception_exit(ARMCPU *cpu)
9ee6e8bb 6220{
aa488fe3 6221 CPUARMState *env = &cpu->env;
351e527a 6222 uint32_t excret;
9ee6e8bb 6223 uint32_t xpsr;
aa488fe3
PM
6224 bool ufault = false;
6225 bool return_to_sp_process = false;
6226 bool return_to_handler = false;
6227 bool rettobase = false;
5cb18069 6228 bool exc_secure = false;
aa488fe3
PM
6229
6230 /* We can only get here from an EXCP_EXCEPTION_EXIT, and
9d17da4b 6231 * gen_bx_excret() enforces the architectural rule
aa488fe3
PM
6232 * that jumps to magic addresses don't have magic behaviour unless
6233 * we're in Handler mode (compare pseudocode BXWritePC()).
6234 */
15b3f556 6235 assert(arm_v7m_is_handler_mode(env));
aa488fe3
PM
6236
6237 /* In the spec pseudocode ExceptionReturn() is called directly
6238 * from BXWritePC() and gets the full target PC value including
6239 * bit zero. In QEMU's implementation we treat it as a normal
6240 * jump-to-register (which is then caught later on), and so split
6241 * the target value up between env->regs[15] and env->thumb in
6242 * gen_bx(). Reconstitute it.
6243 */
351e527a 6244 excret = env->regs[15];
aa488fe3 6245 if (env->thumb) {
351e527a 6246 excret |= 1;
aa488fe3
PM
6247 }
6248
6249 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6250 " previous exception %d\n",
351e527a 6251 excret, env->v7m.exception);
aa488fe3 6252
351e527a 6253 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
aa488fe3 6254 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
351e527a
PM
6255 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6256 excret);
aa488fe3
PM
6257 }
6258
a20ee600 6259 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
42a6686b
PM
6260 /* Auto-clear FAULTMASK on return from other than NMI.
6261 * If the security extension is implemented then this only
6262 * happens if the raw execution priority is >= 0; the
6263 * value of the ES bit in the exception return value indicates
6264 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6265 */
6266 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
5cb18069 6267 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
42a6686b 6268 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
5cb18069 6269 env->v7m.faultmask[exc_secure] = 0;
42a6686b
PM
6270 }
6271 } else {
6272 env->v7m.faultmask[M_REG_NS] = 0;
6273 }
a20ee600 6274 }
aa488fe3 6275
5cb18069
PM
6276 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
6277 exc_secure)) {
aa488fe3
PM
6278 case -1:
6279 /* attempt to exit an exception that isn't active */
6280 ufault = true;
6281 break;
6282 case 0:
6283 /* still an irq active now */
6284 break;
6285 case 1:
6286 /* we returned to base exception level, no nesting.
6287 * (In the pseudocode this is written using "NestedActivation != 1"
6288 * where we have 'rettobase == false'.)
6289 */
6290 rettobase = true;
6291 break;
6292 default:
6293 g_assert_not_reached();
6294 }
6295
351e527a 6296 switch (excret & 0xf) {
aa488fe3
PM
6297 case 1: /* Return to Handler */
6298 return_to_handler = true;
6299 break;
6300 case 13: /* Return to Thread using Process stack */
6301 return_to_sp_process = true;
6302 /* fall through */
6303 case 9: /* Return to Thread using Main stack */
6304 if (!rettobase &&
9d40cd8a 6305 !(env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_NONBASETHRDENA_MASK)) {
aa488fe3
PM
6306 ufault = true;
6307 }
6308 break;
6309 default:
6310 ufault = true;
6311 }
6312
6313 if (ufault) {
6314 /* Bad exception return: instead of popping the exception
6315 * stack, directly take a usage fault on the current stack.
6316 */
334e8dad 6317 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
2fb50a33 6318 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
351e527a 6319 v7m_exception_taken(cpu, excret);
aa488fe3
PM
6320 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6321 "stackframe: failed exception return integrity check\n");
6322 return;
a20ee600 6323 }
9ee6e8bb
PB
6324
6325 /* Switch to the target stack. */
aa488fe3 6326 switch_v7m_sp(env, return_to_sp_process);
9ee6e8bb
PB
6327 /* Pop registers. */
6328 env->regs[0] = v7m_pop(env);
6329 env->regs[1] = v7m_pop(env);
6330 env->regs[2] = v7m_pop(env);
6331 env->regs[3] = v7m_pop(env);
6332 env->regs[12] = v7m_pop(env);
6333 env->regs[14] = v7m_pop(env);
6334 env->regs[15] = v7m_pop(env);
fcf83ab1
PM
6335 if (env->regs[15] & 1) {
6336 qemu_log_mask(LOG_GUEST_ERROR,
6337 "M profile return from interrupt with misaligned "
6338 "PC is UNPREDICTABLE\n");
6339 /* Actual hardware seems to ignore the lsbit, and there are several
6340 * RTOSes out there which incorrectly assume the r15 in the stack
6341 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
6342 */
6343 env->regs[15] &= ~1U;
6344 }
9ee6e8bb 6345 xpsr = v7m_pop(env);
987ab45e 6346 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
9ee6e8bb 6347 /* Undo stack alignment. */
987ab45e 6348 if (xpsr & XPSR_SPREALIGN) {
9ee6e8bb 6349 env->regs[13] |= 4;
987ab45e 6350 }
aa488fe3
PM
6351
6352 /* The restored xPSR exception field will be zero if we're
6353 * resuming in Thread mode. If that doesn't match what the
351e527a 6354 * exception return excret specified then this is a UsageFault.
aa488fe3 6355 */
15b3f556 6356 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
2fb50a33
PM
6357 /* Take an INVPC UsageFault by pushing the stack again.
6358 * TODO: the v8M version of this code should target the
6359 * background state for this exception.
6360 */
6361 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
334e8dad 6362 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
aa488fe3 6363 v7m_push_stack(cpu);
351e527a 6364 v7m_exception_taken(cpu, excret);
aa488fe3
PM
6365 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6366 "failed exception return integrity check\n");
6367 return;
6368 }
6369
6370 /* Otherwise, we have a successful exception exit. */
dc3c4c14 6371 arm_clear_exclusive(env);
aa488fe3 6372 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
9ee6e8bb
PB
6373}
6374
27a7ea8a
PB
6375static void arm_log_exception(int idx)
6376{
6377 if (qemu_loglevel_mask(CPU_LOG_INT)) {
6378 const char *exc = NULL;
2c4a7cc5
PM
6379 static const char * const excnames[] = {
6380 [EXCP_UDEF] = "Undefined Instruction",
6381 [EXCP_SWI] = "SVC",
6382 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6383 [EXCP_DATA_ABORT] = "Data Abort",
6384 [EXCP_IRQ] = "IRQ",
6385 [EXCP_FIQ] = "FIQ",
6386 [EXCP_BKPT] = "Breakpoint",
6387 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6388 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6389 [EXCP_HVC] = "Hypervisor Call",
6390 [EXCP_HYP_TRAP] = "Hypervisor Trap",
6391 [EXCP_SMC] = "Secure Monitor Call",
6392 [EXCP_VIRQ] = "Virtual IRQ",
6393 [EXCP_VFIQ] = "Virtual FIQ",
6394 [EXCP_SEMIHOST] = "Semihosting call",
6395 [EXCP_NOCP] = "v7M NOCP UsageFault",
6396 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6397 };
27a7ea8a
PB
6398
6399 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6400 exc = excnames[idx];
6401 }
6402 if (!exc) {
6403 exc = "unknown";
6404 }
6405 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6406 }
6407}
6408
e6f010cc 6409void arm_v7m_cpu_do_interrupt(CPUState *cs)
9ee6e8bb 6410{
e6f010cc
AF
6411 ARMCPU *cpu = ARM_CPU(cs);
6412 CPUARMState *env = &cpu->env;
9ee6e8bb 6413 uint32_t lr;
9ee6e8bb 6414
27103424 6415 arm_log_exception(cs->exception_index);
3f1beaca 6416
9ee6e8bb
PB
6417 /* For exceptions we just mark as pending on the NVIC, and let that
6418 handle it. */
27103424 6419 switch (cs->exception_index) {
9ee6e8bb 6420 case EXCP_UDEF:
2fb50a33 6421 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
334e8dad 6422 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
a25dc805 6423 break;
7517748e 6424 case EXCP_NOCP:
2fb50a33 6425 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
334e8dad 6426 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
a25dc805 6427 break;
e13886e3 6428 case EXCP_INVSTATE:
2fb50a33 6429 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
334e8dad 6430 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
e13886e3 6431 break;
9ee6e8bb 6432 case EXCP_SWI:
314e2296 6433 /* The PC already points to the next instruction. */
2fb50a33 6434 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
a25dc805 6435 break;
9ee6e8bb
PB
6436 case EXCP_PREFETCH_ABORT:
6437 case EXCP_DATA_ABORT:
5dd0641d
MD
6438 /* Note that for M profile we don't have a guest facing FSR, but
6439 * the env->exception.fsr will be populated by the code that
6440 * raises the fault, in the A profile short-descriptor format.
abf1172f 6441 */
5dd0641d
MD
6442 switch (env->exception.fsr & 0xf) {
6443 case 0x8: /* External Abort */
6444 switch (cs->exception_index) {
6445 case EXCP_PREFETCH_ABORT:
c6158878
PM
6446 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
6447 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
5dd0641d
MD
6448 break;
6449 case EXCP_DATA_ABORT:
334e8dad 6450 env->v7m.cfsr[M_REG_NS] |=
c6158878 6451 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
5dd0641d
MD
6452 env->v7m.bfar = env->exception.vaddress;
6453 qemu_log_mask(CPU_LOG_INT,
c6158878 6454 "...with CFSR.PRECISERR and BFAR 0x%x\n",
5dd0641d
MD
6455 env->v7m.bfar);
6456 break;
6457 }
2fb50a33 6458 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
5dd0641d
MD
6459 break;
6460 default:
6461 /* All other FSR values are either MPU faults or "can't happen
6462 * for M profile" cases.
6463 */
6464 switch (cs->exception_index) {
6465 case EXCP_PREFETCH_ABORT:
334e8dad 6466 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
5dd0641d
MD
6467 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
6468 break;
6469 case EXCP_DATA_ABORT:
334e8dad 6470 env->v7m.cfsr[env->v7m.secure] |=
5dd0641d 6471 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
c51a5cfc 6472 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
5dd0641d
MD
6473 qemu_log_mask(CPU_LOG_INT,
6474 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
c51a5cfc 6475 env->v7m.mmfar[env->v7m.secure]);
5dd0641d
MD
6476 break;
6477 }
2fb50a33
PM
6478 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
6479 env->v7m.secure);
5dd0641d
MD
6480 break;
6481 }
a25dc805 6482 break;
9ee6e8bb 6483 case EXCP_BKPT:
cfe67cef 6484 if (semihosting_enabled()) {
2ad207d4 6485 int nr;
f9fd40eb 6486 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
2ad207d4
PB
6487 if (nr == 0xab) {
6488 env->regs[15] += 2;
205ace55
CC
6489 qemu_log_mask(CPU_LOG_INT,
6490 "...handling as semihosting call 0x%x\n",
6491 env->regs[0]);
2ad207d4
PB
6492 env->regs[0] = do_arm_semihosting(env);
6493 return;
6494 }
6495 }
2fb50a33 6496 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
a25dc805 6497 break;
9ee6e8bb 6498 case EXCP_IRQ:
9ee6e8bb
PB
6499 break;
6500 case EXCP_EXCEPTION_EXIT:
aa488fe3 6501 do_v7m_exception_exit(cpu);
9ee6e8bb
PB
6502 return;
6503 default:
a47dddd7 6504 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9ee6e8bb
PB
6505 return; /* Never happens. Keep compiler happy. */
6506 }
6507
4d1e7a47
PM
6508 lr = R_V7M_EXCRET_RES1_MASK |
6509 R_V7M_EXCRET_S_MASK |
6510 R_V7M_EXCRET_DCRS_MASK |
6511 R_V7M_EXCRET_FTYPE_MASK |
6512 R_V7M_EXCRET_ES_MASK;
8bfc26ea 6513 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
4d1e7a47 6514 lr |= R_V7M_EXCRET_SPSEL_MASK;
bd70b29b 6515 }
15b3f556 6516 if (!arm_v7m_is_handler_mode(env)) {
4d1e7a47 6517 lr |= R_V7M_EXCRET_MODE_MASK;
bd70b29b
PM
6518 }
6519
39ae2474
PM
6520 v7m_push_stack(cpu);
6521 v7m_exception_taken(cpu, lr);
a25dc805 6522 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
9ee6e8bb
PB
6523}
6524
ce02049d
GB
6525/* Function used to synchronize QEMU's AArch64 register set with AArch32
6526 * register set. This is necessary when switching between AArch32 and AArch64
6527 * execution state.
6528 */
6529void aarch64_sync_32_to_64(CPUARMState *env)
6530{
6531 int i;
6532 uint32_t mode = env->uncached_cpsr & CPSR_M;
6533
6534 /* We can blanket copy R[0:7] to X[0:7] */
6535 for (i = 0; i < 8; i++) {
6536 env->xregs[i] = env->regs[i];
6537 }
6538
6539 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6540 * Otherwise, they come from the banked user regs.
6541 */
6542 if (mode == ARM_CPU_MODE_FIQ) {
6543 for (i = 8; i < 13; i++) {
6544 env->xregs[i] = env->usr_regs[i - 8];
6545 }
6546 } else {
6547 for (i = 8; i < 13; i++) {
6548 env->xregs[i] = env->regs[i];
6549 }
6550 }
6551
6552 /* Registers x13-x23 are the various mode SP and FP registers. Registers
6553 * r13 and r14 are only copied if we are in that mode, otherwise we copy
6554 * from the mode banked register.
6555 */
6556 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6557 env->xregs[13] = env->regs[13];
6558 env->xregs[14] = env->regs[14];
6559 } else {
6560 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6561 /* HYP is an exception in that it is copied from r14 */
6562 if (mode == ARM_CPU_MODE_HYP) {
6563 env->xregs[14] = env->regs[14];
6564 } else {
6565 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6566 }
6567 }
6568
6569 if (mode == ARM_CPU_MODE_HYP) {
6570 env->xregs[15] = env->regs[13];
6571 } else {
6572 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6573 }
6574
6575 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
6576 env->xregs[16] = env->regs[14];
6577 env->xregs[17] = env->regs[13];
ce02049d 6578 } else {
3a9148d0
SS
6579 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6580 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
ce02049d
GB
6581 }
6582
6583 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
6584 env->xregs[18] = env->regs[14];
6585 env->xregs[19] = env->regs[13];
ce02049d 6586 } else {
3a9148d0
SS
6587 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6588 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
ce02049d
GB
6589 }
6590
6591 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
6592 env->xregs[20] = env->regs[14];
6593 env->xregs[21] = env->regs[13];
ce02049d 6594 } else {
3a9148d0
SS
6595 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6596 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
ce02049d
GB
6597 }
6598
6599 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
6600 env->xregs[22] = env->regs[14];
6601 env->xregs[23] = env->regs[13];
ce02049d 6602 } else {
3a9148d0
SS
6603 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6604 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
ce02049d
GB
6605 }
6606
6607 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6608 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6609 * FIQ bank for r8-r14.
6610 */
6611 if (mode == ARM_CPU_MODE_FIQ) {
6612 for (i = 24; i < 31; i++) {
6613 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
6614 }
6615 } else {
6616 for (i = 24; i < 29; i++) {
6617 env->xregs[i] = env->fiq_regs[i - 24];
6618 }
6619 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6620 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6621 }
6622
6623 env->pc = env->regs[15];
6624}
6625
6626/* Function used to synchronize QEMU's AArch32 register set with AArch64
6627 * register set. This is necessary when switching between AArch32 and AArch64
6628 * execution state.
6629 */
6630void aarch64_sync_64_to_32(CPUARMState *env)
6631{
6632 int i;
6633 uint32_t mode = env->uncached_cpsr & CPSR_M;
6634
6635 /* We can blanket copy X[0:7] to R[0:7] */
6636 for (i = 0; i < 8; i++) {
6637 env->regs[i] = env->xregs[i];
6638 }
6639
6640 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6641 * Otherwise, we copy x8-x12 into the banked user regs.
6642 */
6643 if (mode == ARM_CPU_MODE_FIQ) {
6644 for (i = 8; i < 13; i++) {
6645 env->usr_regs[i - 8] = env->xregs[i];
6646 }
6647 } else {
6648 for (i = 8; i < 13; i++) {
6649 env->regs[i] = env->xregs[i];
6650 }
6651 }
6652
6653 /* Registers r13 & r14 depend on the current mode.
6654 * If we are in a given mode, we copy the corresponding x registers to r13
6655 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6656 * for the mode.
6657 */
6658 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6659 env->regs[13] = env->xregs[13];
6660 env->regs[14] = env->xregs[14];
6661 } else {
6662 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6663
6664 /* HYP is an exception in that it does not have its own banked r14 but
6665 * shares the USR r14
6666 */
6667 if (mode == ARM_CPU_MODE_HYP) {
6668 env->regs[14] = env->xregs[14];
6669 } else {
6670 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6671 }
6672 }
6673
6674 if (mode == ARM_CPU_MODE_HYP) {
6675 env->regs[13] = env->xregs[15];
6676 } else {
6677 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6678 }
6679
6680 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
6681 env->regs[14] = env->xregs[16];
6682 env->regs[13] = env->xregs[17];
ce02049d 6683 } else {
3a9148d0
SS
6684 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6685 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
ce02049d
GB
6686 }
6687
6688 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
6689 env->regs[14] = env->xregs[18];
6690 env->regs[13] = env->xregs[19];
ce02049d 6691 } else {
3a9148d0
SS
6692 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6693 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
ce02049d
GB
6694 }
6695
6696 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
6697 env->regs[14] = env->xregs[20];
6698 env->regs[13] = env->xregs[21];
ce02049d 6699 } else {
3a9148d0
SS
6700 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6701 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
ce02049d
GB
6702 }
6703
6704 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
6705 env->regs[14] = env->xregs[22];
6706 env->regs[13] = env->xregs[23];
ce02049d 6707 } else {
3a9148d0
SS
6708 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6709 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
ce02049d
GB
6710 }
6711
6712 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6713 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6714 * FIQ bank for r8-r14.
6715 */
6716 if (mode == ARM_CPU_MODE_FIQ) {
6717 for (i = 24; i < 31; i++) {
6718 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6719 }
6720 } else {
6721 for (i = 24; i < 29; i++) {
6722 env->fiq_regs[i - 24] = env->xregs[i];
6723 }
6724 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6725 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6726 }
6727
6728 env->regs[15] = env->pc;
6729}
6730
966f758c 6731static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
b5ff1b31 6732{
97a8ea5a
AF
6733 ARMCPU *cpu = ARM_CPU(cs);
6734 CPUARMState *env = &cpu->env;
b5ff1b31
FB
6735 uint32_t addr;
6736 uint32_t mask;
6737 int new_mode;
6738 uint32_t offset;
16a906fd 6739 uint32_t moe;
b5ff1b31 6740
16a906fd
PM
6741 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6742 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6743 case EC_BREAKPOINT:
6744 case EC_BREAKPOINT_SAME_EL:
6745 moe = 1;
6746 break;
6747 case EC_WATCHPOINT:
6748 case EC_WATCHPOINT_SAME_EL:
6749 moe = 10;
6750 break;
6751 case EC_AA32_BKPT:
6752 moe = 3;
6753 break;
6754 case EC_VECTORCATCH:
6755 moe = 5;
6756 break;
6757 default:
6758 moe = 0;
6759 break;
6760 }
6761
6762 if (moe) {
6763 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6764 }
6765
b5ff1b31 6766 /* TODO: Vectored interrupt controller. */
27103424 6767 switch (cs->exception_index) {
b5ff1b31
FB
6768 case EXCP_UDEF:
6769 new_mode = ARM_CPU_MODE_UND;
6770 addr = 0x04;
6771 mask = CPSR_I;
6772 if (env->thumb)
6773 offset = 2;
6774 else
6775 offset = 4;
6776 break;
6777 case EXCP_SWI:
6778 new_mode = ARM_CPU_MODE_SVC;
6779 addr = 0x08;
6780 mask = CPSR_I;
601d70b9 6781 /* The PC already points to the next instruction. */
b5ff1b31
FB
6782 offset = 0;
6783 break;
06c949e6 6784 case EXCP_BKPT:
abf1172f 6785 env->exception.fsr = 2;
9ee6e8bb
PB
6786 /* Fall through to prefetch abort. */
6787 case EXCP_PREFETCH_ABORT:
88ca1c2d 6788 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
b848ce2b 6789 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
3f1beaca 6790 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
88ca1c2d 6791 env->exception.fsr, (uint32_t)env->exception.vaddress);
b5ff1b31
FB
6792 new_mode = ARM_CPU_MODE_ABT;
6793 addr = 0x0c;
6794 mask = CPSR_A | CPSR_I;
6795 offset = 4;
6796 break;
6797 case EXCP_DATA_ABORT:
4a7e2d73 6798 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
b848ce2b 6799 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
3f1beaca 6800 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4a7e2d73 6801 env->exception.fsr,
6cd8a264 6802 (uint32_t)env->exception.vaddress);
b5ff1b31
FB
6803 new_mode = ARM_CPU_MODE_ABT;
6804 addr = 0x10;
6805 mask = CPSR_A | CPSR_I;
6806 offset = 8;
6807 break;
6808 case EXCP_IRQ:
6809 new_mode = ARM_CPU_MODE_IRQ;
6810 addr = 0x18;
6811 /* Disable IRQ and imprecise data aborts. */
6812 mask = CPSR_A | CPSR_I;
6813 offset = 4;
de38d23b
FA
6814 if (env->cp15.scr_el3 & SCR_IRQ) {
6815 /* IRQ routed to monitor mode */
6816 new_mode = ARM_CPU_MODE_MON;
6817 mask |= CPSR_F;
6818 }
b5ff1b31
FB
6819 break;
6820 case EXCP_FIQ:
6821 new_mode = ARM_CPU_MODE_FIQ;
6822 addr = 0x1c;
6823 /* Disable FIQ, IRQ and imprecise data aborts. */
6824 mask = CPSR_A | CPSR_I | CPSR_F;
de38d23b
FA
6825 if (env->cp15.scr_el3 & SCR_FIQ) {
6826 /* FIQ routed to monitor mode */
6827 new_mode = ARM_CPU_MODE_MON;
6828 }
b5ff1b31
FB
6829 offset = 4;
6830 break;
87a4b270
PM
6831 case EXCP_VIRQ:
6832 new_mode = ARM_CPU_MODE_IRQ;
6833 addr = 0x18;
6834 /* Disable IRQ and imprecise data aborts. */
6835 mask = CPSR_A | CPSR_I;
6836 offset = 4;
6837 break;
6838 case EXCP_VFIQ:
6839 new_mode = ARM_CPU_MODE_FIQ;
6840 addr = 0x1c;
6841 /* Disable FIQ, IRQ and imprecise data aborts. */
6842 mask = CPSR_A | CPSR_I | CPSR_F;
6843 offset = 4;
6844 break;
dbe9d163
FA
6845 case EXCP_SMC:
6846 new_mode = ARM_CPU_MODE_MON;
6847 addr = 0x08;
6848 mask = CPSR_A | CPSR_I | CPSR_F;
6849 offset = 0;
6850 break;
b5ff1b31 6851 default:
a47dddd7 6852 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
b5ff1b31
FB
6853 return; /* Never happens. Keep compiler happy. */
6854 }
e89e51a1
FA
6855
6856 if (new_mode == ARM_CPU_MODE_MON) {
6857 addr += env->cp15.mvbar;
137feaa9 6858 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
e89e51a1 6859 /* High vectors. When enabled, base address cannot be remapped. */
b5ff1b31 6860 addr += 0xffff0000;
8641136c
NR
6861 } else {
6862 /* ARM v7 architectures provide a vector base address register to remap
6863 * the interrupt vector table.
e89e51a1 6864 * This register is only followed in non-monitor mode, and is banked.
8641136c
NR
6865 * Note: only bits 31:5 are valid.
6866 */
fb6c91ba 6867 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
b5ff1b31 6868 }
dbe9d163
FA
6869
6870 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6871 env->cp15.scr_el3 &= ~SCR_NS;
6872 }
6873
b5ff1b31 6874 switch_mode (env, new_mode);
662cefb7
PM
6875 /* For exceptions taken to AArch32 we must clear the SS bit in both
6876 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6877 */
6878 env->uncached_cpsr &= ~PSTATE_SS;
b5ff1b31 6879 env->spsr = cpsr_read(env);
9ee6e8bb
PB
6880 /* Clear IT bits. */
6881 env->condexec_bits = 0;
30a8cac1 6882 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 6883 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
73462ddd
PC
6884 /* Set new mode endianness */
6885 env->uncached_cpsr &= ~CPSR_E;
6886 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
3823b9db 6887 env->uncached_cpsr |= CPSR_E;
73462ddd 6888 }
4cc35614 6889 env->daif |= mask;
be5e7a76
DES
6890 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6891 * and we should just guard the thumb mode on V4 */
6892 if (arm_feature(env, ARM_FEATURE_V4T)) {
137feaa9 6893 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
be5e7a76 6894 }
b5ff1b31
FB
6895 env->regs[14] = env->regs[15] + offset;
6896 env->regs[15] = addr;
b5ff1b31
FB
6897}
6898
966f758c
PM
6899/* Handle exception entry to a target EL which is using AArch64 */
6900static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
f3a9b694
PM
6901{
6902 ARMCPU *cpu = ARM_CPU(cs);
6903 CPUARMState *env = &cpu->env;
6904 unsigned int new_el = env->exception.target_el;
6905 target_ulong addr = env->cp15.vbar_el[new_el];
6906 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6907
6908 if (arm_current_el(env) < new_el) {
3d6f7617
PM
6909 /* Entry vector offset depends on whether the implemented EL
6910 * immediately lower than the target level is using AArch32 or AArch64
6911 */
6912 bool is_aa64;
6913
6914 switch (new_el) {
6915 case 3:
6916 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6917 break;
6918 case 2:
6919 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6920 break;
6921 case 1:
6922 is_aa64 = is_a64(env);
6923 break;
6924 default:
6925 g_assert_not_reached();
6926 }
6927
6928 if (is_aa64) {
f3a9b694
PM
6929 addr += 0x400;
6930 } else {
6931 addr += 0x600;
6932 }
6933 } else if (pstate_read(env) & PSTATE_SP) {
6934 addr += 0x200;
6935 }
6936
f3a9b694
PM
6937 switch (cs->exception_index) {
6938 case EXCP_PREFETCH_ABORT:
6939 case EXCP_DATA_ABORT:
6940 env->cp15.far_el[new_el] = env->exception.vaddress;
6941 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6942 env->cp15.far_el[new_el]);
6943 /* fall through */
6944 case EXCP_BKPT:
6945 case EXCP_UDEF:
6946 case EXCP_SWI:
6947 case EXCP_HVC:
6948 case EXCP_HYP_TRAP:
6949 case EXCP_SMC:
6950 env->cp15.esr_el[new_el] = env->exception.syndrome;
6951 break;
6952 case EXCP_IRQ:
6953 case EXCP_VIRQ:
6954 addr += 0x80;
6955 break;
6956 case EXCP_FIQ:
6957 case EXCP_VFIQ:
6958 addr += 0x100;
6959 break;
6960 case EXCP_SEMIHOST:
6961 qemu_log_mask(CPU_LOG_INT,
6962 "...handling as semihosting call 0x%" PRIx64 "\n",
6963 env->xregs[0]);
6964 env->xregs[0] = do_arm_semihosting(env);
6965 return;
6966 default:
6967 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6968 }
6969
6970 if (is_a64(env)) {
6971 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6972 aarch64_save_sp(env, arm_current_el(env));
6973 env->elr_el[new_el] = env->pc;
6974 } else {
6975 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
f3a9b694
PM
6976 env->elr_el[new_el] = env->regs[15];
6977
6978 aarch64_sync_32_to_64(env);
6979
6980 env->condexec_bits = 0;
6981 }
6982 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6983 env->elr_el[new_el]);
6984
6985 pstate_write(env, PSTATE_DAIF | new_mode);
6986 env->aarch64 = 1;
6987 aarch64_restore_sp(env, new_el);
6988
6989 env->pc = addr;
6990
6991 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6992 new_el, env->pc, pstate_read(env));
966f758c
PM
6993}
6994
904c04de
PM
6995static inline bool check_for_semihosting(CPUState *cs)
6996{
6997 /* Check whether this exception is a semihosting call; if so
6998 * then handle it and return true; otherwise return false.
6999 */
7000 ARMCPU *cpu = ARM_CPU(cs);
7001 CPUARMState *env = &cpu->env;
7002
7003 if (is_a64(env)) {
7004 if (cs->exception_index == EXCP_SEMIHOST) {
7005 /* This is always the 64-bit semihosting exception.
7006 * The "is this usermode" and "is semihosting enabled"
7007 * checks have been done at translate time.
7008 */
7009 qemu_log_mask(CPU_LOG_INT,
7010 "...handling as semihosting call 0x%" PRIx64 "\n",
7011 env->xregs[0]);
7012 env->xregs[0] = do_arm_semihosting(env);
7013 return true;
7014 }
7015 return false;
7016 } else {
7017 uint32_t imm;
7018
7019 /* Only intercept calls from privileged modes, to provide some
7020 * semblance of security.
7021 */
19a6e31c
PM
7022 if (cs->exception_index != EXCP_SEMIHOST &&
7023 (!semihosting_enabled() ||
7024 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
904c04de
PM
7025 return false;
7026 }
7027
7028 switch (cs->exception_index) {
19a6e31c
PM
7029 case EXCP_SEMIHOST:
7030 /* This is always a semihosting call; the "is this usermode"
7031 * and "is semihosting enabled" checks have been done at
7032 * translate time.
7033 */
7034 break;
904c04de
PM
7035 case EXCP_SWI:
7036 /* Check for semihosting interrupt. */
7037 if (env->thumb) {
f9fd40eb 7038 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
904c04de
PM
7039 & 0xff;
7040 if (imm == 0xab) {
7041 break;
7042 }
7043 } else {
f9fd40eb 7044 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
904c04de
PM
7045 & 0xffffff;
7046 if (imm == 0x123456) {
7047 break;
7048 }
7049 }
7050 return false;
7051 case EXCP_BKPT:
7052 /* See if this is a semihosting syscall. */
7053 if (env->thumb) {
f9fd40eb 7054 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
904c04de
PM
7055 & 0xff;
7056 if (imm == 0xab) {
7057 env->regs[15] += 2;
7058 break;
7059 }
7060 }
7061 return false;
7062 default:
7063 return false;
7064 }
7065
7066 qemu_log_mask(CPU_LOG_INT,
7067 "...handling as semihosting call 0x%x\n",
7068 env->regs[0]);
7069 env->regs[0] = do_arm_semihosting(env);
7070 return true;
7071 }
7072}
7073
966f758c
PM
7074/* Handle a CPU exception for A and R profile CPUs.
7075 * Do any appropriate logging, handle PSCI calls, and then hand off
7076 * to the AArch64-entry or AArch32-entry function depending on the
7077 * target exception level's register width.
7078 */
7079void arm_cpu_do_interrupt(CPUState *cs)
7080{
7081 ARMCPU *cpu = ARM_CPU(cs);
7082 CPUARMState *env = &cpu->env;
7083 unsigned int new_el = env->exception.target_el;
7084
531c60a9 7085 assert(!arm_feature(env, ARM_FEATURE_M));
966f758c
PM
7086
7087 arm_log_exception(cs->exception_index);
7088 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
7089 new_el);
7090 if (qemu_loglevel_mask(CPU_LOG_INT)
7091 && !excp_is_internal(cs->exception_index)) {
6568da45 7092 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
966f758c
PM
7093 env->exception.syndrome >> ARM_EL_EC_SHIFT,
7094 env->exception.syndrome);
7095 }
7096
7097 if (arm_is_psci_call(cpu, cs->exception_index)) {
7098 arm_handle_psci_call(cpu);
7099 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
7100 return;
7101 }
7102
904c04de
PM
7103 /* Semihosting semantics depend on the register width of the
7104 * code that caused the exception, not the target exception level,
7105 * so must be handled here.
966f758c 7106 */
904c04de
PM
7107 if (check_for_semihosting(cs)) {
7108 return;
7109 }
7110
7111 assert(!excp_is_internal(cs->exception_index));
7112 if (arm_el_is_aa64(env, new_el)) {
966f758c
PM
7113 arm_cpu_do_interrupt_aarch64(cs);
7114 } else {
7115 arm_cpu_do_interrupt_aarch32(cs);
7116 }
f3a9b694 7117
8d04fb55
JK
7118 /* Hooks may change global state so BQL should be held, also the
7119 * BQL needs to be held for any modification of
7120 * cs->interrupt_request.
7121 */
7122 g_assert(qemu_mutex_iothread_locked());
7123
bd7d00fc
PM
7124 arm_call_el_change_hook(cpu);
7125
f3a9b694
PM
7126 if (!kvm_enabled()) {
7127 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7128 }
7129}
0480f69a
PM
7130
7131/* Return the exception level which controls this address translation regime */
7132static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7133{
7134 switch (mmu_idx) {
7135 case ARMMMUIdx_S2NS:
7136 case ARMMMUIdx_S1E2:
7137 return 2;
7138 case ARMMMUIdx_S1E3:
7139 return 3;
7140 case ARMMMUIdx_S1SE0:
7141 return arm_el_is_aa64(env, 3) ? 1 : 3;
7142 case ARMMMUIdx_S1SE1:
7143 case ARMMMUIdx_S1NSE0:
7144 case ARMMMUIdx_S1NSE1:
e7b921c2 7145 case ARMMMUIdx_MPriv:
3bef7012 7146 case ARMMMUIdx_MNegPri:
e7b921c2 7147 case ARMMMUIdx_MUser:
66787c78
PM
7148 case ARMMMUIdx_MSPriv:
7149 case ARMMMUIdx_MSNegPri:
7150 case ARMMMUIdx_MSUser:
0480f69a
PM
7151 return 1;
7152 default:
7153 g_assert_not_reached();
7154 }
7155}
7156
7157/* Return the SCTLR value which controls this address translation regime */
7158static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7159{
7160 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7161}
7162
7163/* Return true if the specified stage of address translation is disabled */
7164static inline bool regime_translation_disabled(CPUARMState *env,
7165 ARMMMUIdx mmu_idx)
7166{
29c483a5 7167 if (arm_feature(env, ARM_FEATURE_M)) {
ecf5e8ea 7168 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
3bef7012
PM
7169 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7170 case R_V7M_MPU_CTRL_ENABLE_MASK:
7171 /* Enabled, but not for HardFault and NMI */
66787c78
PM
7172 return mmu_idx == ARMMMUIdx_MNegPri ||
7173 mmu_idx == ARMMMUIdx_MSNegPri;
3bef7012
PM
7174 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7175 /* Enabled for all cases */
7176 return false;
7177 case 0:
7178 default:
7179 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7180 * we warned about that in armv7m_nvic.c when the guest set it.
7181 */
7182 return true;
7183 }
29c483a5
MD
7184 }
7185
0480f69a
PM
7186 if (mmu_idx == ARMMMUIdx_S2NS) {
7187 return (env->cp15.hcr_el2 & HCR_VM) == 0;
7188 }
7189 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7190}
7191
73462ddd
PC
7192static inline bool regime_translation_big_endian(CPUARMState *env,
7193 ARMMMUIdx mmu_idx)
7194{
7195 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7196}
7197
0480f69a
PM
7198/* Return the TCR controlling this translation regime */
7199static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7200{
7201 if (mmu_idx == ARMMMUIdx_S2NS) {
68e9c2fe 7202 return &env->cp15.vtcr_el2;
0480f69a
PM
7203 }
7204 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7205}
7206
8bd5c820
PM
7207/* Convert a possible stage1+2 MMU index into the appropriate
7208 * stage 1 MMU index
7209 */
7210static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7211{
7212 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7213 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7214 }
7215 return mmu_idx;
7216}
7217
86fb3fa4
TH
7218/* Returns TBI0 value for current regime el */
7219uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7220{
7221 TCR *tcr;
7222 uint32_t el;
7223
7224 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8bd5c820
PM
7225 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7226 */
7227 mmu_idx = stage_1_mmu_idx(mmu_idx);
86fb3fa4
TH
7228
7229 tcr = regime_tcr(env, mmu_idx);
7230 el = regime_el(env, mmu_idx);
7231
7232 if (el > 1) {
7233 return extract64(tcr->raw_tcr, 20, 1);
7234 } else {
7235 return extract64(tcr->raw_tcr, 37, 1);
7236 }
7237}
7238
7239/* Returns TBI1 value for current regime el */
7240uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7241{
7242 TCR *tcr;
7243 uint32_t el;
7244
7245 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8bd5c820
PM
7246 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7247 */
7248 mmu_idx = stage_1_mmu_idx(mmu_idx);
86fb3fa4
TH
7249
7250 tcr = regime_tcr(env, mmu_idx);
7251 el = regime_el(env, mmu_idx);
7252
7253 if (el > 1) {
7254 return 0;
7255 } else {
7256 return extract64(tcr->raw_tcr, 38, 1);
7257 }
7258}
7259
aef878be
GB
7260/* Return the TTBR associated with this translation regime */
7261static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7262 int ttbrn)
7263{
7264 if (mmu_idx == ARMMMUIdx_S2NS) {
b698e9cf 7265 return env->cp15.vttbr_el2;
aef878be
GB
7266 }
7267 if (ttbrn == 0) {
7268 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7269 } else {
7270 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7271 }
7272}
7273
0480f69a
PM
7274/* Return true if the translation regime is using LPAE format page tables */
7275static inline bool regime_using_lpae_format(CPUARMState *env,
7276 ARMMMUIdx mmu_idx)
7277{
7278 int el = regime_el(env, mmu_idx);
7279 if (el == 2 || arm_el_is_aa64(env, el)) {
7280 return true;
7281 }
7282 if (arm_feature(env, ARM_FEATURE_LPAE)
7283 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7284 return true;
7285 }
7286 return false;
7287}
7288
deb2db99
AR
7289/* Returns true if the stage 1 translation regime is using LPAE format page
7290 * tables. Used when raising alignment exceptions, whose FSR changes depending
7291 * on whether the long or short descriptor format is in use. */
7292bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
30901475 7293{
8bd5c820 7294 mmu_idx = stage_1_mmu_idx(mmu_idx);
deb2db99 7295
30901475
AB
7296 return regime_using_lpae_format(env, mmu_idx);
7297}
7298
0480f69a
PM
7299static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
7300{
7301 switch (mmu_idx) {
7302 case ARMMMUIdx_S1SE0:
7303 case ARMMMUIdx_S1NSE0:
e7b921c2 7304 case ARMMMUIdx_MUser:
0480f69a
PM
7305 return true;
7306 default:
7307 return false;
7308 case ARMMMUIdx_S12NSE0:
7309 case ARMMMUIdx_S12NSE1:
7310 g_assert_not_reached();
7311 }
7312}
7313
0fbf5238
AJ
7314/* Translate section/page access permissions to page
7315 * R/W protection flags
d76951b6
AJ
7316 *
7317 * @env: CPUARMState
7318 * @mmu_idx: MMU index indicating required translation regime
7319 * @ap: The 3-bit access permissions (AP[2:0])
7320 * @domain_prot: The 2-bit domain access permissions
0fbf5238
AJ
7321 */
7322static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
7323 int ap, int domain_prot)
7324{
554b0b09
PM
7325 bool is_user = regime_is_user(env, mmu_idx);
7326
7327 if (domain_prot == 3) {
7328 return PAGE_READ | PAGE_WRITE;
7329 }
7330
554b0b09
PM
7331 switch (ap) {
7332 case 0:
7333 if (arm_feature(env, ARM_FEATURE_V7)) {
7334 return 0;
7335 }
554b0b09
PM
7336 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
7337 case SCTLR_S:
7338 return is_user ? 0 : PAGE_READ;
7339 case SCTLR_R:
7340 return PAGE_READ;
7341 default:
7342 return 0;
7343 }
7344 case 1:
7345 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7346 case 2:
87c3d486 7347 if (is_user) {
0fbf5238 7348 return PAGE_READ;
87c3d486 7349 } else {
554b0b09 7350 return PAGE_READ | PAGE_WRITE;
87c3d486 7351 }
554b0b09
PM
7352 case 3:
7353 return PAGE_READ | PAGE_WRITE;
7354 case 4: /* Reserved. */
7355 return 0;
7356 case 5:
0fbf5238 7357 return is_user ? 0 : PAGE_READ;
554b0b09 7358 case 6:
0fbf5238 7359 return PAGE_READ;
554b0b09 7360 case 7:
87c3d486 7361 if (!arm_feature(env, ARM_FEATURE_V6K)) {
554b0b09 7362 return 0;
87c3d486 7363 }
0fbf5238 7364 return PAGE_READ;
554b0b09 7365 default:
0fbf5238 7366 g_assert_not_reached();
554b0b09 7367 }
b5ff1b31
FB
7368}
7369
d76951b6
AJ
7370/* Translate section/page access permissions to page
7371 * R/W protection flags.
7372 *
d76951b6 7373 * @ap: The 2-bit simple AP (AP[2:1])
d8e052b3 7374 * @is_user: TRUE if accessing from PL0
d76951b6 7375 */
d8e052b3 7376static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
d76951b6 7377{
d76951b6
AJ
7378 switch (ap) {
7379 case 0:
7380 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7381 case 1:
7382 return PAGE_READ | PAGE_WRITE;
7383 case 2:
7384 return is_user ? 0 : PAGE_READ;
7385 case 3:
7386 return PAGE_READ;
7387 default:
7388 g_assert_not_reached();
7389 }
7390}
7391
d8e052b3
AJ
7392static inline int
7393simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
7394{
7395 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
7396}
7397
6ab1a5ee
EI
7398/* Translate S2 section/page access permissions to protection flags
7399 *
7400 * @env: CPUARMState
7401 * @s2ap: The 2-bit stage2 access permissions (S2AP)
7402 * @xn: XN (execute-never) bit
7403 */
7404static int get_S2prot(CPUARMState *env, int s2ap, int xn)
7405{
7406 int prot = 0;
7407
7408 if (s2ap & 1) {
7409 prot |= PAGE_READ;
7410 }
7411 if (s2ap & 2) {
7412 prot |= PAGE_WRITE;
7413 }
7414 if (!xn) {
dfda6837
SS
7415 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
7416 prot |= PAGE_EXEC;
7417 }
6ab1a5ee
EI
7418 }
7419 return prot;
7420}
7421
d8e052b3
AJ
7422/* Translate section/page access permissions to protection flags
7423 *
7424 * @env: CPUARMState
7425 * @mmu_idx: MMU index indicating required translation regime
7426 * @is_aa64: TRUE if AArch64
7427 * @ap: The 2-bit simple AP (AP[2:1])
7428 * @ns: NS (non-secure) bit
7429 * @xn: XN (execute-never) bit
7430 * @pxn: PXN (privileged execute-never) bit
7431 */
7432static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
7433 int ap, int ns, int xn, int pxn)
7434{
7435 bool is_user = regime_is_user(env, mmu_idx);
7436 int prot_rw, user_rw;
7437 bool have_wxn;
7438 int wxn = 0;
7439
7440 assert(mmu_idx != ARMMMUIdx_S2NS);
7441
7442 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
7443 if (is_user) {
7444 prot_rw = user_rw;
7445 } else {
7446 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
7447 }
7448
7449 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
7450 return prot_rw;
7451 }
7452
7453 /* TODO have_wxn should be replaced with
7454 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7455 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7456 * compatible processors have EL2, which is required for [U]WXN.
7457 */
7458 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
7459
7460 if (have_wxn) {
7461 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7462 }
7463
7464 if (is_aa64) {
7465 switch (regime_el(env, mmu_idx)) {
7466 case 1:
7467 if (!is_user) {
7468 xn = pxn || (user_rw & PAGE_WRITE);
7469 }
7470 break;
7471 case 2:
7472 case 3:
7473 break;
7474 }
7475 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7476 switch (regime_el(env, mmu_idx)) {
7477 case 1:
7478 case 3:
7479 if (is_user) {
7480 xn = xn || !(user_rw & PAGE_READ);
7481 } else {
7482 int uwxn = 0;
7483 if (have_wxn) {
7484 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7485 }
7486 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7487 (uwxn && (user_rw & PAGE_WRITE));
7488 }
7489 break;
7490 case 2:
7491 break;
7492 }
7493 } else {
7494 xn = wxn = 0;
7495 }
7496
7497 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7498 return prot_rw;
7499 }
7500 return prot_rw | PAGE_EXEC;
7501}
7502
0480f69a
PM
7503static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7504 uint32_t *table, uint32_t address)
b2fa1797 7505{
0480f69a 7506 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
0480f69a 7507 TCR *tcr = regime_tcr(env, mmu_idx);
11f136ee 7508
11f136ee
FA
7509 if (address & tcr->mask) {
7510 if (tcr->raw_tcr & TTBCR_PD1) {
e389be16
FA
7511 /* Translation table walk disabled for TTBR1 */
7512 return false;
7513 }
aef878be 7514 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
e389be16 7515 } else {
11f136ee 7516 if (tcr->raw_tcr & TTBCR_PD0) {
e389be16
FA
7517 /* Translation table walk disabled for TTBR0 */
7518 return false;
7519 }
aef878be 7520 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
e389be16
FA
7521 }
7522 *table |= (address >> 18) & 0x3ffc;
7523 return true;
b2fa1797
PB
7524}
7525
37785977
EI
7526/* Translate a S1 pagetable walk through S2 if needed. */
7527static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7528 hwaddr addr, MemTxAttrs txattrs,
7529 uint32_t *fsr,
7530 ARMMMUFaultInfo *fi)
7531{
7532 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7533 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7534 target_ulong s2size;
7535 hwaddr s2pa;
7536 int s2prot;
7537 int ret;
7538
7539 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7540 &txattrs, &s2prot, &s2size, fsr, fi);
7541 if (ret) {
7542 fi->s2addr = addr;
7543 fi->stage2 = true;
7544 fi->s1ptw = true;
7545 return ~0;
7546 }
7547 addr = s2pa;
7548 }
7549 return addr;
7550}
7551
ebca90e4
PM
7552/* All loads done in the course of a page table walk go through here.
7553 * TODO: rather than ignoring errors from physical memory reads (which
7554 * are external aborts in ARM terminology) we should propagate this
7555 * error out so that we can turn it into a Data Abort if this walk
7556 * was being done for a CPU load/store or an address translation instruction
7557 * (but not if it was for a debug access).
7558 */
a614e698
EI
7559static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7560 ARMMMUIdx mmu_idx, uint32_t *fsr,
7561 ARMMMUFaultInfo *fi)
ebca90e4 7562{
a614e698
EI
7563 ARMCPU *cpu = ARM_CPU(cs);
7564 CPUARMState *env = &cpu->env;
ebca90e4 7565 MemTxAttrs attrs = {};
5ce4ff65 7566 AddressSpace *as;
ebca90e4
PM
7567
7568 attrs.secure = is_secure;
5ce4ff65 7569 as = arm_addressspace(cs, attrs);
a614e698
EI
7570 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7571 if (fi->s1ptw) {
7572 return 0;
7573 }
73462ddd
PC
7574 if (regime_translation_big_endian(env, mmu_idx)) {
7575 return address_space_ldl_be(as, addr, attrs, NULL);
7576 } else {
7577 return address_space_ldl_le(as, addr, attrs, NULL);
7578 }
ebca90e4
PM
7579}
7580
37785977
EI
7581static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7582 ARMMMUIdx mmu_idx, uint32_t *fsr,
7583 ARMMMUFaultInfo *fi)
ebca90e4 7584{
37785977
EI
7585 ARMCPU *cpu = ARM_CPU(cs);
7586 CPUARMState *env = &cpu->env;
ebca90e4 7587 MemTxAttrs attrs = {};
5ce4ff65 7588 AddressSpace *as;
ebca90e4
PM
7589
7590 attrs.secure = is_secure;
5ce4ff65 7591 as = arm_addressspace(cs, attrs);
37785977
EI
7592 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7593 if (fi->s1ptw) {
7594 return 0;
7595 }
73462ddd
PC
7596 if (regime_translation_big_endian(env, mmu_idx)) {
7597 return address_space_ldq_be(as, addr, attrs, NULL);
7598 } else {
7599 return address_space_ldq_le(as, addr, attrs, NULL);
7600 }
ebca90e4
PM
7601}
7602
b7cc4e82 7603static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
03ae85f8 7604 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 7605 hwaddr *phys_ptr, int *prot,
e14b5a23
EI
7606 target_ulong *page_size, uint32_t *fsr,
7607 ARMMMUFaultInfo *fi)
b5ff1b31 7608{
70d74660 7609 CPUState *cs = CPU(arm_env_get_cpu(env));
b5ff1b31
FB
7610 int code;
7611 uint32_t table;
7612 uint32_t desc;
7613 int type;
7614 int ap;
e389be16 7615 int domain = 0;
dd4ebc2e 7616 int domain_prot;
a8170e5e 7617 hwaddr phys_addr;
0480f69a 7618 uint32_t dacr;
b5ff1b31 7619
9ee6e8bb
PB
7620 /* Pagetable walk. */
7621 /* Lookup l1 descriptor. */
0480f69a 7622 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
7623 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7624 code = 5;
7625 goto do_fault;
7626 }
a614e698
EI
7627 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7628 mmu_idx, fsr, fi);
9ee6e8bb 7629 type = (desc & 3);
dd4ebc2e 7630 domain = (desc >> 5) & 0x0f;
0480f69a
PM
7631 if (regime_el(env, mmu_idx) == 1) {
7632 dacr = env->cp15.dacr_ns;
7633 } else {
7634 dacr = env->cp15.dacr_s;
7635 }
7636 domain_prot = (dacr >> (domain * 2)) & 3;
9ee6e8bb 7637 if (type == 0) {
601d70b9 7638 /* Section translation fault. */
9ee6e8bb
PB
7639 code = 5;
7640 goto do_fault;
7641 }
dd4ebc2e 7642 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
7643 if (type == 2)
7644 code = 9; /* Section domain fault. */
7645 else
7646 code = 11; /* Page domain fault. */
7647 goto do_fault;
7648 }
7649 if (type == 2) {
7650 /* 1Mb section. */
7651 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7652 ap = (desc >> 10) & 3;
7653 code = 13;
d4c430a8 7654 *page_size = 1024 * 1024;
9ee6e8bb
PB
7655 } else {
7656 /* Lookup l2 entry. */
554b0b09
PM
7657 if (type == 1) {
7658 /* Coarse pagetable. */
7659 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7660 } else {
7661 /* Fine pagetable. */
7662 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7663 }
a614e698
EI
7664 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7665 mmu_idx, fsr, fi);
9ee6e8bb
PB
7666 switch (desc & 3) {
7667 case 0: /* Page translation fault. */
7668 code = 7;
7669 goto do_fault;
7670 case 1: /* 64k page. */
7671 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7672 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 7673 *page_size = 0x10000;
ce819861 7674 break;
9ee6e8bb
PB
7675 case 2: /* 4k page. */
7676 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
c10f7fc3 7677 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
d4c430a8 7678 *page_size = 0x1000;
ce819861 7679 break;
fc1891c7 7680 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
554b0b09 7681 if (type == 1) {
fc1891c7
PM
7682 /* ARMv6/XScale extended small page format */
7683 if (arm_feature(env, ARM_FEATURE_XSCALE)
7684 || arm_feature(env, ARM_FEATURE_V6)) {
554b0b09 7685 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
fc1891c7 7686 *page_size = 0x1000;
554b0b09 7687 } else {
fc1891c7
PM
7688 /* UNPREDICTABLE in ARMv5; we choose to take a
7689 * page translation fault.
7690 */
554b0b09
PM
7691 code = 7;
7692 goto do_fault;
7693 }
7694 } else {
7695 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
fc1891c7 7696 *page_size = 0x400;
554b0b09 7697 }
9ee6e8bb 7698 ap = (desc >> 4) & 3;
ce819861
PB
7699 break;
7700 default:
9ee6e8bb
PB
7701 /* Never happens, but compiler isn't smart enough to tell. */
7702 abort();
ce819861 7703 }
9ee6e8bb
PB
7704 code = 15;
7705 }
0fbf5238
AJ
7706 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7707 *prot |= *prot ? PAGE_EXEC : 0;
7708 if (!(*prot & (1 << access_type))) {
9ee6e8bb
PB
7709 /* Access permission fault. */
7710 goto do_fault;
7711 }
7712 *phys_ptr = phys_addr;
b7cc4e82 7713 return false;
9ee6e8bb 7714do_fault:
b7cc4e82
PC
7715 *fsr = code | (domain << 4);
7716 return true;
9ee6e8bb
PB
7717}
7718
b7cc4e82 7719static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
03ae85f8 7720 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 7721 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
7722 target_ulong *page_size, uint32_t *fsr,
7723 ARMMMUFaultInfo *fi)
9ee6e8bb 7724{
70d74660 7725 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb
PB
7726 int code;
7727 uint32_t table;
7728 uint32_t desc;
7729 uint32_t xn;
de9b05b8 7730 uint32_t pxn = 0;
9ee6e8bb
PB
7731 int type;
7732 int ap;
de9b05b8 7733 int domain = 0;
dd4ebc2e 7734 int domain_prot;
a8170e5e 7735 hwaddr phys_addr;
0480f69a 7736 uint32_t dacr;
8bf5b6a9 7737 bool ns;
9ee6e8bb
PB
7738
7739 /* Pagetable walk. */
7740 /* Lookup l1 descriptor. */
0480f69a 7741 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
7742 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7743 code = 5;
7744 goto do_fault;
7745 }
a614e698
EI
7746 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7747 mmu_idx, fsr, fi);
9ee6e8bb 7748 type = (desc & 3);
de9b05b8
PM
7749 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7750 /* Section translation fault, or attempt to use the encoding
7751 * which is Reserved on implementations without PXN.
7752 */
9ee6e8bb 7753 code = 5;
9ee6e8bb 7754 goto do_fault;
de9b05b8
PM
7755 }
7756 if ((type == 1) || !(desc & (1 << 18))) {
7757 /* Page or Section. */
dd4ebc2e 7758 domain = (desc >> 5) & 0x0f;
9ee6e8bb 7759 }
0480f69a
PM
7760 if (regime_el(env, mmu_idx) == 1) {
7761 dacr = env->cp15.dacr_ns;
7762 } else {
7763 dacr = env->cp15.dacr_s;
7764 }
7765 domain_prot = (dacr >> (domain * 2)) & 3;
dd4ebc2e 7766 if (domain_prot == 0 || domain_prot == 2) {
de9b05b8 7767 if (type != 1) {
9ee6e8bb 7768 code = 9; /* Section domain fault. */
de9b05b8 7769 } else {
9ee6e8bb 7770 code = 11; /* Page domain fault. */
de9b05b8 7771 }
9ee6e8bb
PB
7772 goto do_fault;
7773 }
de9b05b8 7774 if (type != 1) {
9ee6e8bb
PB
7775 if (desc & (1 << 18)) {
7776 /* Supersection. */
7777 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
4e42a6ca
SF
7778 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7779 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
d4c430a8 7780 *page_size = 0x1000000;
b5ff1b31 7781 } else {
9ee6e8bb
PB
7782 /* Section. */
7783 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 7784 *page_size = 0x100000;
b5ff1b31 7785 }
9ee6e8bb
PB
7786 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7787 xn = desc & (1 << 4);
de9b05b8 7788 pxn = desc & 1;
9ee6e8bb 7789 code = 13;
8bf5b6a9 7790 ns = extract32(desc, 19, 1);
9ee6e8bb 7791 } else {
de9b05b8
PM
7792 if (arm_feature(env, ARM_FEATURE_PXN)) {
7793 pxn = (desc >> 2) & 1;
7794 }
8bf5b6a9 7795 ns = extract32(desc, 3, 1);
9ee6e8bb
PB
7796 /* Lookup l2 entry. */
7797 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
a614e698
EI
7798 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7799 mmu_idx, fsr, fi);
9ee6e8bb
PB
7800 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7801 switch (desc & 3) {
7802 case 0: /* Page translation fault. */
7803 code = 7;
b5ff1b31 7804 goto do_fault;
9ee6e8bb
PB
7805 case 1: /* 64k page. */
7806 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7807 xn = desc & (1 << 15);
d4c430a8 7808 *page_size = 0x10000;
9ee6e8bb
PB
7809 break;
7810 case 2: case 3: /* 4k page. */
7811 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7812 xn = desc & 1;
d4c430a8 7813 *page_size = 0x1000;
9ee6e8bb
PB
7814 break;
7815 default:
7816 /* Never happens, but compiler isn't smart enough to tell. */
7817 abort();
b5ff1b31 7818 }
9ee6e8bb
PB
7819 code = 15;
7820 }
dd4ebc2e 7821 if (domain_prot == 3) {
c0034328
JR
7822 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7823 } else {
0480f69a 7824 if (pxn && !regime_is_user(env, mmu_idx)) {
de9b05b8
PM
7825 xn = 1;
7826 }
03ae85f8 7827 if (xn && access_type == MMU_INST_FETCH)
c0034328 7828 goto do_fault;
9ee6e8bb 7829
d76951b6
AJ
7830 if (arm_feature(env, ARM_FEATURE_V6K) &&
7831 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7832 /* The simplified model uses AP[0] as an access control bit. */
7833 if ((ap & 1) == 0) {
7834 /* Access flag fault. */
7835 code = (code == 15) ? 6 : 3;
7836 goto do_fault;
7837 }
7838 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7839 } else {
7840 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
c0034328 7841 }
0fbf5238
AJ
7842 if (*prot && !xn) {
7843 *prot |= PAGE_EXEC;
7844 }
7845 if (!(*prot & (1 << access_type))) {
c0034328
JR
7846 /* Access permission fault. */
7847 goto do_fault;
7848 }
3ad493fc 7849 }
8bf5b6a9
PM
7850 if (ns) {
7851 /* The NS bit will (as required by the architecture) have no effect if
7852 * the CPU doesn't support TZ or this is a non-secure translation
7853 * regime, because the attribute will already be non-secure.
7854 */
7855 attrs->secure = false;
7856 }
9ee6e8bb 7857 *phys_ptr = phys_addr;
b7cc4e82 7858 return false;
b5ff1b31 7859do_fault:
b7cc4e82
PC
7860 *fsr = code | (domain << 4);
7861 return true;
b5ff1b31
FB
7862}
7863
3dde962f
PM
7864/* Fault type for long-descriptor MMU fault reporting; this corresponds
7865 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7866 */
7867typedef enum {
7868 translation_fault = 1,
7869 access_fault = 2,
7870 permission_fault = 3,
7871} MMUFaultType;
7872
1853d5a9 7873/*
a0e966c9 7874 * check_s2_mmu_setup
1853d5a9
EI
7875 * @cpu: ARMCPU
7876 * @is_aa64: True if the translation regime is in AArch64 state
7877 * @startlevel: Suggested starting level
7878 * @inputsize: Bitsize of IPAs
7879 * @stride: Page-table stride (See the ARM ARM)
7880 *
a0e966c9
EI
7881 * Returns true if the suggested S2 translation parameters are OK and
7882 * false otherwise.
1853d5a9 7883 */
a0e966c9
EI
7884static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7885 int inputsize, int stride)
1853d5a9 7886{
98d68ec2
EI
7887 const int grainsize = stride + 3;
7888 int startsizecheck;
7889
1853d5a9
EI
7890 /* Negative levels are never allowed. */
7891 if (level < 0) {
7892 return false;
7893 }
7894
98d68ec2
EI
7895 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7896 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7897 return false;
7898 }
7899
1853d5a9 7900 if (is_aa64) {
3526423e 7901 CPUARMState *env = &cpu->env;
1853d5a9
EI
7902 unsigned int pamax = arm_pamax(cpu);
7903
7904 switch (stride) {
7905 case 13: /* 64KB Pages. */
7906 if (level == 0 || (level == 1 && pamax <= 42)) {
7907 return false;
7908 }
7909 break;
7910 case 11: /* 16KB Pages. */
7911 if (level == 0 || (level == 1 && pamax <= 40)) {
7912 return false;
7913 }
7914 break;
7915 case 9: /* 4KB Pages. */
7916 if (level == 0 && pamax <= 42) {
7917 return false;
7918 }
7919 break;
7920 default:
7921 g_assert_not_reached();
7922 }
3526423e
EI
7923
7924 /* Inputsize checks. */
7925 if (inputsize > pamax &&
7926 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7927 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7928 return false;
7929 }
1853d5a9 7930 } else {
1853d5a9
EI
7931 /* AArch32 only supports 4KB pages. Assert on that. */
7932 assert(stride == 9);
7933
7934 if (level == 0) {
7935 return false;
7936 }
1853d5a9
EI
7937 }
7938 return true;
7939}
7940
b7cc4e82 7941static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
03ae85f8 7942 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 7943 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
e14b5a23
EI
7944 target_ulong *page_size_ptr, uint32_t *fsr,
7945 ARMMMUFaultInfo *fi)
3dde962f 7946{
1853d5a9
EI
7947 ARMCPU *cpu = arm_env_get_cpu(env);
7948 CPUState *cs = CPU(cpu);
3dde962f
PM
7949 /* Read an LPAE long-descriptor translation table. */
7950 MMUFaultType fault_type = translation_fault;
1b4093ea 7951 uint32_t level;
0c5fbf3b 7952 uint32_t epd = 0;
1f4c8c18 7953 int32_t t0sz, t1sz;
2c8dd318 7954 uint32_t tg;
3dde962f
PM
7955 uint64_t ttbr;
7956 int ttbr_select;
dddb5223 7957 hwaddr descaddr, indexmask, indexmask_grainsize;
3dde962f
PM
7958 uint32_t tableattrs;
7959 target_ulong page_size;
7960 uint32_t attrs;
973a5434 7961 int32_t stride = 9;
6e99f762 7962 int32_t addrsize;
4ca6a051 7963 int inputsize;
2c8dd318 7964 int32_t tbi = 0;
0480f69a 7965 TCR *tcr = regime_tcr(env, mmu_idx);
d8e052b3 7966 int ap, ns, xn, pxn;
88e8add8
GB
7967 uint32_t el = regime_el(env, mmu_idx);
7968 bool ttbr1_valid = true;
6109769a 7969 uint64_t descaddrmask;
6e99f762 7970 bool aarch64 = arm_el_is_aa64(env, el);
0480f69a
PM
7971
7972 /* TODO:
88e8add8
GB
7973 * This code does not handle the different format TCR for VTCR_EL2.
7974 * This code also does not support shareability levels.
7975 * Attribute and permission bit handling should also be checked when adding
7976 * support for those page table walks.
0480f69a 7977 */
6e99f762 7978 if (aarch64) {
1b4093ea 7979 level = 0;
6e99f762 7980 addrsize = 64;
88e8add8 7981 if (el > 1) {
1edee470
EI
7982 if (mmu_idx != ARMMMUIdx_S2NS) {
7983 tbi = extract64(tcr->raw_tcr, 20, 1);
7984 }
88e8add8
GB
7985 } else {
7986 if (extract64(address, 55, 1)) {
7987 tbi = extract64(tcr->raw_tcr, 38, 1);
7988 } else {
7989 tbi = extract64(tcr->raw_tcr, 37, 1);
7990 }
7991 }
2c8dd318 7992 tbi *= 8;
88e8add8
GB
7993
7994 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7995 * invalid.
7996 */
7997 if (el > 1) {
7998 ttbr1_valid = false;
7999 }
d0a2cbce 8000 } else {
1b4093ea 8001 level = 1;
6e99f762 8002 addrsize = 32;
d0a2cbce
PM
8003 /* There is no TTBR1 for EL2 */
8004 if (el == 2) {
8005 ttbr1_valid = false;
8006 }
2c8dd318 8007 }
3dde962f
PM
8008
8009 /* Determine whether this address is in the region controlled by
8010 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
8011 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
8012 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
8013 */
6e99f762 8014 if (aarch64) {
4ee38098
EI
8015 /* AArch64 translation. */
8016 t0sz = extract32(tcr->raw_tcr, 0, 6);
2c8dd318
RH
8017 t0sz = MIN(t0sz, 39);
8018 t0sz = MAX(t0sz, 16);
4ee38098
EI
8019 } else if (mmu_idx != ARMMMUIdx_S2NS) {
8020 /* AArch32 stage 1 translation. */
8021 t0sz = extract32(tcr->raw_tcr, 0, 3);
8022 } else {
8023 /* AArch32 stage 2 translation. */
8024 bool sext = extract32(tcr->raw_tcr, 4, 1);
8025 bool sign = extract32(tcr->raw_tcr, 3, 1);
6e99f762
SS
8026 /* Address size is 40-bit for a stage 2 translation,
8027 * and t0sz can be negative (from -8 to 7),
8028 * so we need to adjust it to use the TTBR selecting logic below.
8029 */
8030 addrsize = 40;
8031 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
4ee38098
EI
8032
8033 /* If the sign-extend bit is not the same as t0sz[3], the result
8034 * is unpredictable. Flag this as a guest error. */
8035 if (sign != sext) {
8036 qemu_log_mask(LOG_GUEST_ERROR,
39cba610 8037 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
4ee38098 8038 }
2c8dd318 8039 }
1f4c8c18 8040 t1sz = extract32(tcr->raw_tcr, 16, 6);
6e99f762 8041 if (aarch64) {
2c8dd318
RH
8042 t1sz = MIN(t1sz, 39);
8043 t1sz = MAX(t1sz, 16);
8044 }
6e99f762 8045 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
3dde962f
PM
8046 /* there is a ttbr0 region and we are in it (high bits all zero) */
8047 ttbr_select = 0;
88e8add8 8048 } else if (ttbr1_valid && t1sz &&
6e99f762 8049 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
3dde962f
PM
8050 /* there is a ttbr1 region and we are in it (high bits all one) */
8051 ttbr_select = 1;
8052 } else if (!t0sz) {
8053 /* ttbr0 region is "everything not in the ttbr1 region" */
8054 ttbr_select = 0;
88e8add8 8055 } else if (!t1sz && ttbr1_valid) {
3dde962f
PM
8056 /* ttbr1 region is "everything not in the ttbr0 region" */
8057 ttbr_select = 1;
8058 } else {
8059 /* in the gap between the two regions, this is a Translation fault */
8060 fault_type = translation_fault;
8061 goto do_fault;
8062 }
8063
8064 /* Note that QEMU ignores shareability and cacheability attributes,
8065 * so we don't need to do anything with the SH, ORGN, IRGN fields
8066 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
8067 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
8068 * implement any ASID-like capability so we can ignore it (instead
8069 * we will always flush the TLB any time the ASID is changed).
8070 */
8071 if (ttbr_select == 0) {
aef878be 8072 ttbr = regime_ttbr(env, mmu_idx, 0);
0c5fbf3b
EI
8073 if (el < 2) {
8074 epd = extract32(tcr->raw_tcr, 7, 1);
8075 }
6e99f762 8076 inputsize = addrsize - t0sz;
2c8dd318 8077
11f136ee 8078 tg = extract32(tcr->raw_tcr, 14, 2);
2c8dd318 8079 if (tg == 1) { /* 64KB pages */
973a5434 8080 stride = 13;
2c8dd318
RH
8081 }
8082 if (tg == 2) { /* 16KB pages */
973a5434 8083 stride = 11;
2c8dd318 8084 }
3dde962f 8085 } else {
88e8add8
GB
8086 /* We should only be here if TTBR1 is valid */
8087 assert(ttbr1_valid);
8088
aef878be 8089 ttbr = regime_ttbr(env, mmu_idx, 1);
11f136ee 8090 epd = extract32(tcr->raw_tcr, 23, 1);
6e99f762 8091 inputsize = addrsize - t1sz;
2c8dd318 8092
11f136ee 8093 tg = extract32(tcr->raw_tcr, 30, 2);
2c8dd318 8094 if (tg == 3) { /* 64KB pages */
973a5434 8095 stride = 13;
2c8dd318
RH
8096 }
8097 if (tg == 1) { /* 16KB pages */
973a5434 8098 stride = 11;
2c8dd318 8099 }
3dde962f
PM
8100 }
8101
0480f69a 8102 /* Here we should have set up all the parameters for the translation:
6e99f762 8103 * inputsize, ttbr, epd, stride, tbi
0480f69a
PM
8104 */
8105
3dde962f 8106 if (epd) {
88e8add8
GB
8107 /* Translation table walk disabled => Translation fault on TLB miss
8108 * Note: This is always 0 on 64-bit EL2 and EL3.
8109 */
3dde962f
PM
8110 goto do_fault;
8111 }
8112
1853d5a9
EI
8113 if (mmu_idx != ARMMMUIdx_S2NS) {
8114 /* The starting level depends on the virtual address size (which can
8115 * be up to 48 bits) and the translation granule size. It indicates
8116 * the number of strides (stride bits at a time) needed to
8117 * consume the bits of the input address. In the pseudocode this is:
8118 * level = 4 - RoundUp((inputsize - grainsize) / stride)
8119 * where their 'inputsize' is our 'inputsize', 'grainsize' is
8120 * our 'stride + 3' and 'stride' is our 'stride'.
8121 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8122 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8123 * = 4 - (inputsize - 4) / stride;
8124 */
8125 level = 4 - (inputsize - 4) / stride;
8126 } else {
8127 /* For stage 2 translations the starting level is specified by the
8128 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8129 */
1b4093ea
SS
8130 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8131 uint32_t startlevel;
1853d5a9
EI
8132 bool ok;
8133
6e99f762 8134 if (!aarch64 || stride == 9) {
1853d5a9 8135 /* AArch32 or 4KB pages */
1b4093ea 8136 startlevel = 2 - sl0;
1853d5a9
EI
8137 } else {
8138 /* 16KB or 64KB pages */
1b4093ea 8139 startlevel = 3 - sl0;
1853d5a9
EI
8140 }
8141
8142 /* Check that the starting level is valid. */
6e99f762 8143 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1b4093ea 8144 inputsize, stride);
1853d5a9 8145 if (!ok) {
1853d5a9
EI
8146 fault_type = translation_fault;
8147 goto do_fault;
8148 }
1b4093ea 8149 level = startlevel;
1853d5a9 8150 }
3dde962f 8151
dddb5223
SS
8152 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8153 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
3dde962f
PM
8154
8155 /* Now we can extract the actual base address from the TTBR */
2c8dd318 8156 descaddr = extract64(ttbr, 0, 48);
dddb5223 8157 descaddr &= ~indexmask;
3dde962f 8158
6109769a 8159 /* The address field in the descriptor goes up to bit 39 for ARMv7
dddb5223
SS
8160 * but up to bit 47 for ARMv8, but we use the descaddrmask
8161 * up to bit 39 for AArch32, because we don't need other bits in that case
8162 * to construct next descriptor address (anyway they should be all zeroes).
6109769a 8163 */
6e99f762 8164 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
dddb5223 8165 ~indexmask_grainsize;
6109769a 8166
ebca90e4
PM
8167 /* Secure accesses start with the page table in secure memory and
8168 * can be downgraded to non-secure at any step. Non-secure accesses
8169 * remain non-secure. We implement this by just ORing in the NSTable/NS
8170 * bits at each step.
8171 */
8172 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
3dde962f
PM
8173 for (;;) {
8174 uint64_t descriptor;
ebca90e4 8175 bool nstable;
3dde962f 8176
dddb5223 8177 descaddr |= (address >> (stride * (4 - level))) & indexmask;
2c8dd318 8178 descaddr &= ~7ULL;
ebca90e4 8179 nstable = extract32(tableattrs, 4, 1);
37785977
EI
8180 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
8181 if (fi->s1ptw) {
8182 goto do_fault;
8183 }
8184
3dde962f
PM
8185 if (!(descriptor & 1) ||
8186 (!(descriptor & 2) && (level == 3))) {
8187 /* Invalid, or the Reserved level 3 encoding */
8188 goto do_fault;
8189 }
6109769a 8190 descaddr = descriptor & descaddrmask;
3dde962f
PM
8191
8192 if ((descriptor & 2) && (level < 3)) {
8193 /* Table entry. The top five bits are attributes which may
8194 * propagate down through lower levels of the table (and
8195 * which are all arranged so that 0 means "no effect", so
8196 * we can gather them up by ORing in the bits at each level).
8197 */
8198 tableattrs |= extract64(descriptor, 59, 5);
8199 level++;
dddb5223 8200 indexmask = indexmask_grainsize;
3dde962f
PM
8201 continue;
8202 }
8203 /* Block entry at level 1 or 2, or page entry at level 3.
8204 * These are basically the same thing, although the number
8205 * of bits we pull in from the vaddr varies.
8206 */
973a5434 8207 page_size = (1ULL << ((stride * (4 - level)) + 3));
3dde962f 8208 descaddr |= (address & (page_size - 1));
6ab1a5ee 8209 /* Extract attributes from the descriptor */
d615efac
IC
8210 attrs = extract64(descriptor, 2, 10)
8211 | (extract64(descriptor, 52, 12) << 10);
6ab1a5ee
EI
8212
8213 if (mmu_idx == ARMMMUIdx_S2NS) {
8214 /* Stage 2 table descriptors do not include any attribute fields */
8215 break;
8216 }
8217 /* Merge in attributes from table descriptors */
3dde962f
PM
8218 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8219 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8220 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8221 * means "force PL1 access only", which means forcing AP[1] to 0.
8222 */
8223 if (extract32(tableattrs, 2, 1)) {
8224 attrs &= ~(1 << 4);
8225 }
ebca90e4 8226 attrs |= nstable << 3; /* NS */
3dde962f
PM
8227 break;
8228 }
8229 /* Here descaddr is the final physical address, and attributes
8230 * are all in attrs.
8231 */
8232 fault_type = access_fault;
8233 if ((attrs & (1 << 8)) == 0) {
8234 /* Access flag */
8235 goto do_fault;
8236 }
d8e052b3
AJ
8237
8238 ap = extract32(attrs, 4, 2);
d8e052b3 8239 xn = extract32(attrs, 12, 1);
d8e052b3 8240
6ab1a5ee
EI
8241 if (mmu_idx == ARMMMUIdx_S2NS) {
8242 ns = true;
8243 *prot = get_S2prot(env, ap, xn);
8244 } else {
8245 ns = extract32(attrs, 3, 1);
8246 pxn = extract32(attrs, 11, 1);
6e99f762 8247 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
6ab1a5ee 8248 }
d8e052b3 8249
3dde962f 8250 fault_type = permission_fault;
d8e052b3 8251 if (!(*prot & (1 << access_type))) {
3dde962f
PM
8252 goto do_fault;
8253 }
3dde962f 8254
8bf5b6a9
PM
8255 if (ns) {
8256 /* The NS bit will (as required by the architecture) have no effect if
8257 * the CPU doesn't support TZ or this is a non-secure translation
8258 * regime, because the attribute will already be non-secure.
8259 */
8260 txattrs->secure = false;
8261 }
3dde962f
PM
8262 *phys_ptr = descaddr;
8263 *page_size_ptr = page_size;
b7cc4e82 8264 return false;
3dde962f
PM
8265
8266do_fault:
8267 /* Long-descriptor format IFSR/DFSR value */
b7cc4e82 8268 *fsr = (1 << 9) | (fault_type << 2) | level;
37785977
EI
8269 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
8270 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
b7cc4e82 8271 return true;
3dde962f
PM
8272}
8273
f6bda88f
PC
8274static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
8275 ARMMMUIdx mmu_idx,
8276 int32_t address, int *prot)
8277{
3a00d560
MD
8278 if (!arm_feature(env, ARM_FEATURE_M)) {
8279 *prot = PAGE_READ | PAGE_WRITE;
8280 switch (address) {
8281 case 0xF0000000 ... 0xFFFFFFFF:
8282 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
8283 /* hivecs execing is ok */
8284 *prot |= PAGE_EXEC;
8285 }
8286 break;
8287 case 0x00000000 ... 0x7FFFFFFF:
f6bda88f 8288 *prot |= PAGE_EXEC;
3a00d560
MD
8289 break;
8290 }
8291 } else {
8292 /* Default system address map for M profile cores.
8293 * The architecture specifies which regions are execute-never;
8294 * at the MPU level no other checks are defined.
8295 */
8296 switch (address) {
8297 case 0x00000000 ... 0x1fffffff: /* ROM */
8298 case 0x20000000 ... 0x3fffffff: /* SRAM */
8299 case 0x60000000 ... 0x7fffffff: /* RAM */
8300 case 0x80000000 ... 0x9fffffff: /* RAM */
8301 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8302 break;
8303 case 0x40000000 ... 0x5fffffff: /* Peripheral */
8304 case 0xa0000000 ... 0xbfffffff: /* Device */
8305 case 0xc0000000 ... 0xdfffffff: /* Device */
8306 case 0xe0000000 ... 0xffffffff: /* System */
8307 *prot = PAGE_READ | PAGE_WRITE;
8308 break;
8309 default:
8310 g_assert_not_reached();
f6bda88f 8311 }
f6bda88f 8312 }
f6bda88f
PC
8313}
8314
29c483a5
MD
8315static bool pmsav7_use_background_region(ARMCPU *cpu,
8316 ARMMMUIdx mmu_idx, bool is_user)
8317{
8318 /* Return true if we should use the default memory map as a
8319 * "background" region if there are no hits against any MPU regions.
8320 */
8321 CPUARMState *env = &cpu->env;
8322
8323 if (is_user) {
8324 return false;
8325 }
8326
8327 if (arm_feature(env, ARM_FEATURE_M)) {
ecf5e8ea
PM
8328 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
8329 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
29c483a5
MD
8330 } else {
8331 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
8332 }
8333}
8334
38aaa60c
PM
8335static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
8336{
8337 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
8338 return arm_feature(env, ARM_FEATURE_M) &&
8339 extract32(address, 20, 12) == 0xe00;
8340}
8341
bf446a11
PM
8342static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
8343{
8344 /* True if address is in the M profile system region
8345 * 0xe0000000 - 0xffffffff
8346 */
8347 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
8348}
8349
f6bda88f 8350static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
03ae85f8 8351 MMUAccessType access_type, ARMMMUIdx mmu_idx,
f6bda88f
PC
8352 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8353{
8354 ARMCPU *cpu = arm_env_get_cpu(env);
8355 int n;
8356 bool is_user = regime_is_user(env, mmu_idx);
8357
8358 *phys_ptr = address;
8359 *prot = 0;
8360
38aaa60c
PM
8361 if (regime_translation_disabled(env, mmu_idx) ||
8362 m_is_ppb_region(env, address)) {
8363 /* MPU disabled or M profile PPB access: use default memory map.
8364 * The other case which uses the default memory map in the
8365 * v7M ARM ARM pseudocode is exception vector reads from the vector
8366 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
8367 * which always does a direct read using address_space_ldl(), rather
8368 * than going via this function, so we don't need to check that here.
8369 */
f6bda88f
PC
8370 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8371 } else { /* MPU enabled */
8372 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8373 /* region search */
8374 uint32_t base = env->pmsav7.drbar[n];
8375 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
8376 uint32_t rmask;
8377 bool srdis = false;
8378
8379 if (!(env->pmsav7.drsr[n] & 0x1)) {
8380 continue;
8381 }
8382
8383 if (!rsize) {
c9f9f124
MD
8384 qemu_log_mask(LOG_GUEST_ERROR,
8385 "DRSR[%d]: Rsize field cannot be 0\n", n);
f6bda88f
PC
8386 continue;
8387 }
8388 rsize++;
8389 rmask = (1ull << rsize) - 1;
8390
8391 if (base & rmask) {
c9f9f124
MD
8392 qemu_log_mask(LOG_GUEST_ERROR,
8393 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
8394 "to DRSR region size, mask = 0x%" PRIx32 "\n",
8395 n, base, rmask);
f6bda88f
PC
8396 continue;
8397 }
8398
8399 if (address < base || address > base + rmask) {
8400 continue;
8401 }
8402
8403 /* Region matched */
8404
8405 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
8406 int i, snd;
8407 uint32_t srdis_mask;
8408
8409 rsize -= 3; /* sub region size (power of 2) */
8410 snd = ((address - base) >> rsize) & 0x7;
8411 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
8412
8413 srdis_mask = srdis ? 0x3 : 0x0;
8414 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
8415 /* This will check in groups of 2, 4 and then 8, whether
8416 * the subregion bits are consistent. rsize is incremented
8417 * back up to give the region size, considering consistent
8418 * adjacent subregions as one region. Stop testing if rsize
8419 * is already big enough for an entire QEMU page.
8420 */
8421 int snd_rounded = snd & ~(i - 1);
8422 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
8423 snd_rounded + 8, i);
8424 if (srdis_mask ^ srdis_multi) {
8425 break;
8426 }
8427 srdis_mask = (srdis_mask << i) | srdis_mask;
8428 rsize++;
8429 }
8430 }
8431 if (rsize < TARGET_PAGE_BITS) {
c9f9f124
MD
8432 qemu_log_mask(LOG_UNIMP,
8433 "DRSR[%d]: No support for MPU (sub)region "
f6bda88f 8434 "alignment of %" PRIu32 " bits. Minimum is %d\n",
c9f9f124 8435 n, rsize, TARGET_PAGE_BITS);
f6bda88f
PC
8436 continue;
8437 }
8438 if (srdis) {
8439 continue;
8440 }
8441 break;
8442 }
8443
8444 if (n == -1) { /* no hits */
29c483a5 8445 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
f6bda88f
PC
8446 /* background fault */
8447 *fsr = 0;
8448 return true;
8449 }
8450 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8451 } else { /* a MPU hit! */
8452 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
bf446a11
PM
8453 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
8454
8455 if (m_is_system_region(env, address)) {
8456 /* System space is always execute never */
8457 xn = 1;
8458 }
f6bda88f
PC
8459
8460 if (is_user) { /* User mode AP bit decoding */
8461 switch (ap) {
8462 case 0:
8463 case 1:
8464 case 5:
8465 break; /* no access */
8466 case 3:
8467 *prot |= PAGE_WRITE;
8468 /* fall through */
8469 case 2:
8470 case 6:
8471 *prot |= PAGE_READ | PAGE_EXEC;
8472 break;
8473 default:
8474 qemu_log_mask(LOG_GUEST_ERROR,
c9f9f124
MD
8475 "DRACR[%d]: Bad value for AP bits: 0x%"
8476 PRIx32 "\n", n, ap);
f6bda88f
PC
8477 }
8478 } else { /* Priv. mode AP bits decoding */
8479 switch (ap) {
8480 case 0:
8481 break; /* no access */
8482 case 1:
8483 case 2:
8484 case 3:
8485 *prot |= PAGE_WRITE;
8486 /* fall through */
8487 case 5:
8488 case 6:
8489 *prot |= PAGE_READ | PAGE_EXEC;
8490 break;
8491 default:
8492 qemu_log_mask(LOG_GUEST_ERROR,
c9f9f124
MD
8493 "DRACR[%d]: Bad value for AP bits: 0x%"
8494 PRIx32 "\n", n, ap);
f6bda88f
PC
8495 }
8496 }
8497
8498 /* execute never */
bf446a11 8499 if (xn) {
f6bda88f
PC
8500 *prot &= ~PAGE_EXEC;
8501 }
8502 }
8503 }
8504
8505 *fsr = 0x00d; /* Permission fault */
8506 return !(*prot & (1 << access_type));
8507}
8508
504e3cc3
PM
8509static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
8510 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8511 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8512{
8513 ARMCPU *cpu = arm_env_get_cpu(env);
8514 bool is_user = regime_is_user(env, mmu_idx);
62c58ee0 8515 uint32_t secure = regime_is_secure(env, mmu_idx);
504e3cc3
PM
8516 int n;
8517 int matchregion = -1;
8518 bool hit = false;
8519
8520 *phys_ptr = address;
8521 *prot = 0;
8522
8523 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
8524 * was an exception vector read from the vector table (which is always
8525 * done using the default system address map), because those accesses
8526 * are done in arm_v7m_load_vector(), which always does a direct
8527 * read using address_space_ldl(), rather than going via this function.
8528 */
8529 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
8530 hit = true;
8531 } else if (m_is_ppb_region(env, address)) {
8532 hit = true;
8533 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
8534 hit = true;
8535 } else {
8536 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8537 /* region search */
8538 /* Note that the base address is bits [31:5] from the register
8539 * with bits [4:0] all zeroes, but the limit address is bits
8540 * [31:5] from the register with bits [4:0] all ones.
8541 */
62c58ee0
PM
8542 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
8543 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
504e3cc3 8544
62c58ee0 8545 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
504e3cc3
PM
8546 /* Region disabled */
8547 continue;
8548 }
8549
8550 if (address < base || address > limit) {
8551 continue;
8552 }
8553
8554 if (hit) {
8555 /* Multiple regions match -- always a failure (unlike
8556 * PMSAv7 where highest-numbered-region wins)
8557 */
8558 *fsr = 0x00d; /* permission fault */
8559 return true;
8560 }
8561
8562 matchregion = n;
8563 hit = true;
8564
8565 if (base & ~TARGET_PAGE_MASK) {
8566 qemu_log_mask(LOG_UNIMP,
8567 "MPU_RBAR[%d]: No support for MPU region base"
8568 "address of 0x%" PRIx32 ". Minimum alignment is "
8569 "%d\n",
8570 n, base, TARGET_PAGE_BITS);
8571 continue;
8572 }
8573 if ((limit + 1) & ~TARGET_PAGE_MASK) {
8574 qemu_log_mask(LOG_UNIMP,
8575 "MPU_RBAR[%d]: No support for MPU region limit"
8576 "address of 0x%" PRIx32 ". Minimum alignment is "
8577 "%d\n",
8578 n, limit, TARGET_PAGE_BITS);
8579 continue;
8580 }
8581 }
8582 }
8583
8584 if (!hit) {
8585 /* background fault */
8586 *fsr = 0;
8587 return true;
8588 }
8589
8590 if (matchregion == -1) {
8591 /* hit using the background region */
8592 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8593 } else {
62c58ee0
PM
8594 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
8595 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
504e3cc3
PM
8596
8597 if (m_is_system_region(env, address)) {
8598 /* System space is always execute never */
8599 xn = 1;
8600 }
8601
8602 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
8603 if (*prot && !xn) {
8604 *prot |= PAGE_EXEC;
8605 }
8606 /* We don't need to look the attribute up in the MAIR0/MAIR1
8607 * registers because that only tells us about cacheability.
8608 */
8609 }
8610
8611 *fsr = 0x00d; /* Permission fault */
8612 return !(*prot & (1 << access_type));
8613}
8614
13689d43 8615static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
03ae85f8 8616 MMUAccessType access_type, ARMMMUIdx mmu_idx,
13689d43 8617 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9ee6e8bb
PB
8618{
8619 int n;
8620 uint32_t mask;
8621 uint32_t base;
0480f69a 8622 bool is_user = regime_is_user(env, mmu_idx);
9ee6e8bb 8623
3279adb9
PM
8624 if (regime_translation_disabled(env, mmu_idx)) {
8625 /* MPU disabled. */
8626 *phys_ptr = address;
8627 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8628 return false;
8629 }
8630
9ee6e8bb
PB
8631 *phys_ptr = address;
8632 for (n = 7; n >= 0; n--) {
554b0b09 8633 base = env->cp15.c6_region[n];
87c3d486 8634 if ((base & 1) == 0) {
554b0b09 8635 continue;
87c3d486 8636 }
554b0b09
PM
8637 mask = 1 << ((base >> 1) & 0x1f);
8638 /* Keep this shift separate from the above to avoid an
8639 (undefined) << 32. */
8640 mask = (mask << 1) - 1;
87c3d486 8641 if (((base ^ address) & ~mask) == 0) {
554b0b09 8642 break;
87c3d486 8643 }
9ee6e8bb 8644 }
87c3d486 8645 if (n < 0) {
b7cc4e82
PC
8646 *fsr = 2;
8647 return true;
87c3d486 8648 }
9ee6e8bb 8649
03ae85f8 8650 if (access_type == MMU_INST_FETCH) {
7e09797c 8651 mask = env->cp15.pmsav5_insn_ap;
9ee6e8bb 8652 } else {
7e09797c 8653 mask = env->cp15.pmsav5_data_ap;
9ee6e8bb
PB
8654 }
8655 mask = (mask >> (n * 4)) & 0xf;
8656 switch (mask) {
8657 case 0:
b7cc4e82
PC
8658 *fsr = 1;
8659 return true;
9ee6e8bb 8660 case 1:
87c3d486 8661 if (is_user) {
b7cc4e82
PC
8662 *fsr = 1;
8663 return true;
87c3d486 8664 }
554b0b09
PM
8665 *prot = PAGE_READ | PAGE_WRITE;
8666 break;
9ee6e8bb 8667 case 2:
554b0b09 8668 *prot = PAGE_READ;
87c3d486 8669 if (!is_user) {
554b0b09 8670 *prot |= PAGE_WRITE;
87c3d486 8671 }
554b0b09 8672 break;
9ee6e8bb 8673 case 3:
554b0b09
PM
8674 *prot = PAGE_READ | PAGE_WRITE;
8675 break;
9ee6e8bb 8676 case 5:
87c3d486 8677 if (is_user) {
b7cc4e82
PC
8678 *fsr = 1;
8679 return true;
87c3d486 8680 }
554b0b09
PM
8681 *prot = PAGE_READ;
8682 break;
9ee6e8bb 8683 case 6:
554b0b09
PM
8684 *prot = PAGE_READ;
8685 break;
9ee6e8bb 8686 default:
554b0b09 8687 /* Bad permission. */
b7cc4e82
PC
8688 *fsr = 1;
8689 return true;
9ee6e8bb 8690 }
3ad493fc 8691 *prot |= PAGE_EXEC;
b7cc4e82 8692 return false;
9ee6e8bb
PB
8693}
8694
702a9357
PM
8695/* get_phys_addr - get the physical address for this virtual address
8696 *
8697 * Find the physical address corresponding to the given virtual address,
8698 * by doing a translation table walk on MMU based systems or using the
8699 * MPU state on MPU based systems.
8700 *
b7cc4e82
PC
8701 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
8702 * prot and page_size may not be filled in, and the populated fsr value provides
702a9357
PM
8703 * information on why the translation aborted, in the format of a
8704 * DFSR/IFSR fault register, with the following caveats:
8705 * * we honour the short vs long DFSR format differences.
8706 * * the WnR bit is never set (the caller must do this).
f6bda88f 8707 * * for PSMAv5 based systems we don't bother to return a full FSR format
702a9357
PM
8708 * value.
8709 *
8710 * @env: CPUARMState
8711 * @address: virtual address to get physical address for
8712 * @access_type: 0 for read, 1 for write, 2 for execute
d3649702 8713 * @mmu_idx: MMU index indicating required translation regime
702a9357 8714 * @phys_ptr: set to the physical address corresponding to the virtual address
8bf5b6a9 8715 * @attrs: set to the memory transaction attributes to use
702a9357
PM
8716 * @prot: set to the permissions for the page containing phys_ptr
8717 * @page_size: set to the size of the page containing phys_ptr
b7cc4e82 8718 * @fsr: set to the DFSR/IFSR value on failure
702a9357 8719 */
af51f566 8720static bool get_phys_addr(CPUARMState *env, target_ulong address,
03ae85f8 8721 MMUAccessType access_type, ARMMMUIdx mmu_idx,
af51f566 8722 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
8723 target_ulong *page_size, uint32_t *fsr,
8724 ARMMMUFaultInfo *fi)
9ee6e8bb 8725{
0480f69a 8726 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9b539263
EI
8727 /* Call ourselves recursively to do the stage 1 and then stage 2
8728 * translations.
0480f69a 8729 */
9b539263
EI
8730 if (arm_feature(env, ARM_FEATURE_EL2)) {
8731 hwaddr ipa;
8732 int s2_prot;
8733 int ret;
8734
8735 ret = get_phys_addr(env, address, access_type,
8bd5c820 8736 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
9b539263
EI
8737 prot, page_size, fsr, fi);
8738
8739 /* If S1 fails or S2 is disabled, return early. */
8740 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8741 *phys_ptr = ipa;
8742 return ret;
8743 }
8744
8745 /* S1 is done. Now do S2 translation. */
8746 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8747 phys_ptr, attrs, &s2_prot,
8748 page_size, fsr, fi);
8749 fi->s2addr = ipa;
8750 /* Combine the S1 and S2 perms. */
8751 *prot &= s2_prot;
8752 return ret;
8753 } else {
8754 /*
8755 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8756 */
8bd5c820 8757 mmu_idx = stage_1_mmu_idx(mmu_idx);
9b539263 8758 }
0480f69a 8759 }
d3649702 8760
8bf5b6a9
PM
8761 /* The page table entries may downgrade secure to non-secure, but
8762 * cannot upgrade an non-secure translation regime's attributes
8763 * to secure.
8764 */
8765 attrs->secure = regime_is_secure(env, mmu_idx);
0995bf8c 8766 attrs->user = regime_is_user(env, mmu_idx);
8bf5b6a9 8767
0480f69a
PM
8768 /* Fast Context Switch Extension. This doesn't exist at all in v8.
8769 * In v7 and earlier it affects all stage 1 translations.
8770 */
8771 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8772 && !arm_feature(env, ARM_FEATURE_V8)) {
8773 if (regime_el(env, mmu_idx) == 3) {
8774 address += env->cp15.fcseidr_s;
8775 } else {
8776 address += env->cp15.fcseidr_ns;
8777 }
54bf36ed 8778 }
9ee6e8bb 8779
3279adb9 8780 if (arm_feature(env, ARM_FEATURE_PMSA)) {
c9f9f124 8781 bool ret;
f6bda88f 8782 *page_size = TARGET_PAGE_SIZE;
3279adb9 8783
504e3cc3
PM
8784 if (arm_feature(env, ARM_FEATURE_V8)) {
8785 /* PMSAv8 */
8786 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
8787 phys_ptr, prot, fsr);
8788 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3279adb9
PM
8789 /* PMSAv7 */
8790 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8791 phys_ptr, prot, fsr);
8792 } else {
8793 /* Pre-v7 MPU */
8794 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8795 phys_ptr, prot, fsr);
8796 }
8797 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
c9f9f124 8798 " mmu_idx %u -> %s (prot %c%c%c)\n",
709e4407
PM
8799 access_type == MMU_DATA_LOAD ? "reading" :
8800 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
c9f9f124
MD
8801 (uint32_t)address, mmu_idx,
8802 ret ? "Miss" : "Hit",
8803 *prot & PAGE_READ ? 'r' : '-',
8804 *prot & PAGE_WRITE ? 'w' : '-',
8805 *prot & PAGE_EXEC ? 'x' : '-');
8806
8807 return ret;
f6bda88f
PC
8808 }
8809
3279adb9
PM
8810 /* Definitely a real MMU, not an MPU */
8811
0480f69a 8812 if (regime_translation_disabled(env, mmu_idx)) {
3279adb9 8813 /* MMU disabled. */
9ee6e8bb 8814 *phys_ptr = address;
3ad493fc 8815 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 8816 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb 8817 return 0;
0480f69a
PM
8818 }
8819
0480f69a
PM
8820 if (regime_using_lpae_format(env, mmu_idx)) {
8821 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 8822 attrs, prot, page_size, fsr, fi);
0480f69a
PM
8823 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8824 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 8825 attrs, prot, page_size, fsr, fi);
9ee6e8bb 8826 } else {
0480f69a 8827 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 8828 prot, page_size, fsr, fi);
9ee6e8bb
PB
8829 }
8830}
8831
8c6084bf 8832/* Walk the page table and (if the mapping exists) add the page
b7cc4e82
PC
8833 * to the TLB. Return false on success, or true on failure. Populate
8834 * fsr with ARM DFSR/IFSR fault register format value on failure.
8c6084bf 8835 */
b7cc4e82 8836bool arm_tlb_fill(CPUState *cs, vaddr address,
03ae85f8 8837 MMUAccessType access_type, int mmu_idx, uint32_t *fsr,
e14b5a23 8838 ARMMMUFaultInfo *fi)
b5ff1b31 8839{
7510454e
AF
8840 ARMCPU *cpu = ARM_CPU(cs);
8841 CPUARMState *env = &cpu->env;
a8170e5e 8842 hwaddr phys_addr;
d4c430a8 8843 target_ulong page_size;
b5ff1b31 8844 int prot;
d3649702 8845 int ret;
8bf5b6a9 8846 MemTxAttrs attrs = {};
b5ff1b31 8847
8bd5c820
PM
8848 ret = get_phys_addr(env, address, access_type,
8849 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
e14b5a23 8850 &attrs, &prot, &page_size, fsr, fi);
b7cc4e82 8851 if (!ret) {
b5ff1b31 8852 /* Map a single [sub]page. */
dcd82c11
AB
8853 phys_addr &= TARGET_PAGE_MASK;
8854 address &= TARGET_PAGE_MASK;
8bf5b6a9
PM
8855 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8856 prot, mmu_idx, page_size);
d4c430a8 8857 return 0;
b5ff1b31
FB
8858 }
8859
8c6084bf 8860 return ret;
b5ff1b31
FB
8861}
8862
0faea0c7
PM
8863hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8864 MemTxAttrs *attrs)
b5ff1b31 8865{
00b941e5 8866 ARMCPU *cpu = ARM_CPU(cs);
d3649702 8867 CPUARMState *env = &cpu->env;
a8170e5e 8868 hwaddr phys_addr;
d4c430a8 8869 target_ulong page_size;
b5ff1b31 8870 int prot;
b7cc4e82
PC
8871 bool ret;
8872 uint32_t fsr;
e14b5a23 8873 ARMMMUFaultInfo fi = {};
8bd5c820 8874 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
b5ff1b31 8875
0faea0c7
PM
8876 *attrs = (MemTxAttrs) {};
8877
8bd5c820 8878 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
0faea0c7 8879 attrs, &prot, &page_size, &fsr, &fi);
b5ff1b31 8880
b7cc4e82 8881 if (ret) {
b5ff1b31 8882 return -1;
00b941e5 8883 }
b5ff1b31
FB
8884 return phys_addr;
8885}
8886
0ecb72a5 8887uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 8888{
58117c9b
MD
8889 uint32_t mask;
8890 unsigned el = arm_current_el(env);
8891
8892 /* First handle registers which unprivileged can read */
8893
8894 switch (reg) {
8895 case 0 ... 7: /* xPSR sub-fields */
8896 mask = 0;
8897 if ((reg & 1) && el) {
987ab45e 8898 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
58117c9b
MD
8899 }
8900 if (!(reg & 4)) {
987ab45e 8901 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
58117c9b
MD
8902 }
8903 /* EPSR reads as zero */
8904 return xpsr_read(env) & mask;
8905 break;
8906 case 20: /* CONTROL */
8bfc26ea 8907 return env->v7m.control[env->v7m.secure];
50f11062
PM
8908 case 0x94: /* CONTROL_NS */
8909 /* We have to handle this here because unprivileged Secure code
8910 * can read the NS CONTROL register.
8911 */
8912 if (!env->v7m.secure) {
8913 return 0;
8914 }
8915 return env->v7m.control[M_REG_NS];
58117c9b
MD
8916 }
8917
8918 if (el == 0) {
8919 return 0; /* unprivileged reads others as zero */
8920 }
a47dddd7 8921
50f11062
PM
8922 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8923 switch (reg) {
8924 case 0x88: /* MSP_NS */
8925 if (!env->v7m.secure) {
8926 return 0;
8927 }
8928 return env->v7m.other_ss_msp;
8929 case 0x89: /* PSP_NS */
8930 if (!env->v7m.secure) {
8931 return 0;
8932 }
8933 return env->v7m.other_ss_psp;
8934 case 0x90: /* PRIMASK_NS */
8935 if (!env->v7m.secure) {
8936 return 0;
8937 }
8938 return env->v7m.primask[M_REG_NS];
8939 case 0x91: /* BASEPRI_NS */
8940 if (!env->v7m.secure) {
8941 return 0;
8942 }
8943 return env->v7m.basepri[M_REG_NS];
8944 case 0x93: /* FAULTMASK_NS */
8945 if (!env->v7m.secure) {
8946 return 0;
8947 }
8948 return env->v7m.faultmask[M_REG_NS];
8949 case 0x98: /* SP_NS */
8950 {
8951 /* This gives the non-secure SP selected based on whether we're
8952 * currently in handler mode or not, using the NS CONTROL.SPSEL.
8953 */
8954 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
8955
8956 if (!env->v7m.secure) {
8957 return 0;
8958 }
8959 if (!arm_v7m_is_handler_mode(env) && spsel) {
8960 return env->v7m.other_ss_psp;
8961 } else {
8962 return env->v7m.other_ss_msp;
8963 }
8964 }
8965 default:
8966 break;
8967 }
8968 }
8969
9ee6e8bb 8970 switch (reg) {
9ee6e8bb 8971 case 8: /* MSP */
8bfc26ea 8972 return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
abc24d86 8973 env->v7m.other_sp : env->regs[13];
9ee6e8bb 8974 case 9: /* PSP */
8bfc26ea 8975 return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
abc24d86 8976 env->regs[13] : env->v7m.other_sp;
9ee6e8bb 8977 case 16: /* PRIMASK */
6d804834 8978 return env->v7m.primask[env->v7m.secure];
82845826
SH
8979 case 17: /* BASEPRI */
8980 case 18: /* BASEPRI_MAX */
acf94941 8981 return env->v7m.basepri[env->v7m.secure];
82845826 8982 case 19: /* FAULTMASK */
42a6686b 8983 return env->v7m.faultmask[env->v7m.secure];
9ee6e8bb 8984 default:
58117c9b
MD
8985 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
8986 " register %d\n", reg);
9ee6e8bb
PB
8987 return 0;
8988 }
8989}
8990
b28b3377
PM
8991void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
8992{
8993 /* We're passed bits [11..0] of the instruction; extract
8994 * SYSm and the mask bits.
8995 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
8996 * we choose to treat them as if the mask bits were valid.
8997 * NB that the pseudocode 'mask' variable is bits [11..10],
8998 * whereas ours is [11..8].
8999 */
9000 uint32_t mask = extract32(maskreg, 8, 4);
9001 uint32_t reg = extract32(maskreg, 0, 8);
9002
58117c9b
MD
9003 if (arm_current_el(env) == 0 && reg > 7) {
9004 /* only xPSR sub-fields may be written by unprivileged */
9005 return;
9006 }
a47dddd7 9007
50f11062
PM
9008 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9009 switch (reg) {
9010 case 0x88: /* MSP_NS */
9011 if (!env->v7m.secure) {
9012 return;
9013 }
9014 env->v7m.other_ss_msp = val;
9015 return;
9016 case 0x89: /* PSP_NS */
9017 if (!env->v7m.secure) {
9018 return;
9019 }
9020 env->v7m.other_ss_psp = val;
9021 return;
9022 case 0x90: /* PRIMASK_NS */
9023 if (!env->v7m.secure) {
9024 return;
9025 }
9026 env->v7m.primask[M_REG_NS] = val & 1;
9027 return;
9028 case 0x91: /* BASEPRI_NS */
9029 if (!env->v7m.secure) {
9030 return;
9031 }
9032 env->v7m.basepri[M_REG_NS] = val & 0xff;
9033 return;
9034 case 0x93: /* FAULTMASK_NS */
9035 if (!env->v7m.secure) {
9036 return;
9037 }
9038 env->v7m.faultmask[M_REG_NS] = val & 1;
9039 return;
9040 case 0x98: /* SP_NS */
9041 {
9042 /* This gives the non-secure SP selected based on whether we're
9043 * currently in handler mode or not, using the NS CONTROL.SPSEL.
9044 */
9045 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
9046
9047 if (!env->v7m.secure) {
9048 return;
9049 }
9050 if (!arm_v7m_is_handler_mode(env) && spsel) {
9051 env->v7m.other_ss_psp = val;
9052 } else {
9053 env->v7m.other_ss_msp = val;
9054 }
9055 return;
9056 }
9057 default:
9058 break;
9059 }
9060 }
9061
9ee6e8bb 9062 switch (reg) {
58117c9b
MD
9063 case 0 ... 7: /* xPSR sub-fields */
9064 /* only APSR is actually writable */
b28b3377
PM
9065 if (!(reg & 4)) {
9066 uint32_t apsrmask = 0;
9067
9068 if (mask & 8) {
987ab45e 9069 apsrmask |= XPSR_NZCV | XPSR_Q;
b28b3377
PM
9070 }
9071 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
987ab45e 9072 apsrmask |= XPSR_GE;
b28b3377
PM
9073 }
9074 xpsr_write(env, val, apsrmask);
58117c9b 9075 }
9ee6e8bb
PB
9076 break;
9077 case 8: /* MSP */
8bfc26ea 9078 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
9ee6e8bb 9079 env->v7m.other_sp = val;
abc24d86 9080 } else {
9ee6e8bb 9081 env->regs[13] = val;
abc24d86 9082 }
9ee6e8bb
PB
9083 break;
9084 case 9: /* PSP */
8bfc26ea 9085 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
9ee6e8bb 9086 env->regs[13] = val;
abc24d86 9087 } else {
9ee6e8bb 9088 env->v7m.other_sp = val;
abc24d86 9089 }
9ee6e8bb
PB
9090 break;
9091 case 16: /* PRIMASK */
6d804834 9092 env->v7m.primask[env->v7m.secure] = val & 1;
9ee6e8bb 9093 break;
82845826 9094 case 17: /* BASEPRI */
acf94941 9095 env->v7m.basepri[env->v7m.secure] = val & 0xff;
9ee6e8bb 9096 break;
82845826 9097 case 18: /* BASEPRI_MAX */
9ee6e8bb 9098 val &= 0xff;
acf94941
PM
9099 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
9100 || env->v7m.basepri[env->v7m.secure] == 0)) {
9101 env->v7m.basepri[env->v7m.secure] = val;
9102 }
9ee6e8bb 9103 break;
82845826 9104 case 19: /* FAULTMASK */
42a6686b 9105 env->v7m.faultmask[env->v7m.secure] = val & 1;
82845826 9106 break;
9ee6e8bb 9107 case 20: /* CONTROL */
792dac30
PM
9108 /* Writing to the SPSEL bit only has an effect if we are in
9109 * thread mode; other bits can be updated by any privileged code.
9110 * switch_v7m_sp() deals with updating the SPSEL bit in
9111 * env->v7m.control, so we only need update the others.
9112 */
15b3f556 9113 if (!arm_v7m_is_handler_mode(env)) {
792dac30
PM
9114 switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
9115 }
8bfc26ea
PM
9116 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
9117 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
9ee6e8bb
PB
9118 break;
9119 default:
58117c9b
MD
9120 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
9121 " register %d\n", reg);
9ee6e8bb
PB
9122 return;
9123 }
9124}
9125
b5ff1b31 9126#endif
6ddbc6e4 9127
aca3f40b
PM
9128void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
9129{
9130 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
9131 * Note that we do not implement the (architecturally mandated)
9132 * alignment fault for attempts to use this on Device memory
9133 * (which matches the usual QEMU behaviour of not implementing either
9134 * alignment faults or any memory attribute handling).
9135 */
9136
9137 ARMCPU *cpu = arm_env_get_cpu(env);
9138 uint64_t blocklen = 4 << cpu->dcz_blocksize;
9139 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
9140
9141#ifndef CONFIG_USER_ONLY
9142 {
9143 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
9144 * the block size so we might have to do more than one TLB lookup.
9145 * We know that in fact for any v8 CPU the page size is at least 4K
9146 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
9147 * 1K as an artefact of legacy v5 subpage support being present in the
9148 * same QEMU executable.
9149 */
9150 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
9151 void *hostaddr[maxidx];
9152 int try, i;
97ed5ccd 9153 unsigned mmu_idx = cpu_mmu_index(env, false);
3972ef6f 9154 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
aca3f40b
PM
9155
9156 for (try = 0; try < 2; try++) {
9157
9158 for (i = 0; i < maxidx; i++) {
9159 hostaddr[i] = tlb_vaddr_to_host(env,
9160 vaddr + TARGET_PAGE_SIZE * i,
3972ef6f 9161 1, mmu_idx);
aca3f40b
PM
9162 if (!hostaddr[i]) {
9163 break;
9164 }
9165 }
9166 if (i == maxidx) {
9167 /* If it's all in the TLB it's fair game for just writing to;
9168 * we know we don't need to update dirty status, etc.
9169 */
9170 for (i = 0; i < maxidx - 1; i++) {
9171 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
9172 }
9173 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
9174 return;
9175 }
9176 /* OK, try a store and see if we can populate the tlb. This
9177 * might cause an exception if the memory isn't writable,
9178 * in which case we will longjmp out of here. We must for
9179 * this purpose use the actual register value passed to us
9180 * so that we get the fault address right.
9181 */
01ecaf43 9182 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
aca3f40b
PM
9183 /* Now we can populate the other TLB entries, if any */
9184 for (i = 0; i < maxidx; i++) {
9185 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
9186 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
01ecaf43 9187 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
aca3f40b
PM
9188 }
9189 }
9190 }
9191
9192 /* Slow path (probably attempt to do this to an I/O device or
9193 * similar, or clearing of a block of code we have translations
9194 * cached for). Just do a series of byte writes as the architecture
9195 * demands. It's not worth trying to use a cpu_physical_memory_map(),
9196 * memset(), unmap() sequence here because:
9197 * + we'd need to account for the blocksize being larger than a page
9198 * + the direct-RAM access case is almost always going to be dealt
9199 * with in the fastpath code above, so there's no speed benefit
9200 * + we would have to deal with the map returning NULL because the
9201 * bounce buffer was in use
9202 */
9203 for (i = 0; i < blocklen; i++) {
01ecaf43 9204 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
aca3f40b
PM
9205 }
9206 }
9207#else
9208 memset(g2h(vaddr), 0, blocklen);
9209#endif
9210}
9211
6ddbc6e4
PB
9212/* Note that signed overflow is undefined in C. The following routines are
9213 careful to use unsigned types where modulo arithmetic is required.
9214 Failure to do so _will_ break on newer gcc. */
9215
9216/* Signed saturating arithmetic. */
9217
1654b2d6 9218/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
9219static inline uint16_t add16_sat(uint16_t a, uint16_t b)
9220{
9221 uint16_t res;
9222
9223 res = a + b;
9224 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
9225 if (a & 0x8000)
9226 res = 0x8000;
9227 else
9228 res = 0x7fff;
9229 }
9230 return res;
9231}
9232
1654b2d6 9233/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
9234static inline uint8_t add8_sat(uint8_t a, uint8_t b)
9235{
9236 uint8_t res;
9237
9238 res = a + b;
9239 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
9240 if (a & 0x80)
9241 res = 0x80;
9242 else
9243 res = 0x7f;
9244 }
9245 return res;
9246}
9247
1654b2d6 9248/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
9249static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
9250{
9251 uint16_t res;
9252
9253 res = a - b;
9254 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
9255 if (a & 0x8000)
9256 res = 0x8000;
9257 else
9258 res = 0x7fff;
9259 }
9260 return res;
9261}
9262
1654b2d6 9263/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
9264static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
9265{
9266 uint8_t res;
9267
9268 res = a - b;
9269 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
9270 if (a & 0x80)
9271 res = 0x80;
9272 else
9273 res = 0x7f;
9274 }
9275 return res;
9276}
9277
9278#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
9279#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
9280#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
9281#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
9282#define PFX q
9283
9284#include "op_addsub.h"
9285
9286/* Unsigned saturating arithmetic. */
460a09c1 9287static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
9288{
9289 uint16_t res;
9290 res = a + b;
9291 if (res < a)
9292 res = 0xffff;
9293 return res;
9294}
9295
460a09c1 9296static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 9297{
4c4fd3f8 9298 if (a > b)
6ddbc6e4
PB
9299 return a - b;
9300 else
9301 return 0;
9302}
9303
9304static inline uint8_t add8_usat(uint8_t a, uint8_t b)
9305{
9306 uint8_t res;
9307 res = a + b;
9308 if (res < a)
9309 res = 0xff;
9310 return res;
9311}
9312
9313static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
9314{
4c4fd3f8 9315 if (a > b)
6ddbc6e4
PB
9316 return a - b;
9317 else
9318 return 0;
9319}
9320
9321#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
9322#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
9323#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
9324#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
9325#define PFX uq
9326
9327#include "op_addsub.h"
9328
9329/* Signed modulo arithmetic. */
9330#define SARITH16(a, b, n, op) do { \
9331 int32_t sum; \
db6e2e65 9332 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
9333 RESULT(sum, n, 16); \
9334 if (sum >= 0) \
9335 ge |= 3 << (n * 2); \
9336 } while(0)
9337
9338#define SARITH8(a, b, n, op) do { \
9339 int32_t sum; \
db6e2e65 9340 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
9341 RESULT(sum, n, 8); \
9342 if (sum >= 0) \
9343 ge |= 1 << n; \
9344 } while(0)
9345
9346
9347#define ADD16(a, b, n) SARITH16(a, b, n, +)
9348#define SUB16(a, b, n) SARITH16(a, b, n, -)
9349#define ADD8(a, b, n) SARITH8(a, b, n, +)
9350#define SUB8(a, b, n) SARITH8(a, b, n, -)
9351#define PFX s
9352#define ARITH_GE
9353
9354#include "op_addsub.h"
9355
9356/* Unsigned modulo arithmetic. */
9357#define ADD16(a, b, n) do { \
9358 uint32_t sum; \
9359 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
9360 RESULT(sum, n, 16); \
a87aa10b 9361 if ((sum >> 16) == 1) \
6ddbc6e4
PB
9362 ge |= 3 << (n * 2); \
9363 } while(0)
9364
9365#define ADD8(a, b, n) do { \
9366 uint32_t sum; \
9367 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
9368 RESULT(sum, n, 8); \
a87aa10b
AZ
9369 if ((sum >> 8) == 1) \
9370 ge |= 1 << n; \
6ddbc6e4
PB
9371 } while(0)
9372
9373#define SUB16(a, b, n) do { \
9374 uint32_t sum; \
9375 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
9376 RESULT(sum, n, 16); \
9377 if ((sum >> 16) == 0) \
9378 ge |= 3 << (n * 2); \
9379 } while(0)
9380
9381#define SUB8(a, b, n) do { \
9382 uint32_t sum; \
9383 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
9384 RESULT(sum, n, 8); \
9385 if ((sum >> 8) == 0) \
a87aa10b 9386 ge |= 1 << n; \
6ddbc6e4
PB
9387 } while(0)
9388
9389#define PFX u
9390#define ARITH_GE
9391
9392#include "op_addsub.h"
9393
9394/* Halved signed arithmetic. */
9395#define ADD16(a, b, n) \
9396 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
9397#define SUB16(a, b, n) \
9398 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
9399#define ADD8(a, b, n) \
9400 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
9401#define SUB8(a, b, n) \
9402 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
9403#define PFX sh
9404
9405#include "op_addsub.h"
9406
9407/* Halved unsigned arithmetic. */
9408#define ADD16(a, b, n) \
9409 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9410#define SUB16(a, b, n) \
9411 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9412#define ADD8(a, b, n) \
9413 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9414#define SUB8(a, b, n) \
9415 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9416#define PFX uh
9417
9418#include "op_addsub.h"
9419
9420static inline uint8_t do_usad(uint8_t a, uint8_t b)
9421{
9422 if (a > b)
9423 return a - b;
9424 else
9425 return b - a;
9426}
9427
9428/* Unsigned sum of absolute byte differences. */
9429uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
9430{
9431 uint32_t sum;
9432 sum = do_usad(a, b);
9433 sum += do_usad(a >> 8, b >> 8);
9434 sum += do_usad(a >> 16, b >>16);
9435 sum += do_usad(a >> 24, b >> 24);
9436 return sum;
9437}
9438
9439/* For ARMv6 SEL instruction. */
9440uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
9441{
9442 uint32_t mask;
9443
9444 mask = 0;
9445 if (flags & 1)
9446 mask |= 0xff;
9447 if (flags & 2)
9448 mask |= 0xff00;
9449 if (flags & 4)
9450 mask |= 0xff0000;
9451 if (flags & 8)
9452 mask |= 0xff000000;
9453 return (a & mask) | (b & ~mask);
9454}
9455
b90372ad
PM
9456/* VFP support. We follow the convention used for VFP instructions:
9457 Single precision routines have a "s" suffix, double precision a
4373f3ce
PB
9458 "d" suffix. */
9459
9460/* Convert host exception flags to vfp form. */
9461static inline int vfp_exceptbits_from_host(int host_bits)
9462{
9463 int target_bits = 0;
9464
9465 if (host_bits & float_flag_invalid)
9466 target_bits |= 1;
9467 if (host_bits & float_flag_divbyzero)
9468 target_bits |= 2;
9469 if (host_bits & float_flag_overflow)
9470 target_bits |= 4;
36802b6b 9471 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4373f3ce
PB
9472 target_bits |= 8;
9473 if (host_bits & float_flag_inexact)
9474 target_bits |= 0x10;
cecd8504
PM
9475 if (host_bits & float_flag_input_denormal)
9476 target_bits |= 0x80;
4373f3ce
PB
9477 return target_bits;
9478}
9479
0ecb72a5 9480uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4373f3ce
PB
9481{
9482 int i;
9483 uint32_t fpscr;
9484
9485 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
9486 | (env->vfp.vec_len << 16)
9487 | (env->vfp.vec_stride << 20);
9488 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 9489 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4373f3ce
PB
9490 fpscr |= vfp_exceptbits_from_host(i);
9491 return fpscr;
9492}
9493
0ecb72a5 9494uint32_t vfp_get_fpscr(CPUARMState *env)
01653295
PM
9495{
9496 return HELPER(vfp_get_fpscr)(env);
9497}
9498
4373f3ce
PB
9499/* Convert vfp exception flags to target form. */
9500static inline int vfp_exceptbits_to_host(int target_bits)
9501{
9502 int host_bits = 0;
9503
9504 if (target_bits & 1)
9505 host_bits |= float_flag_invalid;
9506 if (target_bits & 2)
9507 host_bits |= float_flag_divbyzero;
9508 if (target_bits & 4)
9509 host_bits |= float_flag_overflow;
9510 if (target_bits & 8)
9511 host_bits |= float_flag_underflow;
9512 if (target_bits & 0x10)
9513 host_bits |= float_flag_inexact;
cecd8504
PM
9514 if (target_bits & 0x80)
9515 host_bits |= float_flag_input_denormal;
4373f3ce
PB
9516 return host_bits;
9517}
9518
0ecb72a5 9519void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4373f3ce
PB
9520{
9521 int i;
9522 uint32_t changed;
9523
9524 changed = env->vfp.xregs[ARM_VFP_FPSCR];
9525 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
9526 env->vfp.vec_len = (val >> 16) & 7;
9527 env->vfp.vec_stride = (val >> 20) & 3;
9528
9529 changed ^= val;
9530 if (changed & (3 << 22)) {
9531 i = (val >> 22) & 3;
9532 switch (i) {
4d3da0f3 9533 case FPROUNDING_TIEEVEN:
4373f3ce
PB
9534 i = float_round_nearest_even;
9535 break;
4d3da0f3 9536 case FPROUNDING_POSINF:
4373f3ce
PB
9537 i = float_round_up;
9538 break;
4d3da0f3 9539 case FPROUNDING_NEGINF:
4373f3ce
PB
9540 i = float_round_down;
9541 break;
4d3da0f3 9542 case FPROUNDING_ZERO:
4373f3ce
PB
9543 i = float_round_to_zero;
9544 break;
9545 }
9546 set_float_rounding_mode(i, &env->vfp.fp_status);
9547 }
cecd8504 9548 if (changed & (1 << 24)) {
fe76d976 9549 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
cecd8504
PM
9550 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9551 }
5c7908ed
PB
9552 if (changed & (1 << 25))
9553 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce 9554
b12c390b 9555 i = vfp_exceptbits_to_host(val);
4373f3ce 9556 set_float_exception_flags(i, &env->vfp.fp_status);
3a492f3a 9557 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
9558}
9559
0ecb72a5 9560void vfp_set_fpscr(CPUARMState *env, uint32_t val)
01653295
PM
9561{
9562 HELPER(vfp_set_fpscr)(env, val);
9563}
9564
4373f3ce
PB
9565#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
9566
9567#define VFP_BINOP(name) \
ae1857ec 9568float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4373f3ce 9569{ \
ae1857ec
PM
9570 float_status *fpst = fpstp; \
9571 return float32_ ## name(a, b, fpst); \
4373f3ce 9572} \
ae1857ec 9573float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4373f3ce 9574{ \
ae1857ec
PM
9575 float_status *fpst = fpstp; \
9576 return float64_ ## name(a, b, fpst); \
4373f3ce
PB
9577}
9578VFP_BINOP(add)
9579VFP_BINOP(sub)
9580VFP_BINOP(mul)
9581VFP_BINOP(div)
f71a2ae5
PM
9582VFP_BINOP(min)
9583VFP_BINOP(max)
9584VFP_BINOP(minnum)
9585VFP_BINOP(maxnum)
4373f3ce
PB
9586#undef VFP_BINOP
9587
9588float32 VFP_HELPER(neg, s)(float32 a)
9589{
9590 return float32_chs(a);
9591}
9592
9593float64 VFP_HELPER(neg, d)(float64 a)
9594{
66230e0d 9595 return float64_chs(a);
4373f3ce
PB
9596}
9597
9598float32 VFP_HELPER(abs, s)(float32 a)
9599{
9600 return float32_abs(a);
9601}
9602
9603float64 VFP_HELPER(abs, d)(float64 a)
9604{
66230e0d 9605 return float64_abs(a);
4373f3ce
PB
9606}
9607
0ecb72a5 9608float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4373f3ce
PB
9609{
9610 return float32_sqrt(a, &env->vfp.fp_status);
9611}
9612
0ecb72a5 9613float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4373f3ce
PB
9614{
9615 return float64_sqrt(a, &env->vfp.fp_status);
9616}
9617
9618/* XXX: check quiet/signaling case */
9619#define DO_VFP_cmp(p, type) \
0ecb72a5 9620void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
9621{ \
9622 uint32_t flags; \
9623 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
9624 case 0: flags = 0x6; break; \
9625 case -1: flags = 0x8; break; \
9626 case 1: flags = 0x2; break; \
9627 default: case 2: flags = 0x3; break; \
9628 } \
9629 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9630 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9631} \
0ecb72a5 9632void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
9633{ \
9634 uint32_t flags; \
9635 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
9636 case 0: flags = 0x6; break; \
9637 case -1: flags = 0x8; break; \
9638 case 1: flags = 0x2; break; \
9639 default: case 2: flags = 0x3; break; \
9640 } \
9641 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9642 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9643}
9644DO_VFP_cmp(s, float32)
9645DO_VFP_cmp(d, float64)
9646#undef DO_VFP_cmp
9647
5500b06c 9648/* Integer to float and float to integer conversions */
4373f3ce 9649
5500b06c
PM
9650#define CONV_ITOF(name, fsz, sign) \
9651 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
9652{ \
9653 float_status *fpst = fpstp; \
85836979 9654 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4373f3ce
PB
9655}
9656
5500b06c
PM
9657#define CONV_FTOI(name, fsz, sign, round) \
9658uint32_t HELPER(name)(float##fsz x, void *fpstp) \
9659{ \
9660 float_status *fpst = fpstp; \
9661 if (float##fsz##_is_any_nan(x)) { \
9662 float_raise(float_flag_invalid, fpst); \
9663 return 0; \
9664 } \
9665 return float##fsz##_to_##sign##int32##round(x, fpst); \
4373f3ce
PB
9666}
9667
5500b06c
PM
9668#define FLOAT_CONVS(name, p, fsz, sign) \
9669CONV_ITOF(vfp_##name##to##p, fsz, sign) \
9670CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
9671CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4373f3ce 9672
5500b06c
PM
9673FLOAT_CONVS(si, s, 32, )
9674FLOAT_CONVS(si, d, 64, )
9675FLOAT_CONVS(ui, s, 32, u)
9676FLOAT_CONVS(ui, d, 64, u)
4373f3ce 9677
5500b06c
PM
9678#undef CONV_ITOF
9679#undef CONV_FTOI
9680#undef FLOAT_CONVS
4373f3ce
PB
9681
9682/* floating point conversion */
0ecb72a5 9683float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4373f3ce 9684{
2d627737
PM
9685 float64 r = float32_to_float64(x, &env->vfp.fp_status);
9686 /* ARM requires that S<->D conversion of any kind of NaN generates
9687 * a quiet NaN by forcing the most significant frac bit to 1.
9688 */
af39bc8c 9689 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
4373f3ce
PB
9690}
9691
0ecb72a5 9692float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4373f3ce 9693{
2d627737
PM
9694 float32 r = float64_to_float32(x, &env->vfp.fp_status);
9695 /* ARM requires that S<->D conversion of any kind of NaN generates
9696 * a quiet NaN by forcing the most significant frac bit to 1.
9697 */
af39bc8c 9698 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
4373f3ce
PB
9699}
9700
9701/* VFP3 fixed point conversion. */
16d5b3ca 9702#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8ed697e8
WN
9703float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
9704 void *fpstp) \
4373f3ce 9705{ \
5500b06c 9706 float_status *fpst = fpstp; \
622465e1 9707 float##fsz tmp; \
8ed697e8 9708 tmp = itype##_to_##float##fsz(x, fpst); \
5500b06c 9709 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
16d5b3ca
WN
9710}
9711
abe66f70
PM
9712/* Notice that we want only input-denormal exception flags from the
9713 * scalbn operation: the other possible flags (overflow+inexact if
9714 * we overflow to infinity, output-denormal) aren't correct for the
9715 * complete scale-and-convert operation.
9716 */
16d5b3ca
WN
9717#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
9718uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
9719 uint32_t shift, \
9720 void *fpstp) \
4373f3ce 9721{ \
5500b06c 9722 float_status *fpst = fpstp; \
abe66f70 9723 int old_exc_flags = get_float_exception_flags(fpst); \
622465e1
PM
9724 float##fsz tmp; \
9725 if (float##fsz##_is_any_nan(x)) { \
5500b06c 9726 float_raise(float_flag_invalid, fpst); \
622465e1 9727 return 0; \
09d9487f 9728 } \
5500b06c 9729 tmp = float##fsz##_scalbn(x, shift, fpst); \
abe66f70
PM
9730 old_exc_flags |= get_float_exception_flags(fpst) \
9731 & float_flag_input_denormal; \
9732 set_float_exception_flags(old_exc_flags, fpst); \
16d5b3ca 9733 return float##fsz##_to_##itype##round(tmp, fpst); \
622465e1
PM
9734}
9735
16d5b3ca
WN
9736#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
9737VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
3c6a074a
WN
9738VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
9739VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9740
9741#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
9742VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9743VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
16d5b3ca 9744
8ed697e8
WN
9745VFP_CONV_FIX(sh, d, 64, 64, int16)
9746VFP_CONV_FIX(sl, d, 64, 64, int32)
3c6a074a 9747VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8ed697e8
WN
9748VFP_CONV_FIX(uh, d, 64, 64, uint16)
9749VFP_CONV_FIX(ul, d, 64, 64, uint32)
3c6a074a 9750VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8ed697e8
WN
9751VFP_CONV_FIX(sh, s, 32, 32, int16)
9752VFP_CONV_FIX(sl, s, 32, 32, int32)
3c6a074a 9753VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8ed697e8
WN
9754VFP_CONV_FIX(uh, s, 32, 32, uint16)
9755VFP_CONV_FIX(ul, s, 32, 32, uint32)
3c6a074a 9756VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4373f3ce 9757#undef VFP_CONV_FIX
16d5b3ca
WN
9758#undef VFP_CONV_FIX_FLOAT
9759#undef VFP_CONV_FLOAT_FIX_ROUND
4373f3ce 9760
52a1f6a3
AG
9761/* Set the current fp rounding mode and return the old one.
9762 * The argument is a softfloat float_round_ value.
9763 */
9764uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
9765{
9766 float_status *fp_status = &env->vfp.fp_status;
9767
9768 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9769 set_float_rounding_mode(rmode, fp_status);
9770
9771 return prev_rmode;
9772}
9773
43630e58
WN
9774/* Set the current fp rounding mode in the standard fp status and return
9775 * the old one. This is for NEON instructions that need to change the
9776 * rounding mode but wish to use the standard FPSCR values for everything
9777 * else. Always set the rounding mode back to the correct value after
9778 * modifying it.
9779 * The argument is a softfloat float_round_ value.
9780 */
9781uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
9782{
9783 float_status *fp_status = &env->vfp.standard_fp_status;
9784
9785 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9786 set_float_rounding_mode(rmode, fp_status);
9787
9788 return prev_rmode;
9789}
9790
60011498 9791/* Half precision conversions. */
0ecb72a5 9792static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
60011498 9793{
60011498 9794 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
9795 float32 r = float16_to_float32(make_float16(a), ieee, s);
9796 if (ieee) {
af39bc8c 9797 return float32_maybe_silence_nan(r, s);
fb91678d
PM
9798 }
9799 return r;
60011498
PB
9800}
9801
0ecb72a5 9802static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
60011498 9803{
60011498 9804 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
9805 float16 r = float32_to_float16(a, ieee, s);
9806 if (ieee) {
af39bc8c 9807 r = float16_maybe_silence_nan(r, s);
fb91678d
PM
9808 }
9809 return float16_val(r);
60011498
PB
9810}
9811
0ecb72a5 9812float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
9813{
9814 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
9815}
9816
0ecb72a5 9817uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
9818{
9819 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
9820}
9821
0ecb72a5 9822float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
9823{
9824 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
9825}
9826
0ecb72a5 9827uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
9828{
9829 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
9830}
9831
8900aad2
PM
9832float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
9833{
9834 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9835 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
9836 if (ieee) {
af39bc8c 9837 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
8900aad2
PM
9838 }
9839 return r;
9840}
9841
9842uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
9843{
9844 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9845 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
9846 if (ieee) {
af39bc8c 9847 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
8900aad2
PM
9848 }
9849 return float16_val(r);
9850}
9851
dda3ec49 9852#define float32_two make_float32(0x40000000)
6aae3df1
PM
9853#define float32_three make_float32(0x40400000)
9854#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 9855
0ecb72a5 9856float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 9857{
dda3ec49
PM
9858 float_status *s = &env->vfp.standard_fp_status;
9859 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9860 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
9861 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9862 float_raise(float_flag_input_denormal, s);
9863 }
dda3ec49
PM
9864 return float32_two;
9865 }
9866 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
9867}
9868
0ecb72a5 9869float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 9870{
71826966 9871 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
9872 float32 product;
9873 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9874 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
9875 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9876 float_raise(float_flag_input_denormal, s);
9877 }
6aae3df1 9878 return float32_one_point_five;
9ea62f57 9879 }
6aae3df1
PM
9880 product = float32_mul(a, b, s);
9881 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
9882}
9883
8f8e3aa4
PB
9884/* NEON helpers. */
9885
56bf4fe2
CL
9886/* Constants 256 and 512 are used in some helpers; we avoid relying on
9887 * int->float conversions at run-time. */
9888#define float64_256 make_float64(0x4070000000000000LL)
9889#define float64_512 make_float64(0x4080000000000000LL)
b6d4443a
AB
9890#define float32_maxnorm make_float32(0x7f7fffff)
9891#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
56bf4fe2 9892
b6d4443a
AB
9893/* Reciprocal functions
9894 *
9895 * The algorithm that must be used to calculate the estimate
9896 * is specified by the ARM ARM, see FPRecipEstimate()
fe0e4872 9897 */
b6d4443a
AB
9898
9899static float64 recip_estimate(float64 a, float_status *real_fp_status)
fe0e4872 9900{
1146a817
PM
9901 /* These calculations mustn't set any fp exception flags,
9902 * so we use a local copy of the fp_status.
9903 */
b6d4443a 9904 float_status dummy_status = *real_fp_status;
1146a817 9905 float_status *s = &dummy_status;
fe0e4872
CL
9906 /* q = (int)(a * 512.0) */
9907 float64 q = float64_mul(float64_512, a, s);
9908 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9909
9910 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9911 q = int64_to_float64(q_int, s);
9912 q = float64_add(q, float64_half, s);
9913 q = float64_div(q, float64_512, s);
9914 q = float64_div(float64_one, q, s);
9915
9916 /* s = (int)(256.0 * r + 0.5) */
9917 q = float64_mul(q, float64_256, s);
9918 q = float64_add(q, float64_half, s);
9919 q_int = float64_to_int64_round_to_zero(q, s);
9920
9921 /* return (double)s / 256.0 */
9922 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9923}
9924
b6d4443a
AB
9925/* Common wrapper to call recip_estimate */
9926static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
4373f3ce 9927{
b6d4443a
AB
9928 uint64_t val64 = float64_val(num);
9929 uint64_t frac = extract64(val64, 0, 52);
9930 int64_t exp = extract64(val64, 52, 11);
9931 uint64_t sbit;
9932 float64 scaled, estimate;
fe0e4872 9933
b6d4443a
AB
9934 /* Generate the scaled number for the estimate function */
9935 if (exp == 0) {
9936 if (extract64(frac, 51, 1) == 0) {
9937 exp = -1;
9938 frac = extract64(frac, 0, 50) << 2;
9939 } else {
9940 frac = extract64(frac, 0, 51) << 1;
9941 }
9942 }
fe0e4872 9943
b6d4443a
AB
9944 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9945 scaled = make_float64((0x3feULL << 52)
9946 | extract64(frac, 44, 8) << 44);
9947
9948 estimate = recip_estimate(scaled, fpst);
9949
9950 /* Build new result */
9951 val64 = float64_val(estimate);
9952 sbit = 0x8000000000000000ULL & val64;
9953 exp = off - exp;
9954 frac = extract64(val64, 0, 52);
9955
9956 if (exp == 0) {
9957 frac = 1ULL << 51 | extract64(frac, 1, 51);
9958 } else if (exp == -1) {
9959 frac = 1ULL << 50 | extract64(frac, 2, 50);
9960 exp = 0;
9961 }
9962
9963 return make_float64(sbit | (exp << 52) | frac);
9964}
9965
9966static bool round_to_inf(float_status *fpst, bool sign_bit)
9967{
9968 switch (fpst->float_rounding_mode) {
9969 case float_round_nearest_even: /* Round to Nearest */
9970 return true;
9971 case float_round_up: /* Round to +Inf */
9972 return !sign_bit;
9973 case float_round_down: /* Round to -Inf */
9974 return sign_bit;
9975 case float_round_to_zero: /* Round to Zero */
9976 return false;
9977 }
9978
9979 g_assert_not_reached();
9980}
9981
9982float32 HELPER(recpe_f32)(float32 input, void *fpstp)
9983{
9984 float_status *fpst = fpstp;
9985 float32 f32 = float32_squash_input_denormal(input, fpst);
9986 uint32_t f32_val = float32_val(f32);
9987 uint32_t f32_sbit = 0x80000000ULL & f32_val;
9988 int32_t f32_exp = extract32(f32_val, 23, 8);
9989 uint32_t f32_frac = extract32(f32_val, 0, 23);
9990 float64 f64, r64;
9991 uint64_t r64_val;
9992 int64_t r64_exp;
9993 uint64_t r64_frac;
9994
9995 if (float32_is_any_nan(f32)) {
9996 float32 nan = f32;
af39bc8c 9997 if (float32_is_signaling_nan(f32, fpst)) {
b6d4443a 9998 float_raise(float_flag_invalid, fpst);
af39bc8c 9999 nan = float32_maybe_silence_nan(f32, fpst);
fe0e4872 10000 }
b6d4443a 10001 if (fpst->default_nan_mode) {
af39bc8c 10002 nan = float32_default_nan(fpst);
43fe9bdb 10003 }
b6d4443a
AB
10004 return nan;
10005 } else if (float32_is_infinity(f32)) {
10006 return float32_set_sign(float32_zero, float32_is_neg(f32));
10007 } else if (float32_is_zero(f32)) {
10008 float_raise(float_flag_divbyzero, fpst);
10009 return float32_set_sign(float32_infinity, float32_is_neg(f32));
10010 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
10011 /* Abs(value) < 2.0^-128 */
10012 float_raise(float_flag_overflow | float_flag_inexact, fpst);
10013 if (round_to_inf(fpst, f32_sbit)) {
10014 return float32_set_sign(float32_infinity, float32_is_neg(f32));
10015 } else {
10016 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
10017 }
10018 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
10019 float_raise(float_flag_underflow, fpst);
10020 return float32_set_sign(float32_zero, float32_is_neg(f32));
fe0e4872
CL
10021 }
10022
fe0e4872 10023
b6d4443a
AB
10024 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
10025 r64 = call_recip_estimate(f64, 253, fpst);
10026 r64_val = float64_val(r64);
10027 r64_exp = extract64(r64_val, 52, 11);
10028 r64_frac = extract64(r64_val, 0, 52);
10029
10030 /* result = sign : result_exp<7:0> : fraction<51:29>; */
10031 return make_float32(f32_sbit |
10032 (r64_exp & 0xff) << 23 |
10033 extract64(r64_frac, 29, 24));
10034}
10035
10036float64 HELPER(recpe_f64)(float64 input, void *fpstp)
10037{
10038 float_status *fpst = fpstp;
10039 float64 f64 = float64_squash_input_denormal(input, fpst);
10040 uint64_t f64_val = float64_val(f64);
10041 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
10042 int64_t f64_exp = extract64(f64_val, 52, 11);
10043 float64 r64;
10044 uint64_t r64_val;
10045 int64_t r64_exp;
10046 uint64_t r64_frac;
10047
10048 /* Deal with any special cases */
10049 if (float64_is_any_nan(f64)) {
10050 float64 nan = f64;
af39bc8c 10051 if (float64_is_signaling_nan(f64, fpst)) {
b6d4443a 10052 float_raise(float_flag_invalid, fpst);
af39bc8c 10053 nan = float64_maybe_silence_nan(f64, fpst);
b6d4443a
AB
10054 }
10055 if (fpst->default_nan_mode) {
af39bc8c 10056 nan = float64_default_nan(fpst);
b6d4443a
AB
10057 }
10058 return nan;
10059 } else if (float64_is_infinity(f64)) {
10060 return float64_set_sign(float64_zero, float64_is_neg(f64));
10061 } else if (float64_is_zero(f64)) {
10062 float_raise(float_flag_divbyzero, fpst);
10063 return float64_set_sign(float64_infinity, float64_is_neg(f64));
10064 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
10065 /* Abs(value) < 2.0^-1024 */
10066 float_raise(float_flag_overflow | float_flag_inexact, fpst);
10067 if (round_to_inf(fpst, f64_sbit)) {
10068 return float64_set_sign(float64_infinity, float64_is_neg(f64));
10069 } else {
10070 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
10071 }
fc1792e9 10072 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
b6d4443a
AB
10073 float_raise(float_flag_underflow, fpst);
10074 return float64_set_sign(float64_zero, float64_is_neg(f64));
10075 }
fe0e4872 10076
b6d4443a
AB
10077 r64 = call_recip_estimate(f64, 2045, fpst);
10078 r64_val = float64_val(r64);
10079 r64_exp = extract64(r64_val, 52, 11);
10080 r64_frac = extract64(r64_val, 0, 52);
fe0e4872 10081
b6d4443a
AB
10082 /* result = sign : result_exp<10:0> : fraction<51:0> */
10083 return make_float64(f64_sbit |
10084 ((r64_exp & 0x7ff) << 52) |
10085 r64_frac);
4373f3ce
PB
10086}
10087
e07be5d2
CL
10088/* The algorithm that must be used to calculate the estimate
10089 * is specified by the ARM ARM.
10090 */
c2fb418e 10091static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
e07be5d2 10092{
1146a817
PM
10093 /* These calculations mustn't set any fp exception flags,
10094 * so we use a local copy of the fp_status.
10095 */
c2fb418e 10096 float_status dummy_status = *real_fp_status;
1146a817 10097 float_status *s = &dummy_status;
e07be5d2
CL
10098 float64 q;
10099 int64_t q_int;
10100
10101 if (float64_lt(a, float64_half, s)) {
10102 /* range 0.25 <= a < 0.5 */
10103
10104 /* a in units of 1/512 rounded down */
10105 /* q0 = (int)(a * 512.0); */
10106 q = float64_mul(float64_512, a, s);
10107 q_int = float64_to_int64_round_to_zero(q, s);
10108
10109 /* reciprocal root r */
10110 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
10111 q = int64_to_float64(q_int, s);
10112 q = float64_add(q, float64_half, s);
10113 q = float64_div(q, float64_512, s);
10114 q = float64_sqrt(q, s);
10115 q = float64_div(float64_one, q, s);
10116 } else {
10117 /* range 0.5 <= a < 1.0 */
10118
10119 /* a in units of 1/256 rounded down */
10120 /* q1 = (int)(a * 256.0); */
10121 q = float64_mul(float64_256, a, s);
10122 int64_t q_int = float64_to_int64_round_to_zero(q, s);
10123
10124 /* reciprocal root r */
10125 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
10126 q = int64_to_float64(q_int, s);
10127 q = float64_add(q, float64_half, s);
10128 q = float64_div(q, float64_256, s);
10129 q = float64_sqrt(q, s);
10130 q = float64_div(float64_one, q, s);
10131 }
10132 /* r in units of 1/256 rounded to nearest */
10133 /* s = (int)(256.0 * r + 0.5); */
10134
10135 q = float64_mul(q, float64_256,s );
10136 q = float64_add(q, float64_half, s);
10137 q_int = float64_to_int64_round_to_zero(q, s);
10138
10139 /* return (double)s / 256.0;*/
10140 return float64_div(int64_to_float64(q_int, s), float64_256, s);
10141}
10142
c2fb418e 10143float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
4373f3ce 10144{
c2fb418e
AB
10145 float_status *s = fpstp;
10146 float32 f32 = float32_squash_input_denormal(input, s);
10147 uint32_t val = float32_val(f32);
10148 uint32_t f32_sbit = 0x80000000 & val;
10149 int32_t f32_exp = extract32(val, 23, 8);
10150 uint32_t f32_frac = extract32(val, 0, 23);
10151 uint64_t f64_frac;
10152 uint64_t val64;
e07be5d2
CL
10153 int result_exp;
10154 float64 f64;
e07be5d2 10155
c2fb418e
AB
10156 if (float32_is_any_nan(f32)) {
10157 float32 nan = f32;
af39bc8c 10158 if (float32_is_signaling_nan(f32, s)) {
e07be5d2 10159 float_raise(float_flag_invalid, s);
af39bc8c 10160 nan = float32_maybe_silence_nan(f32, s);
e07be5d2 10161 }
c2fb418e 10162 if (s->default_nan_mode) {
af39bc8c 10163 nan = float32_default_nan(s);
43fe9bdb 10164 }
c2fb418e
AB
10165 return nan;
10166 } else if (float32_is_zero(f32)) {
e07be5d2 10167 float_raise(float_flag_divbyzero, s);
c2fb418e
AB
10168 return float32_set_sign(float32_infinity, float32_is_neg(f32));
10169 } else if (float32_is_neg(f32)) {
e07be5d2 10170 float_raise(float_flag_invalid, s);
af39bc8c 10171 return float32_default_nan(s);
c2fb418e 10172 } else if (float32_is_infinity(f32)) {
e07be5d2
CL
10173 return float32_zero;
10174 }
10175
c2fb418e 10176 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
e07be5d2 10177 * preserving the parity of the exponent. */
c2fb418e
AB
10178
10179 f64_frac = ((uint64_t) f32_frac) << 29;
10180 if (f32_exp == 0) {
10181 while (extract64(f64_frac, 51, 1) == 0) {
10182 f64_frac = f64_frac << 1;
10183 f32_exp = f32_exp-1;
10184 }
10185 f64_frac = extract64(f64_frac, 0, 51) << 1;
10186 }
10187
10188 if (extract64(f32_exp, 0, 1) == 0) {
10189 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 10190 | (0x3feULL << 52)
c2fb418e 10191 | f64_frac);
e07be5d2 10192 } else {
c2fb418e 10193 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 10194 | (0x3fdULL << 52)
c2fb418e 10195 | f64_frac);
e07be5d2
CL
10196 }
10197
c2fb418e 10198 result_exp = (380 - f32_exp) / 2;
e07be5d2 10199
c2fb418e 10200 f64 = recip_sqrt_estimate(f64, s);
e07be5d2
CL
10201
10202 val64 = float64_val(f64);
10203
26cc6abf 10204 val = ((result_exp & 0xff) << 23)
e07be5d2
CL
10205 | ((val64 >> 29) & 0x7fffff);
10206 return make_float32(val);
4373f3ce
PB
10207}
10208
c2fb418e
AB
10209float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
10210{
10211 float_status *s = fpstp;
10212 float64 f64 = float64_squash_input_denormal(input, s);
10213 uint64_t val = float64_val(f64);
10214 uint64_t f64_sbit = 0x8000000000000000ULL & val;
10215 int64_t f64_exp = extract64(val, 52, 11);
10216 uint64_t f64_frac = extract64(val, 0, 52);
10217 int64_t result_exp;
10218 uint64_t result_frac;
10219
10220 if (float64_is_any_nan(f64)) {
10221 float64 nan = f64;
af39bc8c 10222 if (float64_is_signaling_nan(f64, s)) {
c2fb418e 10223 float_raise(float_flag_invalid, s);
af39bc8c 10224 nan = float64_maybe_silence_nan(f64, s);
c2fb418e
AB
10225 }
10226 if (s->default_nan_mode) {
af39bc8c 10227 nan = float64_default_nan(s);
c2fb418e
AB
10228 }
10229 return nan;
10230 } else if (float64_is_zero(f64)) {
10231 float_raise(float_flag_divbyzero, s);
10232 return float64_set_sign(float64_infinity, float64_is_neg(f64));
10233 } else if (float64_is_neg(f64)) {
10234 float_raise(float_flag_invalid, s);
af39bc8c 10235 return float64_default_nan(s);
c2fb418e
AB
10236 } else if (float64_is_infinity(f64)) {
10237 return float64_zero;
10238 }
10239
10240 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
10241 * preserving the parity of the exponent. */
10242
10243 if (f64_exp == 0) {
10244 while (extract64(f64_frac, 51, 1) == 0) {
10245 f64_frac = f64_frac << 1;
10246 f64_exp = f64_exp - 1;
10247 }
10248 f64_frac = extract64(f64_frac, 0, 51) << 1;
10249 }
10250
10251 if (extract64(f64_exp, 0, 1) == 0) {
10252 f64 = make_float64(f64_sbit
10253 | (0x3feULL << 52)
10254 | f64_frac);
10255 } else {
10256 f64 = make_float64(f64_sbit
10257 | (0x3fdULL << 52)
10258 | f64_frac);
10259 }
10260
10261 result_exp = (3068 - f64_exp) / 2;
10262
10263 f64 = recip_sqrt_estimate(f64, s);
10264
10265 result_frac = extract64(float64_val(f64), 0, 52);
10266
10267 return make_float64(f64_sbit |
10268 ((result_exp & 0x7ff) << 52) |
10269 result_frac);
10270}
10271
b6d4443a 10272uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
4373f3ce 10273{
b6d4443a 10274 float_status *s = fpstp;
fe0e4872
CL
10275 float64 f64;
10276
10277 if ((a & 0x80000000) == 0) {
10278 return 0xffffffff;
10279 }
10280
10281 f64 = make_float64((0x3feULL << 52)
10282 | ((int64_t)(a & 0x7fffffff) << 21));
10283
b6d4443a 10284 f64 = recip_estimate(f64, s);
fe0e4872
CL
10285
10286 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce
PB
10287}
10288
c2fb418e 10289uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
4373f3ce 10290{
c2fb418e 10291 float_status *fpst = fpstp;
e07be5d2
CL
10292 float64 f64;
10293
10294 if ((a & 0xc0000000) == 0) {
10295 return 0xffffffff;
10296 }
10297
10298 if (a & 0x80000000) {
10299 f64 = make_float64((0x3feULL << 52)
10300 | ((uint64_t)(a & 0x7fffffff) << 21));
10301 } else { /* bits 31-30 == '01' */
10302 f64 = make_float64((0x3fdULL << 52)
10303 | ((uint64_t)(a & 0x3fffffff) << 22));
10304 }
10305
c2fb418e 10306 f64 = recip_sqrt_estimate(f64, fpst);
e07be5d2
CL
10307
10308 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce 10309}
fe1479c3 10310
da97f52c
PM
10311/* VFPv4 fused multiply-accumulate */
10312float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
10313{
10314 float_status *fpst = fpstp;
10315 return float32_muladd(a, b, c, 0, fpst);
10316}
10317
10318float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
10319{
10320 float_status *fpst = fpstp;
10321 return float64_muladd(a, b, c, 0, fpst);
10322}
d9b0848d
PM
10323
10324/* ARMv8 round to integral */
10325float32 HELPER(rints_exact)(float32 x, void *fp_status)
10326{
10327 return float32_round_to_int(x, fp_status);
10328}
10329
10330float64 HELPER(rintd_exact)(float64 x, void *fp_status)
10331{
10332 return float64_round_to_int(x, fp_status);
10333}
10334
10335float32 HELPER(rints)(float32 x, void *fp_status)
10336{
10337 int old_flags = get_float_exception_flags(fp_status), new_flags;
10338 float32 ret;
10339
10340 ret = float32_round_to_int(x, fp_status);
10341
10342 /* Suppress any inexact exceptions the conversion produced */
10343 if (!(old_flags & float_flag_inexact)) {
10344 new_flags = get_float_exception_flags(fp_status);
10345 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10346 }
10347
10348 return ret;
10349}
10350
10351float64 HELPER(rintd)(float64 x, void *fp_status)
10352{
10353 int old_flags = get_float_exception_flags(fp_status), new_flags;
10354 float64 ret;
10355
10356 ret = float64_round_to_int(x, fp_status);
10357
10358 new_flags = get_float_exception_flags(fp_status);
10359
10360 /* Suppress any inexact exceptions the conversion produced */
10361 if (!(old_flags & float_flag_inexact)) {
10362 new_flags = get_float_exception_flags(fp_status);
10363 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10364 }
10365
10366 return ret;
10367}
9972da66
WN
10368
10369/* Convert ARM rounding mode to softfloat */
10370int arm_rmode_to_sf(int rmode)
10371{
10372 switch (rmode) {
10373 case FPROUNDING_TIEAWAY:
10374 rmode = float_round_ties_away;
10375 break;
10376 case FPROUNDING_ODD:
10377 /* FIXME: add support for TIEAWAY and ODD */
10378 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
10379 rmode);
10380 case FPROUNDING_TIEEVEN:
10381 default:
10382 rmode = float_round_nearest_even;
10383 break;
10384 case FPROUNDING_POSINF:
10385 rmode = float_round_up;
10386 break;
10387 case FPROUNDING_NEGINF:
10388 rmode = float_round_down;
10389 break;
10390 case FPROUNDING_ZERO:
10391 rmode = float_round_to_zero;
10392 break;
10393 }
10394 return rmode;
10395}
eb0ecd5a 10396
aa633469
PM
10397/* CRC helpers.
10398 * The upper bytes of val (above the number specified by 'bytes') must have
10399 * been zeroed out by the caller.
10400 */
eb0ecd5a
WN
10401uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10402{
10403 uint8_t buf[4];
10404
aa633469 10405 stl_le_p(buf, val);
eb0ecd5a
WN
10406
10407 /* zlib crc32 converts the accumulator and output to one's complement. */
10408 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10409}
10410
10411uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10412{
10413 uint8_t buf[4];
10414
aa633469 10415 stl_le_p(buf, val);
eb0ecd5a
WN
10416
10417 /* Linux crc32c converts the output to one's complement. */
10418 return crc32c(acc, buf, bytes) ^ 0xffffffff;
10419}