]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/helper.c
target/arm: rename handle_semihosting to tcg_handle_semihosting
[mirror_qemu.git] / target / arm / helper.c
CommitLineData
ed3baad1
PMD
1/*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
db725815 8
74c21bd0 9#include "qemu/osdep.h"
cd617484 10#include "qemu/log.h"
194cbc49 11#include "trace.h"
b5ff1b31 12#include "cpu.h"
ccd38087 13#include "internals.h"
2ef6175a 14#include "exec/helper-proto.h"
db725815 15#include "qemu/main-loop.h"
b8012ecf 16#include "qemu/timer.h"
1de7afc9 17#include "qemu/bitops.h"
eb0ecd5a 18#include "qemu/crc32c.h"
0442428a 19#include "qemu/qemu-print.h"
63c91552 20#include "exec/exec-all.h"
eb0ecd5a 21#include <zlib.h> /* For crc32 */
64552b6b 22#include "hw/irq.h"
740b1759 23#include "sysemu/cpu-timers.h"
f3a9b694 24#include "sysemu/kvm.h"
7f7b4e7a 25#include "qapi/qapi-commands-machine-target.h"
de390645
RH
26#include "qapi/error.h"
27#include "qemu/guest-random.h"
91f78c58 28#ifdef CONFIG_TCG
6b5fe137 29#include "semihosting/common-semi.h"
91f78c58 30#endif
cf7c6d10 31#include "cpregs.h"
0b03bdfc 32
352c98e5
LV
33#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
34
affdb64d
PM
35static void switch_mode(CPUARMState *env, int mode);
36
c4241c7d 37static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
d4e6df63 38{
375421cc 39 assert(ri->fieldoffset);
67ed771d 40 if (cpreg_field_is_64bit(ri)) {
c4241c7d 41 return CPREG_FIELD64(env, ri);
22d9e1a9 42 } else {
c4241c7d 43 return CPREG_FIELD32(env, ri);
22d9e1a9 44 }
d4e6df63
PM
45}
46
f43ee493 47void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
d4e6df63 48{
375421cc 49 assert(ri->fieldoffset);
67ed771d 50 if (cpreg_field_is_64bit(ri)) {
22d9e1a9
PM
51 CPREG_FIELD64(env, ri) = value;
52 } else {
53 CPREG_FIELD32(env, ri) = value;
54 }
d4e6df63
PM
55}
56
11f136ee
FA
57static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
58{
59 return (char *)env + ri->fieldoffset;
60}
61
49a66191 62uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
721fae12 63{
59a1c327 64 /* Raw read of a coprocessor register (as needed for migration, etc). */
721fae12 65 if (ri->type & ARM_CP_CONST) {
59a1c327 66 return ri->resetvalue;
721fae12 67 } else if (ri->raw_readfn) {
59a1c327 68 return ri->raw_readfn(env, ri);
721fae12 69 } else if (ri->readfn) {
59a1c327 70 return ri->readfn(env, ri);
721fae12 71 } else {
59a1c327 72 return raw_read(env, ri);
721fae12 73 }
721fae12
PM
74}
75
59a1c327 76static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
7900e9f1 77 uint64_t v)
721fae12 78{
9b37a28c
FR
79 /*
80 * Raw write of a coprocessor register (as needed for migration, etc).
721fae12
PM
81 * Note that constant registers are treated as write-ignored; the
82 * caller should check for success by whether a readback gives the
83 * value written.
84 */
85 if (ri->type & ARM_CP_CONST) {
59a1c327 86 return;
721fae12 87 } else if (ri->raw_writefn) {
c4241c7d 88 ri->raw_writefn(env, ri, v);
721fae12 89 } else if (ri->writefn) {
c4241c7d 90 ri->writefn(env, ri, v);
721fae12 91 } else {
afb2530f 92 raw_write(env, ri, v);
721fae12 93 }
721fae12
PM
94}
95
375421cc
PM
96static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
97{
9b37a28c
FR
98 /*
99 * Return true if the regdef would cause an assertion if you called
375421cc
PM
100 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
101 * program bug for it not to have the NO_RAW flag).
102 * NB that returning false here doesn't necessarily mean that calling
103 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
104 * read/write access functions which are safe for raw use" from "has
105 * read/write access functions which have side effects but has forgotten
106 * to provide raw access functions".
107 * The tests here line up with the conditions in read/write_raw_cp_reg()
108 * and assertions in raw_read()/raw_write().
109 */
110 if ((ri->type & ARM_CP_CONST) ||
111 ri->fieldoffset ||
112 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
113 return false;
114 }
115 return true;
116}
117
b698e4ee 118bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
721fae12
PM
119{
120 /* Write the coprocessor state from cpu->env to the (index,value) list. */
121 int i;
122 bool ok = true;
123
124 for (i = 0; i < cpu->cpreg_array_len; i++) {
125 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
126 const ARMCPRegInfo *ri;
b698e4ee 127 uint64_t newval;
59a1c327 128
60322b39 129 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
130 if (!ri) {
131 ok = false;
132 continue;
133 }
7a0e58fa 134 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
135 continue;
136 }
b698e4ee
PM
137
138 newval = read_raw_cp_reg(&cpu->env, ri);
139 if (kvm_sync) {
140 /*
141 * Only sync if the previous list->cpustate sync succeeded.
142 * Rather than tracking the success/failure state for every
143 * item in the list, we just recheck "does the raw write we must
144 * have made in write_list_to_cpustate() read back OK" here.
145 */
146 uint64_t oldval = cpu->cpreg_values[i];
147
148 if (oldval == newval) {
149 continue;
150 }
151
152 write_raw_cp_reg(&cpu->env, ri, oldval);
153 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
154 continue;
155 }
156
157 write_raw_cp_reg(&cpu->env, ri, newval);
158 }
159 cpu->cpreg_values[i] = newval;
721fae12
PM
160 }
161 return ok;
162}
163
164bool write_list_to_cpustate(ARMCPU *cpu)
165{
166 int i;
167 bool ok = true;
168
169 for (i = 0; i < cpu->cpreg_array_len; i++) {
170 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
171 uint64_t v = cpu->cpreg_values[i];
721fae12
PM
172 const ARMCPRegInfo *ri;
173
60322b39 174 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
175 if (!ri) {
176 ok = false;
177 continue;
178 }
7a0e58fa 179 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
180 continue;
181 }
9b37a28c
FR
182 /*
183 * Write value and confirm it reads back as written
721fae12
PM
184 * (to catch read-only registers and partially read-only
185 * registers where the incoming migration value doesn't match)
186 */
59a1c327
PM
187 write_raw_cp_reg(&cpu->env, ri, v);
188 if (read_raw_cp_reg(&cpu->env, ri) != v) {
721fae12
PM
189 ok = false;
190 }
191 }
192 return ok;
193}
194
195static void add_cpreg_to_list(gpointer key, gpointer opaque)
196{
197 ARMCPU *cpu = opaque;
5860362d
RH
198 uint32_t regidx = (uintptr_t)key;
199 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 200
04215eb1 201 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
721fae12
PM
202 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
203 /* The value array need not be initialized at this point */
204 cpu->cpreg_array_len++;
205 }
206}
207
208static void count_cpreg(gpointer key, gpointer opaque)
209{
210 ARMCPU *cpu = opaque;
721fae12
PM
211 const ARMCPRegInfo *ri;
212
5860362d 213 ri = g_hash_table_lookup(cpu->cp_regs, key);
721fae12 214
04215eb1 215 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
721fae12
PM
216 cpu->cpreg_array_len++;
217 }
218}
219
220static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
221{
5860362d
RH
222 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
223 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
721fae12 224
cbf239b7
AR
225 if (aidx > bidx) {
226 return 1;
227 }
228 if (aidx < bidx) {
229 return -1;
230 }
231 return 0;
721fae12
PM
232}
233
234void init_cpreg_list(ARMCPU *cpu)
235{
9b37a28c
FR
236 /*
237 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
721fae12
PM
238 * Note that we require cpreg_tuples[] to be sorted by key ID.
239 */
57b6d95e 240 GList *keys;
721fae12
PM
241 int arraylen;
242
57b6d95e 243 keys = g_hash_table_get_keys(cpu->cp_regs);
721fae12
PM
244 keys = g_list_sort(keys, cpreg_key_compare);
245
246 cpu->cpreg_array_len = 0;
247
248 g_list_foreach(keys, count_cpreg, cpu);
249
250 arraylen = cpu->cpreg_array_len;
251 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
252 cpu->cpreg_values = g_new(uint64_t, arraylen);
253 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
254 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
256 cpu->cpreg_array_len = 0;
257
258 g_list_foreach(keys, add_cpreg_to_list, cpu);
259
260 assert(cpu->cpreg_array_len == arraylen);
261
262 g_list_free(keys);
263}
264
68e9c2fe 265/*
93dd1e61 266 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
68e9c2fe
EI
267 */
268static CPAccessResult access_el3_aa32ns(CPUARMState *env,
3f208fd7
PM
269 const ARMCPRegInfo *ri,
270 bool isread)
68e9c2fe 271{
93dd1e61
EI
272 if (!is_a64(env) && arm_current_el(env) == 3 &&
273 arm_is_secure_below_el3(env)) {
68e9c2fe
EI
274 return CP_ACCESS_TRAP_UNCATEGORIZED;
275 }
276 return CP_ACCESS_OK;
277}
278
9b37a28c
FR
279/*
280 * Some secure-only AArch32 registers trap to EL3 if used from
5513c3ab
PM
281 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
282 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
283 * We assume that the .access field is set to PL1_RW.
284 */
285static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
3f208fd7
PM
286 const ARMCPRegInfo *ri,
287 bool isread)
5513c3ab
PM
288{
289 if (arm_current_el(env) == 3) {
290 return CP_ACCESS_OK;
291 }
292 if (arm_is_secure_below_el3(env)) {
926c1b97
RDC
293 if (env->cp15.scr_el3 & SCR_EEL2) {
294 return CP_ACCESS_TRAP_EL2;
295 }
5513c3ab
PM
296 return CP_ACCESS_TRAP_EL3;
297 }
298 /* This will be EL1 NS and EL2 NS, which just UNDEF */
299 return CP_ACCESS_TRAP_UNCATEGORIZED;
300}
301
9b37a28c
FR
302/*
303 * Check for traps to performance monitor registers, which are controlled
1fce1ba9
PM
304 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
305 */
306static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
307 bool isread)
308{
309 int el = arm_current_el(env);
59dd089c 310 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1fce1ba9 311
59dd089c 312 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1fce1ba9
PM
313 return CP_ACCESS_TRAP_EL2;
314 }
315 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
316 return CP_ACCESS_TRAP_EL3;
317 }
318 return CP_ACCESS_OK;
319}
320
84929218
RH
321/* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
322static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
323 bool isread)
324{
325 if (arm_current_el(env) == 1) {
326 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
327 if (arm_hcr_el2_eff(env) & trap) {
328 return CP_ACCESS_TRAP_EL2;
329 }
330 }
331 return CP_ACCESS_OK;
332}
333
1803d271
RH
334/* Check for traps from EL1 due to HCR_EL2.TSW. */
335static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
336 bool isread)
337{
338 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
339 return CP_ACCESS_TRAP_EL2;
340 }
341 return CP_ACCESS_OK;
342}
343
99602377
RH
344/* Check for traps from EL1 due to HCR_EL2.TACR. */
345static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
346 bool isread)
347{
348 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
349 return CP_ACCESS_TRAP_EL2;
350 }
351 return CP_ACCESS_OK;
352}
353
30881b73
RH
354/* Check for traps from EL1 due to HCR_EL2.TTLB. */
355static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
356 bool isread)
357{
358 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
359 return CP_ACCESS_TRAP_EL2;
360 }
361 return CP_ACCESS_OK;
362}
363
0f66d223
PM
364/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
365static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
366 bool isread)
367{
368 if (arm_current_el(env) == 1 &&
369 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
370 return CP_ACCESS_TRAP_EL2;
371 }
372 return CP_ACCESS_OK;
373}
374
fe3ca86c
PM
375#ifdef TARGET_AARCH64
376/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
377static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
378 bool isread)
379{
380 if (arm_current_el(env) == 1 &&
381 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
382 return CP_ACCESS_TRAP_EL2;
383 }
384 return CP_ACCESS_OK;
385}
386#endif
387
c4241c7d 388static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
c983fe6c 389{
2fc0cc0e 390 ARMCPU *cpu = env_archcpu(env);
00c8cb0a 391
8d5c773e 392 raw_write(env, ri, value);
d10eb08f 393 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
c983fe6c
PM
394}
395
c4241c7d 396static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
08de207b 397{
2fc0cc0e 398 ARMCPU *cpu = env_archcpu(env);
00c8cb0a 399
8d5c773e 400 if (raw_read(env, ri) != value) {
9b37a28c
FR
401 /*
402 * Unlike real hardware the qemu TLB uses virtual addresses,
08de207b
PM
403 * not modified virtual addresses, so this causes a TLB flush.
404 */
d10eb08f 405 tlb_flush(CPU(cpu));
8d5c773e 406 raw_write(env, ri, value);
08de207b 407 }
08de207b 408}
c4241c7d
PM
409
410static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
411 uint64_t value)
08de207b 412{
2fc0cc0e 413 ARMCPU *cpu = env_archcpu(env);
00c8cb0a 414
452a0955 415 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
014406b5 416 && !extended_addresses_enabled(env)) {
9b37a28c
FR
417 /*
418 * For VMSA (when not using the LPAE long descriptor page table
08de207b
PM
419 * format) this register includes the ASID, so do a TLB flush.
420 * For PMSA it is purely a process ID and no action is needed.
421 */
d10eb08f 422 tlb_flush(CPU(cpu));
08de207b 423 }
8d5c773e 424 raw_write(env, ri, value);
08de207b
PM
425}
426
575a94af
RH
427static int alle1_tlbmask(CPUARMState *env)
428{
429 /*
430 * Note that the 'ALL' scope must invalidate both stage 1 and
431 * stage 2 translations, whereas most other scopes only invalidate
432 * stage 1 translations.
433 */
434 return (ARMMMUIdxBit_E10_1 |
435 ARMMMUIdxBit_E10_1_PAN |
436 ARMMMUIdxBit_E10_0 |
437 ARMMMUIdxBit_Stage2 |
438 ARMMMUIdxBit_Stage2_S);
439}
440
441
b4ab8ce9
PM
442/* IS variants of TLB operations must affect all cores */
443static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
444 uint64_t value)
445{
29a0af61 446 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
447
448 tlb_flush_all_cpus_synced(cs);
449}
450
451static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
452 uint64_t value)
453{
29a0af61 454 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
455
456 tlb_flush_all_cpus_synced(cs);
457}
458
459static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
460 uint64_t value)
461{
29a0af61 462 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
463
464 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
465}
466
467static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
468 uint64_t value)
469{
29a0af61 470 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
471
472 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
473}
474
475/*
476 * Non-IS variants of TLB operations are upgraded to
373e7ffd 477 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
b4ab8ce9
PM
478 * force broadcast of these operations.
479 */
480static bool tlb_force_broadcast(CPUARMState *env)
481{
373e7ffd 482 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
b4ab8ce9
PM
483}
484
c4241c7d
PM
485static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
486 uint64_t value)
d929823f
PM
487{
488 /* Invalidate all (TLBIALL) */
527db2be 489 CPUState *cs = env_cpu(env);
00c8cb0a 490
b4ab8ce9 491 if (tlb_force_broadcast(env)) {
527db2be
RH
492 tlb_flush_all_cpus_synced(cs);
493 } else {
494 tlb_flush(cs);
b4ab8ce9 495 }
d929823f
PM
496}
497
c4241c7d
PM
498static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
499 uint64_t value)
d929823f
PM
500{
501 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
527db2be 502 CPUState *cs = env_cpu(env);
31b030d4 503
527db2be 504 value &= TARGET_PAGE_MASK;
b4ab8ce9 505 if (tlb_force_broadcast(env)) {
527db2be
RH
506 tlb_flush_page_all_cpus_synced(cs, value);
507 } else {
508 tlb_flush_page(cs, value);
b4ab8ce9 509 }
d929823f
PM
510}
511
c4241c7d
PM
512static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 uint64_t value)
d929823f
PM
514{
515 /* Invalidate by ASID (TLBIASID) */
527db2be 516 CPUState *cs = env_cpu(env);
00c8cb0a 517
b4ab8ce9 518 if (tlb_force_broadcast(env)) {
527db2be
RH
519 tlb_flush_all_cpus_synced(cs);
520 } else {
521 tlb_flush(cs);
b4ab8ce9 522 }
d929823f
PM
523}
524
c4241c7d
PM
525static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
526 uint64_t value)
d929823f
PM
527{
528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
527db2be 529 CPUState *cs = env_cpu(env);
31b030d4 530
527db2be 531 value &= TARGET_PAGE_MASK;
b4ab8ce9 532 if (tlb_force_broadcast(env)) {
527db2be
RH
533 tlb_flush_page_all_cpus_synced(cs, value);
534 } else {
535 tlb_flush_page(cs, value);
b4ab8ce9 536 }
fa439fc5
PM
537}
538
541ef8c2
SS
539static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
540 uint64_t value)
541{
29a0af61 542 CPUState *cs = env_cpu(env);
541ef8c2 543
575a94af 544 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
541ef8c2
SS
545}
546
547static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
548 uint64_t value)
549{
29a0af61 550 CPUState *cs = env_cpu(env);
541ef8c2 551
575a94af 552 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
541ef8c2
SS
553}
554
541ef8c2
SS
555
556static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
557 uint64_t value)
558{
29a0af61 559 CPUState *cs = env_cpu(env);
541ef8c2 560
e013b741 561 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
541ef8c2
SS
562}
563
564static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
566{
29a0af61 567 CPUState *cs = env_cpu(env);
541ef8c2 568
e013b741 569 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
541ef8c2
SS
570}
571
572static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
573 uint64_t value)
574{
29a0af61 575 CPUState *cs = env_cpu(env);
541ef8c2
SS
576 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
577
e013b741 578 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
541ef8c2
SS
579}
580
581static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
582 uint64_t value)
583{
29a0af61 584 CPUState *cs = env_cpu(env);
541ef8c2
SS
585 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
586
a67cf277 587 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
e013b741 588 ARMMMUIdxBit_E2);
541ef8c2
SS
589}
590
575a94af
RH
591static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
592 uint64_t value)
593{
594 CPUState *cs = env_cpu(env);
595 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
596
597 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
598}
599
600static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
601 uint64_t value)
602{
603 CPUState *cs = env_cpu(env);
604 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
605
606 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
607}
608
e9aa6c21 609static const ARMCPRegInfo cp_reginfo[] = {
9b37a28c
FR
610 /*
611 * Define the secure and non-secure FCSE identifier CP registers
54bf36ed
FA
612 * separately because there is no secure bank in V8 (no _EL3). This allows
613 * the secure register to be properly reset and migrated. There is also no
614 * v8 EL1 version of the register so the non-secure instance stands alone.
615 */
9c513e78 616 { .name = "FCSEIDR",
54bf36ed
FA
617 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
618 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
619 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
620 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
9c513e78 621 { .name = "FCSEIDR_S",
54bf36ed
FA
622 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
623 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
624 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
d4e6df63 625 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
9b37a28c
FR
626 /*
627 * Define the secure and non-secure context identifier CP registers
54bf36ed
FA
628 * separately because there is no secure bank in V8 (no _EL3). This allows
629 * the secure register to be properly reset and migrated. In the
630 * non-secure case, the 32-bit register will have reset and migration
631 * disabled during registration as it is handled by the 64-bit instance.
632 */
633 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
014406b5 634 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
84929218 635 .access = PL1_RW, .accessfn = access_tvm_trvm,
158c276c 636 .fgt = FGT_CONTEXTIDR_EL1,
84929218 637 .secure = ARM_CP_SECSTATE_NS,
54bf36ed
FA
638 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
639 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9c513e78 640 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
54bf36ed 641 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
84929218
RH
642 .access = PL1_RW, .accessfn = access_tvm_trvm,
643 .secure = ARM_CP_SECSTATE_S,
54bf36ed 644 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
d4e6df63 645 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9449fdf6
PM
646};
647
648static const ARMCPRegInfo not_v8_cp_reginfo[] = {
9b37a28c
FR
649 /*
650 * NB: Some of these registers exist in v8 but with more precise
9449fdf6
PM
651 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
652 */
653 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
654 { .name = "DACR",
655 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
84929218 656 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
0c17d68c
FA
657 .writefn = dacr_write, .raw_writefn = raw_write,
658 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
659 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
9b37a28c
FR
660 /*
661 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
a903c449 662 * For v6 and v5, these mappings are overly broad.
4fdd17dd 663 */
a903c449
EI
664 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
665 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
666 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
667 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
668 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
669 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
670 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
4fdd17dd 671 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
c4804214
PM
672 /* Cache maintenance ops; some of this space may be overridden later. */
673 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
674 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
675 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
676};
677
7d57f408 678static const ARMCPRegInfo not_v6_cp_reginfo[] = {
9b37a28c
FR
679 /*
680 * Not all pre-v6 cores implemented this WFI, so this is slightly
7d57f408
PM
681 * over-broad.
682 */
683 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
684 .access = PL1_W, .type = ARM_CP_WFI },
7d57f408
PM
685};
686
687static const ARMCPRegInfo not_v7_cp_reginfo[] = {
9b37a28c
FR
688 /*
689 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
7d57f408
PM
690 * is UNPREDICTABLE; we choose to NOP as most implementations do).
691 */
692 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
693 .access = PL1_W, .type = ARM_CP_WFI },
9b37a28c
FR
694 /*
695 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
34f90529
PM
696 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
697 * OMAPCP will override this space.
698 */
699 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
700 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
701 .resetvalue = 0 },
702 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
703 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
704 .resetvalue = 0 },
776d4e5c
PM
705 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
706 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
7a0e58fa 707 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 708 .resetvalue = 0 },
9b37a28c
FR
709 /*
710 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
50300698
PM
711 * implementing it as RAZ means the "debug architecture version" bits
712 * will read as a reserved value, which should cause Linux to not try
713 * to use the debug hardware.
714 */
715 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
716 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9b37a28c
FR
717 /*
718 * MMU TLB control. Note that the wildcarding means we cover not just
995939a6
PM
719 * the unified TLB ops but also the dside/iside/inner-shareable variants.
720 */
721 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
722 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
7a0e58fa 723 .type = ARM_CP_NO_RAW },
995939a6
PM
724 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
725 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
7a0e58fa 726 .type = ARM_CP_NO_RAW },
995939a6
PM
727 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
728 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
7a0e58fa 729 .type = ARM_CP_NO_RAW },
995939a6
PM
730 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
731 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
7a0e58fa 732 .type = ARM_CP_NO_RAW },
a903c449
EI
733 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
734 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
735 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
736 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
7d57f408
PM
737};
738
c4241c7d
PM
739static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
740 uint64_t value)
2771db27 741{
f0aff255
FA
742 uint32_t mask = 0;
743
744 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
745 if (!arm_feature(env, ARM_FEATURE_V8)) {
9b37a28c
FR
746 /*
747 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
f0aff255
FA
748 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
749 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
750 */
7fbc6a40 751 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
f0aff255 752 /* VFP coprocessor: cp10 & cp11 [23:20] */
fab8ad39
RH
753 mask |= R_CPACR_ASEDIS_MASK |
754 R_CPACR_D32DIS_MASK |
755 R_CPACR_CP11_MASK |
756 R_CPACR_CP10_MASK;
f0aff255
FA
757
758 if (!arm_feature(env, ARM_FEATURE_NEON)) {
759 /* ASEDIS [31] bit is RAO/WI */
fab8ad39 760 value |= R_CPACR_ASEDIS_MASK;
f0aff255
FA
761 }
762
9b37a28c
FR
763 /*
764 * VFPv3 and upwards with NEON implement 32 double precision
f0aff255
FA
765 * registers (D0-D31).
766 */
a6627f5f 767 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
f0aff255 768 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
fab8ad39 769 value |= R_CPACR_D32DIS_MASK;
f0aff255
FA
770 }
771 }
772 value &= mask;
2771db27 773 }
fc1120a7
PM
774
775 /*
776 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
777 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
778 */
779 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
780 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
fab8ad39
RH
781 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
782 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
fc1120a7
PM
783 }
784
7ebd5f2e 785 env->cp15.cpacr_el1 = value;
2771db27
PM
786}
787
fc1120a7
PM
788static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
789{
790 /*
791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
793 */
794 uint64_t value = env->cp15.cpacr_el1;
795
796 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
797 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
fab8ad39 798 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
fc1120a7
PM
799 }
800 return value;
801}
802
803
5deac39c
PM
804static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
805{
9b37a28c
FR
806 /*
807 * Call cpacr_write() so that we reset with the correct RAO bits set
5deac39c
PM
808 * for our CPU features.
809 */
810 cpacr_write(env, ri, 0);
811}
812
3f208fd7
PM
813static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
814 bool isread)
c6f19164
GB
815{
816 if (arm_feature(env, ARM_FEATURE_V8)) {
817 /* Check if CPACR accesses are to be trapped to EL2 */
e6ef0169 818 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
fab8ad39 819 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
c6f19164
GB
820 return CP_ACCESS_TRAP_EL2;
821 /* Check if CPACR accesses are to be trapped to EL3 */
822 } else if (arm_current_el(env) < 3 &&
fab8ad39 823 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
c6f19164
GB
824 return CP_ACCESS_TRAP_EL3;
825 }
826 }
827
828 return CP_ACCESS_OK;
829}
830
3f208fd7
PM
831static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
832 bool isread)
c6f19164
GB
833{
834 /* Check if CPTR accesses are set to trap to EL3 */
fab8ad39
RH
835 if (arm_current_el(env) == 2 &&
836 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
c6f19164
GB
837 return CP_ACCESS_TRAP_EL3;
838 }
839
840 return CP_ACCESS_OK;
841}
842
7d57f408
PM
843static const ARMCPRegInfo v6_cp_reginfo[] = {
844 /* prefetch by MVA in v6, NOP in v7 */
845 { .name = "MVA_prefetch",
846 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
847 .access = PL1_W, .type = ARM_CP_NOP },
9b37a28c
FR
848 /*
849 * We need to break the TB after ISB to execute self-modifying code
6df99dec
SS
850 * correctly and also to take any pending interrupts immediately.
851 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
852 */
7d57f408 853 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
6df99dec 854 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
091fd17c 855 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 856 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 857 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 858 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31 859 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
84929218 860 .access = PL1_RW, .accessfn = access_tvm_trvm,
b848ce2b
FA
861 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
862 offsetof(CPUARMState, cp15.ifar_ns) },
06d76f31 863 .resetvalue = 0, },
9b37a28c
FR
864 /*
865 * Watchpoint Fault Address Register : should actually only be present
06d76f31
PM
866 * for 1136, 1176, 11MPCore.
867 */
868 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
869 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
34222fb8 870 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
c6f19164 871 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
b19ed03c 872 .fgt = FGT_CPACR_EL1,
7ebd5f2e 873 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
fc1120a7 874 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
7d57f408
PM
875};
876
57a4a11b
AL
877typedef struct pm_event {
878 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
879 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
880 bool (*supported)(CPUARMState *);
881 /*
882 * Retrieve the current count of the underlying event. The programmed
883 * counters hold a difference from the return value from this function
884 */
885 uint64_t (*get_count)(CPUARMState *);
4e7beb0c
AL
886 /*
887 * Return how many nanoseconds it will take (at a minimum) for count events
888 * to occur. A negative value indicates the counter will never overflow, or
889 * that the counter has otherwise arranged for the overflow bit to be set
890 * and the PMU interrupt to be raised on overflow.
891 */
892 int64_t (*ns_per_count)(uint64_t);
57a4a11b
AL
893} pm_event;
894
b2e23725
AL
895static bool event_always_supported(CPUARMState *env)
896{
897 return true;
898}
899
0d4bfd7d
AL
900static uint64_t swinc_get_count(CPUARMState *env)
901{
902 /*
903 * SW_INCR events are written directly to the pmevcntr's by writes to
904 * PMSWINC, so there is no underlying count maintained by the PMU itself
905 */
906 return 0;
907}
908
4e7beb0c
AL
909static int64_t swinc_ns_per(uint64_t ignored)
910{
911 return -1;
912}
913
b2e23725
AL
914/*
915 * Return the underlying cycle count for the PMU cycle counters. If we're in
916 * usermode, simply return 0.
917 */
918static uint64_t cycles_get_count(CPUARMState *env)
919{
920#ifndef CONFIG_USER_ONLY
921 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
922 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
923#else
924 return cpu_get_host_ticks();
925#endif
926}
927
928#ifndef CONFIG_USER_ONLY
4e7beb0c
AL
929static int64_t cycles_ns_per(uint64_t cycles)
930{
931 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
932}
933
b2e23725
AL
934static bool instructions_supported(CPUARMState *env)
935{
740b1759 936 return icount_enabled() == 1; /* Precise instruction counting */
b2e23725
AL
937}
938
939static uint64_t instructions_get_count(CPUARMState *env)
940{
8191d368 941 return (uint64_t)icount_get_raw();
b2e23725 942}
4e7beb0c
AL
943
944static int64_t instructions_ns_per(uint64_t icount)
945{
8191d368 946 return icount_to_ns((int64_t)icount);
4e7beb0c 947}
b2e23725
AL
948#endif
949
a793bcd0 950static bool pmuv3p1_events_supported(CPUARMState *env)
0727f63b
PM
951{
952 /* For events which are supported in any v8.1 PMU */
a793bcd0 953 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
0727f63b
PM
954}
955
a793bcd0 956static bool pmuv3p4_events_supported(CPUARMState *env)
15dd1ebd
PM
957{
958 /* For events which are supported in any v8.1 PMU */
a793bcd0 959 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
15dd1ebd
PM
960}
961
0727f63b
PM
962static uint64_t zero_event_get_count(CPUARMState *env)
963{
964 /* For events which on QEMU never fire, so their count is always zero */
965 return 0;
966}
967
968static int64_t zero_event_ns_per(uint64_t cycles)
969{
970 /* An event which never fires can never overflow */
971 return -1;
972}
973
57a4a11b 974static const pm_event pm_events[] = {
0d4bfd7d
AL
975 { .number = 0x000, /* SW_INCR */
976 .supported = event_always_supported,
977 .get_count = swinc_get_count,
4e7beb0c 978 .ns_per_count = swinc_ns_per,
0d4bfd7d 979 },
b2e23725
AL
980#ifndef CONFIG_USER_ONLY
981 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
982 .supported = instructions_supported,
983 .get_count = instructions_get_count,
4e7beb0c 984 .ns_per_count = instructions_ns_per,
b2e23725
AL
985 },
986 { .number = 0x011, /* CPU_CYCLES, Cycle */
987 .supported = event_always_supported,
988 .get_count = cycles_get_count,
4e7beb0c 989 .ns_per_count = cycles_ns_per,
0727f63b 990 },
b2e23725 991#endif
0727f63b 992 { .number = 0x023, /* STALL_FRONTEND */
a793bcd0 993 .supported = pmuv3p1_events_supported,
0727f63b
PM
994 .get_count = zero_event_get_count,
995 .ns_per_count = zero_event_ns_per,
996 },
997 { .number = 0x024, /* STALL_BACKEND */
a793bcd0 998 .supported = pmuv3p1_events_supported,
0727f63b
PM
999 .get_count = zero_event_get_count,
1000 .ns_per_count = zero_event_ns_per,
1001 },
15dd1ebd 1002 { .number = 0x03c, /* STALL */
a793bcd0 1003 .supported = pmuv3p4_events_supported,
15dd1ebd
PM
1004 .get_count = zero_event_get_count,
1005 .ns_per_count = zero_event_ns_per,
1006 },
57a4a11b
AL
1007};
1008
1009/*
1010 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1011 * events (i.e. the statistical profiling extension), this implementation
1012 * should first be updated to something sparse instead of the current
1013 * supported_event_map[] array.
1014 */
15dd1ebd 1015#define MAX_EVENT_ID 0x3c
57a4a11b
AL
1016#define UNSUPPORTED_EVENT UINT16_MAX
1017static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1018
1019/*
bf8d0969
AL
1020 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1021 * of ARM event numbers to indices in our pm_events array.
57a4a11b
AL
1022 *
1023 * Note: Events in the 0x40XX range are not currently supported.
1024 */
bf8d0969 1025void pmu_init(ARMCPU *cpu)
57a4a11b 1026{
57a4a11b
AL
1027 unsigned int i;
1028
bf8d0969
AL
1029 /*
1030 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1031 * events to them
1032 */
57a4a11b
AL
1033 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1034 supported_event_map[i] = UNSUPPORTED_EVENT;
1035 }
bf8d0969
AL
1036 cpu->pmceid0 = 0;
1037 cpu->pmceid1 = 0;
57a4a11b
AL
1038
1039 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1040 const pm_event *cnt = &pm_events[i];
1041 assert(cnt->number <= MAX_EVENT_ID);
1042 /* We do not currently support events in the 0x40xx range */
1043 assert(cnt->number <= 0x3f);
1044
bf8d0969 1045 if (cnt->supported(&cpu->env)) {
57a4a11b 1046 supported_event_map[cnt->number] = i;
67da43d6 1047 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
bf8d0969
AL
1048 if (cnt->number & 0x20) {
1049 cpu->pmceid1 |= event_mask;
1050 } else {
1051 cpu->pmceid0 |= event_mask;
1052 }
57a4a11b
AL
1053 }
1054 }
57a4a11b
AL
1055}
1056
5ecdd3e4
AL
1057/*
1058 * Check at runtime whether a PMU event is supported for the current machine
1059 */
1060static bool event_supported(uint16_t number)
1061{
1062 if (number > MAX_EVENT_ID) {
1063 return false;
1064 }
1065 return supported_event_map[number] != UNSUPPORTED_EVENT;
1066}
1067
3f208fd7
PM
1068static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1069 bool isread)
200ac0ef 1070{
9b37a28c
FR
1071 /*
1072 * Performance monitor registers user accessibility is controlled
1fce1ba9
PM
1073 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1074 * trapping to EL2 or EL3 for other accesses.
200ac0ef 1075 */
1fce1ba9 1076 int el = arm_current_el(env);
59dd089c 1077 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1fce1ba9 1078
6ecd0b6b 1079 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
fcd25206 1080 return CP_ACCESS_TRAP;
200ac0ef 1081 }
59dd089c 1082 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1fce1ba9
PM
1083 return CP_ACCESS_TRAP_EL2;
1084 }
1085 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1086 return CP_ACCESS_TRAP_EL3;
1087 }
1088
fcd25206 1089 return CP_ACCESS_OK;
200ac0ef
PM
1090}
1091
6ecd0b6b
AB
1092static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1093 const ARMCPRegInfo *ri,
1094 bool isread)
1095{
1096 /* ER: event counter read trap control */
1097 if (arm_feature(env, ARM_FEATURE_V8)
1098 && arm_current_el(env) == 0
1099 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1100 && isread) {
1101 return CP_ACCESS_OK;
1102 }
1103
1104 return pmreg_access(env, ri, isread);
1105}
1106
1107static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1108 const ARMCPRegInfo *ri,
1109 bool isread)
1110{
1111 /* SW: software increment write trap control */
1112 if (arm_feature(env, ARM_FEATURE_V8)
1113 && arm_current_el(env) == 0
1114 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1115 && !isread) {
1116 return CP_ACCESS_OK;
1117 }
1118
1119 return pmreg_access(env, ri, isread);
1120}
1121
6ecd0b6b
AB
1122static CPAccessResult pmreg_access_selr(CPUARMState *env,
1123 const ARMCPRegInfo *ri,
1124 bool isread)
1125{
1126 /* ER: event counter read trap control */
1127 if (arm_feature(env, ARM_FEATURE_V8)
1128 && arm_current_el(env) == 0
1129 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1130 return CP_ACCESS_OK;
1131 }
1132
1133 return pmreg_access(env, ri, isread);
1134}
1135
1136static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1137 const ARMCPRegInfo *ri,
1138 bool isread)
1139{
1140 /* CR: cycle counter read trap control */
1141 if (arm_feature(env, ARM_FEATURE_V8)
1142 && arm_current_el(env) == 0
1143 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1144 && isread) {
1145 return CP_ACCESS_OK;
1146 }
1147
1148 return pmreg_access(env, ri, isread);
1149}
1150
01765386
PM
1151/*
1152 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1153 * We use these to decide whether we need to wrap a write to MDCR_EL2
1154 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1155 */
47b385da
PM
1156#define MDCR_EL2_PMU_ENABLE_BITS \
1157 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
0b42f4fa 1158#define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
01765386 1159
9b37a28c
FR
1160/*
1161 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
033614c4
AL
1162 * the current EL, security state, and register configuration.
1163 */
1164static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
87124fde 1165{
033614c4
AL
1166 uint64_t filter;
1167 bool e, p, u, nsk, nsu, nsh, m;
872d2034 1168 bool enabled, prohibited = false, filtered;
033614c4
AL
1169 bool secure = arm_is_secure(env);
1170 int el = arm_current_el(env);
59dd089c
RDC
1171 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1172 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
87124fde 1173
cbbb3041
AJ
1174 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1175 return false;
1176 }
1177
033614c4
AL
1178 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1179 (counter < hpmn || counter == 31)) {
1180 e = env->cp15.c9_pmcr & PMCRE;
1181 } else {
59dd089c 1182 e = mdcr_el2 & MDCR_HPME;
87124fde 1183 }
033614c4 1184 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
87124fde 1185
872d2034
PM
1186 /* Is event counting prohibited? */
1187 if (el == 2 && (counter < hpmn || counter == 31)) {
1188 prohibited = mdcr_el2 & MDCR_HPMD;
1189 }
1190 if (secure) {
1191 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
033614c4
AL
1192 }
1193
0b42f4fa
PM
1194 if (counter == 31) {
1195 /*
1196 * The cycle counter defaults to running. PMCR.DP says "disable
1197 * the cycle counter when event counting is prohibited".
1198 * Some MDCR bits disable the cycle counter specifically.
1199 */
1200 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1201 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1202 if (secure) {
1203 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1204 }
1205 if (el == 2) {
1206 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1207 }
1208 }
033614c4
AL
1209 }
1210
5ecdd3e4
AL
1211 if (counter == 31) {
1212 filter = env->cp15.pmccfiltr_el0;
1213 } else {
1214 filter = env->cp15.c14_pmevtyper[counter];
1215 }
033614c4
AL
1216
1217 p = filter & PMXEVTYPER_P;
1218 u = filter & PMXEVTYPER_U;
1219 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1220 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1221 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1222 m = arm_el_is_aa64(env, 1) &&
1223 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1224
1225 if (el == 0) {
1226 filtered = secure ? u : u != nsu;
1227 } else if (el == 1) {
1228 filtered = secure ? p : p != nsk;
1229 } else if (el == 2) {
1230 filtered = !nsh;
1231 } else { /* EL3 */
1232 filtered = m != p;
1233 }
1234
5ecdd3e4
AL
1235 if (counter != 31) {
1236 /*
1237 * If not checking PMCCNTR, ensure the counter is setup to an event we
1238 * support
1239 */
1240 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1241 if (!event_supported(event)) {
1242 return false;
1243 }
1244 }
1245
033614c4 1246 return enabled && !prohibited && !filtered;
87124fde 1247}
033614c4 1248
f4efb4b2
AL
1249static void pmu_update_irq(CPUARMState *env)
1250{
2fc0cc0e 1251 ARMCPU *cpu = env_archcpu(env);
f4efb4b2
AL
1252 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1253 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1254}
1255
b57aa7bd
PM
1256static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1257{
1258 /*
1259 * Return true if the clock divider is enabled and the cycle counter
1260 * is supposed to tick only once every 64 clock cycles. This is
1261 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1262 * (64-bit) cycle counter PMCR.D has no effect.
1263 */
1264 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1265}
1266
47b385da
PM
1267static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1268{
1269 /* Return true if the specified event counter is configured to be 64 bit */
1270
1271 /* This isn't intended to be used with the cycle counter */
1272 assert(counter < 31);
1273
1274 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1275 return false;
1276 }
1277
1278 if (arm_feature(env, ARM_FEATURE_EL2)) {
1279 /*
1280 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1281 * current security state, so we don't use arm_mdcr_el2_eff() here.
1282 */
1283 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1284 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1285
1286 if (hpmn != 0 && counter >= hpmn) {
1287 return hlp;
1288 }
1289 }
1290 return env->cp15.c9_pmcr & PMCRLP;
1291}
1292
5d05b9d4
AL
1293/*
1294 * Ensure c15_ccnt is the guest-visible count so that operations such as
1295 * enabling/disabling the counter or filtering, modifying the count itself,
1296 * etc. can be done logically. This is essentially a no-op if the counter is
1297 * not enabled at the time of the call.
1298 */
f2b2f53f 1299static void pmccntr_op_start(CPUARMState *env)
ec7b4ce4 1300{
b2e23725 1301 uint64_t cycles = cycles_get_count(env);
ec7b4ce4 1302
033614c4 1303 if (pmu_counter_enabled(env, 31)) {
5d05b9d4 1304 uint64_t eff_cycles = cycles;
b57aa7bd 1305 if (pmccntr_clockdiv_enabled(env)) {
5d05b9d4
AL
1306 eff_cycles /= 64;
1307 }
1308
f4efb4b2
AL
1309 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1310
1311 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1312 1ull << 63 : 1ull << 31;
1313 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
76e25d41 1314 env->cp15.c9_pmovsr |= (1ULL << 31);
f4efb4b2
AL
1315 pmu_update_irq(env);
1316 }
1317
1318 env->cp15.c15_ccnt = new_pmccntr;
ec7b4ce4 1319 }
5d05b9d4
AL
1320 env->cp15.c15_ccnt_delta = cycles;
1321}
ec7b4ce4 1322
5d05b9d4
AL
1323/*
1324 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1325 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1326 * pmccntr_op_start.
1327 */
f2b2f53f 1328static void pmccntr_op_finish(CPUARMState *env)
5d05b9d4 1329{
033614c4 1330 if (pmu_counter_enabled(env, 31)) {
4e7beb0c
AL
1331#ifndef CONFIG_USER_ONLY
1332 /* Calculate when the counter will next overflow */
1333 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1334 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1335 remaining_cycles = (uint32_t)remaining_cycles;
1336 }
1337 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1338
1339 if (overflow_in > 0) {
f1dd2506
PM
1340 int64_t overflow_at;
1341
1342 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1343 overflow_in, &overflow_at)) {
1344 ARMCPU *cpu = env_archcpu(env);
1345 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1346 }
4e7beb0c
AL
1347 }
1348#endif
5d05b9d4 1349
4e7beb0c 1350 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
b57aa7bd 1351 if (pmccntr_clockdiv_enabled(env)) {
5d05b9d4
AL
1352 prev_cycles /= 64;
1353 }
5d05b9d4 1354 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
ec7b4ce4
AF
1355 }
1356}
1357
5ecdd3e4
AL
1358static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1359{
1360
1361 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1362 uint64_t count = 0;
1363 if (event_supported(event)) {
1364 uint16_t event_idx = supported_event_map[event];
1365 count = pm_events[event_idx].get_count(env);
1366 }
1367
1368 if (pmu_counter_enabled(env, counter)) {
47b385da
PM
1369 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1370 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1371 1ULL << 63 : 1ULL << 31;
f4efb4b2 1372
47b385da 1373 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
f4efb4b2
AL
1374 env->cp15.c9_pmovsr |= (1 << counter);
1375 pmu_update_irq(env);
1376 }
1377 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
5ecdd3e4
AL
1378 }
1379 env->cp15.c14_pmevcntr_delta[counter] = count;
1380}
1381
1382static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1383{
1384 if (pmu_counter_enabled(env, counter)) {
4e7beb0c
AL
1385#ifndef CONFIG_USER_ONLY
1386 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1387 uint16_t event_idx = supported_event_map[event];
47b385da
PM
1388 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1389 int64_t overflow_in;
1390
1391 if (!pmevcntr_is_64_bit(env, counter)) {
1392 delta = (uint32_t)delta;
1393 }
1394 overflow_in = pm_events[event_idx].ns_per_count(delta);
4e7beb0c
AL
1395
1396 if (overflow_in > 0) {
f1dd2506
PM
1397 int64_t overflow_at;
1398
1399 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1400 overflow_in, &overflow_at)) {
1401 ARMCPU *cpu = env_archcpu(env);
1402 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1403 }
4e7beb0c
AL
1404 }
1405#endif
1406
5ecdd3e4
AL
1407 env->cp15.c14_pmevcntr_delta[counter] -=
1408 env->cp15.c14_pmevcntr[counter];
1409 }
1410}
1411
5d05b9d4
AL
1412void pmu_op_start(CPUARMState *env)
1413{
5ecdd3e4 1414 unsigned int i;
5d05b9d4 1415 pmccntr_op_start(env);
5ecdd3e4
AL
1416 for (i = 0; i < pmu_num_counters(env); i++) {
1417 pmevcntr_op_start(env, i);
1418 }
5d05b9d4
AL
1419}
1420
1421void pmu_op_finish(CPUARMState *env)
1422{
5ecdd3e4 1423 unsigned int i;
5d05b9d4 1424 pmccntr_op_finish(env);
5ecdd3e4
AL
1425 for (i = 0; i < pmu_num_counters(env); i++) {
1426 pmevcntr_op_finish(env, i);
1427 }
5d05b9d4
AL
1428}
1429
033614c4
AL
1430void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1431{
1432 pmu_op_start(&cpu->env);
1433}
1434
1435void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1436{
1437 pmu_op_finish(&cpu->env);
1438}
1439
4e7beb0c
AL
1440void arm_pmu_timer_cb(void *opaque)
1441{
1442 ARMCPU *cpu = opaque;
1443
1444 /*
1445 * Update all the counter values based on the current underlying counts,
1446 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1447 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1448 * counter may expire.
1449 */
1450 pmu_op_start(&cpu->env);
1451 pmu_op_finish(&cpu->env);
1452}
1453
c4241c7d
PM
1454static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1455 uint64_t value)
200ac0ef 1456{
5d05b9d4 1457 pmu_op_start(env);
7c2cb42b
AF
1458
1459 if (value & PMCRC) {
1460 /* The counter has been reset */
1461 env->cp15.c15_ccnt = 0;
1462 }
1463
5ecdd3e4
AL
1464 if (value & PMCRP) {
1465 unsigned int i;
1466 for (i = 0; i < pmu_num_counters(env); i++) {
1467 env->cp15.c14_pmevcntr[i] = 0;
1468 }
1469 }
1470
9323e79f
PM
1471 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1472 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
7c2cb42b 1473
5d05b9d4 1474 pmu_op_finish(env);
7c2cb42b
AF
1475}
1476
0d4bfd7d
AL
1477static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478 uint64_t value)
1479{
1480 unsigned int i;
47b385da
PM
1481 uint64_t overflow_mask, new_pmswinc;
1482
0d4bfd7d
AL
1483 for (i = 0; i < pmu_num_counters(env); i++) {
1484 /* Increment a counter's count iff: */
1485 if ((value & (1 << i)) && /* counter's bit is set */
1486 /* counter is enabled and not filtered */
1487 pmu_counter_enabled(env, i) &&
1488 /* counter is SW_INCR */
1489 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1490 pmevcntr_op_start(env, i);
f4efb4b2
AL
1491
1492 /*
1493 * Detect if this write causes an overflow since we can't predict
1494 * PMSWINC overflows like we can for other events
1495 */
47b385da
PM
1496 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1497
1498 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1499 1ULL << 63 : 1ULL << 31;
f4efb4b2 1500
47b385da 1501 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
f4efb4b2
AL
1502 env->cp15.c9_pmovsr |= (1 << i);
1503 pmu_update_irq(env);
1504 }
1505
1506 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1507
0d4bfd7d
AL
1508 pmevcntr_op_finish(env, i);
1509 }
1510 }
1511}
1512
7c2cb42b
AF
1513static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1514{
5d05b9d4
AL
1515 uint64_t ret;
1516 pmccntr_op_start(env);
1517 ret = env->cp15.c15_ccnt;
1518 pmccntr_op_finish(env);
1519 return ret;
7c2cb42b
AF
1520}
1521
6b040780
WH
1522static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523 uint64_t value)
1524{
9b37a28c
FR
1525 /*
1526 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
6b040780
WH
1527 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1528 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1529 * accessed.
1530 */
1531 env->cp15.c9_pmselr = value & 0x1f;
1532}
1533
7c2cb42b
AF
1534static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1535 uint64_t value)
1536{
5d05b9d4
AL
1537 pmccntr_op_start(env);
1538 env->cp15.c15_ccnt = value;
1539 pmccntr_op_finish(env);
200ac0ef 1540}
421c7ebd
PC
1541
1542static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1543 uint64_t value)
1544{
1545 uint64_t cur_val = pmccntr_read(env, NULL);
1546
1547 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1548}
1549
0614601c
AF
1550static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1551 uint64_t value)
1552{
5d05b9d4 1553 pmccntr_op_start(env);
4b8afa1f
AL
1554 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1555 pmccntr_op_finish(env);
1556}
1557
1558static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1559 uint64_t value)
1560{
1561 pmccntr_op_start(env);
1562 /* M is not accessible from AArch32 */
1563 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1564 (value & PMCCFILTR);
5d05b9d4 1565 pmccntr_op_finish(env);
0614601c
AF
1566}
1567
4b8afa1f
AL
1568static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1569{
1570 /* M is not visible in AArch32 */
1571 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1572}
1573
c4241c7d 1574static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1575 uint64_t value)
1576{
01765386 1577 pmu_op_start(env);
7ece99b1 1578 value &= pmu_counter_mask(env);
200ac0ef 1579 env->cp15.c9_pmcnten |= value;
01765386 1580 pmu_op_finish(env);
200ac0ef
PM
1581}
1582
c4241c7d
PM
1583static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1584 uint64_t value)
200ac0ef 1585{
01765386 1586 pmu_op_start(env);
7ece99b1 1587 value &= pmu_counter_mask(env);
200ac0ef 1588 env->cp15.c9_pmcnten &= ~value;
01765386 1589 pmu_op_finish(env);
200ac0ef
PM
1590}
1591
c4241c7d
PM
1592static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1593 uint64_t value)
200ac0ef 1594{
599b71e2 1595 value &= pmu_counter_mask(env);
200ac0ef 1596 env->cp15.c9_pmovsr &= ~value;
f4efb4b2 1597 pmu_update_irq(env);
200ac0ef
PM
1598}
1599
327dd510
AL
1600static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1601 uint64_t value)
1602{
1603 value &= pmu_counter_mask(env);
1604 env->cp15.c9_pmovsr |= value;
f4efb4b2 1605 pmu_update_irq(env);
327dd510
AL
1606}
1607
5ecdd3e4
AL
1608static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1609 uint64_t value, const uint8_t counter)
200ac0ef 1610{
5ecdd3e4
AL
1611 if (counter == 31) {
1612 pmccfiltr_write(env, ri, value);
1613 } else if (counter < pmu_num_counters(env)) {
1614 pmevcntr_op_start(env, counter);
1615
1616 /*
1617 * If this counter's event type is changing, store the current
1618 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1619 * pmevcntr_op_finish has the correct baseline when it converts back to
1620 * a delta.
1621 */
1622 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1623 PMXEVTYPER_EVTCOUNT;
1624 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1625 if (old_event != new_event) {
1626 uint64_t count = 0;
1627 if (event_supported(new_event)) {
1628 uint16_t event_idx = supported_event_map[new_event];
1629 count = pm_events[event_idx].get_count(env);
1630 }
1631 env->cp15.c14_pmevcntr_delta[counter] = count;
1632 }
1633
1634 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1635 pmevcntr_op_finish(env, counter);
1636 }
9b37a28c
FR
1637 /*
1638 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
fdb86656
WH
1639 * PMSELR value is equal to or greater than the number of implemented
1640 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1641 */
5ecdd3e4
AL
1642}
1643
1644static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1645 const uint8_t counter)
1646{
1647 if (counter == 31) {
1648 return env->cp15.pmccfiltr_el0;
1649 } else if (counter < pmu_num_counters(env)) {
1650 return env->cp15.c14_pmevtyper[counter];
1651 } else {
1652 /*
1653 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1654 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1655 */
1656 return 0;
1657 }
1658}
1659
1660static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1661 uint64_t value)
1662{
1663 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1664 pmevtyper_write(env, ri, value, counter);
1665}
1666
1667static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1668 uint64_t value)
1669{
1670 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1671 env->cp15.c14_pmevtyper[counter] = value;
1672
1673 /*
1674 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1675 * pmu_op_finish calls when loading saved state for a migration. Because
1676 * we're potentially updating the type of event here, the value written to
1677 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1678 * different counter type. Therefore, we need to set this value to the
1679 * current count for the counter type we're writing so that pmu_op_finish
1680 * has the correct count for its calculation.
1681 */
1682 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1683 if (event_supported(event)) {
1684 uint16_t event_idx = supported_event_map[event];
1685 env->cp15.c14_pmevcntr_delta[counter] =
1686 pm_events[event_idx].get_count(env);
fdb86656
WH
1687 }
1688}
1689
5ecdd3e4
AL
1690static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1691{
1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693 return pmevtyper_read(env, ri, counter);
1694}
1695
1696static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1697 uint64_t value)
1698{
1699 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1700}
1701
fdb86656
WH
1702static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1703{
5ecdd3e4
AL
1704 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1705}
1706
1707static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1708 uint64_t value, uint8_t counter)
1709{
47b385da
PM
1710 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1711 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1712 value &= MAKE_64BIT_MASK(0, 32);
1713 }
5ecdd3e4
AL
1714 if (counter < pmu_num_counters(env)) {
1715 pmevcntr_op_start(env, counter);
1716 env->cp15.c14_pmevcntr[counter] = value;
1717 pmevcntr_op_finish(env, counter);
1718 }
1719 /*
1720 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1721 * are CONSTRAINED UNPREDICTABLE.
fdb86656 1722 */
5ecdd3e4
AL
1723}
1724
1725static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1726 uint8_t counter)
1727{
1728 if (counter < pmu_num_counters(env)) {
1729 uint64_t ret;
1730 pmevcntr_op_start(env, counter);
1731 ret = env->cp15.c14_pmevcntr[counter];
1732 pmevcntr_op_finish(env, counter);
47b385da
PM
1733 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1734 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1735 ret &= MAKE_64BIT_MASK(0, 32);
1736 }
5ecdd3e4 1737 return ret;
fdb86656 1738 } else {
9b37a28c
FR
1739 /*
1740 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1741 * are CONSTRAINED UNPREDICTABLE.
1742 */
fdb86656
WH
1743 return 0;
1744 }
200ac0ef
PM
1745}
1746
5ecdd3e4
AL
1747static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1748 uint64_t value)
1749{
1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751 pmevcntr_write(env, ri, value, counter);
1752}
1753
1754static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1755{
1756 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1757 return pmevcntr_read(env, ri, counter);
1758}
1759
1760static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1761 uint64_t value)
1762{
1763 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1764 assert(counter < pmu_num_counters(env));
1765 env->cp15.c14_pmevcntr[counter] = value;
1766 pmevcntr_write(env, ri, value, counter);
1767}
1768
1769static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1770{
1771 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1772 assert(counter < pmu_num_counters(env));
1773 return env->cp15.c14_pmevcntr[counter];
1774}
1775
1776static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1777 uint64_t value)
1778{
1779 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1780}
1781
1782static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1783{
1784 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1785}
1786
c4241c7d 1787static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1788 uint64_t value)
1789{
6ecd0b6b
AB
1790 if (arm_feature(env, ARM_FEATURE_V8)) {
1791 env->cp15.c9_pmuserenr = value & 0xf;
1792 } else {
1793 env->cp15.c9_pmuserenr = value & 1;
1794 }
200ac0ef
PM
1795}
1796
c4241c7d
PM
1797static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1798 uint64_t value)
200ac0ef
PM
1799{
1800 /* We have no event counters so only the C bit can be changed */
7ece99b1 1801 value &= pmu_counter_mask(env);
200ac0ef 1802 env->cp15.c9_pminten |= value;
f4efb4b2 1803 pmu_update_irq(env);
200ac0ef
PM
1804}
1805
c4241c7d
PM
1806static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807 uint64_t value)
200ac0ef 1808{
7ece99b1 1809 value &= pmu_counter_mask(env);
200ac0ef 1810 env->cp15.c9_pminten &= ~value;
f4efb4b2 1811 pmu_update_irq(env);
200ac0ef
PM
1812}
1813
c4241c7d
PM
1814static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value)
8641136c 1816{
9b37a28c
FR
1817 /*
1818 * Note that even though the AArch64 view of this register has bits
a505d7fe
PM
1819 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1820 * architectural requirements for bits which are RES0 only in some
1821 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1822 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1823 */
855ea66d 1824 raw_write(env, ri, value & ~0x1FULL);
8641136c
NR
1825}
1826
64e0e2de
EI
1827static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1828{
ea22747c 1829 /* Begin with base v8.0 state. */
06f2adcc 1830 uint64_t valid_mask = 0x3fff;
2fc0cc0e 1831 ARMCPU *cpu = env_archcpu(env);
d902ae75 1832 uint64_t changed;
ea22747c 1833
bfe43e3d
RH
1834 /*
1835 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1836 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1837 * Instead, choose the format based on the mode of EL3.
1838 */
1839 if (arm_el_is_aa64(env, 3)) {
1840 value |= SCR_FW | SCR_AW; /* RES1 */
1841 valid_mask &= ~SCR_NET; /* RES0 */
252e8c69 1842
6bcbb07a
RH
1843 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1844 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1845 value |= SCR_RW; /* RAO/WI */
1846 }
da3d8b13
RH
1847 if (cpu_isar_feature(aa64_ras, cpu)) {
1848 valid_mask |= SCR_TERR;
1849 }
252e8c69
RH
1850 if (cpu_isar_feature(aa64_lor, cpu)) {
1851 valid_mask |= SCR_TLOR;
1852 }
1853 if (cpu_isar_feature(aa64_pauth, cpu)) {
1854 valid_mask |= SCR_API | SCR_APK;
1855 }
926c1b97
RDC
1856 if (cpu_isar_feature(aa64_sel2, cpu)) {
1857 valid_mask |= SCR_EEL2;
1858 }
8ddb300b
RH
1859 if (cpu_isar_feature(aa64_mte, cpu)) {
1860 valid_mask |= SCR_ATA;
1861 }
7cb1e618
RH
1862 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1863 valid_mask |= SCR_ENSCXT;
1864 }
7ac61020
PM
1865 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1866 valid_mask |= SCR_EASE | SCR_NMEA;
1867 }
06f2adcc
JF
1868 if (cpu_isar_feature(aa64_sme, cpu)) {
1869 valid_mask |= SCR_ENTP2;
1870 }
08899b5c
EI
1871 if (cpu_isar_feature(aa64_hcx, cpu)) {
1872 valid_mask |= SCR_HXEN;
1873 }
15126d9c
PM
1874 if (cpu_isar_feature(aa64_fgt, cpu)) {
1875 valid_mask |= SCR_FGTEN;
1876 }
ea22747c
RH
1877 } else {
1878 valid_mask &= ~(SCR_RW | SCR_ST);
da3d8b13
RH
1879 if (cpu_isar_feature(aa32_ras, cpu)) {
1880 valid_mask |= SCR_TERR;
1881 }
ea22747c 1882 }
64e0e2de
EI
1883
1884 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1885 valid_mask &= ~SCR_HCE;
1886
9b37a28c
FR
1887 /*
1888 * On ARMv7, SMD (or SCD as it is called in v7) is only
64e0e2de
EI
1889 * supported if EL2 exists. The bit is UNK/SBZP when
1890 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1891 * when EL2 is unavailable.
4eb27640 1892 * On ARMv8, this bit is always available.
64e0e2de 1893 */
4eb27640
GB
1894 if (arm_feature(env, ARM_FEATURE_V7) &&
1895 !arm_feature(env, ARM_FEATURE_V8)) {
64e0e2de
EI
1896 valid_mask &= ~SCR_SMD;
1897 }
1898 }
1899
1900 /* Clear all-context RES0 bits. */
1901 value &= valid_mask;
d902ae75
RH
1902 changed = env->cp15.scr_el3 ^ value;
1903 env->cp15.scr_el3 = value;
1904
1905 /*
1906 * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then
1907 * we must invalidate all TLBs below EL3.
1908 */
1909 if (changed & SCR_NS) {
1910 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1911 ARMMMUIdxBit_E20_0 |
1912 ARMMMUIdxBit_E10_1 |
1913 ARMMMUIdxBit_E20_2 |
1914 ARMMMUIdxBit_E10_1_PAN |
1915 ARMMMUIdxBit_E20_2_PAN |
1916 ARMMMUIdxBit_E2));
1917 }
64e0e2de
EI
1918}
1919
10d0ef3e
MN
1920static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1921{
1922 /*
1923 * scr_write will set the RES1 bits on an AArch64-only CPU.
1924 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1925 */
1926 scr_write(env, ri, 0);
1927}
1928
e2ce5fcd
PM
1929static CPAccessResult access_tid4(CPUARMState *env,
1930 const ARMCPRegInfo *ri,
1931 bool isread)
630fcd4d 1932{
e2ce5fcd
PM
1933 if (arm_current_el(env) == 1 &&
1934 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
630fcd4d
MZ
1935 return CP_ACCESS_TRAP_EL2;
1936 }
1937
1938 return CP_ACCESS_OK;
1939}
1940
c4241c7d 1941static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
776d4e5c 1942{
2fc0cc0e 1943 ARMCPU *cpu = env_archcpu(env);
b85a1fd6 1944
9b37a28c
FR
1945 /*
1946 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
b85a1fd6
FA
1947 * bank
1948 */
1949 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1950 ri->secure & ARM_CP_SECSTATE_S);
1951
1952 return cpu->ccsidr[index];
776d4e5c
PM
1953}
1954
c4241c7d
PM
1955static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1956 uint64_t value)
776d4e5c 1957{
8d5c773e 1958 raw_write(env, ri, value & 0xf);
776d4e5c
PM
1959}
1960
1090b9c6
PM
1961static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1962{
29a0af61 1963 CPUState *cs = env_cpu(env);
cc974d5c
RDC
1964 bool el1 = arm_current_el(env) == 1;
1965 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1090b9c6
PM
1966 uint64_t ret = 0;
1967
cc974d5c 1968 if (hcr_el2 & HCR_IMO) {
636540e9
PM
1969 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1970 ret |= CPSR_I;
1971 }
1972 } else {
1973 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1974 ret |= CPSR_I;
1975 }
1090b9c6 1976 }
636540e9 1977
cc974d5c 1978 if (hcr_el2 & HCR_FMO) {
636540e9
PM
1979 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1980 ret |= CPSR_F;
1981 }
1982 } else {
1983 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1984 ret |= CPSR_F;
1985 }
1090b9c6 1986 }
636540e9 1987
3c29632f
RH
1988 if (hcr_el2 & HCR_AMO) {
1989 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1990 ret |= CPSR_A;
1991 }
1992 }
1993
1090b9c6
PM
1994 return ret;
1995}
1996
93fbc983
MZ
1997static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1998 bool isread)
1999{
2000 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2001 return CP_ACCESS_TRAP_EL2;
2002 }
2003
2004 return CP_ACCESS_OK;
2005}
2006
2007static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2008 bool isread)
2009{
2010 if (arm_feature(env, ARM_FEATURE_V8)) {
2011 return access_aa64_tid1(env, ri, isread);
2012 }
2013
2014 return CP_ACCESS_OK;
2015}
2016
e9aa6c21 2017static const ARMCPRegInfo v7_cp_reginfo[] = {
7d57f408
PM
2018 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2019 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2020 .access = PL1_W, .type = ARM_CP_NOP },
9b37a28c
FR
2021 /*
2022 * Performance monitors are implementation defined in v7,
200ac0ef 2023 * but with an ARM recommended set of registers, which we
ac689a2e 2024 * follow.
200ac0ef
PM
2025 *
2026 * Performance registers fall into three categories:
2027 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2028 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2029 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2030 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2031 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2032 */
2033 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
7f4fbfb5 2034 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
8521466b 2035 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
2036 .writefn = pmcntenset_write,
2037 .accessfn = pmreg_access,
dc780233 2038 .fgt = FGT_PMCNTEN,
fcd25206 2039 .raw_writefn = raw_write },
7f4fbfb5 2040 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
8521466b
AF
2041 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2042 .access = PL0_RW, .accessfn = pmreg_access,
dc780233 2043 .fgt = FGT_PMCNTEN,
8521466b
AF
2044 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2045 .writefn = pmcntenset_write, .raw_writefn = raw_write },
200ac0ef 2046 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
8521466b
AF
2047 .access = PL0_RW,
2048 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206 2049 .accessfn = pmreg_access,
dc780233 2050 .fgt = FGT_PMCNTEN,
fcd25206 2051 .writefn = pmcntenclr_write,
7f4fbfb5 2052 .type = ARM_CP_ALIAS | ARM_CP_IO },
8521466b
AF
2053 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2054 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2055 .access = PL0_RW, .accessfn = pmreg_access,
dc780233 2056 .fgt = FGT_PMCNTEN,
7f4fbfb5 2057 .type = ARM_CP_ALIAS | ARM_CP_IO,
8521466b
AF
2058 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2059 .writefn = pmcntenclr_write },
200ac0ef 2060 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
f4efb4b2 2061 .access = PL0_RW, .type = ARM_CP_IO,
e4e91a21 2062 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
fcd25206 2063 .accessfn = pmreg_access,
dc780233 2064 .fgt = FGT_PMOVS,
fcd25206
PM
2065 .writefn = pmovsr_write,
2066 .raw_writefn = raw_write },
978364f1
AF
2067 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2068 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2069 .access = PL0_RW, .accessfn = pmreg_access,
dc780233 2070 .fgt = FGT_PMOVS,
f4efb4b2 2071 .type = ARM_CP_ALIAS | ARM_CP_IO,
978364f1
AF
2072 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2073 .writefn = pmovsr_write,
2074 .raw_writefn = raw_write },
200ac0ef 2075 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
f4efb4b2 2076 .access = PL0_W, .accessfn = pmreg_access_swinc,
dc780233 2077 .fgt = FGT_PMSWINC_EL0,
f4efb4b2 2078 .type = ARM_CP_NO_RAW | ARM_CP_IO,
0d4bfd7d
AL
2079 .writefn = pmswinc_write },
2080 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2081 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
f4efb4b2 2082 .access = PL0_W, .accessfn = pmreg_access_swinc,
dc780233 2083 .fgt = FGT_PMSWINC_EL0,
f4efb4b2 2084 .type = ARM_CP_NO_RAW | ARM_CP_IO,
0d4bfd7d 2085 .writefn = pmswinc_write },
6b040780
WH
2086 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2087 .access = PL0_RW, .type = ARM_CP_ALIAS,
dc780233 2088 .fgt = FGT_PMSELR_EL0,
6b040780 2089 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
6ecd0b6b 2090 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
6b040780
WH
2091 .raw_writefn = raw_write},
2092 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2093 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
6ecd0b6b 2094 .access = PL0_RW, .accessfn = pmreg_access_selr,
dc780233 2095 .fgt = FGT_PMSELR_EL0,
6b040780
WH
2096 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2097 .writefn = pmselr_write, .raw_writefn = raw_write, },
200ac0ef 2098 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
169c8938 2099 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
dc780233 2100 .fgt = FGT_PMCCNTR_EL0,
421c7ebd 2101 .readfn = pmccntr_read, .writefn = pmccntr_write32,
6ecd0b6b 2102 .accessfn = pmreg_access_ccntr },
8521466b
AF
2103 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2104 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
6ecd0b6b 2105 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
dc780233 2106 .fgt = FGT_PMCCNTR_EL0,
8521466b 2107 .type = ARM_CP_IO,
980ebe87
AL
2108 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2109 .readfn = pmccntr_read, .writefn = pmccntr_write,
2110 .raw_readfn = raw_read, .raw_writefn = raw_write, },
4b8afa1f
AL
2111 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2112 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2113 .access = PL0_RW, .accessfn = pmreg_access,
dc780233 2114 .fgt = FGT_PMCCFILTR_EL0,
4b8afa1f
AL
2115 .type = ARM_CP_ALIAS | ARM_CP_IO,
2116 .resetvalue = 0, },
8521466b
AF
2117 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2118 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
980ebe87 2119 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
8521466b 2120 .access = PL0_RW, .accessfn = pmreg_access,
dc780233 2121 .fgt = FGT_PMCCFILTR_EL0,
8521466b
AF
2122 .type = ARM_CP_IO,
2123 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2124 .resetvalue = 0, },
200ac0ef 2125 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
5ecdd3e4
AL
2126 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2127 .accessfn = pmreg_access,
dc780233 2128 .fgt = FGT_PMEVTYPERN_EL0,
fdb86656
WH
2129 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2130 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2131 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
5ecdd3e4
AL
2132 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2133 .accessfn = pmreg_access,
dc780233 2134 .fgt = FGT_PMEVTYPERN_EL0,
fdb86656 2135 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
200ac0ef 2136 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
5ecdd3e4
AL
2137 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2138 .accessfn = pmreg_access_xevcntr,
dc780233 2139 .fgt = FGT_PMEVCNTRN_EL0,
5ecdd3e4
AL
2140 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2141 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2142 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2143 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2144 .accessfn = pmreg_access_xevcntr,
dc780233 2145 .fgt = FGT_PMEVCNTRN_EL0,
5ecdd3e4 2146 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
200ac0ef 2147 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1fce1ba9 2148 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
e4e91a21 2149 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
200ac0ef 2150 .resetvalue = 0,
d4e6df63 2151 .writefn = pmuserenr_write, .raw_writefn = raw_write },
8a83ffc2
AF
2152 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2153 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1fce1ba9 2154 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
8a83ffc2
AF
2155 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2156 .resetvalue = 0,
2157 .writefn = pmuserenr_write, .raw_writefn = raw_write },
200ac0ef 2158 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1fce1ba9 2159 .access = PL1_RW, .accessfn = access_tpm,
dc780233 2160 .fgt = FGT_PMINTEN,
b7d793ad 2161 .type = ARM_CP_ALIAS | ARM_CP_IO,
e6ec5457 2162 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
200ac0ef 2163 .resetvalue = 0,
d4e6df63 2164 .writefn = pmintenset_write, .raw_writefn = raw_write },
e6ec5457
WH
2165 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2166 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2167 .access = PL1_RW, .accessfn = access_tpm,
dc780233 2168 .fgt = FGT_PMINTEN,
e6ec5457
WH
2169 .type = ARM_CP_IO,
2170 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2171 .writefn = pmintenset_write, .raw_writefn = raw_write,
2172 .resetvalue = 0x0 },
200ac0ef 2173 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
fc5f6856 2174 .access = PL1_RW, .accessfn = access_tpm,
dc780233 2175 .fgt = FGT_PMINTEN,
887c0f15 2176 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
200ac0ef 2177 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
b061a82b 2178 .writefn = pmintenclr_write, },
978364f1
AF
2179 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2180 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
fc5f6856 2181 .access = PL1_RW, .accessfn = access_tpm,
dc780233 2182 .fgt = FGT_PMINTEN,
887c0f15 2183 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
978364f1
AF
2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2185 .writefn = pmintenclr_write },
7da845b0
PM
2186 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2187 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
630fcd4d 2188 .access = PL1_R,
e2ce5fcd 2189 .accessfn = access_tid4,
158c276c 2190 .fgt = FGT_CCSIDR_EL1,
630fcd4d 2191 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
7da845b0
PM
2192 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2193 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
630fcd4d 2194 .access = PL1_RW,
e2ce5fcd 2195 .accessfn = access_tid4,
b19ed03c 2196 .fgt = FGT_CSSELR_EL1,
630fcd4d 2197 .writefn = csselr_write, .resetvalue = 0,
b85a1fd6
FA
2198 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2199 offsetof(CPUARMState, cp15.csselr_ns) } },
9b37a28c
FR
2200 /*
2201 * Auxiliary ID register: this actually has an IMPDEF value but for now
776d4e5c
PM
2202 * just RAZ for all cores:
2203 */
0ff644a7
PM
2204 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2205 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
93fbc983
MZ
2206 .access = PL1_R, .type = ARM_CP_CONST,
2207 .accessfn = access_aa64_tid1,
158c276c 2208 .fgt = FGT_AIDR_EL1,
93fbc983 2209 .resetvalue = 0 },
9b37a28c
FR
2210 /*
2211 * Auxiliary fault status registers: these also are IMPDEF, and we
f32cdad5
PM
2212 * choose to RAZ/WI for all cores.
2213 */
2214 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2215 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
84929218 2216 .access = PL1_RW, .accessfn = access_tvm_trvm,
158c276c 2217 .fgt = FGT_AFSR0_EL1,
84929218 2218 .type = ARM_CP_CONST, .resetvalue = 0 },
f32cdad5
PM
2219 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2220 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
84929218 2221 .access = PL1_RW, .accessfn = access_tvm_trvm,
158c276c 2222 .fgt = FGT_AFSR1_EL1,
84929218 2223 .type = ARM_CP_CONST, .resetvalue = 0 },
9b37a28c
FR
2224 /*
2225 * MAIR can just read-as-written because we don't implement caches
b0fe2427
PM
2226 * and so don't need to care about memory attributes.
2227 */
2228 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2229 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
84929218 2230 .access = PL1_RW, .accessfn = access_tvm_trvm,
67dd8030 2231 .fgt = FGT_MAIR_EL1,
84929218 2232 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
b0fe2427 2233 .resetvalue = 0 },
4cfb8ad8
PM
2234 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2235 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2236 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2237 .resetvalue = 0 },
9b37a28c
FR
2238 /*
2239 * For non-long-descriptor page tables these are PRRR and NMRR;
b0fe2427 2240 * regardless they still act as reads-as-written for QEMU.
b0fe2427 2241 */
9b37a28c
FR
2242 /*
2243 * MAIR0/1 are defined separately from their 64-bit counterpart which
be693c87
GB
2244 * allows them to assign the correct fieldoffset based on the endianness
2245 * handled in the field definitions.
2246 */
a903c449 2247 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
84929218
RH
2248 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2249 .access = PL1_RW, .accessfn = access_tvm_trvm,
be693c87
GB
2250 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2251 offsetof(CPUARMState, cp15.mair0_ns) },
b0fe2427 2252 .resetfn = arm_cp_reset_ignore },
a903c449 2253 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
84929218
RH
2254 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2255 .access = PL1_RW, .accessfn = access_tvm_trvm,
be693c87
GB
2256 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2257 offsetof(CPUARMState, cp15.mair1_ns) },
b0fe2427 2258 .resetfn = arm_cp_reset_ignore },
1090b9c6
PM
2259 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2260 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
b19ed03c 2261 .fgt = FGT_ISR_EL1,
7a0e58fa 2262 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
995939a6
PM
2263 /* 32 bit ITLB invalidates */
2264 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
30881b73
RH
2265 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2266 .writefn = tlbiall_write },
995939a6 2267 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
30881b73
RH
2268 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2269 .writefn = tlbimva_write },
995939a6 2270 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
30881b73
RH
2271 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2272 .writefn = tlbiasid_write },
995939a6
PM
2273 /* 32 bit DTLB invalidates */
2274 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
30881b73
RH
2275 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2276 .writefn = tlbiall_write },
995939a6 2277 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
30881b73
RH
2278 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2279 .writefn = tlbimva_write },
995939a6 2280 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
30881b73
RH
2281 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2282 .writefn = tlbiasid_write },
995939a6
PM
2283 /* 32 bit TLB invalidates */
2284 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
30881b73
RH
2285 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2286 .writefn = tlbiall_write },
995939a6 2287 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
30881b73
RH
2288 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2289 .writefn = tlbimva_write },
995939a6 2290 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
30881b73
RH
2291 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2292 .writefn = tlbiasid_write },
995939a6 2293 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
30881b73
RH
2294 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2295 .writefn = tlbimvaa_write },
995939a6
PM
2296};
2297
2298static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2299 /* 32 bit TLB invalidates, Inner Shareable */
2300 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
0f66d223 2301 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
30881b73 2302 .writefn = tlbiall_is_write },
995939a6 2303 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
0f66d223 2304 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
30881b73 2305 .writefn = tlbimva_is_write },
995939a6 2306 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
0f66d223 2307 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
fa439fc5 2308 .writefn = tlbiasid_is_write },
995939a6 2309 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
0f66d223 2310 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
fa439fc5 2311 .writefn = tlbimvaa_is_write },
e9aa6c21
PM
2312};
2313
327dd510
AL
2314static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2315 /* PMOVSSET is not implemented in v7 before v7ve */
2316 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2317 .access = PL0_RW, .accessfn = pmreg_access,
dc780233 2318 .fgt = FGT_PMOVS,
f4efb4b2 2319 .type = ARM_CP_ALIAS | ARM_CP_IO,
327dd510
AL
2320 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2321 .writefn = pmovsset_write,
2322 .raw_writefn = raw_write },
2323 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2324 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2325 .access = PL0_RW, .accessfn = pmreg_access,
dc780233 2326 .fgt = FGT_PMOVS,
f4efb4b2 2327 .type = ARM_CP_ALIAS | ARM_CP_IO,
327dd510
AL
2328 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2329 .writefn = pmovsset_write,
2330 .raw_writefn = raw_write },
327dd510
AL
2331};
2332
c4241c7d
PM
2333static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2334 uint64_t value)
c326b979
PM
2335{
2336 value &= 1;
2337 env->teecr = value;
c326b979
PM
2338}
2339
cc7613bf
PM
2340static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2341 bool isread)
2342{
2343 /*
2344 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2345 * at all, so we don't need to check whether we're v8A.
2346 */
2347 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2348 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2349 return CP_ACCESS_TRAP_EL2;
2350 }
2351 return CP_ACCESS_OK;
2352}
2353
3f208fd7
PM
2354static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2355 bool isread)
c326b979 2356{
dcbff19b 2357 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
92611c00 2358 return CP_ACCESS_TRAP;
c326b979 2359 }
cc7613bf 2360 return teecr_access(env, ri, isread);
c326b979
PM
2361}
2362
2363static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2364 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2365 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2366 .resetvalue = 0,
cc7613bf 2367 .writefn = teecr_write, .accessfn = teecr_access },
c326b979
PM
2368 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2369 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
92611c00 2370 .accessfn = teehbr_access, .resetvalue = 0 },
c326b979
PM
2371};
2372
4d31c596 2373static const ARMCPRegInfo v6k_cp_reginfo[] = {
e4fe830b
PM
2374 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2375 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2376 .access = PL0_RW,
67dd8030 2377 .fgt = FGT_TPIDR_EL0,
54bf36ed 2378 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
4d31c596
PM
2379 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2380 .access = PL0_RW,
67dd8030 2381 .fgt = FGT_TPIDR_EL0,
54bf36ed
FA
2382 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2383 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
e4fe830b
PM
2384 .resetfn = arm_cp_reset_ignore },
2385 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2386 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
04215eb1 2387 .access = PL0_R | PL1_W,
67dd8030 2388 .fgt = FGT_TPIDRRO_EL0,
54bf36ed
FA
2389 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2390 .resetvalue = 0},
4d31c596 2391 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
04215eb1 2392 .access = PL0_R | PL1_W,
67dd8030 2393 .fgt = FGT_TPIDRRO_EL0,
54bf36ed
FA
2394 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2395 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
e4fe830b 2396 .resetfn = arm_cp_reset_ignore },
54bf36ed 2397 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
e4fe830b 2398 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
4d31c596 2399 .access = PL1_RW,
67dd8030 2400 .fgt = FGT_TPIDR_EL1,
54bf36ed
FA
2401 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2402 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2403 .access = PL1_RW,
2404 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2405 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2406 .resetvalue = 0 },
4d31c596
PM
2407};
2408
55d284af
PM
2409#ifndef CONFIG_USER_ONLY
2410
3f208fd7
PM
2411static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2412 bool isread)
00108f2d 2413{
9b37a28c
FR
2414 /*
2415 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
75502672
PM
2416 * Writable only at the highest implemented exception level.
2417 */
2418 int el = arm_current_el(env);
5bc84371
RH
2419 uint64_t hcr;
2420 uint32_t cntkctl;
75502672
PM
2421
2422 switch (el) {
2423 case 0:
5bc84371
RH
2424 hcr = arm_hcr_el2_eff(env);
2425 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2426 cntkctl = env->cp15.cnthctl_el2;
2427 } else {
2428 cntkctl = env->cp15.c14_cntkctl;
2429 }
2430 if (!extract32(cntkctl, 0, 2)) {
75502672
PM
2431 return CP_ACCESS_TRAP;
2432 }
2433 break;
2434 case 1:
2435 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2436 arm_is_secure_below_el3(env)) {
2437 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2438 return CP_ACCESS_TRAP_UNCATEGORIZED;
2439 }
2440 break;
2441 case 2:
2442 case 3:
2443 break;
00108f2d 2444 }
75502672
PM
2445
2446 if (!isread && el < arm_highest_el(env)) {
2447 return CP_ACCESS_TRAP_UNCATEGORIZED;
2448 }
2449
00108f2d
PM
2450 return CP_ACCESS_OK;
2451}
2452
3f208fd7
PM
2453static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2454 bool isread)
00108f2d 2455{
0b6440af 2456 unsigned int cur_el = arm_current_el(env);
e6ef0169 2457 bool has_el2 = arm_is_el2_enabled(env);
5bc84371 2458 uint64_t hcr = arm_hcr_el2_eff(env);
0b6440af 2459
5bc84371
RH
2460 switch (cur_el) {
2461 case 0:
2462 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2463 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2464 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2465 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2466 }
0b6440af 2467
5bc84371
RH
2468 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2469 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2470 return CP_ACCESS_TRAP;
2471 }
2472
2473 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2474 if (hcr & HCR_E2H) {
2475 if (timeridx == GTIMER_PHYS &&
2476 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2477 return CP_ACCESS_TRAP_EL2;
2478 }
2479 } else {
2480 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
e6ef0169 2481 if (has_el2 && timeridx == GTIMER_PHYS &&
5bc84371
RH
2482 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2483 return CP_ACCESS_TRAP_EL2;
2484 }
2485 }
2486 break;
2487
2488 case 1:
2489 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
e6ef0169 2490 if (has_el2 && timeridx == GTIMER_PHYS &&
5bc84371
RH
2491 (hcr & HCR_E2H
2492 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2493 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2494 return CP_ACCESS_TRAP_EL2;
2495 }
2496 break;
0b6440af 2497 }
00108f2d
PM
2498 return CP_ACCESS_OK;
2499}
2500
3f208fd7
PM
2501static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2502 bool isread)
00108f2d 2503{
0b6440af 2504 unsigned int cur_el = arm_current_el(env);
e6ef0169 2505 bool has_el2 = arm_is_el2_enabled(env);
5bc84371 2506 uint64_t hcr = arm_hcr_el2_eff(env);
0b6440af 2507
5bc84371
RH
2508 switch (cur_el) {
2509 case 0:
2510 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2511 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2512 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2513 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2514 }
0b6440af 2515
5bc84371
RH
2516 /*
2517 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2518 * EL0 if EL0[PV]TEN is zero.
2519 */
2520 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2521 return CP_ACCESS_TRAP;
2522 }
2523 /* fall through */
2524
2525 case 1:
e6ef0169 2526 if (has_el2 && timeridx == GTIMER_PHYS) {
5bc84371
RH
2527 if (hcr & HCR_E2H) {
2528 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2529 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2530 return CP_ACCESS_TRAP_EL2;
2531 }
2532 } else {
2533 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2534 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2535 return CP_ACCESS_TRAP_EL2;
2536 }
2537 }
2538 }
2539 break;
0b6440af 2540 }
00108f2d
PM
2541 return CP_ACCESS_OK;
2542}
2543
2544static CPAccessResult gt_pct_access(CPUARMState *env,
3f208fd7
PM
2545 const ARMCPRegInfo *ri,
2546 bool isread)
00108f2d 2547{
3f208fd7 2548 return gt_counter_access(env, GTIMER_PHYS, isread);
00108f2d
PM
2549}
2550
2551static CPAccessResult gt_vct_access(CPUARMState *env,
3f208fd7
PM
2552 const ARMCPRegInfo *ri,
2553 bool isread)
00108f2d 2554{
3f208fd7 2555 return gt_counter_access(env, GTIMER_VIRT, isread);
00108f2d
PM
2556}
2557
3f208fd7
PM
2558static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2559 bool isread)
00108f2d 2560{
3f208fd7 2561 return gt_timer_access(env, GTIMER_PHYS, isread);
00108f2d
PM
2562}
2563
3f208fd7
PM
2564static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2565 bool isread)
00108f2d 2566{
3f208fd7 2567 return gt_timer_access(env, GTIMER_VIRT, isread);
00108f2d
PM
2568}
2569
b4d3978c 2570static CPAccessResult gt_stimer_access(CPUARMState *env,
3f208fd7
PM
2571 const ARMCPRegInfo *ri,
2572 bool isread)
b4d3978c 2573{
9b37a28c
FR
2574 /*
2575 * The AArch64 register view of the secure physical timer is
b4d3978c
PM
2576 * always accessible from EL3, and configurably accessible from
2577 * Secure EL1.
2578 */
2579 switch (arm_current_el(env)) {
2580 case 1:
2581 if (!arm_is_secure(env)) {
2582 return CP_ACCESS_TRAP;
2583 }
2584 if (!(env->cp15.scr_el3 & SCR_ST)) {
2585 return CP_ACCESS_TRAP_EL3;
2586 }
2587 return CP_ACCESS_OK;
2588 case 0:
2589 case 2:
2590 return CP_ACCESS_TRAP;
2591 case 3:
2592 return CP_ACCESS_OK;
2593 default:
2594 g_assert_not_reached();
2595 }
2596}
2597
55d284af
PM
2598static uint64_t gt_get_countervalue(CPUARMState *env)
2599{
7def8754
AJ
2600 ARMCPU *cpu = env_archcpu(env);
2601
2602 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
55d284af
PM
2603}
2604
2605static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2606{
2607 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2608
2609 if (gt->ctl & 1) {
9b37a28c
FR
2610 /*
2611 * Timer enabled: calculate and set current ISTATUS, irq, and
55d284af
PM
2612 * reset timer to when ISTATUS next has to change
2613 */
edac4d8a
EI
2614 uint64_t offset = timeridx == GTIMER_VIRT ?
2615 cpu->env.cp15.cntvoff_el2 : 0;
55d284af
PM
2616 uint64_t count = gt_get_countervalue(&cpu->env);
2617 /* Note that this must be unsigned 64 bit arithmetic: */
edac4d8a 2618 int istatus = count - offset >= gt->cval;
55d284af 2619 uint64_t nexttick;
194cbc49 2620 int irqstate;
55d284af
PM
2621
2622 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
194cbc49
PM
2623
2624 irqstate = (istatus && !(gt->ctl & 2));
2625 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2626
55d284af
PM
2627 if (istatus) {
2628 /* Next transition is when count rolls back over to zero */
2629 nexttick = UINT64_MAX;
2630 } else {
2631 /* Next transition is when we hit cval */
edac4d8a 2632 nexttick = gt->cval + offset;
55d284af 2633 }
9b37a28c
FR
2634 /*
2635 * Note that the desired next expiry time might be beyond the
55d284af
PM
2636 * signed-64-bit range of a QEMUTimer -- in this case we just
2637 * set the timer for as far in the future as possible. When the
2638 * timer expires we will reset the timer for any remaining period.
2639 */
7def8754 2640 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
4a0245b6
AJ
2641 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2642 } else {
2643 timer_mod(cpu->gt_timer[timeridx], nexttick);
55d284af 2644 }
194cbc49 2645 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
55d284af
PM
2646 } else {
2647 /* Timer disabled: ISTATUS and timer output always clear */
2648 gt->ctl &= ~4;
2649 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
bc72ad67 2650 timer_del(cpu->gt_timer[timeridx]);
194cbc49 2651 trace_arm_gt_recalc_disabled(timeridx);
55d284af
PM
2652 }
2653}
2654
0e3eca4c
EI
2655static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2656 int timeridx)
55d284af 2657{
2fc0cc0e 2658 ARMCPU *cpu = env_archcpu(env);
55d284af 2659
bc72ad67 2660 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
2661}
2662
c4241c7d 2663static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af 2664{
c4241c7d 2665 return gt_get_countervalue(env);
55d284af
PM
2666}
2667
53d1f856
RH
2668static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2669{
2670 uint64_t hcr;
2671
2672 switch (arm_current_el(env)) {
2673 case 2:
2674 hcr = arm_hcr_el2_eff(env);
2675 if (hcr & HCR_E2H) {
2676 return 0;
2677 }
2678 break;
2679 case 0:
2680 hcr = arm_hcr_el2_eff(env);
2681 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2682 return 0;
2683 }
2684 break;
2685 }
2686
2687 return env->cp15.cntvoff_el2;
2688}
2689
edac4d8a
EI
2690static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2691{
53d1f856 2692 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
edac4d8a
EI
2693}
2694
c4241c7d 2695static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 2696 int timeridx,
c4241c7d 2697 uint64_t value)
55d284af 2698{
194cbc49 2699 trace_arm_gt_cval_write(timeridx, value);
55d284af 2700 env->cp15.c14_timer[timeridx].cval = value;
2fc0cc0e 2701 gt_recalc_timer(env_archcpu(env), timeridx);
55d284af 2702}
c4241c7d 2703
0e3eca4c
EI
2704static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2705 int timeridx)
55d284af 2706{
53d1f856
RH
2707 uint64_t offset = 0;
2708
2709 switch (timeridx) {
2710 case GTIMER_VIRT:
8c94b071 2711 case GTIMER_HYPVIRT:
53d1f856
RH
2712 offset = gt_virt_cnt_offset(env);
2713 break;
2714 }
55d284af 2715
c4241c7d 2716 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
edac4d8a 2717 (gt_get_countervalue(env) - offset));
55d284af
PM
2718}
2719
c4241c7d 2720static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 2721 int timeridx,
c4241c7d 2722 uint64_t value)
55d284af 2723{
53d1f856
RH
2724 uint64_t offset = 0;
2725
2726 switch (timeridx) {
2727 case GTIMER_VIRT:
8c94b071 2728 case GTIMER_HYPVIRT:
53d1f856
RH
2729 offset = gt_virt_cnt_offset(env);
2730 break;
2731 }
55d284af 2732
194cbc49 2733 trace_arm_gt_tval_write(timeridx, value);
edac4d8a 2734 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
18084b2f 2735 sextract64(value, 0, 32);
2fc0cc0e 2736 gt_recalc_timer(env_archcpu(env), timeridx);
55d284af
PM
2737}
2738
c4241c7d 2739static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 2740 int timeridx,
c4241c7d 2741 uint64_t value)
55d284af 2742{
2fc0cc0e 2743 ARMCPU *cpu = env_archcpu(env);
55d284af
PM
2744 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2745
194cbc49 2746 trace_arm_gt_ctl_write(timeridx, value);
d3afacc7 2747 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
55d284af
PM
2748 if ((oldval ^ value) & 1) {
2749 /* Enable toggled */
2750 gt_recalc_timer(cpu, timeridx);
d3afacc7 2751 } else if ((oldval ^ value) & 2) {
9b37a28c
FR
2752 /*
2753 * IMASK toggled: don't need to recalculate,
55d284af
PM
2754 * just set the interrupt line based on ISTATUS
2755 */
194cbc49
PM
2756 int irqstate = (oldval & 4) && !(value & 2);
2757
2758 trace_arm_gt_imask_toggle(timeridx, irqstate);
2759 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
55d284af 2760 }
55d284af
PM
2761}
2762
0e3eca4c
EI
2763static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2764{
2765 gt_timer_reset(env, ri, GTIMER_PHYS);
2766}
2767
2768static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2769 uint64_t value)
2770{
2771 gt_cval_write(env, ri, GTIMER_PHYS, value);
2772}
2773
2774static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2775{
2776 return gt_tval_read(env, ri, GTIMER_PHYS);
2777}
2778
2779static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2780 uint64_t value)
2781{
2782 gt_tval_write(env, ri, GTIMER_PHYS, value);
2783}
2784
2785static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2786 uint64_t value)
2787{
2788 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2789}
2790
bb5972e4
RH
2791static int gt_phys_redir_timeridx(CPUARMState *env)
2792{
2793 switch (arm_mmu_idx(env)) {
2794 case ARMMMUIdx_E20_0:
2795 case ARMMMUIdx_E20_2:
452ef8cb 2796 case ARMMMUIdx_E20_2_PAN:
bb5972e4
RH
2797 return GTIMER_HYP;
2798 default:
2799 return GTIMER_PHYS;
2800 }
2801}
2802
2803static int gt_virt_redir_timeridx(CPUARMState *env)
2804{
2805 switch (arm_mmu_idx(env)) {
2806 case ARMMMUIdx_E20_0:
2807 case ARMMMUIdx_E20_2:
452ef8cb 2808 case ARMMMUIdx_E20_2_PAN:
bb5972e4
RH
2809 return GTIMER_HYPVIRT;
2810 default:
2811 return GTIMER_VIRT;
2812 }
2813}
2814
2815static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2816 const ARMCPRegInfo *ri)
2817{
2818 int timeridx = gt_phys_redir_timeridx(env);
2819 return env->cp15.c14_timer[timeridx].cval;
2820}
2821
2822static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2823 uint64_t value)
2824{
2825 int timeridx = gt_phys_redir_timeridx(env);
2826 gt_cval_write(env, ri, timeridx, value);
2827}
2828
2829static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2830 const ARMCPRegInfo *ri)
2831{
2832 int timeridx = gt_phys_redir_timeridx(env);
2833 return gt_tval_read(env, ri, timeridx);
2834}
2835
2836static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2837 uint64_t value)
2838{
2839 int timeridx = gt_phys_redir_timeridx(env);
2840 gt_tval_write(env, ri, timeridx, value);
2841}
2842
2843static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2844 const ARMCPRegInfo *ri)
2845{
2846 int timeridx = gt_phys_redir_timeridx(env);
2847 return env->cp15.c14_timer[timeridx].ctl;
2848}
2849
2850static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2851 uint64_t value)
2852{
2853 int timeridx = gt_phys_redir_timeridx(env);
2854 gt_ctl_write(env, ri, timeridx, value);
2855}
2856
0e3eca4c
EI
2857static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2858{
2859 gt_timer_reset(env, ri, GTIMER_VIRT);
2860}
2861
2862static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2863 uint64_t value)
2864{
2865 gt_cval_write(env, ri, GTIMER_VIRT, value);
2866}
2867
2868static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2869{
2870 return gt_tval_read(env, ri, GTIMER_VIRT);
2871}
2872
2873static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2874 uint64_t value)
2875{
2876 gt_tval_write(env, ri, GTIMER_VIRT, value);
2877}
2878
2879static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2880 uint64_t value)
2881{
2882 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2883}
2884
edac4d8a
EI
2885static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2886 uint64_t value)
2887{
2fc0cc0e 2888 ARMCPU *cpu = env_archcpu(env);
edac4d8a 2889
194cbc49 2890 trace_arm_gt_cntvoff_write(value);
edac4d8a
EI
2891 raw_write(env, ri, value);
2892 gt_recalc_timer(cpu, GTIMER_VIRT);
2893}
2894
bb5972e4
RH
2895static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2896 const ARMCPRegInfo *ri)
2897{
2898 int timeridx = gt_virt_redir_timeridx(env);
2899 return env->cp15.c14_timer[timeridx].cval;
2900}
2901
2902static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2903 uint64_t value)
2904{
2905 int timeridx = gt_virt_redir_timeridx(env);
2906 gt_cval_write(env, ri, timeridx, value);
2907}
2908
2909static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2910 const ARMCPRegInfo *ri)
2911{
2912 int timeridx = gt_virt_redir_timeridx(env);
2913 return gt_tval_read(env, ri, timeridx);
2914}
2915
2916static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2917 uint64_t value)
2918{
2919 int timeridx = gt_virt_redir_timeridx(env);
2920 gt_tval_write(env, ri, timeridx, value);
2921}
2922
2923static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2924 const ARMCPRegInfo *ri)
2925{
2926 int timeridx = gt_virt_redir_timeridx(env);
2927 return env->cp15.c14_timer[timeridx].ctl;
2928}
2929
2930static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2931 uint64_t value)
2932{
2933 int timeridx = gt_virt_redir_timeridx(env);
2934 gt_ctl_write(env, ri, timeridx, value);
2935}
2936
b0e66d95
EI
2937static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2938{
2939 gt_timer_reset(env, ri, GTIMER_HYP);
2940}
2941
2942static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2943 uint64_t value)
2944{
2945 gt_cval_write(env, ri, GTIMER_HYP, value);
2946}
2947
2948static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2949{
2950 return gt_tval_read(env, ri, GTIMER_HYP);
2951}
2952
2953static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2954 uint64_t value)
2955{
2956 gt_tval_write(env, ri, GTIMER_HYP, value);
2957}
2958
2959static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2960 uint64_t value)
2961{
2962 gt_ctl_write(env, ri, GTIMER_HYP, value);
2963}
2964
b4d3978c
PM
2965static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2966{
2967 gt_timer_reset(env, ri, GTIMER_SEC);
2968}
2969
2970static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2971 uint64_t value)
2972{
2973 gt_cval_write(env, ri, GTIMER_SEC, value);
2974}
2975
2976static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2977{
2978 return gt_tval_read(env, ri, GTIMER_SEC);
2979}
2980
2981static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2982 uint64_t value)
2983{
2984 gt_tval_write(env, ri, GTIMER_SEC, value);
2985}
2986
2987static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2988 uint64_t value)
2989{
2990 gt_ctl_write(env, ri, GTIMER_SEC, value);
2991}
2992
8c94b071
RH
2993static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2994{
2995 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2996}
2997
2998static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2999 uint64_t value)
3000{
3001 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3002}
3003
3004static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3005{
3006 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3007}
3008
3009static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010 uint64_t value)
3011{
3012 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3013}
3014
3015static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016 uint64_t value)
3017{
3018 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3019}
3020
55d284af
PM
3021void arm_gt_ptimer_cb(void *opaque)
3022{
3023 ARMCPU *cpu = opaque;
3024
3025 gt_recalc_timer(cpu, GTIMER_PHYS);
3026}
3027
3028void arm_gt_vtimer_cb(void *opaque)
3029{
3030 ARMCPU *cpu = opaque;
3031
3032 gt_recalc_timer(cpu, GTIMER_VIRT);
3033}
3034
b0e66d95
EI
3035void arm_gt_htimer_cb(void *opaque)
3036{
3037 ARMCPU *cpu = opaque;
3038
3039 gt_recalc_timer(cpu, GTIMER_HYP);
3040}
3041
b4d3978c
PM
3042void arm_gt_stimer_cb(void *opaque)
3043{
3044 ARMCPU *cpu = opaque;
3045
3046 gt_recalc_timer(cpu, GTIMER_SEC);
3047}
3048
8c94b071
RH
3049void arm_gt_hvtimer_cb(void *opaque)
3050{
3051 ARMCPU *cpu = opaque;
3052
3053 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3054}
3055
96eec6b2
AJ
3056static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3057{
3058 ARMCPU *cpu = env_archcpu(env);
3059
3060 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3061}
3062
55d284af 3063static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
9b37a28c
FR
3064 /*
3065 * Note that CNTFRQ is purely reads-as-written for the benefit
55d284af
PM
3066 * of software; writing it doesn't actually change the timer frequency.
3067 * Our reset value matches the fixed frequency we implement the timer at.
3068 */
3069 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 3070 .type = ARM_CP_ALIAS,
a7adc4b7
PM
3071 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3072 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
a7adc4b7
PM
3073 },
3074 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3075 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3076 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
55d284af 3077 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
96eec6b2 3078 .resetfn = arm_gt_cntfrq_reset,
55d284af
PM
3079 },
3080 /* overall control: mostly access permissions */
a7adc4b7
PM
3081 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3082 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
55d284af
PM
3083 .access = PL1_RW,
3084 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3085 .resetvalue = 0,
3086 },
3087 /* per-timer control */
3088 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
9ff9dd3c 3089 .secure = ARM_CP_SECSTATE_NS,
daf1dc5f 3090 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
a7adc4b7
PM
3091 .accessfn = gt_ptimer_access,
3092 .fieldoffset = offsetoflow32(CPUARMState,
3093 cp15.c14_timer[GTIMER_PHYS].ctl),
bb5972e4
RH
3094 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3095 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
a7adc4b7 3096 },
9c513e78 3097 { .name = "CNTP_CTL_S",
9ff9dd3c
PM
3098 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3099 .secure = ARM_CP_SECSTATE_S,
daf1dc5f 3100 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
9ff9dd3c
PM
3101 .accessfn = gt_ptimer_access,
3102 .fieldoffset = offsetoflow32(CPUARMState,
3103 cp15.c14_timer[GTIMER_SEC].ctl),
3104 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3105 },
a7adc4b7
PM
3106 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3107 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
daf1dc5f 3108 .type = ARM_CP_IO, .access = PL0_RW,
a7adc4b7 3109 .accessfn = gt_ptimer_access,
55d284af
PM
3110 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3111 .resetvalue = 0,
bb5972e4
RH
3112 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3113 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
55d284af
PM
3114 },
3115 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
daf1dc5f 3116 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
a7adc4b7
PM
3117 .accessfn = gt_vtimer_access,
3118 .fieldoffset = offsetoflow32(CPUARMState,
3119 cp15.c14_timer[GTIMER_VIRT].ctl),
bb5972e4
RH
3120 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3121 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
a7adc4b7
PM
3122 },
3123 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
daf1dc5f 3125 .type = ARM_CP_IO, .access = PL0_RW,
a7adc4b7 3126 .accessfn = gt_vtimer_access,
55d284af
PM
3127 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3128 .resetvalue = 0,
bb5972e4
RH
3129 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3130 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
55d284af
PM
3131 },
3132 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3133 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
9ff9dd3c 3134 .secure = ARM_CP_SECSTATE_NS,
daf1dc5f 3135 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
00108f2d 3136 .accessfn = gt_ptimer_access,
bb5972e4 3137 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
55d284af 3138 },
9c513e78 3139 { .name = "CNTP_TVAL_S",
9ff9dd3c
PM
3140 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3141 .secure = ARM_CP_SECSTATE_S,
daf1dc5f 3142 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
9ff9dd3c
PM
3143 .accessfn = gt_ptimer_access,
3144 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3145 },
a7adc4b7
PM
3146 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3147 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
daf1dc5f 3148 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
0e3eca4c 3149 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
bb5972e4 3150 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
a7adc4b7 3151 },
55d284af 3152 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
daf1dc5f 3153 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
00108f2d 3154 .accessfn = gt_vtimer_access,
bb5972e4 3155 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
55d284af 3156 },
a7adc4b7
PM
3157 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3158 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
daf1dc5f 3159 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
0e3eca4c 3160 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
bb5972e4 3161 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
a7adc4b7 3162 },
55d284af
PM
3163 /* The counter itself */
3164 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
7a0e58fa 3165 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 3166 .accessfn = gt_pct_access,
a7adc4b7
PM
3167 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3168 },
3169 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3170 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
7a0e58fa 3171 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 3172 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
55d284af
PM
3173 },
3174 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
7a0e58fa 3175 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 3176 .accessfn = gt_vct_access,
edac4d8a 3177 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
a7adc4b7
PM
3178 },
3179 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3180 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
7a0e58fa 3181 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 3182 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
55d284af
PM
3183 },
3184 /* Comparison value, indicating when the timer goes off */
3185 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 3186 .secure = ARM_CP_SECSTATE_NS,
daf1dc5f 3187 .access = PL0_RW,
7a0e58fa 3188 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 3189 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
b061a82b 3190 .accessfn = gt_ptimer_access,
bb5972e4
RH
3191 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3192 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
a7adc4b7 3193 },
9c513e78 3194 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 3195 .secure = ARM_CP_SECSTATE_S,
daf1dc5f 3196 .access = PL0_RW,
9ff9dd3c
PM
3197 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3198 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3199 .accessfn = gt_ptimer_access,
3200 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3201 },
a7adc4b7
PM
3202 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3203 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
daf1dc5f 3204 .access = PL0_RW,
a7adc4b7
PM
3205 .type = ARM_CP_IO,
3206 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
12cde08a 3207 .resetvalue = 0, .accessfn = gt_ptimer_access,
bb5972e4
RH
3208 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3209 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
55d284af
PM
3210 },
3211 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
daf1dc5f 3212 .access = PL0_RW,
7a0e58fa 3213 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 3214 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
b061a82b 3215 .accessfn = gt_vtimer_access,
bb5972e4
RH
3216 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3217 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
a7adc4b7
PM
3218 },
3219 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3220 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
daf1dc5f 3221 .access = PL0_RW,
a7adc4b7
PM
3222 .type = ARM_CP_IO,
3223 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3224 .resetvalue = 0, .accessfn = gt_vtimer_access,
bb5972e4
RH
3225 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3226 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
55d284af 3227 },
9b37a28c
FR
3228 /*
3229 * Secure timer -- this is actually restricted to only EL3
b4d3978c
PM
3230 * and configurably Secure-EL1 via the accessfn.
3231 */
3232 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3233 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3234 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3235 .accessfn = gt_stimer_access,
3236 .readfn = gt_sec_tval_read,
3237 .writefn = gt_sec_tval_write,
3238 .resetfn = gt_sec_timer_reset,
3239 },
3240 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3241 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3242 .type = ARM_CP_IO, .access = PL1_RW,
3243 .accessfn = gt_stimer_access,
3244 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3245 .resetvalue = 0,
3246 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3247 },
3248 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3249 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3250 .type = ARM_CP_IO, .access = PL1_RW,
3251 .accessfn = gt_stimer_access,
3252 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3253 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3254 },
55d284af
PM
3255};
3256
bb5972e4
RH
3257static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3258 bool isread)
3259{
3260 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3261 return CP_ACCESS_TRAP;
3262 }
3263 return CP_ACCESS_OK;
3264}
3265
55d284af 3266#else
26c4a83b 3267
9b37a28c
FR
3268/*
3269 * In user-mode most of the generic timer registers are inaccessible
26c4a83b 3270 * however modern kernels (4.12+) allow access to cntvct_el0
55d284af 3271 */
26c4a83b
AB
3272
3273static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3274{
7def8754
AJ
3275 ARMCPU *cpu = env_archcpu(env);
3276
9b37a28c
FR
3277 /*
3278 * Currently we have no support for QEMUTimer in linux-user so we
26c4a83b
AB
3279 * can't call gt_get_countervalue(env), instead we directly
3280 * call the lower level functions.
3281 */
7def8754 3282 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
26c4a83b
AB
3283}
3284
6cc7a3ae 3285static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
26c4a83b
AB
3286 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3287 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3288 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3289 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3290 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3291 },
3292 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3293 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3294 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3295 .readfn = gt_virt_cnt_read,
3296 },
6cc7a3ae
PM
3297};
3298
55d284af
PM
3299#endif
3300
c4241c7d 3301static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 3302{
891a2fe7 3303 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8d5c773e 3304 raw_write(env, ri, value);
891a2fe7 3305 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8d5c773e 3306 raw_write(env, ri, value & 0xfffff6ff);
4a501606 3307 } else {
8d5c773e 3308 raw_write(env, ri, value & 0xfffff1ff);
4a501606 3309 }
4a501606
PM
3310}
3311
3312#ifndef CONFIG_USER_ONLY
3313/* get_phys_addr() isn't present for user-mode-only targets */
702a9357 3314
3f208fd7
PM
3315static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3316 bool isread)
92611c00
PM
3317{
3318 if (ri->opc2 & 4) {
9b37a28c
FR
3319 /*
3320 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
87562e4f
PM
3321 * Secure EL1 (which can only happen if EL3 is AArch64).
3322 * They are simply UNDEF if executed from NS EL1.
3323 * They function normally from EL2 or EL3.
92611c00 3324 */
87562e4f
PM
3325 if (arm_current_el(env) == 1) {
3326 if (arm_is_secure_below_el3(env)) {
926c1b97 3327 if (env->cp15.scr_el3 & SCR_EEL2) {
ce9a8863 3328 return CP_ACCESS_TRAP_EL2;
926c1b97 3329 }
ce9a8863 3330 return CP_ACCESS_TRAP_EL3;
87562e4f
PM
3331 }
3332 return CP_ACCESS_TRAP_UNCATEGORIZED;
3333 }
92611c00
PM
3334 }
3335 return CP_ACCESS_OK;
3336}
3337
9fb005b0 3338#ifdef CONFIG_TCG
060e8a48 3339static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
7aee3cb9
RH
3340 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3341 bool is_secure)
4a501606 3342{
b7cc4e82 3343 bool ret;
01c097f7 3344 uint64_t par64;
1313e2d7 3345 bool format64 = false;
e14b5a23 3346 ARMMMUFaultInfo fi = {};
de05a709 3347 GetPhysAddrResult res = {};
4a501606 3348
7aee3cb9
RH
3349 ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx,
3350 is_secure, &res, &fi);
1313e2d7 3351
9f225e60
PM
3352 /*
3353 * ATS operations only do S1 or S1+S2 translations, so we never
3354 * have to deal with the ARMCacheAttrs format for S2 only.
3355 */
de05a709 3356 assert(!res.cacheattrs.is_s2_format);
9f225e60 3357
0710b2fa
PM
3358 if (ret) {
3359 /*
3360 * Some kinds of translation fault must cause exceptions rather
3361 * than being reported in the PAR.
3362 */
3363 int current_el = arm_current_el(env);
3364 int target_el;
3365 uint32_t syn, fsr, fsc;
3366 bool take_exc = false;
3367
b1a10c86 3368 if (fi.s1ptw && current_el == 1
fee7aa46 3369 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
0710b2fa
PM
3370 /*
3371 * Synchronous stage 2 fault on an access made as part of the
3372 * translation table walk for AT S1E0* or AT S1E1* insn
3373 * executed from NS EL1. If this is a synchronous external abort
3374 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3375 * to EL3. Otherwise the fault is taken as an exception to EL2,
3376 * and HPFAR_EL2 holds the faulting IPA.
3377 */
3378 if (fi.type == ARMFault_SyncExternalOnWalk &&
3379 (env->cp15.scr_el3 & SCR_EA)) {
3380 target_el = 3;
3381 } else {
3382 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
9861248f
RDC
3383 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3384 env->cp15.hpfar_el2 |= HPFAR_NS;
3385 }
0710b2fa
PM
3386 target_el = 2;
3387 }
3388 take_exc = true;
3389 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3390 /*
3391 * Synchronous external aborts during a translation table walk
3392 * are taken as Data Abort exceptions.
3393 */
3394 if (fi.stage2) {
3395 if (current_el == 3) {
3396 target_el = 3;
3397 } else {
3398 target_el = 2;
3399 }
3400 } else {
3401 target_el = exception_target_el(env);
3402 }
3403 take_exc = true;
3404 }
3405
3406 if (take_exc) {
3407 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3408 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3409 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3410 fsr = arm_fi_to_lfsc(&fi);
3411 fsc = extract32(fsr, 0, 6);
3412 } else {
3413 fsr = arm_fi_to_sfsc(&fi);
3414 fsc = 0x3f;
3415 }
3416 /*
3417 * Report exception with ESR indicating a fault due to a
3418 * translation table walk for a cache maintenance instruction.
3419 */
e24fd076 3420 syn = syn_data_abort_no_iss(current_el == target_el, 0,
0710b2fa
PM
3421 fi.ea, 1, fi.s1ptw, 1, fsc);
3422 env->exception.vaddress = value;
3423 env->exception.fsr = fsr;
3424 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3425 }
3426 }
3427
1313e2d7
EI
3428 if (is_a64(env)) {
3429 format64 = true;
3430 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3431 /*
3432 * ATS1Cxx:
3433 * * TTBCR.EAE determines whether the result is returned using the
3434 * 32-bit or the 64-bit PAR format
3435 * * Instructions executed in Hyp mode always use the 64bit format
3436 *
3437 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3438 * * The Non-secure TTBCR.EAE bit is set to 1
3439 * * The implementation includes EL2, and the value of HCR.VM is 1
3440 *
9d1bab33
PM
3441 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3442 *
23463e0e 3443 * ATS1Hx always uses the 64bit format.
1313e2d7
EI
3444 */
3445 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3446
3447 if (arm_feature(env, ARM_FEATURE_EL2)) {
452ef8cb
RH
3448 if (mmu_idx == ARMMMUIdx_E10_0 ||
3449 mmu_idx == ARMMMUIdx_E10_1 ||
3450 mmu_idx == ARMMMUIdx_E10_1_PAN) {
9d1bab33 3451 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
1313e2d7
EI
3452 } else {
3453 format64 |= arm_current_el(env) == 2;
3454 }
3455 }
3456 }
3457
3458 if (format64) {
5efe9ed4 3459 /* Create a 64-bit PAR */
01c097f7 3460 par64 = (1 << 11); /* LPAE bit always set */
b7cc4e82 3461 if (!ret) {
7fa7ea8f
RH
3462 par64 |= res.f.phys_addr & ~0xfffULL;
3463 if (!res.f.attrs.secure) {
8bf5b6a9
PM
3464 par64 |= (1 << 9); /* NS */
3465 }
de05a709
RH
3466 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3467 par64 |= res.cacheattrs.shareability << 7; /* SH */
4a501606 3468 } else {
5efe9ed4
PM
3469 uint32_t fsr = arm_fi_to_lfsc(&fi);
3470
702a9357 3471 par64 |= 1; /* F */
b7cc4e82 3472 par64 |= (fsr & 0x3f) << 1; /* FS */
0f7b791b
PM
3473 if (fi.stage2) {
3474 par64 |= (1 << 9); /* S */
3475 }
3476 if (fi.s1ptw) {
3477 par64 |= (1 << 8); /* PTW */
3478 }
4a501606
PM
3479 }
3480 } else {
9b37a28c
FR
3481 /*
3482 * fsr is a DFSR/IFSR value for the short descriptor
702a9357
PM
3483 * translation table format (with WnR always clear).
3484 * Convert it to a 32-bit PAR.
3485 */
b7cc4e82 3486 if (!ret) {
702a9357 3487 /* We do not set any attribute bits in the PAR */
7fa7ea8f 3488 if (res.f.lg_page_size == 24
702a9357 3489 && arm_feature(env, ARM_FEATURE_V7)) {
7fa7ea8f 3490 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
702a9357 3491 } else {
7fa7ea8f 3492 par64 = res.f.phys_addr & 0xfffff000;
702a9357 3493 }
7fa7ea8f 3494 if (!res.f.attrs.secure) {
8bf5b6a9
PM
3495 par64 |= (1 << 9); /* NS */
3496 }
702a9357 3497 } else {
5efe9ed4
PM
3498 uint32_t fsr = arm_fi_to_sfsc(&fi);
3499
b7cc4e82
PC
3500 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3501 ((fsr & 0xf) << 1) | 1;
702a9357 3502 }
4a501606 3503 }
060e8a48
PM
3504 return par64;
3505}
9fb005b0 3506#endif /* CONFIG_TCG */
060e8a48
PM
3507
3508static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3509{
9fb005b0 3510#ifdef CONFIG_TCG
03ae85f8 3511 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
060e8a48 3512 uint64_t par64;
d3649702
PM
3513 ARMMMUIdx mmu_idx;
3514 int el = arm_current_el(env);
3515 bool secure = arm_is_secure_below_el3(env);
060e8a48 3516
d3649702
PM
3517 switch (ri->opc2 & 6) {
3518 case 0:
04b07d29 3519 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
d3649702
PM
3520 switch (el) {
3521 case 3:
d902ae75 3522 mmu_idx = ARMMMUIdx_E3;
7aee3cb9 3523 secure = true;
d3649702
PM
3524 break;
3525 case 2:
b6ad6062 3526 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
04b07d29 3527 /* fall through */
d3649702 3528 case 1:
04b07d29 3529 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
d902ae75 3530 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
04b07d29 3531 } else {
d902ae75 3532 mmu_idx = ARMMMUIdx_Stage1_E1;
04b07d29 3533 }
d3649702
PM
3534 break;
3535 default:
3536 g_assert_not_reached();
3537 }
3538 break;
3539 case 2:
3540 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3541 switch (el) {
3542 case 3:
d902ae75 3543 mmu_idx = ARMMMUIdx_E10_0;
7aee3cb9 3544 secure = true;
d3649702
PM
3545 break;
3546 case 2:
b1a10c86 3547 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
2859d7b5 3548 mmu_idx = ARMMMUIdx_Stage1_E0;
d3649702
PM
3549 break;
3550 case 1:
d902ae75 3551 mmu_idx = ARMMMUIdx_Stage1_E0;
d3649702
PM
3552 break;
3553 default:
3554 g_assert_not_reached();
3555 }
3556 break;
3557 case 4:
3558 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
01b98b68 3559 mmu_idx = ARMMMUIdx_E10_1;
7aee3cb9 3560 secure = false;
d3649702
PM
3561 break;
3562 case 6:
3563 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
01b98b68 3564 mmu_idx = ARMMMUIdx_E10_0;
7aee3cb9 3565 secure = false;
d3649702
PM
3566 break;
3567 default:
3568 g_assert_not_reached();
3569 }
3570
7aee3cb9 3571 par64 = do_ats_write(env, value, access_type, mmu_idx, secure);
01c097f7
FA
3572
3573 A32_BANKED_CURRENT_REG_SET(env, par, par64);
9fb005b0
PMD
3574#else
3575 /* Handled by hardware accelerator. */
3576 g_assert_not_reached();
3577#endif /* CONFIG_TCG */
4a501606 3578}
060e8a48 3579
14db7fe0
PM
3580static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3581 uint64_t value)
3582{
9fb005b0 3583#ifdef CONFIG_TCG
03ae85f8 3584 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
14db7fe0
PM
3585 uint64_t par64;
3586
7aee3cb9
RH
3587 /* There is no SecureEL2 for AArch32. */
3588 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false);
14db7fe0
PM
3589
3590 A32_BANKED_CURRENT_REG_SET(env, par, par64);
9fb005b0
PMD
3591#else
3592 /* Handled by hardware accelerator. */
3593 g_assert_not_reached();
3594#endif /* CONFIG_TCG */
14db7fe0
PM
3595}
3596
3f208fd7
PM
3597static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3598 bool isread)
2a47df95 3599{
926c1b97
RDC
3600 if (arm_current_el(env) == 3 &&
3601 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
2a47df95
PM
3602 return CP_ACCESS_TRAP;
3603 }
3604 return CP_ACCESS_OK;
3605}
3606
060e8a48
PM
3607static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3608 uint64_t value)
3609{
9fb005b0 3610#ifdef CONFIG_TCG
03ae85f8 3611 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
d3649702
PM
3612 ARMMMUIdx mmu_idx;
3613 int secure = arm_is_secure_below_el3(env);
638d5dbd
AK
3614 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3615 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
d3649702
PM
3616
3617 switch (ri->opc2 & 6) {
3618 case 0:
3619 switch (ri->opc1) {
04b07d29
RH
3620 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3621 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
638d5dbd
AK
3622 mmu_idx = regime_e20 ?
3623 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
04b07d29 3624 } else {
638d5dbd 3625 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
04b07d29 3626 }
d3649702
PM
3627 break;
3628 case 4: /* AT S1E2R, AT S1E2W */
638d5dbd 3629 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
d3649702
PM
3630 break;
3631 case 6: /* AT S1E3R, AT S1E3W */
d902ae75 3632 mmu_idx = ARMMMUIdx_E3;
7aee3cb9 3633 secure = true;
d3649702
PM
3634 break;
3635 default:
3636 g_assert_not_reached();
3637 }
3638 break;
3639 case 2: /* AT S1E0R, AT S1E0W */
638d5dbd 3640 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
d3649702
PM
3641 break;
3642 case 4: /* AT S12E1R, AT S12E1W */
638d5dbd 3643 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
d3649702
PM
3644 break;
3645 case 6: /* AT S12E0R, AT S12E0W */
638d5dbd 3646 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
d3649702
PM
3647 break;
3648 default:
3649 g_assert_not_reached();
3650 }
060e8a48 3651
7aee3cb9
RH
3652 env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3653 mmu_idx, secure);
9fb005b0
PMD
3654#else
3655 /* Handled by hardware accelerator. */
3656 g_assert_not_reached();
3657#endif /* CONFIG_TCG */
060e8a48 3658}
4a501606
PM
3659#endif
3660
3661static const ARMCPRegInfo vapa_cp_reginfo[] = {
3662 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3663 .access = PL1_RW, .resetvalue = 0,
01c097f7
FA
3664 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3665 offsetoflow32(CPUARMState, cp15.par_ns) },
4a501606
PM
3666 .writefn = par_write },
3667#ifndef CONFIG_USER_ONLY
87562e4f 3668 /* This underdecoding is safe because the reginfo is NO_RAW. */
4a501606 3669 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
92611c00 3670 .access = PL1_W, .accessfn = ats_access,
0710b2fa 3671 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
4a501606 3672#endif
4a501606
PM
3673};
3674
18032bec
PM
3675/* Return basic MPU access permission bits. */
3676static uint32_t simple_mpu_ap_bits(uint32_t val)
3677{
3678 uint32_t ret;
3679 uint32_t mask;
3680 int i;
3681 ret = 0;
3682 mask = 3;
3683 for (i = 0; i < 16; i += 2) {
3684 ret |= (val >> i) & mask;
3685 mask <<= 2;
3686 }
3687 return ret;
3688}
3689
3690/* Pad basic MPU access permission bits to extended format. */
3691static uint32_t extended_mpu_ap_bits(uint32_t val)
3692{
3693 uint32_t ret;
3694 uint32_t mask;
3695 int i;
3696 ret = 0;
3697 mask = 3;
3698 for (i = 0; i < 16; i += 2) {
3699 ret |= (val & mask) << i;
3700 mask <<= 2;
3701 }
3702 return ret;
3703}
3704
c4241c7d
PM
3705static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3706 uint64_t value)
18032bec 3707{
7e09797c 3708 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
18032bec
PM
3709}
3710
c4241c7d 3711static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 3712{
7e09797c 3713 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
18032bec
PM
3714}
3715
c4241c7d
PM
3716static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3717 uint64_t value)
18032bec 3718{
7e09797c 3719 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
18032bec
PM
3720}
3721
c4241c7d 3722static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 3723{
7e09797c 3724 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
18032bec
PM
3725}
3726
6cb0b013
PC
3727static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3728{
3729 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3730
3731 if (!u32p) {
3732 return 0;
3733 }
3734
1bc04a88 3735 u32p += env->pmsav7.rnr[M_REG_NS];
6cb0b013
PC
3736 return *u32p;
3737}
3738
3739static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3740 uint64_t value)
3741{
2fc0cc0e 3742 ARMCPU *cpu = env_archcpu(env);
6cb0b013
PC
3743 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3744
3745 if (!u32p) {
3746 return;
3747 }
3748
1bc04a88 3749 u32p += env->pmsav7.rnr[M_REG_NS];
d10eb08f 3750 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
6cb0b013
PC
3751 *u32p = value;
3752}
3753
6cb0b013
PC
3754static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3755 uint64_t value)
3756{
2fc0cc0e 3757 ARMCPU *cpu = env_archcpu(env);
6cb0b013
PC
3758 uint32_t nrgs = cpu->pmsav7_dregion;
3759
3760 if (value >= nrgs) {
3761 qemu_log_mask(LOG_GUEST_ERROR,
3762 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3763 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3764 return;
3765 }
3766
3767 raw_write(env, ri, value);
3768}
3769
761c4642
TR
3770static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3771 uint64_t value)
3772{
3773 ARMCPU *cpu = env_archcpu(env);
3774
3775 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3776 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3777}
3778
3779static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3780{
3781 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3782}
3783
3784static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785 uint64_t value)
3786{
3787 ARMCPU *cpu = env_archcpu(env);
3788
3789 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3790 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3791}
3792
3793static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3794{
3795 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3796}
3797
3798static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3799 uint64_t value)
3800{
3801 ARMCPU *cpu = env_archcpu(env);
3802
3803 /*
3804 * Ignore writes that would select not implemented region.
3805 * This is architecturally UNPREDICTABLE.
3806 */
3807 if (value >= cpu->pmsav7_dregion) {
3808 return;
3809 }
3810
3811 env->pmsav7.rnr[M_REG_NS] = value;
3812}
3813
3814static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3815 uint64_t value)
3816{
3817 ARMCPU *cpu = env_archcpu(env);
3818
3819 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3820 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3821}
3822
3823static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3824{
3825 return env->pmsav8.hprbar[env->pmsav8.hprselr];
3826}
3827
3828static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3829 uint64_t value)
3830{
3831 ARMCPU *cpu = env_archcpu(env);
3832
3833 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3834 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3835}
3836
3837static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3838{
3839 return env->pmsav8.hprlar[env->pmsav8.hprselr];
3840}
3841
3842static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3843 uint64_t value)
3844{
3845 uint32_t n;
3846 uint32_t bit;
3847 ARMCPU *cpu = env_archcpu(env);
3848
3849 /* Ignore writes to unimplemented regions */
3850 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3851 value &= MAKE_64BIT_MASK(0, rmax);
3852
3853 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3854
3855 /* Register alias is only valid for first 32 indexes */
3856 for (n = 0; n < rmax; ++n) {
3857 bit = extract32(value, n, 1);
3858 env->pmsav8.hprlar[n] = deposit32(
3859 env->pmsav8.hprlar[n], 0, 1, bit);
3860 }
3861}
3862
3863static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3864{
3865 uint32_t n;
3866 uint32_t result = 0x0;
3867 ARMCPU *cpu = env_archcpu(env);
3868
3869 /* Register alias is only valid for first 32 indexes */
3870 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3871 if (env->pmsav8.hprlar[n] & 0x1) {
3872 result |= (0x1 << n);
3873 }
3874 }
3875 return result;
3876}
3877
3878static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3879 uint64_t value)
3880{
3881 ARMCPU *cpu = env_archcpu(env);
3882
3883 /*
3884 * Ignore writes that would select not implemented region.
3885 * This is architecturally UNPREDICTABLE.
3886 */
3887 if (value >= cpu->pmsav8r_hdregion) {
3888 return;
3889 }
3890
3891 env->pmsav8.hprselr = value;
3892}
3893
3894static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3895 uint64_t value)
3896{
3897 ARMCPU *cpu = env_archcpu(env);
3898 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3899 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3900
3901 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3902
3903 if (ri->opc1 & 4) {
3904 if (index >= cpu->pmsav8r_hdregion) {
3905 return;
3906 }
3907 if (ri->opc2 & 0x1) {
3908 env->pmsav8.hprlar[index] = value;
3909 } else {
3910 env->pmsav8.hprbar[index] = value;
3911 }
3912 } else {
3913 if (index >= cpu->pmsav7_dregion) {
3914 return;
3915 }
3916 if (ri->opc2 & 0x1) {
3917 env->pmsav8.rlar[M_REG_NS][index] = value;
3918 } else {
3919 env->pmsav8.rbar[M_REG_NS][index] = value;
3920 }
3921 }
3922}
3923
3924static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3925{
3926 ARMCPU *cpu = env_archcpu(env);
3927 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3928 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3929
3930 if (ri->opc1 & 4) {
3931 if (index >= cpu->pmsav8r_hdregion) {
3932 return 0x0;
3933 }
3934 if (ri->opc2 & 0x1) {
3935 return env->pmsav8.hprlar[index];
3936 } else {
3937 return env->pmsav8.hprbar[index];
3938 }
3939 } else {
3940 if (index >= cpu->pmsav7_dregion) {
3941 return 0x0;
3942 }
3943 if (ri->opc2 & 0x1) {
3944 return env->pmsav8.rlar[M_REG_NS][index];
3945 } else {
3946 return env->pmsav8.rbar[M_REG_NS][index];
3947 }
3948 }
3949}
3950
3951static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
3952 { .name = "PRBAR",
3953 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
3954 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3955 .accessfn = access_tvm_trvm,
3956 .readfn = prbar_read, .writefn = prbar_write },
3957 { .name = "PRLAR",
3958 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
3959 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3960 .accessfn = access_tvm_trvm,
3961 .readfn = prlar_read, .writefn = prlar_write },
3962 { .name = "PRSELR", .resetvalue = 0,
3963 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
3964 .access = PL1_RW, .accessfn = access_tvm_trvm,
3965 .writefn = prselr_write,
3966 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
3967 { .name = "HPRBAR", .resetvalue = 0,
3968 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
3969 .access = PL2_RW, .type = ARM_CP_NO_RAW,
3970 .readfn = hprbar_read, .writefn = hprbar_write },
3971 { .name = "HPRLAR",
3972 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
3973 .access = PL2_RW, .type = ARM_CP_NO_RAW,
3974 .readfn = hprlar_read, .writefn = hprlar_write },
3975 { .name = "HPRSELR", .resetvalue = 0,
3976 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
3977 .access = PL2_RW,
3978 .writefn = hprselr_write,
3979 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
3980 { .name = "HPRENR",
3981 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
3982 .access = PL2_RW, .type = ARM_CP_NO_RAW,
3983 .readfn = hprenr_read, .writefn = hprenr_write },
3984};
3985
6cb0b013 3986static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
9b37a28c
FR
3987 /*
3988 * Reset for all these registers is handled in arm_cpu_reset(),
69ceea64
PM
3989 * because the PMSAv7 is also used by M-profile CPUs, which do
3990 * not register cpregs but still need the state to be reset.
3991 */
6cb0b013
PC
3992 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3993 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3994 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
69ceea64
PM
3995 .readfn = pmsav7_read, .writefn = pmsav7_write,
3996 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
3997 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3998 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3999 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
69ceea64
PM
4000 .readfn = pmsav7_read, .writefn = pmsav7_write,
4001 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
4002 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4003 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4004 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
69ceea64
PM
4005 .readfn = pmsav7_read, .writefn = pmsav7_write,
4006 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
4007 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4008 .access = PL1_RW,
1bc04a88 4009 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
69ceea64
PM
4010 .writefn = pmsav7_rgnr_write,
4011 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
4012};
4013
18032bec
PM
4014static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4015 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 4016 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 4017 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
18032bec
PM
4018 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4019 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
7a0e58fa 4020 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 4021 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
18032bec
PM
4022 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4023 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4024 .access = PL1_RW,
7e09797c
PM
4025 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4026 .resetvalue = 0, },
18032bec
PM
4027 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4028 .access = PL1_RW,
7e09797c
PM
4029 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4030 .resetvalue = 0, },
ecce5c3c
PM
4031 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4032 .access = PL1_RW,
4033 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4034 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4035 .access = PL1_RW,
4036 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31 4037 /* Protection region base and size registers */
e508a92b
PM
4038 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4039 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4040 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4041 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4042 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4043 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4044 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4045 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4046 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4047 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4048 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4049 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4050 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4051 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4052 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4053 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4054 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4055 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4056 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4057 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4058 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4059 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4060 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4061 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
18032bec
PM
4062};
4063
cb4a0a34
PM
4064static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4065 uint64_t value)
ecce5c3c 4066{
cb4a0a34 4067 ARMCPU *cpu = env_archcpu(env);
2ebcebe2 4068
e389be16
FA
4069 if (!arm_feature(env, ARM_FEATURE_V8)) {
4070 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
cb4a0a34
PM
4071 /*
4072 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4073 * using Long-descriptor translation table format
4074 */
e389be16
FA
4075 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4076 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
cb4a0a34
PM
4077 /*
4078 * In an implementation that includes the Security Extensions
e389be16
FA
4079 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4080 * Short-descriptor translation table format.
4081 */
4082 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4083 } else {
4084 value &= TTBCR_N;
4085 }
e42c4db3 4086 }
e389be16 4087
d4e6df63 4088 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9b37a28c
FR
4089 /*
4090 * With LPAE the TTBCR could result in a change of ASID
d4e6df63
PM
4091 * via the TTBCR.A1 bit, so do a TLB flush.
4092 */
d10eb08f 4093 tlb_flush(CPU(cpu));
d4e6df63 4094 }
cb4a0a34 4095 raw_write(env, ri, value);
ecce5c3c
PM
4096}
4097
d06dc933 4098static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
cb2e37df
PM
4099 uint64_t value)
4100{
2fc0cc0e 4101 ARMCPU *cpu = env_archcpu(env);
00c8cb0a 4102
cb2e37df 4103 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
d10eb08f 4104 tlb_flush(CPU(cpu));
cb4a0a34 4105 raw_write(env, ri, value);
cb2e37df
PM
4106}
4107
327ed10f
PM
4108static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4109 uint64_t value)
4110{
93f379b0
RH
4111 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4112 if (cpreg_field_is_64bit(ri) &&
4113 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
2fc0cc0e 4114 ARMCPU *cpu = env_archcpu(env);
d10eb08f 4115 tlb_flush(CPU(cpu));
327ed10f
PM
4116 }
4117 raw_write(env, ri, value);
4118}
4119
ed30da8e
RH
4120static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4121 uint64_t value)
4122{
d06dc933
RH
4123 /*
4124 * If we are running with E2&0 regime, then an ASID is active.
4125 * Flush if that might be changing. Note we're not checking
4126 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4127 * holds the active ASID, only checking the field that might.
4128 */
4129 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4130 (arm_hcr_el2_eff(env) & HCR_E2H)) {
b6ad6062
RDC
4131 uint16_t mask = ARMMMUIdxBit_E20_2 |
4132 ARMMMUIdxBit_E20_2_PAN |
4133 ARMMMUIdxBit_E20_0;
b6ad6062 4134 tlb_flush_by_mmuidx(env_cpu(env), mask);
d06dc933 4135 }
ed30da8e
RH
4136 raw_write(env, ri, value);
4137}
4138
b698e9cf
EI
4139static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4140 uint64_t value)
4141{
2fc0cc0e 4142 ARMCPU *cpu = env_archcpu(env);
b698e9cf
EI
4143 CPUState *cs = CPU(cpu);
4144
97fa9350
RH
4145 /*
4146 * A change in VMID to the stage2 page table (Stage2) invalidates
575a94af 4147 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
97fa9350 4148 */
00b20ee4 4149 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
575a94af 4150 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
b698e9cf 4151 }
00b20ee4 4152 raw_write(env, ri, value);
b698e9cf
EI
4153}
4154
8e5d75c9 4155static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
18032bec 4156 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
84929218 4157 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4a7e2d73 4158 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
b061a82b 4159 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
18032bec 4160 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
84929218 4161 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
88ca1c2d
FA
4162 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4163 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
8e5d75c9 4164 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
84929218 4165 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
8e5d75c9
PC
4166 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4167 offsetof(CPUARMState, cp15.dfar_ns) } },
4168 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4169 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
84929218 4170 .access = PL1_RW, .accessfn = access_tvm_trvm,
b19ed03c 4171 .fgt = FGT_FAR_EL1,
84929218 4172 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
8e5d75c9 4173 .resetvalue = 0, },
8e5d75c9
PC
4174};
4175
4176static const ARMCPRegInfo vmsa_cp_reginfo[] = {
6cd8a264
RH
4177 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4178 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
84929218 4179 .access = PL1_RW, .accessfn = access_tvm_trvm,
b19ed03c 4180 .fgt = FGT_ESR_EL1,
d81c519c 4181 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
327ed10f 4182 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af 4183 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
84929218 4184 .access = PL1_RW, .accessfn = access_tvm_trvm,
bd8db7d9 4185 .fgt = FGT_TTBR0_EL1,
84929218 4186 .writefn = vmsa_ttbr_write, .resetvalue = 0,
7dd8c9af
FA
4187 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4188 offsetof(CPUARMState, cp15.ttbr0_ns) } },
327ed10f 4189 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af 4190 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
84929218 4191 .access = PL1_RW, .accessfn = access_tvm_trvm,
bd8db7d9 4192 .fgt = FGT_TTBR1_EL1,
84929218 4193 .writefn = vmsa_ttbr_write, .resetvalue = 0,
7dd8c9af
FA
4194 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4195 offsetof(CPUARMState, cp15.ttbr1_ns) } },
cb2e37df
PM
4196 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4197 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
84929218 4198 .access = PL1_RW, .accessfn = access_tvm_trvm,
67dd8030 4199 .fgt = FGT_TCR_EL1,
84929218 4200 .writefn = vmsa_tcr_el12_write,
cb4a0a34
PM
4201 .raw_writefn = raw_write,
4202 .resetvalue = 0,
11f136ee 4203 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
cb2e37df 4204 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
84929218
RH
4205 .access = PL1_RW, .accessfn = access_tvm_trvm,
4206 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
cb4a0a34
PM
4207 .raw_writefn = raw_write,
4208 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4209 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
18032bec
PM
4210};
4211
9b37a28c
FR
4212/*
4213 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
ab638a32
RH
4214 * qemu tlbs nor adjusting cached masks.
4215 */
4216static const ARMCPRegInfo ttbcr2_reginfo = {
4217 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
84929218
RH
4218 .access = PL1_RW, .accessfn = access_tvm_trvm,
4219 .type = ARM_CP_ALIAS,
d102058e 4220 .bank_fieldoffsets = {
cb4a0a34
PM
4221 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4222 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
d102058e 4223 },
ab638a32
RH
4224};
4225
c4241c7d
PM
4226static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4227 uint64_t value)
1047b9d7
PM
4228{
4229 env->cp15.c15_ticonfig = value & 0xe7;
4230 /* The OS_TYPE bit in this register changes the reported CPUID! */
4231 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4232 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1047b9d7
PM
4233}
4234
c4241c7d
PM
4235static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4236 uint64_t value)
1047b9d7
PM
4237{
4238 env->cp15.c15_threadid = value & 0xffff;
1047b9d7
PM
4239}
4240
c4241c7d
PM
4241static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4242 uint64_t value)
1047b9d7
PM
4243{
4244 /* Wait-for-interrupt (deprecated) */
2fc0cc0e 4245 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
1047b9d7
PM
4246}
4247
c4241c7d
PM
4248static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4249 uint64_t value)
c4804214 4250{
9b37a28c
FR
4251 /*
4252 * On OMAP there are registers indicating the max/min index of dcache lines
c4804214
PM
4253 * containing a dirty line; cache flush operations have to reset these.
4254 */
4255 env->cp15.c15_i_max = 0x000;
4256 env->cp15.c15_i_min = 0xff0;
c4804214
PM
4257}
4258
18032bec
PM
4259static const ARMCPRegInfo omap_cp_reginfo[] = {
4260 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4261 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
d81c519c 4262 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
6cd8a264 4263 .resetvalue = 0, },
1047b9d7
PM
4264 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4265 .access = PL1_RW, .type = ARM_CP_NOP },
4266 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4267 .access = PL1_RW,
4268 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4269 .writefn = omap_ticonfig_write },
4270 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4271 .access = PL1_RW,
4272 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4273 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4274 .access = PL1_RW, .resetvalue = 0xff0,
4275 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4276 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4277 .access = PL1_RW,
4278 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4279 .writefn = omap_threadid_write },
4280 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4281 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
7a0e58fa 4282 .type = ARM_CP_NO_RAW,
1047b9d7 4283 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
9b37a28c
FR
4284 /*
4285 * TODO: Peripheral port remap register:
1047b9d7
PM
4286 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4287 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4288 * when MMU is off.
4289 */
c4804214 4290 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
d4e6df63 4291 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
7a0e58fa 4292 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
c4804214 4293 .writefn = omap_cachemaint_write },
34f90529
PM
4294 { .name = "C9", .cp = 15, .crn = 9,
4295 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4296 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
4297};
4298
c4241c7d
PM
4299static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4300 uint64_t value)
1047b9d7 4301{
c0f4af17 4302 env->cp15.c15_cpar = value & 0x3fff;
1047b9d7
PM
4303}
4304
4305static const ARMCPRegInfo xscale_cp_reginfo[] = {
4306 { .name = "XSCALE_CPAR",
4307 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4308 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4309 .writefn = xscale_cpar_write, },
2771db27
PM
4310 { .name = "XSCALE_AUXCR",
4311 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4312 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4313 .resetvalue = 0, },
9b37a28c
FR
4314 /*
4315 * XScale specific cache-lockdown: since we have no cache we NOP these
3b771579
PM
4316 * and hope the guest does not really rely on cache behaviour.
4317 */
4318 { .name = "XSCALE_LOCK_ICACHE_LINE",
4319 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4320 .access = PL1_W, .type = ARM_CP_NOP },
4321 { .name = "XSCALE_UNLOCK_ICACHE",
4322 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4323 .access = PL1_W, .type = ARM_CP_NOP },
4324 { .name = "XSCALE_DCACHE_LOCK",
4325 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4326 .access = PL1_RW, .type = ARM_CP_NOP },
4327 { .name = "XSCALE_UNLOCK_DCACHE",
4328 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4329 .access = PL1_W, .type = ARM_CP_NOP },
1047b9d7
PM
4330};
4331
4332static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
9b37a28c
FR
4333 /*
4334 * RAZ/WI the whole crn=15 space, when we don't have a more specific
1047b9d7
PM
4335 * implementation of this implementation-defined space.
4336 * Ideally this should eventually disappear in favour of actually
4337 * implementing the correct behaviour for all cores.
4338 */
4339 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4340 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671cd87 4341 .access = PL1_RW,
7a0e58fa 4342 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
d4e6df63 4343 .resetvalue = 0 },
18032bec
PM
4344};
4345
c4804214
PM
4346static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4347 /* Cache status: RAZ because we have no cache so it's always clean */
4348 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
7a0e58fa 4349 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 4350 .resetvalue = 0 },
c4804214
PM
4351};
4352
4353static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
a07d9df0 4354 /* We never have a block transfer operation in progress */
c4804214 4355 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
7a0e58fa 4356 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 4357 .resetvalue = 0 },
30b05bba
PM
4358 /* The cache ops themselves: these all NOP for QEMU */
4359 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
04215eb1 4360 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
30b05bba 4361 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
04215eb1 4362 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
30b05bba 4363 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
04215eb1 4364 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
30b05bba 4365 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
04215eb1 4366 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
30b05bba 4367 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
04215eb1 4368 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
30b05bba 4369 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
04215eb1 4370 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
c4804214
PM
4371};
4372
4373static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
9b37a28c
FR
4374 /*
4375 * The cache test-and-clean instructions always return (1 << 30)
c4804214
PM
4376 * to indicate that there are no dirty cache lines.
4377 */
4378 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
7a0e58fa 4379 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 4380 .resetvalue = (1 << 30) },
c4804214 4381 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
7a0e58fa 4382 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 4383 .resetvalue = (1 << 30) },
c4804214
PM
4384};
4385
34f90529
PM
4386static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4387 /* Ignore ReadBuffer accesses */
4388 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4389 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
d4e6df63 4390 .access = PL1_RW, .resetvalue = 0,
7a0e58fa 4391 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
34f90529
PM
4392};
4393
731de9e6
EI
4394static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4395{
731de9e6 4396 unsigned int cur_el = arm_current_el(env);
731de9e6 4397
e6ef0169 4398 if (arm_is_el2_enabled(env) && cur_el == 1) {
731de9e6
EI
4399 return env->cp15.vpidr_el2;
4400 }
4401 return raw_read(env, ri);
4402}
4403
06a7e647 4404static uint64_t mpidr_read_val(CPUARMState *env)
81bdde9d 4405{
2fc0cc0e 4406 ARMCPU *cpu = env_archcpu(env);
eb5e1d3c
PF
4407 uint64_t mpidr = cpu->mp_affinity;
4408
81bdde9d 4409 if (arm_feature(env, ARM_FEATURE_V7MP)) {
78dbbbe4 4410 mpidr |= (1U << 31);
9b37a28c
FR
4411 /*
4412 * Cores which are uniprocessor (non-coherent)
81bdde9d 4413 * but still implement the MP extensions set
a8e81b31 4414 * bit 30. (For instance, Cortex-R5).
81bdde9d 4415 */
a8e81b31
PC
4416 if (cpu->mp_is_up) {
4417 mpidr |= (1u << 30);
4418 }
81bdde9d 4419 }
c4241c7d 4420 return mpidr;
81bdde9d
PM
4421}
4422
06a7e647
EI
4423static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4424{
f0d574d6 4425 unsigned int cur_el = arm_current_el(env);
f0d574d6 4426
e6ef0169 4427 if (arm_is_el2_enabled(env) && cur_el == 1) {
f0d574d6
EI
4428 return env->cp15.vmpidr_el2;
4429 }
06a7e647
EI
4430 return mpidr_read_val(env);
4431}
4432
7ac681cf 4433static const ARMCPRegInfo lpae_cp_reginfo[] = {
a903c449 4434 /* NOP AMAIR0/1 */
b0fe2427
PM
4435 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4436 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
84929218 4437 .access = PL1_RW, .accessfn = access_tvm_trvm,
158c276c 4438 .fgt = FGT_AMAIR_EL1,
84929218 4439 .type = ARM_CP_CONST, .resetvalue = 0 },
b0fe2427 4440 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
7ac681cf 4441 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
84929218
RH
4442 .access = PL1_RW, .accessfn = access_tvm_trvm,
4443 .type = ARM_CP_CONST, .resetvalue = 0 },
891a2fe7 4444 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
01c097f7
FA
4445 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4446 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4447 offsetof(CPUARMState, cp15.par_ns)} },
891a2fe7 4448 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
84929218
RH
4449 .access = PL1_RW, .accessfn = access_tvm_trvm,
4450 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
4451 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4452 offsetof(CPUARMState, cp15.ttbr0_ns) },
b061a82b 4453 .writefn = vmsa_ttbr_write, },
891a2fe7 4454 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
84929218
RH
4455 .access = PL1_RW, .accessfn = access_tvm_trvm,
4456 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
4457 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4458 offsetof(CPUARMState, cp15.ttbr1_ns) },
b061a82b 4459 .writefn = vmsa_ttbr_write, },
7ac681cf
PM
4460};
4461
c4241c7d 4462static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 4463{
c4241c7d 4464 return vfp_get_fpcr(env);
b0d2b7d0
PM
4465}
4466
c4241c7d
PM
4467static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4468 uint64_t value)
b0d2b7d0
PM
4469{
4470 vfp_set_fpcr(env, value);
b0d2b7d0
PM
4471}
4472
c4241c7d 4473static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 4474{
c4241c7d 4475 return vfp_get_fpsr(env);
b0d2b7d0
PM
4476}
4477
c4241c7d
PM
4478static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4479 uint64_t value)
b0d2b7d0
PM
4480{
4481 vfp_set_fpsr(env, value);
b0d2b7d0
PM
4482}
4483
3f208fd7
PM
4484static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4485 bool isread)
c2b820fe 4486{
aaec1432 4487 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
c2b820fe
PM
4488 return CP_ACCESS_TRAP;
4489 }
4490 return CP_ACCESS_OK;
4491}
4492
4493static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4494 uint64_t value)
4495{
4496 env->daif = value & PSTATE_DAIF;
4497}
4498
220f508f
RH
4499static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4500{
4501 return env->pstate & PSTATE_PAN;
4502}
4503
4504static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4505 uint64_t value)
4506{
4507 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4508}
4509
4510static const ARMCPRegInfo pan_reginfo = {
4511 .name = "PAN", .state = ARM_CP_STATE_AA64,
4512 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4513 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4514 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4515};
4516
9eeb7a1c
RH
4517static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4518{
4519 return env->pstate & PSTATE_UAO;
4520}
4521
4522static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4523 uint64_t value)
4524{
4525 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4526}
4527
4528static const ARMCPRegInfo uao_reginfo = {
4529 .name = "UAO", .state = ARM_CP_STATE_AA64,
4530 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4531 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4532 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4533};
4534
dc8b1853
RC
4535static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4536{
4537 return env->pstate & PSTATE_DIT;
4538}
4539
4540static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4541 uint64_t value)
4542{
4543 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4544}
4545
4546static const ARMCPRegInfo dit_reginfo = {
4547 .name = "DIT", .state = ARM_CP_STATE_AA64,
4548 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4549 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4550 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4551};
4552
f2f68a78
RC
4553static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4554{
4555 return env->pstate & PSTATE_SSBS;
4556}
4557
4558static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4559 uint64_t value)
4560{
4561 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4562}
4563
4564static const ARMCPRegInfo ssbs_reginfo = {
4565 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4566 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4567 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4568 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4569};
4570
38262d8a
RH
4571static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4572 const ARMCPRegInfo *ri,
4573 bool isread)
8af35c37 4574{
38262d8a
RH
4575 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4576 switch (arm_current_el(env)) {
4577 case 0:
4578 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4579 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4580 return CP_ACCESS_TRAP;
4581 }
4582 /* fall through */
4583 case 1:
4584 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4585 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4586 return CP_ACCESS_TRAP_EL2;
4587 }
4588 break;
8af35c37
PM
4589 }
4590 return CP_ACCESS_OK;
4591}
4592
2d3ce4c6 4593static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
1bed4d2e 4594{
38262d8a 4595 /* Cache invalidate/clean to Point of Unification... */
1bed4d2e
RH
4596 switch (arm_current_el(env)) {
4597 case 0:
4598 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4599 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4600 return CP_ACCESS_TRAP;
4601 }
4602 /* fall through */
4603 case 1:
2d3ce4c6
PM
4604 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4605 if (arm_hcr_el2_eff(env) & hcrflags) {
1bed4d2e
RH
4606 return CP_ACCESS_TRAP_EL2;
4607 }
4608 break;
4609 }
4610 return CP_ACCESS_OK;
4611}
4612
2d3ce4c6
PM
4613static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4614 bool isread)
4615{
4616 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4617}
4618
4619static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4620 bool isread)
4621{
4622 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4623}
4624
9b37a28c
FR
4625/*
4626 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
dbb1fb27
AB
4627 * Page D4-1736 (DDI0487A.b)
4628 */
4629
b7e0730d
RH
4630static int vae1_tlbmask(CPUARMState *env)
4631{
e04a5752 4632 uint64_t hcr = arm_hcr_el2_eff(env);
bc944d3a 4633 uint16_t mask;
e04a5752
RDC
4634
4635 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
bc944d3a
RDC
4636 mask = ARMMMUIdxBit_E20_2 |
4637 ARMMMUIdxBit_E20_2_PAN |
4638 ARMMMUIdxBit_E20_0;
b7e0730d 4639 } else {
bc944d3a 4640 mask = ARMMMUIdxBit_E10_1 |
452ef8cb
RH
4641 ARMMMUIdxBit_E10_1_PAN |
4642 ARMMMUIdxBit_E10_0;
b7e0730d 4643 }
bc944d3a 4644 return mask;
b7e0730d
RH
4645}
4646
ea04dce7
RH
4647/* Return 56 if TBI is enabled, 64 otherwise. */
4648static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4649 uint64_t addr)
4650{
c1547bba 4651 uint64_t tcr = regime_tcr(env, mmu_idx);
ea04dce7
RH
4652 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4653 int select = extract64(addr, 55, 1);
4654
4655 return (tbi >> select) & 1 ? 56 : 64;
4656}
4657
4658static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4659{
b6ad6062 4660 uint64_t hcr = arm_hcr_el2_eff(env);
ea04dce7
RH
4661 ARMMMUIdx mmu_idx;
4662
4663 /* Only the regime of the mmu_idx below is significant. */
b6ad6062 4664 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
ea04dce7
RH
4665 mmu_idx = ARMMMUIdx_E20_0;
4666 } else {
4667 mmu_idx = ARMMMUIdx_E10_0;
4668 }
b6ad6062 4669
ea04dce7
RH
4670 return tlbbits_for_regime(env, mmu_idx, addr);
4671}
4672
fd3ed969
PM
4673static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4674 uint64_t value)
168aa23b 4675{
29a0af61 4676 CPUState *cs = env_cpu(env);
b7e0730d 4677 int mask = vae1_tlbmask(env);
dbb1fb27 4678
b7e0730d 4679 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
168aa23b
PM
4680}
4681
b4ab8ce9
PM
4682static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4683 uint64_t value)
4684{
29a0af61 4685 CPUState *cs = env_cpu(env);
b7e0730d 4686 int mask = vae1_tlbmask(env);
b4ab8ce9
PM
4687
4688 if (tlb_force_broadcast(env)) {
527db2be
RH
4689 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4690 } else {
4691 tlb_flush_by_mmuidx(cs, mask);
b4ab8ce9 4692 }
b4ab8ce9
PM
4693}
4694
85d0dc9f
RH
4695static int e2_tlbmask(CPUARMState *env)
4696{
d902ae75
RH
4697 return (ARMMMUIdxBit_E20_0 |
4698 ARMMMUIdxBit_E20_2 |
4699 ARMMMUIdxBit_E20_2_PAN |
4700 ARMMMUIdxBit_E2);
85d0dc9f
RH
4701}
4702
90c19cdf
RH
4703static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4704 uint64_t value)
4705{
4706 CPUState *cs = env_cpu(env);
4707 int mask = alle1_tlbmask(env);
4708
4709 tlb_flush_by_mmuidx(cs, mask);
4710}
4711
fd3ed969 4712static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
fa439fc5
PM
4713 uint64_t value)
4714{
85d0dc9f
RH
4715 CPUState *cs = env_cpu(env);
4716 int mask = e2_tlbmask(env);
fd3ed969 4717
85d0dc9f 4718 tlb_flush_by_mmuidx(cs, mask);
fd3ed969
PM
4719}
4720
43efaa33
PM
4721static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4722 uint64_t value)
4723{
2fc0cc0e 4724 ARMCPU *cpu = env_archcpu(env);
43efaa33
PM
4725 CPUState *cs = CPU(cpu);
4726
d902ae75 4727 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
43efaa33
PM
4728}
4729
fd3ed969
PM
4730static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4731 uint64_t value)
4732{
29a0af61 4733 CPUState *cs = env_cpu(env);
90c19cdf
RH
4734 int mask = alle1_tlbmask(env);
4735
4736 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
fa439fc5
PM
4737}
4738
2bfb9d75
PM
4739static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4740 uint64_t value)
4741{
29a0af61 4742 CPUState *cs = env_cpu(env);
85d0dc9f 4743 int mask = e2_tlbmask(env);
2bfb9d75 4744
85d0dc9f 4745 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
2bfb9d75
PM
4746}
4747
43efaa33
PM
4748static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4749 uint64_t value)
4750{
29a0af61 4751 CPUState *cs = env_cpu(env);
43efaa33 4752
d902ae75 4753 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
43efaa33
PM
4754}
4755
fd3ed969
PM
4756static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4757 uint64_t value)
fa439fc5 4758{
9b37a28c
FR
4759 /*
4760 * Invalidate by VA, EL2
fd3ed969
PM
4761 * Currently handles both VAE2 and VALE2, since we don't support
4762 * flush-last-level-only.
4763 */
85d0dc9f
RH
4764 CPUState *cs = env_cpu(env);
4765 int mask = e2_tlbmask(env);
fd3ed969
PM
4766 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4767
85d0dc9f 4768 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
fd3ed969
PM
4769}
4770
43efaa33
PM
4771static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4772 uint64_t value)
4773{
9b37a28c
FR
4774 /*
4775 * Invalidate by VA, EL3
43efaa33
PM
4776 * Currently handles both VAE3 and VALE3, since we don't support
4777 * flush-last-level-only.
4778 */
2fc0cc0e 4779 ARMCPU *cpu = env_archcpu(env);
43efaa33
PM
4780 CPUState *cs = CPU(cpu);
4781 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4782
d902ae75 4783 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
43efaa33
PM
4784}
4785
fd3ed969
PM
4786static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4787 uint64_t value)
4788{
90c19cdf
RH
4789 CPUState *cs = env_cpu(env);
4790 int mask = vae1_tlbmask(env);
fa439fc5 4791 uint64_t pageaddr = sextract64(value << 12, 0, 56);
ea04dce7 4792 int bits = vae1_tlbbits(env, pageaddr);
fa439fc5 4793
ea04dce7 4794 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
fa439fc5
PM
4795}
4796
b4ab8ce9
PM
4797static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4798 uint64_t value)
4799{
9b37a28c
FR
4800 /*
4801 * Invalidate by VA, EL1&0 (AArch64 version).
b4ab8ce9
PM
4802 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4803 * since we don't support flush-for-specific-ASID-only or
4804 * flush-last-level-only.
4805 */
90c19cdf
RH
4806 CPUState *cs = env_cpu(env);
4807 int mask = vae1_tlbmask(env);
b4ab8ce9 4808 uint64_t pageaddr = sextract64(value << 12, 0, 56);
ea04dce7 4809 int bits = vae1_tlbbits(env, pageaddr);
b4ab8ce9
PM
4810
4811 if (tlb_force_broadcast(env)) {
ea04dce7 4812 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
527db2be 4813 } else {
ea04dce7 4814 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
b4ab8ce9 4815 }
b4ab8ce9
PM
4816}
4817
fd3ed969
PM
4818static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4819 uint64_t value)
fa439fc5 4820{
29a0af61 4821 CPUState *cs = env_cpu(env);
fd3ed969 4822 uint64_t pageaddr = sextract64(value << 12, 0, 56);
d902ae75 4823 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr);
fa439fc5 4824
d902ae75
RH
4825 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4826 ARMMMUIdxBit_E2, bits);
fa439fc5
PM
4827}
4828
43efaa33
PM
4829static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4830 uint64_t value)
4831{
29a0af61 4832 CPUState *cs = env_cpu(env);
43efaa33 4833 uint64_t pageaddr = sextract64(value << 12, 0, 56);
d902ae75 4834 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
43efaa33 4835
ea04dce7 4836 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
d902ae75 4837 ARMMMUIdxBit_E3, bits);
43efaa33
PM
4838}
4839
575a94af
RH
4840static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4841{
4842 /*
4843 * The MSB of value is the NS field, which only applies if SEL2
4844 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4845 */
4846 return (value >= 0
4847 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4848 && arm_is_secure_below_el3(env)
4849 ? ARMMMUIdxBit_Stage2_S
4850 : ARMMMUIdxBit_Stage2);
4851}
4852
4853static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4854 uint64_t value)
4855{
4856 CPUState *cs = env_cpu(env);
4857 int mask = ipas2e1_tlbmask(env, value);
4858 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4859
4860 if (tlb_force_broadcast(env)) {
4861 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4862 } else {
4863 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4864 }
4865}
4866
4867static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4868 uint64_t value)
4869{
4870 CPUState *cs = env_cpu(env);
4871 int mask = ipas2e1_tlbmask(env, value);
4872 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4873
4874 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4875}
4876
84940ed8 4877#ifdef TARGET_AARCH64
ab1cdb47
RH
4878typedef struct {
4879 uint64_t base;
84940ed8 4880 uint64_t length;
ab1cdb47
RH
4881} TLBIRange;
4882
3c003f70
PM
4883static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4884{
4885 /*
4886 * Note that the TLBI range TG field encoding differs from both
4887 * TG0 and TG1 encodings.
4888 */
4889 switch (tg) {
4890 case 1:
4891 return Gran4K;
4892 case 2:
4893 return Gran16K;
4894 case 3:
4895 return Gran64K;
4896 default:
4897 return GranInvalid;
4898 }
4899}
4900
ab1cdb47
RH
4901static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4902 uint64_t value)
4903{
4904 unsigned int page_size_granule, page_shift, num, scale, exponent;
3974ff93
RH
4905 /* Extract one bit to represent the va selector in use. */
4906 uint64_t select = sextract64(value, 36, 1);
4907 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
ab1cdb47 4908 TLBIRange ret = { };
3c003f70 4909 ARMGranuleSize gran;
84940ed8 4910
84940ed8 4911 page_size_granule = extract64(value, 46, 2);
3c003f70 4912 gran = tlbi_range_tg_to_gran_size(page_size_granule);
84940ed8 4913
3974ff93 4914 /* The granule encoded in value must match the granule in use. */
3c003f70 4915 if (gran != param.gran) {
3974ff93 4916 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
84940ed8 4917 page_size_granule);
ab1cdb47 4918 return ret;
84940ed8
RC
4919 }
4920
3c003f70 4921 page_shift = arm_granule_bits(gran);
ab1cdb47
RH
4922 num = extract64(value, 39, 5);
4923 scale = extract64(value, 44, 2);
84940ed8 4924 exponent = (5 * scale) + 1;
84940ed8 4925
ab1cdb47 4926 ret.length = (num + 1) << (exponent + page_shift);
84940ed8 4927
3974ff93 4928 if (param.select) {
d976de21 4929 ret.base = sextract64(value, 0, 37);
84940ed8 4930 } else {
d976de21 4931 ret.base = extract64(value, 0, 37);
84940ed8 4932 }
ef56c242
RH
4933 if (param.ds) {
4934 /*
4935 * With DS=1, BaseADDR is always shifted 16 so that it is able
4936 * to address all 52 va bits. The input address is perforce
4937 * aligned on a 64k boundary regardless of translation granule.
4938 */
4939 page_shift = 16;
4940 }
d976de21 4941 ret.base <<= page_shift;
84940ed8 4942
ab1cdb47 4943 return ret;
84940ed8
RC
4944}
4945
4946static void do_rvae_write(CPUARMState *env, uint64_t value,
4947 int idxmap, bool synced)
4948{
4949 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
ab1cdb47 4950 TLBIRange range;
84940ed8
RC
4951 int bits;
4952
ab1cdb47
RH
4953 range = tlbi_aa64_get_range(env, one_idx, value);
4954 bits = tlbbits_for_regime(env, one_idx, range.base);
84940ed8
RC
4955
4956 if (synced) {
4957 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
ab1cdb47
RH
4958 range.base,
4959 range.length,
84940ed8
RC
4960 idxmap,
4961 bits);
4962 } else {
ab1cdb47
RH
4963 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4964 range.length, idxmap, bits);
84940ed8
RC
4965 }
4966}
4967
4968static void tlbi_aa64_rvae1_write(CPUARMState *env,
4969 const ARMCPRegInfo *ri,
4970 uint64_t value)
4971{
4972 /*
4973 * Invalidate by VA range, EL1&0.
4974 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4975 * since we don't support flush-for-specific-ASID-only or
4976 * flush-last-level-only.
4977 */
4978
4979 do_rvae_write(env, value, vae1_tlbmask(env),
4980 tlb_force_broadcast(env));
4981}
4982
4983static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4984 const ARMCPRegInfo *ri,
4985 uint64_t value)
4986{
4987 /*
4988 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4989 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4990 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4991 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4992 * shareable specific flushes.
4993 */
4994
4995 do_rvae_write(env, value, vae1_tlbmask(env), true);
4996}
4997
4998static int vae2_tlbmask(CPUARMState *env)
4999{
d902ae75 5000 return ARMMMUIdxBit_E2;
84940ed8
RC
5001}
5002
5003static void tlbi_aa64_rvae2_write(CPUARMState *env,
5004 const ARMCPRegInfo *ri,
5005 uint64_t value)
5006{
5007 /*
5008 * Invalidate by VA range, EL2.
5009 * Currently handles all of RVAE2 and RVALE2,
5010 * since we don't support flush-for-specific-ASID-only or
5011 * flush-last-level-only.
5012 */
5013
5014 do_rvae_write(env, value, vae2_tlbmask(env),
5015 tlb_force_broadcast(env));
5016
5017
5018}
5019
5020static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5021 const ARMCPRegInfo *ri,
5022 uint64_t value)
5023{
5024 /*
5025 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5026 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5027 * since we don't support flush-for-specific-ASID-only,
5028 * flush-last-level-only or inner/outer shareable specific flushes.
5029 */
5030
5031 do_rvae_write(env, value, vae2_tlbmask(env), true);
5032
5033}
5034
5035static void tlbi_aa64_rvae3_write(CPUARMState *env,
5036 const ARMCPRegInfo *ri,
5037 uint64_t value)
5038{
5039 /*
5040 * Invalidate by VA range, EL3.
5041 * Currently handles all of RVAE3 and RVALE3,
5042 * since we don't support flush-for-specific-ASID-only or
5043 * flush-last-level-only.
5044 */
5045
d902ae75 5046 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
84940ed8
RC
5047}
5048
5049static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5050 const ARMCPRegInfo *ri,
5051 uint64_t value)
5052{
5053 /*
5054 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5055 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5056 * since we don't support flush-for-specific-ASID-only,
5057 * flush-last-level-only or inner/outer specific flushes.
5058 */
5059
d902ae75 5060 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
84940ed8 5061}
575a94af
RH
5062
5063static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5064 uint64_t value)
5065{
5066 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5067 tlb_force_broadcast(env));
5068}
5069
5070static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5071 const ARMCPRegInfo *ri,
5072 uint64_t value)
5073{
5074 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5075}
84940ed8
RC
5076#endif
5077
3f208fd7
PM
5078static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5079 bool isread)
aca3f40b 5080{
4351cb72
RH
5081 int cur_el = arm_current_el(env);
5082
5083 if (cur_el < 2) {
5084 uint64_t hcr = arm_hcr_el2_eff(env);
5085
5086 if (cur_el == 0) {
5087 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5088 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5089 return CP_ACCESS_TRAP_EL2;
5090 }
5091 } else {
5092 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5093 return CP_ACCESS_TRAP;
5094 }
5095 if (hcr & HCR_TDZ) {
5096 return CP_ACCESS_TRAP_EL2;
5097 }
5098 }
5099 } else if (hcr & HCR_TDZ) {
5100 return CP_ACCESS_TRAP_EL2;
5101 }
aca3f40b
PM
5102 }
5103 return CP_ACCESS_OK;
5104}
5105
5106static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5107{
2fc0cc0e 5108 ARMCPU *cpu = env_archcpu(env);
aca3f40b
PM
5109 int dzp_bit = 1 << 4;
5110
5111 /* DZP indicates whether DC ZVA access is allowed */
3f208fd7 5112 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
aca3f40b
PM
5113 dzp_bit = 0;
5114 }
5115 return cpu->dcz_blocksize | dzp_bit;
5116}
5117
3f208fd7
PM
5118static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5119 bool isread)
f502cfc2 5120{
cdcf1405 5121 if (!(env->pstate & PSTATE_SP)) {
9b37a28c
FR
5122 /*
5123 * Access to SP_EL0 is undefined if it's being used as
f502cfc2
PM
5124 * the stack pointer.
5125 */
5126 return CP_ACCESS_TRAP_UNCATEGORIZED;
5127 }
5128 return CP_ACCESS_OK;
5129}
5130
5131static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5132{
5133 return env->pstate & PSTATE_SP;
5134}
5135
5136static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5137{
5138 update_spsel(env, val);
5139}
5140
137feaa9
FA
5141static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5142 uint64_t value)
5143{
2fc0cc0e 5144 ARMCPU *cpu = env_archcpu(env);
137feaa9 5145
f00faf13
RH
5146 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5147 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5148 value &= ~SCTLR_M;
5149 }
5150
5151 /* ??? Lots of these bits are not implemented. */
5152
5153 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5154 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5155 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5156 } else {
5157 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5158 SCTLR_ATA0 | SCTLR_ATA);
5159 }
5160 }
5161
137feaa9 5162 if (raw_read(env, ri) == value) {
9b37a28c
FR
5163 /*
5164 * Skip the TLB flush if nothing actually changed; Linux likes
137feaa9
FA
5165 * to do a lot of pointless SCTLR writes.
5166 */
5167 return;
5168 }
5169
5170 raw_write(env, ri, value);
f00faf13 5171
137feaa9 5172 /* This may enable/disable the MMU, so do a TLB flush. */
d10eb08f 5173 tlb_flush(CPU(cpu));
2e5dcf36
RH
5174
5175 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
5176 /*
5177 * Normally we would always end the TB on an SCTLR write; see the
5178 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5179 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5180 * of hflags from the translator, so do it here.
5181 */
5182 arm_rebuild_hflags(env);
5183 }
137feaa9
FA
5184}
5185
80d2b43b
PM
5186static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5187 uint64_t value)
a8d64e73 5188{
01765386
PM
5189 /*
5190 * Some MDCR_EL3 bits affect whether PMU counters are running:
5191 * if we are trying to change any of those then we must
5192 * bracket this update with PMU start/finish calls.
5193 */
5194 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5195
5196 if (pmu_op) {
5197 pmu_op_start(env);
5198 }
80d2b43b 5199 env->cp15.mdcr_el3 = value;
01765386
PM
5200 if (pmu_op) {
5201 pmu_op_finish(env);
5202 }
5203}
5204
80d2b43b
PM
5205static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5206 uint64_t value)
5207{
5208 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5209 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5210}
5211
01765386
PM
5212static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5213 uint64_t value)
5214{
5215 /*
5216 * Some MDCR_EL2 bits affect whether PMU counters are running:
5217 * if we are trying to change any of those then we must
5218 * bracket this update with PMU start/finish calls.
5219 */
5220 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5221
5222 if (pmu_op) {
5223 pmu_op_start(env);
5224 }
5225 env->cp15.mdcr_el2 = value;
5226 if (pmu_op) {
5227 pmu_op_finish(env);
5228 }
a8d64e73
PM
5229}
5230
b0d2b7d0 5231static const ARMCPRegInfo v8_cp_reginfo[] = {
9b37a28c
FR
5232 /*
5233 * Minimal set of EL0-visible registers. This will need to be expanded
b0d2b7d0
PM
5234 * significantly for system emulation of AArch64 CPUs.
5235 */
5236 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5237 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5238 .access = PL0_RW, .type = ARM_CP_NZCV },
c2b820fe
PM
5239 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5240 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
7a0e58fa 5241 .type = ARM_CP_NO_RAW,
c2b820fe
PM
5242 .access = PL0_RW, .accessfn = aa64_daif_access,
5243 .fieldoffset = offsetof(CPUARMState, daif),
5244 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
b0d2b7d0
PM
5245 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5246 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
b916c9c3 5247 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
fe03d45f 5248 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
b0d2b7d0
PM
5249 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5250 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
b916c9c3 5251 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
fe03d45f 5252 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
b0d2b7d0
PM
5253 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5254 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
7a0e58fa 5255 .access = PL0_R, .type = ARM_CP_NO_RAW,
b19ed03c 5256 .fgt = FGT_DCZID_EL0,
aca3f40b
PM
5257 .readfn = aa64_dczid_read },
5258 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5259 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5260 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5261#ifndef CONFIG_USER_ONLY
5262 /* Avoid overhead of an access check that always passes in user-mode */
5263 .accessfn = aa64_zva_access,
dd345653 5264 .fgt = FGT_DCZVA,
aca3f40b
PM
5265#endif
5266 },
0eef9d98
PM
5267 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5268 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5269 .access = PL1_R, .type = ARM_CP_CURRENTEL },
8af35c37
PM
5270 /* Cache ops: all NOPs since we don't emulate caches */
5271 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5272 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
38262d8a 5273 .access = PL1_W, .type = ARM_CP_NOP,
dd345653 5274 .fgt = FGT_ICIALLUIS,
2d3ce4c6 5275 .accessfn = access_ticab },
8af35c37
PM
5276 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5277 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
38262d8a 5278 .access = PL1_W, .type = ARM_CP_NOP,
dd345653 5279 .fgt = FGT_ICIALLU,
2d3ce4c6 5280 .accessfn = access_tocu },
8af35c37
PM
5281 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5282 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5283 .access = PL0_W, .type = ARM_CP_NOP,
dd345653 5284 .fgt = FGT_ICIVAU,
2d3ce4c6 5285 .accessfn = access_tocu },
8af35c37
PM
5286 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5287 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
1bed4d2e 5288 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
dd345653 5289 .fgt = FGT_DCIVAC,
1bed4d2e 5290 .type = ARM_CP_NOP },
8af35c37
PM
5291 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5292 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
dd345653 5293 .fgt = FGT_DCISW,
1803d271 5294 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
8af35c37
PM
5295 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5296 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5297 .access = PL0_W, .type = ARM_CP_NOP,
950037e2 5298 .fgt = FGT_DCCVAC,
1bed4d2e 5299 .accessfn = aa64_cacheop_poc_access },
8af35c37
PM
5300 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5301 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
dd345653 5302 .fgt = FGT_DCCSW,
1803d271 5303 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
8af35c37
PM
5304 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5305 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5306 .access = PL0_W, .type = ARM_CP_NOP,
dd345653 5307 .fgt = FGT_DCCVAU,
2d3ce4c6 5308 .accessfn = access_tocu },
8af35c37
PM
5309 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5310 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5311 .access = PL0_W, .type = ARM_CP_NOP,
dd345653 5312 .fgt = FGT_DCCIVAC,
1bed4d2e 5313 .accessfn = aa64_cacheop_poc_access },
8af35c37
PM
5314 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5315 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
dd345653 5316 .fgt = FGT_DCCISW,
1803d271 5317 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
168aa23b
PM
5318 /* TLBI operations */
5319 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 5320 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
0f66d223 5321 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 5322 .fgt = FGT_TLBIVMALLE1IS,
fd3ed969 5323 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 5324 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 5325 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
0f66d223 5326 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 5327 .fgt = FGT_TLBIVAE1IS,
fd3ed969 5328 .writefn = tlbi_aa64_vae1is_write },
168aa23b 5329 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 5330 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
0f66d223 5331 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 5332 .fgt = FGT_TLBIASIDE1IS,
fd3ed969 5333 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 5334 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 5335 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
0f66d223 5336 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 5337 .fgt = FGT_TLBIVAAE1IS,
fd3ed969 5338 .writefn = tlbi_aa64_vae1is_write },
168aa23b 5339 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 5340 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
0f66d223 5341 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 5342 .fgt = FGT_TLBIVALE1IS,
fd3ed969 5343 .writefn = tlbi_aa64_vae1is_write },
168aa23b 5344 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 5345 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
0f66d223 5346 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 5347 .fgt = FGT_TLBIVAALE1IS,
fd3ed969 5348 .writefn = tlbi_aa64_vae1is_write },
168aa23b 5349 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
6ab9f499 5350 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
30881b73 5351 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 5352 .fgt = FGT_TLBIVMALLE1,
fd3ed969 5353 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 5354 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 5355 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
30881b73 5356 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 5357 .fgt = FGT_TLBIVAE1,
fd3ed969 5358 .writefn = tlbi_aa64_vae1_write },
168aa23b 5359 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
6ab9f499 5360 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
30881b73 5361 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 5362 .fgt = FGT_TLBIASIDE1,
fd3ed969 5363 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 5364 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 5365 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
30881b73 5366 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 5367 .fgt = FGT_TLBIVAAE1,
fd3ed969 5368 .writefn = tlbi_aa64_vae1_write },
168aa23b 5369 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 5370 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
30881b73 5371 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 5372 .fgt = FGT_TLBIVALE1,
fd3ed969 5373 .writefn = tlbi_aa64_vae1_write },
168aa23b 5374 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 5375 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
30881b73 5376 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 5377 .fgt = FGT_TLBIVAALE1,
fd3ed969 5378 .writefn = tlbi_aa64_vae1_write },
cea66e91
PM
5379 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5380 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
575a94af
RH
5381 .access = PL2_W, .type = ARM_CP_NO_RAW,
5382 .writefn = tlbi_aa64_ipas2e1is_write },
cea66e91
PM
5383 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5384 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
575a94af
RH
5385 .access = PL2_W, .type = ARM_CP_NO_RAW,
5386 .writefn = tlbi_aa64_ipas2e1is_write },
83ddf975
PM
5387 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5388 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5389 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 5390 .writefn = tlbi_aa64_alle1is_write },
43efaa33
PM
5391 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5392 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5393 .access = PL2_W, .type = ARM_CP_NO_RAW,
5394 .writefn = tlbi_aa64_alle1is_write },
cea66e91
PM
5395 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5396 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
575a94af
RH
5397 .access = PL2_W, .type = ARM_CP_NO_RAW,
5398 .writefn = tlbi_aa64_ipas2e1_write },
cea66e91
PM
5399 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5400 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
575a94af
RH
5401 .access = PL2_W, .type = ARM_CP_NO_RAW,
5402 .writefn = tlbi_aa64_ipas2e1_write },
83ddf975
PM
5403 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5404 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5405 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 5406 .writefn = tlbi_aa64_alle1_write },
43efaa33
PM
5407 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5408 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5409 .access = PL2_W, .type = ARM_CP_NO_RAW,
5410 .writefn = tlbi_aa64_alle1is_write },
19525524
PM
5411#ifndef CONFIG_USER_ONLY
5412 /* 64 bit address translation operations */
5413 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5414 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
0710b2fa 5415 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
132c98cd 5416 .fgt = FGT_ATS1E1R,
0710b2fa 5417 .writefn = ats_write64 },
19525524
PM
5418 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5419 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
0710b2fa 5420 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
132c98cd 5421 .fgt = FGT_ATS1E1W,
0710b2fa 5422 .writefn = ats_write64 },
19525524
PM
5423 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5424 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
0710b2fa 5425 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
132c98cd 5426 .fgt = FGT_ATS1E0R,
0710b2fa 5427 .writefn = ats_write64 },
19525524
PM
5428 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5429 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
0710b2fa 5430 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
132c98cd 5431 .fgt = FGT_ATS1E0W,
0710b2fa 5432 .writefn = ats_write64 },
2a47df95 5433 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
7a379c7e 5434 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
0710b2fa
PM
5435 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5436 .writefn = ats_write64 },
2a47df95 5437 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
7a379c7e 5438 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
0710b2fa
PM
5439 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5440 .writefn = ats_write64 },
2a47df95 5441 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
7a379c7e 5442 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
0710b2fa
PM
5443 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5444 .writefn = ats_write64 },
2a47df95 5445 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
7a379c7e 5446 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
0710b2fa
PM
5447 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5448 .writefn = ats_write64 },
2a47df95
PM
5449 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5450 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5451 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
0710b2fa
PM
5452 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5453 .writefn = ats_write64 },
2a47df95
PM
5454 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5455 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
0710b2fa
PM
5456 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5457 .writefn = ats_write64 },
c96fc9b5
EI
5458 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5459 .type = ARM_CP_ALIAS,
5460 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5461 .access = PL1_RW, .resetvalue = 0,
67dd8030 5462 .fgt = FGT_PAR_EL1,
c96fc9b5
EI
5463 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5464 .writefn = par_write },
19525524 5465#endif
995939a6 5466 /* TLB invalidate last level of translation table walk */
9449fdf6 5467 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
0f66d223 5468 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
30881b73 5469 .writefn = tlbimva_is_write },
9449fdf6 5470 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
0f66d223 5471 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
fa439fc5 5472 .writefn = tlbimvaa_is_write },
9449fdf6 5473 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
30881b73
RH
5474 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5475 .writefn = tlbimva_write },
9449fdf6 5476 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
30881b73
RH
5477 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5478 .writefn = tlbimvaa_write },
541ef8c2
SS
5479 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5480 .type = ARM_CP_NO_RAW, .access = PL2_W,
5481 .writefn = tlbimva_hyp_write },
5482 { .name = "TLBIMVALHIS",
5483 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5484 .type = ARM_CP_NO_RAW, .access = PL2_W,
5485 .writefn = tlbimva_hyp_is_write },
5486 { .name = "TLBIIPAS2",
5487 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
575a94af
RH
5488 .type = ARM_CP_NO_RAW, .access = PL2_W,
5489 .writefn = tlbiipas2_hyp_write },
541ef8c2
SS
5490 { .name = "TLBIIPAS2IS",
5491 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
575a94af
RH
5492 .type = ARM_CP_NO_RAW, .access = PL2_W,
5493 .writefn = tlbiipas2is_hyp_write },
541ef8c2
SS
5494 { .name = "TLBIIPAS2L",
5495 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
575a94af
RH
5496 .type = ARM_CP_NO_RAW, .access = PL2_W,
5497 .writefn = tlbiipas2_hyp_write },
541ef8c2
SS
5498 { .name = "TLBIIPAS2LIS",
5499 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
575a94af
RH
5500 .type = ARM_CP_NO_RAW, .access = PL2_W,
5501 .writefn = tlbiipas2is_hyp_write },
9449fdf6
PM
5502 /* 32 bit cache operations */
5503 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2d3ce4c6 5504 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
9449fdf6
PM
5505 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5506 .type = ARM_CP_NOP, .access = PL1_W },
5507 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2d3ce4c6 5508 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
9449fdf6 5509 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
2d3ce4c6 5510 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
9449fdf6
PM
5511 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5512 .type = ARM_CP_NOP, .access = PL1_W },
5513 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5514 .type = ARM_CP_NOP, .access = PL1_W },
5515 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
1bed4d2e 5516 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
9449fdf6 5517 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
1803d271 5518 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
9449fdf6 5519 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
1bed4d2e 5520 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
9449fdf6 5521 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
1803d271 5522 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
9449fdf6 5523 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
2d3ce4c6 5524 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
9449fdf6 5525 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
1bed4d2e 5526 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
9449fdf6 5527 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
1803d271 5528 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
9449fdf6 5529 /* MMU Domain access control / MPU write buffer control */
0c17d68c 5530 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
84929218 5531 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
0c17d68c
FA
5532 .writefn = dacr_write, .raw_writefn = raw_write,
5533 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5534 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a0618a19 5535 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 5536 .type = ARM_CP_ALIAS,
a0618a19 5537 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
6947f059
EI
5538 .access = PL1_RW,
5539 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
a65f1de9 5540 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 5541 .type = ARM_CP_ALIAS,
a65f1de9 5542 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
5543 .access = PL1_RW,
5544 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
9b37a28c
FR
5545 /*
5546 * We rely on the access checks not allowing the guest to write to the
f502cfc2
PM
5547 * state field when SPSel indicates that it's being used as the stack
5548 * pointer.
5549 */
5550 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5551 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5552 .access = PL1_RW, .accessfn = sp_el0_access,
7a0e58fa 5553 .type = ARM_CP_ALIAS,
f502cfc2 5554 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
884b4dee
GB
5555 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5556 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
beeec926 5557 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
884b4dee 5558 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
f502cfc2
PM
5559 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5560 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
7a0e58fa 5561 .type = ARM_CP_NO_RAW,
f502cfc2 5562 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
03fbf20f
PM
5563 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5564 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
696ba377
RH
5565 .access = PL2_RW,
5566 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
a4c88675 5567 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
6a43e0b6
PM
5568 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5569 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
696ba377 5570 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
6a43e0b6
PM
5571 .writefn = dacr_write, .raw_writefn = raw_write,
5572 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5573 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5574 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
696ba377 5575 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
6a43e0b6
PM
5576 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5577 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5578 .type = ARM_CP_ALIAS,
5579 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5580 .access = PL2_RW,
5581 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5582 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5583 .type = ARM_CP_ALIAS,
5584 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5585 .access = PL2_RW,
5586 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5587 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5588 .type = ARM_CP_ALIAS,
5589 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5590 .access = PL2_RW,
5591 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5592 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5593 .type = ARM_CP_ALIAS,
5594 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5595 .access = PL2_RW,
5596 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
a8d64e73 5597 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
80d2b43b 5598 .type = ARM_CP_IO,
a8d64e73
PM
5599 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5600 .resetvalue = 0,
80d2b43b
PM
5601 .access = PL3_RW,
5602 .writefn = mdcr_el3_write,
5603 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
7f4fbfb5 5604 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
a8d64e73
PM
5605 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5606 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5607 .writefn = sdcr_write,
5608 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
b0d2b7d0
PM
5609};
5610
d1fb4da2 5611static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
f149e3e8 5612{
2fc0cc0e 5613 ARMCPU *cpu = env_archcpu(env);
d1fb4da2
RH
5614
5615 if (arm_feature(env, ARM_FEATURE_V8)) {
5616 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5617 } else {
5618 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5619 }
f149e3e8
EI
5620
5621 if (arm_feature(env, ARM_FEATURE_EL3)) {
5622 valid_mask &= ~HCR_HCD;
77077a83 5623 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
9b37a28c
FR
5624 /*
5625 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
77077a83
JK
5626 * However, if we're using the SMC PSCI conduit then QEMU is
5627 * effectively acting like EL3 firmware and so the guest at
5628 * EL2 should retain the ability to prevent EL1 from being
5629 * able to make SMC calls into the ersatz firmware, so in
5630 * that case HCR.TSC should be read/write.
5631 */
f149e3e8
EI
5632 valid_mask &= ~HCR_TSC;
5633 }
d1fb4da2
RH
5634
5635 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5636 if (cpu_isar_feature(aa64_vh, cpu)) {
5637 valid_mask |= HCR_E2H;
5638 }
da3d8b13
RH
5639 if (cpu_isar_feature(aa64_ras, cpu)) {
5640 valid_mask |= HCR_TERR | HCR_TEA;
5641 }
d1fb4da2
RH
5642 if (cpu_isar_feature(aa64_lor, cpu)) {
5643 valid_mask |= HCR_TLOR;
5644 }
5645 if (cpu_isar_feature(aa64_pauth, cpu)) {
5646 valid_mask |= HCR_API | HCR_APK;
5647 }
8ddb300b
RH
5648 if (cpu_isar_feature(aa64_mte, cpu)) {
5649 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5650 }
7cb1e618
RH
5651 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5652 valid_mask |= HCR_ENSCXT;
5653 }
8c7e17ef
PM
5654 if (cpu_isar_feature(aa64_fwb, cpu)) {
5655 valid_mask |= HCR_FWB;
5656 }
ef682cdb 5657 }
f149e3e8 5658
d2fd9313
PM
5659 if (cpu_isar_feature(any_evt, cpu)) {
5660 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5661 } else if (cpu_isar_feature(any_half_evt, cpu)) {
5662 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5663 }
5664
f149e3e8
EI
5665 /* Clear RES0 bits. */
5666 value &= valid_mask;
5667
8ddb300b
RH
5668 /*
5669 * These bits change the MMU setup:
f149e3e8
EI
5670 * HCR_VM enables stage 2 translation
5671 * HCR_PTW forbids certain page-table setups
8ddb300b
RH
5672 * HCR_DC disables stage1 and enables stage2 translation
5673 * HCR_DCT enables tagging on (disabled) stage1 translation
8c7e17ef 5674 * HCR_FWB changes the interpretation of stage2 descriptor bits
f149e3e8 5675 */
8c7e17ef
PM
5676 if ((env->cp15.hcr_el2 ^ value) &
5677 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
d10eb08f 5678 tlb_flush(CPU(cpu));
f149e3e8 5679 }
ce4afed8 5680 env->cp15.hcr_el2 = value;
89430fc6
PM
5681
5682 /*
5683 * Updates to VI and VF require us to update the status of
5684 * virtual interrupts, which are the logical OR of these bits
5685 * and the state of the input lines from the GIC. (This requires
5686 * that we have the iothread lock, which is done by marking the
5687 * reginfo structs as ARM_CP_IO.)
5688 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5689 * possible for it to be taken immediately, because VIRQ and
5690 * VFIQ are masked unless running at EL0 or EL1, and HCR
5691 * can only be written at EL2.
5692 */
5693 g_assert(qemu_mutex_iothread_locked());
5694 arm_cpu_update_virq(cpu);
5695 arm_cpu_update_vfiq(cpu);
3c29632f 5696 arm_cpu_update_vserr(cpu);
ce4afed8
PM
5697}
5698
d1fb4da2
RH
5699static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5700{
5701 do_hcr_write(env, value, 0);
5702}
5703
ce4afed8
PM
5704static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5705 uint64_t value)
5706{
5707 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5708 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
d1fb4da2 5709 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
ce4afed8
PM
5710}
5711
5712static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5713 uint64_t value)
5714{
5715 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5716 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
d1fb4da2 5717 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
f149e3e8
EI
5718}
5719
f7778444 5720/*
b74c0443 5721 * Return the effective value of HCR_EL2, at the given security state.
f7778444
RH
5722 * Bits that are not included here:
5723 * RW (read from SCR_EL3.RW as needed)
5724 */
b74c0443 5725uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure)
f7778444
RH
5726{
5727 uint64_t ret = env->cp15.hcr_el2;
5728
b74c0443 5729 if (!arm_is_el2_enabled_secstate(env, secure)) {
f7778444
RH
5730 /*
5731 * "This register has no effect if EL2 is not enabled in the
5732 * current Security state". This is ARMv8.4-SecEL2 speak for
5733 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5734 *
5735 * Prior to that, the language was "In an implementation that
5736 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5737 * as if this field is 0 for all purposes other than a direct
5738 * read or write access of HCR_EL2". With lots of enumeration
5739 * on a per-field basis. In current QEMU, this is condition
5740 * is arm_is_secure_below_el3.
5741 *
5742 * Since the v8.4 language applies to the entire register, and
5743 * appears to be backward compatible, use that.
5744 */
4990e1d3
RH
5745 return 0;
5746 }
5747
5748 /*
5749 * For a cpu that supports both aarch64 and aarch32, we can set bits
5750 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5751 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5752 */
5753 if (!arm_el_is_aa64(env, 2)) {
5754 uint64_t aa32_valid;
5755
5756 /*
5757 * These bits are up-to-date as of ARMv8.6.
5758 * For HCR, it's easiest to list just the 2 bits that are invalid.
5759 * For HCR2, list those that are valid.
5760 */
5761 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5762 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5763 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5764 ret &= aa32_valid;
5765 }
5766
5767 if (ret & HCR_TGE) {
5768 /* These bits are up-to-date as of ARMv8.6. */
f7778444
RH
5769 if (ret & HCR_E2H) {
5770 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5771 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5772 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4990e1d3
RH
5773 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5774 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5775 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
f7778444
RH
5776 } else {
5777 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5778 }
5779 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5780 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5781 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5782 HCR_TLOR);
5783 }
5784
5785 return ret;
5786}
5787
b74c0443
RH
5788uint64_t arm_hcr_el2_eff(CPUARMState *env)
5789{
5790 return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env));
5791}
5792
19668718
RH
5793/*
5794 * Corresponds to ARM pseudocode function ELIsInHost().
5795 */
5796bool el_is_in_host(CPUARMState *env, int el)
5797{
5798 uint64_t mask;
5799
5800 /*
5801 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5802 * Perform the simplest bit tests first, and validate EL2 afterward.
5803 */
5804 if (el & 1) {
5805 return false; /* EL1 or EL3 */
5806 }
5807
5808 /*
5809 * Note that hcr_write() checks isar_feature_aa64_vh(),
5810 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5811 */
5812 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5813 if ((env->cp15.hcr_el2 & mask) != mask) {
5814 return false;
5815 }
5816
5817 /* TGE and/or E2H set: double check those bits are currently legal. */
5818 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5819}
5820
5814d587
RH
5821static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5822 uint64_t value)
5823{
5824 uint64_t valid_mask = 0;
5825
5826 /* No features adding bits to HCRX are implemented. */
5827
5828 /* Clear RES0 bits. */
5829 env->cp15.hcrx_el2 = value & valid_mask;
5830}
5831
5832static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5833 bool isread)
5834{
5835 if (arm_current_el(env) < 3
5836 && arm_feature(env, ARM_FEATURE_EL3)
5837 && !(env->cp15.scr_el3 & SCR_HXEN)) {
5838 return CP_ACCESS_TRAP_EL3;
5839 }
5840 return CP_ACCESS_OK;
5841}
5842
5843static const ARMCPRegInfo hcrx_el2_reginfo = {
5844 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5845 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5846 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5847 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5848};
5849
5850/* Return the effective value of HCRX_EL2. */
5851uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5852{
5853 /*
5854 * The bits in this register behave as 0 for all purposes other than
5855 * direct reads of the register if:
5856 * - EL2 is not enabled in the current security state,
5857 * - SCR_EL3.HXEn is 0.
5858 */
5859 if (!arm_is_el2_enabled(env)
5860 || (arm_feature(env, ARM_FEATURE_EL3)
5861 && !(env->cp15.scr_el3 & SCR_HXEN))) {
5862 return 0;
5863 }
5864 return env->cp15.hcrx_el2;
5865}
5866
fc1120a7
PM
5867static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5868 uint64_t value)
5869{
5870 /*
5871 * For A-profile AArch32 EL3, if NSACR.CP10
5872 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5873 */
5874 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5875 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
fab8ad39
RH
5876 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5877 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
fc1120a7
PM
5878 }
5879 env->cp15.cptr_el[2] = value;
5880}
5881
5882static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5883{
5884 /*
5885 * For A-profile AArch32 EL3, if NSACR.CP10
5886 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5887 */
5888 uint64_t value = env->cp15.cptr_el[2];
5889
5890 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5891 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
fab8ad39 5892 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
fc1120a7
PM
5893 }
5894 return value;
5895}
5896
4771cd01 5897static const ARMCPRegInfo el2_cp_reginfo[] = {
f149e3e8 5898 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
89430fc6 5899 .type = ARM_CP_IO,
f149e3e8
EI
5900 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5901 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
c624ea0f 5902 .writefn = hcr_write },
ce4afed8 5903 { .name = "HCR", .state = ARM_CP_STATE_AA32,
89430fc6 5904 .type = ARM_CP_ALIAS | ARM_CP_IO,
ce4afed8
PM
5905 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5906 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
c624ea0f 5907 .writefn = hcr_writelow },
831a2fca
PM
5908 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5909 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5910 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3b685ba7 5911 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 5912 .type = ARM_CP_ALIAS,
3b685ba7
EI
5913 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5914 .access = PL2_RW,
5915 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
68e78e33 5916 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
f2c30f42
EI
5917 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5918 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
cba517c3 5919 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
63b60551
EI
5920 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5921 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
cba517c3
PM
5922 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5923 .type = ARM_CP_ALIAS,
5924 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5925 .access = PL2_RW,
5926 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
3b685ba7 5927 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 5928 .type = ARM_CP_ALIAS,
3b685ba7 5929 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
5930 .access = PL2_RW,
5931 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
d79e0c06 5932 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
d42e3c26
EI
5933 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5934 .access = PL2_RW, .writefn = vbar_write,
5935 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5936 .resetvalue = 0 },
884b4dee
GB
5937 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5938 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 5939 .access = PL3_RW, .type = ARM_CP_ALIAS,
884b4dee 5940 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
c6f19164
GB
5941 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5942 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5943 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
fc1120a7
PM
5944 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5945 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
95f949ac
EI
5946 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5947 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5948 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5949 .resetvalue = 0 },
5950 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
b5ede85b 5951 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
95f949ac
EI
5952 .access = PL2_RW, .type = ARM_CP_ALIAS,
5953 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2179ef95
PM
5954 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5955 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5956 .access = PL2_RW, .type = ARM_CP_CONST,
5957 .resetvalue = 0 },
5958 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
55b53c71 5959 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
b5ede85b 5960 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
2179ef95
PM
5961 .access = PL2_RW, .type = ARM_CP_CONST,
5962 .resetvalue = 0 },
37cd6c24
PM
5963 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5964 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5965 .access = PL2_RW, .type = ARM_CP_CONST,
5966 .resetvalue = 0 },
5967 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5968 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5969 .access = PL2_RW, .type = ARM_CP_CONST,
5970 .resetvalue = 0 },
06ec4c8c
EI
5971 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5972 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
d06dc933 5973 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
06ec4c8c 5974 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
68e9c2fe
EI
5975 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5976 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112 5977 .type = ARM_CP_ALIAS,
68e9c2fe 5978 .access = PL2_RW, .accessfn = access_el3_aa32ns,
afbb181c 5979 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
68e9c2fe
EI
5980 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5981 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112 5982 .access = PL2_RW,
988cc190 5983 /* no .writefn needed as this can't cause an ASID change */
68e9c2fe 5984 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
b698e9cf
EI
5985 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5986 .cp = 15, .opc1 = 6, .crm = 2,
5987 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5988 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5989 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5990 .writefn = vttbr_write },
5991 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5992 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5993 .access = PL2_RW, .writefn = vttbr_write,
5994 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
b9cb5323
EI
5995 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5996 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5997 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5998 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
ff05f37b
EI
5999 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6000 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6001 .access = PL2_RW, .resetvalue = 0,
6002 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
a57633c0
EI
6003 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6004 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
ed30da8e 6005 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
a57633c0
EI
6006 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6007 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6008 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
a57633c0 6009 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
541ef8c2
SS
6010 { .name = "TLBIALLNSNH",
6011 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6012 .type = ARM_CP_NO_RAW, .access = PL2_W,
6013 .writefn = tlbiall_nsnh_write },
6014 { .name = "TLBIALLNSNHIS",
6015 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6016 .type = ARM_CP_NO_RAW, .access = PL2_W,
6017 .writefn = tlbiall_nsnh_is_write },
6018 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6019 .type = ARM_CP_NO_RAW, .access = PL2_W,
6020 .writefn = tlbiall_hyp_write },
6021 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6022 .type = ARM_CP_NO_RAW, .access = PL2_W,
6023 .writefn = tlbiall_hyp_is_write },
6024 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6025 .type = ARM_CP_NO_RAW, .access = PL2_W,
6026 .writefn = tlbimva_hyp_write },
6027 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6028 .type = ARM_CP_NO_RAW, .access = PL2_W,
6029 .writefn = tlbimva_hyp_is_write },
51da9014
EI
6030 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6031 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
696ba377 6032 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
fd3ed969 6033 .writefn = tlbi_aa64_alle2_write },
8742d49d
EI
6034 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6035 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
696ba377 6036 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
fd3ed969 6037 .writefn = tlbi_aa64_vae2_write },
2bfb9d75
PM
6038 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6039 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
696ba377 6040 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
2bfb9d75
PM
6041 .writefn = tlbi_aa64_vae2_write },
6042 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6043 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
696ba377 6044 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
2bfb9d75 6045 .writefn = tlbi_aa64_alle2is_write },
8742d49d
EI
6046 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6047 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
696ba377 6048 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
fd3ed969 6049 .writefn = tlbi_aa64_vae2is_write },
2bfb9d75
PM
6050 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6051 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
696ba377 6052 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
2bfb9d75 6053 .writefn = tlbi_aa64_vae2is_write },
edac4d8a 6054#ifndef CONFIG_USER_ONLY
9b37a28c
FR
6055 /*
6056 * Unlike the other EL2-related AT operations, these must
2a47df95
PM
6057 * UNDEF from EL3 if EL2 is not implemented, which is why we
6058 * define them here rather than with the rest of the AT ops.
6059 */
6060 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6061 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6062 .access = PL2_W, .accessfn = at_s1e2_access,
696ba377
RH
6063 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6064 .writefn = ats_write64 },
2a47df95
PM
6065 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6066 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6067 .access = PL2_W, .accessfn = at_s1e2_access,
696ba377
RH
6068 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6069 .writefn = ats_write64 },
9b37a28c
FR
6070 /*
6071 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
14db7fe0
PM
6072 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6073 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6074 * to behave as if SCR.NS was 1.
6075 */
6076 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6077 .access = PL2_W,
0710b2fa 6078 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
14db7fe0
PM
6079 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6080 .access = PL2_W,
0710b2fa 6081 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
0b6440af
EI
6082 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6083 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
9b37a28c
FR
6084 /*
6085 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
0b6440af
EI
6086 * reset values as IMPDEF. We choose to reset to 3 to comply with
6087 * both ARMv7 and ARMv8.
6088 */
6089 .access = PL2_RW, .resetvalue = 3,
6090 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
edac4d8a
EI
6091 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6092 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6093 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6094 .writefn = gt_cntvoff_write,
6095 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6096 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6097 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6098 .writefn = gt_cntvoff_write,
6099 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
b0e66d95
EI
6100 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6101 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6102 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6103 .type = ARM_CP_IO, .access = PL2_RW,
6104 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6105 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6106 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6107 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6108 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6109 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6110 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
d44ec156 6111 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
b0e66d95
EI
6112 .resetfn = gt_hyp_timer_reset,
6113 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6114 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6115 .type = ARM_CP_IO,
6116 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6117 .access = PL2_RW,
6118 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6119 .resetvalue = 0,
6120 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
edac4d8a 6121#endif
59e05530
EI
6122 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6123 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6124 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6125 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6126 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6127 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6128 .access = PL2_RW,
6129 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
2a5a9abd
AF
6130 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6131 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6132 .access = PL2_RW,
6133 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3b685ba7
EI
6134};
6135
ce4afed8
PM
6136static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6137 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
89430fc6 6138 .type = ARM_CP_ALIAS | ARM_CP_IO,
ce4afed8
PM
6139 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6140 .access = PL2_RW,
6141 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6142 .writefn = hcr_writehigh },
ce4afed8
PM
6143};
6144
e9152ee9
RDC
6145static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6146 bool isread)
6147{
6148 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6149 return CP_ACCESS_OK;
6150 }
6151 return CP_ACCESS_TRAP_UNCATEGORIZED;
6152}
6153
6154static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6155 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6156 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6157 .access = PL2_RW, .accessfn = sel2_access,
6158 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6159 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6160 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6161 .access = PL2_RW, .accessfn = sel2_access,
6162 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
e9152ee9
RDC
6163};
6164
2f027fc5
PM
6165static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6166 bool isread)
6167{
9b37a28c
FR
6168 /*
6169 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
926c1b97 6170 * At Secure EL1 it traps to EL3 or EL2.
2f027fc5
PM
6171 */
6172 if (arm_current_el(env) == 3) {
6173 return CP_ACCESS_OK;
6174 }
6175 if (arm_is_secure_below_el3(env)) {
926c1b97
RDC
6176 if (env->cp15.scr_el3 & SCR_EEL2) {
6177 return CP_ACCESS_TRAP_EL2;
6178 }
2f027fc5
PM
6179 return CP_ACCESS_TRAP_EL3;
6180 }
6181 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6182 if (isread) {
6183 return CP_ACCESS_OK;
6184 }
6185 return CP_ACCESS_TRAP_UNCATEGORIZED;
6186}
6187
60fb1a87
GB
6188static const ARMCPRegInfo el3_cp_reginfo[] = {
6189 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6190 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6191 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
10d0ef3e 6192 .resetfn = scr_reset, .writefn = scr_write },
f80741d1 6193 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
60fb1a87 6194 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
efe4a274
PM
6195 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6196 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
b061a82b 6197 .writefn = scr_write },
60fb1a87
GB
6198 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6199 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6200 .access = PL3_RW, .resetvalue = 0,
6201 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6202 { .name = "SDER",
6203 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6204 .access = PL3_RW, .resetvalue = 0,
6205 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
60fb1a87 6206 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
efe4a274
PM
6207 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6208 .writefn = vbar_write, .resetvalue = 0,
60fb1a87 6209 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
7dd8c9af
FA
6210 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6211 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
f478847f 6212 .access = PL3_RW, .resetvalue = 0,
7dd8c9af 6213 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
11f136ee
FA
6214 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6215 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c 6216 .access = PL3_RW,
cb4a0a34
PM
6217 /* no .writefn needed as this can't cause an ASID change */
6218 .resetvalue = 0,
11f136ee 6219 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
81547d66 6220 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 6221 .type = ARM_CP_ALIAS,
81547d66
EI
6222 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6223 .access = PL3_RW,
6224 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
f2c30f42 6225 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
6226 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6227 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
63b60551
EI
6228 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6229 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6230 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
81547d66 6231 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 6232 .type = ARM_CP_ALIAS,
81547d66 6233 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
6234 .access = PL3_RW,
6235 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
a1ba125c
EI
6236 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6237 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6238 .access = PL3_RW, .writefn = vbar_write,
6239 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6240 .resetvalue = 0 },
c6f19164
GB
6241 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6242 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6243 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6244 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4cfb8ad8
PM
6245 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6246 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6247 .access = PL3_RW, .resetvalue = 0,
6248 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
2179ef95
PM
6249 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6250 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6251 .access = PL3_RW, .type = ARM_CP_CONST,
6252 .resetvalue = 0 },
37cd6c24
PM
6253 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6254 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6255 .access = PL3_RW, .type = ARM_CP_CONST,
6256 .resetvalue = 0 },
6257 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6258 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6259 .access = PL3_RW, .type = ARM_CP_CONST,
6260 .resetvalue = 0 },
43efaa33
PM
6261 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6262 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6263 .access = PL3_W, .type = ARM_CP_NO_RAW,
6264 .writefn = tlbi_aa64_alle3is_write },
6265 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6266 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6267 .access = PL3_W, .type = ARM_CP_NO_RAW,
6268 .writefn = tlbi_aa64_vae3is_write },
6269 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6270 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6271 .access = PL3_W, .type = ARM_CP_NO_RAW,
6272 .writefn = tlbi_aa64_vae3is_write },
6273 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6274 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6275 .access = PL3_W, .type = ARM_CP_NO_RAW,
6276 .writefn = tlbi_aa64_alle3_write },
6277 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6278 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6279 .access = PL3_W, .type = ARM_CP_NO_RAW,
6280 .writefn = tlbi_aa64_vae3_write },
6281 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6282 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6283 .access = PL3_W, .type = ARM_CP_NO_RAW,
6284 .writefn = tlbi_aa64_vae3_write },
0f1a3b24
FA
6285};
6286
e2cce18f
RH
6287#ifndef CONFIG_USER_ONLY
6288/* Test if system register redirection is to occur in the current state. */
6289static bool redirect_for_e2h(CPUARMState *env)
6290{
6291 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6292}
6293
6294static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6295{
6296 CPReadFn *readfn;
6297
6298 if (redirect_for_e2h(env)) {
6299 /* Switch to the saved EL2 version of the register. */
6300 ri = ri->opaque;
6301 readfn = ri->readfn;
6302 } else {
6303 readfn = ri->orig_readfn;
6304 }
6305 if (readfn == NULL) {
6306 readfn = raw_read;
6307 }
6308 return readfn(env, ri);
6309}
6310
6311static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6312 uint64_t value)
6313{
6314 CPWriteFn *writefn;
6315
6316 if (redirect_for_e2h(env)) {
6317 /* Switch to the saved EL2 version of the register. */
6318 ri = ri->opaque;
6319 writefn = ri->writefn;
6320 } else {
6321 writefn = ri->orig_writefn;
6322 }
6323 if (writefn == NULL) {
6324 writefn = raw_write;
6325 }
6326 writefn(env, ri, value);
6327}
6328
6329static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6330{
6331 struct E2HAlias {
6332 uint32_t src_key, dst_key, new_key;
6333 const char *src_name, *dst_name, *new_name;
6334 bool (*feature)(const ARMISARegisters *id);
6335 };
6336
6337#define K(op0, op1, crn, crm, op2) \
6338 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6339
6340 static const struct E2HAlias aliases[] = {
6341 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6342 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6343 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6344 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6345 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6346 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6347 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6348 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6349 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6350 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6351 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6352 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6353 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6354 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6355 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6356 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6357 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6358 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6359 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6360 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6361 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6362 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6363 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6364 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6365 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6366 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6367 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6368 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6369 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6370 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6371 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6372 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6373
6374 /*
6375 * Note that redirection of ZCR is mentioned in the description
6376 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6377 * not in the summary table.
6378 */
6379 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6380 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
de561988
RH
6381 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6382 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
e2cce18f 6383
4b779ceb
RH
6384 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6385 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6386
7cb1e618
RH
6387 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6388 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6389 isar_feature_aa64_scxtnum },
6390
e2cce18f
RH
6391 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6392 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6393 };
6394#undef K
6395
6396 size_t i;
6397
6398 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6399 const struct E2HAlias *a = &aliases[i];
9da35a40 6400 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
9da35a40 6401 bool ok;
e2cce18f
RH
6402
6403 if (a->feature && !a->feature(&cpu->isar)) {
6404 continue;
6405 }
6406
5860362d
RH
6407 src_reg = g_hash_table_lookup(cpu->cp_regs,
6408 (gpointer)(uintptr_t)a->src_key);
6409 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6410 (gpointer)(uintptr_t)a->dst_key);
e2cce18f
RH
6411 g_assert(src_reg != NULL);
6412 g_assert(dst_reg != NULL);
6413
6414 /* Cross-compare names to detect typos in the keys. */
6415 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6416 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6417
6418 /* None of the core system registers use opaque; we will. */
6419 g_assert(src_reg->opaque == NULL);
6420
6421 /* Create alias before redirection so we dup the right data. */
9da35a40 6422 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
9da35a40
RH
6423
6424 new_reg->name = a->new_name;
6425 new_reg->type |= ARM_CP_ALIAS;
6426 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6427 new_reg->access &= PL2_RW | PL3_RW;
6428
5860362d
RH
6429 ok = g_hash_table_insert(cpu->cp_regs,
6430 (gpointer)(uintptr_t)a->new_key, new_reg);
9da35a40 6431 g_assert(ok);
e2cce18f
RH
6432
6433 src_reg->opaque = dst_reg;
6434 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6435 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6436 if (!src_reg->raw_readfn) {
6437 src_reg->raw_readfn = raw_read;
6438 }
6439 if (!src_reg->raw_writefn) {
6440 src_reg->raw_writefn = raw_write;
6441 }
6442 src_reg->readfn = el2_e2h_read;
6443 src_reg->writefn = el2_e2h_write;
6444 }
6445}
6446#endif
6447
3f208fd7
PM
6448static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6449 bool isread)
7da845b0 6450{
97475a89
RH
6451 int cur_el = arm_current_el(env);
6452
6453 if (cur_el < 2) {
6454 uint64_t hcr = arm_hcr_el2_eff(env);
6455
6456 if (cur_el == 0) {
6457 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6458 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6459 return CP_ACCESS_TRAP_EL2;
6460 }
6461 } else {
6462 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6463 return CP_ACCESS_TRAP;
6464 }
6465 if (hcr & HCR_TID2) {
6466 return CP_ACCESS_TRAP_EL2;
6467 }
6468 }
6469 } else if (hcr & HCR_TID2) {
6470 return CP_ACCESS_TRAP_EL2;
6471 }
7da845b0 6472 }
630fcd4d
MZ
6473
6474 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6475 return CP_ACCESS_TRAP_EL2;
6476 }
6477
7da845b0
PM
6478 return CP_ACCESS_OK;
6479}
6480
58e93b48
RH
6481/*
6482 * Check for traps to RAS registers, which are controlled
6483 * by HCR_EL2.TERR and SCR_EL3.TERR.
6484 */
6485static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6486 bool isread)
6487{
6488 int el = arm_current_el(env);
6489
6490 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6491 return CP_ACCESS_TRAP_EL2;
6492 }
6493 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6494 return CP_ACCESS_TRAP_EL3;
6495 }
6496 return CP_ACCESS_OK;
6497}
6498
6499static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6500{
6501 int el = arm_current_el(env);
6502
6503 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6504 return env->cp15.vdisr_el2;
6505 }
6506 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6507 return 0; /* RAZ/WI */
6508 }
6509 return env->cp15.disr_el1;
6510}
6511
6512static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6513{
6514 int el = arm_current_el(env);
6515
6516 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6517 env->cp15.vdisr_el2 = val;
6518 return;
6519 }
6520 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6521 return; /* RAZ/WI */
6522 }
6523 env->cp15.disr_el1 = val;
6524}
6525
6526/*
6527 * Minimal RAS implementation with no Error Records.
6528 * Which means that all of the Error Record registers:
6529 * ERXADDR_EL1
6530 * ERXCTLR_EL1
6531 * ERXFR_EL1
6532 * ERXMISC0_EL1
6533 * ERXMISC1_EL1
6534 * ERXMISC2_EL1
6535 * ERXMISC3_EL1
6536 * ERXPFGCDN_EL1 (RASv1p1)
6537 * ERXPFGCTL_EL1 (RASv1p1)
6538 * ERXPFGF_EL1 (RASv1p1)
6539 * ERXSTATUS_EL1
6540 * and
6541 * ERRSELR_EL1
6542 * may generate UNDEFINED, which is the effect we get by not
6543 * listing them at all.
bd8db7d9
PM
6544 *
6545 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6546 * is higher priority than FGT-to-EL2 so we do not need to list them
6547 * in order to check for an FGT.
58e93b48
RH
6548 */
6549static const ARMCPRegInfo minimal_ras_reginfo[] = {
6550 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6551 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6552 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6553 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6554 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6555 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6556 .access = PL1_R, .accessfn = access_terr,
bd8db7d9 6557 .fgt = FGT_ERRIDR_EL1,
58e93b48
RH
6558 .type = ARM_CP_CONST, .resetvalue = 0 },
6559 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6560 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6561 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6562 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6563 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6564 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6565};
6566
397d922c
RH
6567/*
6568 * Return the exception level to which exceptions should be taken
6569 * via SVEAccessTrap. This excludes the check for whether the exception
6570 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6571 * be found by testing 0 < fp_exception_el < sve_exception_el.
6572 *
6573 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6574 * pseudocode does *not* separate out the FP trap checks, but has them
6575 * all in one function.
5be5e8ed 6576 */
ced31551 6577int sve_exception_el(CPUARMState *env, int el)
5be5e8ed
RH
6578{
6579#ifndef CONFIG_USER_ONLY
aa4451b6 6580 if (el <= 1 && !el_is_in_host(env, el)) {
fab8ad39 6581 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
7701cee5
RH
6582 case 1:
6583 if (el != 0) {
6584 break;
6585 }
6586 /* fall through */
6587 case 0:
6588 case 2:
61a8c23a 6589 return 1;
5be5e8ed 6590 }
5be5e8ed
RH
6591 }
6592
7d38cb92
RH
6593 if (el <= 2 && arm_is_el2_enabled(env)) {
6594 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6595 if (env->cp15.hcr_el2 & HCR_E2H) {
fab8ad39 6596 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
d5a6fa2d 6597 case 1:
7d38cb92 6598 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
d5a6fa2d
RH
6599 break;
6600 }
6601 /* fall through */
6602 case 0:
6603 case 2:
6604 return 2;
6605 }
7d38cb92 6606 } else {
fab8ad39 6607 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
d5a6fa2d
RH
6608 return 2;
6609 }
60eed086 6610 }
5be5e8ed
RH
6611 }
6612
60eed086
RH
6613 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6614 if (arm_feature(env, ARM_FEATURE_EL3)
fab8ad39 6615 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
5be5e8ed
RH
6616 return 3;
6617 }
6618#endif
6619 return 0;
6620}
6621
6b2ca83e
RH
6622/*
6623 * Return the exception level to which exceptions should be taken for SME.
6624 * C.f. the ARM pseudocode function CheckSMEAccess.
6625 */
6626int sme_exception_el(CPUARMState *env, int el)
6627{
6628#ifndef CONFIG_USER_ONLY
6629 if (el <= 1 && !el_is_in_host(env, el)) {
6630 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6631 case 1:
6632 if (el != 0) {
6633 break;
6634 }
6635 /* fall through */
6636 case 0:
6637 case 2:
6638 return 1;
6639 }
6640 }
6641
6642 if (el <= 2 && arm_is_el2_enabled(env)) {
6643 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6644 if (env->cp15.hcr_el2 & HCR_E2H) {
6645 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6646 case 1:
6647 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6648 break;
6649 }
6650 /* fall through */
6651 case 0:
6652 case 2:
6653 return 2;
6654 }
6655 } else {
6656 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6657 return 2;
6658 }
6659 }
6660 }
6661
6662 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6663 if (arm_feature(env, ARM_FEATURE_EL3)
6664 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6665 return 3;
6666 }
6667#endif
6668 return 0;
6669}
6670
75fe8356
RH
6671/* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
6672static bool sme_fa64(CPUARMState *env, int el)
6673{
6674 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
6675 return false;
6676 }
6677
6678 if (el <= 1 && !el_is_in_host(env, el)) {
6679 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
6680 return false;
6681 }
6682 }
6683 if (el <= 2 && arm_is_el2_enabled(env)) {
6684 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
6685 return false;
6686 }
6687 }
6688 if (arm_feature(env, ARM_FEATURE_EL3)) {
6689 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
6690 return false;
6691 }
6692 }
6693
6694 return true;
6695}
6696
0ab5953b
RH
6697/*
6698 * Given that SVE is enabled, return the vector length for EL.
6699 */
6ca54aa9 6700uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
0ab5953b 6701{
2fc0cc0e 6702 ARMCPU *cpu = env_archcpu(env);
6ca54aa9
RH
6703 uint64_t *cr = env->vfp.zcr_el;
6704 uint32_t map = cpu->sve_vq.map;
6705 uint32_t len = ARM_MAX_VQ - 1;
6706
6707 if (sm) {
6708 cr = env->vfp.smcr_el;
6709 map = cpu->sme_vq.map;
6710 }
0ab5953b 6711
c6225beb 6712 if (el <= 1 && !el_is_in_host(env, el)) {
6ca54aa9 6713 len = MIN(len, 0xf & (uint32_t)cr[1]);
0ab5953b 6714 }
6a02a732 6715 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6ca54aa9 6716 len = MIN(len, 0xf & (uint32_t)cr[2]);
0ab5953b 6717 }
6a02a732 6718 if (arm_feature(env, ARM_FEATURE_EL3)) {
6ca54aa9
RH
6719 len = MIN(len, 0xf & (uint32_t)cr[3]);
6720 }
6721
6722 map &= MAKE_64BIT_MASK(0, len + 1);
6723 if (map != 0) {
6724 return 31 - clz32(map);
0ab5953b 6725 }
0df9142d 6726
6ca54aa9
RH
6727 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6728 assert(sm);
6729 return ctz32(cpu->sme_vq.map);
6730}
6731
6732uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6733{
6734 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
0ab5953b
RH
6735}
6736
5be5e8ed
RH
6737static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6738 uint64_t value)
6739{
0ab5953b 6740 int cur_el = arm_current_el(env);
5ef3cc56 6741 int old_len = sve_vqm1_for_el(env, cur_el);
0ab5953b
RH
6742 int new_len;
6743
5be5e8ed 6744 /* Bits other than [3:0] are RAZ/WI. */
7b351d98 6745 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
5be5e8ed 6746 raw_write(env, ri, value & 0xf);
0ab5953b
RH
6747
6748 /*
6749 * Because we arrived here, we know both FP and SVE are enabled;
6750 * otherwise we would have trapped access to the ZCR_ELn register.
6751 */
5ef3cc56 6752 new_len = sve_vqm1_for_el(env, cur_el);
0ab5953b
RH
6753 if (new_len < old_len) {
6754 aarch64_sve_narrow_vq(env, new_len + 1);
6755 }
5be5e8ed
RH
6756}
6757
60360d82
RH
6758static const ARMCPRegInfo zcr_reginfo[] = {
6759 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6760 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6761 .access = PL1_RW, .type = ARM_CP_SVE,
6762 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6763 .writefn = zcr_write, .raw_writefn = raw_write },
6764 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6765 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6766 .access = PL2_RW, .type = ARM_CP_SVE,
6767 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6768 .writefn = zcr_write, .raw_writefn = raw_write },
6769 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6770 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6771 .access = PL3_RW, .type = ARM_CP_SVE,
6772 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6773 .writefn = zcr_write, .raw_writefn = raw_write },
5be5e8ed
RH
6774};
6775
9e5ec745
RH
6776#ifdef TARGET_AARCH64
6777static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6778 bool isread)
6779{
6780 int el = arm_current_el(env);
6781
6782 if (el == 0) {
6783 uint64_t sctlr = arm_sctlr(env, el);
6784 if (!(sctlr & SCTLR_EnTP2)) {
6785 return CP_ACCESS_TRAP;
6786 }
6787 }
6788 /* TODO: FEAT_FGT */
6789 if (el < 3
6790 && arm_feature(env, ARM_FEATURE_EL3)
6791 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6792 return CP_ACCESS_TRAP_EL3;
6793 }
6794 return CP_ACCESS_OK;
6795}
6796
d5b1223a
RH
6797static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6798 bool isread)
6799{
6800 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6801 if (arm_current_el(env) < 3
6802 && arm_feature(env, ARM_FEATURE_EL3)
6803 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6804 return CP_ACCESS_TRAP_EL3;
6805 }
6806 return CP_ACCESS_OK;
6807}
6808
7f2a01e7
RH
6809/* ResetSVEState */
6810static void arm_reset_sve_state(CPUARMState *env)
6811{
6812 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6813 /* Recall that FFR is stored as pregs[16]. */
6814 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6815 vfp_set_fpcr(env, 0x0800009f);
6816}
6817
2a8af382
RH
6818void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6819{
6820 uint64_t change = (env->svcr ^ new) & mask;
6821
f4318557
RH
6822 if (change == 0) {
6823 return;
6824 }
2a8af382 6825 env->svcr ^= change;
7f2a01e7
RH
6826
6827 if (change & R_SVCR_SM_MASK) {
6828 arm_reset_sve_state(env);
6829 }
fccb4918
RH
6830
6831 /*
6832 * ResetSMEState.
6833 *
6834 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
6835 * on enable: while disabled, the storage is inaccessible and the
6836 * value does not matter. We're not saving the storage in vmstate
6837 * when disabled either.
6838 */
6839 if (change & new & R_SVCR_ZA_MASK) {
6840 memset(env->zarray, 0, sizeof(env->zarray));
6841 }
f4318557
RH
6842
6843 arm_rebuild_hflags(env);
2a8af382
RH
6844}
6845
c37e6ac9
RH
6846static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6847 uint64_t value)
6848{
2a8af382 6849 aarch64_set_svcr(env, value, -1);
c37e6ac9
RH
6850}
6851
de561988
RH
6852static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6853 uint64_t value)
6854{
6855 int cur_el = arm_current_el(env);
6856 int old_len = sve_vqm1_for_el(env, cur_el);
6857 int new_len;
6858
6859 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6860 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6861 raw_write(env, ri, value);
6862
6863 /*
6864 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6865 * when SVL is widened (old values kept, or zeros). Choose to keep the
6866 * current values for simplicity. But for QEMU internals, we must still
6867 * apply the narrower SVL to the Zregs and Pregs -- see the comment
6868 * above aarch64_sve_narrow_vq.
6869 */
6870 new_len = sve_vqm1_for_el(env, cur_el);
6871 if (new_len < old_len) {
6872 aarch64_sve_narrow_vq(env, new_len + 1);
6873 }
6874}
6875
9e5ec745
RH
6876static const ARMCPRegInfo sme_reginfo[] = {
6877 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6878 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6879 .access = PL0_RW, .accessfn = access_tpidr2,
bd8db7d9 6880 .fgt = FGT_NTPIDR2_EL0,
9e5ec745 6881 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
c37e6ac9
RH
6882 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6883 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6884 .access = PL0_RW, .type = ARM_CP_SME,
6885 .fieldoffset = offsetof(CPUARMState, svcr),
6886 .writefn = svcr_write, .raw_writefn = raw_write },
de561988
RH
6887 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6888 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6889 .access = PL1_RW, .type = ARM_CP_SME,
6890 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6891 .writefn = smcr_write, .raw_writefn = raw_write },
6892 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6893 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6894 .access = PL2_RW, .type = ARM_CP_SME,
6895 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6896 .writefn = smcr_write, .raw_writefn = raw_write },
6897 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6898 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6899 .access = PL3_RW, .type = ARM_CP_SME,
6900 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6901 .writefn = smcr_write, .raw_writefn = raw_write },
d5b1223a
RH
6902 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6903 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6904 .access = PL1_R, .accessfn = access_aa64_tid1,
6905 /*
6906 * IMPLEMENTOR = 0 (software)
6907 * REVISION = 0 (implementation defined)
6908 * SMPS = 0 (no streaming execution priority in QEMU)
6909 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
6910 */
6911 .type = ARM_CP_CONST, .resetvalue = 0, },
6912 /*
6913 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6914 */
6915 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6916 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6917 .access = PL1_RW, .accessfn = access_esm,
bd8db7d9 6918 .fgt = FGT_NSMPRI_EL1,
d5b1223a
RH
6919 .type = ARM_CP_CONST, .resetvalue = 0 },
6920 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6921 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6922 .access = PL2_RW, .accessfn = access_esm,
6923 .type = ARM_CP_CONST, .resetvalue = 0 },
9e5ec745
RH
6924};
6925#endif /* TARGET_AARCH64 */
6926
24183fb6
PM
6927static void define_pmu_regs(ARMCPU *cpu)
6928{
6929 /*
6930 * v7 performance monitor control register: same implementor
6931 * field as main ID register, and we implement four counters in
6932 * addition to the cycle count register.
6933 */
24526bb9 6934 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
24183fb6
PM
6935 ARMCPRegInfo pmcr = {
6936 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6937 .access = PL0_RW,
dc780233 6938 .fgt = FGT_PMCR_EL0,
24183fb6
PM
6939 .type = ARM_CP_IO | ARM_CP_ALIAS,
6940 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6941 .accessfn = pmreg_access, .writefn = pmcr_write,
6942 .raw_writefn = raw_write,
6943 };
6944 ARMCPRegInfo pmcr64 = {
6945 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6946 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6947 .access = PL0_RW, .accessfn = pmreg_access,
dc780233 6948 .fgt = FGT_PMCR_EL0,
24183fb6
PM
6949 .type = ARM_CP_IO,
6950 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
24526bb9 6951 .resetvalue = cpu->isar.reset_pmcr_el0,
24183fb6
PM
6952 .writefn = pmcr_write, .raw_writefn = raw_write,
6953 };
24526bb9 6954
24183fb6
PM
6955 define_one_arm_cp_reg(cpu, &pmcr);
6956 define_one_arm_cp_reg(cpu, &pmcr64);
6957 for (i = 0; i < pmcrn; i++) {
6958 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6959 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6960 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6961 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6962 ARMCPRegInfo pmev_regs[] = {
6963 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6964 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6965 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
dc780233 6966 .fgt = FGT_PMEVCNTRN_EL0,
24183fb6 6967 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
99a50d1a 6968 .accessfn = pmreg_access_xevcntr },
24183fb6
PM
6969 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6970 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
99a50d1a 6971 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
24183fb6 6972 .type = ARM_CP_IO,
dc780233 6973 .fgt = FGT_PMEVCNTRN_EL0,
24183fb6
PM
6974 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6975 .raw_readfn = pmevcntr_rawread,
6976 .raw_writefn = pmevcntr_rawwrite },
6977 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6978 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6979 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
dc780233 6980 .fgt = FGT_PMEVTYPERN_EL0,
24183fb6
PM
6981 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6982 .accessfn = pmreg_access },
6983 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6984 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6985 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
dc780233 6986 .fgt = FGT_PMEVTYPERN_EL0,
24183fb6
PM
6987 .type = ARM_CP_IO,
6988 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6989 .raw_writefn = pmevtyper_rawwrite },
24183fb6
PM
6990 };
6991 define_arm_cp_regs(cpu, pmev_regs);
6992 g_free(pmevcntr_name);
6993 g_free(pmevcntr_el0_name);
6994 g_free(pmevtyper_name);
6995 g_free(pmevtyper_el0_name);
6996 }
a793bcd0 6997 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
24183fb6
PM
6998 ARMCPRegInfo v81_pmu_regs[] = {
6999 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7000 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7001 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
dc780233 7002 .fgt = FGT_PMCEIDN_EL0,
24183fb6
PM
7003 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7004 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7005 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7006 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
dc780233 7007 .fgt = FGT_PMCEIDN_EL0,
24183fb6 7008 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
24183fb6
PM
7009 };
7010 define_arm_cp_regs(cpu, v81_pmu_regs);
7011 }
a793bcd0 7012 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
15dd1ebd
PM
7013 static const ARMCPRegInfo v84_pmmir = {
7014 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7015 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7016 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
dc780233 7017 .fgt = FGT_PMMIR_EL1,
15dd1ebd
PM
7018 .resetvalue = 0
7019 };
7020 define_one_arm_cp_reg(cpu, &v84_pmmir);
7021 }
24183fb6
PM
7022}
7023
0f150c84 7024#ifndef CONFIG_USER_ONLY
9b37a28c
FR
7025/*
7026 * We don't know until after realize whether there's a GICv3
96a8b92e
PM
7027 * attached, and that is what registers the gicv3 sysregs.
7028 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7029 * at runtime.
7030 */
7031static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7032{
2fc0cc0e 7033 ARMCPU *cpu = env_archcpu(env);
8a130a7b 7034 uint64_t pfr1 = cpu->isar.id_pfr1;
96a8b92e
PM
7035
7036 if (env->gicv3state) {
7037 pfr1 |= 1 << 28;
7038 }
7039 return pfr1;
7040}
7041
7042static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7043{
2fc0cc0e 7044 ARMCPU *cpu = env_archcpu(env);
47576b94 7045 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
96a8b92e
PM
7046
7047 if (env->gicv3state) {
7048 pfr0 |= 1 << 24;
7049 }
7050 return pfr0;
7051}
976b99b6 7052#endif
96a8b92e 7053
9b37a28c
FR
7054/*
7055 * Shared logic between LORID and the rest of the LOR* registers.
9bd268ba 7056 * Secure state exclusion has already been dealt with.
2d7137c1 7057 */
9bd268ba
RDC
7058static CPAccessResult access_lor_ns(CPUARMState *env,
7059 const ARMCPRegInfo *ri, bool isread)
2d7137c1
RH
7060{
7061 int el = arm_current_el(env);
7062
7063 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7064 return CP_ACCESS_TRAP_EL2;
7065 }
7066 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7067 return CP_ACCESS_TRAP_EL3;
7068 }
7069 return CP_ACCESS_OK;
7070}
7071
2d7137c1
RH
7072static CPAccessResult access_lor_other(CPUARMState *env,
7073 const ARMCPRegInfo *ri, bool isread)
7074{
7075 if (arm_is_secure_below_el3(env)) {
7076 /* Access denied in secure mode. */
7077 return CP_ACCESS_TRAP;
7078 }
9bd268ba 7079 return access_lor_ns(env, ri, isread);
2d7137c1
RH
7080}
7081
d8564ee4
RH
7082/*
7083 * A trivial implementation of ARMv8.1-LOR leaves all of these
7084 * registers fixed at 0, which indicates that there are zero
7085 * supported Limited Ordering regions.
7086 */
7087static const ARMCPRegInfo lor_reginfo[] = {
7088 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7089 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7090 .access = PL1_RW, .accessfn = access_lor_other,
b19ed03c 7091 .fgt = FGT_LORSA_EL1,
d8564ee4
RH
7092 .type = ARM_CP_CONST, .resetvalue = 0 },
7093 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7094 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7095 .access = PL1_RW, .accessfn = access_lor_other,
b19ed03c 7096 .fgt = FGT_LOREA_EL1,
d8564ee4
RH
7097 .type = ARM_CP_CONST, .resetvalue = 0 },
7098 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7099 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7100 .access = PL1_RW, .accessfn = access_lor_other,
b19ed03c 7101 .fgt = FGT_LORN_EL1,
d8564ee4
RH
7102 .type = ARM_CP_CONST, .resetvalue = 0 },
7103 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7104 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7105 .access = PL1_RW, .accessfn = access_lor_other,
b19ed03c 7106 .fgt = FGT_LORC_EL1,
d8564ee4
RH
7107 .type = ARM_CP_CONST, .resetvalue = 0 },
7108 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7109 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
9bd268ba 7110 .access = PL1_R, .accessfn = access_lor_ns,
b19ed03c 7111 .fgt = FGT_LORID_EL1,
d8564ee4 7112 .type = ARM_CP_CONST, .resetvalue = 0 },
d8564ee4
RH
7113};
7114
967aa94f
RH
7115#ifdef TARGET_AARCH64
7116static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7117 bool isread)
7118{
7119 int el = arm_current_el(env);
7120
7121 if (el < 2 &&
07b034ea 7122 arm_is_el2_enabled(env) &&
967aa94f
RH
7123 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7124 return CP_ACCESS_TRAP_EL2;
7125 }
7126 if (el < 3 &&
7127 arm_feature(env, ARM_FEATURE_EL3) &&
7128 !(env->cp15.scr_el3 & SCR_APK)) {
7129 return CP_ACCESS_TRAP_EL3;
7130 }
7131 return CP_ACCESS_OK;
7132}
7133
7134static const ARMCPRegInfo pauth_reginfo[] = {
7135 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7136 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7137 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7138 .fgt = FGT_APDAKEY,
108b3ba8 7139 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
967aa94f
RH
7140 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7141 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7142 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7143 .fgt = FGT_APDAKEY,
108b3ba8 7144 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
967aa94f
RH
7145 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7146 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7147 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7148 .fgt = FGT_APDBKEY,
108b3ba8 7149 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
967aa94f
RH
7150 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7151 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7152 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7153 .fgt = FGT_APDBKEY,
108b3ba8 7154 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
967aa94f
RH
7155 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7156 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7157 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7158 .fgt = FGT_APGAKEY,
108b3ba8 7159 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
967aa94f
RH
7160 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7161 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7162 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7163 .fgt = FGT_APGAKEY,
108b3ba8 7164 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
967aa94f
RH
7165 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7166 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7167 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7168 .fgt = FGT_APIAKEY,
108b3ba8 7169 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
967aa94f
RH
7170 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7171 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7172 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7173 .fgt = FGT_APIAKEY,
108b3ba8 7174 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
967aa94f
RH
7175 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7176 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7177 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7178 .fgt = FGT_APIBKEY,
108b3ba8 7179 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
967aa94f
RH
7180 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7181 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7182 .access = PL1_RW, .accessfn = access_pauth,
158c276c 7183 .fgt = FGT_APIBKEY,
108b3ba8 7184 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
967aa94f 7185};
de390645 7186
84940ed8
RC
7187static const ARMCPRegInfo tlbirange_reginfo[] = {
7188 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7189 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
0f66d223 7190 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 7191 .fgt = FGT_TLBIRVAE1IS,
84940ed8
RC
7192 .writefn = tlbi_aa64_rvae1is_write },
7193 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7194 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
0f66d223 7195 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 7196 .fgt = FGT_TLBIRVAAE1IS,
84940ed8
RC
7197 .writefn = tlbi_aa64_rvae1is_write },
7198 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7199 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
0f66d223 7200 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 7201 .fgt = FGT_TLBIRVALE1IS,
84940ed8
RC
7202 .writefn = tlbi_aa64_rvae1is_write },
7203 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7204 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
0f66d223 7205 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
bf2f0625 7206 .fgt = FGT_TLBIRVAALE1IS,
84940ed8
RC
7207 .writefn = tlbi_aa64_rvae1is_write },
7208 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7209 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
fe3ca86c 7210 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7211 .fgt = FGT_TLBIRVAE1OS,
84940ed8
RC
7212 .writefn = tlbi_aa64_rvae1is_write },
7213 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7214 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
fe3ca86c 7215 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7216 .fgt = FGT_TLBIRVAAE1OS,
84940ed8
RC
7217 .writefn = tlbi_aa64_rvae1is_write },
7218 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7219 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
fe3ca86c 7220 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7221 .fgt = FGT_TLBIRVALE1OS,
84940ed8
RC
7222 .writefn = tlbi_aa64_rvae1is_write },
7223 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7224 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
fe3ca86c 7225 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7226 .fgt = FGT_TLBIRVAALE1OS,
84940ed8
RC
7227 .writefn = tlbi_aa64_rvae1is_write },
7228 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7229 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
4870f38b 7230 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 7231 .fgt = FGT_TLBIRVAE1,
84940ed8
RC
7232 .writefn = tlbi_aa64_rvae1_write },
7233 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7234 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
4870f38b 7235 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 7236 .fgt = FGT_TLBIRVAAE1,
84940ed8
RC
7237 .writefn = tlbi_aa64_rvae1_write },
7238 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7239 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
4870f38b 7240 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 7241 .fgt = FGT_TLBIRVALE1,
84940ed8
RC
7242 .writefn = tlbi_aa64_rvae1_write },
7243 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7244 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
4870f38b 7245 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
bf2f0625 7246 .fgt = FGT_TLBIRVAALE1,
84940ed8
RC
7247 .writefn = tlbi_aa64_rvae1_write },
7248 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7249 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
575a94af
RH
7250 .access = PL2_W, .type = ARM_CP_NO_RAW,
7251 .writefn = tlbi_aa64_ripas2e1is_write },
84940ed8
RC
7252 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7253 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
575a94af
RH
7254 .access = PL2_W, .type = ARM_CP_NO_RAW,
7255 .writefn = tlbi_aa64_ripas2e1is_write },
84940ed8
RC
7256 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7257 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
696ba377 7258 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
84940ed8
RC
7259 .writefn = tlbi_aa64_rvae2is_write },
7260 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7261 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
696ba377 7262 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
84940ed8
RC
7263 .writefn = tlbi_aa64_rvae2is_write },
7264 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7265 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
575a94af
RH
7266 .access = PL2_W, .type = ARM_CP_NO_RAW,
7267 .writefn = tlbi_aa64_ripas2e1_write },
7268 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
84940ed8 7269 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
575a94af
RH
7270 .access = PL2_W, .type = ARM_CP_NO_RAW,
7271 .writefn = tlbi_aa64_ripas2e1_write },
84940ed8
RC
7272 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7273 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
696ba377 7274 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
84940ed8
RC
7275 .writefn = tlbi_aa64_rvae2is_write },
7276 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7277 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
696ba377 7278 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
84940ed8
RC
7279 .writefn = tlbi_aa64_rvae2is_write },
7280 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7281 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
696ba377 7282 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
84940ed8
RC
7283 .writefn = tlbi_aa64_rvae2_write },
7284 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7285 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
696ba377 7286 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
84940ed8
RC
7287 .writefn = tlbi_aa64_rvae2_write },
7288 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7289 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7290 .access = PL3_W, .type = ARM_CP_NO_RAW,
7291 .writefn = tlbi_aa64_rvae3is_write },
7292 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7293 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7294 .access = PL3_W, .type = ARM_CP_NO_RAW,
7295 .writefn = tlbi_aa64_rvae3is_write },
7296 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7297 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7298 .access = PL3_W, .type = ARM_CP_NO_RAW,
7299 .writefn = tlbi_aa64_rvae3is_write },
7300 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7301 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7302 .access = PL3_W, .type = ARM_CP_NO_RAW,
7303 .writefn = tlbi_aa64_rvae3is_write },
7304 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7305 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7306 .access = PL3_W, .type = ARM_CP_NO_RAW,
7307 .writefn = tlbi_aa64_rvae3_write },
7308 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7309 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7310 .access = PL3_W, .type = ARM_CP_NO_RAW,
7311 .writefn = tlbi_aa64_rvae3_write },
84940ed8
RC
7312};
7313
7113d618
RC
7314static const ARMCPRegInfo tlbios_reginfo[] = {
7315 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7316 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
fe3ca86c 7317 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7318 .fgt = FGT_TLBIVMALLE1OS,
7113d618 7319 .writefn = tlbi_aa64_vmalle1is_write },
b7469ef9
IH
7320 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7321 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
bf2f0625 7322 .fgt = FGT_TLBIVAE1OS,
fe3ca86c 7323 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
b7469ef9 7324 .writefn = tlbi_aa64_vae1is_write },
7113d618
RC
7325 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7326 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
fe3ca86c 7327 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7328 .fgt = FGT_TLBIASIDE1OS,
7113d618 7329 .writefn = tlbi_aa64_vmalle1is_write },
b7469ef9
IH
7330 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7331 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
fe3ca86c 7332 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7333 .fgt = FGT_TLBIVAAE1OS,
b7469ef9
IH
7334 .writefn = tlbi_aa64_vae1is_write },
7335 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7336 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
fe3ca86c 7337 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7338 .fgt = FGT_TLBIVALE1OS,
b7469ef9
IH
7339 .writefn = tlbi_aa64_vae1is_write },
7340 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7341 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
fe3ca86c 7342 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
bf2f0625 7343 .fgt = FGT_TLBIVAALE1OS,
b7469ef9 7344 .writefn = tlbi_aa64_vae1is_write },
7113d618
RC
7345 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7346 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
696ba377 7347 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7113d618 7348 .writefn = tlbi_aa64_alle2is_write },
b7469ef9
IH
7349 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7350 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
696ba377 7351 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
b7469ef9 7352 .writefn = tlbi_aa64_vae2is_write },
7113d618
RC
7353 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7354 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7355 .access = PL2_W, .type = ARM_CP_NO_RAW,
7356 .writefn = tlbi_aa64_alle1is_write },
b7469ef9
IH
7357 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7358 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
696ba377 7359 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
b7469ef9 7360 .writefn = tlbi_aa64_vae2is_write },
7113d618
RC
7361 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7362 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7363 .access = PL2_W, .type = ARM_CP_NO_RAW,
7364 .writefn = tlbi_aa64_alle1is_write },
7365 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7366 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7367 .access = PL2_W, .type = ARM_CP_NOP },
7368 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7369 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7370 .access = PL2_W, .type = ARM_CP_NOP },
7371 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7372 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7373 .access = PL2_W, .type = ARM_CP_NOP },
7374 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7375 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7376 .access = PL2_W, .type = ARM_CP_NOP },
7377 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7378 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7379 .access = PL3_W, .type = ARM_CP_NO_RAW,
7380 .writefn = tlbi_aa64_alle3is_write },
b7469ef9
IH
7381 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7382 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7383 .access = PL3_W, .type = ARM_CP_NO_RAW,
7384 .writefn = tlbi_aa64_vae3is_write },
7385 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7386 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7387 .access = PL3_W, .type = ARM_CP_NO_RAW,
7388 .writefn = tlbi_aa64_vae3is_write },
7113d618
RC
7389};
7390
de390645
RH
7391static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7392{
7393 Error *err = NULL;
7394 uint64_t ret;
7395
7396 /* Success sets NZCV = 0000. */
7397 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7398
7399 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7400 /*
7401 * ??? Failed, for unknown reasons in the crypto subsystem.
7402 * The best we can do is log the reason and return the
7403 * timed-out indication to the guest. There is no reason
7404 * we know to expect this failure to be transitory, so the
7405 * guest may well hang retrying the operation.
7406 */
7407 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7408 ri->name, error_get_pretty(err));
7409 error_free(err);
7410
7411 env->ZF = 0; /* NZCF = 0100 */
7412 return 0;
7413 }
7414 return ret;
7415}
7416
7417/* We do not support re-seeding, so the two registers operate the same. */
7418static const ARMCPRegInfo rndr_reginfo[] = {
7419 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7420 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7421 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7422 .access = PL0_R, .readfn = rndr_readfn },
7423 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7424 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7425 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7426 .access = PL0_R, .readfn = rndr_readfn },
de390645 7427};
0d57b499
BM
7428
7429#ifndef CONFIG_USER_ONLY
7430static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7431 uint64_t value)
7432{
7433 ARMCPU *cpu = env_archcpu(env);
7434 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7435 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7436 uint64_t vaddr_in = (uint64_t) value;
7437 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7438 void *haddr;
7439 int mem_idx = cpu_mmu_index(env, false);
7440
7441 /* This won't be crossing page boundaries */
7442 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7443 if (haddr) {
7444
7445 ram_addr_t offset;
7446 MemoryRegion *mr;
7447
7448 /* RCU lock is already being held */
7449 mr = memory_region_from_host(haddr, &offset);
7450
7451 if (mr) {
4dfe59d1 7452 memory_region_writeback(mr, offset, dline_size);
0d57b499
BM
7453 }
7454 }
7455}
7456
7457static const ARMCPRegInfo dcpop_reg[] = {
7458 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7459 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7460 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
dd345653 7461 .fgt = FGT_DCCVAP,
1bed4d2e 7462 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
0d57b499
BM
7463};
7464
7465static const ARMCPRegInfo dcpodp_reg[] = {
7466 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7467 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7468 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
dd345653 7469 .fgt = FGT_DCCVADP,
1bed4d2e 7470 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
0d57b499
BM
7471};
7472#endif /*CONFIG_USER_ONLY*/
7473
4b779ceb
RH
7474static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7475 bool isread)
7476{
7477 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7478 return CP_ACCESS_TRAP_EL2;
7479 }
7480
7481 return CP_ACCESS_OK;
7482}
7483
7484static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7485 bool isread)
7486{
7487 int el = arm_current_el(env);
7488
0da067f2 7489 if (el < 2 && arm_is_el2_enabled(env)) {
4301acd7
RH
7490 uint64_t hcr = arm_hcr_el2_eff(env);
7491 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7492 return CP_ACCESS_TRAP_EL2;
7493 }
4b779ceb
RH
7494 }
7495 if (el < 3 &&
7496 arm_feature(env, ARM_FEATURE_EL3) &&
7497 !(env->cp15.scr_el3 & SCR_ATA)) {
7498 return CP_ACCESS_TRAP_EL3;
7499 }
7500 return CP_ACCESS_OK;
7501}
7502
7503static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7504{
7505 return env->pstate & PSTATE_TCO;
7506}
7507
7508static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7509{
7510 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7511}
7512
7513static const ARMCPRegInfo mte_reginfo[] = {
7514 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7515 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7516 .access = PL1_RW, .accessfn = access_mte,
7517 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7518 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7519 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7520 .access = PL1_RW, .accessfn = access_mte,
7521 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7522 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7523 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7524 .access = PL2_RW, .accessfn = access_mte,
7525 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7526 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7527 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7528 .access = PL3_RW,
7529 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7530 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7531 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7532 .access = PL1_RW, .accessfn = access_mte,
7533 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7534 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7535 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7536 .access = PL1_RW, .accessfn = access_mte,
7537 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7538 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7539 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7540 .access = PL1_R, .accessfn = access_aa64_tid5,
7541 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7542 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7543 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7544 .type = ARM_CP_NO_RAW,
7545 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
5463df16
RH
7546 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7547 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7548 .type = ARM_CP_NOP, .access = PL1_W,
dd345653 7549 .fgt = FGT_DCIVAC,
5463df16
RH
7550 .accessfn = aa64_cacheop_poc_access },
7551 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7552 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
dd345653 7553 .fgt = FGT_DCISW,
5463df16
RH
7554 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7555 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7556 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7557 .type = ARM_CP_NOP, .access = PL1_W,
dd345653 7558 .fgt = FGT_DCIVAC,
5463df16
RH
7559 .accessfn = aa64_cacheop_poc_access },
7560 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7561 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
dd345653 7562 .fgt = FGT_DCISW,
5463df16
RH
7563 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7564 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7565 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
dd345653 7566 .fgt = FGT_DCCSW,
5463df16
RH
7567 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7568 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7569 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
dd345653 7570 .fgt = FGT_DCCSW,
5463df16
RH
7571 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7572 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7573 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
dd345653 7574 .fgt = FGT_DCCISW,
5463df16
RH
7575 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7576 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7577 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
dd345653 7578 .fgt = FGT_DCCISW,
5463df16 7579 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
4b779ceb
RH
7580};
7581
7582static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7583 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7584 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7585 .type = ARM_CP_CONST, .access = PL0_RW, },
4b779ceb 7586};
5463df16
RH
7587
7588static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7589 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7590 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7591 .type = ARM_CP_NOP, .access = PL0_W,
950037e2 7592 .fgt = FGT_DCCVAC,
5463df16
RH
7593 .accessfn = aa64_cacheop_poc_access },
7594 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7595 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7596 .type = ARM_CP_NOP, .access = PL0_W,
950037e2 7597 .fgt = FGT_DCCVAC,
5463df16
RH
7598 .accessfn = aa64_cacheop_poc_access },
7599 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7600 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7601 .type = ARM_CP_NOP, .access = PL0_W,
dd345653 7602 .fgt = FGT_DCCVAP,
5463df16
RH
7603 .accessfn = aa64_cacheop_poc_access },
7604 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7605 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7606 .type = ARM_CP_NOP, .access = PL0_W,
dd345653 7607 .fgt = FGT_DCCVAP,
5463df16
RH
7608 .accessfn = aa64_cacheop_poc_access },
7609 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7610 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7611 .type = ARM_CP_NOP, .access = PL0_W,
dd345653 7612 .fgt = FGT_DCCVADP,
5463df16
RH
7613 .accessfn = aa64_cacheop_poc_access },
7614 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7615 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7616 .type = ARM_CP_NOP, .access = PL0_W,
dd345653 7617 .fgt = FGT_DCCVADP,
5463df16
RH
7618 .accessfn = aa64_cacheop_poc_access },
7619 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7620 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7621 .type = ARM_CP_NOP, .access = PL0_W,
dd345653 7622 .fgt = FGT_DCCIVAC,
5463df16
RH
7623 .accessfn = aa64_cacheop_poc_access },
7624 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7625 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7626 .type = ARM_CP_NOP, .access = PL0_W,
dd345653 7627 .fgt = FGT_DCCIVAC,
5463df16 7628 .accessfn = aa64_cacheop_poc_access },
eb821168
RH
7629 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7630 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7631 .access = PL0_W, .type = ARM_CP_DC_GVA,
7632#ifndef CONFIG_USER_ONLY
7633 /* Avoid overhead of an access check that always passes in user-mode */
7634 .accessfn = aa64_zva_access,
dd345653 7635 .fgt = FGT_DCZVA,
eb821168
RH
7636#endif
7637 },
7638 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7639 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7640 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7641#ifndef CONFIG_USER_ONLY
7642 /* Avoid overhead of an access check that always passes in user-mode */
7643 .accessfn = aa64_zva_access,
dd345653 7644 .fgt = FGT_DCZVA,
eb821168
RH
7645#endif
7646 },
5463df16
RH
7647};
7648
7cb1e618
RH
7649static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7650 bool isread)
7651{
7652 uint64_t hcr = arm_hcr_el2_eff(env);
7653 int el = arm_current_el(env);
7654
7655 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7656 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7657 if (hcr & HCR_TGE) {
7658 return CP_ACCESS_TRAP_EL2;
7659 }
7660 return CP_ACCESS_TRAP;
7661 }
7662 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7663 return CP_ACCESS_TRAP_EL2;
7664 }
7665 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7666 return CP_ACCESS_TRAP_EL2;
7667 }
7668 if (el < 3
7669 && arm_feature(env, ARM_FEATURE_EL3)
7670 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7671 return CP_ACCESS_TRAP_EL3;
7672 }
7673 return CP_ACCESS_OK;
7674}
7675
7676static const ARMCPRegInfo scxtnum_reginfo[] = {
7677 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7678 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7679 .access = PL0_RW, .accessfn = access_scxtnum,
67dd8030 7680 .fgt = FGT_SCXTNUM_EL0,
7cb1e618
RH
7681 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7682 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7683 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7684 .access = PL1_RW, .accessfn = access_scxtnum,
67dd8030 7685 .fgt = FGT_SCXTNUM_EL1,
7cb1e618
RH
7686 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7687 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7688 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7689 .access = PL2_RW, .accessfn = access_scxtnum,
7690 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7691 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7692 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7693 .access = PL3_RW,
7694 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7695};
15126d9c
PM
7696
7697static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7698 bool isread)
7699{
7700 if (arm_current_el(env) == 2 &&
7701 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7702 return CP_ACCESS_TRAP_EL3;
7703 }
7704 return CP_ACCESS_OK;
7705}
7706
7707static const ARMCPRegInfo fgt_reginfo[] = {
7708 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7709 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7710 .access = PL2_RW, .accessfn = access_fgt,
7711 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7712 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7713 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7714 .access = PL2_RW, .accessfn = access_fgt,
7715 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7716 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7717 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7718 .access = PL2_RW, .accessfn = access_fgt,
7719 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7720 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7721 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7722 .access = PL2_RW, .accessfn = access_fgt,
7723 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7724 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7725 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7726 .access = PL2_RW, .accessfn = access_fgt,
7727 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7728};
7cb1e618 7729#endif /* TARGET_AARCH64 */
967aa94f 7730
cb570bd3
RH
7731static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7732 bool isread)
7733{
7734 int el = arm_current_el(env);
7735
7736 if (el == 0) {
7737 uint64_t sctlr = arm_sctlr(env, el);
7738 if (!(sctlr & SCTLR_EnRCTX)) {
7739 return CP_ACCESS_TRAP;
7740 }
7741 } else if (el == 1) {
7742 uint64_t hcr = arm_hcr_el2_eff(env);
7743 if (hcr & HCR_NV) {
7744 return CP_ACCESS_TRAP_EL2;
7745 }
7746 }
7747 return CP_ACCESS_OK;
7748}
7749
7750static const ARMCPRegInfo predinv_reginfo[] = {
7751 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7752 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
950037e2 7753 .fgt = FGT_CFPRCTX,
cb570bd3
RH
7754 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7755 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7756 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
950037e2 7757 .fgt = FGT_DVPRCTX,
cb570bd3
RH
7758 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7759 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7760 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
950037e2 7761 .fgt = FGT_CPPRCTX,
cb570bd3
RH
7762 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7763 /*
7764 * Note the AArch32 opcodes have a different OPC1.
7765 */
7766 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7767 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
950037e2 7768 .fgt = FGT_CFPRCTX,
cb570bd3
RH
7769 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7770 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7771 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
950037e2 7772 .fgt = FGT_DVPRCTX,
cb570bd3
RH
7773 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7774 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7775 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
950037e2 7776 .fgt = FGT_CPPRCTX,
cb570bd3 7777 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
cb570bd3
RH
7778};
7779
957e6155
PM
7780static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7781{
7782 /* Read the high 32 bits of the current CCSIDR */
7783 return extract64(ccsidr_read(env, ri), 32, 32);
7784}
7785
7786static const ARMCPRegInfo ccsidr2_reginfo[] = {
7787 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7788 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7789 .access = PL1_R,
e2ce5fcd 7790 .accessfn = access_tid4,
957e6155 7791 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
957e6155
PM
7792};
7793
6a4ef4e5
MZ
7794static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7795 bool isread)
7796{
7797 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7798 return CP_ACCESS_TRAP_EL2;
7799 }
7800
7801 return CP_ACCESS_OK;
7802}
7803
7804static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7805 bool isread)
7806{
7807 if (arm_feature(env, ARM_FEATURE_V8)) {
7808 return access_aa64_tid3(env, ri, isread);
7809 }
7810
7811 return CP_ACCESS_OK;
7812}
7813
f96f3d5f
MZ
7814static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7815 bool isread)
7816{
7817 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7818 return CP_ACCESS_TRAP_EL2;
7819 }
7820
7821 return CP_ACCESS_OK;
7822}
7823
8e228c9e
PM
7824static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7825 const ARMCPRegInfo *ri, bool isread)
7826{
7827 /*
7828 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7829 * in v7A, not in v8A.
7830 */
7831 if (!arm_feature(env, ARM_FEATURE_V8) &&
7832 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7833 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7834 return CP_ACCESS_TRAP_EL2;
7835 }
7836 return CP_ACCESS_OK;
7837}
7838
f96f3d5f
MZ
7839static const ARMCPRegInfo jazelle_regs[] = {
7840 { .name = "JIDR",
7841 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7842 .access = PL1_R, .accessfn = access_jazelle,
7843 .type = ARM_CP_CONST, .resetvalue = 0 },
7844 { .name = "JOSCR",
7845 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8e228c9e 7846 .accessfn = access_joscr_jmcr,
f96f3d5f
MZ
7847 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7848 { .name = "JMCR",
7849 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8e228c9e 7850 .accessfn = access_joscr_jmcr,
f96f3d5f 7851 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
f96f3d5f
MZ
7852};
7853
52d18727
RH
7854static const ARMCPRegInfo contextidr_el2 = {
7855 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7856 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7857 .access = PL2_RW,
7858 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7859};
7860
e2a1a461 7861static const ARMCPRegInfo vhe_reginfo[] = {
ed30da8e
RH
7862 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7863 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7864 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7865 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8c94b071
RH
7866#ifndef CONFIG_USER_ONLY
7867 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7868 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7869 .fieldoffset =
7870 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7871 .type = ARM_CP_IO, .access = PL2_RW,
7872 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7873 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7874 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7875 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7876 .resetfn = gt_hv_timer_reset,
7877 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7878 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7879 .type = ARM_CP_IO,
7880 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7881 .access = PL2_RW,
7882 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7883 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
bb5972e4
RH
7884 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7885 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7886 .type = ARM_CP_IO | ARM_CP_ALIAS,
7887 .access = PL2_RW, .accessfn = e2h_access,
7888 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7889 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7890 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7891 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7892 .type = ARM_CP_IO | ARM_CP_ALIAS,
7893 .access = PL2_RW, .accessfn = e2h_access,
7894 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7895 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7896 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7897 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7898 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7899 .access = PL2_RW, .accessfn = e2h_access,
7900 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7901 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7902 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7903 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7904 .access = PL2_RW, .accessfn = e2h_access,
7905 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7906 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7907 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7908 .type = ARM_CP_IO | ARM_CP_ALIAS,
7909 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7910 .access = PL2_RW, .accessfn = e2h_access,
7911 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7912 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7913 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7914 .type = ARM_CP_IO | ARM_CP_ALIAS,
7915 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7916 .access = PL2_RW, .accessfn = e2h_access,
7917 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8c94b071 7918#endif
e2a1a461
RH
7919};
7920
04b07d29
RH
7921#ifndef CONFIG_USER_ONLY
7922static const ARMCPRegInfo ats1e1_reginfo[] = {
3999d2d2 7923 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
04b07d29
RH
7924 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7925 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
132c98cd 7926 .fgt = FGT_ATS1E1RP,
04b07d29 7927 .writefn = ats_write64 },
3999d2d2 7928 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
04b07d29
RH
7929 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7930 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
132c98cd 7931 .fgt = FGT_ATS1E1WP,
04b07d29 7932 .writefn = ats_write64 },
04b07d29
RH
7933};
7934
7935static const ARMCPRegInfo ats1cp_reginfo[] = {
7936 { .name = "ATS1CPRP",
7937 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7938 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7939 .writefn = ats_write },
7940 { .name = "ATS1CPWP",
7941 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7942 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7943 .writefn = ats_write },
04b07d29
RH
7944};
7945#endif
7946
f6287c24
PM
7947/*
7948 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7949 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7950 * is non-zero, which is never for ARMv7, optionally in ARMv8
7951 * and mandatorily for ARMv8.2 and up.
7952 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7953 * implementation is RAZ/WI we can ignore this detail, as we
7954 * do for ACTLR.
7955 */
7956static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7957 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7958 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
99602377
RH
7959 .access = PL1_RW, .accessfn = access_tacr,
7960 .type = ARM_CP_CONST, .resetvalue = 0 },
f6287c24
PM
7961 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7962 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7963 .access = PL2_RW, .type = ARM_CP_CONST,
7964 .resetvalue = 0 },
f6287c24
PM
7965};
7966
2ceb98c0
PM
7967void register_cp_regs_for_features(ARMCPU *cpu)
7968{
7969 /* Register all the coprocessor registers based on feature bits */
7970 CPUARMState *env = &cpu->env;
7971 if (arm_feature(env, ARM_FEATURE_M)) {
7972 /* M profile has no coprocessor registers */
7973 return;
7974 }
7975
e9aa6c21 7976 define_arm_cp_regs(cpu, cp_reginfo);
9449fdf6 7977 if (!arm_feature(env, ARM_FEATURE_V8)) {
9b37a28c
FR
7978 /*
7979 * Must go early as it is full of wildcards that may be
9449fdf6
PM
7980 * overridden by later definitions.
7981 */
7982 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7983 }
7984
7d57f408 7985 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
7986 /* The ID registers all have impdef reset values */
7987 ARMCPRegInfo v6_idregs[] = {
0ff644a7
PM
7988 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7989 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7990 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 7991 .accessfn = access_aa32_tid3,
8a130a7b 7992 .resetvalue = cpu->isar.id_pfr0 },
9b37a28c
FR
7993 /*
7994 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
96a8b92e
PM
7995 * the value of the GIC field until after we define these regs.
7996 */
0ff644a7
PM
7997 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7998 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
96a8b92e 7999 .access = PL1_R, .type = ARM_CP_NO_RAW,
6a4ef4e5 8000 .accessfn = access_aa32_tid3,
0f150c84
PMD
8001#ifdef CONFIG_USER_ONLY
8002 .type = ARM_CP_CONST,
8003 .resetvalue = cpu->isar.id_pfr1,
8004#else
8005 .type = ARM_CP_NO_RAW,
8006 .accessfn = access_aa32_tid3,
96a8b92e 8007 .readfn = id_pfr1_read,
0f150c84
PMD
8008 .writefn = arm_cp_write_ignore
8009#endif
8010 },
0ff644a7
PM
8011 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8012 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8013 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8014 .accessfn = access_aa32_tid3,
a6179538 8015 .resetvalue = cpu->isar.id_dfr0 },
0ff644a7
PM
8016 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8017 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8018 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8019 .accessfn = access_aa32_tid3,
8515a092 8020 .resetvalue = cpu->id_afr0 },
0ff644a7
PM
8021 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8023 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8024 .accessfn = access_aa32_tid3,
10054016 8025 .resetvalue = cpu->isar.id_mmfr0 },
0ff644a7
PM
8026 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8027 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8028 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8029 .accessfn = access_aa32_tid3,
10054016 8030 .resetvalue = cpu->isar.id_mmfr1 },
0ff644a7
PM
8031 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8032 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8033 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8034 .accessfn = access_aa32_tid3,
10054016 8035 .resetvalue = cpu->isar.id_mmfr2 },
0ff644a7
PM
8036 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8037 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8038 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8039 .accessfn = access_aa32_tid3,
10054016 8040 .resetvalue = cpu->isar.id_mmfr3 },
0ff644a7
PM
8041 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8042 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8043 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8044 .accessfn = access_aa32_tid3,
47576b94 8045 .resetvalue = cpu->isar.id_isar0 },
0ff644a7
PM
8046 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8047 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8048 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8049 .accessfn = access_aa32_tid3,
47576b94 8050 .resetvalue = cpu->isar.id_isar1 },
0ff644a7
PM
8051 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8052 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8053 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8054 .accessfn = access_aa32_tid3,
47576b94 8055 .resetvalue = cpu->isar.id_isar2 },
0ff644a7
PM
8056 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8057 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8058 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8059 .accessfn = access_aa32_tid3,
47576b94 8060 .resetvalue = cpu->isar.id_isar3 },
0ff644a7
PM
8061 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8062 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8063 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8064 .accessfn = access_aa32_tid3,
47576b94 8065 .resetvalue = cpu->isar.id_isar4 },
0ff644a7
PM
8066 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8067 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8068 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8069 .accessfn = access_aa32_tid3,
47576b94 8070 .resetvalue = cpu->isar.id_isar5 },
e20d84c1
PM
8071 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8072 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8073 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8074 .accessfn = access_aa32_tid3,
10054016 8075 .resetvalue = cpu->isar.id_mmfr4 },
802abf40 8076 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
e20d84c1
PM
8077 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8078 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8079 .accessfn = access_aa32_tid3,
47576b94 8080 .resetvalue = cpu->isar.id_isar6 },
8515a092
PM
8081 };
8082 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
8083 define_arm_cp_regs(cpu, v6_cp_reginfo);
8084 } else {
8085 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8086 }
4d31c596
PM
8087 if (arm_feature(env, ARM_FEATURE_V6K)) {
8088 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8089 }
5e5cf9e3 8090 if (arm_feature(env, ARM_FEATURE_V7MP) &&
452a0955 8091 !arm_feature(env, ARM_FEATURE_PMSA)) {
995939a6
PM
8092 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8093 }
327dd510
AL
8094 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8095 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8096 }
e9aa6c21 8097 if (arm_feature(env, ARM_FEATURE_V7)) {
776d4e5c 8098 ARMCPRegInfo clidr = {
7da845b0
PM
8099 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8100 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
630fcd4d 8101 .access = PL1_R, .type = ARM_CP_CONST,
e2ce5fcd 8102 .accessfn = access_tid4,
158c276c 8103 .fgt = FGT_CLIDR_EL1,
630fcd4d 8104 .resetvalue = cpu->clidr
776d4e5c 8105 };
776d4e5c 8106 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 8107 define_arm_cp_regs(cpu, v7_cp_reginfo);
50300698 8108 define_debug_regs(cpu);
24183fb6 8109 define_pmu_regs(cpu);
7d57f408
PM
8110 } else {
8111 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 8112 }
b0d2b7d0 8113 if (arm_feature(env, ARM_FEATURE_V8)) {
dde4d028
PM
8114 /*
8115 * v8 ID registers, which all have impdef reset values.
e20d84c1
PM
8116 * Note that within the ID register ranges the unused slots
8117 * must all RAZ, not UNDEF; future architecture versions may
8118 * define new registers here.
dde4d028
PM
8119 * ID registers which are AArch64 views of the AArch32 ID registers
8120 * which already existed in v6 and v7 are handled elsewhere,
8121 * in v6_idregs[].
e20d84c1 8122 */
dde4d028 8123 int i;
e60cef86 8124 ARMCPRegInfo v8_idregs[] = {
976b99b6
AB
8125 /*
8126 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8127 * emulation because we don't know the right value for the
8128 * GIC field until after we define these regs.
96a8b92e 8129 */
e60cef86
PM
8130 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8131 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
976b99b6
AB
8132 .access = PL1_R,
8133#ifdef CONFIG_USER_ONLY
8134 .type = ARM_CP_CONST,
8135 .resetvalue = cpu->isar.id_aa64pfr0
8136#else
8137 .type = ARM_CP_NO_RAW,
6a4ef4e5 8138 .accessfn = access_aa64_tid3,
96a8b92e 8139 .readfn = id_aa64pfr0_read,
976b99b6
AB
8140 .writefn = arm_cp_write_ignore
8141#endif
8142 },
e60cef86
PM
8143 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8144 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8145 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8146 .accessfn = access_aa64_tid3,
47576b94 8147 .resetvalue = cpu->isar.id_aa64pfr1},
e20d84c1
PM
8148 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8149 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8150 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8151 .accessfn = access_aa64_tid3,
e20d84c1
PM
8152 .resetvalue = 0 },
8153 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8154 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8155 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8156 .accessfn = access_aa64_tid3,
e20d84c1 8157 .resetvalue = 0 },
9516d772 8158 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
e20d84c1
PM
8159 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8160 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8161 .accessfn = access_aa64_tid3,
2dc10fa2 8162 .resetvalue = cpu->isar.id_aa64zfr0 },
414c54d5 8163 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
e20d84c1
PM
8164 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8165 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8166 .accessfn = access_aa64_tid3,
414c54d5 8167 .resetvalue = cpu->isar.id_aa64smfr0 },
e20d84c1
PM
8168 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8169 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8170 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8171 .accessfn = access_aa64_tid3,
e20d84c1
PM
8172 .resetvalue = 0 },
8173 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8174 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8175 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8176 .accessfn = access_aa64_tid3,
e20d84c1 8177 .resetvalue = 0 },
e60cef86
PM
8178 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8179 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8180 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8181 .accessfn = access_aa64_tid3,
2a609df8 8182 .resetvalue = cpu->isar.id_aa64dfr0 },
e60cef86
PM
8183 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8184 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8185 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8186 .accessfn = access_aa64_tid3,
2a609df8 8187 .resetvalue = cpu->isar.id_aa64dfr1 },
e20d84c1
PM
8188 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8189 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8190 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8191 .accessfn = access_aa64_tid3,
e20d84c1
PM
8192 .resetvalue = 0 },
8193 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8194 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8195 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8196 .accessfn = access_aa64_tid3,
e20d84c1 8197 .resetvalue = 0 },
e60cef86
PM
8198 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8199 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8200 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8201 .accessfn = access_aa64_tid3,
e60cef86
PM
8202 .resetvalue = cpu->id_aa64afr0 },
8203 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8204 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8205 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8206 .accessfn = access_aa64_tid3,
e60cef86 8207 .resetvalue = cpu->id_aa64afr1 },
e20d84c1
PM
8208 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8209 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8210 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8211 .accessfn = access_aa64_tid3,
e20d84c1
PM
8212 .resetvalue = 0 },
8213 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8214 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8215 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8216 .accessfn = access_aa64_tid3,
e20d84c1 8217 .resetvalue = 0 },
e60cef86
PM
8218 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8219 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8220 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8221 .accessfn = access_aa64_tid3,
47576b94 8222 .resetvalue = cpu->isar.id_aa64isar0 },
e60cef86
PM
8223 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8224 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8225 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8226 .accessfn = access_aa64_tid3,
47576b94 8227 .resetvalue = cpu->isar.id_aa64isar1 },
e20d84c1
PM
8228 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8229 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8230 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8231 .accessfn = access_aa64_tid3,
e20d84c1
PM
8232 .resetvalue = 0 },
8233 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8234 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8235 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8236 .accessfn = access_aa64_tid3,
e20d84c1
PM
8237 .resetvalue = 0 },
8238 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8239 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8240 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8241 .accessfn = access_aa64_tid3,
e20d84c1
PM
8242 .resetvalue = 0 },
8243 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8244 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8245 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8246 .accessfn = access_aa64_tid3,
e20d84c1
PM
8247 .resetvalue = 0 },
8248 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8249 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8250 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8251 .accessfn = access_aa64_tid3,
e20d84c1
PM
8252 .resetvalue = 0 },
8253 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8254 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8255 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8256 .accessfn = access_aa64_tid3,
e20d84c1 8257 .resetvalue = 0 },
e60cef86
PM
8258 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8259 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8260 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8261 .accessfn = access_aa64_tid3,
3dc91ddb 8262 .resetvalue = cpu->isar.id_aa64mmfr0 },
e60cef86
PM
8263 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8264 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8265 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8266 .accessfn = access_aa64_tid3,
3dc91ddb 8267 .resetvalue = cpu->isar.id_aa64mmfr1 },
64761e10 8268 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
e20d84c1
PM
8269 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8270 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8271 .accessfn = access_aa64_tid3,
64761e10 8272 .resetvalue = cpu->isar.id_aa64mmfr2 },
e20d84c1
PM
8273 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8274 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8275 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8276 .accessfn = access_aa64_tid3,
e20d84c1
PM
8277 .resetvalue = 0 },
8278 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8279 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8280 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8281 .accessfn = access_aa64_tid3,
e20d84c1
PM
8282 .resetvalue = 0 },
8283 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8284 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8285 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8286 .accessfn = access_aa64_tid3,
e20d84c1
PM
8287 .resetvalue = 0 },
8288 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8289 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8290 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8291 .accessfn = access_aa64_tid3,
e20d84c1
PM
8292 .resetvalue = 0 },
8293 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8294 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8295 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8296 .accessfn = access_aa64_tid3,
e20d84c1 8297 .resetvalue = 0 },
a50c0f51
PM
8298 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8299 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8300 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8301 .accessfn = access_aa64_tid3,
47576b94 8302 .resetvalue = cpu->isar.mvfr0 },
a50c0f51
PM
8303 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8304 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8305 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8306 .accessfn = access_aa64_tid3,
47576b94 8307 .resetvalue = cpu->isar.mvfr1 },
a50c0f51
PM
8308 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8309 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8310 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8311 .accessfn = access_aa64_tid3,
47576b94 8312 .resetvalue = cpu->isar.mvfr2 },
dde4d028
PM
8313 /*
8314 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8315 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8316 * as RAZ, since it is in the "reserved for future ID
8317 * registers, RAZ" part of the AArch32 encoding space.
8318 */
8319 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8320 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8321 .access = PL1_R, .type = ARM_CP_CONST,
8322 .accessfn = access_aa64_tid3,
8323 .resetvalue = 0 },
8324 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8325 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8326 .access = PL1_R, .type = ARM_CP_CONST,
8327 .accessfn = access_aa64_tid3,
8328 .resetvalue = 0 },
8329 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8330 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8331 .access = PL1_R, .type = ARM_CP_CONST,
8332 .accessfn = access_aa64_tid3,
8333 .resetvalue = 0 },
8334 /*
8335 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8336 * they're also RAZ for AArch64, and in v8 are gradually
8337 * being filled with AArch64-view-of-AArch32-ID-register
8338 * for new ID registers.
8339 */
8340 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
e20d84c1
PM
8341 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8342 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8343 .accessfn = access_aa64_tid3,
e20d84c1 8344 .resetvalue = 0 },
1d51bc96 8345 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
e20d84c1
PM
8346 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8347 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8348 .accessfn = access_aa64_tid3,
1d51bc96 8349 .resetvalue = cpu->isar.id_pfr2 },
d22c5649 8350 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
e20d84c1
PM
8351 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8352 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8353 .accessfn = access_aa64_tid3,
d22c5649 8354 .resetvalue = cpu->isar.id_dfr1 },
32957aad 8355 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
e20d84c1
PM
8356 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8357 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8358 .accessfn = access_aa64_tid3,
32957aad 8359 .resetvalue = cpu->isar.id_mmfr5 },
dde4d028 8360 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
e20d84c1
PM
8361 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8362 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 8363 .accessfn = access_aa64_tid3,
e20d84c1 8364 .resetvalue = 0 },
4054bfa9
AF
8365 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8366 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8367 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
dc780233 8368 .fgt = FGT_PMCEIDN_EL0,
cad86737 8369 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
4054bfa9
AF
8370 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8371 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8372 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
dc780233 8373 .fgt = FGT_PMCEIDN_EL0,
4054bfa9
AF
8374 .resetvalue = cpu->pmceid0 },
8375 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8376 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8377 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
dc780233 8378 .fgt = FGT_PMCEIDN_EL0,
cad86737 8379 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
4054bfa9
AF
8380 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8381 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8382 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
dc780233 8383 .fgt = FGT_PMCEIDN_EL0,
4054bfa9 8384 .resetvalue = cpu->pmceid1 },
e60cef86 8385 };
6c5c0fec 8386#ifdef CONFIG_USER_ONLY
10b0220e 8387 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6c5c0fec 8388 { .name = "ID_AA64PFR0_EL1",
bc6bd20e
ZS
8389 .exported_bits = R_ID_AA64PFR0_FP_MASK |
8390 R_ID_AA64PFR0_ADVSIMD_MASK |
8391 R_ID_AA64PFR0_SVE_MASK |
8392 R_ID_AA64PFR0_DIT_MASK,
8393 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8394 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
6c5c0fec 8395 { .name = "ID_AA64PFR1_EL1",
bc6bd20e
ZS
8396 .exported_bits = R_ID_AA64PFR1_BT_MASK |
8397 R_ID_AA64PFR1_SSBS_MASK |
8398 R_ID_AA64PFR1_MTE_MASK |
8399 R_ID_AA64PFR1_SME_MASK },
d040242e 8400 { .name = "ID_AA64PFR*_EL1_RESERVED",
bc6bd20e
ZS
8401 .is_glob = true },
8402 { .name = "ID_AA64ZFR0_EL1",
8403 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8404 R_ID_AA64ZFR0_AES_MASK |
8405 R_ID_AA64ZFR0_BITPERM_MASK |
8406 R_ID_AA64ZFR0_BFLOAT16_MASK |
8407 R_ID_AA64ZFR0_SHA3_MASK |
8408 R_ID_AA64ZFR0_SM4_MASK |
8409 R_ID_AA64ZFR0_I8MM_MASK |
8410 R_ID_AA64ZFR0_F32MM_MASK |
8411 R_ID_AA64ZFR0_F64MM_MASK },
8412 { .name = "ID_AA64SMFR0_EL1",
8413 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8414 R_ID_AA64SMFR0_B16F32_MASK |
8415 R_ID_AA64SMFR0_F16F32_MASK |
8416 R_ID_AA64SMFR0_I8I32_MASK |
8417 R_ID_AA64SMFR0_F64F64_MASK |
8418 R_ID_AA64SMFR0_I16I64_MASK |
8419 R_ID_AA64SMFR0_FA64_MASK },
6c5c0fec 8420 { .name = "ID_AA64MMFR0_EL1",
bc6bd20e
ZS
8421 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8422 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8423 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8424 { .name = "ID_AA64MMFR1_EL1",
8425 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8426 { .name = "ID_AA64MMFR2_EL1",
8427 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
d040242e 8428 { .name = "ID_AA64MMFR*_EL1_RESERVED",
bc6bd20e 8429 .is_glob = true },
6c5c0fec 8430 { .name = "ID_AA64DFR0_EL1",
bc6bd20e
ZS
8431 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8432 { .name = "ID_AA64DFR1_EL1" },
d040242e 8433 { .name = "ID_AA64DFR*_EL1_RESERVED",
bc6bd20e 8434 .is_glob = true },
d040242e 8435 { .name = "ID_AA64AFR*",
bc6bd20e 8436 .is_glob = true },
6c5c0fec 8437 { .name = "ID_AA64ISAR0_EL1",
bc6bd20e
ZS
8438 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8439 R_ID_AA64ISAR0_SHA1_MASK |
8440 R_ID_AA64ISAR0_SHA2_MASK |
8441 R_ID_AA64ISAR0_CRC32_MASK |
8442 R_ID_AA64ISAR0_ATOMIC_MASK |
8443 R_ID_AA64ISAR0_RDM_MASK |
8444 R_ID_AA64ISAR0_SHA3_MASK |
8445 R_ID_AA64ISAR0_SM3_MASK |
8446 R_ID_AA64ISAR0_SM4_MASK |
8447 R_ID_AA64ISAR0_DP_MASK |
8448 R_ID_AA64ISAR0_FHM_MASK |
8449 R_ID_AA64ISAR0_TS_MASK |
8450 R_ID_AA64ISAR0_RNDR_MASK },
6c5c0fec 8451 { .name = "ID_AA64ISAR1_EL1",
bc6bd20e
ZS
8452 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8453 R_ID_AA64ISAR1_APA_MASK |
8454 R_ID_AA64ISAR1_API_MASK |
8455 R_ID_AA64ISAR1_JSCVT_MASK |
8456 R_ID_AA64ISAR1_FCMA_MASK |
8457 R_ID_AA64ISAR1_LRCPC_MASK |
8458 R_ID_AA64ISAR1_GPA_MASK |
8459 R_ID_AA64ISAR1_GPI_MASK |
8460 R_ID_AA64ISAR1_FRINTTS_MASK |
8461 R_ID_AA64ISAR1_SB_MASK |
8462 R_ID_AA64ISAR1_BF16_MASK |
8463 R_ID_AA64ISAR1_DGH_MASK |
8464 R_ID_AA64ISAR1_I8MM_MASK },
8465 { .name = "ID_AA64ISAR2_EL1",
8466 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8467 R_ID_AA64ISAR2_RPRES_MASK |
8468 R_ID_AA64ISAR2_GPA3_MASK |
8469 R_ID_AA64ISAR2_APA3_MASK },
d040242e 8470 { .name = "ID_AA64ISAR*_EL1_RESERVED",
bc6bd20e 8471 .is_glob = true },
6c5c0fec
AB
8472 };
8473 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8474#endif
be8e8128
GB
8475 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8476 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8477 !arm_feature(env, ARM_FEATURE_EL2)) {
8478 ARMCPRegInfo rvbar = {
910e4f24 8479 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
be8e8128 8480 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4a7319b7
EI
8481 .access = PL1_R,
8482 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
be8e8128
GB
8483 };
8484 define_one_arm_cp_reg(cpu, &rvbar);
8485 }
e60cef86 8486 define_arm_cp_regs(cpu, v8_idregs);
b0d2b7d0 8487 define_arm_cp_regs(cpu, v8_cp_reginfo);
dde4d028
PM
8488
8489 for (i = 4; i < 16; i++) {
8490 /*
8491 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8492 * For pre-v8 cores there are RAZ patterns for these in
8493 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8494 * v8 extends the "must RAZ" part of the ID register space
8495 * to also cover c0, 0, c{8-15}, {0-7}.
8496 * These are STATE_AA32 because in the AArch64 sysreg space
8497 * c4-c7 is where the AArch64 ID registers live (and we've
8498 * already defined those in v8_idregs[]), and c8-c15 are not
8499 * "must RAZ" for AArch64.
8500 */
8501 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8502 ARMCPRegInfo v8_aa32_raz_idregs = {
8503 .name = name,
8504 .state = ARM_CP_STATE_AA32,
8505 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8506 .access = PL1_R, .type = ARM_CP_CONST,
8507 .accessfn = access_aa64_tid3,
8508 .resetvalue = 0 };
8509 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8510 }
b0d2b7d0 8511 }
99a90811
RH
8512
8513 /*
8514 * Register the base EL2 cpregs.
8515 * Pre v8, these registers are implemented only as part of the
8516 * Virtualization Extensions (EL2 present). Beginning with v8,
8517 * if EL2 is missing but EL3 is enabled, mostly these become
8518 * RES0 from EL3, with some specific exceptions.
8519 */
8520 if (arm_feature(env, ARM_FEATURE_EL2)
8521 || (arm_feature(env, ARM_FEATURE_EL3)
8522 && arm_feature(env, ARM_FEATURE_V8))) {
f0d574d6 8523 uint64_t vmpidr_def = mpidr_read_val(env);
731de9e6
EI
8524 ARMCPRegInfo vpidr_regs[] = {
8525 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8526 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8527 .access = PL2_RW, .accessfn = access_el3_aa32ns,
696ba377
RH
8528 .resetvalue = cpu->midr,
8529 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
36476562 8530 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
731de9e6
EI
8531 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8532 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8533 .access = PL2_RW, .resetvalue = cpu->midr,
696ba377 8534 .type = ARM_CP_EL3_NO_EL2_C_NZ,
731de9e6 8535 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
8536 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8537 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8538 .access = PL2_RW, .accessfn = access_el3_aa32ns,
696ba377
RH
8539 .resetvalue = vmpidr_def,
8540 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
36476562 8541 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
f0d574d6
EI
8542 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8543 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
696ba377
RH
8544 .access = PL2_RW, .resetvalue = vmpidr_def,
8545 .type = ARM_CP_EL3_NO_EL2_C_NZ,
f0d574d6 8546 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
731de9e6 8547 };
24526bb9
PM
8548 /*
8549 * The only field of MDCR_EL2 that has a defined architectural reset
8550 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8551 */
8552 ARMCPRegInfo mdcr_el2 = {
7f4fbfb5 8553 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
24526bb9 8554 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
01765386 8555 .writefn = mdcr_el2_write,
24526bb9
PM
8556 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8557 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8558 };
8559 define_one_arm_cp_reg(cpu, &mdcr_el2);
731de9e6 8560 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 8561 define_arm_cp_regs(cpu, el2_cp_reginfo);
ce4afed8
PM
8562 if (arm_feature(env, ARM_FEATURE_V8)) {
8563 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8564 }
e9152ee9
RDC
8565 if (cpu_isar_feature(aa64_sel2, cpu)) {
8566 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8567 }
be8e8128
GB
8568 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8569 if (!arm_feature(env, ARM_FEATURE_EL3)) {
910e4f24
TR
8570 ARMCPRegInfo rvbar[] = {
8571 {
8572 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8573 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8574 .access = PL2_R,
8575 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8576 },
8577 { .name = "RVBAR", .type = ARM_CP_ALIAS,
8578 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8579 .access = PL2_R,
8580 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8581 },
be8e8128 8582 };
910e4f24 8583 define_arm_cp_regs(cpu, rvbar);
be8e8128 8584 }
3b685ba7 8585 }
99a90811
RH
8586
8587 /* Register the base EL3 cpregs. */
81547d66 8588 if (arm_feature(env, ARM_FEATURE_EL3)) {
0f1a3b24 8589 define_arm_cp_regs(cpu, el3_cp_reginfo);
e24fdd23
PM
8590 ARMCPRegInfo el3_regs[] = {
8591 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8592 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4a7319b7
EI
8593 .access = PL3_R,
8594 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8595 },
e24fdd23
PM
8596 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8597 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8598 .access = PL3_RW,
8599 .raw_writefn = raw_write, .writefn = sctlr_write,
8600 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8601 .resetvalue = cpu->reset_sctlr },
be8e8128 8602 };
e24fdd23
PM
8603
8604 define_arm_cp_regs(cpu, el3_regs);
81547d66 8605 }
9b37a28c
FR
8606 /*
8607 * The behaviour of NSACR is sufficiently various that we don't
2f027fc5
PM
8608 * try to describe it in a single reginfo:
8609 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8610 * reads as constant 0xc00 from NS EL1 and NS EL2
8611 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8612 * if v7 without EL3, register doesn't exist
8613 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8614 */
8615 if (arm_feature(env, ARM_FEATURE_EL3)) {
8616 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
10b0220e 8617 static const ARMCPRegInfo nsacr = {
2f027fc5
PM
8618 .name = "NSACR", .type = ARM_CP_CONST,
8619 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8620 .access = PL1_RW, .accessfn = nsacr_access,
8621 .resetvalue = 0xc00
8622 };
8623 define_one_arm_cp_reg(cpu, &nsacr);
8624 } else {
10b0220e 8625 static const ARMCPRegInfo nsacr = {
2f027fc5
PM
8626 .name = "NSACR",
8627 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8628 .access = PL3_RW | PL1_R,
8629 .resetvalue = 0,
8630 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8631 };
8632 define_one_arm_cp_reg(cpu, &nsacr);
8633 }
8634 } else {
8635 if (arm_feature(env, ARM_FEATURE_V8)) {
10b0220e 8636 static const ARMCPRegInfo nsacr = {
2f027fc5
PM
8637 .name = "NSACR", .type = ARM_CP_CONST,
8638 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8639 .access = PL1_R,
8640 .resetvalue = 0xc00
8641 };
8642 define_one_arm_cp_reg(cpu, &nsacr);
8643 }
8644 }
8645
452a0955 8646 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6cb0b013
PC
8647 if (arm_feature(env, ARM_FEATURE_V6)) {
8648 /* PMSAv6 not implemented */
8649 assert(arm_feature(env, ARM_FEATURE_V7));
8650 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8651 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8652 } else {
8653 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8654 }
18032bec 8655 } else {
8e5d75c9 8656 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
18032bec 8657 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4036b7d1
PM
8658 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8659 if (cpu_isar_feature(aa32_hpd, cpu)) {
ab638a32
RH
8660 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8661 }
18032bec 8662 }
c326b979
PM
8663 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8664 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8665 }
6cc7a3ae
PM
8666 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8667 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8668 }
4a501606
PM
8669 if (arm_feature(env, ARM_FEATURE_VAPA)) {
8670 define_arm_cp_regs(cpu, vapa_cp_reginfo);
8671 }
c4804214
PM
8672 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8673 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8674 }
8675 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8676 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8677 }
8678 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8679 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8680 }
18032bec
PM
8681 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8682 define_arm_cp_regs(cpu, omap_cp_reginfo);
8683 }
34f90529
PM
8684 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8685 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8686 }
1047b9d7
PM
8687 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8688 define_arm_cp_regs(cpu, xscale_cp_reginfo);
8689 }
8690 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8691 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8692 }
7ac681cf
PM
8693 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8694 define_arm_cp_regs(cpu, lpae_cp_reginfo);
8695 }
873b73c0 8696 if (cpu_isar_feature(aa32_jazelle, cpu)) {
f96f3d5f
MZ
8697 define_arm_cp_regs(cpu, jazelle_regs);
8698 }
9b37a28c
FR
8699 /*
8700 * Slightly awkwardly, the OMAP and StrongARM cores need all of
7884849c
PM
8701 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8702 * be read-only (ie write causes UNDEF exception).
8703 */
8704 {
00a29f3d 8705 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9b37a28c
FR
8706 /*
8707 * Pre-v8 MIDR space.
00a29f3d 8708 * Note that the MIDR isn't a simple constant register because
7884849c
PM
8709 * of the TI925 behaviour where writes to another register can
8710 * cause the MIDR value to change.
97ce8d61
PC
8711 *
8712 * Unimplemented registers in the c15 0 0 0 space default to
8713 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8714 * and friends override accordingly.
7884849c
PM
8715 */
8716 { .name = "MIDR",
97ce8d61 8717 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7884849c 8718 .access = PL1_R, .resetvalue = cpu->midr,
d4e6df63 8719 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
731de9e6 8720 .readfn = midr_read,
97ce8d61
PC
8721 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8722 .type = ARM_CP_OVERRIDE },
7884849c
PM
8723 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8724 { .name = "DUMMY",
8725 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8726 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8727 { .name = "DUMMY",
8728 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8729 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8730 { .name = "DUMMY",
8731 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8732 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8733 { .name = "DUMMY",
8734 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8735 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8736 { .name = "DUMMY",
8737 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8738 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7884849c 8739 };
00a29f3d 8740 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
00a29f3d
PM
8741 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
731de9e6 8743 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
67dd8030 8744 .fgt = FGT_MIDR_EL1,
731de9e6
EI
8745 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8746 .readfn = midr_read },
c7f786ab 8747 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
ac00c79f
SF
8748 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8749 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8750 .access = PL1_R, .resetvalue = cpu->midr },
00a29f3d
PM
8751 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
93fbc983
MZ
8753 .access = PL1_R,
8754 .accessfn = access_aa64_tid1,
67dd8030 8755 .fgt = FGT_REVIDR_EL1,
93fbc983 8756 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
00a29f3d 8757 };
c7f786ab
TR
8758 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
8759 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8760 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8761 .access = PL1_R, .resetvalue = cpu->midr
8762 };
00a29f3d
PM
8763 ARMCPRegInfo id_cp_reginfo[] = {
8764 /* These are common to v8 and pre-v8 */
8765 { .name = "CTR",
8766 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
630fcd4d
MZ
8767 .access = PL1_R, .accessfn = ctr_el0_access,
8768 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
00a29f3d
PM
8769 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8770 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8771 .access = PL0_R, .accessfn = ctr_el0_access,
b19ed03c 8772 .fgt = FGT_CTR_EL0,
00a29f3d
PM
8773 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8774 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8775 { .name = "TCMTR",
8776 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
93fbc983
MZ
8777 .access = PL1_R,
8778 .accessfn = access_aa32_tid1,
8779 .type = ARM_CP_CONST, .resetvalue = 0 },
00a29f3d 8780 };
8085ce63
PC
8781 /* TLBTR is specific to VMSA */
8782 ARMCPRegInfo id_tlbtr_reginfo = {
8783 .name = "TLBTR",
8784 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
93fbc983
MZ
8785 .access = PL1_R,
8786 .accessfn = access_aa32_tid1,
8787 .type = ARM_CP_CONST, .resetvalue = 0,
8085ce63 8788 };
3281af81
PC
8789 /* MPUIR is specific to PMSA V6+ */
8790 ARMCPRegInfo id_mpuir_reginfo = {
8791 .name = "MPUIR",
8792 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8793 .access = PL1_R, .type = ARM_CP_CONST,
8794 .resetvalue = cpu->pmsav7_dregion << 8
8795 };
761c4642
TR
8796 /* HMPUIR is specific to PMSA V8 */
8797 ARMCPRegInfo id_hmpuir_reginfo = {
8798 .name = "HMPUIR",
8799 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
8800 .access = PL2_R, .type = ARM_CP_CONST,
8801 .resetvalue = cpu->pmsav8r_hdregion
8802 };
10b0220e 8803 static const ARMCPRegInfo crn0_wi_reginfo = {
7884849c
PM
8804 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8805 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8806 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8807 };
6c5c0fec 8808#ifdef CONFIG_USER_ONLY
10b0220e 8809 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6c5c0fec 8810 { .name = "MIDR_EL1",
bc6bd20e
ZS
8811 .exported_bits = R_MIDR_EL1_REVISION_MASK |
8812 R_MIDR_EL1_PARTNUM_MASK |
8813 R_MIDR_EL1_ARCHITECTURE_MASK |
8814 R_MIDR_EL1_VARIANT_MASK |
8815 R_MIDR_EL1_IMPLEMENTER_MASK },
8816 { .name = "REVIDR_EL1" },
6c5c0fec
AB
8817 };
8818 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8819#endif
7884849c
PM
8820 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8821 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5809ac57 8822 size_t i;
9b37a28c
FR
8823 /*
8824 * Register the blanket "writes ignored" value first to cover the
a703eda1
PC
8825 * whole space. Then update the specific ID registers to allow write
8826 * access, so that they ignore writes rather than causing them to
8827 * UNDEF.
7884849c
PM
8828 */
8829 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5809ac57
RH
8830 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8831 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
00a29f3d 8832 }
5809ac57
RH
8833 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8834 id_cp_reginfo[i].access = PL1_RW;
7884849c 8835 }
10006112 8836 id_mpuir_reginfo.access = PL1_RW;
3281af81 8837 id_tlbtr_reginfo.access = PL1_RW;
7884849c 8838 }
00a29f3d
PM
8839 if (arm_feature(env, ARM_FEATURE_V8)) {
8840 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
c7f786ab
TR
8841 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8842 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
8843 }
00a29f3d
PM
8844 } else {
8845 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8846 }
a703eda1 8847 define_arm_cp_regs(cpu, id_cp_reginfo);
452a0955 8848 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8085ce63 8849 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
761c4642
TR
8850 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
8851 arm_feature(env, ARM_FEATURE_V8)) {
8852 uint32_t i = 0;
8853 char *tmp_string;
8854
8855 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8856 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
8857 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
8858
8859 /* Register alias is only valid for first 32 indexes */
8860 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
8861 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8862 uint8_t opc1 = extract32(i, 4, 1);
8863 uint8_t opc2 = extract32(i, 0, 1) << 2;
8864
8865 tmp_string = g_strdup_printf("PRBAR%u", i);
8866 ARMCPRegInfo tmp_prbarn_reginfo = {
8867 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8868 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8869 .access = PL1_RW, .resetvalue = 0,
8870 .accessfn = access_tvm_trvm,
8871 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8872 };
8873 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
8874 g_free(tmp_string);
8875
8876 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8877 tmp_string = g_strdup_printf("PRLAR%u", i);
8878 ARMCPRegInfo tmp_prlarn_reginfo = {
8879 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8880 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8881 .access = PL1_RW, .resetvalue = 0,
8882 .accessfn = access_tvm_trvm,
8883 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8884 };
8885 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
8886 g_free(tmp_string);
8887 }
8888
8889 /* Register alias is only valid for first 32 indexes */
8890 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
8891 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8892 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
8893 uint8_t opc2 = extract32(i, 0, 1) << 2;
8894
8895 tmp_string = g_strdup_printf("HPRBAR%u", i);
8896 ARMCPRegInfo tmp_hprbarn_reginfo = {
8897 .name = tmp_string,
8898 .type = ARM_CP_NO_RAW,
8899 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8900 .access = PL2_RW, .resetvalue = 0,
8901 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8902 };
8903 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
8904 g_free(tmp_string);
8905
8906 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8907 tmp_string = g_strdup_printf("HPRLAR%u", i);
8908 ARMCPRegInfo tmp_hprlarn_reginfo = {
8909 .name = tmp_string,
8910 .type = ARM_CP_NO_RAW,
8911 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8912 .access = PL2_RW, .resetvalue = 0,
8913 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8914 };
8915 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
8916 g_free(tmp_string);
8917 }
3281af81
PC
8918 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8919 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8085ce63 8920 }
7884849c
PM
8921 }
8922
97ce8d61 8923 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
52264166
AB
8924 ARMCPRegInfo mpidr_cp_reginfo[] = {
8925 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8926 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
67dd8030 8927 .fgt = FGT_MPIDR_EL1,
52264166 8928 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
52264166
AB
8929 };
8930#ifdef CONFIG_USER_ONLY
10b0220e 8931 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
52264166
AB
8932 { .name = "MPIDR_EL1",
8933 .fixed_bits = 0x0000000080000000 },
52264166
AB
8934 };
8935 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8936#endif
97ce8d61
PC
8937 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8938 }
8939
2771db27 8940 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
834a6c69
PM
8941 ARMCPRegInfo auxcr_reginfo[] = {
8942 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8943 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
99602377
RH
8944 .access = PL1_RW, .accessfn = access_tacr,
8945 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
834a6c69
PM
8946 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8947 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8948 .access = PL2_RW, .type = ARM_CP_CONST,
8949 .resetvalue = 0 },
8950 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8951 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8952 .access = PL3_RW, .type = ARM_CP_CONST,
8953 .resetvalue = 0 },
2771db27 8954 };
834a6c69 8955 define_arm_cp_regs(cpu, auxcr_reginfo);
f6287c24
PM
8956 if (cpu_isar_feature(aa32_ac2, cpu)) {
8957 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
0e0456ab 8958 }
2771db27
PM
8959 }
8960
d8ba780b 8961 if (arm_feature(env, ARM_FEATURE_CBAR)) {
d56974af
LM
8962 /*
8963 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8964 * There are two flavours:
8965 * (1) older 32-bit only cores have a simple 32-bit CBAR
8966 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8967 * 32-bit register visible to AArch32 at a different encoding
8968 * to the "flavour 1" register and with the bits rearranged to
8969 * be able to squash a 64-bit address into the 32-bit view.
8970 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8971 * in future if we support AArch32-only configs of some of the
8972 * AArch64 cores we might need to add a specific feature flag
8973 * to indicate cores with "flavour 2" CBAR.
8974 */
f318cec6
PM
8975 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8976 /* 32 bit view is [31:18] 0...0 [43:32]. */
8977 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8978 | extract64(cpu->reset_cbar, 32, 12);
8979 ARMCPRegInfo cbar_reginfo[] = {
8980 { .name = "CBAR",
8981 .type = ARM_CP_CONST,
d56974af
LM
8982 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8983 .access = PL1_R, .resetvalue = cbar32 },
f318cec6
PM
8984 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8985 .type = ARM_CP_CONST,
8986 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
d56974af 8987 .access = PL1_R, .resetvalue = cpu->reset_cbar },
f318cec6
PM
8988 };
8989 /* We don't implement a r/w 64 bit CBAR currently */
8990 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8991 define_arm_cp_regs(cpu, cbar_reginfo);
8992 } else {
8993 ARMCPRegInfo cbar = {
8994 .name = "CBAR",
8995 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
04215eb1 8996 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
f318cec6
PM
8997 .fieldoffset = offsetof(CPUARMState,
8998 cp15.c15_config_base_address)
8999 };
9000 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9001 cbar.access = PL1_R;
9002 cbar.fieldoffset = 0;
9003 cbar.type = ARM_CP_CONST;
9004 }
9005 define_one_arm_cp_reg(cpu, &cbar);
9006 }
d8ba780b
PC
9007 }
9008
91db4642 9009 if (arm_feature(env, ARM_FEATURE_VBAR)) {
10b0220e 9010 static const ARMCPRegInfo vbar_cp_reginfo[] = {
91db4642
CLG
9011 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9012 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9013 .access = PL1_RW, .writefn = vbar_write,
bd8db7d9 9014 .fgt = FGT_VBAR_EL1,
91db4642
CLG
9015 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9016 offsetof(CPUARMState, cp15.vbar_ns) },
9017 .resetvalue = 0 },
91db4642
CLG
9018 };
9019 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9020 }
9021
2771db27
PM
9022 /* Generic registers whose values depend on the implementation */
9023 {
9024 ARMCPRegInfo sctlr = {
5ebafdf3 9025 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
137feaa9 9026 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
84929218 9027 .access = PL1_RW, .accessfn = access_tvm_trvm,
67dd8030 9028 .fgt = FGT_SCTLR_EL1,
137feaa9
FA
9029 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9030 offsetof(CPUARMState, cp15.sctlr_ns) },
d4e6df63
PM
9031 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9032 .raw_writefn = raw_write,
2771db27
PM
9033 };
9034 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9b37a28c
FR
9035 /*
9036 * Normally we would always end the TB on an SCTLR write, but Linux
2771db27
PM
9037 * arch/arm/mach-pxa/sleep.S expects two instructions following
9038 * an MMU enable to execute from cache. Imitate this behaviour.
9039 */
9040 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9041 }
9042 define_one_arm_cp_reg(cpu, &sctlr);
761c4642
TR
9043
9044 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9045 arm_feature(env, ARM_FEATURE_V8)) {
9046 ARMCPRegInfo vsctlr = {
9047 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9048 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9049 .access = PL2_RW, .resetvalue = 0x0,
9050 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9051 };
9052 define_one_arm_cp_reg(cpu, &vsctlr);
9053 }
2771db27 9054 }
5be5e8ed 9055
2d7137c1 9056 if (cpu_isar_feature(aa64_lor, cpu)) {
2d7137c1
RH
9057 define_arm_cp_regs(cpu, lor_reginfo);
9058 }
220f508f
RH
9059 if (cpu_isar_feature(aa64_pan, cpu)) {
9060 define_one_arm_cp_reg(cpu, &pan_reginfo);
9061 }
04b07d29
RH
9062#ifndef CONFIG_USER_ONLY
9063 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9064 define_arm_cp_regs(cpu, ats1e1_reginfo);
9065 }
9066 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9067 define_arm_cp_regs(cpu, ats1cp_reginfo);
9068 }
9069#endif
9eeb7a1c
RH
9070 if (cpu_isar_feature(aa64_uao, cpu)) {
9071 define_one_arm_cp_reg(cpu, &uao_reginfo);
9072 }
2d7137c1 9073
dc8b1853
RC
9074 if (cpu_isar_feature(aa64_dit, cpu)) {
9075 define_one_arm_cp_reg(cpu, &dit_reginfo);
9076 }
f2f68a78
RC
9077 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9078 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9079 }
58e93b48
RH
9080 if (cpu_isar_feature(any_ras, cpu)) {
9081 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9082 }
dc8b1853 9083
52d18727
RH
9084 if (cpu_isar_feature(aa64_vh, cpu) ||
9085 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9086 define_one_arm_cp_reg(cpu, &contextidr_el2);
9087 }
e2a1a461
RH
9088 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9089 define_arm_cp_regs(cpu, vhe_reginfo);
9090 }
9091
cd208a1c 9092 if (cpu_isar_feature(aa64_sve, cpu)) {
60360d82 9093 define_arm_cp_regs(cpu, zcr_reginfo);
5be5e8ed 9094 }
967aa94f 9095
5814d587
RH
9096 if (cpu_isar_feature(aa64_hcx, cpu)) {
9097 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9098 }
9099
967aa94f 9100#ifdef TARGET_AARCH64
9e5ec745
RH
9101 if (cpu_isar_feature(aa64_sme, cpu)) {
9102 define_arm_cp_regs(cpu, sme_reginfo);
9103 }
967aa94f
RH
9104 if (cpu_isar_feature(aa64_pauth, cpu)) {
9105 define_arm_cp_regs(cpu, pauth_reginfo);
9106 }
de390645
RH
9107 if (cpu_isar_feature(aa64_rndr, cpu)) {
9108 define_arm_cp_regs(cpu, rndr_reginfo);
9109 }
84940ed8
RC
9110 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9111 define_arm_cp_regs(cpu, tlbirange_reginfo);
9112 }
7113d618
RC
9113 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9114 define_arm_cp_regs(cpu, tlbios_reginfo);
9115 }
0d57b499
BM
9116#ifndef CONFIG_USER_ONLY
9117 /* Data Cache clean instructions up to PoP */
9118 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9119 define_one_arm_cp_reg(cpu, dcpop_reg);
9120
9121 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9122 define_one_arm_cp_reg(cpu, dcpodp_reg);
9123 }
9124 }
9125#endif /*CONFIG_USER_ONLY*/
4b779ceb
RH
9126
9127 /*
9128 * If full MTE is enabled, add all of the system registers.
9129 * If only "instructions available at EL0" are enabled,
9130 * then define only a RAZ/WI version of PSTATE.TCO.
9131 */
9132 if (cpu_isar_feature(aa64_mte, cpu)) {
9133 define_arm_cp_regs(cpu, mte_reginfo);
5463df16 9134 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
4b779ceb
RH
9135 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9136 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
5463df16 9137 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
4b779ceb 9138 }
7cb1e618
RH
9139
9140 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9141 define_arm_cp_regs(cpu, scxtnum_reginfo);
9142 }
15126d9c
PM
9143
9144 if (cpu_isar_feature(aa64_fgt, cpu)) {
9145 define_arm_cp_regs(cpu, fgt_reginfo);
9146 }
967aa94f 9147#endif
cb570bd3 9148
22e57073 9149 if (cpu_isar_feature(any_predinv, cpu)) {
cb570bd3
RH
9150 define_arm_cp_regs(cpu, predinv_reginfo);
9151 }
e2cce18f 9152
957e6155
PM
9153 if (cpu_isar_feature(any_ccidx, cpu)) {
9154 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9155 }
9156
e2cce18f
RH
9157#ifndef CONFIG_USER_ONLY
9158 /*
9159 * Register redirections and aliases must be done last,
9160 * after the registers from the other extensions have been defined.
9161 */
9162 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9163 define_arm_vh_e2h_redirects_aliases(cpu);
9164 }
9165#endif
2ceb98c0
PM
9166}
9167
777dc784
PM
9168/* Sort alphabetically by type name, except for "any". */
9169static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 9170{
777dc784
PM
9171 ObjectClass *class_a = (ObjectClass *)a;
9172 ObjectClass *class_b = (ObjectClass *)b;
9173 const char *name_a, *name_b;
5adb4839 9174
777dc784
PM
9175 name_a = object_class_get_name(class_a);
9176 name_b = object_class_get_name(class_b);
51492fd1 9177 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 9178 return 1;
51492fd1 9179 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
9180 return -1;
9181 } else {
9182 return strcmp(name_a, name_b);
5adb4839
PB
9183 }
9184}
9185
777dc784 9186static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 9187{
777dc784 9188 ObjectClass *oc = data;
977c33ba 9189 CPUClass *cc = CPU_CLASS(oc);
51492fd1
AF
9190 const char *typename;
9191 char *name;
3371d272 9192
51492fd1
AF
9193 typename = object_class_get_name(oc);
9194 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
977c33ba
DB
9195 if (cc->deprecation_note) {
9196 qemu_printf(" %s (deprecated)\n", name);
9197 } else {
9198 qemu_printf(" %s\n", name);
9199 }
51492fd1 9200 g_free(name);
777dc784
PM
9201}
9202
0442428a 9203void arm_cpu_list(void)
777dc784 9204{
777dc784
PM
9205 GSList *list;
9206
9207 list = object_class_get_list(TYPE_ARM_CPU, false);
9208 list = g_slist_sort(list, arm_cpu_list_compare);
0442428a
MA
9209 qemu_printf("Available CPUs:\n");
9210 g_slist_foreach(list, arm_cpu_list_entry, NULL);
777dc784 9211 g_slist_free(list);
40f137e1
PB
9212}
9213
78027bb6
CR
9214static void arm_cpu_add_definition(gpointer data, gpointer user_data)
9215{
9216 ObjectClass *oc = data;
9217 CpuDefinitionInfoList **cpu_list = user_data;
78027bb6
CR
9218 CpuDefinitionInfo *info;
9219 const char *typename;
9220
9221 typename = object_class_get_name(oc);
9222 info = g_malloc0(sizeof(*info));
9223 info->name = g_strndup(typename,
9224 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8ed877b7 9225 info->q_typename = g_strdup(typename);
78027bb6 9226
54aa3de7 9227 QAPI_LIST_PREPEND(*cpu_list, info);
78027bb6
CR
9228}
9229
25a9d6ca 9230CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
78027bb6
CR
9231{
9232 CpuDefinitionInfoList *cpu_list = NULL;
9233 GSList *list;
9234
9235 list = object_class_get_list(TYPE_ARM_CPU, false);
9236 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
9237 g_slist_free(list);
9238
9239 return cpu_list;
9240}
9241
1859f8c3
RH
9242/*
9243 * Private utility function for define_one_arm_cp_reg_with_opaque():
9244 * add a single reginfo struct to the hash table.
9245 */
6e6efd61 9246static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
cbe64585
RH
9247 void *opaque, CPState state,
9248 CPSecureState secstate,
9c513e78
AB
9249 int crm, int opc1, int opc2,
9250 const char *name)
6e6efd61 9251{
696ba377 9252 CPUARMState *env = &cpu->env;
5860362d 9253 uint32_t key;
c27f5d3a 9254 ARMCPRegInfo *r2;
4c8c4541
RH
9255 bool is64 = r->type & ARM_CP_64BIT;
9256 bool ns = secstate & ARM_CP_SECSTATE_NS;
cac65299 9257 int cp = r->cp;
c27f5d3a 9258 size_t name_len;
696ba377 9259 bool make_const;
c27f5d3a 9260
cac65299
RH
9261 switch (state) {
9262 case ARM_CP_STATE_AA32:
9263 /* We assume it is a cp15 register if the .cp field is left unset. */
9264 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9265 cp = 15;
9266 }
9267 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9268 break;
9269 case ARM_CP_STATE_AA64:
9270 /*
9271 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9272 * cp == 0 as equivalent to the value for "standard guest-visible
9273 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9274 * in their AArch64 view (the .cp value may be non-zero for the
9275 * benefit of the AArch32 view).
9276 */
9277 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9278 cp = CP_REG_ARM64_SYSREG_CP;
9279 }
9280 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9281 break;
9282 default:
9283 g_assert_not_reached();
9284 }
9285
dc44545b
RH
9286 /* Overriding of an existing definition must be explicitly requested. */
9287 if (!(r->type & ARM_CP_OVERRIDE)) {
9288 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9289 if (oldreg) {
9290 assert(oldreg->type & ARM_CP_OVERRIDE);
9291 }
9292 }
9293
696ba377
RH
9294 /*
9295 * Eliminate registers that are not present because the EL is missing.
9296 * Doing this here makes it easier to put all registers for a given
9297 * feature into the same ARMCPRegInfo array and define them all at once.
9298 */
9299 make_const = false;
9300 if (arm_feature(env, ARM_FEATURE_EL3)) {
9301 /*
9302 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9303 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9304 */
9305 int min_el = ctz32(r->access) / 2;
9306 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9307 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9308 return;
9309 }
9310 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9311 }
9312 } else {
9313 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9314 ? PL2_RW : PL1_RW);
9315 if ((r->access & max_el) == 0) {
9316 return;
9317 }
9318 }
9319
c27f5d3a
RH
9320 /* Combine cpreg and name into one allocation. */
9321 name_len = strlen(name) + 1;
9322 r2 = g_malloc(sizeof(*r2) + name_len);
9323 *r2 = *r;
9324 r2->name = memcpy(r2 + 1, name, name_len);
3f3c82a5 9325
cc946d96
RH
9326 /*
9327 * Update fields to match the instantiation, overwiting wildcards
9328 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
3f3c82a5 9329 */
cc946d96
RH
9330 r2->cp = cp;
9331 r2->crm = crm;
9332 r2->opc1 = opc1;
9333 r2->opc2 = opc2;
9334 r2->state = state;
3f3c82a5 9335 r2->secure = secstate;
cc946d96
RH
9336 if (opaque) {
9337 r2->opaque = opaque;
9338 }
3f3c82a5 9339
696ba377
RH
9340 if (make_const) {
9341 /* This should not have been a very special register to begin. */
9342 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9343 assert(old_special == 0 || old_special == ARM_CP_NOP);
1859f8c3 9344 /*
696ba377
RH
9345 * Set the special function to CONST, retaining the other flags.
9346 * This is important for e.g. ARM_CP_SVE so that we still
9347 * take the SVE trap if CPTR_EL3.EZ == 0.
f5a0a5a5 9348 */
696ba377
RH
9349 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9350 /*
9351 * Usually, these registers become RES0, but there are a few
9352 * special cases like VPIDR_EL2 which have a constant non-zero
9353 * value with writes ignored.
9354 */
9355 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9356 r2->resetvalue = 0;
9357 }
9358 /*
9359 * ARM_CP_CONST has precedence, so removing the callbacks and
9360 * offsets are not strictly necessary, but it is potentially
9361 * less confusing to debug later.
9362 */
9363 r2->readfn = NULL;
9364 r2->writefn = NULL;
9365 r2->raw_readfn = NULL;
9366 r2->raw_writefn = NULL;
9367 r2->resetfn = NULL;
9368 r2->fieldoffset = 0;
9369 r2->bank_fieldoffsets[0] = 0;
9370 r2->bank_fieldoffsets[1] = 0;
9371 } else {
9372 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
3f3c82a5 9373
10748a96 9374 if (isbanked) {
1859f8c3 9375 /*
696ba377
RH
9376 * Register is banked (using both entries in array).
9377 * Overwriting fieldoffset as the array is only used to define
9378 * banked registers but later only fieldoffset is used.
3f3c82a5 9379 */
696ba377
RH
9380 r2->fieldoffset = r->bank_fieldoffsets[ns];
9381 }
9382 if (state == ARM_CP_STATE_AA32) {
9383 if (isbanked) {
9384 /*
9385 * If the register is banked then we don't need to migrate or
9386 * reset the 32-bit instance in certain cases:
9387 *
9388 * 1) If the register has both 32-bit and 64-bit instances
9389 * then we can count on the 64-bit instance taking care
9390 * of the non-secure bank.
9391 * 2) If ARMv8 is enabled then we can count on a 64-bit
9392 * version taking care of the secure bank. This requires
9393 * that separate 32 and 64-bit definitions are provided.
9394 */
9395 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9396 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9397 r2->type |= ARM_CP_ALIAS;
9398 }
9399 } else if ((secstate != r->secure) && !ns) {
9400 /*
9401 * The register is not banked so we only want to allow
9402 * migration of the non-secure instance.
9403 */
7a0e58fa 9404 r2->type |= ARM_CP_ALIAS;
3f3c82a5 9405 }
3f3c82a5 9406
696ba377
RH
9407 if (HOST_BIG_ENDIAN &&
9408 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9409 r2->fieldoffset += sizeof(uint32_t);
9410 }
3f3c82a5 9411 }
f5a0a5a5 9412 }
cc946d96 9413
1859f8c3
RH
9414 /*
9415 * By convention, for wildcarded registers only the first
6e6efd61 9416 * entry is used for migration; the others are marked as
7a0e58fa 9417 * ALIAS so we don't try to transfer the register
6e6efd61 9418 * multiple times. Special registers (ie NOP/WFI) are
7a0e58fa 9419 * never migratable and not even raw-accessible.
6e6efd61 9420 */
696ba377 9421 if (r2->type & ARM_CP_SPECIAL_MASK) {
7a0e58fa
PM
9422 r2->type |= ARM_CP_NO_RAW;
9423 }
9424 if (((r->crm == CP_ANY) && crm != 0) ||
6e6efd61
PM
9425 ((r->opc1 == CP_ANY) && opc1 != 0) ||
9426 ((r->opc2 == CP_ANY) && opc2 != 0)) {
1f163787 9427 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6e6efd61
PM
9428 }
9429
1859f8c3
RH
9430 /*
9431 * Check that raw accesses are either forbidden or handled. Note that
375421cc
PM
9432 * we can't assert this earlier because the setup of fieldoffset for
9433 * banked registers has to be done first.
9434 */
9435 if (!(r2->type & ARM_CP_NO_RAW)) {
9436 assert(!raw_accessors_invalid(r2));
9437 }
9438
5860362d 9439 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
6e6efd61
PM
9440}
9441
9442
4b6a83fb
PM
9443void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9444 const ARMCPRegInfo *r, void *opaque)
9445{
9b37a28c
FR
9446 /*
9447 * Define implementations of coprocessor registers.
4b6a83fb
PM
9448 * We store these in a hashtable because typically
9449 * there are less than 150 registers in a space which
9450 * is 16*16*16*8*8 = 262144 in size.
9451 * Wildcarding is supported for the crm, opc1 and opc2 fields.
9452 * If a register is defined twice then the second definition is
9453 * used, so this can be used to define some generic registers and
9454 * then override them with implementation specific variations.
9455 * At least one of the original and the second definition should
9456 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9457 * against accidental use.
f5a0a5a5
PM
9458 *
9459 * The state field defines whether the register is to be
9460 * visible in the AArch32 or AArch64 execution state. If the
9461 * state is set to ARM_CP_STATE_BOTH then we synthesise a
9462 * reginfo structure for the AArch32 view, which sees the lower
9463 * 32 bits of the 64 bit register.
9464 *
9465 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9466 * be wildcarded. AArch64 registers are always considered to be 64
9467 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9468 * the register, if any.
4b6a83fb 9469 */
d95101d6 9470 int crm, opc1, opc2;
4b6a83fb
PM
9471 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9472 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9473 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9474 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9475 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9476 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
d95101d6
RH
9477 CPState state;
9478
4b6a83fb
PM
9479 /* 64 bit registers have only CRm and Opc1 fields */
9480 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
f5a0a5a5
PM
9481 /* op0 only exists in the AArch64 encodings */
9482 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9483 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9484 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
cd8be50e
PM
9485 /*
9486 * This API is only for Arm's system coprocessors (14 and 15) or
9487 * (M-profile or v7A-and-earlier only) for implementation defined
9488 * coprocessors in the range 0..7. Our decode assumes this, since
9489 * 8..13 can be used for other insns including VFP and Neon. See
9490 * valid_cp() in translate.c. Assert here that we haven't tried
9491 * to use an invalid coprocessor number.
9492 */
9493 switch (r->state) {
9494 case ARM_CP_STATE_BOTH:
9495 /* 0 has a special meaning, but otherwise the same rules as AA32. */
9496 if (r->cp == 0) {
9497 break;
9498 }
9499 /* fall through */
9500 case ARM_CP_STATE_AA32:
9501 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9502 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9503 assert(r->cp >= 14 && r->cp <= 15);
9504 } else {
9505 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9506 }
9507 break;
9508 case ARM_CP_STATE_AA64:
9509 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9510 break;
9511 default:
9512 g_assert_not_reached();
9513 }
9b37a28c
FR
9514 /*
9515 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
f5a0a5a5
PM
9516 * encodes a minimum access level for the register. We roll this
9517 * runtime check into our general permission check code, so check
9518 * here that the reginfo's specified permissions are strict enough
9519 * to encompass the generic architectural permission check.
9520 */
9521 if (r->state != ARM_CP_STATE_AA32) {
39107337 9522 CPAccessRights mask;
f5a0a5a5 9523 switch (r->opc1) {
b5bd7440
AB
9524 case 0:
9525 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9526 mask = PL0U_R | PL1_RW;
9527 break;
9528 case 1: case 2:
f5a0a5a5
PM
9529 /* min_EL EL1 */
9530 mask = PL1_RW;
9531 break;
9532 case 3:
9533 /* min_EL EL0 */
9534 mask = PL0_RW;
9535 break;
9536 case 4:
b4ecf60f 9537 case 5:
f5a0a5a5
PM
9538 /* min_EL EL2 */
9539 mask = PL2_RW;
9540 break;
f5a0a5a5
PM
9541 case 6:
9542 /* min_EL EL3 */
9543 mask = PL3_RW;
9544 break;
9545 case 7:
9546 /* min_EL EL1, secure mode only (we don't check the latter) */
9547 mask = PL1_RW;
9548 break;
9549 default:
9550 /* broken reginfo with out-of-range opc1 */
d385a605 9551 g_assert_not_reached();
f5a0a5a5
PM
9552 }
9553 /* assert our permissions are not too lax (stricter is fine) */
9554 assert((r->access & ~mask) == 0);
9555 }
9556
9b37a28c
FR
9557 /*
9558 * Check that the register definition has enough info to handle
4b6a83fb
PM
9559 * reads and writes if they are permitted.
9560 */
87c3f0f2 9561 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
4b6a83fb 9562 if (r->access & PL3_R) {
3f3c82a5
FA
9563 assert((r->fieldoffset ||
9564 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9565 r->readfn);
4b6a83fb
PM
9566 }
9567 if (r->access & PL3_W) {
3f3c82a5
FA
9568 assert((r->fieldoffset ||
9569 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9570 r->writefn);
4b6a83fb
PM
9571 }
9572 }
5809ac57 9573
4b6a83fb
PM
9574 for (crm = crmmin; crm <= crmmax; crm++) {
9575 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9576 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
f5a0a5a5
PM
9577 for (state = ARM_CP_STATE_AA32;
9578 state <= ARM_CP_STATE_AA64; state++) {
9579 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9580 continue;
9581 }
3f3c82a5 9582 if (state == ARM_CP_STATE_AA32) {
9b37a28c
FR
9583 /*
9584 * Under AArch32 CP registers can be common
3f3c82a5
FA
9585 * (same for secure and non-secure world) or banked.
9586 */
9c513e78
AB
9587 char *name;
9588
3f3c82a5
FA
9589 switch (r->secure) {
9590 case ARM_CP_SECSTATE_S:
9591 case ARM_CP_SECSTATE_NS:
9592 add_cpreg_to_hashtable(cpu, r, opaque, state,
9c513e78
AB
9593 r->secure, crm, opc1, opc2,
9594 r->name);
3f3c82a5 9595 break;
cbe64585 9596 case ARM_CP_SECSTATE_BOTH:
9c513e78 9597 name = g_strdup_printf("%s_S", r->name);
3f3c82a5
FA
9598 add_cpreg_to_hashtable(cpu, r, opaque, state,
9599 ARM_CP_SECSTATE_S,
9c513e78
AB
9600 crm, opc1, opc2, name);
9601 g_free(name);
3f3c82a5
FA
9602 add_cpreg_to_hashtable(cpu, r, opaque, state,
9603 ARM_CP_SECSTATE_NS,
9c513e78 9604 crm, opc1, opc2, r->name);
3f3c82a5 9605 break;
cbe64585
RH
9606 default:
9607 g_assert_not_reached();
3f3c82a5
FA
9608 }
9609 } else {
9b37a28c
FR
9610 /*
9611 * AArch64 registers get mapped to non-secure instance
9612 * of AArch32
9613 */
3f3c82a5
FA
9614 add_cpreg_to_hashtable(cpu, r, opaque, state,
9615 ARM_CP_SECSTATE_NS,
9c513e78 9616 crm, opc1, opc2, r->name);
3f3c82a5 9617 }
f5a0a5a5 9618 }
4b6a83fb
PM
9619 }
9620 }
9621 }
9622}
9623
5809ac57
RH
9624/* Define a whole list of registers */
9625void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9626 void *opaque, size_t len)
4b6a83fb 9627{
5809ac57
RH
9628 size_t i;
9629 for (i = 0; i < len; ++i) {
9630 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
4b6a83fb
PM
9631 }
9632}
9633
6c5c0fec
AB
9634/*
9635 * Modify ARMCPRegInfo for access from userspace.
9636 *
9637 * This is a data driven modification directed by
9638 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9639 * user-space cannot alter any values and dynamic values pertaining to
9640 * execution state are hidden from user space view anyway.
9641 */
5809ac57
RH
9642void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9643 const ARMCPRegUserSpaceInfo *mods,
9644 size_t mods_len)
6c5c0fec 9645{
5809ac57
RH
9646 for (size_t mi = 0; mi < mods_len; ++mi) {
9647 const ARMCPRegUserSpaceInfo *m = mods + mi;
d040242e 9648 GPatternSpec *pat = NULL;
5809ac57 9649
d040242e
AB
9650 if (m->is_glob) {
9651 pat = g_pattern_spec_new(m->name);
9652 }
5809ac57
RH
9653 for (size_t ri = 0; ri < regs_len; ++ri) {
9654 ARMCPRegInfo *r = regs + ri;
9655
d040242e
AB
9656 if (pat && g_pattern_match_string(pat, r->name)) {
9657 r->type = ARM_CP_CONST;
9658 r->access = PL0U_R;
9659 r->resetvalue = 0;
9660 /* continue */
9661 } else if (strcmp(r->name, m->name) == 0) {
6c5c0fec
AB
9662 r->type = ARM_CP_CONST;
9663 r->access = PL0U_R;
9664 r->resetvalue &= m->exported_bits;
9665 r->resetvalue |= m->fixed_bits;
9666 break;
9667 }
9668 }
d040242e
AB
9669 if (pat) {
9670 g_pattern_spec_free(pat);
9671 }
6c5c0fec
AB
9672 }
9673}
9674
60322b39 9675const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4b6a83fb 9676{
5860362d 9677 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
4b6a83fb
PM
9678}
9679
c4241c7d
PM
9680void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9681 uint64_t value)
4b6a83fb
PM
9682{
9683 /* Helper coprocessor write function for write-ignore registers */
4b6a83fb
PM
9684}
9685
c4241c7d 9686uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4b6a83fb
PM
9687{
9688 /* Helper coprocessor write function for read-as-zero registers */
4b6a83fb
PM
9689 return 0;
9690}
9691
f5a0a5a5
PM
9692void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9693{
9694 /* Helper coprocessor reset function for do-nothing-on-reset registers */
9695}
9696
af393ffc 9697static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
37064a8b 9698{
9b37a28c
FR
9699 /*
9700 * Return true if it is not valid for us to switch to
37064a8b
PM
9701 * this CPU mode (ie all the UNPREDICTABLE cases in
9702 * the ARM ARM CPSRWriteByInstr pseudocode).
9703 */
af393ffc
PM
9704
9705 /* Changes to or from Hyp via MSR and CPS are illegal. */
9706 if (write_type == CPSRWriteByInstr &&
9707 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9708 mode == ARM_CPU_MODE_HYP)) {
9709 return 1;
9710 }
9711
37064a8b
PM
9712 switch (mode) {
9713 case ARM_CPU_MODE_USR:
10eacda7 9714 return 0;
37064a8b
PM
9715 case ARM_CPU_MODE_SYS:
9716 case ARM_CPU_MODE_SVC:
9717 case ARM_CPU_MODE_ABT:
9718 case ARM_CPU_MODE_UND:
9719 case ARM_CPU_MODE_IRQ:
9720 case ARM_CPU_MODE_FIQ:
9b37a28c
FR
9721 /*
9722 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
52ff951b
PM
9723 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9724 */
9b37a28c
FR
9725 /*
9726 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10eacda7
PM
9727 * and CPS are treated as illegal mode changes.
9728 */
9729 if (write_type == CPSRWriteByInstr &&
10eacda7 9730 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7c208e0f 9731 (arm_hcr_el2_eff(env) & HCR_TGE)) {
10eacda7
PM
9732 return 1;
9733 }
37064a8b 9734 return 0;
e6c8fc07 9735 case ARM_CPU_MODE_HYP:
e6ef0169 9736 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
027fc527 9737 case ARM_CPU_MODE_MON:
58ae2d1f 9738 return arm_current_el(env) < 3;
37064a8b
PM
9739 default:
9740 return 1;
9741 }
9742}
9743
2f4a40e5
AZ
9744uint32_t cpsr_read(CPUARMState *env)
9745{
9746 int ZF;
6fbe23d5
PB
9747 ZF = (env->ZF == 0);
9748 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
9749 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9750 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9751 | ((env->condexec_bits & 0xfc) << 8)
af519934 9752 | (env->GE << 16) | (env->daif & CPSR_AIF);
2f4a40e5
AZ
9753}
9754
50866ba5
PM
9755void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9756 CPSRWriteType write_type)
2f4a40e5 9757{
6e8801f9 9758 uint32_t changed_daif;
e784807c
PM
9759 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9760 (mask & (CPSR_M | CPSR_E | CPSR_IL));
6e8801f9 9761
2f4a40e5 9762 if (mask & CPSR_NZCV) {
6fbe23d5
PB
9763 env->ZF = (~val) & CPSR_Z;
9764 env->NF = val;
2f4a40e5
AZ
9765 env->CF = (val >> 29) & 1;
9766 env->VF = (val << 3) & 0x80000000;
9767 }
f927dbda 9768 if (mask & CPSR_Q) {
2f4a40e5 9769 env->QF = ((val & CPSR_Q) != 0);
f927dbda
FR
9770 }
9771 if (mask & CPSR_T) {
2f4a40e5 9772 env->thumb = ((val & CPSR_T) != 0);
f927dbda 9773 }
2f4a40e5
AZ
9774 if (mask & CPSR_IT_0_1) {
9775 env->condexec_bits &= ~3;
9776 env->condexec_bits |= (val >> 25) & 3;
9777 }
9778 if (mask & CPSR_IT_2_7) {
9779 env->condexec_bits &= 3;
9780 env->condexec_bits |= (val >> 8) & 0xfc;
9781 }
9782 if (mask & CPSR_GE) {
9783 env->GE = (val >> 16) & 0xf;
9784 }
9785
9b37a28c
FR
9786 /*
9787 * In a V7 implementation that includes the security extensions but does
6e8801f9
FA
9788 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9789 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9790 * bits respectively.
9791 *
9792 * In a V8 implementation, it is permitted for privileged software to
9793 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9794 */
f8c88bbc 9795 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6e8801f9
FA
9796 arm_feature(env, ARM_FEATURE_EL3) &&
9797 !arm_feature(env, ARM_FEATURE_EL2) &&
9798 !arm_is_secure(env)) {
9799
9800 changed_daif = (env->daif ^ val) & mask;
9801
9802 if (changed_daif & CPSR_A) {
9b37a28c
FR
9803 /*
9804 * Check to see if we are allowed to change the masking of async
6e8801f9
FA
9805 * abort exceptions from a non-secure state.
9806 */
9807 if (!(env->cp15.scr_el3 & SCR_AW)) {
9808 qemu_log_mask(LOG_GUEST_ERROR,
9809 "Ignoring attempt to switch CPSR_A flag from "
9810 "non-secure world with SCR.AW bit clear\n");
9811 mask &= ~CPSR_A;
9812 }
9813 }
9814
9815 if (changed_daif & CPSR_F) {
9b37a28c
FR
9816 /*
9817 * Check to see if we are allowed to change the masking of FIQ
6e8801f9
FA
9818 * exceptions from a non-secure state.
9819 */
9820 if (!(env->cp15.scr_el3 & SCR_FW)) {
9821 qemu_log_mask(LOG_GUEST_ERROR,
9822 "Ignoring attempt to switch CPSR_F flag from "
9823 "non-secure world with SCR.FW bit clear\n");
9824 mask &= ~CPSR_F;
9825 }
9826
9b37a28c
FR
9827 /*
9828 * Check whether non-maskable FIQ (NMFI) support is enabled.
6e8801f9
FA
9829 * If this bit is set software is not allowed to mask
9830 * FIQs, but is allowed to set CPSR_F to 0.
9831 */
9832 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9833 (val & CPSR_F)) {
9834 qemu_log_mask(LOG_GUEST_ERROR,
9835 "Ignoring attempt to enable CPSR_F flag "
9836 "(non-maskable FIQ [NMFI] support enabled)\n");
9837 mask &= ~CPSR_F;
9838 }
9839 }
9840 }
9841
4cc35614
PM
9842 env->daif &= ~(CPSR_AIF & mask);
9843 env->daif |= val & CPSR_AIF & mask;
9844
f8c88bbc
PM
9845 if (write_type != CPSRWriteRaw &&
9846 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8c4f0eb9 9847 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9b37a28c
FR
9848 /*
9849 * Note that we can only get here in USR mode if this is a
8c4f0eb9
PM
9850 * gdb stub write; for this case we follow the architectural
9851 * behaviour for guest writes in USR mode of ignoring an attempt
9852 * to switch mode. (Those are caught by translate.c for writes
9853 * triggered by guest instructions.)
9854 */
9855 mask &= ~CPSR_M;
9856 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9b37a28c
FR
9857 /*
9858 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
81907a58
PM
9859 * v7, and has defined behaviour in v8:
9860 * + leave CPSR.M untouched
9861 * + allow changes to the other CPSR fields
9862 * + set PSTATE.IL
9863 * For user changes via the GDB stub, we don't set PSTATE.IL,
9864 * as this would be unnecessarily harsh for a user error.
37064a8b
PM
9865 */
9866 mask &= ~CPSR_M;
81907a58
PM
9867 if (write_type != CPSRWriteByGDBStub &&
9868 arm_feature(env, ARM_FEATURE_V8)) {
9869 mask |= CPSR_IL;
9870 val |= CPSR_IL;
9871 }
81e37284
PM
9872 qemu_log_mask(LOG_GUEST_ERROR,
9873 "Illegal AArch32 mode switch attempt from %s to %s\n",
9874 aarch32_mode_name(env->uncached_cpsr),
9875 aarch32_mode_name(val));
37064a8b 9876 } else {
81e37284
PM
9877 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9878 write_type == CPSRWriteExceptionReturn ?
9879 "Exception return from AArch32" :
9880 "AArch32 mode switch from",
9881 aarch32_mode_name(env->uncached_cpsr),
9882 aarch32_mode_name(val), env->regs[15]);
37064a8b
PM
9883 switch_mode(env, val & CPSR_M);
9884 }
2f4a40e5
AZ
9885 }
9886 mask &= ~CACHED_CPSR_BITS;
9887 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
e784807c
PM
9888 if (rebuild_hflags) {
9889 arm_rebuild_hflags(env);
9890 }
2f4a40e5
AZ
9891}
9892
b26eefb6
PB
9893/* Sign/zero extend */
9894uint32_t HELPER(sxtb16)(uint32_t x)
9895{
9896 uint32_t res;
9897 res = (uint16_t)(int8_t)x;
9898 res |= (uint32_t)(int8_t)(x >> 16) << 16;
9899 return res;
9900}
9901
e5346292
PM
9902static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9903{
9904 /*
9905 * Take a division-by-zero exception if necessary; otherwise return
9906 * to get the usual non-trapping division behaviour (result of 0)
9907 */
9908 if (arm_feature(env, ARM_FEATURE_M)
9909 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9910 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9911 }
9912}
9913
b26eefb6
PB
9914uint32_t HELPER(uxtb16)(uint32_t x)
9915{
9916 uint32_t res;
9917 res = (uint16_t)(uint8_t)x;
9918 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9919 return res;
9920}
9921
e5346292 9922int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
3670669c 9923{
fc7a5038 9924 if (den == 0) {
e5346292 9925 handle_possible_div0_trap(env, GETPC());
fc7a5038
PM
9926 return 0;
9927 }
9928 if (num == INT_MIN && den == -1) {
9929 return INT_MIN;
9930 }
3670669c
PB
9931 return num / den;
9932}
9933
e5346292 9934uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
3670669c 9935{
fc7a5038 9936 if (den == 0) {
e5346292 9937 handle_possible_div0_trap(env, GETPC());
fc7a5038
PM
9938 return 0;
9939 }
3670669c
PB
9940 return num / den;
9941}
9942
9943uint32_t HELPER(rbit)(uint32_t x)
9944{
42fedbca 9945 return revbit32(x);
3670669c
PB
9946}
9947
c47eaf9f 9948#ifdef CONFIG_USER_ONLY
b5ff1b31 9949
affdb64d 9950static void switch_mode(CPUARMState *env, int mode)
b5ff1b31 9951{
2fc0cc0e 9952 ARMCPU *cpu = env_archcpu(env);
a47dddd7
AF
9953
9954 if (mode != ARM_CPU_MODE_USR) {
9955 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9956 }
b5ff1b31
FB
9957}
9958
012a906b
GB
9959uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9960 uint32_t cur_el, bool secure)
9e729b57
EI
9961{
9962 return 1;
9963}
9964
ce02049d
GB
9965void aarch64_sync_64_to_32(CPUARMState *env)
9966{
9967 g_assert_not_reached();
9968}
9969
b5ff1b31
FB
9970#else
9971
affdb64d 9972static void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
9973{
9974 int old_mode;
9975 int i;
9976
9977 old_mode = env->uncached_cpsr & CPSR_M;
f927dbda 9978 if (mode == old_mode) {
b5ff1b31 9979 return;
f927dbda 9980 }
b5ff1b31
FB
9981
9982 if (old_mode == ARM_CPU_MODE_FIQ) {
04215eb1
FR
9983 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9984 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31 9985 } else if (mode == ARM_CPU_MODE_FIQ) {
04215eb1
FR
9986 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9987 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
9988 }
9989
f5206413 9990 i = bank_number(old_mode);
b5ff1b31 9991 env->banked_r13[i] = env->regs[13];
b5ff1b31
FB
9992 env->banked_spsr[i] = env->spsr;
9993
f5206413 9994 i = bank_number(mode);
b5ff1b31 9995 env->regs[13] = env->banked_r13[i];
b5ff1b31 9996 env->spsr = env->banked_spsr[i];
593cfa2b
PM
9997
9998 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9999 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
b5ff1b31
FB
10000}
10001
9b37a28c
FR
10002/*
10003 * Physical Interrupt Target EL Lookup Table
0eeb17d6
GB
10004 *
10005 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10006 *
10007 * The below multi-dimensional table is used for looking up the target
10008 * exception level given numerous condition criteria. Specifically, the
10009 * target EL is based on SCR and HCR routing controls as well as the
10010 * currently executing EL and secure state.
10011 *
10012 * Dimensions:
10013 * target_el_table[2][2][2][2][2][4]
10014 * | | | | | +--- Current EL
10015 * | | | | +------ Non-secure(0)/Secure(1)
10016 * | | | +--------- HCR mask override
10017 * | | +------------ SCR exec state control
10018 * | +--------------- SCR mask override
10019 * +------------------ 32-bit(0)/64-bit(1) EL3
10020 *
10021 * The table values are as such:
10022 * 0-3 = EL0-EL3
10023 * -1 = Cannot occur
10024 *
10025 * The ARM ARM target EL table includes entries indicating that an "exception
10026 * is not taken". The two cases where this is applicable are:
10027 * 1) An exception is taken from EL3 but the SCR does not have the exception
10028 * routed to EL3.
10029 * 2) An exception is taken from EL2 but the HCR does not have the exception
10030 * routed to EL2.
10031 * In these two cases, the below table contain a target of EL1. This value is
10032 * returned as it is expected that the consumer of the table data will check
10033 * for "target EL >= current EL" to ensure the exception is not taken.
10034 *
10035 * SCR HCR
10036 * 64 EA AMO From
10037 * BIT IRQ IMO Non-secure Secure
10038 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10039 */
82c39f6a 10040static const int8_t target_el_table[2][2][2][2][2][4] = {
0eeb17d6
GB
10041 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10042 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10043 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10044 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10045 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10046 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10047 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10048 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10049 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
6c85f906
RDC
10050 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10051 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10052 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
0eeb17d6
GB
10053 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10054 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
6c85f906
RDC
10055 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10056 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
0eeb17d6
GB
10057};
10058
10059/*
10060 * Determine the target EL for physical exceptions
10061 */
012a906b
GB
10062uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10063 uint32_t cur_el, bool secure)
0eeb17d6
GB
10064{
10065 CPUARMState *env = cs->env_ptr;
f7778444
RH
10066 bool rw;
10067 bool scr;
10068 bool hcr;
0eeb17d6 10069 int target_el;
2cde031f 10070 /* Is the highest EL AArch64? */
f7778444
RH
10071 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10072 uint64_t hcr_el2;
2cde031f
SS
10073
10074 if (arm_feature(env, ARM_FEATURE_EL3)) {
10075 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10076 } else {
9b37a28c
FR
10077 /*
10078 * Either EL2 is the highest EL (and so the EL2 register width
2cde031f
SS
10079 * is given by is64); or there is no EL2 or EL3, in which case
10080 * the value of 'rw' does not affect the table lookup anyway.
10081 */
10082 rw = is64;
10083 }
0eeb17d6 10084
f7778444 10085 hcr_el2 = arm_hcr_el2_eff(env);
0eeb17d6
GB
10086 switch (excp_idx) {
10087 case EXCP_IRQ:
10088 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
f7778444 10089 hcr = hcr_el2 & HCR_IMO;
0eeb17d6
GB
10090 break;
10091 case EXCP_FIQ:
10092 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
f7778444 10093 hcr = hcr_el2 & HCR_FMO;
0eeb17d6
GB
10094 break;
10095 default:
10096 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
f7778444 10097 hcr = hcr_el2 & HCR_AMO;
0eeb17d6
GB
10098 break;
10099 };
10100
d1b31428
RH
10101 /*
10102 * For these purposes, TGE and AMO/IMO/FMO both force the
10103 * interrupt to EL2. Fold TGE into the bit extracted above.
10104 */
10105 hcr |= (hcr_el2 & HCR_TGE) != 0;
10106
0eeb17d6
GB
10107 /* Perform a table-lookup for the target EL given the current state */
10108 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10109
10110 assert(target_el > 0);
10111
10112 return target_el;
10113}
10114
fc6177af 10115void arm_log_exception(CPUState *cs)
b59f479b 10116{
fc6177af
PM
10117 int idx = cs->exception_index;
10118
b59f479b
PMD
10119 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10120 const char *exc = NULL;
10121 static const char * const excnames[] = {
10122 [EXCP_UDEF] = "Undefined Instruction",
10123 [EXCP_SWI] = "SVC",
10124 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10125 [EXCP_DATA_ABORT] = "Data Abort",
10126 [EXCP_IRQ] = "IRQ",
10127 [EXCP_FIQ] = "FIQ",
10128 [EXCP_BKPT] = "Breakpoint",
10129 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10130 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10131 [EXCP_HVC] = "Hypervisor Call",
10132 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10133 [EXCP_SMC] = "Secure Monitor Call",
10134 [EXCP_VIRQ] = "Virtual IRQ",
10135 [EXCP_VFIQ] = "Virtual FIQ",
10136 [EXCP_SEMIHOST] = "Semihosting call",
10137 [EXCP_NOCP] = "v7M NOCP UsageFault",
10138 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10139 [EXCP_STKOF] = "v8M STKOF UsageFault",
10140 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10141 [EXCP_LSERR] = "v8M LSERR UsageFault",
10142 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
e5346292 10143 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
3c29632f 10144 [EXCP_VSERR] = "Virtual SERR",
b59f479b
PMD
10145 };
10146
10147 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10148 exc = excnames[idx];
10149 }
10150 if (!exc) {
10151 exc = "unknown";
10152 }
fc6177af
PM
10153 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10154 idx, exc, cs->cpu_index);
b59f479b
PMD
10155 }
10156}
10157
a356dacf 10158/*
7aab5a8c
PMD
10159 * Function used to synchronize QEMU's AArch64 register set with AArch32
10160 * register set. This is necessary when switching between AArch32 and AArch64
10161 * execution state.
a356dacf 10162 */
7aab5a8c 10163void aarch64_sync_32_to_64(CPUARMState *env)
9ee6e8bb 10164{
7aab5a8c
PMD
10165 int i;
10166 uint32_t mode = env->uncached_cpsr & CPSR_M;
10167
10168 /* We can blanket copy R[0:7] to X[0:7] */
10169 for (i = 0; i < 8; i++) {
10170 env->xregs[i] = env->regs[i];
fd592d89 10171 }
70d74660 10172
9a223097 10173 /*
7aab5a8c
PMD
10174 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10175 * Otherwise, they come from the banked user regs.
fd592d89 10176 */
7aab5a8c
PMD
10177 if (mode == ARM_CPU_MODE_FIQ) {
10178 for (i = 8; i < 13; i++) {
10179 env->xregs[i] = env->usr_regs[i - 8];
10180 }
10181 } else {
10182 for (i = 8; i < 13; i++) {
10183 env->xregs[i] = env->regs[i];
10184 }
fd592d89 10185 }
9ee6e8bb 10186
7aab5a8c
PMD
10187 /*
10188 * Registers x13-x23 are the various mode SP and FP registers. Registers
10189 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10190 * from the mode banked register.
10191 */
10192 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10193 env->xregs[13] = env->regs[13];
10194 env->xregs[14] = env->regs[14];
10195 } else {
10196 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10197 /* HYP is an exception in that it is copied from r14 */
10198 if (mode == ARM_CPU_MODE_HYP) {
10199 env->xregs[14] = env->regs[14];
95695eff 10200 } else {
7aab5a8c 10201 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
95695eff 10202 }
95695eff
PM
10203 }
10204
7aab5a8c
PMD
10205 if (mode == ARM_CPU_MODE_HYP) {
10206 env->xregs[15] = env->regs[13];
10207 } else {
10208 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
95695eff
PM
10209 }
10210
7aab5a8c
PMD
10211 if (mode == ARM_CPU_MODE_IRQ) {
10212 env->xregs[16] = env->regs[14];
10213 env->xregs[17] = env->regs[13];
10214 } else {
10215 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10216 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10217 }
95695eff 10218
7aab5a8c
PMD
10219 if (mode == ARM_CPU_MODE_SVC) {
10220 env->xregs[18] = env->regs[14];
10221 env->xregs[19] = env->regs[13];
10222 } else {
10223 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10224 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10225 }
95695eff 10226
7aab5a8c
PMD
10227 if (mode == ARM_CPU_MODE_ABT) {
10228 env->xregs[20] = env->regs[14];
10229 env->xregs[21] = env->regs[13];
10230 } else {
10231 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10232 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10233 }
e33cf0f8 10234
7aab5a8c
PMD
10235 if (mode == ARM_CPU_MODE_UND) {
10236 env->xregs[22] = env->regs[14];
10237 env->xregs[23] = env->regs[13];
10238 } else {
10239 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10240 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
e33cf0f8
PM
10241 }
10242
10243 /*
7aab5a8c
PMD
10244 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10245 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10246 * FIQ bank for r8-r14.
e33cf0f8 10247 */
7aab5a8c
PMD
10248 if (mode == ARM_CPU_MODE_FIQ) {
10249 for (i = 24; i < 31; i++) {
10250 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10251 }
10252 } else {
10253 for (i = 24; i < 29; i++) {
10254 env->xregs[i] = env->fiq_regs[i - 24];
e33cf0f8 10255 }
7aab5a8c
PMD
10256 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10257 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
e33cf0f8 10258 }
7aab5a8c
PMD
10259
10260 env->pc = env->regs[15];
e33cf0f8
PM
10261}
10262
9a223097 10263/*
7aab5a8c
PMD
10264 * Function used to synchronize QEMU's AArch32 register set with AArch64
10265 * register set. This is necessary when switching between AArch32 and AArch64
10266 * execution state.
de2db7ec 10267 */
7aab5a8c 10268void aarch64_sync_64_to_32(CPUARMState *env)
9ee6e8bb 10269{
7aab5a8c
PMD
10270 int i;
10271 uint32_t mode = env->uncached_cpsr & CPSR_M;
abc24d86 10272
7aab5a8c
PMD
10273 /* We can blanket copy X[0:7] to R[0:7] */
10274 for (i = 0; i < 8; i++) {
10275 env->regs[i] = env->xregs[i];
de2db7ec 10276 }
3f0cddee 10277
9a223097 10278 /*
7aab5a8c
PMD
10279 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10280 * Otherwise, we copy x8-x12 into the banked user regs.
de2db7ec 10281 */
7aab5a8c
PMD
10282 if (mode == ARM_CPU_MODE_FIQ) {
10283 for (i = 8; i < 13; i++) {
10284 env->usr_regs[i - 8] = env->xregs[i];
10285 }
10286 } else {
10287 for (i = 8; i < 13; i++) {
10288 env->regs[i] = env->xregs[i];
10289 }
fb602cb7
PM
10290 }
10291
9a223097 10292 /*
7aab5a8c
PMD
10293 * Registers r13 & r14 depend on the current mode.
10294 * If we are in a given mode, we copy the corresponding x registers to r13
10295 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10296 * for the mode.
fb602cb7 10297 */
7aab5a8c
PMD
10298 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10299 env->regs[13] = env->xregs[13];
10300 env->regs[14] = env->xregs[14];
fb602cb7 10301 } else {
7aab5a8c 10302 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
fb602cb7 10303
7aab5a8c
PMD
10304 /*
10305 * HYP is an exception in that it does not have its own banked r14 but
10306 * shares the USR r14
10307 */
10308 if (mode == ARM_CPU_MODE_HYP) {
10309 env->regs[14] = env->xregs[14];
10310 } else {
10311 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10312 }
10313 }
fb602cb7 10314
7aab5a8c
PMD
10315 if (mode == ARM_CPU_MODE_HYP) {
10316 env->regs[13] = env->xregs[15];
fb602cb7 10317 } else {
7aab5a8c 10318 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
fb602cb7 10319 }
d02a8698 10320
7aab5a8c
PMD
10321 if (mode == ARM_CPU_MODE_IRQ) {
10322 env->regs[14] = env->xregs[16];
10323 env->regs[13] = env->xregs[17];
d02a8698 10324 } else {
7aab5a8c
PMD
10325 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10326 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
d02a8698
PM
10327 }
10328
7aab5a8c
PMD
10329 if (mode == ARM_CPU_MODE_SVC) {
10330 env->regs[14] = env->xregs[18];
10331 env->regs[13] = env->xregs[19];
10332 } else {
10333 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10334 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
fb602cb7
PM
10335 }
10336
7aab5a8c
PMD
10337 if (mode == ARM_CPU_MODE_ABT) {
10338 env->regs[14] = env->xregs[20];
10339 env->regs[13] = env->xregs[21];
10340 } else {
10341 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10342 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
ce02049d
GB
10343 }
10344
10345 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
10346 env->regs[14] = env->xregs[22];
10347 env->regs[13] = env->xregs[23];
ce02049d 10348 } else {
593cfa2b 10349 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
3a9148d0 10350 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
ce02049d
GB
10351 }
10352
9b37a28c
FR
10353 /*
10354 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
ce02049d
GB
10355 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10356 * FIQ bank for r8-r14.
10357 */
10358 if (mode == ARM_CPU_MODE_FIQ) {
10359 for (i = 24; i < 31; i++) {
10360 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10361 }
10362 } else {
10363 for (i = 24; i < 29; i++) {
10364 env->fiq_regs[i - 24] = env->xregs[i];
10365 }
10366 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
593cfa2b 10367 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
ce02049d
GB
10368 }
10369
10370 env->regs[15] = env->pc;
10371}
10372
dea8378b
PM
10373static void take_aarch32_exception(CPUARMState *env, int new_mode,
10374 uint32_t mask, uint32_t offset,
10375 uint32_t newpc)
10376{
4a2696c0
RH
10377 int new_el;
10378
dea8378b
PM
10379 /* Change the CPU state so as to actually take the exception. */
10380 switch_mode(env, new_mode);
4a2696c0 10381
dea8378b
PM
10382 /*
10383 * For exceptions taken to AArch32 we must clear the SS bit in both
10384 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10385 */
f944a854 10386 env->pstate &= ~PSTATE_SS;
dea8378b
PM
10387 env->spsr = cpsr_read(env);
10388 /* Clear IT bits. */
10389 env->condexec_bits = 0;
10390 /* Switch to the new mode, and to the correct instruction set. */
10391 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
88828bf1
CD
10392
10393 /* This must be after mode switching. */
10394 new_el = arm_current_el(env);
10395
dea8378b
PM
10396 /* Set new mode endianness */
10397 env->uncached_cpsr &= ~CPSR_E;
4a2696c0 10398 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
dea8378b
PM
10399 env->uncached_cpsr |= CPSR_E;
10400 }
829f9fd3
PM
10401 /* J and IL must always be cleared for exception entry */
10402 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
dea8378b
PM
10403 env->daif |= mask;
10404
f2f68a78
RC
10405 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10406 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10407 env->uncached_cpsr |= CPSR_SSBS;
10408 } else {
10409 env->uncached_cpsr &= ~CPSR_SSBS;
10410 }
10411 }
10412
dea8378b
PM
10413 if (new_mode == ARM_CPU_MODE_HYP) {
10414 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10415 env->elr_el[2] = env->regs[15];
10416 } else {
4a2696c0 10417 /* CPSR.PAN is normally preserved preserved unless... */
f8af1143 10418 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
4a2696c0
RH
10419 switch (new_el) {
10420 case 3:
10421 if (!arm_is_secure_below_el3(env)) {
10422 /* ... the target is EL3, from non-secure state. */
10423 env->uncached_cpsr &= ~CPSR_PAN;
10424 break;
10425 }
10426 /* ... the target is EL3, from secure state ... */
10427 /* fall through */
10428 case 1:
10429 /* ... the target is EL1 and SCTLR.SPAN is 0. */
10430 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10431 env->uncached_cpsr |= CPSR_PAN;
10432 }
10433 break;
10434 }
10435 }
dea8378b
PM
10436 /*
10437 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10438 * and we should just guard the thumb mode on V4
10439 */
10440 if (arm_feature(env, ARM_FEATURE_V4T)) {
10441 env->thumb =
10442 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10443 }
10444 env->regs[14] = env->regs[15] + offset;
10445 }
10446 env->regs[15] = newpc;
a8a79c7a 10447 arm_rebuild_hflags(env);
dea8378b
PM
10448}
10449
b9bc21ff
PM
10450static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10451{
10452 /*
10453 * Handle exception entry to Hyp mode; this is sufficiently
10454 * different to entry to other AArch32 modes that we handle it
10455 * separately here.
10456 *
10457 * The vector table entry used is always the 0x14 Hyp mode entry point,
2c023d36 10458 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
b9bc21ff
PM
10459 * The offset applied to the preferred return address is always zero
10460 * (see DDI0487C.a section G1.12.3).
10461 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10462 */
10463 uint32_t addr, mask;
10464 ARMCPU *cpu = ARM_CPU(cs);
10465 CPUARMState *env = &cpu->env;
10466
10467 switch (cs->exception_index) {
10468 case EXCP_UDEF:
10469 addr = 0x04;
10470 break;
10471 case EXCP_SWI:
2c023d36 10472 addr = 0x08;
b9bc21ff
PM
10473 break;
10474 case EXCP_BKPT:
10475 /* Fall through to prefetch abort. */
10476 case EXCP_PREFETCH_ABORT:
10477 env->cp15.ifar_s = env->exception.vaddress;
10478 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10479 (uint32_t)env->exception.vaddress);
10480 addr = 0x0c;
10481 break;
10482 case EXCP_DATA_ABORT:
10483 env->cp15.dfar_s = env->exception.vaddress;
10484 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10485 (uint32_t)env->exception.vaddress);
10486 addr = 0x10;
10487 break;
10488 case EXCP_IRQ:
10489 addr = 0x18;
10490 break;
10491 case EXCP_FIQ:
10492 addr = 0x1c;
10493 break;
10494 case EXCP_HVC:
10495 addr = 0x08;
10496 break;
10497 case EXCP_HYP_TRAP:
10498 addr = 0x14;
9bbb4ef9 10499 break;
b9bc21ff
PM
10500 default:
10501 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10502 }
10503
10504 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
2ed08180
PM
10505 if (!arm_feature(env, ARM_FEATURE_V8)) {
10506 /*
10507 * QEMU syndrome values are v8-style. v7 has the IL bit
10508 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10509 * If this is a v7 CPU, squash the IL bit in those cases.
10510 */
10511 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10512 (cs->exception_index == EXCP_DATA_ABORT &&
10513 !(env->exception.syndrome & ARM_EL_ISV)) ||
10514 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10515 env->exception.syndrome &= ~ARM_EL_IL;
10516 }
10517 }
b9bc21ff
PM
10518 env->cp15.esr_el[2] = env->exception.syndrome;
10519 }
10520
10521 if (arm_current_el(env) != 2 && addr < 0x14) {
10522 addr = 0x14;
10523 }
10524
10525 mask = 0;
10526 if (!(env->cp15.scr_el3 & SCR_EA)) {
10527 mask |= CPSR_A;
10528 }
10529 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10530 mask |= CPSR_I;
10531 }
10532 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10533 mask |= CPSR_F;
10534 }
10535
10536 addr += env->cp15.hvbar;
10537
10538 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10539}
10540
966f758c 10541static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
b5ff1b31 10542{
97a8ea5a
AF
10543 ARMCPU *cpu = ARM_CPU(cs);
10544 CPUARMState *env = &cpu->env;
b5ff1b31
FB
10545 uint32_t addr;
10546 uint32_t mask;
10547 int new_mode;
10548 uint32_t offset;
16a906fd 10549 uint32_t moe;
b5ff1b31 10550
16a906fd 10551 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
64b91e3f 10552 switch (syn_get_ec(env->exception.syndrome)) {
16a906fd
PM
10553 case EC_BREAKPOINT:
10554 case EC_BREAKPOINT_SAME_EL:
10555 moe = 1;
10556 break;
10557 case EC_WATCHPOINT:
10558 case EC_WATCHPOINT_SAME_EL:
10559 moe = 10;
10560 break;
10561 case EC_AA32_BKPT:
10562 moe = 3;
10563 break;
10564 case EC_VECTORCATCH:
10565 moe = 5;
10566 break;
10567 default:
10568 moe = 0;
10569 break;
10570 }
10571
10572 if (moe) {
10573 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10574 }
10575
b9bc21ff
PM
10576 if (env->exception.target_el == 2) {
10577 arm_cpu_do_interrupt_aarch32_hyp(cs);
10578 return;
10579 }
10580
27103424 10581 switch (cs->exception_index) {
b5ff1b31
FB
10582 case EXCP_UDEF:
10583 new_mode = ARM_CPU_MODE_UND;
10584 addr = 0x04;
10585 mask = CPSR_I;
f927dbda 10586 if (env->thumb) {
b5ff1b31 10587 offset = 2;
f927dbda 10588 } else {
b5ff1b31 10589 offset = 4;
f927dbda 10590 }
b5ff1b31
FB
10591 break;
10592 case EXCP_SWI:
10593 new_mode = ARM_CPU_MODE_SVC;
10594 addr = 0x08;
10595 mask = CPSR_I;
601d70b9 10596 /* The PC already points to the next instruction. */
b5ff1b31
FB
10597 offset = 0;
10598 break;
06c949e6 10599 case EXCP_BKPT:
9ee6e8bb
PB
10600 /* Fall through to prefetch abort. */
10601 case EXCP_PREFETCH_ABORT:
88ca1c2d 10602 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
b848ce2b 10603 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
3f1beaca 10604 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
88ca1c2d 10605 env->exception.fsr, (uint32_t)env->exception.vaddress);
b5ff1b31
FB
10606 new_mode = ARM_CPU_MODE_ABT;
10607 addr = 0x0c;
10608 mask = CPSR_A | CPSR_I;
10609 offset = 4;
10610 break;
10611 case EXCP_DATA_ABORT:
4a7e2d73 10612 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
b848ce2b 10613 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
3f1beaca 10614 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4a7e2d73 10615 env->exception.fsr,
6cd8a264 10616 (uint32_t)env->exception.vaddress);
b5ff1b31
FB
10617 new_mode = ARM_CPU_MODE_ABT;
10618 addr = 0x10;
10619 mask = CPSR_A | CPSR_I;
10620 offset = 8;
10621 break;
10622 case EXCP_IRQ:
10623 new_mode = ARM_CPU_MODE_IRQ;
10624 addr = 0x18;
10625 /* Disable IRQ and imprecise data aborts. */
10626 mask = CPSR_A | CPSR_I;
10627 offset = 4;
de38d23b
FA
10628 if (env->cp15.scr_el3 & SCR_IRQ) {
10629 /* IRQ routed to monitor mode */
10630 new_mode = ARM_CPU_MODE_MON;
10631 mask |= CPSR_F;
10632 }
b5ff1b31
FB
10633 break;
10634 case EXCP_FIQ:
10635 new_mode = ARM_CPU_MODE_FIQ;
10636 addr = 0x1c;
10637 /* Disable FIQ, IRQ and imprecise data aborts. */
10638 mask = CPSR_A | CPSR_I | CPSR_F;
de38d23b
FA
10639 if (env->cp15.scr_el3 & SCR_FIQ) {
10640 /* FIQ routed to monitor mode */
10641 new_mode = ARM_CPU_MODE_MON;
10642 }
b5ff1b31
FB
10643 offset = 4;
10644 break;
87a4b270
PM
10645 case EXCP_VIRQ:
10646 new_mode = ARM_CPU_MODE_IRQ;
10647 addr = 0x18;
10648 /* Disable IRQ and imprecise data aborts. */
10649 mask = CPSR_A | CPSR_I;
10650 offset = 4;
10651 break;
10652 case EXCP_VFIQ:
10653 new_mode = ARM_CPU_MODE_FIQ;
10654 addr = 0x1c;
10655 /* Disable FIQ, IRQ and imprecise data aborts. */
10656 mask = CPSR_A | CPSR_I | CPSR_F;
10657 offset = 4;
10658 break;
3c29632f
RH
10659 case EXCP_VSERR:
10660 {
10661 /*
10662 * Note that this is reported as a data abort, but the DFAR
10663 * has an UNKNOWN value. Construct the SError syndrome from
10664 * AET and ExT fields.
10665 */
10666 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10667
10668 if (extended_addresses_enabled(env)) {
10669 env->exception.fsr = arm_fi_to_lfsc(&fi);
10670 } else {
10671 env->exception.fsr = arm_fi_to_sfsc(&fi);
10672 }
10673 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10674 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10675 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10676 env->exception.fsr);
10677
10678 new_mode = ARM_CPU_MODE_ABT;
10679 addr = 0x10;
10680 mask = CPSR_A | CPSR_I;
10681 offset = 8;
10682 }
10683 break;
dbe9d163
FA
10684 case EXCP_SMC:
10685 new_mode = ARM_CPU_MODE_MON;
10686 addr = 0x08;
10687 mask = CPSR_A | CPSR_I | CPSR_F;
10688 offset = 0;
10689 break;
b5ff1b31 10690 default:
a47dddd7 10691 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
b5ff1b31
FB
10692 return; /* Never happens. Keep compiler happy. */
10693 }
e89e51a1
FA
10694
10695 if (new_mode == ARM_CPU_MODE_MON) {
10696 addr += env->cp15.mvbar;
137feaa9 10697 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
e89e51a1 10698 /* High vectors. When enabled, base address cannot be remapped. */
b5ff1b31 10699 addr += 0xffff0000;
8641136c 10700 } else {
9b37a28c
FR
10701 /*
10702 * ARM v7 architectures provide a vector base address register to remap
8641136c 10703 * the interrupt vector table.
e89e51a1 10704 * This register is only followed in non-monitor mode, and is banked.
8641136c
NR
10705 * Note: only bits 31:5 are valid.
10706 */
fb6c91ba 10707 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
b5ff1b31 10708 }
dbe9d163
FA
10709
10710 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10711 env->cp15.scr_el3 &= ~SCR_NS;
10712 }
10713
dea8378b 10714 take_aarch32_exception(env, new_mode, mask, offset, addr);
b5ff1b31
FB
10715}
10716
a65dabf7
PM
10717static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10718{
10719 /*
10720 * Return the register number of the AArch64 view of the AArch32
10721 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10722 * be that of the AArch32 mode the exception came from.
10723 */
10724 int mode = env->uncached_cpsr & CPSR_M;
10725
10726 switch (aarch32_reg) {
10727 case 0 ... 7:
10728 return aarch32_reg;
10729 case 8 ... 12:
10730 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10731 case 13:
10732 switch (mode) {
10733 case ARM_CPU_MODE_USR:
10734 case ARM_CPU_MODE_SYS:
10735 return 13;
10736 case ARM_CPU_MODE_HYP:
10737 return 15;
10738 case ARM_CPU_MODE_IRQ:
10739 return 17;
10740 case ARM_CPU_MODE_SVC:
10741 return 19;
10742 case ARM_CPU_MODE_ABT:
10743 return 21;
10744 case ARM_CPU_MODE_UND:
10745 return 23;
10746 case ARM_CPU_MODE_FIQ:
10747 return 29;
10748 default:
10749 g_assert_not_reached();
10750 }
10751 case 14:
10752 switch (mode) {
10753 case ARM_CPU_MODE_USR:
10754 case ARM_CPU_MODE_SYS:
10755 case ARM_CPU_MODE_HYP:
10756 return 14;
10757 case ARM_CPU_MODE_IRQ:
10758 return 16;
10759 case ARM_CPU_MODE_SVC:
10760 return 18;
10761 case ARM_CPU_MODE_ABT:
10762 return 20;
10763 case ARM_CPU_MODE_UND:
10764 return 22;
10765 case ARM_CPU_MODE_FIQ:
10766 return 30;
10767 default:
10768 g_assert_not_reached();
10769 }
10770 case 15:
10771 return 31;
10772 default:
10773 g_assert_not_reached();
10774 }
10775}
10776
f944a854
RC
10777static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10778{
10779 uint32_t ret = cpsr_read(env);
10780
10781 /* Move DIT to the correct location for SPSR_ELx */
10782 if (ret & CPSR_DIT) {
10783 ret &= ~CPSR_DIT;
10784 ret |= PSTATE_DIT;
10785 }
10786 /* Merge PSTATE.SS into SPSR_ELx */
10787 ret |= env->pstate & PSTATE_SS;
10788
10789 return ret;
10790}
10791
7ac61020
PM
10792static bool syndrome_is_sync_extabt(uint32_t syndrome)
10793{
10794 /* Return true if this syndrome value is a synchronous external abort */
10795 switch (syn_get_ec(syndrome)) {
10796 case EC_INSNABORT:
10797 case EC_INSNABORT_SAME_EL:
10798 case EC_DATAABORT:
10799 case EC_DATAABORT_SAME_EL:
10800 /* Look at fault status code for all the synchronous ext abort cases */
10801 switch (syndrome & 0x3f) {
10802 case 0x10:
10803 case 0x13:
10804 case 0x14:
10805 case 0x15:
10806 case 0x16:
10807 case 0x17:
10808 return true;
10809 default:
10810 return false;
10811 }
10812 default:
10813 return false;
10814 }
10815}
10816
966f758c
PM
10817/* Handle exception entry to a target EL which is using AArch64 */
10818static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
f3a9b694
PM
10819{
10820 ARMCPU *cpu = ARM_CPU(cs);
10821 CPUARMState *env = &cpu->env;
10822 unsigned int new_el = env->exception.target_el;
10823 target_ulong addr = env->cp15.vbar_el[new_el];
10824 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
4a2696c0 10825 unsigned int old_mode;
0ab5953b 10826 unsigned int cur_el = arm_current_el(env);
a65dabf7 10827 int rt;
0ab5953b 10828
9a05f7b6
RH
10829 /*
10830 * Note that new_el can never be 0. If cur_el is 0, then
10831 * el0_a64 is is_a64(), else el0_a64 is ignored.
10832 */
10833 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
f3a9b694 10834
0ab5953b 10835 if (cur_el < new_el) {
9b37a28c
FR
10836 /*
10837 * Entry vector offset depends on whether the implemented EL
3d6f7617
PM
10838 * immediately lower than the target level is using AArch32 or AArch64
10839 */
10840 bool is_aa64;
cb092fbb 10841 uint64_t hcr;
3d6f7617
PM
10842
10843 switch (new_el) {
10844 case 3:
10845 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10846 break;
10847 case 2:
cb092fbb
RH
10848 hcr = arm_hcr_el2_eff(env);
10849 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10850 is_aa64 = (hcr & HCR_RW) != 0;
10851 break;
10852 }
10853 /* fall through */
3d6f7617
PM
10854 case 1:
10855 is_aa64 = is_a64(env);
10856 break;
10857 default:
10858 g_assert_not_reached();
10859 }
10860
10861 if (is_aa64) {
f3a9b694
PM
10862 addr += 0x400;
10863 } else {
10864 addr += 0x600;
10865 }
10866 } else if (pstate_read(env) & PSTATE_SP) {
10867 addr += 0x200;
10868 }
10869
f3a9b694
PM
10870 switch (cs->exception_index) {
10871 case EXCP_PREFETCH_ABORT:
10872 case EXCP_DATA_ABORT:
7ac61020
PM
10873 /*
10874 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10875 * to be taken to the SError vector entrypoint.
10876 */
10877 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10878 syndrome_is_sync_extabt(env->exception.syndrome)) {
10879 addr += 0x180;
10880 }
f3a9b694
PM
10881 env->cp15.far_el[new_el] = env->exception.vaddress;
10882 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10883 env->cp15.far_el[new_el]);
10884 /* fall through */
10885 case EXCP_BKPT:
10886 case EXCP_UDEF:
10887 case EXCP_SWI:
10888 case EXCP_HVC:
10889 case EXCP_HYP_TRAP:
10890 case EXCP_SMC:
a65dabf7
PM
10891 switch (syn_get_ec(env->exception.syndrome)) {
10892 case EC_ADVSIMDFPACCESSTRAP:
4be42f40
PM
10893 /*
10894 * QEMU internal FP/SIMD syndromes from AArch32 include the
10895 * TA and coproc fields which are only exposed if the exception
10896 * is taken to AArch32 Hyp mode. Mask them out to get a valid
10897 * AArch64 format syndrome.
10898 */
10899 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
a65dabf7
PM
10900 break;
10901 case EC_CP14RTTRAP:
10902 case EC_CP15RTTRAP:
10903 case EC_CP14DTTRAP:
10904 /*
10905 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10906 * the raw register field from the insn; when taking this to
10907 * AArch64 we must convert it to the AArch64 view of the register
10908 * number. Notice that we read a 4-bit AArch32 register number and
10909 * write back a 5-bit AArch64 one.
10910 */
10911 rt = extract32(env->exception.syndrome, 5, 4);
10912 rt = aarch64_regnum(env, rt);
10913 env->exception.syndrome = deposit32(env->exception.syndrome,
10914 5, 5, rt);
10915 break;
10916 case EC_CP15RRTTRAP:
10917 case EC_CP14RRTTRAP:
10918 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10919 rt = extract32(env->exception.syndrome, 5, 4);
10920 rt = aarch64_regnum(env, rt);
10921 env->exception.syndrome = deposit32(env->exception.syndrome,
10922 5, 5, rt);
10923 rt = extract32(env->exception.syndrome, 10, 4);
10924 rt = aarch64_regnum(env, rt);
10925 env->exception.syndrome = deposit32(env->exception.syndrome,
10926 10, 5, rt);
10927 break;
4be42f40 10928 }
f3a9b694
PM
10929 env->cp15.esr_el[new_el] = env->exception.syndrome;
10930 break;
10931 case EXCP_IRQ:
10932 case EXCP_VIRQ:
10933 addr += 0x80;
10934 break;
10935 case EXCP_FIQ:
10936 case EXCP_VFIQ:
10937 addr += 0x100;
10938 break;
3c29632f
RH
10939 case EXCP_VSERR:
10940 addr += 0x180;
10941 /* Construct the SError syndrome from IDS and ISS fields. */
10942 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10943 env->cp15.esr_el[new_el] = env->exception.syndrome;
10944 break;
f3a9b694
PM
10945 default:
10946 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10947 }
10948
10949 if (is_a64(env)) {
4a2696c0 10950 old_mode = pstate_read(env);
f3a9b694
PM
10951 aarch64_save_sp(env, arm_current_el(env));
10952 env->elr_el[new_el] = env->pc;
10953 } else {
f944a854 10954 old_mode = cpsr_read_for_spsr_elx(env);
f3a9b694
PM
10955 env->elr_el[new_el] = env->regs[15];
10956
10957 aarch64_sync_32_to_64(env);
10958
10959 env->condexec_bits = 0;
10960 }
4a2696c0
RH
10961 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10962
f3a9b694
PM
10963 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10964 env->elr_el[new_el]);
10965
4a2696c0
RH
10966 if (cpu_isar_feature(aa64_pan, cpu)) {
10967 /* The value of PSTATE.PAN is normally preserved, except when ... */
10968 new_mode |= old_mode & PSTATE_PAN;
10969 switch (new_el) {
10970 case 2:
10971 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
10972 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10973 != (HCR_E2H | HCR_TGE)) {
10974 break;
10975 }
10976 /* fall through */
10977 case 1:
10978 /* ... the target is EL1 ... */
10979 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
10980 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10981 new_mode |= PSTATE_PAN;
10982 }
10983 break;
10984 }
10985 }
34669338
RH
10986 if (cpu_isar_feature(aa64_mte, cpu)) {
10987 new_mode |= PSTATE_TCO;
10988 }
4a2696c0 10989
f2f68a78
RC
10990 if (cpu_isar_feature(aa64_ssbs, cpu)) {
10991 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10992 new_mode |= PSTATE_SSBS;
10993 } else {
10994 new_mode &= ~PSTATE_SSBS;
10995 }
10996 }
10997
f3a9b694 10998 pstate_write(env, PSTATE_DAIF | new_mode);
53221552 10999 env->aarch64 = true;
f3a9b694 11000 aarch64_restore_sp(env, new_el);
a8a79c7a 11001 helper_rebuild_hflags_a64(env, new_el);
f3a9b694
PM
11002
11003 env->pc = addr;
11004
11005 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11006 new_el, env->pc, pstate_read(env));
966f758c
PM
11007}
11008
ed6e6ba9
AB
11009/*
11010 * Do semihosting call and set the appropriate return value. All the
11011 * permission and validity checks have been done at translate time.
11012 *
11013 * We only see semihosting exceptions in TCG only as they are not
11014 * trapped to the hypervisor in KVM.
11015 */
91f78c58 11016#ifdef CONFIG_TCG
a06e3a68 11017static void tcg_handle_semihosting(CPUState *cs)
ed6e6ba9 11018{
904c04de
PM
11019 ARMCPU *cpu = ARM_CPU(cs);
11020 CPUARMState *env = &cpu->env;
11021
11022 if (is_a64(env)) {
ed6e6ba9
AB
11023 qemu_log_mask(CPU_LOG_INT,
11024 "...handling as semihosting call 0x%" PRIx64 "\n",
11025 env->xregs[0]);
ed3a06b1 11026 do_common_semihosting(cs);
4ff5ef9e 11027 env->pc += 4;
904c04de 11028 } else {
904c04de
PM
11029 qemu_log_mask(CPU_LOG_INT,
11030 "...handling as semihosting call 0x%x\n",
11031 env->regs[0]);
ed3a06b1 11032 do_common_semihosting(cs);
4ff5ef9e 11033 env->regs[15] += env->thumb ? 2 : 4;
904c04de
PM
11034 }
11035}
ed6e6ba9 11036#endif
904c04de 11037
9b37a28c
FR
11038/*
11039 * Handle a CPU exception for A and R profile CPUs.
966f758c
PM
11040 * Do any appropriate logging, handle PSCI calls, and then hand off
11041 * to the AArch64-entry or AArch32-entry function depending on the
11042 * target exception level's register width.
853bfef4
CF
11043 *
11044 * Note: this is used for both TCG (as the do_interrupt tcg op),
11045 * and KVM to re-inject guest debug exceptions, and to
11046 * inject a Synchronous-External-Abort.
966f758c
PM
11047 */
11048void arm_cpu_do_interrupt(CPUState *cs)
11049{
11050 ARMCPU *cpu = ARM_CPU(cs);
11051 CPUARMState *env = &cpu->env;
11052 unsigned int new_el = env->exception.target_el;
11053
531c60a9 11054 assert(!arm_feature(env, ARM_FEATURE_M));
966f758c 11055
fc6177af 11056 arm_log_exception(cs);
966f758c
PM
11057 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11058 new_el);
11059 if (qemu_loglevel_mask(CPU_LOG_INT)
11060 && !excp_is_internal(cs->exception_index)) {
6568da45 11061 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
64b91e3f 11062 syn_get_ec(env->exception.syndrome),
966f758c
PM
11063 env->exception.syndrome);
11064 }
11065
11066 if (arm_is_psci_call(cpu, cs->exception_index)) {
11067 arm_handle_psci_call(cpu);
11068 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11069 return;
11070 }
11071
ed6e6ba9
AB
11072 /*
11073 * Semihosting semantics depend on the register width of the code
11074 * that caused the exception, not the target exception level, so
11075 * must be handled here.
966f758c 11076 */
ed6e6ba9
AB
11077#ifdef CONFIG_TCG
11078 if (cs->exception_index == EXCP_SEMIHOST) {
a06e3a68 11079 tcg_handle_semihosting(cs);
904c04de
PM
11080 return;
11081 }
ed6e6ba9 11082#endif
904c04de 11083
9b37a28c
FR
11084 /*
11085 * Hooks may change global state so BQL should be held, also the
b5c53d1b
AL
11086 * BQL needs to be held for any modification of
11087 * cs->interrupt_request.
11088 */
11089 g_assert(qemu_mutex_iothread_locked());
11090
11091 arm_call_pre_el_change_hook(cpu);
11092
904c04de
PM
11093 assert(!excp_is_internal(cs->exception_index));
11094 if (arm_el_is_aa64(env, new_el)) {
966f758c
PM
11095 arm_cpu_do_interrupt_aarch64(cs);
11096 } else {
11097 arm_cpu_do_interrupt_aarch32(cs);
11098 }
f3a9b694 11099
bd7d00fc
PM
11100 arm_call_el_change_hook(cpu);
11101
f3a9b694
PM
11102 if (!kvm_enabled()) {
11103 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11104 }
11105}
c47eaf9f 11106#endif /* !CONFIG_USER_ONLY */
0480f69a 11107
aaec1432
RH
11108uint64_t arm_sctlr(CPUARMState *env, int el)
11109{
11110 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11111 if (el == 0) {
11112 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
d902ae75 11113 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
aaec1432
RH
11114 }
11115 return env->cp15.sctlr_el[el];
11116}
c47eaf9f 11117
8ae08860 11118int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
b830a5ee
RH
11119{
11120 if (regime_has_2_ranges(mmu_idx)) {
11121 return extract64(tcr, 37, 2);
edc05dd4 11122 } else if (regime_is_stage2(mmu_idx)) {
b830a5ee
RH
11123 return 0; /* VTCR_EL2 */
11124 } else {
3e270f67
RH
11125 /* Replicate the single TBI bit so we always have 2 bits. */
11126 return extract32(tcr, 20, 1) * 3;
b830a5ee
RH
11127 }
11128}
11129
8ae08860 11130int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
b830a5ee
RH
11131{
11132 if (regime_has_2_ranges(mmu_idx)) {
11133 return extract64(tcr, 51, 2);
edc05dd4 11134 } else if (regime_is_stage2(mmu_idx)) {
b830a5ee
RH
11135 return 0; /* VTCR_EL2 */
11136 } else {
3e270f67
RH
11137 /* Replicate the single TBID bit so we always have 2 bits. */
11138 return extract32(tcr, 29, 1) * 3;
b830a5ee
RH
11139 }
11140}
11141
81ae05fa
RH
11142static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11143{
11144 if (regime_has_2_ranges(mmu_idx)) {
11145 return extract64(tcr, 57, 2);
11146 } else {
11147 /* Replicate the single TCMA bit so we always have 2 bits. */
11148 return extract32(tcr, 30, 1) * 3;
11149 }
11150}
11151
104f703d
PM
11152static ARMGranuleSize tg0_to_gran_size(int tg)
11153{
11154 switch (tg) {
11155 case 0:
11156 return Gran4K;
11157 case 1:
11158 return Gran64K;
11159 case 2:
11160 return Gran16K;
11161 default:
11162 return GranInvalid;
11163 }
11164}
11165
11166static ARMGranuleSize tg1_to_gran_size(int tg)
11167{
11168 switch (tg) {
11169 case 1:
11170 return Gran16K;
11171 case 2:
11172 return Gran4K;
11173 case 3:
11174 return Gran64K;
11175 default:
11176 return GranInvalid;
11177 }
11178}
11179
11180static inline bool have4k(ARMCPU *cpu, bool stage2)
11181{
11182 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11183 : cpu_isar_feature(aa64_tgran4, cpu);
11184}
11185
11186static inline bool have16k(ARMCPU *cpu, bool stage2)
11187{
11188 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11189 : cpu_isar_feature(aa64_tgran16, cpu);
11190}
11191
11192static inline bool have64k(ARMCPU *cpu, bool stage2)
11193{
11194 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11195 : cpu_isar_feature(aa64_tgran64, cpu);
11196}
11197
11198static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11199 bool stage2)
11200{
11201 switch (gran) {
11202 case Gran4K:
11203 if (have4k(cpu, stage2)) {
11204 return gran;
11205 }
11206 break;
11207 case Gran16K:
11208 if (have16k(cpu, stage2)) {
11209 return gran;
11210 }
11211 break;
11212 case Gran64K:
11213 if (have64k(cpu, stage2)) {
11214 return gran;
11215 }
11216 break;
11217 case GranInvalid:
11218 break;
11219 }
11220 /*
11221 * If the guest selects a granule size that isn't implemented,
11222 * the architecture requires that we behave as if it selected one
11223 * that is (with an IMPDEF choice of which one to pick). We choose
11224 * to implement the smallest supported granule size.
11225 */
11226 if (have4k(cpu, stage2)) {
11227 return Gran4K;
11228 }
11229 if (have16k(cpu, stage2)) {
11230 return Gran16K;
11231 }
11232 assert(have64k(cpu, stage2));
11233 return Gran64K;
11234}
11235
b830a5ee
RH
11236ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11237 ARMMMUIdx mmu_idx, bool data)
ba97be9f 11238{
c1547bba 11239 uint64_t tcr = regime_tcr(env, mmu_idx);
89739227 11240 bool epd, hpd, tsz_oob, ds, ha, hd;
ef56c242 11241 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
104f703d 11242 ARMGranuleSize gran;
ef56c242 11243 ARMCPU *cpu = env_archcpu(env);
edc05dd4 11244 bool stage2 = regime_is_stage2(mmu_idx);
ba97be9f 11245
339370b9 11246 if (!regime_has_2_ranges(mmu_idx)) {
71d18164 11247 select = 0;
ba97be9f 11248 tsz = extract32(tcr, 0, 6);
104f703d
PM
11249 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11250 if (stage2) {
ba97be9f 11251 /* VTCR_EL2 */
b830a5ee 11252 hpd = false;
ba97be9f 11253 } else {
ba97be9f
RH
11254 hpd = extract32(tcr, 24, 1);
11255 }
11256 epd = false;
ef56c242 11257 sh = extract32(tcr, 12, 2);
f4ecc015 11258 ps = extract32(tcr, 16, 3);
89739227
RH
11259 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11260 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
ef56c242 11261 ds = extract64(tcr, 32, 1);
ba97be9f 11262 } else {
e4c93e44
PM
11263 bool e0pd;
11264
71d18164
RH
11265 /*
11266 * Bit 55 is always between the two regions, and is canonical for
11267 * determining if address tagging is enabled.
11268 */
11269 select = extract64(va, 55, 1);
11270 if (!select) {
11271 tsz = extract32(tcr, 0, 6);
104f703d 11272 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
71d18164 11273 epd = extract32(tcr, 7, 1);
ef56c242 11274 sh = extract32(tcr, 12, 2);
71d18164 11275 hpd = extract64(tcr, 41, 1);
e4c93e44 11276 e0pd = extract64(tcr, 55, 1);
71d18164 11277 } else {
71d18164 11278 tsz = extract32(tcr, 16, 6);
104f703d 11279 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
71d18164 11280 epd = extract32(tcr, 23, 1);
ef56c242 11281 sh = extract32(tcr, 28, 2);
71d18164 11282 hpd = extract64(tcr, 42, 1);
e4c93e44 11283 e0pd = extract64(tcr, 56, 1);
71d18164 11284 }
f4ecc015 11285 ps = extract64(tcr, 32, 3);
89739227
RH
11286 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11287 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
ef56c242 11288 ds = extract64(tcr, 59, 1);
e4c93e44
PM
11289
11290 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11291 regime_is_user(env, mmu_idx)) {
11292 epd = true;
11293 }
ba97be9f 11294 }
c36c65ea 11295
104f703d 11296 gran = sanitize_gran_size(cpu, gran, stage2);
104f703d 11297
ef56c242 11298 if (cpu_isar_feature(aa64_st, cpu)) {
3c003f70 11299 max_tsz = 48 - (gran == Gran64K);
c36c65ea
RDC
11300 } else {
11301 max_tsz = 39;
11302 }
0af312b6 11303
ef56c242
RH
11304 /*
11305 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11306 * adjust the effective value of DS, as documented.
11307 */
0af312b6 11308 min_tsz = 16;
3c003f70 11309 if (gran == Gran64K) {
ef56c242
RH
11310 if (cpu_isar_feature(aa64_lva, cpu)) {
11311 min_tsz = 12;
11312 }
11313 ds = false;
11314 } else if (ds) {
edc05dd4 11315 if (regime_is_stage2(mmu_idx)) {
3c003f70 11316 if (gran == Gran16K) {
ef56c242
RH
11317 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11318 } else {
11319 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11320 }
edc05dd4 11321 } else {
3c003f70 11322 if (gran == Gran16K) {
ef56c242
RH
11323 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11324 } else {
11325 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11326 }
ef56c242
RH
11327 }
11328 if (ds) {
0af312b6
RH
11329 min_tsz = 12;
11330 }
11331 }
c36c65ea 11332
ebf93ce7
RH
11333 if (tsz > max_tsz) {
11334 tsz = max_tsz;
11335 tsz_oob = true;
11336 } else if (tsz < min_tsz) {
11337 tsz = min_tsz;
11338 tsz_oob = true;
11339 } else {
11340 tsz_oob = false;
11341 }
ba97be9f 11342
b830a5ee
RH
11343 /* Present TBI as a composite with TBID. */
11344 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11345 if (!data) {
11346 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11347 }
11348 tbi = (tbi >> select) & 1;
11349
ba97be9f
RH
11350 return (ARMVAParameters) {
11351 .tsz = tsz,
f4ecc015 11352 .ps = ps,
ef56c242 11353 .sh = sh,
ba97be9f
RH
11354 .select = select,
11355 .tbi = tbi,
11356 .epd = epd,
11357 .hpd = hpd,
ebf93ce7 11358 .tsz_oob = tsz_oob,
ef56c242 11359 .ds = ds,
89739227
RH
11360 .ha = ha,
11361 .hd = ha && hd,
3c003f70 11362 .gran = gran,
ba97be9f
RH
11363 };
11364}
11365
9b37a28c
FR
11366/*
11367 * Note that signed overflow is undefined in C. The following routines are
11368 * careful to use unsigned types where modulo arithmetic is required.
11369 * Failure to do so _will_ break on newer gcc.
11370 */
6ddbc6e4
PB
11371
11372/* Signed saturating arithmetic. */
11373
1654b2d6 11374/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
11375static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11376{
11377 uint16_t res;
11378
11379 res = a + b;
11380 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
f927dbda 11381 if (a & 0x8000) {
6ddbc6e4 11382 res = 0x8000;
f927dbda 11383 } else {
6ddbc6e4 11384 res = 0x7fff;
f927dbda 11385 }
6ddbc6e4
PB
11386 }
11387 return res;
11388}
11389
1654b2d6 11390/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
11391static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11392{
11393 uint8_t res;
11394
11395 res = a + b;
11396 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
f927dbda 11397 if (a & 0x80) {
6ddbc6e4 11398 res = 0x80;
f927dbda 11399 } else {
6ddbc6e4 11400 res = 0x7f;
f927dbda 11401 }
6ddbc6e4
PB
11402 }
11403 return res;
11404}
11405
1654b2d6 11406/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
11407static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11408{
11409 uint16_t res;
11410
11411 res = a - b;
11412 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
f927dbda 11413 if (a & 0x8000) {
6ddbc6e4 11414 res = 0x8000;
f927dbda 11415 } else {
6ddbc6e4 11416 res = 0x7fff;
f927dbda 11417 }
6ddbc6e4
PB
11418 }
11419 return res;
11420}
11421
1654b2d6 11422/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
11423static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11424{
11425 uint8_t res;
11426
11427 res = a - b;
11428 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
f927dbda 11429 if (a & 0x80) {
6ddbc6e4 11430 res = 0x80;
f927dbda 11431 } else {
6ddbc6e4 11432 res = 0x7f;
f927dbda 11433 }
6ddbc6e4
PB
11434 }
11435 return res;
11436}
11437
11438#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11439#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11440#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11441#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11442#define PFX q
11443
11444#include "op_addsub.h"
11445
11446/* Unsigned saturating arithmetic. */
460a09c1 11447static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
11448{
11449 uint16_t res;
11450 res = a + b;
f927dbda 11451 if (res < a) {
6ddbc6e4 11452 res = 0xffff;
f927dbda 11453 }
6ddbc6e4
PB
11454 return res;
11455}
11456
460a09c1 11457static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 11458{
f927dbda 11459 if (a > b) {
6ddbc6e4 11460 return a - b;
f927dbda 11461 } else {
6ddbc6e4 11462 return 0;
f927dbda 11463 }
6ddbc6e4
PB
11464}
11465
11466static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11467{
11468 uint8_t res;
11469 res = a + b;
f927dbda 11470 if (res < a) {
6ddbc6e4 11471 res = 0xff;
f927dbda 11472 }
6ddbc6e4
PB
11473 return res;
11474}
11475
11476static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11477{
f927dbda 11478 if (a > b) {
6ddbc6e4 11479 return a - b;
f927dbda 11480 } else {
6ddbc6e4 11481 return 0;
f927dbda 11482 }
6ddbc6e4
PB
11483}
11484
11485#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11486#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11487#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11488#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11489#define PFX uq
11490
11491#include "op_addsub.h"
11492
11493/* Signed modulo arithmetic. */
11494#define SARITH16(a, b, n, op) do { \
11495 int32_t sum; \
db6e2e65 11496 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
11497 RESULT(sum, n, 16); \
11498 if (sum >= 0) \
11499 ge |= 3 << (n * 2); \
04215eb1 11500 } while (0)
6ddbc6e4
PB
11501
11502#define SARITH8(a, b, n, op) do { \
11503 int32_t sum; \
db6e2e65 11504 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
11505 RESULT(sum, n, 8); \
11506 if (sum >= 0) \
11507 ge |= 1 << n; \
04215eb1 11508 } while (0)
6ddbc6e4
PB
11509
11510
11511#define ADD16(a, b, n) SARITH16(a, b, n, +)
11512#define SUB16(a, b, n) SARITH16(a, b, n, -)
11513#define ADD8(a, b, n) SARITH8(a, b, n, +)
11514#define SUB8(a, b, n) SARITH8(a, b, n, -)
11515#define PFX s
11516#define ARITH_GE
11517
11518#include "op_addsub.h"
11519
11520/* Unsigned modulo arithmetic. */
11521#define ADD16(a, b, n) do { \
11522 uint32_t sum; \
11523 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11524 RESULT(sum, n, 16); \
a87aa10b 11525 if ((sum >> 16) == 1) \
6ddbc6e4 11526 ge |= 3 << (n * 2); \
04215eb1 11527 } while (0)
6ddbc6e4
PB
11528
11529#define ADD8(a, b, n) do { \
11530 uint32_t sum; \
11531 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11532 RESULT(sum, n, 8); \
a87aa10b
AZ
11533 if ((sum >> 8) == 1) \
11534 ge |= 1 << n; \
04215eb1 11535 } while (0)
6ddbc6e4
PB
11536
11537#define SUB16(a, b, n) do { \
11538 uint32_t sum; \
11539 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11540 RESULT(sum, n, 16); \
11541 if ((sum >> 16) == 0) \
11542 ge |= 3 << (n * 2); \
04215eb1 11543 } while (0)
6ddbc6e4
PB
11544
11545#define SUB8(a, b, n) do { \
11546 uint32_t sum; \
11547 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11548 RESULT(sum, n, 8); \
11549 if ((sum >> 8) == 0) \
a87aa10b 11550 ge |= 1 << n; \
04215eb1 11551 } while (0)
6ddbc6e4
PB
11552
11553#define PFX u
11554#define ARITH_GE
11555
11556#include "op_addsub.h"
11557
11558/* Halved signed arithmetic. */
11559#define ADD16(a, b, n) \
11560 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11561#define SUB16(a, b, n) \
11562 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11563#define ADD8(a, b, n) \
11564 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11565#define SUB8(a, b, n) \
11566 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11567#define PFX sh
11568
11569#include "op_addsub.h"
11570
11571/* Halved unsigned arithmetic. */
11572#define ADD16(a, b, n) \
11573 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11574#define SUB16(a, b, n) \
11575 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11576#define ADD8(a, b, n) \
11577 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11578#define SUB8(a, b, n) \
11579 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11580#define PFX uh
11581
11582#include "op_addsub.h"
11583
11584static inline uint8_t do_usad(uint8_t a, uint8_t b)
11585{
f927dbda 11586 if (a > b) {
6ddbc6e4 11587 return a - b;
f927dbda 11588 } else {
6ddbc6e4 11589 return b - a;
f927dbda 11590 }
6ddbc6e4
PB
11591}
11592
11593/* Unsigned sum of absolute byte differences. */
11594uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11595{
11596 uint32_t sum;
11597 sum = do_usad(a, b);
11598 sum += do_usad(a >> 8, b >> 8);
bdc3b6f5 11599 sum += do_usad(a >> 16, b >> 16);
6ddbc6e4
PB
11600 sum += do_usad(a >> 24, b >> 24);
11601 return sum;
11602}
11603
11604/* For ARMv6 SEL instruction. */
11605uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11606{
11607 uint32_t mask;
11608
11609 mask = 0;
f927dbda 11610 if (flags & 1) {
6ddbc6e4 11611 mask |= 0xff;
f927dbda
FR
11612 }
11613 if (flags & 2) {
6ddbc6e4 11614 mask |= 0xff00;
f927dbda
FR
11615 }
11616 if (flags & 4) {
6ddbc6e4 11617 mask |= 0xff0000;
f927dbda
FR
11618 }
11619 if (flags & 8) {
6ddbc6e4 11620 mask |= 0xff000000;
f927dbda 11621 }
6ddbc6e4
PB
11622 return (a & mask) | (b & ~mask);
11623}
11624
9b37a28c
FR
11625/*
11626 * CRC helpers.
aa633469
PM
11627 * The upper bytes of val (above the number specified by 'bytes') must have
11628 * been zeroed out by the caller.
11629 */
eb0ecd5a
WN
11630uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11631{
11632 uint8_t buf[4];
11633
aa633469 11634 stl_le_p(buf, val);
eb0ecd5a
WN
11635
11636 /* zlib crc32 converts the accumulator and output to one's complement. */
11637 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11638}
11639
11640uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11641{
11642 uint8_t buf[4];
11643
aa633469 11644 stl_le_p(buf, val);
eb0ecd5a
WN
11645
11646 /* Linux crc32c converts the output to one's complement. */
11647 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11648}
a9e01311 11649
9b37a28c
FR
11650/*
11651 * Return the exception level to which FP-disabled exceptions should
a9e01311
RH
11652 * be taken, or 0 if FP is enabled.
11653 */
ced31551 11654int fp_exception_el(CPUARMState *env, int cur_el)
a9e01311 11655{
55faa212 11656#ifndef CONFIG_USER_ONLY
d5a6fa2d
RH
11657 uint64_t hcr_el2;
11658
9b37a28c
FR
11659 /*
11660 * CPACR and the CPTR registers don't exist before v6, so FP is
a9e01311
RH
11661 * always accessible
11662 */
11663 if (!arm_feature(env, ARM_FEATURE_V6)) {
11664 return 0;
11665 }
11666
d87513c0
PM
11667 if (arm_feature(env, ARM_FEATURE_M)) {
11668 /* CPACR can cause a NOCP UsageFault taken to current security state */
11669 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11670 return 1;
11671 }
11672
11673 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11674 if (!extract32(env->v7m.nsacr, 10, 1)) {
11675 /* FP insns cause a NOCP UsageFault taken to Secure */
11676 return 3;
11677 }
11678 }
11679
11680 return 0;
11681 }
11682
d5a6fa2d
RH
11683 hcr_el2 = arm_hcr_el2_eff(env);
11684
9b37a28c
FR
11685 /*
11686 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
a9e01311
RH
11687 * 0, 2 : trap EL0 and EL1/PL1 accesses
11688 * 1 : trap only EL0 accesses
11689 * 3 : trap no accesses
c2ddb7cf 11690 * This register is ignored if E2H+TGE are both set.
a9e01311 11691 */
d5a6fa2d 11692 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
fab8ad39 11693 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
c2ddb7cf
RH
11694
11695 switch (fpen) {
02e1de14
RH
11696 case 1:
11697 if (cur_el != 0) {
11698 break;
11699 }
11700 /* fall through */
c2ddb7cf
RH
11701 case 0:
11702 case 2:
02e1de14
RH
11703 /* Trap from Secure PL0 or PL1 to Secure PL1. */
11704 if (!arm_el_is_aa64(env, 3)
11705 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
a9e01311
RH
11706 return 3;
11707 }
02e1de14 11708 if (cur_el <= 1) {
c2ddb7cf
RH
11709 return 1;
11710 }
11711 break;
a9e01311 11712 }
a9e01311
RH
11713 }
11714
fc1120a7
PM
11715 /*
11716 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11717 * to control non-secure access to the FPU. It doesn't have any
11718 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11719 */
11720 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11721 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11722 if (!extract32(env->cp15.nsacr, 10, 1)) {
11723 /* FP insns act as UNDEF */
11724 return cur_el == 2 ? 2 : 1;
11725 }
11726 }
11727
d5a6fa2d
RH
11728 /*
11729 * CPTR_EL2 is present in v7VE or v8, and changes format
11730 * with HCR_EL2.E2H (regardless of TGE).
a9e01311 11731 */
d5a6fa2d
RH
11732 if (cur_el <= 2) {
11733 if (hcr_el2 & HCR_E2H) {
fab8ad39 11734 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
d5a6fa2d
RH
11735 case 1:
11736 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11737 break;
11738 }
11739 /* fall through */
11740 case 0:
11741 case 2:
11742 return 2;
11743 }
11744 } else if (arm_is_el2_enabled(env)) {
fab8ad39 11745 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
d5a6fa2d
RH
11746 return 2;
11747 }
11748 }
a9e01311
RH
11749 }
11750
11751 /* CPTR_EL3 : present in v8 */
fab8ad39 11752 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
a9e01311
RH
11753 /* Trap all FP ops to EL3 */
11754 return 3;
11755 }
55faa212 11756#endif
a9e01311
RH
11757 return 0;
11758}
11759
b9f6033c
RH
11760/* Return the exception level we're running at if this is our mmu_idx */
11761int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11762{
11763 if (mmu_idx & ARM_MMU_IDX_M) {
11764 return mmu_idx & ARM_MMU_IDX_M_PRIV;
11765 }
11766
11767 switch (mmu_idx) {
11768 case ARMMMUIdx_E10_0:
11769 case ARMMMUIdx_E20_0:
b9f6033c
RH
11770 return 0;
11771 case ARMMMUIdx_E10_1:
452ef8cb 11772 case ARMMMUIdx_E10_1_PAN:
b9f6033c
RH
11773 return 1;
11774 case ARMMMUIdx_E2:
11775 case ARMMMUIdx_E20_2:
452ef8cb 11776 case ARMMMUIdx_E20_2_PAN:
b9f6033c 11777 return 2;
d902ae75 11778 case ARMMMUIdx_E3:
b9f6033c
RH
11779 return 3;
11780 default:
11781 g_assert_not_reached();
11782 }
11783}
11784
7aab5a8c 11785#ifndef CONFIG_TCG
65e4655c
RH
11786ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11787{
7aab5a8c 11788 g_assert_not_reached();
65e4655c 11789}
7aab5a8c 11790#endif
65e4655c 11791
6f2d9d74
TK
11792static bool arm_pan_enabled(CPUARMState *env)
11793{
11794 if (is_a64(env)) {
11795 return env->pstate & PSTATE_PAN;
11796 } else {
11797 return env->uncached_cpsr & CPSR_PAN;
11798 }
11799}
11800
164690b2 11801ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
65e4655c 11802{
b6ad6062
RDC
11803 ARMMMUIdx idx;
11804 uint64_t hcr;
11805
65e4655c 11806 if (arm_feature(env, ARM_FEATURE_M)) {
50494a27 11807 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
65e4655c
RH
11808 }
11809
6003d980 11810 /* See ARM pseudo-function ELIsInHost. */
b9f6033c
RH
11811 switch (el) {
11812 case 0:
b6ad6062
RDC
11813 hcr = arm_hcr_el2_eff(env);
11814 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
11815 idx = ARMMMUIdx_E20_0;
11816 } else {
11817 idx = ARMMMUIdx_E10_0;
6003d980 11818 }
b6ad6062 11819 break;
b9f6033c 11820 case 1:
6f2d9d74 11821 if (arm_pan_enabled(env)) {
b6ad6062
RDC
11822 idx = ARMMMUIdx_E10_1_PAN;
11823 } else {
11824 idx = ARMMMUIdx_E10_1;
66412260 11825 }
b6ad6062 11826 break;
b9f6033c 11827 case 2:
6003d980 11828 /* Note that TGE does not apply at EL2. */
b6ad6062 11829 if (arm_hcr_el2_eff(env) & HCR_E2H) {
6f2d9d74 11830 if (arm_pan_enabled(env)) {
b6ad6062
RDC
11831 idx = ARMMMUIdx_E20_2_PAN;
11832 } else {
11833 idx = ARMMMUIdx_E20_2;
66412260 11834 }
b6ad6062
RDC
11835 } else {
11836 idx = ARMMMUIdx_E2;
6003d980 11837 }
b6ad6062 11838 break;
b9f6033c 11839 case 3:
d902ae75 11840 return ARMMMUIdx_E3;
b9f6033c
RH
11841 default:
11842 g_assert_not_reached();
65e4655c 11843 }
b6ad6062 11844
b6ad6062 11845 return idx;
50494a27
RH
11846}
11847
164690b2
RH
11848ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11849{
11850 return arm_mmu_idx_el(env, arm_current_el(env));
11851}
11852
34a8a07e
PM
11853static inline bool fgt_svc(CPUARMState *env, int el)
11854{
11855 /*
11856 * Assuming fine-grained-traps are active, return true if we
11857 * should be trapping on SVC instructions. Only AArch64 can
11858 * trap on an SVC at EL1, but we don't need to special-case this
11859 * because if this is AArch32 EL1 then arm_fgt_active() is false.
11860 * We also know el is 0 or 1.
11861 */
11862 return el == 0 ?
11863 FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL0) :
11864 FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL1);
11865}
11866
3902bfc6
RH
11867static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
11868 ARMMMUIdx mmu_idx,
11869 CPUARMTBFlags flags)
fdd1b228 11870{
a729a46b
RH
11871 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
11872 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
fdd1b228 11873
fdd1b228 11874 if (arm_singlestep_active(env)) {
a729a46b 11875 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
fdd1b228 11876 }
361c33f6 11877
fdd1b228
RH
11878 return flags;
11879}
11880
3902bfc6
RH
11881static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
11882 ARMMMUIdx mmu_idx,
11883 CPUARMTBFlags flags)
43eccfb6 11884{
8061a649
RH
11885 bool sctlr_b = arm_sctlr_b(env);
11886
11887 if (sctlr_b) {
a729a46b 11888 DP_TBFLAG_A32(flags, SCTLR__B, 1);
8061a649
RH
11889 }
11890 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
a729a46b 11891 DP_TBFLAG_ANY(flags, BE_DATA, 1);
8061a649 11892 }
a729a46b 11893 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
43eccfb6
RH
11894
11895 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11896}
11897
3902bfc6
RH
11898static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
11899 ARMMMUIdx mmu_idx)
6e33ced5 11900{
3902bfc6 11901 CPUARMTBFlags flags = {};
4479ec30
RH
11902 uint32_t ccr = env->v7m.ccr[env->v7m.secure];
11903
11904 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
11905 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
11906 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
11907 }
6e33ced5
RH
11908
11909 if (arm_v7m_is_handler_mode(env)) {
a729a46b 11910 DP_TBFLAG_M32(flags, HANDLER, 1);
6e33ced5
RH
11911 }
11912
11913 /*
11914 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
11915 * is suppressing them because the requested execution priority
11916 * is less than 0.
11917 */
11918 if (arm_feature(env, ARM_FEATURE_V8) &&
11919 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
4479ec30 11920 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
a729a46b 11921 DP_TBFLAG_M32(flags, STACKCHECK, 1);
6e33ced5
RH
11922 }
11923
a393dee0
RH
11924 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) {
11925 DP_TBFLAG_M32(flags, SECURE, 1);
11926 }
11927
6e33ced5
RH
11928 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11929}
11930
3902bfc6
RH
11931static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
11932 ARMMMUIdx mmu_idx)
c747224c 11933{
8480e933 11934 CPUARMTBFlags flags = {};
4479ec30
RH
11935 int el = arm_current_el(env);
11936
11937 if (arm_sctlr(env, el) & SCTLR_A) {
11938 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
11939 }
0a54d68e
RH
11940
11941 if (arm_el_is_aa64(env, 1)) {
a729a46b 11942 DP_TBFLAG_A32(flags, VFPEN, 1);
0a54d68e 11943 }
5bb0a20b 11944
034bb45a 11945 if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) &&
5bb0a20b 11946 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
a729a46b 11947 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
5bb0a20b
MZ
11948 }
11949
361c33f6
PM
11950 if (arm_fgt_active(env, el)) {
11951 DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
34a8a07e
PM
11952 if (fgt_svc(env, el)) {
11953 DP_TBFLAG_ANY(flags, FGT_SVC, 1);
11954 }
361c33f6
PM
11955 }
11956
520d1621
PM
11957 if (env->uncached_cpsr & CPSR_IL) {
11958 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
11959 }
11960
75fe8356
RH
11961 /*
11962 * The SME exception we are testing for is raised via
11963 * AArch64.CheckFPAdvSIMDEnabled(), as called from
11964 * AArch32.CheckAdvSIMDOrFPEnabled().
11965 */
11966 if (el == 0
11967 && FIELD_EX64(env->svcr, SVCR, SM)
11968 && (!arm_is_el2_enabled(env)
11969 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
11970 && arm_el_is_aa64(env, 1)
11971 && !sme_fa64(env, el)) {
11972 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
11973 }
11974
83f4baef 11975 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
c747224c
RH
11976}
11977
3902bfc6
RH
11978static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
11979 ARMMMUIdx mmu_idx)
a9e01311 11980{
8480e933 11981 CPUARMTBFlags flags = {};
d4d7503a 11982 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
c1547bba 11983 uint64_t tcr = regime_tcr(env, mmu_idx);
d4d7503a
RH
11984 uint64_t sctlr;
11985 int tbii, tbid;
b9adaa70 11986
a729a46b 11987 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
cd208a1c 11988
339370b9 11989 /* Get control bits for tagged addresses. */
b830a5ee
RH
11990 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
11991 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
5d8634f5 11992
a729a46b
RH
11993 DP_TBFLAG_A64(flags, TBII, tbii);
11994 DP_TBFLAG_A64(flags, TBID, tbid);
d4d7503a
RH
11995
11996 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
11997 int sve_el = sve_exception_el(env, el);
5d8634f5 11998
d4d7503a 11999 /*
397d922c
RH
12000 * If either FP or SVE are disabled, translator does not need len.
12001 * If SVE EL > FP EL, FP exception has precedence, and translator
12002 * does not need SVE EL. Save potential re-translations by forcing
12003 * the unneeded data to zero.
d4d7503a 12004 */
397d922c
RH
12005 if (fp_el != 0) {
12006 if (sve_el > fp_el) {
12007 sve_el = 0;
12008 }
12009 } else if (sve_el == 0) {
5ef3cc56 12010 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
5d8634f5 12011 }
a729a46b 12012 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
d4d7503a 12013 }
6b2ca83e 12014 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
5d7953ad 12015 int sme_el = sme_exception_el(env, el);
62151133 12016 bool sm = FIELD_EX64(env->svcr, SVCR, SM);
5d7953ad
RH
12017
12018 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
12019 if (sme_el == 0) {
12020 /* Similarly, do not compute SVL if SME is disabled. */
62151133
RH
12021 int svl = sve_vqm1_for_el_sm(env, el, true);
12022 DP_TBFLAG_A64(flags, SVL, svl);
12023 if (sm) {
12024 /* If SVE is disabled, we will not have set VL above. */
12025 DP_TBFLAG_A64(flags, VL, svl);
12026 }
5d7953ad 12027 }
62151133 12028 if (sm) {
a3637e88 12029 DP_TBFLAG_A64(flags, PSTATE_SM, 1);
75fe8356 12030 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
a3637e88
RH
12031 }
12032 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
6b2ca83e 12033 }
1db5e96c 12034
aaec1432 12035 sctlr = regime_sctlr(env, stage1);
1db5e96c 12036
4479ec30
RH
12037 if (sctlr & SCTLR_A) {
12038 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
12039 }
12040
8061a649 12041 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
a729a46b 12042 DP_TBFLAG_ANY(flags, BE_DATA, 1);
8061a649
RH
12043 }
12044
d4d7503a
RH
12045 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
12046 /*
12047 * In order to save space in flags, we record only whether
12048 * pauth is "inactive", meaning all insns are implemented as
12049 * a nop, or "active" when some action must be performed.
12050 * The decision of which action to take is left to a helper.
12051 */
12052 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
a729a46b 12053 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
1db5e96c 12054 }
d4d7503a 12055 }
0816ef1b 12056
d4d7503a
RH
12057 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12058 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
12059 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
a729a46b 12060 DP_TBFLAG_A64(flags, BT, 1);
0816ef1b 12061 }
d4d7503a 12062 }
08f1434a 12063
cc28fc30 12064 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
7a8014ab
RH
12065 if (!(env->pstate & PSTATE_UAO)) {
12066 switch (mmu_idx) {
12067 case ARMMMUIdx_E10_1:
12068 case ARMMMUIdx_E10_1_PAN:
7a8014ab 12069 /* TODO: ARMv8.3-NV */
a729a46b 12070 DP_TBFLAG_A64(flags, UNPRIV, 1);
7a8014ab
RH
12071 break;
12072 case ARMMMUIdx_E20_2:
12073 case ARMMMUIdx_E20_2_PAN:
7a8014ab
RH
12074 /*
12075 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
12076 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
12077 */
12078 if (env->cp15.hcr_el2 & HCR_TGE) {
a729a46b 12079 DP_TBFLAG_A64(flags, UNPRIV, 1);
7a8014ab
RH
12080 }
12081 break;
12082 default:
12083 break;
cc28fc30 12084 }
cc28fc30
RH
12085 }
12086
520d1621
PM
12087 if (env->pstate & PSTATE_IL) {
12088 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
12089 }
12090
361c33f6
PM
12091 if (arm_fgt_active(env, el)) {
12092 DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
5572f755
PM
12093 if (FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, ERET)) {
12094 DP_TBFLAG_A64(flags, FGT_ERET, 1);
12095 }
34a8a07e
PM
12096 if (fgt_svc(env, el)) {
12097 DP_TBFLAG_ANY(flags, FGT_SVC, 1);
12098 }
361c33f6
PM
12099 }
12100
81ae05fa
RH
12101 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
12102 /*
12103 * Set MTE_ACTIVE if any access may be Checked, and leave clear
12104 * if all accesses must be Unchecked:
12105 * 1) If no TBI, then there are no tags in the address to check,
12106 * 2) If Tag Check Override, then all accesses are Unchecked,
12107 * 3) If Tag Check Fail == 0, then Checked access have no effect,
12108 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
12109 */
12110 if (allocation_tag_access_enabled(env, el, sctlr)) {
a729a46b 12111 DP_TBFLAG_A64(flags, ATA, 1);
81ae05fa
RH
12112 if (tbid
12113 && !(env->pstate & PSTATE_TCO)
12114 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
a729a46b 12115 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
81ae05fa
RH
12116 }
12117 }
12118 /* And again for unprivileged accesses, if required. */
a729a46b 12119 if (EX_TBFLAG_A64(flags, UNPRIV)
81ae05fa
RH
12120 && tbid
12121 && !(env->pstate & PSTATE_TCO)
2d928adf 12122 && (sctlr & SCTLR_TCF0)
81ae05fa 12123 && allocation_tag_access_enabled(env, 0, sctlr)) {
a729a46b 12124 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
81ae05fa
RH
12125 }
12126 /* Cache TCMA as well as TBI. */
a729a46b 12127 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
81ae05fa
RH
12128 }
12129
d4d7503a
RH
12130 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12131}
12132
3902bfc6 12133static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
3d74e2e9
RH
12134{
12135 int el = arm_current_el(env);
12136 int fp_el = fp_exception_el(env, el);
164690b2 12137 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
3d74e2e9
RH
12138
12139 if (is_a64(env)) {
12140 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12141 } else if (arm_feature(env, ARM_FEATURE_M)) {
12142 return rebuild_hflags_m32(env, fp_el, mmu_idx);
12143 } else {
12144 return rebuild_hflags_a32(env, fp_el, mmu_idx);
12145 }
12146}
12147
12148void arm_rebuild_hflags(CPUARMState *env)
12149{
12150 env->hflags = rebuild_hflags_internal(env);
12151}
12152
19717e9b
PM
12153/*
12154 * If we have triggered a EL state change we can't rely on the
12155 * translator having passed it to us, we need to recompute.
12156 */
12157void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
12158{
12159 int el = arm_current_el(env);
12160 int fp_el = fp_exception_el(env, el);
12161 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
3902bfc6 12162
19717e9b
PM
12163 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12164}
12165
14f3c588
RH
12166void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
12167{
12168 int fp_el = fp_exception_el(env, el);
12169 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12170
12171 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12172}
12173
f80741d1
AB
12174/*
12175 * If we have triggered a EL state change we can't rely on the
563152e0 12176 * translator having passed it to us, we need to recompute.
f80741d1
AB
12177 */
12178void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
12179{
12180 int el = arm_current_el(env);
12181 int fp_el = fp_exception_el(env, el);
12182 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12183 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12184}
12185
14f3c588
RH
12186void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
12187{
12188 int fp_el = fp_exception_el(env, el);
12189 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12190
12191 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12192}
12193
12194void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
12195{
12196 int fp_el = fp_exception_el(env, el);
12197 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12198
12199 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12200}
12201
0ee8b24a
PMD
12202static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
12203{
12204#ifdef CONFIG_DEBUG_TCG
3902bfc6
RH
12205 CPUARMTBFlags c = env->hflags;
12206 CPUARMTBFlags r = rebuild_hflags_internal(env);
0ee8b24a 12207
a378206a
RH
12208 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
12209 fprintf(stderr, "TCG hflags mismatch "
12210 "(current:(0x%08x,0x" TARGET_FMT_lx ")"
12211 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
12212 c.flags, c.flags2, r.flags, r.flags2);
0ee8b24a
PMD
12213 abort();
12214 }
12215#endif
12216}
12217
26702213
PM
12218static bool mve_no_pred(CPUARMState *env)
12219{
12220 /*
12221 * Return true if there is definitely no predication of MVE
12222 * instructions by VPR or LTPSIZE. (Returning false even if there
12223 * isn't any predication is OK; generated code will just be
12224 * a little worse.)
12225 * If the CPU does not implement MVE then this TB flag is always 0.
12226 *
12227 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12228 * logic in gen_update_fp_context() needs to be updated to match.
12229 *
12230 * We do not include the effect of the ECI bits here -- they are
12231 * tracked in other TB flags. This simplifies the logic for
12232 * "when did we emit code that changes the MVE_NO_PRED TB flag
12233 * and thus need to end the TB?".
12234 */
12235 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12236 return false;
12237 }
12238 if (env->v7m.vpr) {
12239 return false;
12240 }
12241 if (env->v7m.ltpsize < 4) {
12242 return false;
12243 }
12244 return true;
12245}
12246
d4d7503a
RH
12247void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12248 target_ulong *cs_base, uint32_t *pflags)
12249{
3902bfc6 12250 CPUARMTBFlags flags;
d4d7503a 12251
0ee8b24a 12252 assert_hflags_rebuild_correctly(env);
3902bfc6 12253 flags = env->hflags;
3d74e2e9 12254
a729a46b 12255 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
d4d7503a 12256 *pc = env->pc;
d4d7503a 12257 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
a729a46b 12258 DP_TBFLAG_A64(flags, BTYPE, env->btype);
08f1434a 12259 }
a9e01311
RH
12260 } else {
12261 *pc = env->regs[15];
6e33ced5
RH
12262
12263 if (arm_feature(env, ARM_FEATURE_M)) {
9550d1bd
RH
12264 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12265 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12266 != env->v7m.secure) {
a729a46b 12267 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
9550d1bd
RH
12268 }
12269
12270 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12271 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12272 (env->v7m.secure &&
12273 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12274 /*
12275 * ASPEN is set, but FPCA/SFPA indicate that there is no
12276 * active FP context; we must create a new FP context before
12277 * executing any FP insn.
12278 */
a729a46b 12279 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
9550d1bd
RH
12280 }
12281
12282 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12283 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
a729a46b 12284 DP_TBFLAG_M32(flags, LSPACT, 1);
9550d1bd 12285 }
26702213
PM
12286
12287 if (mve_no_pred(env)) {
12288 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12289 }
6e33ced5 12290 } else {
bbad7c62
RH
12291 /*
12292 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12293 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12294 */
12295 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
a729a46b 12296 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
bbad7c62 12297 } else {
a729a46b
RH
12298 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12299 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
bbad7c62 12300 }
0a54d68e 12301 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
a729a46b 12302 DP_TBFLAG_A32(flags, VFPEN, 1);
0a54d68e 12303 }
6e33ced5
RH
12304 }
12305
a729a46b
RH
12306 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12307 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
d4d7503a 12308 }
a9e01311 12309
60e12c37
RH
12310 /*
12311 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
a9e01311
RH
12312 * states defined in the ARM ARM for software singlestep:
12313 * SS_ACTIVE PSTATE.SS State
12314 * 0 x Inactive (the TB flag for SS is always 0)
12315 * 1 0 Active-pending
12316 * 1 1 Active-not-pending
ae6eb1e9 12317 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
a9e01311 12318 */
a729a46b
RH
12319 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12320 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
a9e01311 12321 }
a9e01311 12322
3902bfc6 12323 *pflags = flags.flags;
a378206a 12324 *cs_base = flags.flags2;
a9e01311 12325}
0ab5953b
RH
12326
12327#ifdef TARGET_AARCH64
12328/*
12329 * The manual says that when SVE is enabled and VQ is widened the
12330 * implementation is allowed to zero the previously inaccessible
12331 * portion of the registers. The corollary to that is that when
12332 * SVE is enabled and VQ is narrowed we are also allowed to zero
12333 * the now inaccessible portion of the registers.
12334 *
12335 * The intent of this is that no predicate bit beyond VQ is ever set.
12336 * Which means that some operations on predicate registers themselves
12337 * may operate on full uint64_t or even unrolled across the maximum
12338 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12339 * may well be cheaper than conditionals to restrict the operation
12340 * to the relevant portion of a uint16_t[16].
12341 */
12342void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12343{
12344 int i, j;
12345 uint64_t pmask;
12346
12347 assert(vq >= 1 && vq <= ARM_MAX_VQ);
2fc0cc0e 12348 assert(vq <= env_archcpu(env)->sve_max_vq);
0ab5953b
RH
12349
12350 /* Zap the high bits of the zregs. */
12351 for (i = 0; i < 32; i++) {
12352 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12353 }
12354
12355 /* Zap the high bits of the pregs and ffr. */
12356 pmask = 0;
12357 if (vq & 3) {
12358 pmask = ~(-1ULL << (16 * (vq & 3)));
12359 }
12360 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12361 for (i = 0; i < 17; ++i) {
12362 env->vfp.pregs[i].p[j] &= pmask;
12363 }
12364 pmask = 0;
12365 }
12366}
12367
6a775fd6
RH
12368static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12369{
12370 int exc_el;
12371
12372 if (sm) {
12373 exc_el = sme_exception_el(env, el);
12374 } else {
12375 exc_el = sve_exception_el(env, el);
12376 }
12377 if (exc_el) {
12378 return 0; /* disabled */
12379 }
12380 return sve_vqm1_for_el_sm(env, el, sm);
12381}
12382
0ab5953b
RH
12383/*
12384 * Notice a change in SVE vector size when changing EL.
12385 */
9a05f7b6
RH
12386void aarch64_sve_change_el(CPUARMState *env, int old_el,
12387 int new_el, bool el0_a64)
0ab5953b 12388{
2fc0cc0e 12389 ARMCPU *cpu = env_archcpu(env);
0ab5953b 12390 int old_len, new_len;
6a775fd6 12391 bool old_a64, new_a64, sm;
0ab5953b
RH
12392
12393 /* Nothing to do if no SVE. */
cd208a1c 12394 if (!cpu_isar_feature(aa64_sve, cpu)) {
0ab5953b
RH
12395 return;
12396 }
12397
12398 /* Nothing to do if FP is disabled in either EL. */
12399 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12400 return;
12401 }
12402
04fbce76
RH
12403 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12404 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12405
12406 /*
12407 * Both AArch64.TakeException and AArch64.ExceptionReturn
12408 * invoke ResetSVEState when taking an exception from, or
12409 * returning to, AArch32 state when PSTATE.SM is enabled.
12410 */
6a775fd6
RH
12411 sm = FIELD_EX64(env->svcr, SVCR, SM);
12412 if (old_a64 != new_a64 && sm) {
04fbce76
RH
12413 arm_reset_sve_state(env);
12414 return;
12415 }
12416
0ab5953b
RH
12417 /*
12418 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12419 * at ELx, or not available because the EL is in AArch32 state, then
12420 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12421 * has an effective value of 0".
12422 *
12423 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12424 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12425 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12426 * we already have the correct register contents when encountering the
12427 * vq0->vq0 transition between EL0->EL1.
12428 */
6a775fd6
RH
12429 old_len = new_len = 0;
12430 if (old_a64) {
12431 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12432 }
12433 if (new_a64) {
12434 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12435 }
0ab5953b
RH
12436
12437 /* When changing vector length, clear inaccessible state. */
12438 if (new_len < old_len) {
12439 aarch64_sve_narrow_vq(env, new_len + 1);
12440 }
12441}
12442#endif