]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/helper.c
MAINTAINERS: update microbit ARM board files
[mirror_qemu.git] / target / arm / helper.c
CommitLineData
74c21bd0 1#include "qemu/osdep.h"
181962fd 2#include "target/arm/idau.h"
194cbc49 3#include "trace.h"
b5ff1b31 4#include "cpu.h"
ccd38087 5#include "internals.h"
022c62cb 6#include "exec/gdbstub.h"
2ef6175a 7#include "exec/helper-proto.h"
1de7afc9 8#include "qemu/host-utils.h"
78027bb6 9#include "sysemu/arch_init.h"
9c17d615 10#include "sysemu/sysemu.h"
1de7afc9 11#include "qemu/bitops.h"
eb0ecd5a 12#include "qemu/crc32c.h"
63c91552 13#include "exec/exec-all.h"
f08b6170 14#include "exec/cpu_ldst.h"
1d854765 15#include "arm_ldst.h"
eb0ecd5a 16#include <zlib.h> /* For crc32 */
cfe67cef 17#include "exec/semihost.h"
b2e23725 18#include "sysemu/cpus.h"
f3a9b694 19#include "sysemu/kvm.h"
24f91e81 20#include "fpu/softfloat.h"
9d2b5a58 21#include "qemu/range.h"
0b03bdfc 22
352c98e5
LV
23#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
24
4a501606 25#ifndef CONFIG_USER_ONLY
5b2d261d
AB
26/* Cacheability and shareability attributes for a memory access */
27typedef struct ARMCacheAttrs {
28 unsigned int attrs:8; /* as in the MAIR register encoding */
29 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
30} ARMCacheAttrs;
31
af51f566 32static bool get_phys_addr(CPUARMState *env, target_ulong address,
03ae85f8 33 MMUAccessType access_type, ARMMMUIdx mmu_idx,
af51f566 34 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
bc52bfeb 35 target_ulong *page_size,
5b2d261d 36 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
7c2cb42b 37
37785977 38static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
03ae85f8 39 MMUAccessType access_type, ARMMMUIdx mmu_idx,
37785977 40 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
da909b2c 41 target_ulong *page_size_ptr,
5b2d261d 42 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
37785977 43
35337cc3
PM
44/* Security attributes for an address, as returned by v8m_security_lookup. */
45typedef struct V8M_SAttributes {
72042435 46 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
35337cc3
PM
47 bool ns;
48 bool nsc;
49 uint8_t sregion;
50 bool srvalid;
51 uint8_t iregion;
52 bool irvalid;
53} V8M_SAttributes;
54
333e10c5
PM
55static void v8m_security_lookup(CPUARMState *env, uint32_t address,
56 MMUAccessType access_type, ARMMMUIdx mmu_idx,
57 V8M_SAttributes *sattrs);
4a501606
PM
58#endif
59
affdb64d
PM
60static void switch_mode(CPUARMState *env, int mode);
61
0ecb72a5 62static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
63{
64 int nregs;
65
66 /* VFP data registers are always little-endian. */
67 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
68 if (reg < nregs) {
9a2b5256 69 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
56aebc89
PB
70 return 8;
71 }
72 if (arm_feature(env, ARM_FEATURE_NEON)) {
73 /* Aliases for Q regs. */
74 nregs += 16;
75 if (reg < nregs) {
9a2b5256
RH
76 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
77 stq_le_p(buf, q[0]);
78 stq_le_p(buf + 8, q[1]);
56aebc89
PB
79 return 16;
80 }
81 }
82 switch (reg - nregs) {
83 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
84 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
85 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
86 }
87 return 0;
88}
89
0ecb72a5 90static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
91{
92 int nregs;
93
94 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
95 if (reg < nregs) {
9a2b5256 96 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
56aebc89
PB
97 return 8;
98 }
99 if (arm_feature(env, ARM_FEATURE_NEON)) {
100 nregs += 16;
101 if (reg < nregs) {
9a2b5256
RH
102 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
103 q[0] = ldq_le_p(buf);
104 q[1] = ldq_le_p(buf + 8);
56aebc89
PB
105 return 16;
106 }
107 }
108 switch (reg - nregs) {
109 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
110 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 111 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
112 }
113 return 0;
114}
115
6a669427
PM
116static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
117{
118 switch (reg) {
119 case 0 ... 31:
120 /* 128 bit FP register */
9a2b5256
RH
121 {
122 uint64_t *q = aa64_vfp_qreg(env, reg);
123 stq_le_p(buf, q[0]);
124 stq_le_p(buf + 8, q[1]);
125 return 16;
126 }
6a669427
PM
127 case 32:
128 /* FPSR */
129 stl_p(buf, vfp_get_fpsr(env));
130 return 4;
131 case 33:
132 /* FPCR */
133 stl_p(buf, vfp_get_fpcr(env));
134 return 4;
135 default:
136 return 0;
137 }
138}
139
140static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
141{
142 switch (reg) {
143 case 0 ... 31:
144 /* 128 bit FP register */
9a2b5256
RH
145 {
146 uint64_t *q = aa64_vfp_qreg(env, reg);
147 q[0] = ldq_le_p(buf);
148 q[1] = ldq_le_p(buf + 8);
149 return 16;
150 }
6a669427
PM
151 case 32:
152 /* FPSR */
153 vfp_set_fpsr(env, ldl_p(buf));
154 return 4;
155 case 33:
156 /* FPCR */
157 vfp_set_fpcr(env, ldl_p(buf));
158 return 4;
159 default:
160 return 0;
161 }
162}
163
c4241c7d 164static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
d4e6df63 165{
375421cc 166 assert(ri->fieldoffset);
67ed771d 167 if (cpreg_field_is_64bit(ri)) {
c4241c7d 168 return CPREG_FIELD64(env, ri);
22d9e1a9 169 } else {
c4241c7d 170 return CPREG_FIELD32(env, ri);
22d9e1a9 171 }
d4e6df63
PM
172}
173
c4241c7d
PM
174static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
175 uint64_t value)
d4e6df63 176{
375421cc 177 assert(ri->fieldoffset);
67ed771d 178 if (cpreg_field_is_64bit(ri)) {
22d9e1a9
PM
179 CPREG_FIELD64(env, ri) = value;
180 } else {
181 CPREG_FIELD32(env, ri) = value;
182 }
d4e6df63
PM
183}
184
11f136ee
FA
185static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
186{
187 return (char *)env + ri->fieldoffset;
188}
189
49a66191 190uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
721fae12 191{
59a1c327 192 /* Raw read of a coprocessor register (as needed for migration, etc). */
721fae12 193 if (ri->type & ARM_CP_CONST) {
59a1c327 194 return ri->resetvalue;
721fae12 195 } else if (ri->raw_readfn) {
59a1c327 196 return ri->raw_readfn(env, ri);
721fae12 197 } else if (ri->readfn) {
59a1c327 198 return ri->readfn(env, ri);
721fae12 199 } else {
59a1c327 200 return raw_read(env, ri);
721fae12 201 }
721fae12
PM
202}
203
59a1c327 204static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
7900e9f1 205 uint64_t v)
721fae12
PM
206{
207 /* Raw write of a coprocessor register (as needed for migration, etc).
721fae12
PM
208 * Note that constant registers are treated as write-ignored; the
209 * caller should check for success by whether a readback gives the
210 * value written.
211 */
212 if (ri->type & ARM_CP_CONST) {
59a1c327 213 return;
721fae12 214 } else if (ri->raw_writefn) {
c4241c7d 215 ri->raw_writefn(env, ri, v);
721fae12 216 } else if (ri->writefn) {
c4241c7d 217 ri->writefn(env, ri, v);
721fae12 218 } else {
afb2530f 219 raw_write(env, ri, v);
721fae12 220 }
721fae12
PM
221}
222
200bf5b7
AB
223static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
224{
225 ARMCPU *cpu = arm_env_get_cpu(env);
226 const ARMCPRegInfo *ri;
227 uint32_t key;
228
229 key = cpu->dyn_xml.cpregs_keys[reg];
230 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
231 if (ri) {
232 if (cpreg_field_is_64bit(ri)) {
233 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
234 } else {
235 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
236 }
237 }
238 return 0;
239}
240
241static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
242{
243 return 0;
244}
245
375421cc
PM
246static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
247{
248 /* Return true if the regdef would cause an assertion if you called
249 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
250 * program bug for it not to have the NO_RAW flag).
251 * NB that returning false here doesn't necessarily mean that calling
252 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
253 * read/write access functions which are safe for raw use" from "has
254 * read/write access functions which have side effects but has forgotten
255 * to provide raw access functions".
256 * The tests here line up with the conditions in read/write_raw_cp_reg()
257 * and assertions in raw_read()/raw_write().
258 */
259 if ((ri->type & ARM_CP_CONST) ||
260 ri->fieldoffset ||
261 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
262 return false;
263 }
264 return true;
265}
266
721fae12
PM
267bool write_cpustate_to_list(ARMCPU *cpu)
268{
269 /* Write the coprocessor state from cpu->env to the (index,value) list. */
270 int i;
271 bool ok = true;
272
273 for (i = 0; i < cpu->cpreg_array_len; i++) {
274 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
275 const ARMCPRegInfo *ri;
59a1c327 276
60322b39 277 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
278 if (!ri) {
279 ok = false;
280 continue;
281 }
7a0e58fa 282 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
283 continue;
284 }
59a1c327 285 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
721fae12
PM
286 }
287 return ok;
288}
289
290bool write_list_to_cpustate(ARMCPU *cpu)
291{
292 int i;
293 bool ok = true;
294
295 for (i = 0; i < cpu->cpreg_array_len; i++) {
296 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
297 uint64_t v = cpu->cpreg_values[i];
721fae12
PM
298 const ARMCPRegInfo *ri;
299
60322b39 300 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
301 if (!ri) {
302 ok = false;
303 continue;
304 }
7a0e58fa 305 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
306 continue;
307 }
308 /* Write value and confirm it reads back as written
309 * (to catch read-only registers and partially read-only
310 * registers where the incoming migration value doesn't match)
311 */
59a1c327
PM
312 write_raw_cp_reg(&cpu->env, ri, v);
313 if (read_raw_cp_reg(&cpu->env, ri) != v) {
721fae12
PM
314 ok = false;
315 }
316 }
317 return ok;
318}
319
320static void add_cpreg_to_list(gpointer key, gpointer opaque)
321{
322 ARMCPU *cpu = opaque;
323 uint64_t regidx;
324 const ARMCPRegInfo *ri;
325
326 regidx = *(uint32_t *)key;
60322b39 327 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 328
7a0e58fa 329 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
330 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
331 /* The value array need not be initialized at this point */
332 cpu->cpreg_array_len++;
333 }
334}
335
336static void count_cpreg(gpointer key, gpointer opaque)
337{
338 ARMCPU *cpu = opaque;
339 uint64_t regidx;
340 const ARMCPRegInfo *ri;
341
342 regidx = *(uint32_t *)key;
60322b39 343 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 344
7a0e58fa 345 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
346 cpu->cpreg_array_len++;
347 }
348}
349
350static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
351{
cbf239b7
AR
352 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
353 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
721fae12 354
cbf239b7
AR
355 if (aidx > bidx) {
356 return 1;
357 }
358 if (aidx < bidx) {
359 return -1;
360 }
361 return 0;
721fae12
PM
362}
363
364void init_cpreg_list(ARMCPU *cpu)
365{
366 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
367 * Note that we require cpreg_tuples[] to be sorted by key ID.
368 */
57b6d95e 369 GList *keys;
721fae12
PM
370 int arraylen;
371
57b6d95e 372 keys = g_hash_table_get_keys(cpu->cp_regs);
721fae12
PM
373 keys = g_list_sort(keys, cpreg_key_compare);
374
375 cpu->cpreg_array_len = 0;
376
377 g_list_foreach(keys, count_cpreg, cpu);
378
379 arraylen = cpu->cpreg_array_len;
380 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
381 cpu->cpreg_values = g_new(uint64_t, arraylen);
382 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
383 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
384 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
385 cpu->cpreg_array_len = 0;
386
387 g_list_foreach(keys, add_cpreg_to_list, cpu);
388
389 assert(cpu->cpreg_array_len == arraylen);
390
391 g_list_free(keys);
392}
393
68e9c2fe
EI
394/*
395 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
396 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
397 *
398 * access_el3_aa32ns: Used to check AArch32 register views.
399 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
400 */
401static CPAccessResult access_el3_aa32ns(CPUARMState *env,
3f208fd7
PM
402 const ARMCPRegInfo *ri,
403 bool isread)
68e9c2fe
EI
404{
405 bool secure = arm_is_secure_below_el3(env);
406
407 assert(!arm_el_is_aa64(env, 3));
408 if (secure) {
409 return CP_ACCESS_TRAP_UNCATEGORIZED;
410 }
411 return CP_ACCESS_OK;
412}
413
414static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
3f208fd7
PM
415 const ARMCPRegInfo *ri,
416 bool isread)
68e9c2fe
EI
417{
418 if (!arm_el_is_aa64(env, 3)) {
3f208fd7 419 return access_el3_aa32ns(env, ri, isread);
68e9c2fe
EI
420 }
421 return CP_ACCESS_OK;
422}
423
5513c3ab
PM
424/* Some secure-only AArch32 registers trap to EL3 if used from
425 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
426 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
427 * We assume that the .access field is set to PL1_RW.
428 */
429static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
3f208fd7
PM
430 const ARMCPRegInfo *ri,
431 bool isread)
5513c3ab
PM
432{
433 if (arm_current_el(env) == 3) {
434 return CP_ACCESS_OK;
435 }
436 if (arm_is_secure_below_el3(env)) {
437 return CP_ACCESS_TRAP_EL3;
438 }
439 /* This will be EL1 NS and EL2 NS, which just UNDEF */
440 return CP_ACCESS_TRAP_UNCATEGORIZED;
441}
442
187f678d
PM
443/* Check for traps to "powerdown debug" registers, which are controlled
444 * by MDCR.TDOSA
445 */
446static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
447 bool isread)
448{
449 int el = arm_current_el(env);
30ac6339
PM
450 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
451 (env->cp15.mdcr_el2 & MDCR_TDE) ||
7c208e0f 452 (arm_hcr_el2_eff(env) & HCR_TGE);
187f678d 453
30ac6339 454 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
187f678d
PM
455 return CP_ACCESS_TRAP_EL2;
456 }
457 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
458 return CP_ACCESS_TRAP_EL3;
459 }
460 return CP_ACCESS_OK;
461}
462
91b0a238
PM
463/* Check for traps to "debug ROM" registers, which are controlled
464 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
465 */
466static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
467 bool isread)
468{
469 int el = arm_current_el(env);
30ac6339
PM
470 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
471 (env->cp15.mdcr_el2 & MDCR_TDE) ||
7c208e0f 472 (arm_hcr_el2_eff(env) & HCR_TGE);
91b0a238 473
30ac6339 474 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
91b0a238
PM
475 return CP_ACCESS_TRAP_EL2;
476 }
477 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
478 return CP_ACCESS_TRAP_EL3;
479 }
480 return CP_ACCESS_OK;
481}
482
d6c8cf81
PM
483/* Check for traps to general debug registers, which are controlled
484 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
485 */
486static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
487 bool isread)
488{
489 int el = arm_current_el(env);
30ac6339
PM
490 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
491 (env->cp15.mdcr_el2 & MDCR_TDE) ||
7c208e0f 492 (arm_hcr_el2_eff(env) & HCR_TGE);
d6c8cf81 493
30ac6339 494 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
d6c8cf81
PM
495 return CP_ACCESS_TRAP_EL2;
496 }
497 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
498 return CP_ACCESS_TRAP_EL3;
499 }
500 return CP_ACCESS_OK;
501}
502
1fce1ba9
PM
503/* Check for traps to performance monitor registers, which are controlled
504 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
505 */
506static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
507 bool isread)
508{
509 int el = arm_current_el(env);
510
511 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
512 && !arm_is_secure_below_el3(env)) {
513 return CP_ACCESS_TRAP_EL2;
514 }
515 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
516 return CP_ACCESS_TRAP_EL3;
517 }
518 return CP_ACCESS_OK;
519}
520
c4241c7d 521static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
c983fe6c 522{
00c8cb0a
AF
523 ARMCPU *cpu = arm_env_get_cpu(env);
524
8d5c773e 525 raw_write(env, ri, value);
d10eb08f 526 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
c983fe6c
PM
527}
528
c4241c7d 529static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
08de207b 530{
00c8cb0a
AF
531 ARMCPU *cpu = arm_env_get_cpu(env);
532
8d5c773e 533 if (raw_read(env, ri) != value) {
08de207b
PM
534 /* Unlike real hardware the qemu TLB uses virtual addresses,
535 * not modified virtual addresses, so this causes a TLB flush.
536 */
d10eb08f 537 tlb_flush(CPU(cpu));
8d5c773e 538 raw_write(env, ri, value);
08de207b 539 }
08de207b 540}
c4241c7d
PM
541
542static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
543 uint64_t value)
08de207b 544{
00c8cb0a
AF
545 ARMCPU *cpu = arm_env_get_cpu(env);
546
452a0955 547 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
014406b5 548 && !extended_addresses_enabled(env)) {
08de207b
PM
549 /* For VMSA (when not using the LPAE long descriptor page table
550 * format) this register includes the ASID, so do a TLB flush.
551 * For PMSA it is purely a process ID and no action is needed.
552 */
d10eb08f 553 tlb_flush(CPU(cpu));
08de207b 554 }
8d5c773e 555 raw_write(env, ri, value);
08de207b
PM
556}
557
b4ab8ce9
PM
558/* IS variants of TLB operations must affect all cores */
559static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
560 uint64_t value)
561{
562 CPUState *cs = ENV_GET_CPU(env);
563
564 tlb_flush_all_cpus_synced(cs);
565}
566
567static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
568 uint64_t value)
569{
570 CPUState *cs = ENV_GET_CPU(env);
571
572 tlb_flush_all_cpus_synced(cs);
573}
574
575static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
576 uint64_t value)
577{
578 CPUState *cs = ENV_GET_CPU(env);
579
580 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
581}
582
583static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
584 uint64_t value)
585{
586 CPUState *cs = ENV_GET_CPU(env);
587
588 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
589}
590
591/*
592 * Non-IS variants of TLB operations are upgraded to
593 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
594 * force broadcast of these operations.
595 */
596static bool tlb_force_broadcast(CPUARMState *env)
597{
598 return (env->cp15.hcr_el2 & HCR_FB) &&
599 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
600}
601
c4241c7d
PM
602static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
603 uint64_t value)
d929823f
PM
604{
605 /* Invalidate all (TLBIALL) */
00c8cb0a
AF
606 ARMCPU *cpu = arm_env_get_cpu(env);
607
b4ab8ce9
PM
608 if (tlb_force_broadcast(env)) {
609 tlbiall_is_write(env, NULL, value);
610 return;
611 }
612
d10eb08f 613 tlb_flush(CPU(cpu));
d929823f
PM
614}
615
c4241c7d
PM
616static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
617 uint64_t value)
d929823f
PM
618{
619 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
31b030d4
AF
620 ARMCPU *cpu = arm_env_get_cpu(env);
621
b4ab8ce9
PM
622 if (tlb_force_broadcast(env)) {
623 tlbimva_is_write(env, NULL, value);
624 return;
625 }
626
31b030d4 627 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
628}
629
c4241c7d
PM
630static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
631 uint64_t value)
d929823f
PM
632{
633 /* Invalidate by ASID (TLBIASID) */
00c8cb0a
AF
634 ARMCPU *cpu = arm_env_get_cpu(env);
635
b4ab8ce9
PM
636 if (tlb_force_broadcast(env)) {
637 tlbiasid_is_write(env, NULL, value);
638 return;
639 }
640
d10eb08f 641 tlb_flush(CPU(cpu));
d929823f
PM
642}
643
c4241c7d
PM
644static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
645 uint64_t value)
d929823f
PM
646{
647 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
31b030d4
AF
648 ARMCPU *cpu = arm_env_get_cpu(env);
649
b4ab8ce9
PM
650 if (tlb_force_broadcast(env)) {
651 tlbimvaa_is_write(env, NULL, value);
652 return;
653 }
fa439fc5 654
b4ab8ce9 655 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
fa439fc5
PM
656}
657
541ef8c2
SS
658static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
659 uint64_t value)
660{
661 CPUState *cs = ENV_GET_CPU(env);
662
0336cbf8 663 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
664 ARMMMUIdxBit_S12NSE1 |
665 ARMMMUIdxBit_S12NSE0 |
666 ARMMMUIdxBit_S2NS);
541ef8c2
SS
667}
668
669static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
670 uint64_t value)
671{
a67cf277 672 CPUState *cs = ENV_GET_CPU(env);
541ef8c2 673
a67cf277 674 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
675 ARMMMUIdxBit_S12NSE1 |
676 ARMMMUIdxBit_S12NSE0 |
677 ARMMMUIdxBit_S2NS);
541ef8c2
SS
678}
679
680static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
681 uint64_t value)
682{
683 /* Invalidate by IPA. This has to invalidate any structures that
684 * contain only stage 2 translation information, but does not need
685 * to apply to structures that contain combined stage 1 and stage 2
686 * translation information.
687 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
688 */
689 CPUState *cs = ENV_GET_CPU(env);
690 uint64_t pageaddr;
691
692 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
693 return;
694 }
695
696 pageaddr = sextract64(value << 12, 0, 40);
697
8bd5c820 698 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
541ef8c2
SS
699}
700
701static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
702 uint64_t value)
703{
a67cf277 704 CPUState *cs = ENV_GET_CPU(env);
541ef8c2
SS
705 uint64_t pageaddr;
706
707 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
708 return;
709 }
710
711 pageaddr = sextract64(value << 12, 0, 40);
712
a67cf277 713 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 714 ARMMMUIdxBit_S2NS);
541ef8c2
SS
715}
716
717static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
718 uint64_t value)
719{
720 CPUState *cs = ENV_GET_CPU(env);
721
8bd5c820 722 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
541ef8c2
SS
723}
724
725static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
726 uint64_t value)
727{
a67cf277 728 CPUState *cs = ENV_GET_CPU(env);
541ef8c2 729
8bd5c820 730 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
541ef8c2
SS
731}
732
733static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
734 uint64_t value)
735{
736 CPUState *cs = ENV_GET_CPU(env);
737 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
738
8bd5c820 739 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
541ef8c2
SS
740}
741
742static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
743 uint64_t value)
744{
a67cf277 745 CPUState *cs = ENV_GET_CPU(env);
541ef8c2
SS
746 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
747
a67cf277 748 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 749 ARMMMUIdxBit_S1E2);
541ef8c2
SS
750}
751
e9aa6c21 752static const ARMCPRegInfo cp_reginfo[] = {
54bf36ed
FA
753 /* Define the secure and non-secure FCSE identifier CP registers
754 * separately because there is no secure bank in V8 (no _EL3). This allows
755 * the secure register to be properly reset and migrated. There is also no
756 * v8 EL1 version of the register so the non-secure instance stands alone.
757 */
9c513e78 758 { .name = "FCSEIDR",
54bf36ed
FA
759 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
760 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
761 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
762 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
9c513e78 763 { .name = "FCSEIDR_S",
54bf36ed
FA
764 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
765 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
766 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
d4e6df63 767 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
54bf36ed
FA
768 /* Define the secure and non-secure context identifier CP registers
769 * separately because there is no secure bank in V8 (no _EL3). This allows
770 * the secure register to be properly reset and migrated. In the
771 * non-secure case, the 32-bit register will have reset and migration
772 * disabled during registration as it is handled by the 64-bit instance.
773 */
774 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
014406b5 775 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
54bf36ed
FA
776 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
777 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
778 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9c513e78 779 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
54bf36ed
FA
780 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
781 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
782 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
d4e6df63 783 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9449fdf6
PM
784 REGINFO_SENTINEL
785};
786
787static const ARMCPRegInfo not_v8_cp_reginfo[] = {
788 /* NB: Some of these registers exist in v8 but with more precise
789 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
790 */
791 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
792 { .name = "DACR",
793 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
794 .access = PL1_RW, .resetvalue = 0,
795 .writefn = dacr_write, .raw_writefn = raw_write,
796 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
797 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a903c449
EI
798 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
799 * For v6 and v5, these mappings are overly broad.
4fdd17dd 800 */
a903c449
EI
801 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
802 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
803 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
804 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
805 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
806 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
807 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
4fdd17dd 808 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
c4804214
PM
809 /* Cache maintenance ops; some of this space may be overridden later. */
810 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
811 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
812 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
813 REGINFO_SENTINEL
814};
815
7d57f408
PM
816static const ARMCPRegInfo not_v6_cp_reginfo[] = {
817 /* Not all pre-v6 cores implemented this WFI, so this is slightly
818 * over-broad.
819 */
820 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
821 .access = PL1_W, .type = ARM_CP_WFI },
822 REGINFO_SENTINEL
823};
824
825static const ARMCPRegInfo not_v7_cp_reginfo[] = {
826 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
827 * is UNPREDICTABLE; we choose to NOP as most implementations do).
828 */
829 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
830 .access = PL1_W, .type = ARM_CP_WFI },
34f90529
PM
831 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
832 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
833 * OMAPCP will override this space.
834 */
835 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
836 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
837 .resetvalue = 0 },
838 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
839 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
840 .resetvalue = 0 },
776d4e5c
PM
841 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
842 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
7a0e58fa 843 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 844 .resetvalue = 0 },
50300698
PM
845 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
846 * implementing it as RAZ means the "debug architecture version" bits
847 * will read as a reserved value, which should cause Linux to not try
848 * to use the debug hardware.
849 */
850 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
851 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
995939a6
PM
852 /* MMU TLB control. Note that the wildcarding means we cover not just
853 * the unified TLB ops but also the dside/iside/inner-shareable variants.
854 */
855 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
856 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
7a0e58fa 857 .type = ARM_CP_NO_RAW },
995939a6
PM
858 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
859 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
7a0e58fa 860 .type = ARM_CP_NO_RAW },
995939a6
PM
861 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
862 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
7a0e58fa 863 .type = ARM_CP_NO_RAW },
995939a6
PM
864 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
865 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
7a0e58fa 866 .type = ARM_CP_NO_RAW },
a903c449
EI
867 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
868 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
869 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
870 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
7d57f408
PM
871 REGINFO_SENTINEL
872};
873
c4241c7d
PM
874static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
875 uint64_t value)
2771db27 876{
f0aff255
FA
877 uint32_t mask = 0;
878
879 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
880 if (!arm_feature(env, ARM_FEATURE_V8)) {
881 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
882 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
883 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
884 */
885 if (arm_feature(env, ARM_FEATURE_VFP)) {
886 /* VFP coprocessor: cp10 & cp11 [23:20] */
887 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
888
889 if (!arm_feature(env, ARM_FEATURE_NEON)) {
890 /* ASEDIS [31] bit is RAO/WI */
891 value |= (1 << 31);
892 }
893
894 /* VFPv3 and upwards with NEON implement 32 double precision
895 * registers (D0-D31).
896 */
897 if (!arm_feature(env, ARM_FEATURE_NEON) ||
898 !arm_feature(env, ARM_FEATURE_VFP3)) {
899 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
900 value |= (1 << 30);
901 }
902 }
903 value &= mask;
2771db27 904 }
7ebd5f2e 905 env->cp15.cpacr_el1 = value;
2771db27
PM
906}
907
5deac39c
PM
908static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
909{
910 /* Call cpacr_write() so that we reset with the correct RAO bits set
911 * for our CPU features.
912 */
913 cpacr_write(env, ri, 0);
914}
915
3f208fd7
PM
916static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
917 bool isread)
c6f19164
GB
918{
919 if (arm_feature(env, ARM_FEATURE_V8)) {
920 /* Check if CPACR accesses are to be trapped to EL2 */
921 if (arm_current_el(env) == 1 &&
922 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
923 return CP_ACCESS_TRAP_EL2;
924 /* Check if CPACR accesses are to be trapped to EL3 */
925 } else if (arm_current_el(env) < 3 &&
926 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
927 return CP_ACCESS_TRAP_EL3;
928 }
929 }
930
931 return CP_ACCESS_OK;
932}
933
3f208fd7
PM
934static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
935 bool isread)
c6f19164
GB
936{
937 /* Check if CPTR accesses are set to trap to EL3 */
938 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
939 return CP_ACCESS_TRAP_EL3;
940 }
941
942 return CP_ACCESS_OK;
943}
944
7d57f408
PM
945static const ARMCPRegInfo v6_cp_reginfo[] = {
946 /* prefetch by MVA in v6, NOP in v7 */
947 { .name = "MVA_prefetch",
948 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
949 .access = PL1_W, .type = ARM_CP_NOP },
6df99dec
SS
950 /* We need to break the TB after ISB to execute self-modifying code
951 * correctly and also to take any pending interrupts immediately.
952 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
953 */
7d57f408 954 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
6df99dec 955 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
091fd17c 956 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 957 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 958 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 959 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31 960 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
6cd8a264 961 .access = PL1_RW,
b848ce2b
FA
962 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
963 offsetof(CPUARMState, cp15.ifar_ns) },
06d76f31
PM
964 .resetvalue = 0, },
965 /* Watchpoint Fault Address Register : should actually only be present
966 * for 1136, 1176, 11MPCore.
967 */
968 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
969 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
34222fb8 970 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
c6f19164 971 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
7ebd5f2e 972 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
5deac39c 973 .resetfn = cpacr_reset, .writefn = cpacr_write },
7d57f408
PM
974 REGINFO_SENTINEL
975};
976
7ece99b1
AL
977/* Definitions for the PMU registers */
978#define PMCRN_MASK 0xf800
979#define PMCRN_SHIFT 11
033614c4 980#define PMCRDP 0x10
7ece99b1
AL
981#define PMCRD 0x8
982#define PMCRC 0x4
5ecdd3e4 983#define PMCRP 0x2
7ece99b1
AL
984#define PMCRE 0x1
985
033614c4
AL
986#define PMXEVTYPER_P 0x80000000
987#define PMXEVTYPER_U 0x40000000
988#define PMXEVTYPER_NSK 0x20000000
989#define PMXEVTYPER_NSU 0x10000000
990#define PMXEVTYPER_NSH 0x08000000
991#define PMXEVTYPER_M 0x04000000
992#define PMXEVTYPER_MT 0x02000000
993#define PMXEVTYPER_EVTCOUNT 0x0000ffff
994#define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
995 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
996 PMXEVTYPER_M | PMXEVTYPER_MT | \
997 PMXEVTYPER_EVTCOUNT)
998
4b8afa1f
AL
999#define PMCCFILTR 0xf8000000
1000#define PMCCFILTR_M PMXEVTYPER_M
1001#define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1002
7ece99b1
AL
1003static inline uint32_t pmu_num_counters(CPUARMState *env)
1004{
1005 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1006}
1007
1008/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1009static inline uint64_t pmu_counter_mask(CPUARMState *env)
1010{
1011 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1012}
1013
57a4a11b
AL
1014typedef struct pm_event {
1015 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1016 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1017 bool (*supported)(CPUARMState *);
1018 /*
1019 * Retrieve the current count of the underlying event. The programmed
1020 * counters hold a difference from the return value from this function
1021 */
1022 uint64_t (*get_count)(CPUARMState *);
1023} pm_event;
1024
b2e23725
AL
1025static bool event_always_supported(CPUARMState *env)
1026{
1027 return true;
1028}
1029
0d4bfd7d
AL
1030static uint64_t swinc_get_count(CPUARMState *env)
1031{
1032 /*
1033 * SW_INCR events are written directly to the pmevcntr's by writes to
1034 * PMSWINC, so there is no underlying count maintained by the PMU itself
1035 */
1036 return 0;
1037}
1038
b2e23725
AL
1039/*
1040 * Return the underlying cycle count for the PMU cycle counters. If we're in
1041 * usermode, simply return 0.
1042 */
1043static uint64_t cycles_get_count(CPUARMState *env)
1044{
1045#ifndef CONFIG_USER_ONLY
1046 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1047 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1048#else
1049 return cpu_get_host_ticks();
1050#endif
1051}
1052
1053#ifndef CONFIG_USER_ONLY
1054static bool instructions_supported(CPUARMState *env)
1055{
1056 return use_icount == 1 /* Precise instruction counting */;
1057}
1058
1059static uint64_t instructions_get_count(CPUARMState *env)
1060{
1061 return (uint64_t)cpu_get_icount_raw();
1062}
1063#endif
1064
57a4a11b 1065static const pm_event pm_events[] = {
0d4bfd7d
AL
1066 { .number = 0x000, /* SW_INCR */
1067 .supported = event_always_supported,
1068 .get_count = swinc_get_count,
1069 },
b2e23725
AL
1070#ifndef CONFIG_USER_ONLY
1071 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1072 .supported = instructions_supported,
1073 .get_count = instructions_get_count,
1074 },
1075 { .number = 0x011, /* CPU_CYCLES, Cycle */
1076 .supported = event_always_supported,
1077 .get_count = cycles_get_count,
1078 }
1079#endif
57a4a11b
AL
1080};
1081
1082/*
1083 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1084 * events (i.e. the statistical profiling extension), this implementation
1085 * should first be updated to something sparse instead of the current
1086 * supported_event_map[] array.
1087 */
b2e23725 1088#define MAX_EVENT_ID 0x11
57a4a11b
AL
1089#define UNSUPPORTED_EVENT UINT16_MAX
1090static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1091
1092/*
1093 * Called upon initialization to build PMCEID0_EL0 or PMCEID1_EL0 (indicated by
1094 * 'which'). We also use it to build a map of ARM event numbers to indices in
1095 * our pm_events array.
1096 *
1097 * Note: Events in the 0x40XX range are not currently supported.
1098 */
1099uint64_t get_pmceid(CPUARMState *env, unsigned which)
1100{
1101 uint64_t pmceid = 0;
1102 unsigned int i;
1103
1104 assert(which <= 1);
1105
1106 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1107 supported_event_map[i] = UNSUPPORTED_EVENT;
1108 }
1109
1110 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1111 const pm_event *cnt = &pm_events[i];
1112 assert(cnt->number <= MAX_EVENT_ID);
1113 /* We do not currently support events in the 0x40xx range */
1114 assert(cnt->number <= 0x3f);
1115
1116 if ((cnt->number & 0x20) == (which << 6) &&
1117 cnt->supported(env)) {
1118 pmceid |= (1 << (cnt->number & 0x1f));
1119 supported_event_map[cnt->number] = i;
1120 }
1121 }
1122 return pmceid;
1123}
1124
5ecdd3e4
AL
1125/*
1126 * Check at runtime whether a PMU event is supported for the current machine
1127 */
1128static bool event_supported(uint16_t number)
1129{
1130 if (number > MAX_EVENT_ID) {
1131 return false;
1132 }
1133 return supported_event_map[number] != UNSUPPORTED_EVENT;
1134}
1135
3f208fd7
PM
1136static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1137 bool isread)
200ac0ef 1138{
3b163b01 1139 /* Performance monitor registers user accessibility is controlled
1fce1ba9
PM
1140 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1141 * trapping to EL2 or EL3 for other accesses.
200ac0ef 1142 */
1fce1ba9
PM
1143 int el = arm_current_el(env);
1144
6ecd0b6b 1145 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
fcd25206 1146 return CP_ACCESS_TRAP;
200ac0ef 1147 }
1fce1ba9
PM
1148 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1149 && !arm_is_secure_below_el3(env)) {
1150 return CP_ACCESS_TRAP_EL2;
1151 }
1152 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1153 return CP_ACCESS_TRAP_EL3;
1154 }
1155
fcd25206 1156 return CP_ACCESS_OK;
200ac0ef
PM
1157}
1158
6ecd0b6b
AB
1159static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1160 const ARMCPRegInfo *ri,
1161 bool isread)
1162{
1163 /* ER: event counter read trap control */
1164 if (arm_feature(env, ARM_FEATURE_V8)
1165 && arm_current_el(env) == 0
1166 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1167 && isread) {
1168 return CP_ACCESS_OK;
1169 }
1170
1171 return pmreg_access(env, ri, isread);
1172}
1173
1174static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1175 const ARMCPRegInfo *ri,
1176 bool isread)
1177{
1178 /* SW: software increment write trap control */
1179 if (arm_feature(env, ARM_FEATURE_V8)
1180 && arm_current_el(env) == 0
1181 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1182 && !isread) {
1183 return CP_ACCESS_OK;
1184 }
1185
1186 return pmreg_access(env, ri, isread);
1187}
1188
6ecd0b6b
AB
1189static CPAccessResult pmreg_access_selr(CPUARMState *env,
1190 const ARMCPRegInfo *ri,
1191 bool isread)
1192{
1193 /* ER: event counter read trap control */
1194 if (arm_feature(env, ARM_FEATURE_V8)
1195 && arm_current_el(env) == 0
1196 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1197 return CP_ACCESS_OK;
1198 }
1199
1200 return pmreg_access(env, ri, isread);
1201}
1202
1203static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1204 const ARMCPRegInfo *ri,
1205 bool isread)
1206{
1207 /* CR: cycle counter read trap control */
1208 if (arm_feature(env, ARM_FEATURE_V8)
1209 && arm_current_el(env) == 0
1210 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1211 && isread) {
1212 return CP_ACCESS_OK;
1213 }
1214
1215 return pmreg_access(env, ri, isread);
1216}
1217
033614c4
AL
1218/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1219 * the current EL, security state, and register configuration.
1220 */
1221static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
87124fde 1222{
033614c4
AL
1223 uint64_t filter;
1224 bool e, p, u, nsk, nsu, nsh, m;
1225 bool enabled, prohibited, filtered;
1226 bool secure = arm_is_secure(env);
1227 int el = arm_current_el(env);
1228 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
87124fde 1229
033614c4
AL
1230 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1231 (counter < hpmn || counter == 31)) {
1232 e = env->cp15.c9_pmcr & PMCRE;
1233 } else {
1234 e = env->cp15.mdcr_el2 & MDCR_HPME;
87124fde 1235 }
033614c4 1236 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
87124fde 1237
033614c4
AL
1238 if (!secure) {
1239 if (el == 2 && (counter < hpmn || counter == 31)) {
1240 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1241 } else {
1242 prohibited = false;
1243 }
1244 } else {
1245 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1246 (env->cp15.mdcr_el3 & MDCR_SPME);
1247 }
1248
1249 if (prohibited && counter == 31) {
1250 prohibited = env->cp15.c9_pmcr & PMCRDP;
1251 }
1252
5ecdd3e4
AL
1253 if (counter == 31) {
1254 filter = env->cp15.pmccfiltr_el0;
1255 } else {
1256 filter = env->cp15.c14_pmevtyper[counter];
1257 }
033614c4
AL
1258
1259 p = filter & PMXEVTYPER_P;
1260 u = filter & PMXEVTYPER_U;
1261 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1262 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1263 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1264 m = arm_el_is_aa64(env, 1) &&
1265 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1266
1267 if (el == 0) {
1268 filtered = secure ? u : u != nsu;
1269 } else if (el == 1) {
1270 filtered = secure ? p : p != nsk;
1271 } else if (el == 2) {
1272 filtered = !nsh;
1273 } else { /* EL3 */
1274 filtered = m != p;
1275 }
1276
5ecdd3e4
AL
1277 if (counter != 31) {
1278 /*
1279 * If not checking PMCCNTR, ensure the counter is setup to an event we
1280 * support
1281 */
1282 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1283 if (!event_supported(event)) {
1284 return false;
1285 }
1286 }
1287
033614c4 1288 return enabled && !prohibited && !filtered;
87124fde 1289}
033614c4 1290
5d05b9d4
AL
1291/*
1292 * Ensure c15_ccnt is the guest-visible count so that operations such as
1293 * enabling/disabling the counter or filtering, modifying the count itself,
1294 * etc. can be done logically. This is essentially a no-op if the counter is
1295 * not enabled at the time of the call.
1296 */
1297void pmccntr_op_start(CPUARMState *env)
ec7b4ce4 1298{
b2e23725 1299 uint64_t cycles = cycles_get_count(env);
ec7b4ce4 1300
033614c4 1301 if (pmu_counter_enabled(env, 31)) {
5d05b9d4
AL
1302 uint64_t eff_cycles = cycles;
1303 if (env->cp15.c9_pmcr & PMCRD) {
1304 /* Increment once every 64 processor clock cycles */
1305 eff_cycles /= 64;
1306 }
1307
1308 env->cp15.c15_ccnt = eff_cycles - env->cp15.c15_ccnt_delta;
ec7b4ce4 1309 }
5d05b9d4
AL
1310 env->cp15.c15_ccnt_delta = cycles;
1311}
ec7b4ce4 1312
5d05b9d4
AL
1313/*
1314 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1315 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1316 * pmccntr_op_start.
1317 */
1318void pmccntr_op_finish(CPUARMState *env)
1319{
033614c4 1320 if (pmu_counter_enabled(env, 31)) {
5d05b9d4
AL
1321 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1322
1323 if (env->cp15.c9_pmcr & PMCRD) {
1324 /* Increment once every 64 processor clock cycles */
1325 prev_cycles /= 64;
1326 }
1327
1328 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
ec7b4ce4
AF
1329 }
1330}
1331
5ecdd3e4
AL
1332static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1333{
1334
1335 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1336 uint64_t count = 0;
1337 if (event_supported(event)) {
1338 uint16_t event_idx = supported_event_map[event];
1339 count = pm_events[event_idx].get_count(env);
1340 }
1341
1342 if (pmu_counter_enabled(env, counter)) {
1343 env->cp15.c14_pmevcntr[counter] =
1344 count - env->cp15.c14_pmevcntr_delta[counter];
1345 }
1346 env->cp15.c14_pmevcntr_delta[counter] = count;
1347}
1348
1349static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1350{
1351 if (pmu_counter_enabled(env, counter)) {
1352 env->cp15.c14_pmevcntr_delta[counter] -=
1353 env->cp15.c14_pmevcntr[counter];
1354 }
1355}
1356
5d05b9d4
AL
1357void pmu_op_start(CPUARMState *env)
1358{
5ecdd3e4 1359 unsigned int i;
5d05b9d4 1360 pmccntr_op_start(env);
5ecdd3e4
AL
1361 for (i = 0; i < pmu_num_counters(env); i++) {
1362 pmevcntr_op_start(env, i);
1363 }
5d05b9d4
AL
1364}
1365
1366void pmu_op_finish(CPUARMState *env)
1367{
5ecdd3e4 1368 unsigned int i;
5d05b9d4 1369 pmccntr_op_finish(env);
5ecdd3e4
AL
1370 for (i = 0; i < pmu_num_counters(env); i++) {
1371 pmevcntr_op_finish(env, i);
1372 }
5d05b9d4
AL
1373}
1374
033614c4
AL
1375void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1376{
1377 pmu_op_start(&cpu->env);
1378}
1379
1380void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1381{
1382 pmu_op_finish(&cpu->env);
1383}
1384
c4241c7d
PM
1385static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1386 uint64_t value)
200ac0ef 1387{
5d05b9d4 1388 pmu_op_start(env);
7c2cb42b
AF
1389
1390 if (value & PMCRC) {
1391 /* The counter has been reset */
1392 env->cp15.c15_ccnt = 0;
1393 }
1394
5ecdd3e4
AL
1395 if (value & PMCRP) {
1396 unsigned int i;
1397 for (i = 0; i < pmu_num_counters(env); i++) {
1398 env->cp15.c14_pmevcntr[i] = 0;
1399 }
1400 }
1401
200ac0ef
PM
1402 /* only the DP, X, D and E bits are writable */
1403 env->cp15.c9_pmcr &= ~0x39;
1404 env->cp15.c9_pmcr |= (value & 0x39);
7c2cb42b 1405
5d05b9d4 1406 pmu_op_finish(env);
7c2cb42b
AF
1407}
1408
0d4bfd7d
AL
1409static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1410 uint64_t value)
1411{
1412 unsigned int i;
1413 for (i = 0; i < pmu_num_counters(env); i++) {
1414 /* Increment a counter's count iff: */
1415 if ((value & (1 << i)) && /* counter's bit is set */
1416 /* counter is enabled and not filtered */
1417 pmu_counter_enabled(env, i) &&
1418 /* counter is SW_INCR */
1419 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1420 pmevcntr_op_start(env, i);
1421 env->cp15.c14_pmevcntr[i]++;
1422 pmevcntr_op_finish(env, i);
1423 }
1424 }
1425}
1426
7c2cb42b
AF
1427static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1428{
5d05b9d4
AL
1429 uint64_t ret;
1430 pmccntr_op_start(env);
1431 ret = env->cp15.c15_ccnt;
1432 pmccntr_op_finish(env);
1433 return ret;
7c2cb42b
AF
1434}
1435
6b040780
WH
1436static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1437 uint64_t value)
1438{
1439 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1440 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1441 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1442 * accessed.
1443 */
1444 env->cp15.c9_pmselr = value & 0x1f;
1445}
1446
7c2cb42b
AF
1447static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1448 uint64_t value)
1449{
5d05b9d4
AL
1450 pmccntr_op_start(env);
1451 env->cp15.c15_ccnt = value;
1452 pmccntr_op_finish(env);
200ac0ef 1453}
421c7ebd
PC
1454
1455static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1456 uint64_t value)
1457{
1458 uint64_t cur_val = pmccntr_read(env, NULL);
1459
1460 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1461}
1462
0614601c
AF
1463static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1464 uint64_t value)
1465{
5d05b9d4 1466 pmccntr_op_start(env);
4b8afa1f
AL
1467 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1468 pmccntr_op_finish(env);
1469}
1470
1471static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1472 uint64_t value)
1473{
1474 pmccntr_op_start(env);
1475 /* M is not accessible from AArch32 */
1476 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1477 (value & PMCCFILTR);
5d05b9d4 1478 pmccntr_op_finish(env);
0614601c
AF
1479}
1480
4b8afa1f
AL
1481static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1482{
1483 /* M is not visible in AArch32 */
1484 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1485}
1486
c4241c7d 1487static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1488 uint64_t value)
1489{
7ece99b1 1490 value &= pmu_counter_mask(env);
200ac0ef 1491 env->cp15.c9_pmcnten |= value;
200ac0ef
PM
1492}
1493
c4241c7d
PM
1494static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1495 uint64_t value)
200ac0ef 1496{
7ece99b1 1497 value &= pmu_counter_mask(env);
200ac0ef 1498 env->cp15.c9_pmcnten &= ~value;
200ac0ef
PM
1499}
1500
c4241c7d
PM
1501static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1502 uint64_t value)
200ac0ef 1503{
599b71e2 1504 value &= pmu_counter_mask(env);
200ac0ef 1505 env->cp15.c9_pmovsr &= ~value;
200ac0ef
PM
1506}
1507
327dd510
AL
1508static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1509 uint64_t value)
1510{
1511 value &= pmu_counter_mask(env);
1512 env->cp15.c9_pmovsr |= value;
1513}
1514
5ecdd3e4
AL
1515static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1516 uint64_t value, const uint8_t counter)
200ac0ef 1517{
5ecdd3e4
AL
1518 if (counter == 31) {
1519 pmccfiltr_write(env, ri, value);
1520 } else if (counter < pmu_num_counters(env)) {
1521 pmevcntr_op_start(env, counter);
1522
1523 /*
1524 * If this counter's event type is changing, store the current
1525 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1526 * pmevcntr_op_finish has the correct baseline when it converts back to
1527 * a delta.
1528 */
1529 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1530 PMXEVTYPER_EVTCOUNT;
1531 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1532 if (old_event != new_event) {
1533 uint64_t count = 0;
1534 if (event_supported(new_event)) {
1535 uint16_t event_idx = supported_event_map[new_event];
1536 count = pm_events[event_idx].get_count(env);
1537 }
1538 env->cp15.c14_pmevcntr_delta[counter] = count;
1539 }
1540
1541 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1542 pmevcntr_op_finish(env, counter);
1543 }
fdb86656
WH
1544 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1545 * PMSELR value is equal to or greater than the number of implemented
1546 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1547 */
5ecdd3e4
AL
1548}
1549
1550static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1551 const uint8_t counter)
1552{
1553 if (counter == 31) {
1554 return env->cp15.pmccfiltr_el0;
1555 } else if (counter < pmu_num_counters(env)) {
1556 return env->cp15.c14_pmevtyper[counter];
1557 } else {
1558 /*
1559 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1560 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1561 */
1562 return 0;
1563 }
1564}
1565
1566static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1567 uint64_t value)
1568{
1569 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1570 pmevtyper_write(env, ri, value, counter);
1571}
1572
1573static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1574 uint64_t value)
1575{
1576 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1577 env->cp15.c14_pmevtyper[counter] = value;
1578
1579 /*
1580 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1581 * pmu_op_finish calls when loading saved state for a migration. Because
1582 * we're potentially updating the type of event here, the value written to
1583 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1584 * different counter type. Therefore, we need to set this value to the
1585 * current count for the counter type we're writing so that pmu_op_finish
1586 * has the correct count for its calculation.
1587 */
1588 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1589 if (event_supported(event)) {
1590 uint16_t event_idx = supported_event_map[event];
1591 env->cp15.c14_pmevcntr_delta[counter] =
1592 pm_events[event_idx].get_count(env);
fdb86656
WH
1593 }
1594}
1595
5ecdd3e4
AL
1596static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1597{
1598 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1599 return pmevtyper_read(env, ri, counter);
1600}
1601
1602static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1603 uint64_t value)
1604{
1605 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1606}
1607
fdb86656
WH
1608static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1609{
5ecdd3e4
AL
1610 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1611}
1612
1613static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1614 uint64_t value, uint8_t counter)
1615{
1616 if (counter < pmu_num_counters(env)) {
1617 pmevcntr_op_start(env, counter);
1618 env->cp15.c14_pmevcntr[counter] = value;
1619 pmevcntr_op_finish(env, counter);
1620 }
1621 /*
1622 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1623 * are CONSTRAINED UNPREDICTABLE.
fdb86656 1624 */
5ecdd3e4
AL
1625}
1626
1627static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1628 uint8_t counter)
1629{
1630 if (counter < pmu_num_counters(env)) {
1631 uint64_t ret;
1632 pmevcntr_op_start(env, counter);
1633 ret = env->cp15.c14_pmevcntr[counter];
1634 pmevcntr_op_finish(env, counter);
1635 return ret;
fdb86656 1636 } else {
5ecdd3e4
AL
1637 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1638 * are CONSTRAINED UNPREDICTABLE. */
fdb86656
WH
1639 return 0;
1640 }
200ac0ef
PM
1641}
1642
5ecdd3e4
AL
1643static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1644 uint64_t value)
1645{
1646 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1647 pmevcntr_write(env, ri, value, counter);
1648}
1649
1650static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1651{
1652 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1653 return pmevcntr_read(env, ri, counter);
1654}
1655
1656static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1657 uint64_t value)
1658{
1659 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1660 assert(counter < pmu_num_counters(env));
1661 env->cp15.c14_pmevcntr[counter] = value;
1662 pmevcntr_write(env, ri, value, counter);
1663}
1664
1665static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1666{
1667 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1668 assert(counter < pmu_num_counters(env));
1669 return env->cp15.c14_pmevcntr[counter];
1670}
1671
1672static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1673 uint64_t value)
1674{
1675 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1676}
1677
1678static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1679{
1680 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1681}
1682
c4241c7d 1683static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1684 uint64_t value)
1685{
6ecd0b6b
AB
1686 if (arm_feature(env, ARM_FEATURE_V8)) {
1687 env->cp15.c9_pmuserenr = value & 0xf;
1688 } else {
1689 env->cp15.c9_pmuserenr = value & 1;
1690 }
200ac0ef
PM
1691}
1692
c4241c7d
PM
1693static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1694 uint64_t value)
200ac0ef
PM
1695{
1696 /* We have no event counters so only the C bit can be changed */
7ece99b1 1697 value &= pmu_counter_mask(env);
200ac0ef 1698 env->cp15.c9_pminten |= value;
200ac0ef
PM
1699}
1700
c4241c7d
PM
1701static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1702 uint64_t value)
200ac0ef 1703{
7ece99b1 1704 value &= pmu_counter_mask(env);
200ac0ef 1705 env->cp15.c9_pminten &= ~value;
200ac0ef
PM
1706}
1707
c4241c7d
PM
1708static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1709 uint64_t value)
8641136c 1710{
a505d7fe
PM
1711 /* Note that even though the AArch64 view of this register has bits
1712 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1713 * architectural requirements for bits which are RES0 only in some
1714 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1715 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1716 */
855ea66d 1717 raw_write(env, ri, value & ~0x1FULL);
8641136c
NR
1718}
1719
64e0e2de
EI
1720static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1721{
ea22747c
RH
1722 /* Begin with base v8.0 state. */
1723 uint32_t valid_mask = 0x3fff;
2d7137c1 1724 ARMCPU *cpu = arm_env_get_cpu(env);
ea22747c
RH
1725
1726 if (arm_el_is_aa64(env, 3)) {
1727 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1728 valid_mask &= ~SCR_NET;
1729 } else {
1730 valid_mask &= ~(SCR_RW | SCR_ST);
1731 }
64e0e2de
EI
1732
1733 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1734 valid_mask &= ~SCR_HCE;
1735
1736 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1737 * supported if EL2 exists. The bit is UNK/SBZP when
1738 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1739 * when EL2 is unavailable.
4eb27640 1740 * On ARMv8, this bit is always available.
64e0e2de 1741 */
4eb27640
GB
1742 if (arm_feature(env, ARM_FEATURE_V7) &&
1743 !arm_feature(env, ARM_FEATURE_V8)) {
64e0e2de
EI
1744 valid_mask &= ~SCR_SMD;
1745 }
1746 }
2d7137c1
RH
1747 if (cpu_isar_feature(aa64_lor, cpu)) {
1748 valid_mask |= SCR_TLOR;
1749 }
64e0e2de
EI
1750
1751 /* Clear all-context RES0 bits. */
1752 value &= valid_mask;
1753 raw_write(env, ri, value);
1754}
1755
c4241c7d 1756static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
776d4e5c
PM
1757{
1758 ARMCPU *cpu = arm_env_get_cpu(env);
b85a1fd6
FA
1759
1760 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1761 * bank
1762 */
1763 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1764 ri->secure & ARM_CP_SECSTATE_S);
1765
1766 return cpu->ccsidr[index];
776d4e5c
PM
1767}
1768
c4241c7d
PM
1769static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1770 uint64_t value)
776d4e5c 1771{
8d5c773e 1772 raw_write(env, ri, value & 0xf);
776d4e5c
PM
1773}
1774
1090b9c6
PM
1775static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1776{
1777 CPUState *cs = ENV_GET_CPU(env);
f7778444 1778 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1090b9c6
PM
1779 uint64_t ret = 0;
1780
f7778444 1781 if (hcr_el2 & HCR_IMO) {
636540e9
PM
1782 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1783 ret |= CPSR_I;
1784 }
1785 } else {
1786 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1787 ret |= CPSR_I;
1788 }
1090b9c6 1789 }
636540e9 1790
f7778444 1791 if (hcr_el2 & HCR_FMO) {
636540e9
PM
1792 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1793 ret |= CPSR_F;
1794 }
1795 } else {
1796 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1797 ret |= CPSR_F;
1798 }
1090b9c6 1799 }
636540e9 1800
1090b9c6
PM
1801 /* External aborts are not possible in QEMU so A bit is always clear */
1802 return ret;
1803}
1804
e9aa6c21 1805static const ARMCPRegInfo v7_cp_reginfo[] = {
7d57f408
PM
1806 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1807 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1808 .access = PL1_W, .type = ARM_CP_NOP },
200ac0ef
PM
1809 /* Performance monitors are implementation defined in v7,
1810 * but with an ARM recommended set of registers, which we
ac689a2e 1811 * follow.
200ac0ef
PM
1812 *
1813 * Performance registers fall into three categories:
1814 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1815 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1816 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1817 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1818 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1819 */
1820 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
7a0e58fa 1821 .access = PL0_RW, .type = ARM_CP_ALIAS,
8521466b 1822 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1823 .writefn = pmcntenset_write,
1824 .accessfn = pmreg_access,
1825 .raw_writefn = raw_write },
8521466b
AF
1826 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1827 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1828 .access = PL0_RW, .accessfn = pmreg_access,
1829 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1830 .writefn = pmcntenset_write, .raw_writefn = raw_write },
200ac0ef 1831 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
8521466b
AF
1832 .access = PL0_RW,
1833 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1834 .accessfn = pmreg_access,
1835 .writefn = pmcntenclr_write,
7a0e58fa 1836 .type = ARM_CP_ALIAS },
8521466b
AF
1837 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1838 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1839 .access = PL0_RW, .accessfn = pmreg_access,
7a0e58fa 1840 .type = ARM_CP_ALIAS,
8521466b
AF
1841 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1842 .writefn = pmcntenclr_write },
200ac0ef 1843 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
e4e91a21
AL
1844 .access = PL0_RW,
1845 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
fcd25206
PM
1846 .accessfn = pmreg_access,
1847 .writefn = pmovsr_write,
1848 .raw_writefn = raw_write },
978364f1
AF
1849 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1850 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1851 .access = PL0_RW, .accessfn = pmreg_access,
1852 .type = ARM_CP_ALIAS,
1853 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1854 .writefn = pmovsr_write,
1855 .raw_writefn = raw_write },
200ac0ef 1856 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
0d4bfd7d
AL
1857 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NO_RAW,
1858 .writefn = pmswinc_write },
1859 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1860 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1861 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NO_RAW,
1862 .writefn = pmswinc_write },
6b040780
WH
1863 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1864 .access = PL0_RW, .type = ARM_CP_ALIAS,
1865 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
6ecd0b6b 1866 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
6b040780
WH
1867 .raw_writefn = raw_write},
1868 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1869 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
6ecd0b6b 1870 .access = PL0_RW, .accessfn = pmreg_access_selr,
6b040780
WH
1871 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1872 .writefn = pmselr_write, .raw_writefn = raw_write, },
200ac0ef 1873 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
169c8938 1874 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
421c7ebd 1875 .readfn = pmccntr_read, .writefn = pmccntr_write32,
6ecd0b6b 1876 .accessfn = pmreg_access_ccntr },
8521466b
AF
1877 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1878 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
6ecd0b6b 1879 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
8521466b 1880 .type = ARM_CP_IO,
980ebe87
AL
1881 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1882 .readfn = pmccntr_read, .writefn = pmccntr_write,
1883 .raw_readfn = raw_read, .raw_writefn = raw_write, },
4b8afa1f
AL
1884 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
1885 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
1886 .access = PL0_RW, .accessfn = pmreg_access,
1887 .type = ARM_CP_ALIAS | ARM_CP_IO,
1888 .resetvalue = 0, },
8521466b
AF
1889 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1890 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
980ebe87 1891 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
8521466b
AF
1892 .access = PL0_RW, .accessfn = pmreg_access,
1893 .type = ARM_CP_IO,
1894 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1895 .resetvalue = 0, },
200ac0ef 1896 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
5ecdd3e4
AL
1897 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1898 .accessfn = pmreg_access,
fdb86656
WH
1899 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1900 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1901 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
5ecdd3e4
AL
1902 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1903 .accessfn = pmreg_access,
fdb86656 1904 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
200ac0ef 1905 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
5ecdd3e4
AL
1906 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1907 .accessfn = pmreg_access_xevcntr,
1908 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
1909 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
1910 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
1911 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1912 .accessfn = pmreg_access_xevcntr,
1913 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
200ac0ef 1914 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1fce1ba9 1915 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
e4e91a21 1916 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
200ac0ef 1917 .resetvalue = 0,
d4e6df63 1918 .writefn = pmuserenr_write, .raw_writefn = raw_write },
8a83ffc2
AF
1919 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1920 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1fce1ba9 1921 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
8a83ffc2
AF
1922 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1923 .resetvalue = 0,
1924 .writefn = pmuserenr_write, .raw_writefn = raw_write },
200ac0ef 1925 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1fce1ba9 1926 .access = PL1_RW, .accessfn = access_tpm,
b7d793ad 1927 .type = ARM_CP_ALIAS | ARM_CP_IO,
e6ec5457 1928 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
200ac0ef 1929 .resetvalue = 0,
d4e6df63 1930 .writefn = pmintenset_write, .raw_writefn = raw_write },
e6ec5457
WH
1931 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1932 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1933 .access = PL1_RW, .accessfn = access_tpm,
1934 .type = ARM_CP_IO,
1935 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1936 .writefn = pmintenset_write, .raw_writefn = raw_write,
1937 .resetvalue = 0x0 },
200ac0ef 1938 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
fc5f6856
AL
1939 .access = PL1_RW, .accessfn = access_tpm,
1940 .type = ARM_CP_ALIAS | ARM_CP_IO,
200ac0ef 1941 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
b061a82b 1942 .writefn = pmintenclr_write, },
978364f1
AF
1943 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1944 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
fc5f6856
AL
1945 .access = PL1_RW, .accessfn = access_tpm,
1946 .type = ARM_CP_ALIAS | ARM_CP_IO,
978364f1
AF
1947 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1948 .writefn = pmintenclr_write },
7da845b0
PM
1949 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1950 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
7a0e58fa 1951 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
7da845b0
PM
1952 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1953 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
b85a1fd6
FA
1954 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1955 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1956 offsetof(CPUARMState, cp15.csselr_ns) } },
776d4e5c
PM
1957 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1958 * just RAZ for all cores:
1959 */
0ff644a7
PM
1960 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1961 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
776d4e5c 1962 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
f32cdad5
PM
1963 /* Auxiliary fault status registers: these also are IMPDEF, and we
1964 * choose to RAZ/WI for all cores.
1965 */
1966 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1967 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1968 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1969 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1970 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1971 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b0fe2427
PM
1972 /* MAIR can just read-as-written because we don't implement caches
1973 * and so don't need to care about memory attributes.
1974 */
1975 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1976 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
be693c87 1977 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
b0fe2427 1978 .resetvalue = 0 },
4cfb8ad8
PM
1979 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1980 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1981 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1982 .resetvalue = 0 },
b0fe2427
PM
1983 /* For non-long-descriptor page tables these are PRRR and NMRR;
1984 * regardless they still act as reads-as-written for QEMU.
b0fe2427 1985 */
1281f8e3 1986 /* MAIR0/1 are defined separately from their 64-bit counterpart which
be693c87
GB
1987 * allows them to assign the correct fieldoffset based on the endianness
1988 * handled in the field definitions.
1989 */
a903c449 1990 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
b0fe2427 1991 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
be693c87
GB
1992 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1993 offsetof(CPUARMState, cp15.mair0_ns) },
b0fe2427 1994 .resetfn = arm_cp_reset_ignore },
a903c449 1995 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
b0fe2427 1996 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
be693c87
GB
1997 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1998 offsetof(CPUARMState, cp15.mair1_ns) },
b0fe2427 1999 .resetfn = arm_cp_reset_ignore },
1090b9c6
PM
2000 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2001 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
7a0e58fa 2002 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
995939a6
PM
2003 /* 32 bit ITLB invalidates */
2004 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
7a0e58fa 2005 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 2006 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7a0e58fa 2007 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 2008 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
7a0e58fa 2009 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
2010 /* 32 bit DTLB invalidates */
2011 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
7a0e58fa 2012 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 2013 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7a0e58fa 2014 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 2015 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
7a0e58fa 2016 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
2017 /* 32 bit TLB invalidates */
2018 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 2019 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 2020 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 2021 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 2022 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 2023 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6 2024 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 2025 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
995939a6
PM
2026 REGINFO_SENTINEL
2027};
2028
2029static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2030 /* 32 bit TLB invalidates, Inner Shareable */
2031 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 2032 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
995939a6 2033 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 2034 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
995939a6 2035 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 2036 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 2037 .writefn = tlbiasid_is_write },
995939a6 2038 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 2039 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 2040 .writefn = tlbimvaa_is_write },
e9aa6c21
PM
2041 REGINFO_SENTINEL
2042};
2043
327dd510
AL
2044static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2045 /* PMOVSSET is not implemented in v7 before v7ve */
2046 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2047 .access = PL0_RW, .accessfn = pmreg_access,
2048 .type = ARM_CP_ALIAS,
2049 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2050 .writefn = pmovsset_write,
2051 .raw_writefn = raw_write },
2052 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2053 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2054 .access = PL0_RW, .accessfn = pmreg_access,
2055 .type = ARM_CP_ALIAS,
2056 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2057 .writefn = pmovsset_write,
2058 .raw_writefn = raw_write },
2059 REGINFO_SENTINEL
2060};
2061
c4241c7d
PM
2062static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2063 uint64_t value)
c326b979
PM
2064{
2065 value &= 1;
2066 env->teecr = value;
c326b979
PM
2067}
2068
3f208fd7
PM
2069static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2070 bool isread)
c326b979 2071{
dcbff19b 2072 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
92611c00 2073 return CP_ACCESS_TRAP;
c326b979 2074 }
92611c00 2075 return CP_ACCESS_OK;
c326b979
PM
2076}
2077
2078static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2079 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2080 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2081 .resetvalue = 0,
2082 .writefn = teecr_write },
2083 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2084 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
92611c00 2085 .accessfn = teehbr_access, .resetvalue = 0 },
c326b979
PM
2086 REGINFO_SENTINEL
2087};
2088
4d31c596 2089static const ARMCPRegInfo v6k_cp_reginfo[] = {
e4fe830b
PM
2090 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2091 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2092 .access = PL0_RW,
54bf36ed 2093 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
4d31c596
PM
2094 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2095 .access = PL0_RW,
54bf36ed
FA
2096 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2097 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
e4fe830b
PM
2098 .resetfn = arm_cp_reset_ignore },
2099 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2100 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2101 .access = PL0_R|PL1_W,
54bf36ed
FA
2102 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2103 .resetvalue = 0},
4d31c596
PM
2104 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2105 .access = PL0_R|PL1_W,
54bf36ed
FA
2106 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2107 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
e4fe830b 2108 .resetfn = arm_cp_reset_ignore },
54bf36ed 2109 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
e4fe830b 2110 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
4d31c596 2111 .access = PL1_RW,
54bf36ed
FA
2112 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2113 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2114 .access = PL1_RW,
2115 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2116 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2117 .resetvalue = 0 },
4d31c596
PM
2118 REGINFO_SENTINEL
2119};
2120
55d284af
PM
2121#ifndef CONFIG_USER_ONLY
2122
3f208fd7
PM
2123static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2124 bool isread)
00108f2d 2125{
75502672
PM
2126 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2127 * Writable only at the highest implemented exception level.
2128 */
2129 int el = arm_current_el(env);
2130
2131 switch (el) {
2132 case 0:
2133 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2134 return CP_ACCESS_TRAP;
2135 }
2136 break;
2137 case 1:
2138 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2139 arm_is_secure_below_el3(env)) {
2140 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2141 return CP_ACCESS_TRAP_UNCATEGORIZED;
2142 }
2143 break;
2144 case 2:
2145 case 3:
2146 break;
00108f2d 2147 }
75502672
PM
2148
2149 if (!isread && el < arm_highest_el(env)) {
2150 return CP_ACCESS_TRAP_UNCATEGORIZED;
2151 }
2152
00108f2d
PM
2153 return CP_ACCESS_OK;
2154}
2155
3f208fd7
PM
2156static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2157 bool isread)
00108f2d 2158{
0b6440af
EI
2159 unsigned int cur_el = arm_current_el(env);
2160 bool secure = arm_is_secure(env);
2161
00108f2d 2162 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
0b6440af 2163 if (cur_el == 0 &&
00108f2d
PM
2164 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2165 return CP_ACCESS_TRAP;
2166 }
0b6440af
EI
2167
2168 if (arm_feature(env, ARM_FEATURE_EL2) &&
2169 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2170 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2171 return CP_ACCESS_TRAP_EL2;
2172 }
00108f2d
PM
2173 return CP_ACCESS_OK;
2174}
2175
3f208fd7
PM
2176static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2177 bool isread)
00108f2d 2178{
0b6440af
EI
2179 unsigned int cur_el = arm_current_el(env);
2180 bool secure = arm_is_secure(env);
2181
00108f2d
PM
2182 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2183 * EL0[PV]TEN is zero.
2184 */
0b6440af 2185 if (cur_el == 0 &&
00108f2d
PM
2186 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2187 return CP_ACCESS_TRAP;
2188 }
0b6440af
EI
2189
2190 if (arm_feature(env, ARM_FEATURE_EL2) &&
2191 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2192 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2193 return CP_ACCESS_TRAP_EL2;
2194 }
00108f2d
PM
2195 return CP_ACCESS_OK;
2196}
2197
2198static CPAccessResult gt_pct_access(CPUARMState *env,
3f208fd7
PM
2199 const ARMCPRegInfo *ri,
2200 bool isread)
00108f2d 2201{
3f208fd7 2202 return gt_counter_access(env, GTIMER_PHYS, isread);
00108f2d
PM
2203}
2204
2205static CPAccessResult gt_vct_access(CPUARMState *env,
3f208fd7
PM
2206 const ARMCPRegInfo *ri,
2207 bool isread)
00108f2d 2208{
3f208fd7 2209 return gt_counter_access(env, GTIMER_VIRT, isread);
00108f2d
PM
2210}
2211
3f208fd7
PM
2212static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2213 bool isread)
00108f2d 2214{
3f208fd7 2215 return gt_timer_access(env, GTIMER_PHYS, isread);
00108f2d
PM
2216}
2217
3f208fd7
PM
2218static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2219 bool isread)
00108f2d 2220{
3f208fd7 2221 return gt_timer_access(env, GTIMER_VIRT, isread);
00108f2d
PM
2222}
2223
b4d3978c 2224static CPAccessResult gt_stimer_access(CPUARMState *env,
3f208fd7
PM
2225 const ARMCPRegInfo *ri,
2226 bool isread)
b4d3978c
PM
2227{
2228 /* The AArch64 register view of the secure physical timer is
2229 * always accessible from EL3, and configurably accessible from
2230 * Secure EL1.
2231 */
2232 switch (arm_current_el(env)) {
2233 case 1:
2234 if (!arm_is_secure(env)) {
2235 return CP_ACCESS_TRAP;
2236 }
2237 if (!(env->cp15.scr_el3 & SCR_ST)) {
2238 return CP_ACCESS_TRAP_EL3;
2239 }
2240 return CP_ACCESS_OK;
2241 case 0:
2242 case 2:
2243 return CP_ACCESS_TRAP;
2244 case 3:
2245 return CP_ACCESS_OK;
2246 default:
2247 g_assert_not_reached();
2248 }
2249}
2250
55d284af
PM
2251static uint64_t gt_get_countervalue(CPUARMState *env)
2252{
bc72ad67 2253 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
55d284af
PM
2254}
2255
2256static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2257{
2258 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2259
2260 if (gt->ctl & 1) {
2261 /* Timer enabled: calculate and set current ISTATUS, irq, and
2262 * reset timer to when ISTATUS next has to change
2263 */
edac4d8a
EI
2264 uint64_t offset = timeridx == GTIMER_VIRT ?
2265 cpu->env.cp15.cntvoff_el2 : 0;
55d284af
PM
2266 uint64_t count = gt_get_countervalue(&cpu->env);
2267 /* Note that this must be unsigned 64 bit arithmetic: */
edac4d8a 2268 int istatus = count - offset >= gt->cval;
55d284af 2269 uint64_t nexttick;
194cbc49 2270 int irqstate;
55d284af
PM
2271
2272 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
194cbc49
PM
2273
2274 irqstate = (istatus && !(gt->ctl & 2));
2275 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2276
55d284af
PM
2277 if (istatus) {
2278 /* Next transition is when count rolls back over to zero */
2279 nexttick = UINT64_MAX;
2280 } else {
2281 /* Next transition is when we hit cval */
edac4d8a 2282 nexttick = gt->cval + offset;
55d284af
PM
2283 }
2284 /* Note that the desired next expiry time might be beyond the
2285 * signed-64-bit range of a QEMUTimer -- in this case we just
2286 * set the timer for as far in the future as possible. When the
2287 * timer expires we will reset the timer for any remaining period.
2288 */
2289 if (nexttick > INT64_MAX / GTIMER_SCALE) {
2290 nexttick = INT64_MAX / GTIMER_SCALE;
2291 }
bc72ad67 2292 timer_mod(cpu->gt_timer[timeridx], nexttick);
194cbc49 2293 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
55d284af
PM
2294 } else {
2295 /* Timer disabled: ISTATUS and timer output always clear */
2296 gt->ctl &= ~4;
2297 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
bc72ad67 2298 timer_del(cpu->gt_timer[timeridx]);
194cbc49 2299 trace_arm_gt_recalc_disabled(timeridx);
55d284af
PM
2300 }
2301}
2302
0e3eca4c
EI
2303static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2304 int timeridx)
55d284af
PM
2305{
2306 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af 2307
bc72ad67 2308 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
2309}
2310
c4241c7d 2311static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af 2312{
c4241c7d 2313 return gt_get_countervalue(env);
55d284af
PM
2314}
2315
edac4d8a
EI
2316static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2317{
2318 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2319}
2320
c4241c7d 2321static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 2322 int timeridx,
c4241c7d 2323 uint64_t value)
55d284af 2324{
194cbc49 2325 trace_arm_gt_cval_write(timeridx, value);
55d284af
PM
2326 env->cp15.c14_timer[timeridx].cval = value;
2327 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af 2328}
c4241c7d 2329
0e3eca4c
EI
2330static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2331 int timeridx)
55d284af 2332{
edac4d8a 2333 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 2334
c4241c7d 2335 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
edac4d8a 2336 (gt_get_countervalue(env) - offset));
55d284af
PM
2337}
2338
c4241c7d 2339static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 2340 int timeridx,
c4241c7d 2341 uint64_t value)
55d284af 2342{
edac4d8a 2343 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 2344
194cbc49 2345 trace_arm_gt_tval_write(timeridx, value);
edac4d8a 2346 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
18084b2f 2347 sextract64(value, 0, 32);
55d284af 2348 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af
PM
2349}
2350
c4241c7d 2351static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 2352 int timeridx,
c4241c7d 2353 uint64_t value)
55d284af
PM
2354{
2355 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af
PM
2356 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2357
194cbc49 2358 trace_arm_gt_ctl_write(timeridx, value);
d3afacc7 2359 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
55d284af
PM
2360 if ((oldval ^ value) & 1) {
2361 /* Enable toggled */
2362 gt_recalc_timer(cpu, timeridx);
d3afacc7 2363 } else if ((oldval ^ value) & 2) {
55d284af
PM
2364 /* IMASK toggled: don't need to recalculate,
2365 * just set the interrupt line based on ISTATUS
2366 */
194cbc49
PM
2367 int irqstate = (oldval & 4) && !(value & 2);
2368
2369 trace_arm_gt_imask_toggle(timeridx, irqstate);
2370 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
55d284af 2371 }
55d284af
PM
2372}
2373
0e3eca4c
EI
2374static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2375{
2376 gt_timer_reset(env, ri, GTIMER_PHYS);
2377}
2378
2379static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2380 uint64_t value)
2381{
2382 gt_cval_write(env, ri, GTIMER_PHYS, value);
2383}
2384
2385static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2386{
2387 return gt_tval_read(env, ri, GTIMER_PHYS);
2388}
2389
2390static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2391 uint64_t value)
2392{
2393 gt_tval_write(env, ri, GTIMER_PHYS, value);
2394}
2395
2396static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2397 uint64_t value)
2398{
2399 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2400}
2401
2402static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2403{
2404 gt_timer_reset(env, ri, GTIMER_VIRT);
2405}
2406
2407static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2408 uint64_t value)
2409{
2410 gt_cval_write(env, ri, GTIMER_VIRT, value);
2411}
2412
2413static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2414{
2415 return gt_tval_read(env, ri, GTIMER_VIRT);
2416}
2417
2418static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2419 uint64_t value)
2420{
2421 gt_tval_write(env, ri, GTIMER_VIRT, value);
2422}
2423
2424static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2425 uint64_t value)
2426{
2427 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2428}
2429
edac4d8a
EI
2430static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2431 uint64_t value)
2432{
2433 ARMCPU *cpu = arm_env_get_cpu(env);
2434
194cbc49 2435 trace_arm_gt_cntvoff_write(value);
edac4d8a
EI
2436 raw_write(env, ri, value);
2437 gt_recalc_timer(cpu, GTIMER_VIRT);
2438}
2439
b0e66d95
EI
2440static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2441{
2442 gt_timer_reset(env, ri, GTIMER_HYP);
2443}
2444
2445static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2446 uint64_t value)
2447{
2448 gt_cval_write(env, ri, GTIMER_HYP, value);
2449}
2450
2451static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2452{
2453 return gt_tval_read(env, ri, GTIMER_HYP);
2454}
2455
2456static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2457 uint64_t value)
2458{
2459 gt_tval_write(env, ri, GTIMER_HYP, value);
2460}
2461
2462static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2463 uint64_t value)
2464{
2465 gt_ctl_write(env, ri, GTIMER_HYP, value);
2466}
2467
b4d3978c
PM
2468static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2469{
2470 gt_timer_reset(env, ri, GTIMER_SEC);
2471}
2472
2473static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2474 uint64_t value)
2475{
2476 gt_cval_write(env, ri, GTIMER_SEC, value);
2477}
2478
2479static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2480{
2481 return gt_tval_read(env, ri, GTIMER_SEC);
2482}
2483
2484static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2485 uint64_t value)
2486{
2487 gt_tval_write(env, ri, GTIMER_SEC, value);
2488}
2489
2490static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2491 uint64_t value)
2492{
2493 gt_ctl_write(env, ri, GTIMER_SEC, value);
2494}
2495
55d284af
PM
2496void arm_gt_ptimer_cb(void *opaque)
2497{
2498 ARMCPU *cpu = opaque;
2499
2500 gt_recalc_timer(cpu, GTIMER_PHYS);
2501}
2502
2503void arm_gt_vtimer_cb(void *opaque)
2504{
2505 ARMCPU *cpu = opaque;
2506
2507 gt_recalc_timer(cpu, GTIMER_VIRT);
2508}
2509
b0e66d95
EI
2510void arm_gt_htimer_cb(void *opaque)
2511{
2512 ARMCPU *cpu = opaque;
2513
2514 gt_recalc_timer(cpu, GTIMER_HYP);
2515}
2516
b4d3978c
PM
2517void arm_gt_stimer_cb(void *opaque)
2518{
2519 ARMCPU *cpu = opaque;
2520
2521 gt_recalc_timer(cpu, GTIMER_SEC);
2522}
2523
55d284af
PM
2524static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2525 /* Note that CNTFRQ is purely reads-as-written for the benefit
2526 * of software; writing it doesn't actually change the timer frequency.
2527 * Our reset value matches the fixed frequency we implement the timer at.
2528 */
2529 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2530 .type = ARM_CP_ALIAS,
a7adc4b7
PM
2531 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2532 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
a7adc4b7
PM
2533 },
2534 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2535 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2536 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
55d284af
PM
2537 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2538 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
55d284af
PM
2539 },
2540 /* overall control: mostly access permissions */
a7adc4b7
PM
2541 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2542 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
55d284af
PM
2543 .access = PL1_RW,
2544 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2545 .resetvalue = 0,
2546 },
2547 /* per-timer control */
2548 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
9ff9dd3c 2549 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 2550 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
2551 .accessfn = gt_ptimer_access,
2552 .fieldoffset = offsetoflow32(CPUARMState,
2553 cp15.c14_timer[GTIMER_PHYS].ctl),
0e3eca4c 2554 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
a7adc4b7 2555 },
9c513e78 2556 { .name = "CNTP_CTL_S",
9ff9dd3c
PM
2557 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2558 .secure = ARM_CP_SECSTATE_S,
2559 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2560 .accessfn = gt_ptimer_access,
2561 .fieldoffset = offsetoflow32(CPUARMState,
2562 cp15.c14_timer[GTIMER_SEC].ctl),
2563 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2564 },
a7adc4b7
PM
2565 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2566 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
55d284af 2567 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 2568 .accessfn = gt_ptimer_access,
55d284af
PM
2569 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2570 .resetvalue = 0,
0e3eca4c 2571 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
55d284af
PM
2572 },
2573 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
7a0e58fa 2574 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
2575 .accessfn = gt_vtimer_access,
2576 .fieldoffset = offsetoflow32(CPUARMState,
2577 cp15.c14_timer[GTIMER_VIRT].ctl),
0e3eca4c 2578 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
a7adc4b7
PM
2579 },
2580 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2581 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
55d284af 2582 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 2583 .accessfn = gt_vtimer_access,
55d284af
PM
2584 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2585 .resetvalue = 0,
0e3eca4c 2586 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
55d284af
PM
2587 },
2588 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2589 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
9ff9dd3c 2590 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 2591 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 2592 .accessfn = gt_ptimer_access,
0e3eca4c 2593 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
55d284af 2594 },
9c513e78 2595 { .name = "CNTP_TVAL_S",
9ff9dd3c
PM
2596 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2597 .secure = ARM_CP_SECSTATE_S,
2598 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2599 .accessfn = gt_ptimer_access,
2600 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2601 },
a7adc4b7
PM
2602 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2603 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
7a0e58fa 2604 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
2605 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2606 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
a7adc4b7 2607 },
55d284af 2608 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
7a0e58fa 2609 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 2610 .accessfn = gt_vtimer_access,
0e3eca4c 2611 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
55d284af 2612 },
a7adc4b7
PM
2613 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2614 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
7a0e58fa 2615 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
2616 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2617 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
a7adc4b7 2618 },
55d284af
PM
2619 /* The counter itself */
2620 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
7a0e58fa 2621 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 2622 .accessfn = gt_pct_access,
a7adc4b7
PM
2623 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2624 },
2625 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2626 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
7a0e58fa 2627 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 2628 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
55d284af
PM
2629 },
2630 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
7a0e58fa 2631 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 2632 .accessfn = gt_vct_access,
edac4d8a 2633 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
a7adc4b7
PM
2634 },
2635 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2636 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
7a0e58fa 2637 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 2638 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
55d284af
PM
2639 },
2640 /* Comparison value, indicating when the timer goes off */
2641 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 2642 .secure = ARM_CP_SECSTATE_NS,
55d284af 2643 .access = PL1_RW | PL0_R,
7a0e58fa 2644 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 2645 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
b061a82b 2646 .accessfn = gt_ptimer_access,
0e3eca4c 2647 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
a7adc4b7 2648 },
9c513e78 2649 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c
PM
2650 .secure = ARM_CP_SECSTATE_S,
2651 .access = PL1_RW | PL0_R,
2652 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2653 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2654 .accessfn = gt_ptimer_access,
2655 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2656 },
a7adc4b7
PM
2657 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2658 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2659 .access = PL1_RW | PL0_R,
2660 .type = ARM_CP_IO,
2661 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
12cde08a 2662 .resetvalue = 0, .accessfn = gt_ptimer_access,
0e3eca4c 2663 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
55d284af
PM
2664 },
2665 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2666 .access = PL1_RW | PL0_R,
7a0e58fa 2667 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 2668 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
b061a82b 2669 .accessfn = gt_vtimer_access,
0e3eca4c 2670 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
a7adc4b7
PM
2671 },
2672 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2673 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2674 .access = PL1_RW | PL0_R,
2675 .type = ARM_CP_IO,
2676 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2677 .resetvalue = 0, .accessfn = gt_vtimer_access,
0e3eca4c 2678 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
55d284af 2679 },
b4d3978c
PM
2680 /* Secure timer -- this is actually restricted to only EL3
2681 * and configurably Secure-EL1 via the accessfn.
2682 */
2683 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2684 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2685 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2686 .accessfn = gt_stimer_access,
2687 .readfn = gt_sec_tval_read,
2688 .writefn = gt_sec_tval_write,
2689 .resetfn = gt_sec_timer_reset,
2690 },
2691 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2692 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2693 .type = ARM_CP_IO, .access = PL1_RW,
2694 .accessfn = gt_stimer_access,
2695 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2696 .resetvalue = 0,
2697 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2698 },
2699 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2700 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2701 .type = ARM_CP_IO, .access = PL1_RW,
2702 .accessfn = gt_stimer_access,
2703 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2704 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2705 },
55d284af
PM
2706 REGINFO_SENTINEL
2707};
2708
2709#else
26c4a83b
AB
2710
2711/* In user-mode most of the generic timer registers are inaccessible
2712 * however modern kernels (4.12+) allow access to cntvct_el0
55d284af 2713 */
26c4a83b
AB
2714
2715static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2716{
2717 /* Currently we have no support for QEMUTimer in linux-user so we
2718 * can't call gt_get_countervalue(env), instead we directly
2719 * call the lower level functions.
2720 */
2721 return cpu_get_clock() / GTIMER_SCALE;
2722}
2723
6cc7a3ae 2724static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
26c4a83b
AB
2725 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2726 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2727 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2728 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2729 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2730 },
2731 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2732 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2733 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2734 .readfn = gt_virt_cnt_read,
2735 },
6cc7a3ae
PM
2736 REGINFO_SENTINEL
2737};
2738
55d284af
PM
2739#endif
2740
c4241c7d 2741static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 2742{
891a2fe7 2743 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8d5c773e 2744 raw_write(env, ri, value);
891a2fe7 2745 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8d5c773e 2746 raw_write(env, ri, value & 0xfffff6ff);
4a501606 2747 } else {
8d5c773e 2748 raw_write(env, ri, value & 0xfffff1ff);
4a501606 2749 }
4a501606
PM
2750}
2751
2752#ifndef CONFIG_USER_ONLY
2753/* get_phys_addr() isn't present for user-mode-only targets */
702a9357 2754
3f208fd7
PM
2755static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2756 bool isread)
92611c00
PM
2757{
2758 if (ri->opc2 & 4) {
87562e4f
PM
2759 /* The ATS12NSO* operations must trap to EL3 if executed in
2760 * Secure EL1 (which can only happen if EL3 is AArch64).
2761 * They are simply UNDEF if executed from NS EL1.
2762 * They function normally from EL2 or EL3.
92611c00 2763 */
87562e4f
PM
2764 if (arm_current_el(env) == 1) {
2765 if (arm_is_secure_below_el3(env)) {
2766 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2767 }
2768 return CP_ACCESS_TRAP_UNCATEGORIZED;
2769 }
92611c00
PM
2770 }
2771 return CP_ACCESS_OK;
2772}
2773
060e8a48 2774static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
03ae85f8 2775 MMUAccessType access_type, ARMMMUIdx mmu_idx)
4a501606 2776{
a8170e5e 2777 hwaddr phys_addr;
4a501606
PM
2778 target_ulong page_size;
2779 int prot;
b7cc4e82 2780 bool ret;
01c097f7 2781 uint64_t par64;
1313e2d7 2782 bool format64 = false;
8bf5b6a9 2783 MemTxAttrs attrs = {};
e14b5a23 2784 ARMMMUFaultInfo fi = {};
5b2d261d 2785 ARMCacheAttrs cacheattrs = {};
4a501606 2786
5b2d261d 2787 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
bc52bfeb 2788 &prot, &page_size, &fi, &cacheattrs);
1313e2d7
EI
2789
2790 if (is_a64(env)) {
2791 format64 = true;
2792 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2793 /*
2794 * ATS1Cxx:
2795 * * TTBCR.EAE determines whether the result is returned using the
2796 * 32-bit or the 64-bit PAR format
2797 * * Instructions executed in Hyp mode always use the 64bit format
2798 *
2799 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2800 * * The Non-secure TTBCR.EAE bit is set to 1
2801 * * The implementation includes EL2, and the value of HCR.VM is 1
2802 *
9d1bab33
PM
2803 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2804 *
23463e0e 2805 * ATS1Hx always uses the 64bit format.
1313e2d7
EI
2806 */
2807 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2808
2809 if (arm_feature(env, ARM_FEATURE_EL2)) {
2810 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9d1bab33 2811 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
1313e2d7
EI
2812 } else {
2813 format64 |= arm_current_el(env) == 2;
2814 }
2815 }
2816 }
2817
2818 if (format64) {
5efe9ed4 2819 /* Create a 64-bit PAR */
01c097f7 2820 par64 = (1 << 11); /* LPAE bit always set */
b7cc4e82 2821 if (!ret) {
702a9357 2822 par64 |= phys_addr & ~0xfffULL;
8bf5b6a9
PM
2823 if (!attrs.secure) {
2824 par64 |= (1 << 9); /* NS */
2825 }
5b2d261d
AB
2826 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2827 par64 |= cacheattrs.shareability << 7; /* SH */
4a501606 2828 } else {
5efe9ed4
PM
2829 uint32_t fsr = arm_fi_to_lfsc(&fi);
2830
702a9357 2831 par64 |= 1; /* F */
b7cc4e82 2832 par64 |= (fsr & 0x3f) << 1; /* FS */
0f7b791b
PM
2833 if (fi.stage2) {
2834 par64 |= (1 << 9); /* S */
2835 }
2836 if (fi.s1ptw) {
2837 par64 |= (1 << 8); /* PTW */
2838 }
4a501606
PM
2839 }
2840 } else {
b7cc4e82 2841 /* fsr is a DFSR/IFSR value for the short descriptor
702a9357
PM
2842 * translation table format (with WnR always clear).
2843 * Convert it to a 32-bit PAR.
2844 */
b7cc4e82 2845 if (!ret) {
702a9357
PM
2846 /* We do not set any attribute bits in the PAR */
2847 if (page_size == (1 << 24)
2848 && arm_feature(env, ARM_FEATURE_V7)) {
01c097f7 2849 par64 = (phys_addr & 0xff000000) | (1 << 1);
702a9357 2850 } else {
01c097f7 2851 par64 = phys_addr & 0xfffff000;
702a9357 2852 }
8bf5b6a9
PM
2853 if (!attrs.secure) {
2854 par64 |= (1 << 9); /* NS */
2855 }
702a9357 2856 } else {
5efe9ed4
PM
2857 uint32_t fsr = arm_fi_to_sfsc(&fi);
2858
b7cc4e82
PC
2859 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2860 ((fsr & 0xf) << 1) | 1;
702a9357 2861 }
4a501606 2862 }
060e8a48
PM
2863 return par64;
2864}
2865
2866static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2867{
03ae85f8 2868 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
060e8a48 2869 uint64_t par64;
d3649702
PM
2870 ARMMMUIdx mmu_idx;
2871 int el = arm_current_el(env);
2872 bool secure = arm_is_secure_below_el3(env);
060e8a48 2873
d3649702
PM
2874 switch (ri->opc2 & 6) {
2875 case 0:
2876 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2877 switch (el) {
2878 case 3:
2879 mmu_idx = ARMMMUIdx_S1E3;
2880 break;
2881 case 2:
2882 mmu_idx = ARMMMUIdx_S1NSE1;
2883 break;
2884 case 1:
2885 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2886 break;
2887 default:
2888 g_assert_not_reached();
2889 }
2890 break;
2891 case 2:
2892 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2893 switch (el) {
2894 case 3:
2895 mmu_idx = ARMMMUIdx_S1SE0;
2896 break;
2897 case 2:
2898 mmu_idx = ARMMMUIdx_S1NSE0;
2899 break;
2900 case 1:
2901 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2902 break;
2903 default:
2904 g_assert_not_reached();
2905 }
2906 break;
2907 case 4:
2908 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2909 mmu_idx = ARMMMUIdx_S12NSE1;
2910 break;
2911 case 6:
2912 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2913 mmu_idx = ARMMMUIdx_S12NSE0;
2914 break;
2915 default:
2916 g_assert_not_reached();
2917 }
2918
2919 par64 = do_ats_write(env, value, access_type, mmu_idx);
01c097f7
FA
2920
2921 A32_BANKED_CURRENT_REG_SET(env, par, par64);
4a501606 2922}
060e8a48 2923
14db7fe0
PM
2924static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2925 uint64_t value)
2926{
03ae85f8 2927 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
14db7fe0
PM
2928 uint64_t par64;
2929
23463e0e 2930 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
14db7fe0
PM
2931
2932 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2933}
2934
3f208fd7
PM
2935static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2936 bool isread)
2a47df95
PM
2937{
2938 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2939 return CP_ACCESS_TRAP;
2940 }
2941 return CP_ACCESS_OK;
2942}
2943
060e8a48
PM
2944static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2945 uint64_t value)
2946{
03ae85f8 2947 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
d3649702
PM
2948 ARMMMUIdx mmu_idx;
2949 int secure = arm_is_secure_below_el3(env);
2950
2951 switch (ri->opc2 & 6) {
2952 case 0:
2953 switch (ri->opc1) {
2954 case 0: /* AT S1E1R, AT S1E1W */
2955 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2956 break;
2957 case 4: /* AT S1E2R, AT S1E2W */
2958 mmu_idx = ARMMMUIdx_S1E2;
2959 break;
2960 case 6: /* AT S1E3R, AT S1E3W */
2961 mmu_idx = ARMMMUIdx_S1E3;
2962 break;
2963 default:
2964 g_assert_not_reached();
2965 }
2966 break;
2967 case 2: /* AT S1E0R, AT S1E0W */
2968 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2969 break;
2970 case 4: /* AT S12E1R, AT S12E1W */
2a47df95 2971 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
d3649702
PM
2972 break;
2973 case 6: /* AT S12E0R, AT S12E0W */
2a47df95 2974 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
d3649702
PM
2975 break;
2976 default:
2977 g_assert_not_reached();
2978 }
060e8a48 2979
d3649702 2980 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
060e8a48 2981}
4a501606
PM
2982#endif
2983
2984static const ARMCPRegInfo vapa_cp_reginfo[] = {
2985 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2986 .access = PL1_RW, .resetvalue = 0,
01c097f7
FA
2987 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2988 offsetoflow32(CPUARMState, cp15.par_ns) },
4a501606
PM
2989 .writefn = par_write },
2990#ifndef CONFIG_USER_ONLY
87562e4f 2991 /* This underdecoding is safe because the reginfo is NO_RAW. */
4a501606 2992 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
92611c00 2993 .access = PL1_W, .accessfn = ats_access,
7a0e58fa 2994 .writefn = ats_write, .type = ARM_CP_NO_RAW },
4a501606
PM
2995#endif
2996 REGINFO_SENTINEL
2997};
2998
18032bec
PM
2999/* Return basic MPU access permission bits. */
3000static uint32_t simple_mpu_ap_bits(uint32_t val)
3001{
3002 uint32_t ret;
3003 uint32_t mask;
3004 int i;
3005 ret = 0;
3006 mask = 3;
3007 for (i = 0; i < 16; i += 2) {
3008 ret |= (val >> i) & mask;
3009 mask <<= 2;
3010 }
3011 return ret;
3012}
3013
3014/* Pad basic MPU access permission bits to extended format. */
3015static uint32_t extended_mpu_ap_bits(uint32_t val)
3016{
3017 uint32_t ret;
3018 uint32_t mask;
3019 int i;
3020 ret = 0;
3021 mask = 3;
3022 for (i = 0; i < 16; i += 2) {
3023 ret |= (val & mask) << i;
3024 mask <<= 2;
3025 }
3026 return ret;
3027}
3028
c4241c7d
PM
3029static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3030 uint64_t value)
18032bec 3031{
7e09797c 3032 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
18032bec
PM
3033}
3034
c4241c7d 3035static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 3036{
7e09797c 3037 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
18032bec
PM
3038}
3039
c4241c7d
PM
3040static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3041 uint64_t value)
18032bec 3042{
7e09797c 3043 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
18032bec
PM
3044}
3045
c4241c7d 3046static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 3047{
7e09797c 3048 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
18032bec
PM
3049}
3050
6cb0b013
PC
3051static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3052{
3053 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3054
3055 if (!u32p) {
3056 return 0;
3057 }
3058
1bc04a88 3059 u32p += env->pmsav7.rnr[M_REG_NS];
6cb0b013
PC
3060 return *u32p;
3061}
3062
3063static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064 uint64_t value)
3065{
3066 ARMCPU *cpu = arm_env_get_cpu(env);
3067 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3068
3069 if (!u32p) {
3070 return;
3071 }
3072
1bc04a88 3073 u32p += env->pmsav7.rnr[M_REG_NS];
d10eb08f 3074 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
6cb0b013
PC
3075 *u32p = value;
3076}
3077
6cb0b013
PC
3078static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3079 uint64_t value)
3080{
3081 ARMCPU *cpu = arm_env_get_cpu(env);
3082 uint32_t nrgs = cpu->pmsav7_dregion;
3083
3084 if (value >= nrgs) {
3085 qemu_log_mask(LOG_GUEST_ERROR,
3086 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3087 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3088 return;
3089 }
3090
3091 raw_write(env, ri, value);
3092}
3093
3094static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
69ceea64
PM
3095 /* Reset for all these registers is handled in arm_cpu_reset(),
3096 * because the PMSAv7 is also used by M-profile CPUs, which do
3097 * not register cpregs but still need the state to be reset.
3098 */
6cb0b013
PC
3099 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3100 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3101 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
69ceea64
PM
3102 .readfn = pmsav7_read, .writefn = pmsav7_write,
3103 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
3104 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3105 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3106 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
69ceea64
PM
3107 .readfn = pmsav7_read, .writefn = pmsav7_write,
3108 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
3109 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3110 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3111 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
69ceea64
PM
3112 .readfn = pmsav7_read, .writefn = pmsav7_write,
3113 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
3114 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3115 .access = PL1_RW,
1bc04a88 3116 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
69ceea64
PM
3117 .writefn = pmsav7_rgnr_write,
3118 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
3119 REGINFO_SENTINEL
3120};
3121
18032bec
PM
3122static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3123 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 3124 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 3125 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
18032bec
PM
3126 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3127 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
7a0e58fa 3128 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 3129 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
18032bec
PM
3130 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3131 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3132 .access = PL1_RW,
7e09797c
PM
3133 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3134 .resetvalue = 0, },
18032bec
PM
3135 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3136 .access = PL1_RW,
7e09797c
PM
3137 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3138 .resetvalue = 0, },
ecce5c3c
PM
3139 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3140 .access = PL1_RW,
3141 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3142 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3143 .access = PL1_RW,
3144 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31 3145 /* Protection region base and size registers */
e508a92b
PM
3146 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3147 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3148 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3149 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3150 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3151 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3152 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3153 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3154 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3155 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3156 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3157 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3158 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3159 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3160 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3161 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3162 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3163 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3164 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3165 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3166 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3167 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3168 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3169 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
18032bec
PM
3170 REGINFO_SENTINEL
3171};
3172
c4241c7d
PM
3173static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3174 uint64_t value)
ecce5c3c 3175{
11f136ee 3176 TCR *tcr = raw_ptr(env, ri);
2ebcebe2
PM
3177 int maskshift = extract32(value, 0, 3);
3178
e389be16
FA
3179 if (!arm_feature(env, ARM_FEATURE_V8)) {
3180 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3181 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3182 * using Long-desciptor translation table format */
3183 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3184 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3185 /* In an implementation that includes the Security Extensions
3186 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3187 * Short-descriptor translation table format.
3188 */
3189 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3190 } else {
3191 value &= TTBCR_N;
3192 }
e42c4db3 3193 }
e389be16 3194
b6af0975 3195 /* Update the masks corresponding to the TCR bank being written
11f136ee 3196 * Note that we always calculate mask and base_mask, but
e42c4db3 3197 * they are only used for short-descriptor tables (ie if EAE is 0);
11f136ee
FA
3198 * for long-descriptor tables the TCR fields are used differently
3199 * and the mask and base_mask values are meaningless.
e42c4db3 3200 */
11f136ee
FA
3201 tcr->raw_tcr = value;
3202 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3203 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
ecce5c3c
PM
3204}
3205
c4241c7d
PM
3206static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3207 uint64_t value)
d4e6df63 3208{
00c8cb0a 3209 ARMCPU *cpu = arm_env_get_cpu(env);
ab638a32 3210 TCR *tcr = raw_ptr(env, ri);
00c8cb0a 3211
d4e6df63
PM
3212 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3213 /* With LPAE the TTBCR could result in a change of ASID
3214 * via the TTBCR.A1 bit, so do a TLB flush.
3215 */
d10eb08f 3216 tlb_flush(CPU(cpu));
d4e6df63 3217 }
ab638a32
RH
3218 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3219 value = deposit64(tcr->raw_tcr, 0, 32, value);
c4241c7d 3220 vmsa_ttbcr_raw_write(env, ri, value);
d4e6df63
PM
3221}
3222
ecce5c3c
PM
3223static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3224{
11f136ee
FA
3225 TCR *tcr = raw_ptr(env, ri);
3226
3227 /* Reset both the TCR as well as the masks corresponding to the bank of
3228 * the TCR being reset.
3229 */
3230 tcr->raw_tcr = 0;
3231 tcr->mask = 0;
3232 tcr->base_mask = 0xffffc000u;
ecce5c3c
PM
3233}
3234
cb2e37df
PM
3235static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3236 uint64_t value)
3237{
00c8cb0a 3238 ARMCPU *cpu = arm_env_get_cpu(env);
11f136ee 3239 TCR *tcr = raw_ptr(env, ri);
00c8cb0a 3240
cb2e37df 3241 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
d10eb08f 3242 tlb_flush(CPU(cpu));
11f136ee 3243 tcr->raw_tcr = value;
cb2e37df
PM
3244}
3245
327ed10f
PM
3246static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3247 uint64_t value)
3248{
93f379b0
RH
3249 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3250 if (cpreg_field_is_64bit(ri) &&
3251 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
00c8cb0a 3252 ARMCPU *cpu = arm_env_get_cpu(env);
d10eb08f 3253 tlb_flush(CPU(cpu));
327ed10f
PM
3254 }
3255 raw_write(env, ri, value);
3256}
3257
b698e9cf
EI
3258static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3259 uint64_t value)
3260{
3261 ARMCPU *cpu = arm_env_get_cpu(env);
3262 CPUState *cs = CPU(cpu);
3263
3264 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
3265 if (raw_read(env, ri) != value) {
0336cbf8 3266 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3267 ARMMMUIdxBit_S12NSE1 |
3268 ARMMMUIdxBit_S12NSE0 |
3269 ARMMMUIdxBit_S2NS);
b698e9cf
EI
3270 raw_write(env, ri, value);
3271 }
3272}
3273
8e5d75c9 3274static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
18032bec 3275 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 3276 .access = PL1_RW, .type = ARM_CP_ALIAS,
4a7e2d73 3277 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
b061a82b 3278 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
18032bec 3279 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
88ca1c2d
FA
3280 .access = PL1_RW, .resetvalue = 0,
3281 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3282 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
8e5d75c9
PC
3283 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3284 .access = PL1_RW, .resetvalue = 0,
3285 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3286 offsetof(CPUARMState, cp15.dfar_ns) } },
3287 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3288 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3289 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3290 .resetvalue = 0, },
3291 REGINFO_SENTINEL
3292};
3293
3294static const ARMCPRegInfo vmsa_cp_reginfo[] = {
6cd8a264
RH
3295 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3296 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3297 .access = PL1_RW,
d81c519c 3298 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
327ed10f 3299 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
3300 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3301 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3302 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3303 offsetof(CPUARMState, cp15.ttbr0_ns) } },
327ed10f 3304 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
3305 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3306 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3307 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3308 offsetof(CPUARMState, cp15.ttbr1_ns) } },
cb2e37df
PM
3309 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3310 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3311 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3312 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
11f136ee 3313 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
cb2e37df 3314 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
7a0e58fa 3315 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
b061a82b 3316 .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee
FA
3317 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3318 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
18032bec
PM
3319 REGINFO_SENTINEL
3320};
3321
ab638a32
RH
3322/* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3323 * qemu tlbs nor adjusting cached masks.
3324 */
3325static const ARMCPRegInfo ttbcr2_reginfo = {
3326 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3327 .access = PL1_RW, .type = ARM_CP_ALIAS,
3328 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3329 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3330};
3331
c4241c7d
PM
3332static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3333 uint64_t value)
1047b9d7
PM
3334{
3335 env->cp15.c15_ticonfig = value & 0xe7;
3336 /* The OS_TYPE bit in this register changes the reported CPUID! */
3337 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3338 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1047b9d7
PM
3339}
3340
c4241c7d
PM
3341static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3342 uint64_t value)
1047b9d7
PM
3343{
3344 env->cp15.c15_threadid = value & 0xffff;
1047b9d7
PM
3345}
3346
c4241c7d
PM
3347static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3348 uint64_t value)
1047b9d7
PM
3349{
3350 /* Wait-for-interrupt (deprecated) */
c3affe56 3351 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1047b9d7
PM
3352}
3353
c4241c7d
PM
3354static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3355 uint64_t value)
c4804214
PM
3356{
3357 /* On OMAP there are registers indicating the max/min index of dcache lines
3358 * containing a dirty line; cache flush operations have to reset these.
3359 */
3360 env->cp15.c15_i_max = 0x000;
3361 env->cp15.c15_i_min = 0xff0;
c4804214
PM
3362}
3363
18032bec
PM
3364static const ARMCPRegInfo omap_cp_reginfo[] = {
3365 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3366 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
d81c519c 3367 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
6cd8a264 3368 .resetvalue = 0, },
1047b9d7
PM
3369 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3370 .access = PL1_RW, .type = ARM_CP_NOP },
3371 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3372 .access = PL1_RW,
3373 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3374 .writefn = omap_ticonfig_write },
3375 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3376 .access = PL1_RW,
3377 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3378 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3379 .access = PL1_RW, .resetvalue = 0xff0,
3380 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3381 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3382 .access = PL1_RW,
3383 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3384 .writefn = omap_threadid_write },
3385 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3386 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
7a0e58fa 3387 .type = ARM_CP_NO_RAW,
1047b9d7
PM
3388 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3389 /* TODO: Peripheral port remap register:
3390 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3391 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3392 * when MMU is off.
3393 */
c4804214 3394 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
d4e6df63 3395 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
7a0e58fa 3396 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
c4804214 3397 .writefn = omap_cachemaint_write },
34f90529
PM
3398 { .name = "C9", .cp = 15, .crn = 9,
3399 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3400 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
3401 REGINFO_SENTINEL
3402};
3403
c4241c7d
PM
3404static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3405 uint64_t value)
1047b9d7 3406{
c0f4af17 3407 env->cp15.c15_cpar = value & 0x3fff;
1047b9d7
PM
3408}
3409
3410static const ARMCPRegInfo xscale_cp_reginfo[] = {
3411 { .name = "XSCALE_CPAR",
3412 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3413 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3414 .writefn = xscale_cpar_write, },
2771db27
PM
3415 { .name = "XSCALE_AUXCR",
3416 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3417 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3418 .resetvalue = 0, },
3b771579
PM
3419 /* XScale specific cache-lockdown: since we have no cache we NOP these
3420 * and hope the guest does not really rely on cache behaviour.
3421 */
3422 { .name = "XSCALE_LOCK_ICACHE_LINE",
3423 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3424 .access = PL1_W, .type = ARM_CP_NOP },
3425 { .name = "XSCALE_UNLOCK_ICACHE",
3426 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3427 .access = PL1_W, .type = ARM_CP_NOP },
3428 { .name = "XSCALE_DCACHE_LOCK",
3429 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3430 .access = PL1_RW, .type = ARM_CP_NOP },
3431 { .name = "XSCALE_UNLOCK_DCACHE",
3432 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3433 .access = PL1_W, .type = ARM_CP_NOP },
1047b9d7
PM
3434 REGINFO_SENTINEL
3435};
3436
3437static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3438 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3439 * implementation of this implementation-defined space.
3440 * Ideally this should eventually disappear in favour of actually
3441 * implementing the correct behaviour for all cores.
3442 */
3443 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3444 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671cd87 3445 .access = PL1_RW,
7a0e58fa 3446 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
d4e6df63 3447 .resetvalue = 0 },
18032bec
PM
3448 REGINFO_SENTINEL
3449};
3450
c4804214
PM
3451static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3452 /* Cache status: RAZ because we have no cache so it's always clean */
3453 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
7a0e58fa 3454 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 3455 .resetvalue = 0 },
c4804214
PM
3456 REGINFO_SENTINEL
3457};
3458
3459static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3460 /* We never have a a block transfer operation in progress */
3461 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
7a0e58fa 3462 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 3463 .resetvalue = 0 },
30b05bba
PM
3464 /* The cache ops themselves: these all NOP for QEMU */
3465 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3466 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3467 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3468 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3469 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3470 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3471 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3472 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3473 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3474 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3475 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3476 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
c4804214
PM
3477 REGINFO_SENTINEL
3478};
3479
3480static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3481 /* The cache test-and-clean instructions always return (1 << 30)
3482 * to indicate that there are no dirty cache lines.
3483 */
3484 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
7a0e58fa 3485 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 3486 .resetvalue = (1 << 30) },
c4804214 3487 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
7a0e58fa 3488 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 3489 .resetvalue = (1 << 30) },
c4804214
PM
3490 REGINFO_SENTINEL
3491};
3492
34f90529
PM
3493static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3494 /* Ignore ReadBuffer accesses */
3495 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3496 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
d4e6df63 3497 .access = PL1_RW, .resetvalue = 0,
7a0e58fa 3498 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
34f90529
PM
3499 REGINFO_SENTINEL
3500};
3501
731de9e6
EI
3502static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3503{
3504 ARMCPU *cpu = arm_env_get_cpu(env);
3505 unsigned int cur_el = arm_current_el(env);
3506 bool secure = arm_is_secure(env);
3507
3508 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3509 return env->cp15.vpidr_el2;
3510 }
3511 return raw_read(env, ri);
3512}
3513
06a7e647 3514static uint64_t mpidr_read_val(CPUARMState *env)
81bdde9d 3515{
eb5e1d3c
PF
3516 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
3517 uint64_t mpidr = cpu->mp_affinity;
3518
81bdde9d 3519 if (arm_feature(env, ARM_FEATURE_V7MP)) {
78dbbbe4 3520 mpidr |= (1U << 31);
81bdde9d
PM
3521 /* Cores which are uniprocessor (non-coherent)
3522 * but still implement the MP extensions set
a8e81b31 3523 * bit 30. (For instance, Cortex-R5).
81bdde9d 3524 */
a8e81b31
PC
3525 if (cpu->mp_is_up) {
3526 mpidr |= (1u << 30);
3527 }
81bdde9d 3528 }
c4241c7d 3529 return mpidr;
81bdde9d
PM
3530}
3531
06a7e647
EI
3532static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3533{
f0d574d6
EI
3534 unsigned int cur_el = arm_current_el(env);
3535 bool secure = arm_is_secure(env);
3536
3537 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3538 return env->cp15.vmpidr_el2;
3539 }
06a7e647
EI
3540 return mpidr_read_val(env);
3541}
3542
81bdde9d 3543static const ARMCPRegInfo mpidr_cp_reginfo[] = {
4b7fff2f
PM
3544 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
3545 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7a0e58fa 3546 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
81bdde9d
PM
3547 REGINFO_SENTINEL
3548};
3549
7ac681cf 3550static const ARMCPRegInfo lpae_cp_reginfo[] = {
a903c449 3551 /* NOP AMAIR0/1 */
b0fe2427
PM
3552 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3553 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
a903c449 3554 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 3555 .resetvalue = 0 },
b0fe2427 3556 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
7ac681cf 3557 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
a903c449 3558 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 3559 .resetvalue = 0 },
891a2fe7 3560 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
01c097f7
FA
3561 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3562 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3563 offsetof(CPUARMState, cp15.par_ns)} },
891a2fe7 3564 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
7a0e58fa 3565 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
3566 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3567 offsetof(CPUARMState, cp15.ttbr0_ns) },
b061a82b 3568 .writefn = vmsa_ttbr_write, },
891a2fe7 3569 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
7a0e58fa 3570 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
3571 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3572 offsetof(CPUARMState, cp15.ttbr1_ns) },
b061a82b 3573 .writefn = vmsa_ttbr_write, },
7ac681cf
PM
3574 REGINFO_SENTINEL
3575};
3576
c4241c7d 3577static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 3578{
c4241c7d 3579 return vfp_get_fpcr(env);
b0d2b7d0
PM
3580}
3581
c4241c7d
PM
3582static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3583 uint64_t value)
b0d2b7d0
PM
3584{
3585 vfp_set_fpcr(env, value);
b0d2b7d0
PM
3586}
3587
c4241c7d 3588static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 3589{
c4241c7d 3590 return vfp_get_fpsr(env);
b0d2b7d0
PM
3591}
3592
c4241c7d
PM
3593static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3594 uint64_t value)
b0d2b7d0
PM
3595{
3596 vfp_set_fpsr(env, value);
b0d2b7d0
PM
3597}
3598
3f208fd7
PM
3599static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3600 bool isread)
c2b820fe 3601{
137feaa9 3602 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
c2b820fe
PM
3603 return CP_ACCESS_TRAP;
3604 }
3605 return CP_ACCESS_OK;
3606}
3607
3608static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3609 uint64_t value)
3610{
3611 env->daif = value & PSTATE_DAIF;
3612}
3613
8af35c37 3614static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3f208fd7
PM
3615 const ARMCPRegInfo *ri,
3616 bool isread)
8af35c37
PM
3617{
3618 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3619 * SCTLR_EL1.UCI is set.
3620 */
137feaa9 3621 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
8af35c37
PM
3622 return CP_ACCESS_TRAP;
3623 }
3624 return CP_ACCESS_OK;
3625}
3626
dbb1fb27
AB
3627/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3628 * Page D4-1736 (DDI0487A.b)
3629 */
3630
fd3ed969
PM
3631static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3632 uint64_t value)
168aa23b 3633{
a67cf277 3634 CPUState *cs = ENV_GET_CPU(env);
fd3ed969 3635 bool sec = arm_is_secure_below_el3(env);
dbb1fb27 3636
a67cf277
AB
3637 if (sec) {
3638 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3639 ARMMMUIdxBit_S1SE1 |
3640 ARMMMUIdxBit_S1SE0);
a67cf277
AB
3641 } else {
3642 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3643 ARMMMUIdxBit_S12NSE1 |
3644 ARMMMUIdxBit_S12NSE0);
fd3ed969 3645 }
168aa23b
PM
3646}
3647
b4ab8ce9
PM
3648static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3649 uint64_t value)
3650{
3651 CPUState *cs = ENV_GET_CPU(env);
3652
3653 if (tlb_force_broadcast(env)) {
09a86dfa 3654 tlbi_aa64_vmalle1is_write(env, NULL, value);
b4ab8ce9
PM
3655 return;
3656 }
3657
3658 if (arm_is_secure_below_el3(env)) {
3659 tlb_flush_by_mmuidx(cs,
3660 ARMMMUIdxBit_S1SE1 |
3661 ARMMMUIdxBit_S1SE0);
3662 } else {
3663 tlb_flush_by_mmuidx(cs,
3664 ARMMMUIdxBit_S12NSE1 |
3665 ARMMMUIdxBit_S12NSE0);
3666 }
3667}
3668
fd3ed969
PM
3669static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3670 uint64_t value)
168aa23b 3671{
fd3ed969
PM
3672 /* Note that the 'ALL' scope must invalidate both stage 1 and
3673 * stage 2 translations, whereas most other scopes only invalidate
3674 * stage 1 translations.
3675 */
00c8cb0a 3676 ARMCPU *cpu = arm_env_get_cpu(env);
fd3ed969
PM
3677 CPUState *cs = CPU(cpu);
3678
3679 if (arm_is_secure_below_el3(env)) {
0336cbf8 3680 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3681 ARMMMUIdxBit_S1SE1 |
3682 ARMMMUIdxBit_S1SE0);
fd3ed969
PM
3683 } else {
3684 if (arm_feature(env, ARM_FEATURE_EL2)) {
0336cbf8 3685 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3686 ARMMMUIdxBit_S12NSE1 |
3687 ARMMMUIdxBit_S12NSE0 |
3688 ARMMMUIdxBit_S2NS);
fd3ed969 3689 } else {
0336cbf8 3690 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3691 ARMMMUIdxBit_S12NSE1 |
3692 ARMMMUIdxBit_S12NSE0);
fd3ed969
PM
3693 }
3694 }
168aa23b
PM
3695}
3696
fd3ed969 3697static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
fa439fc5
PM
3698 uint64_t value)
3699{
fd3ed969
PM
3700 ARMCPU *cpu = arm_env_get_cpu(env);
3701 CPUState *cs = CPU(cpu);
3702
8bd5c820 3703 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
fd3ed969
PM
3704}
3705
43efaa33
PM
3706static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3707 uint64_t value)
3708{
3709 ARMCPU *cpu = arm_env_get_cpu(env);
3710 CPUState *cs = CPU(cpu);
3711
8bd5c820 3712 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
43efaa33
PM
3713}
3714
fd3ed969
PM
3715static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3716 uint64_t value)
3717{
3718 /* Note that the 'ALL' scope must invalidate both stage 1 and
3719 * stage 2 translations, whereas most other scopes only invalidate
3720 * stage 1 translations.
3721 */
a67cf277 3722 CPUState *cs = ENV_GET_CPU(env);
fd3ed969
PM
3723 bool sec = arm_is_secure_below_el3(env);
3724 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
a67cf277
AB
3725
3726 if (sec) {
3727 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3728 ARMMMUIdxBit_S1SE1 |
3729 ARMMMUIdxBit_S1SE0);
a67cf277
AB
3730 } else if (has_el2) {
3731 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3732 ARMMMUIdxBit_S12NSE1 |
3733 ARMMMUIdxBit_S12NSE0 |
3734 ARMMMUIdxBit_S2NS);
a67cf277
AB
3735 } else {
3736 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3737 ARMMMUIdxBit_S12NSE1 |
3738 ARMMMUIdxBit_S12NSE0);
fa439fc5
PM
3739 }
3740}
3741
2bfb9d75
PM
3742static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3743 uint64_t value)
3744{
a67cf277 3745 CPUState *cs = ENV_GET_CPU(env);
2bfb9d75 3746
8bd5c820 3747 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
2bfb9d75
PM
3748}
3749
43efaa33
PM
3750static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3751 uint64_t value)
3752{
a67cf277 3753 CPUState *cs = ENV_GET_CPU(env);
43efaa33 3754
8bd5c820 3755 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
43efaa33
PM
3756}
3757
fd3ed969
PM
3758static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3759 uint64_t value)
fa439fc5 3760{
fd3ed969
PM
3761 /* Invalidate by VA, EL2
3762 * Currently handles both VAE2 and VALE2, since we don't support
3763 * flush-last-level-only.
3764 */
3765 ARMCPU *cpu = arm_env_get_cpu(env);
3766 CPUState *cs = CPU(cpu);
3767 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3768
8bd5c820 3769 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
fd3ed969
PM
3770}
3771
43efaa33
PM
3772static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3773 uint64_t value)
3774{
3775 /* Invalidate by VA, EL3
3776 * Currently handles both VAE3 and VALE3, since we don't support
3777 * flush-last-level-only.
3778 */
3779 ARMCPU *cpu = arm_env_get_cpu(env);
3780 CPUState *cs = CPU(cpu);
3781 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3782
8bd5c820 3783 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
43efaa33
PM
3784}
3785
fd3ed969
PM
3786static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3787 uint64_t value)
3788{
a67cf277
AB
3789 ARMCPU *cpu = arm_env_get_cpu(env);
3790 CPUState *cs = CPU(cpu);
fd3ed969 3791 bool sec = arm_is_secure_below_el3(env);
fa439fc5
PM
3792 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3793
a67cf277
AB
3794 if (sec) {
3795 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820
PM
3796 ARMMMUIdxBit_S1SE1 |
3797 ARMMMUIdxBit_S1SE0);
a67cf277
AB
3798 } else {
3799 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820
PM
3800 ARMMMUIdxBit_S12NSE1 |
3801 ARMMMUIdxBit_S12NSE0);
fa439fc5
PM
3802 }
3803}
3804
b4ab8ce9
PM
3805static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3806 uint64_t value)
3807{
3808 /* Invalidate by VA, EL1&0 (AArch64 version).
3809 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3810 * since we don't support flush-for-specific-ASID-only or
3811 * flush-last-level-only.
3812 */
3813 ARMCPU *cpu = arm_env_get_cpu(env);
3814 CPUState *cs = CPU(cpu);
3815 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3816
3817 if (tlb_force_broadcast(env)) {
3818 tlbi_aa64_vae1is_write(env, NULL, value);
3819 return;
3820 }
3821
3822 if (arm_is_secure_below_el3(env)) {
3823 tlb_flush_page_by_mmuidx(cs, pageaddr,
3824 ARMMMUIdxBit_S1SE1 |
3825 ARMMMUIdxBit_S1SE0);
3826 } else {
3827 tlb_flush_page_by_mmuidx(cs, pageaddr,
3828 ARMMMUIdxBit_S12NSE1 |
3829 ARMMMUIdxBit_S12NSE0);
3830 }
3831}
3832
fd3ed969
PM
3833static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3834 uint64_t value)
fa439fc5 3835{
a67cf277 3836 CPUState *cs = ENV_GET_CPU(env);
fd3ed969 3837 uint64_t pageaddr = sextract64(value << 12, 0, 56);
fa439fc5 3838
a67cf277 3839 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3840 ARMMMUIdxBit_S1E2);
fa439fc5
PM
3841}
3842
43efaa33
PM
3843static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3844 uint64_t value)
3845{
a67cf277 3846 CPUState *cs = ENV_GET_CPU(env);
43efaa33
PM
3847 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3848
a67cf277 3849 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3850 ARMMMUIdxBit_S1E3);
43efaa33
PM
3851}
3852
cea66e91
PM
3853static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3854 uint64_t value)
3855{
3856 /* Invalidate by IPA. This has to invalidate any structures that
3857 * contain only stage 2 translation information, but does not need
3858 * to apply to structures that contain combined stage 1 and stage 2
3859 * translation information.
3860 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3861 */
3862 ARMCPU *cpu = arm_env_get_cpu(env);
3863 CPUState *cs = CPU(cpu);
3864 uint64_t pageaddr;
3865
3866 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3867 return;
3868 }
3869
3870 pageaddr = sextract64(value << 12, 0, 48);
3871
8bd5c820 3872 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
cea66e91
PM
3873}
3874
3875static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3876 uint64_t value)
3877{
a67cf277 3878 CPUState *cs = ENV_GET_CPU(env);
cea66e91
PM
3879 uint64_t pageaddr;
3880
3881 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3882 return;
3883 }
3884
3885 pageaddr = sextract64(value << 12, 0, 48);
3886
a67cf277 3887 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 3888 ARMMMUIdxBit_S2NS);
cea66e91
PM
3889}
3890
3f208fd7
PM
3891static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3892 bool isread)
aca3f40b
PM
3893{
3894 /* We don't implement EL2, so the only control on DC ZVA is the
3895 * bit in the SCTLR which can prohibit access for EL0.
3896 */
137feaa9 3897 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
aca3f40b
PM
3898 return CP_ACCESS_TRAP;
3899 }
3900 return CP_ACCESS_OK;
3901}
3902
3903static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3904{
3905 ARMCPU *cpu = arm_env_get_cpu(env);
3906 int dzp_bit = 1 << 4;
3907
3908 /* DZP indicates whether DC ZVA access is allowed */
3f208fd7 3909 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
aca3f40b
PM
3910 dzp_bit = 0;
3911 }
3912 return cpu->dcz_blocksize | dzp_bit;
3913}
3914
3f208fd7
PM
3915static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3916 bool isread)
f502cfc2 3917{
cdcf1405 3918 if (!(env->pstate & PSTATE_SP)) {
f502cfc2
PM
3919 /* Access to SP_EL0 is undefined if it's being used as
3920 * the stack pointer.
3921 */
3922 return CP_ACCESS_TRAP_UNCATEGORIZED;
3923 }
3924 return CP_ACCESS_OK;
3925}
3926
3927static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3928{
3929 return env->pstate & PSTATE_SP;
3930}
3931
3932static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3933{
3934 update_spsel(env, val);
3935}
3936
137feaa9
FA
3937static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3938 uint64_t value)
3939{
3940 ARMCPU *cpu = arm_env_get_cpu(env);
3941
3942 if (raw_read(env, ri) == value) {
3943 /* Skip the TLB flush if nothing actually changed; Linux likes
3944 * to do a lot of pointless SCTLR writes.
3945 */
3946 return;
3947 }
3948
06312feb
PM
3949 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3950 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3951 value &= ~SCTLR_M;
3952 }
3953
137feaa9
FA
3954 raw_write(env, ri, value);
3955 /* ??? Lots of these bits are not implemented. */
3956 /* This may enable/disable the MMU, so do a TLB flush. */
d10eb08f 3957 tlb_flush(CPU(cpu));
137feaa9
FA
3958}
3959
3f208fd7
PM
3960static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3961 bool isread)
03fbf20f
PM
3962{
3963 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
f2cae609 3964 return CP_ACCESS_TRAP_FP_EL2;
03fbf20f
PM
3965 }
3966 if (env->cp15.cptr_el[3] & CPTR_TFP) {
f2cae609 3967 return CP_ACCESS_TRAP_FP_EL3;
03fbf20f
PM
3968 }
3969 return CP_ACCESS_OK;
3970}
3971
a8d64e73
PM
3972static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3973 uint64_t value)
3974{
3975 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3976}
3977
b0d2b7d0
PM
3978static const ARMCPRegInfo v8_cp_reginfo[] = {
3979 /* Minimal set of EL0-visible registers. This will need to be expanded
3980 * significantly for system emulation of AArch64 CPUs.
3981 */
3982 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3983 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3984 .access = PL0_RW, .type = ARM_CP_NZCV },
c2b820fe
PM
3985 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3986 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
7a0e58fa 3987 .type = ARM_CP_NO_RAW,
c2b820fe
PM
3988 .access = PL0_RW, .accessfn = aa64_daif_access,
3989 .fieldoffset = offsetof(CPUARMState, daif),
3990 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
b0d2b7d0
PM
3991 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3992 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
b916c9c3 3993 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
fe03d45f 3994 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
b0d2b7d0
PM
3995 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3996 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
b916c9c3 3997 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
fe03d45f 3998 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
b0d2b7d0
PM
3999 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4000 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
7a0e58fa 4001 .access = PL0_R, .type = ARM_CP_NO_RAW,
aca3f40b
PM
4002 .readfn = aa64_dczid_read },
4003 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4004 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4005 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4006#ifndef CONFIG_USER_ONLY
4007 /* Avoid overhead of an access check that always passes in user-mode */
4008 .accessfn = aa64_zva_access,
4009#endif
4010 },
0eef9d98
PM
4011 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4012 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4013 .access = PL1_R, .type = ARM_CP_CURRENTEL },
8af35c37
PM
4014 /* Cache ops: all NOPs since we don't emulate caches */
4015 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4016 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4017 .access = PL1_W, .type = ARM_CP_NOP },
4018 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4019 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4020 .access = PL1_W, .type = ARM_CP_NOP },
4021 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4022 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4023 .access = PL0_W, .type = ARM_CP_NOP,
4024 .accessfn = aa64_cacheop_access },
4025 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4026 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4027 .access = PL1_W, .type = ARM_CP_NOP },
4028 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4029 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4030 .access = PL1_W, .type = ARM_CP_NOP },
4031 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4032 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4033 .access = PL0_W, .type = ARM_CP_NOP,
4034 .accessfn = aa64_cacheop_access },
4035 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4036 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4037 .access = PL1_W, .type = ARM_CP_NOP },
4038 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4039 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4040 .access = PL0_W, .type = ARM_CP_NOP,
4041 .accessfn = aa64_cacheop_access },
4042 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4043 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4044 .access = PL0_W, .type = ARM_CP_NOP,
4045 .accessfn = aa64_cacheop_access },
4046 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4047 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4048 .access = PL1_W, .type = ARM_CP_NOP },
168aa23b
PM
4049 /* TLBI operations */
4050 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4051 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 4052 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4053 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 4054 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4055 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 4056 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4057 .writefn = tlbi_aa64_vae1is_write },
168aa23b 4058 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4059 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 4060 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4061 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 4062 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4063 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 4064 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4065 .writefn = tlbi_aa64_vae1is_write },
168aa23b 4066 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4067 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 4068 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4069 .writefn = tlbi_aa64_vae1is_write },
168aa23b 4070 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4071 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 4072 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4073 .writefn = tlbi_aa64_vae1is_write },
168aa23b 4074 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4075 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 4076 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4077 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 4078 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4079 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 4080 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4081 .writefn = tlbi_aa64_vae1_write },
168aa23b 4082 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4083 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 4084 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4085 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 4086 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4087 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 4088 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4089 .writefn = tlbi_aa64_vae1_write },
168aa23b 4090 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4091 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 4092 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4093 .writefn = tlbi_aa64_vae1_write },
168aa23b 4094 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4095 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 4096 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4097 .writefn = tlbi_aa64_vae1_write },
cea66e91
PM
4098 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4099 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4100 .access = PL2_W, .type = ARM_CP_NO_RAW,
4101 .writefn = tlbi_aa64_ipas2e1is_write },
4102 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4103 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4104 .access = PL2_W, .type = ARM_CP_NO_RAW,
4105 .writefn = tlbi_aa64_ipas2e1is_write },
83ddf975
PM
4106 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4107 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4108 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 4109 .writefn = tlbi_aa64_alle1is_write },
43efaa33
PM
4110 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4111 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4112 .access = PL2_W, .type = ARM_CP_NO_RAW,
4113 .writefn = tlbi_aa64_alle1is_write },
cea66e91
PM
4114 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4115 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4116 .access = PL2_W, .type = ARM_CP_NO_RAW,
4117 .writefn = tlbi_aa64_ipas2e1_write },
4118 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4119 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4120 .access = PL2_W, .type = ARM_CP_NO_RAW,
4121 .writefn = tlbi_aa64_ipas2e1_write },
83ddf975
PM
4122 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4123 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4124 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 4125 .writefn = tlbi_aa64_alle1_write },
43efaa33
PM
4126 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4127 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4128 .access = PL2_W, .type = ARM_CP_NO_RAW,
4129 .writefn = tlbi_aa64_alle1is_write },
19525524
PM
4130#ifndef CONFIG_USER_ONLY
4131 /* 64 bit address translation operations */
4132 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4133 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
060e8a48 4134 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
4135 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4136 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
060e8a48 4137 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
4138 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4139 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
060e8a48 4140 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
4141 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4142 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
060e8a48 4143 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2a47df95 4144 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
7a379c7e 4145 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
2a47df95
PM
4146 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4147 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
7a379c7e 4148 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
2a47df95
PM
4149 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4150 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
7a379c7e 4151 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
2a47df95
PM
4152 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4153 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
7a379c7e 4154 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
2a47df95
PM
4155 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4156 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4157 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4158 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4159 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4160 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4161 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4162 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
c96fc9b5
EI
4163 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4164 .type = ARM_CP_ALIAS,
4165 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4166 .access = PL1_RW, .resetvalue = 0,
4167 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4168 .writefn = par_write },
19525524 4169#endif
995939a6 4170 /* TLB invalidate last level of translation table walk */
9449fdf6 4171 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 4172 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
9449fdf6 4173 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 4174 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 4175 .writefn = tlbimvaa_is_write },
9449fdf6 4176 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 4177 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
9449fdf6 4178 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 4179 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
541ef8c2
SS
4180 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4181 .type = ARM_CP_NO_RAW, .access = PL2_W,
4182 .writefn = tlbimva_hyp_write },
4183 { .name = "TLBIMVALHIS",
4184 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4185 .type = ARM_CP_NO_RAW, .access = PL2_W,
4186 .writefn = tlbimva_hyp_is_write },
4187 { .name = "TLBIIPAS2",
4188 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4189 .type = ARM_CP_NO_RAW, .access = PL2_W,
4190 .writefn = tlbiipas2_write },
4191 { .name = "TLBIIPAS2IS",
4192 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4193 .type = ARM_CP_NO_RAW, .access = PL2_W,
4194 .writefn = tlbiipas2_is_write },
4195 { .name = "TLBIIPAS2L",
4196 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4197 .type = ARM_CP_NO_RAW, .access = PL2_W,
4198 .writefn = tlbiipas2_write },
4199 { .name = "TLBIIPAS2LIS",
4200 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4201 .type = ARM_CP_NO_RAW, .access = PL2_W,
4202 .writefn = tlbiipas2_is_write },
9449fdf6
PM
4203 /* 32 bit cache operations */
4204 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4205 .type = ARM_CP_NOP, .access = PL1_W },
4206 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4207 .type = ARM_CP_NOP, .access = PL1_W },
4208 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4209 .type = ARM_CP_NOP, .access = PL1_W },
4210 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4211 .type = ARM_CP_NOP, .access = PL1_W },
4212 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4213 .type = ARM_CP_NOP, .access = PL1_W },
4214 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4215 .type = ARM_CP_NOP, .access = PL1_W },
4216 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4217 .type = ARM_CP_NOP, .access = PL1_W },
4218 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4219 .type = ARM_CP_NOP, .access = PL1_W },
4220 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4221 .type = ARM_CP_NOP, .access = PL1_W },
4222 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4223 .type = ARM_CP_NOP, .access = PL1_W },
4224 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4225 .type = ARM_CP_NOP, .access = PL1_W },
4226 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4227 .type = ARM_CP_NOP, .access = PL1_W },
4228 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4229 .type = ARM_CP_NOP, .access = PL1_W },
4230 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
4231 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4232 .access = PL1_RW, .resetvalue = 0,
4233 .writefn = dacr_write, .raw_writefn = raw_write,
4234 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4235 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a0618a19 4236 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 4237 .type = ARM_CP_ALIAS,
a0618a19 4238 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
6947f059
EI
4239 .access = PL1_RW,
4240 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
a65f1de9 4241 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 4242 .type = ARM_CP_ALIAS,
a65f1de9 4243 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
4244 .access = PL1_RW,
4245 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
f502cfc2
PM
4246 /* We rely on the access checks not allowing the guest to write to the
4247 * state field when SPSel indicates that it's being used as the stack
4248 * pointer.
4249 */
4250 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4251 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4252 .access = PL1_RW, .accessfn = sp_el0_access,
7a0e58fa 4253 .type = ARM_CP_ALIAS,
f502cfc2 4254 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
884b4dee
GB
4255 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4256 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 4257 .access = PL2_RW, .type = ARM_CP_ALIAS,
884b4dee 4258 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
f502cfc2
PM
4259 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4260 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
7a0e58fa 4261 .type = ARM_CP_NO_RAW,
f502cfc2 4262 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
03fbf20f
PM
4263 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4264 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4265 .type = ARM_CP_ALIAS,
4266 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4267 .access = PL2_RW, .accessfn = fpexc32_access },
6a43e0b6
PM
4268 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4269 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4270 .access = PL2_RW, .resetvalue = 0,
4271 .writefn = dacr_write, .raw_writefn = raw_write,
4272 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4273 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4274 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4275 .access = PL2_RW, .resetvalue = 0,
4276 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4277 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4278 .type = ARM_CP_ALIAS,
4279 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4280 .access = PL2_RW,
4281 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4282 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4283 .type = ARM_CP_ALIAS,
4284 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4285 .access = PL2_RW,
4286 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4287 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4288 .type = ARM_CP_ALIAS,
4289 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4290 .access = PL2_RW,
4291 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4292 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4293 .type = ARM_CP_ALIAS,
4294 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4295 .access = PL2_RW,
4296 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
a8d64e73
PM
4297 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4298 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4299 .resetvalue = 0,
4300 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4301 { .name = "SDCR", .type = ARM_CP_ALIAS,
4302 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4303 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4304 .writefn = sdcr_write,
4305 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
b0d2b7d0
PM
4306 REGINFO_SENTINEL
4307};
4308
d42e3c26 4309/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4771cd01 4310static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
d79e0c06 4311 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
d42e3c26
EI
4312 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4313 .access = PL2_RW,
4314 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
ce4afed8 4315 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
7a0e58fa 4316 .type = ARM_CP_NO_RAW,
f149e3e8
EI
4317 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4318 .access = PL2_RW,
ce4afed8 4319 .type = ARM_CP_CONST, .resetvalue = 0 },
68e78e33
PM
4320 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4321 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4322 .access = PL2_RW,
4323 .type = ARM_CP_CONST, .resetvalue = 0 },
c6f19164
GB
4324 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4325 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4326 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
95f949ac
EI
4327 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4328 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4329 .access = PL2_RW, .type = ARM_CP_CONST,
4330 .resetvalue = 0 },
4331 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
b5ede85b 4332 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
95f949ac 4333 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2179ef95
PM
4334 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4335 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4336 .access = PL2_RW, .type = ARM_CP_CONST,
4337 .resetvalue = 0 },
55b53c71 4338 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
b5ede85b 4339 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
2179ef95
PM
4340 .access = PL2_RW, .type = ARM_CP_CONST,
4341 .resetvalue = 0 },
37cd6c24
PM
4342 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4343 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4344 .access = PL2_RW, .type = ARM_CP_CONST,
4345 .resetvalue = 0 },
4346 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4347 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4348 .access = PL2_RW, .type = ARM_CP_CONST,
4349 .resetvalue = 0 },
06ec4c8c
EI
4350 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4351 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4352 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
68e9c2fe
EI
4353 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4354 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4355 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4356 .type = ARM_CP_CONST, .resetvalue = 0 },
b698e9cf
EI
4357 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4358 .cp = 15, .opc1 = 6, .crm = 2,
4359 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4360 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4361 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4362 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4363 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b9cb5323
EI
4364 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4365 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4366 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
ff05f37b
EI
4367 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4368 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4369 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
a57633c0
EI
4370 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4371 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4372 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4373 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4374 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4375 .resetvalue = 0 },
0b6440af
EI
4376 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4377 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4378 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
edac4d8a
EI
4379 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4380 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4381 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4382 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4383 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4384 .resetvalue = 0 },
b0e66d95
EI
4385 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4386 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4387 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4388 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4389 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4390 .resetvalue = 0 },
4391 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4392 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4393 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4394 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4395 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4396 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
14cc7b54
SF
4397 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4398 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
d6c8cf81
PM
4399 .access = PL2_RW, .accessfn = access_tda,
4400 .type = ARM_CP_CONST, .resetvalue = 0 },
59e05530
EI
4401 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4402 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4403 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4404 .type = ARM_CP_CONST, .resetvalue = 0 },
2a5a9abd
AF
4405 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4406 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4407 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
cba517c3
PM
4408 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4409 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4410 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4411 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4412 .type = ARM_CP_CONST,
4413 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4414 .access = PL2_RW, .resetvalue = 0 },
d42e3c26
EI
4415 REGINFO_SENTINEL
4416};
4417
ce4afed8
PM
4418/* Ditto, but for registers which exist in ARMv8 but not v7 */
4419static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4420 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4421 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4422 .access = PL2_RW,
4423 .type = ARM_CP_CONST, .resetvalue = 0 },
4424 REGINFO_SENTINEL
4425};
4426
f149e3e8
EI
4427static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4428{
4429 ARMCPU *cpu = arm_env_get_cpu(env);
4430 uint64_t valid_mask = HCR_MASK;
4431
4432 if (arm_feature(env, ARM_FEATURE_EL3)) {
4433 valid_mask &= ~HCR_HCD;
77077a83
JK
4434 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4435 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4436 * However, if we're using the SMC PSCI conduit then QEMU is
4437 * effectively acting like EL3 firmware and so the guest at
4438 * EL2 should retain the ability to prevent EL1 from being
4439 * able to make SMC calls into the ersatz firmware, so in
4440 * that case HCR.TSC should be read/write.
4441 */
f149e3e8
EI
4442 valid_mask &= ~HCR_TSC;
4443 }
2d7137c1
RH
4444 if (cpu_isar_feature(aa64_lor, cpu)) {
4445 valid_mask |= HCR_TLOR;
4446 }
f149e3e8
EI
4447
4448 /* Clear RES0 bits. */
4449 value &= valid_mask;
4450
4451 /* These bits change the MMU setup:
4452 * HCR_VM enables stage 2 translation
4453 * HCR_PTW forbids certain page-table setups
4454 * HCR_DC Disables stage1 and enables stage2 translation
4455 */
ce4afed8 4456 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
d10eb08f 4457 tlb_flush(CPU(cpu));
f149e3e8 4458 }
ce4afed8 4459 env->cp15.hcr_el2 = value;
89430fc6
PM
4460
4461 /*
4462 * Updates to VI and VF require us to update the status of
4463 * virtual interrupts, which are the logical OR of these bits
4464 * and the state of the input lines from the GIC. (This requires
4465 * that we have the iothread lock, which is done by marking the
4466 * reginfo structs as ARM_CP_IO.)
4467 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4468 * possible for it to be taken immediately, because VIRQ and
4469 * VFIQ are masked unless running at EL0 or EL1, and HCR
4470 * can only be written at EL2.
4471 */
4472 g_assert(qemu_mutex_iothread_locked());
4473 arm_cpu_update_virq(cpu);
4474 arm_cpu_update_vfiq(cpu);
ce4afed8
PM
4475}
4476
4477static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4478 uint64_t value)
4479{
4480 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4481 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4482 hcr_write(env, NULL, value);
4483}
4484
4485static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4486 uint64_t value)
4487{
4488 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4489 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4490 hcr_write(env, NULL, value);
f149e3e8
EI
4491}
4492
f7778444
RH
4493/*
4494 * Return the effective value of HCR_EL2.
4495 * Bits that are not included here:
4496 * RW (read from SCR_EL3.RW as needed)
4497 */
4498uint64_t arm_hcr_el2_eff(CPUARMState *env)
4499{
4500 uint64_t ret = env->cp15.hcr_el2;
4501
4502 if (arm_is_secure_below_el3(env)) {
4503 /*
4504 * "This register has no effect if EL2 is not enabled in the
4505 * current Security state". This is ARMv8.4-SecEL2 speak for
4506 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4507 *
4508 * Prior to that, the language was "In an implementation that
4509 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4510 * as if this field is 0 for all purposes other than a direct
4511 * read or write access of HCR_EL2". With lots of enumeration
4512 * on a per-field basis. In current QEMU, this is condition
4513 * is arm_is_secure_below_el3.
4514 *
4515 * Since the v8.4 language applies to the entire register, and
4516 * appears to be backward compatible, use that.
4517 */
4518 ret = 0;
4519 } else if (ret & HCR_TGE) {
4520 /* These bits are up-to-date as of ARMv8.4. */
4521 if (ret & HCR_E2H) {
4522 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4523 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4524 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4525 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4526 } else {
4527 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4528 }
4529 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4530 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4531 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4532 HCR_TLOR);
4533 }
4534
4535 return ret;
4536}
4537
4771cd01 4538static const ARMCPRegInfo el2_cp_reginfo[] = {
f149e3e8 4539 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
89430fc6 4540 .type = ARM_CP_IO,
f149e3e8
EI
4541 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4542 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
c624ea0f 4543 .writefn = hcr_write },
ce4afed8 4544 { .name = "HCR", .state = ARM_CP_STATE_AA32,
89430fc6 4545 .type = ARM_CP_ALIAS | ARM_CP_IO,
ce4afed8
PM
4546 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4547 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
c624ea0f 4548 .writefn = hcr_writelow },
3b685ba7 4549 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 4550 .type = ARM_CP_ALIAS,
3b685ba7
EI
4551 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4552 .access = PL2_RW,
4553 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
68e78e33 4554 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
f2c30f42
EI
4555 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4556 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
cba517c3 4557 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
63b60551
EI
4558 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4559 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
cba517c3
PM
4560 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4561 .type = ARM_CP_ALIAS,
4562 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4563 .access = PL2_RW,
4564 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
3b685ba7 4565 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 4566 .type = ARM_CP_ALIAS,
3b685ba7 4567 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
4568 .access = PL2_RW,
4569 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
d79e0c06 4570 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
d42e3c26
EI
4571 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4572 .access = PL2_RW, .writefn = vbar_write,
4573 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4574 .resetvalue = 0 },
884b4dee
GB
4575 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4576 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 4577 .access = PL3_RW, .type = ARM_CP_ALIAS,
884b4dee 4578 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
c6f19164
GB
4579 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4580 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4581 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4582 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
95f949ac
EI
4583 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4584 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4585 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4586 .resetvalue = 0 },
4587 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
b5ede85b 4588 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
95f949ac
EI
4589 .access = PL2_RW, .type = ARM_CP_ALIAS,
4590 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2179ef95
PM
4591 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4592 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4593 .access = PL2_RW, .type = ARM_CP_CONST,
4594 .resetvalue = 0 },
4595 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
55b53c71 4596 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
b5ede85b 4597 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
2179ef95
PM
4598 .access = PL2_RW, .type = ARM_CP_CONST,
4599 .resetvalue = 0 },
37cd6c24
PM
4600 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4601 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4602 .access = PL2_RW, .type = ARM_CP_CONST,
4603 .resetvalue = 0 },
4604 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4605 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4606 .access = PL2_RW, .type = ARM_CP_CONST,
4607 .resetvalue = 0 },
06ec4c8c
EI
4608 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4609 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
4610 .access = PL2_RW,
4611 /* no .writefn needed as this can't cause an ASID change;
4612 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4613 */
06ec4c8c 4614 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
68e9c2fe
EI
4615 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4616 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112 4617 .type = ARM_CP_ALIAS,
68e9c2fe
EI
4618 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4619 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4620 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4621 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112
PM
4622 .access = PL2_RW,
4623 /* no .writefn needed as this can't cause an ASID change;
4624 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4625 */
68e9c2fe 4626 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
b698e9cf
EI
4627 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4628 .cp = 15, .opc1 = 6, .crm = 2,
4629 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4630 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4631 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4632 .writefn = vttbr_write },
4633 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4634 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4635 .access = PL2_RW, .writefn = vttbr_write,
4636 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
b9cb5323
EI
4637 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4638 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4639 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4640 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
ff05f37b
EI
4641 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4642 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4643 .access = PL2_RW, .resetvalue = 0,
4644 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
a57633c0
EI
4645 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4646 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4647 .access = PL2_RW, .resetvalue = 0,
4648 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4649 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4650 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
a57633c0 4651 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
541ef8c2
SS
4652 { .name = "TLBIALLNSNH",
4653 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4654 .type = ARM_CP_NO_RAW, .access = PL2_W,
4655 .writefn = tlbiall_nsnh_write },
4656 { .name = "TLBIALLNSNHIS",
4657 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4658 .type = ARM_CP_NO_RAW, .access = PL2_W,
4659 .writefn = tlbiall_nsnh_is_write },
4660 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4661 .type = ARM_CP_NO_RAW, .access = PL2_W,
4662 .writefn = tlbiall_hyp_write },
4663 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4664 .type = ARM_CP_NO_RAW, .access = PL2_W,
4665 .writefn = tlbiall_hyp_is_write },
4666 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4667 .type = ARM_CP_NO_RAW, .access = PL2_W,
4668 .writefn = tlbimva_hyp_write },
4669 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4670 .type = ARM_CP_NO_RAW, .access = PL2_W,
4671 .writefn = tlbimva_hyp_is_write },
51da9014
EI
4672 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4673 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4674 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 4675 .writefn = tlbi_aa64_alle2_write },
8742d49d
EI
4676 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4677 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4678 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 4679 .writefn = tlbi_aa64_vae2_write },
2bfb9d75
PM
4680 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4681 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4682 .access = PL2_W, .type = ARM_CP_NO_RAW,
4683 .writefn = tlbi_aa64_vae2_write },
4684 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4685 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4686 .access = PL2_W, .type = ARM_CP_NO_RAW,
4687 .writefn = tlbi_aa64_alle2is_write },
8742d49d
EI
4688 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4689 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4690 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 4691 .writefn = tlbi_aa64_vae2is_write },
2bfb9d75
PM
4692 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4693 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4694 .access = PL2_W, .type = ARM_CP_NO_RAW,
4695 .writefn = tlbi_aa64_vae2is_write },
edac4d8a 4696#ifndef CONFIG_USER_ONLY
2a47df95
PM
4697 /* Unlike the other EL2-related AT operations, these must
4698 * UNDEF from EL3 if EL2 is not implemented, which is why we
4699 * define them here rather than with the rest of the AT ops.
4700 */
4701 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4702 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4703 .access = PL2_W, .accessfn = at_s1e2_access,
4704 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4705 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4706 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4707 .access = PL2_W, .accessfn = at_s1e2_access,
4708 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
14db7fe0
PM
4709 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4710 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4711 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4712 * to behave as if SCR.NS was 1.
4713 */
4714 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4715 .access = PL2_W,
4716 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4717 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4718 .access = PL2_W,
4719 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
0b6440af
EI
4720 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4721 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4722 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4723 * reset values as IMPDEF. We choose to reset to 3 to comply with
4724 * both ARMv7 and ARMv8.
4725 */
4726 .access = PL2_RW, .resetvalue = 3,
4727 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
edac4d8a
EI
4728 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4729 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4730 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4731 .writefn = gt_cntvoff_write,
4732 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4733 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4734 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4735 .writefn = gt_cntvoff_write,
4736 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
b0e66d95
EI
4737 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4738 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4739 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4740 .type = ARM_CP_IO, .access = PL2_RW,
4741 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4742 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4743 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4744 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4745 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4746 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4747 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
d44ec156 4748 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
b0e66d95
EI
4749 .resetfn = gt_hyp_timer_reset,
4750 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4751 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4752 .type = ARM_CP_IO,
4753 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4754 .access = PL2_RW,
4755 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4756 .resetvalue = 0,
4757 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
edac4d8a 4758#endif
14cc7b54
SF
4759 /* The only field of MDCR_EL2 that has a defined architectural reset value
4760 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5ecdd3e4 4761 * don't implement any PMU event counters, so using zero as a reset
14cc7b54
SF
4762 * value for MDCR_EL2 is okay
4763 */
4764 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4765 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4766 .access = PL2_RW, .resetvalue = 0,
4767 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
59e05530
EI
4768 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4769 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4770 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4771 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4772 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4773 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4774 .access = PL2_RW,
4775 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
2a5a9abd
AF
4776 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4777 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4778 .access = PL2_RW,
4779 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3b685ba7
EI
4780 REGINFO_SENTINEL
4781};
4782
ce4afed8
PM
4783static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4784 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
89430fc6 4785 .type = ARM_CP_ALIAS | ARM_CP_IO,
ce4afed8
PM
4786 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4787 .access = PL2_RW,
4788 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4789 .writefn = hcr_writehigh },
4790 REGINFO_SENTINEL
4791};
4792
2f027fc5
PM
4793static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4794 bool isread)
4795{
4796 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4797 * At Secure EL1 it traps to EL3.
4798 */
4799 if (arm_current_el(env) == 3) {
4800 return CP_ACCESS_OK;
4801 }
4802 if (arm_is_secure_below_el3(env)) {
4803 return CP_ACCESS_TRAP_EL3;
4804 }
4805 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4806 if (isread) {
4807 return CP_ACCESS_OK;
4808 }
4809 return CP_ACCESS_TRAP_UNCATEGORIZED;
4810}
4811
60fb1a87
GB
4812static const ARMCPRegInfo el3_cp_reginfo[] = {
4813 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4814 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4815 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4816 .resetvalue = 0, .writefn = scr_write },
7a0e58fa 4817 { .name = "SCR", .type = ARM_CP_ALIAS,
60fb1a87 4818 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
efe4a274
PM
4819 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4820 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
b061a82b 4821 .writefn = scr_write },
60fb1a87
GB
4822 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4823 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4824 .access = PL3_RW, .resetvalue = 0,
4825 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4826 { .name = "SDER",
4827 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4828 .access = PL3_RW, .resetvalue = 0,
4829 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
60fb1a87 4830 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
efe4a274
PM
4831 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4832 .writefn = vbar_write, .resetvalue = 0,
60fb1a87 4833 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
7dd8c9af
FA
4834 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4835 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
f478847f 4836 .access = PL3_RW, .resetvalue = 0,
7dd8c9af 4837 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
11f136ee
FA
4838 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4839 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
4840 .access = PL3_RW,
4841 /* no .writefn needed as this can't cause an ASID change;
811595a2
PM
4842 * we must provide a .raw_writefn and .resetfn because we handle
4843 * reset and migration for the AArch32 TTBCR(S), which might be
4844 * using mask and base_mask.
6459b94c 4845 */
811595a2 4846 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee 4847 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
81547d66 4848 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 4849 .type = ARM_CP_ALIAS,
81547d66
EI
4850 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4851 .access = PL3_RW,
4852 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
f2c30f42 4853 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
4854 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4855 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
63b60551
EI
4856 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4857 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4858 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
81547d66 4859 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 4860 .type = ARM_CP_ALIAS,
81547d66 4861 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
4862 .access = PL3_RW,
4863 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
a1ba125c
EI
4864 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4865 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4866 .access = PL3_RW, .writefn = vbar_write,
4867 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4868 .resetvalue = 0 },
c6f19164
GB
4869 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4870 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4871 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4872 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4cfb8ad8
PM
4873 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4874 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4875 .access = PL3_RW, .resetvalue = 0,
4876 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
2179ef95
PM
4877 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4878 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4879 .access = PL3_RW, .type = ARM_CP_CONST,
4880 .resetvalue = 0 },
37cd6c24
PM
4881 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4882 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4883 .access = PL3_RW, .type = ARM_CP_CONST,
4884 .resetvalue = 0 },
4885 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4886 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4887 .access = PL3_RW, .type = ARM_CP_CONST,
4888 .resetvalue = 0 },
43efaa33
PM
4889 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4890 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4891 .access = PL3_W, .type = ARM_CP_NO_RAW,
4892 .writefn = tlbi_aa64_alle3is_write },
4893 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4894 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4895 .access = PL3_W, .type = ARM_CP_NO_RAW,
4896 .writefn = tlbi_aa64_vae3is_write },
4897 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4898 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4899 .access = PL3_W, .type = ARM_CP_NO_RAW,
4900 .writefn = tlbi_aa64_vae3is_write },
4901 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4902 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4903 .access = PL3_W, .type = ARM_CP_NO_RAW,
4904 .writefn = tlbi_aa64_alle3_write },
4905 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4906 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4907 .access = PL3_W, .type = ARM_CP_NO_RAW,
4908 .writefn = tlbi_aa64_vae3_write },
4909 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4910 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4911 .access = PL3_W, .type = ARM_CP_NO_RAW,
4912 .writefn = tlbi_aa64_vae3_write },
0f1a3b24
FA
4913 REGINFO_SENTINEL
4914};
4915
3f208fd7
PM
4916static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4917 bool isread)
7da845b0
PM
4918{
4919 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4920 * but the AArch32 CTR has its own reginfo struct)
4921 */
137feaa9 4922 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7da845b0
PM
4923 return CP_ACCESS_TRAP;
4924 }
4925 return CP_ACCESS_OK;
4926}
4927
1424ca8d
DM
4928static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4929 uint64_t value)
4930{
4931 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4932 * read via a bit in OSLSR_EL1.
4933 */
4934 int oslock;
4935
4936 if (ri->state == ARM_CP_STATE_AA32) {
4937 oslock = (value == 0xC5ACCE55);
4938 } else {
4939 oslock = value & 1;
4940 }
4941
4942 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4943}
4944
50300698 4945static const ARMCPRegInfo debug_cp_reginfo[] = {
50300698 4946 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
10aae104
PM
4947 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4948 * unlike DBGDRAR it is never accessible from EL0.
4949 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4950 * accessor.
50300698
PM
4951 */
4952 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
4953 .access = PL0_R, .accessfn = access_tdra,
4954 .type = ARM_CP_CONST, .resetvalue = 0 },
10aae104
PM
4955 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4956 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
91b0a238
PM
4957 .access = PL1_R, .accessfn = access_tdra,
4958 .type = ARM_CP_CONST, .resetvalue = 0 },
50300698 4959 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
4960 .access = PL0_R, .accessfn = access_tdra,
4961 .type = ARM_CP_CONST, .resetvalue = 0 },
17a9eb53 4962 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
10aae104
PM
4963 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4964 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
d6c8cf81 4965 .access = PL1_RW, .accessfn = access_tda,
0e5e8935
PM
4966 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4967 .resetvalue = 0 },
5e8b12ff
PM
4968 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4969 * We don't implement the configurable EL0 access.
4970 */
4971 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4972 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7a0e58fa 4973 .type = ARM_CP_ALIAS,
d6c8cf81 4974 .access = PL1_R, .accessfn = access_tda,
b061a82b 4975 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
10aae104
PM
4976 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4977 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1424ca8d 4978 .access = PL1_W, .type = ARM_CP_NO_RAW,
187f678d 4979 .accessfn = access_tdosa,
1424ca8d
DM
4980 .writefn = oslar_write },
4981 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4982 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4983 .access = PL1_R, .resetvalue = 10,
187f678d 4984 .accessfn = access_tdosa,
1424ca8d 4985 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5e8b12ff
PM
4986 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4987 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4988 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
187f678d
PM
4989 .access = PL1_RW, .accessfn = access_tdosa,
4990 .type = ARM_CP_NOP },
5e8b12ff
PM
4991 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4992 * implement vector catch debug events yet.
4993 */
4994 { .name = "DBGVCR",
4995 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
d6c8cf81
PM
4996 .access = PL1_RW, .accessfn = access_tda,
4997 .type = ARM_CP_NOP },
4d2ec4da
PM
4998 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4999 * to save and restore a 32-bit guest's DBGVCR)
5000 */
5001 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5002 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5003 .access = PL2_RW, .accessfn = access_tda,
5004 .type = ARM_CP_NOP },
5dbdc434
PM
5005 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5006 * Channel but Linux may try to access this register. The 32-bit
5007 * alias is DBGDCCINT.
5008 */
5009 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5010 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5011 .access = PL1_RW, .accessfn = access_tda,
5012 .type = ARM_CP_NOP },
50300698
PM
5013 REGINFO_SENTINEL
5014};
5015
5016static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5017 /* 64 bit access versions of the (dummy) debug registers */
5018 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5019 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5020 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5021 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5022 REGINFO_SENTINEL
5023};
5024
60eed086
RH
5025/* Return the exception level to which exceptions should be taken
5026 * via SVEAccessTrap. If an exception should be routed through
5027 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5028 * take care of raising that exception.
5029 * C.f. the ARM pseudocode function CheckSVEEnabled.
5be5e8ed 5030 */
ced31551 5031int sve_exception_el(CPUARMState *env, int el)
5be5e8ed
RH
5032{
5033#ifndef CONFIG_USER_ONLY
2de7ace2 5034 if (el <= 1) {
60eed086
RH
5035 bool disabled = false;
5036
5037 /* The CPACR.ZEN controls traps to EL1:
5038 * 0, 2 : trap EL0 and EL1 accesses
5039 * 1 : trap only EL0 accesses
5040 * 3 : trap no accesses
5041 */
5042 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5043 disabled = true;
5044 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
2de7ace2 5045 disabled = el == 0;
5be5e8ed 5046 }
60eed086
RH
5047 if (disabled) {
5048 /* route_to_el2 */
5049 return (arm_feature(env, ARM_FEATURE_EL2)
7c208e0f 5050 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5be5e8ed 5051 }
5be5e8ed 5052
60eed086
RH
5053 /* Check CPACR.FPEN. */
5054 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5055 disabled = true;
5056 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
2de7ace2 5057 disabled = el == 0;
5be5e8ed 5058 }
60eed086
RH
5059 if (disabled) {
5060 return 0;
5be5e8ed 5061 }
5be5e8ed
RH
5062 }
5063
60eed086
RH
5064 /* CPTR_EL2. Since TZ and TFP are positive,
5065 * they will be zero when EL2 is not present.
5066 */
2de7ace2 5067 if (el <= 2 && !arm_is_secure_below_el3(env)) {
60eed086
RH
5068 if (env->cp15.cptr_el[2] & CPTR_TZ) {
5069 return 2;
5070 }
5071 if (env->cp15.cptr_el[2] & CPTR_TFP) {
5072 return 0;
5073 }
5be5e8ed
RH
5074 }
5075
60eed086
RH
5076 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5077 if (arm_feature(env, ARM_FEATURE_EL3)
5078 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5be5e8ed
RH
5079 return 3;
5080 }
5081#endif
5082 return 0;
5083}
5084
0ab5953b
RH
5085/*
5086 * Given that SVE is enabled, return the vector length for EL.
5087 */
ced31551 5088uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
0ab5953b
RH
5089{
5090 ARMCPU *cpu = arm_env_get_cpu(env);
5091 uint32_t zcr_len = cpu->sve_max_vq - 1;
5092
5093 if (el <= 1) {
5094 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5095 }
5096 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5097 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5098 }
5099 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
5100 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5101 }
5102 return zcr_len;
5103}
5104
5be5e8ed
RH
5105static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5106 uint64_t value)
5107{
0ab5953b
RH
5108 int cur_el = arm_current_el(env);
5109 int old_len = sve_zcr_len_for_el(env, cur_el);
5110 int new_len;
5111
5be5e8ed
RH
5112 /* Bits other than [3:0] are RAZ/WI. */
5113 raw_write(env, ri, value & 0xf);
0ab5953b
RH
5114
5115 /*
5116 * Because we arrived here, we know both FP and SVE are enabled;
5117 * otherwise we would have trapped access to the ZCR_ELn register.
5118 */
5119 new_len = sve_zcr_len_for_el(env, cur_el);
5120 if (new_len < old_len) {
5121 aarch64_sve_narrow_vq(env, new_len + 1);
5122 }
5be5e8ed
RH
5123}
5124
5125static const ARMCPRegInfo zcr_el1_reginfo = {
5126 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5127 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
11d7870b 5128 .access = PL1_RW, .type = ARM_CP_SVE,
5be5e8ed
RH
5129 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5130 .writefn = zcr_write, .raw_writefn = raw_write
5131};
5132
5133static const ARMCPRegInfo zcr_el2_reginfo = {
5134 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5135 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
11d7870b 5136 .access = PL2_RW, .type = ARM_CP_SVE,
5be5e8ed
RH
5137 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5138 .writefn = zcr_write, .raw_writefn = raw_write
5139};
5140
5141static const ARMCPRegInfo zcr_no_el2_reginfo = {
5142 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5143 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
11d7870b 5144 .access = PL2_RW, .type = ARM_CP_SVE,
5be5e8ed
RH
5145 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5146};
5147
5148static const ARMCPRegInfo zcr_el3_reginfo = {
5149 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5150 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
11d7870b 5151 .access = PL3_RW, .type = ARM_CP_SVE,
5be5e8ed
RH
5152 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5153 .writefn = zcr_write, .raw_writefn = raw_write
5154};
5155
9ee98ce8
PM
5156void hw_watchpoint_update(ARMCPU *cpu, int n)
5157{
5158 CPUARMState *env = &cpu->env;
5159 vaddr len = 0;
5160 vaddr wvr = env->cp15.dbgwvr[n];
5161 uint64_t wcr = env->cp15.dbgwcr[n];
5162 int mask;
5163 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5164
5165 if (env->cpu_watchpoint[n]) {
5166 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5167 env->cpu_watchpoint[n] = NULL;
5168 }
5169
5170 if (!extract64(wcr, 0, 1)) {
5171 /* E bit clear : watchpoint disabled */
5172 return;
5173 }
5174
5175 switch (extract64(wcr, 3, 2)) {
5176 case 0:
5177 /* LSC 00 is reserved and must behave as if the wp is disabled */
5178 return;
5179 case 1:
5180 flags |= BP_MEM_READ;
5181 break;
5182 case 2:
5183 flags |= BP_MEM_WRITE;
5184 break;
5185 case 3:
5186 flags |= BP_MEM_ACCESS;
5187 break;
5188 }
5189
5190 /* Attempts to use both MASK and BAS fields simultaneously are
5191 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5192 * thus generating a watchpoint for every byte in the masked region.
5193 */
5194 mask = extract64(wcr, 24, 4);
5195 if (mask == 1 || mask == 2) {
5196 /* Reserved values of MASK; we must act as if the mask value was
5197 * some non-reserved value, or as if the watchpoint were disabled.
5198 * We choose the latter.
5199 */
5200 return;
5201 } else if (mask) {
5202 /* Watchpoint covers an aligned area up to 2GB in size */
5203 len = 1ULL << mask;
5204 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5205 * whether the watchpoint fires when the unmasked bits match; we opt
5206 * to generate the exceptions.
5207 */
5208 wvr &= ~(len - 1);
5209 } else {
5210 /* Watchpoint covers bytes defined by the byte address select bits */
5211 int bas = extract64(wcr, 5, 8);
5212 int basstart;
5213
5214 if (bas == 0) {
5215 /* This must act as if the watchpoint is disabled */
5216 return;
5217 }
5218
5219 if (extract64(wvr, 2, 1)) {
5220 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5221 * ignored, and BAS[3:0] define which bytes to watch.
5222 */
5223 bas &= 0xf;
5224 }
5225 /* The BAS bits are supposed to be programmed to indicate a contiguous
5226 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5227 * we fire for each byte in the word/doubleword addressed by the WVR.
5228 * We choose to ignore any non-zero bits after the first range of 1s.
5229 */
5230 basstart = ctz32(bas);
5231 len = cto32(bas >> basstart);
5232 wvr += basstart;
5233 }
5234
5235 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5236 &env->cpu_watchpoint[n]);
5237}
5238
5239void hw_watchpoint_update_all(ARMCPU *cpu)
5240{
5241 int i;
5242 CPUARMState *env = &cpu->env;
5243
5244 /* Completely clear out existing QEMU watchpoints and our array, to
5245 * avoid possible stale entries following migration load.
5246 */
5247 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5248 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5249
5250 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5251 hw_watchpoint_update(cpu, i);
5252 }
5253}
5254
5255static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5256 uint64_t value)
5257{
5258 ARMCPU *cpu = arm_env_get_cpu(env);
5259 int i = ri->crm;
5260
5261 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5262 * register reads and behaves as if values written are sign extended.
5263 * Bits [1:0] are RES0.
5264 */
5265 value = sextract64(value, 0, 49) & ~3ULL;
5266
5267 raw_write(env, ri, value);
5268 hw_watchpoint_update(cpu, i);
5269}
5270
5271static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5272 uint64_t value)
5273{
5274 ARMCPU *cpu = arm_env_get_cpu(env);
5275 int i = ri->crm;
5276
5277 raw_write(env, ri, value);
5278 hw_watchpoint_update(cpu, i);
5279}
5280
46747d15
PM
5281void hw_breakpoint_update(ARMCPU *cpu, int n)
5282{
5283 CPUARMState *env = &cpu->env;
5284 uint64_t bvr = env->cp15.dbgbvr[n];
5285 uint64_t bcr = env->cp15.dbgbcr[n];
5286 vaddr addr;
5287 int bt;
5288 int flags = BP_CPU;
5289
5290 if (env->cpu_breakpoint[n]) {
5291 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5292 env->cpu_breakpoint[n] = NULL;
5293 }
5294
5295 if (!extract64(bcr, 0, 1)) {
5296 /* E bit clear : watchpoint disabled */
5297 return;
5298 }
5299
5300 bt = extract64(bcr, 20, 4);
5301
5302 switch (bt) {
5303 case 4: /* unlinked address mismatch (reserved if AArch64) */
5304 case 5: /* linked address mismatch (reserved if AArch64) */
5305 qemu_log_mask(LOG_UNIMP,
0221c8fd 5306 "arm: address mismatch breakpoint types not implemented\n");
46747d15
PM
5307 return;
5308 case 0: /* unlinked address match */
5309 case 1: /* linked address match */
5310 {
5311 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5312 * we behave as if the register was sign extended. Bits [1:0] are
5313 * RES0. The BAS field is used to allow setting breakpoints on 16
5314 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5315 * a bp will fire if the addresses covered by the bp and the addresses
5316 * covered by the insn overlap but the insn doesn't start at the
5317 * start of the bp address range. We choose to require the insn and
5318 * the bp to have the same address. The constraints on writing to
5319 * BAS enforced in dbgbcr_write mean we have only four cases:
5320 * 0b0000 => no breakpoint
5321 * 0b0011 => breakpoint on addr
5322 * 0b1100 => breakpoint on addr + 2
5323 * 0b1111 => breakpoint on addr
5324 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5325 */
5326 int bas = extract64(bcr, 5, 4);
5327 addr = sextract64(bvr, 0, 49) & ~3ULL;
5328 if (bas == 0) {
5329 return;
5330 }
5331 if (bas == 0xc) {
5332 addr += 2;
5333 }
5334 break;
5335 }
5336 case 2: /* unlinked context ID match */
5337 case 8: /* unlinked VMID match (reserved if no EL2) */
5338 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5339 qemu_log_mask(LOG_UNIMP,
0221c8fd 5340 "arm: unlinked context breakpoint types not implemented\n");
46747d15
PM
5341 return;
5342 case 9: /* linked VMID match (reserved if no EL2) */
5343 case 11: /* linked context ID and VMID match (reserved if no EL2) */
5344 case 3: /* linked context ID match */
5345 default:
5346 /* We must generate no events for Linked context matches (unless
5347 * they are linked to by some other bp/wp, which is handled in
5348 * updates for the linking bp/wp). We choose to also generate no events
5349 * for reserved values.
5350 */
5351 return;
5352 }
5353
5354 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5355}
5356
5357void hw_breakpoint_update_all(ARMCPU *cpu)
5358{
5359 int i;
5360 CPUARMState *env = &cpu->env;
5361
5362 /* Completely clear out existing QEMU breakpoints and our array, to
5363 * avoid possible stale entries following migration load.
5364 */
5365 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5366 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5367
5368 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5369 hw_breakpoint_update(cpu, i);
5370 }
5371}
5372
5373static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5374 uint64_t value)
5375{
5376 ARMCPU *cpu = arm_env_get_cpu(env);
5377 int i = ri->crm;
5378
5379 raw_write(env, ri, value);
5380 hw_breakpoint_update(cpu, i);
5381}
5382
5383static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5384 uint64_t value)
5385{
5386 ARMCPU *cpu = arm_env_get_cpu(env);
5387 int i = ri->crm;
5388
5389 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5390 * copy of BAS[0].
5391 */
5392 value = deposit64(value, 6, 1, extract64(value, 5, 1));
5393 value = deposit64(value, 8, 1, extract64(value, 7, 1));
5394
5395 raw_write(env, ri, value);
5396 hw_breakpoint_update(cpu, i);
5397}
5398
50300698 5399static void define_debug_regs(ARMCPU *cpu)
0b45451e 5400{
50300698
PM
5401 /* Define v7 and v8 architectural debug registers.
5402 * These are just dummy implementations for now.
0b45451e
PM
5403 */
5404 int i;
3ff6fc91 5405 int wrps, brps, ctx_cmps;
48eb3ae6
PM
5406 ARMCPRegInfo dbgdidr = {
5407 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
d6c8cf81
PM
5408 .access = PL0_R, .accessfn = access_tda,
5409 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
48eb3ae6
PM
5410 };
5411
3ff6fc91 5412 /* Note that all these register fields hold "number of Xs minus 1". */
48eb3ae6
PM
5413 brps = extract32(cpu->dbgdidr, 24, 4);
5414 wrps = extract32(cpu->dbgdidr, 28, 4);
3ff6fc91
PM
5415 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5416
5417 assert(ctx_cmps <= brps);
48eb3ae6
PM
5418
5419 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5420 * of the debug registers such as number of breakpoints;
5421 * check that if they both exist then they agree.
5422 */
5423 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5424 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5425 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3ff6fc91 5426 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
48eb3ae6 5427 }
0b45451e 5428
48eb3ae6 5429 define_one_arm_cp_reg(cpu, &dbgdidr);
50300698
PM
5430 define_arm_cp_regs(cpu, debug_cp_reginfo);
5431
5432 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5433 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5434 }
5435
48eb3ae6 5436 for (i = 0; i < brps + 1; i++) {
0b45451e 5437 ARMCPRegInfo dbgregs[] = {
10aae104
PM
5438 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5439 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
d6c8cf81 5440 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
5441 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5442 .writefn = dbgbvr_write, .raw_writefn = raw_write
5443 },
10aae104
PM
5444 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5445 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
d6c8cf81 5446 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
5447 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5448 .writefn = dbgbcr_write, .raw_writefn = raw_write
5449 },
48eb3ae6
PM
5450 REGINFO_SENTINEL
5451 };
5452 define_arm_cp_regs(cpu, dbgregs);
5453 }
5454
5455 for (i = 0; i < wrps + 1; i++) {
5456 ARMCPRegInfo dbgregs[] = {
10aae104
PM
5457 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5458 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
d6c8cf81 5459 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
5460 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5461 .writefn = dbgwvr_write, .raw_writefn = raw_write
5462 },
10aae104
PM
5463 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5464 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
d6c8cf81 5465 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
5466 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5467 .writefn = dbgwcr_write, .raw_writefn = raw_write
5468 },
5469 REGINFO_SENTINEL
0b45451e
PM
5470 };
5471 define_arm_cp_regs(cpu, dbgregs);
5472 }
5473}
5474
96a8b92e
PM
5475/* We don't know until after realize whether there's a GICv3
5476 * attached, and that is what registers the gicv3 sysregs.
5477 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5478 * at runtime.
5479 */
5480static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5481{
5482 ARMCPU *cpu = arm_env_get_cpu(env);
5483 uint64_t pfr1 = cpu->id_pfr1;
5484
5485 if (env->gicv3state) {
5486 pfr1 |= 1 << 28;
5487 }
5488 return pfr1;
5489}
5490
5491static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5492{
5493 ARMCPU *cpu = arm_env_get_cpu(env);
47576b94 5494 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
96a8b92e
PM
5495
5496 if (env->gicv3state) {
5497 pfr0 |= 1 << 24;
5498 }
5499 return pfr0;
5500}
5501
2d7137c1
RH
5502/* Shared logic between LORID and the rest of the LOR* registers.
5503 * Secure state has already been delt with.
5504 */
5505static CPAccessResult access_lor_ns(CPUARMState *env)
5506{
5507 int el = arm_current_el(env);
5508
5509 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5510 return CP_ACCESS_TRAP_EL2;
5511 }
5512 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5513 return CP_ACCESS_TRAP_EL3;
5514 }
5515 return CP_ACCESS_OK;
5516}
5517
5518static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5519 bool isread)
5520{
5521 if (arm_is_secure_below_el3(env)) {
5522 /* Access ok in secure mode. */
5523 return CP_ACCESS_OK;
5524 }
5525 return access_lor_ns(env);
5526}
5527
5528static CPAccessResult access_lor_other(CPUARMState *env,
5529 const ARMCPRegInfo *ri, bool isread)
5530{
5531 if (arm_is_secure_below_el3(env)) {
5532 /* Access denied in secure mode. */
5533 return CP_ACCESS_TRAP;
5534 }
5535 return access_lor_ns(env);
5536}
5537
967aa94f
RH
5538#ifdef TARGET_AARCH64
5539static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5540 bool isread)
5541{
5542 int el = arm_current_el(env);
5543
5544 if (el < 2 &&
5545 arm_feature(env, ARM_FEATURE_EL2) &&
5546 !(arm_hcr_el2_eff(env) & HCR_APK)) {
5547 return CP_ACCESS_TRAP_EL2;
5548 }
5549 if (el < 3 &&
5550 arm_feature(env, ARM_FEATURE_EL3) &&
5551 !(env->cp15.scr_el3 & SCR_APK)) {
5552 return CP_ACCESS_TRAP_EL3;
5553 }
5554 return CP_ACCESS_OK;
5555}
5556
5557static const ARMCPRegInfo pauth_reginfo[] = {
5558 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5559 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5560 .access = PL1_RW, .accessfn = access_pauth,
5561 .fieldoffset = offsetof(CPUARMState, apda_key.lo) },
5562 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5563 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5564 .access = PL1_RW, .accessfn = access_pauth,
5565 .fieldoffset = offsetof(CPUARMState, apda_key.hi) },
5566 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5567 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5568 .access = PL1_RW, .accessfn = access_pauth,
5569 .fieldoffset = offsetof(CPUARMState, apdb_key.lo) },
5570 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5571 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5572 .access = PL1_RW, .accessfn = access_pauth,
5573 .fieldoffset = offsetof(CPUARMState, apdb_key.hi) },
5574 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5575 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5576 .access = PL1_RW, .accessfn = access_pauth,
5577 .fieldoffset = offsetof(CPUARMState, apga_key.lo) },
5578 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5579 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5580 .access = PL1_RW, .accessfn = access_pauth,
5581 .fieldoffset = offsetof(CPUARMState, apga_key.hi) },
5582 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5583 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5584 .access = PL1_RW, .accessfn = access_pauth,
5585 .fieldoffset = offsetof(CPUARMState, apia_key.lo) },
5586 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5587 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5588 .access = PL1_RW, .accessfn = access_pauth,
5589 .fieldoffset = offsetof(CPUARMState, apia_key.hi) },
5590 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5591 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5592 .access = PL1_RW, .accessfn = access_pauth,
5593 .fieldoffset = offsetof(CPUARMState, apib_key.lo) },
5594 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5595 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5596 .access = PL1_RW, .accessfn = access_pauth,
5597 .fieldoffset = offsetof(CPUARMState, apib_key.hi) },
5598 REGINFO_SENTINEL
5599};
5600#endif
5601
2ceb98c0
PM
5602void register_cp_regs_for_features(ARMCPU *cpu)
5603{
5604 /* Register all the coprocessor registers based on feature bits */
5605 CPUARMState *env = &cpu->env;
5606 if (arm_feature(env, ARM_FEATURE_M)) {
5607 /* M profile has no coprocessor registers */
5608 return;
5609 }
5610
e9aa6c21 5611 define_arm_cp_regs(cpu, cp_reginfo);
9449fdf6
PM
5612 if (!arm_feature(env, ARM_FEATURE_V8)) {
5613 /* Must go early as it is full of wildcards that may be
5614 * overridden by later definitions.
5615 */
5616 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5617 }
5618
7d57f408 5619 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
5620 /* The ID registers all have impdef reset values */
5621 ARMCPRegInfo v6_idregs[] = {
0ff644a7
PM
5622 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5623 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5624 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 5625 .resetvalue = cpu->id_pfr0 },
96a8b92e
PM
5626 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5627 * the value of the GIC field until after we define these regs.
5628 */
0ff644a7
PM
5629 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5630 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
96a8b92e
PM
5631 .access = PL1_R, .type = ARM_CP_NO_RAW,
5632 .readfn = id_pfr1_read,
5633 .writefn = arm_cp_write_ignore },
0ff644a7
PM
5634 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5636 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 5637 .resetvalue = cpu->id_dfr0 },
0ff644a7
PM
5638 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5639 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5640 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 5641 .resetvalue = cpu->id_afr0 },
0ff644a7
PM
5642 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5643 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5644 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 5645 .resetvalue = cpu->id_mmfr0 },
0ff644a7
PM
5646 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5648 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 5649 .resetvalue = cpu->id_mmfr1 },
0ff644a7
PM
5650 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5651 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5652 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 5653 .resetvalue = cpu->id_mmfr2 },
0ff644a7
PM
5654 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5655 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5656 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 5657 .resetvalue = cpu->id_mmfr3 },
0ff644a7
PM
5658 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5659 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5660 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5661 .resetvalue = cpu->isar.id_isar0 },
0ff644a7
PM
5662 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5663 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5664 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5665 .resetvalue = cpu->isar.id_isar1 },
0ff644a7
PM
5666 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5667 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5668 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5669 .resetvalue = cpu->isar.id_isar2 },
0ff644a7
PM
5670 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5672 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5673 .resetvalue = cpu->isar.id_isar3 },
0ff644a7
PM
5674 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5675 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5676 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5677 .resetvalue = cpu->isar.id_isar4 },
0ff644a7
PM
5678 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5679 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5680 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5681 .resetvalue = cpu->isar.id_isar5 },
e20d84c1
PM
5682 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5683 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5684 .access = PL1_R, .type = ARM_CP_CONST,
5685 .resetvalue = cpu->id_mmfr4 },
802abf40 5686 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
e20d84c1
PM
5687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5688 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5689 .resetvalue = cpu->isar.id_isar6 },
8515a092
PM
5690 REGINFO_SENTINEL
5691 };
5692 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
5693 define_arm_cp_regs(cpu, v6_cp_reginfo);
5694 } else {
5695 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5696 }
4d31c596
PM
5697 if (arm_feature(env, ARM_FEATURE_V6K)) {
5698 define_arm_cp_regs(cpu, v6k_cp_reginfo);
5699 }
5e5cf9e3 5700 if (arm_feature(env, ARM_FEATURE_V7MP) &&
452a0955 5701 !arm_feature(env, ARM_FEATURE_PMSA)) {
995939a6
PM
5702 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5703 }
327dd510
AL
5704 if (arm_feature(env, ARM_FEATURE_V7VE)) {
5705 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
5706 }
e9aa6c21 5707 if (arm_feature(env, ARM_FEATURE_V7)) {
200ac0ef 5708 /* v7 performance monitor control register: same implementor
ac689a2e
AL
5709 * field as main ID register, and we implement four counters in
5710 * addition to the cycle count register.
200ac0ef 5711 */
ac689a2e 5712 unsigned int i, pmcrn = 4;
200ac0ef
PM
5713 ARMCPRegInfo pmcr = {
5714 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
8521466b 5715 .access = PL0_RW,
7a0e58fa 5716 .type = ARM_CP_IO | ARM_CP_ALIAS,
8521466b 5717 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
fcd25206
PM
5718 .accessfn = pmreg_access, .writefn = pmcr_write,
5719 .raw_writefn = raw_write,
200ac0ef 5720 };
8521466b
AF
5721 ARMCPRegInfo pmcr64 = {
5722 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5723 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5724 .access = PL0_RW, .accessfn = pmreg_access,
5725 .type = ARM_CP_IO,
5726 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
ac689a2e 5727 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
8521466b
AF
5728 .writefn = pmcr_write, .raw_writefn = raw_write,
5729 };
7c2cb42b 5730 define_one_arm_cp_reg(cpu, &pmcr);
8521466b 5731 define_one_arm_cp_reg(cpu, &pmcr64);
5ecdd3e4
AL
5732 for (i = 0; i < pmcrn; i++) {
5733 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
5734 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
5735 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
5736 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
5737 ARMCPRegInfo pmev_regs[] = {
5738 { .name = pmevcntr_name, .cp = 15, .crn = 15,
5739 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5740 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5741 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5742 .accessfn = pmreg_access },
5743 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
5744 .opc0 = 3, .opc1 = 3, .crn = 15, .crm = 8 | (3 & (i >> 3)),
5745 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5746 .type = ARM_CP_IO,
5747 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5748 .raw_readfn = pmevcntr_rawread,
5749 .raw_writefn = pmevcntr_rawwrite },
5750 { .name = pmevtyper_name, .cp = 15, .crn = 15,
5751 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5752 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5753 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5754 .accessfn = pmreg_access },
5755 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
5756 .opc0 = 3, .opc1 = 3, .crn = 15, .crm = 12 | (3 & (i >> 3)),
5757 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5758 .type = ARM_CP_IO,
5759 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5760 .raw_writefn = pmevtyper_rawwrite },
5761 REGINFO_SENTINEL
5762 };
5763 define_arm_cp_regs(cpu, pmev_regs);
5764 g_free(pmevcntr_name);
5765 g_free(pmevcntr_el0_name);
5766 g_free(pmevtyper_name);
5767 g_free(pmevtyper_el0_name);
5768 }
776d4e5c 5769 ARMCPRegInfo clidr = {
7da845b0
PM
5770 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
5771 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
776d4e5c
PM
5772 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
5773 };
776d4e5c 5774 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 5775 define_arm_cp_regs(cpu, v7_cp_reginfo);
50300698 5776 define_debug_regs(cpu);
7d57f408
PM
5777 } else {
5778 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 5779 }
cad86737
AL
5780 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
5781 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
5782 ARMCPRegInfo v81_pmu_regs[] = {
5783 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
5784 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
5785 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5786 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
5787 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
5788 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
5789 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5790 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
5791 REGINFO_SENTINEL
5792 };
5793 define_arm_cp_regs(cpu, v81_pmu_regs);
5794 }
b0d2b7d0 5795 if (arm_feature(env, ARM_FEATURE_V8)) {
e20d84c1
PM
5796 /* AArch64 ID registers, which all have impdef reset values.
5797 * Note that within the ID register ranges the unused slots
5798 * must all RAZ, not UNDEF; future architecture versions may
5799 * define new registers here.
5800 */
e60cef86 5801 ARMCPRegInfo v8_idregs[] = {
96a8b92e
PM
5802 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
5803 * know the right value for the GIC field until after we
5804 * define these regs.
5805 */
e60cef86
PM
5806 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
5807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
96a8b92e
PM
5808 .access = PL1_R, .type = ARM_CP_NO_RAW,
5809 .readfn = id_aa64pfr0_read,
5810 .writefn = arm_cp_write_ignore },
e60cef86
PM
5811 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
5812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
5813 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5814 .resetvalue = cpu->isar.id_aa64pfr1},
e20d84c1
PM
5815 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
5817 .access = PL1_R, .type = ARM_CP_CONST,
5818 .resetvalue = 0 },
5819 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5820 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
5821 .access = PL1_R, .type = ARM_CP_CONST,
5822 .resetvalue = 0 },
9516d772 5823 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
e20d84c1
PM
5824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
5825 .access = PL1_R, .type = ARM_CP_CONST,
9516d772 5826 /* At present, only SVEver == 0 is defined anyway. */
e20d84c1
PM
5827 .resetvalue = 0 },
5828 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5829 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
5830 .access = PL1_R, .type = ARM_CP_CONST,
5831 .resetvalue = 0 },
5832 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5833 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
5834 .access = PL1_R, .type = ARM_CP_CONST,
5835 .resetvalue = 0 },
5836 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5837 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
5838 .access = PL1_R, .type = ARM_CP_CONST,
5839 .resetvalue = 0 },
e60cef86
PM
5840 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
5841 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
5842 .access = PL1_R, .type = ARM_CP_CONST,
d6f02ce3 5843 .resetvalue = cpu->id_aa64dfr0 },
e60cef86
PM
5844 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
5845 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
5846 .access = PL1_R, .type = ARM_CP_CONST,
5847 .resetvalue = cpu->id_aa64dfr1 },
e20d84c1
PM
5848 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5849 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
5850 .access = PL1_R, .type = ARM_CP_CONST,
5851 .resetvalue = 0 },
5852 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5853 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
5854 .access = PL1_R, .type = ARM_CP_CONST,
5855 .resetvalue = 0 },
e60cef86
PM
5856 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
5857 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
5858 .access = PL1_R, .type = ARM_CP_CONST,
5859 .resetvalue = cpu->id_aa64afr0 },
5860 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
5861 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
5862 .access = PL1_R, .type = ARM_CP_CONST,
5863 .resetvalue = cpu->id_aa64afr1 },
e20d84c1
PM
5864 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5865 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
5866 .access = PL1_R, .type = ARM_CP_CONST,
5867 .resetvalue = 0 },
5868 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5869 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
5870 .access = PL1_R, .type = ARM_CP_CONST,
5871 .resetvalue = 0 },
e60cef86
PM
5872 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
5873 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
5874 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5875 .resetvalue = cpu->isar.id_aa64isar0 },
e60cef86
PM
5876 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
5877 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
5878 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5879 .resetvalue = cpu->isar.id_aa64isar1 },
e20d84c1
PM
5880 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5881 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
5882 .access = PL1_R, .type = ARM_CP_CONST,
5883 .resetvalue = 0 },
5884 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5885 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
5886 .access = PL1_R, .type = ARM_CP_CONST,
5887 .resetvalue = 0 },
5888 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5889 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
5890 .access = PL1_R, .type = ARM_CP_CONST,
5891 .resetvalue = 0 },
5892 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5893 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
5894 .access = PL1_R, .type = ARM_CP_CONST,
5895 .resetvalue = 0 },
5896 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
5898 .access = PL1_R, .type = ARM_CP_CONST,
5899 .resetvalue = 0 },
5900 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5901 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
5902 .access = PL1_R, .type = ARM_CP_CONST,
5903 .resetvalue = 0 },
e60cef86
PM
5904 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
5905 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5906 .access = PL1_R, .type = ARM_CP_CONST,
3dc91ddb 5907 .resetvalue = cpu->isar.id_aa64mmfr0 },
e60cef86
PM
5908 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
5909 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
5910 .access = PL1_R, .type = ARM_CP_CONST,
3dc91ddb 5911 .resetvalue = cpu->isar.id_aa64mmfr1 },
e20d84c1
PM
5912 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5913 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
5914 .access = PL1_R, .type = ARM_CP_CONST,
5915 .resetvalue = 0 },
5916 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5917 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
5918 .access = PL1_R, .type = ARM_CP_CONST,
5919 .resetvalue = 0 },
5920 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5921 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
5922 .access = PL1_R, .type = ARM_CP_CONST,
5923 .resetvalue = 0 },
5924 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5925 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
5926 .access = PL1_R, .type = ARM_CP_CONST,
5927 .resetvalue = 0 },
5928 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5929 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
5930 .access = PL1_R, .type = ARM_CP_CONST,
5931 .resetvalue = 0 },
5932 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5933 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
5934 .access = PL1_R, .type = ARM_CP_CONST,
5935 .resetvalue = 0 },
a50c0f51
PM
5936 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
5937 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
5938 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5939 .resetvalue = cpu->isar.mvfr0 },
a50c0f51
PM
5940 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
5941 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
5942 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5943 .resetvalue = cpu->isar.mvfr1 },
a50c0f51
PM
5944 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
5945 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
5946 .access = PL1_R, .type = ARM_CP_CONST,
47576b94 5947 .resetvalue = cpu->isar.mvfr2 },
e20d84c1
PM
5948 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5949 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
5950 .access = PL1_R, .type = ARM_CP_CONST,
5951 .resetvalue = 0 },
5952 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5953 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
5954 .access = PL1_R, .type = ARM_CP_CONST,
5955 .resetvalue = 0 },
5956 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5957 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
5958 .access = PL1_R, .type = ARM_CP_CONST,
5959 .resetvalue = 0 },
5960 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5961 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
5962 .access = PL1_R, .type = ARM_CP_CONST,
5963 .resetvalue = 0 },
5964 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5965 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
5966 .access = PL1_R, .type = ARM_CP_CONST,
5967 .resetvalue = 0 },
4054bfa9
AF
5968 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
5969 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
5970 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
cad86737 5971 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
4054bfa9
AF
5972 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
5973 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
5974 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5975 .resetvalue = cpu->pmceid0 },
5976 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
5977 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
5978 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
cad86737 5979 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
4054bfa9
AF
5980 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
5981 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
5982 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5983 .resetvalue = cpu->pmceid1 },
e60cef86
PM
5984 REGINFO_SENTINEL
5985 };
be8e8128
GB
5986 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
5987 if (!arm_feature(env, ARM_FEATURE_EL3) &&
5988 !arm_feature(env, ARM_FEATURE_EL2)) {
5989 ARMCPRegInfo rvbar = {
5990 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
5991 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5992 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
5993 };
5994 define_one_arm_cp_reg(cpu, &rvbar);
5995 }
e60cef86 5996 define_arm_cp_regs(cpu, v8_idregs);
b0d2b7d0
PM
5997 define_arm_cp_regs(cpu, v8_cp_reginfo);
5998 }
3b685ba7 5999 if (arm_feature(env, ARM_FEATURE_EL2)) {
f0d574d6 6000 uint64_t vmpidr_def = mpidr_read_val(env);
731de9e6
EI
6001 ARMCPRegInfo vpidr_regs[] = {
6002 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6003 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6004 .access = PL2_RW, .accessfn = access_el3_aa32ns,
36476562
PM
6005 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6006 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
731de9e6
EI
6007 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6008 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6009 .access = PL2_RW, .resetvalue = cpu->midr,
6010 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
6011 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6012 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6013 .access = PL2_RW, .accessfn = access_el3_aa32ns,
36476562
PM
6014 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6015 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
f0d574d6
EI
6016 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6017 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6018 .access = PL2_RW,
6019 .resetvalue = vmpidr_def,
6020 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
731de9e6
EI
6021 REGINFO_SENTINEL
6022 };
6023 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 6024 define_arm_cp_regs(cpu, el2_cp_reginfo);
ce4afed8
PM
6025 if (arm_feature(env, ARM_FEATURE_V8)) {
6026 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6027 }
be8e8128
GB
6028 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6029 if (!arm_feature(env, ARM_FEATURE_EL3)) {
6030 ARMCPRegInfo rvbar = {
6031 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6032 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6033 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6034 };
6035 define_one_arm_cp_reg(cpu, &rvbar);
6036 }
d42e3c26
EI
6037 } else {
6038 /* If EL2 is missing but higher ELs are enabled, we need to
6039 * register the no_el2 reginfos.
6040 */
6041 if (arm_feature(env, ARM_FEATURE_EL3)) {
f0d574d6
EI
6042 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6043 * of MIDR_EL1 and MPIDR_EL1.
731de9e6
EI
6044 */
6045 ARMCPRegInfo vpidr_regs[] = {
6046 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6047 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6048 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6049 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6050 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
6051 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6052 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6053 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6054 .type = ARM_CP_NO_RAW,
6055 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
731de9e6
EI
6056 REGINFO_SENTINEL
6057 };
6058 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 6059 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
ce4afed8
PM
6060 if (arm_feature(env, ARM_FEATURE_V8)) {
6061 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6062 }
d42e3c26 6063 }
3b685ba7 6064 }
81547d66 6065 if (arm_feature(env, ARM_FEATURE_EL3)) {
0f1a3b24 6066 define_arm_cp_regs(cpu, el3_cp_reginfo);
e24fdd23
PM
6067 ARMCPRegInfo el3_regs[] = {
6068 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6069 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6070 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6071 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6072 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6073 .access = PL3_RW,
6074 .raw_writefn = raw_write, .writefn = sctlr_write,
6075 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6076 .resetvalue = cpu->reset_sctlr },
6077 REGINFO_SENTINEL
be8e8128 6078 };
e24fdd23
PM
6079
6080 define_arm_cp_regs(cpu, el3_regs);
81547d66 6081 }
2f027fc5
PM
6082 /* The behaviour of NSACR is sufficiently various that we don't
6083 * try to describe it in a single reginfo:
6084 * if EL3 is 64 bit, then trap to EL3 from S EL1,
6085 * reads as constant 0xc00 from NS EL1 and NS EL2
6086 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6087 * if v7 without EL3, register doesn't exist
6088 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6089 */
6090 if (arm_feature(env, ARM_FEATURE_EL3)) {
6091 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6092 ARMCPRegInfo nsacr = {
6093 .name = "NSACR", .type = ARM_CP_CONST,
6094 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6095 .access = PL1_RW, .accessfn = nsacr_access,
6096 .resetvalue = 0xc00
6097 };
6098 define_one_arm_cp_reg(cpu, &nsacr);
6099 } else {
6100 ARMCPRegInfo nsacr = {
6101 .name = "NSACR",
6102 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6103 .access = PL3_RW | PL1_R,
6104 .resetvalue = 0,
6105 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6106 };
6107 define_one_arm_cp_reg(cpu, &nsacr);
6108 }
6109 } else {
6110 if (arm_feature(env, ARM_FEATURE_V8)) {
6111 ARMCPRegInfo nsacr = {
6112 .name = "NSACR", .type = ARM_CP_CONST,
6113 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6114 .access = PL1_R,
6115 .resetvalue = 0xc00
6116 };
6117 define_one_arm_cp_reg(cpu, &nsacr);
6118 }
6119 }
6120
452a0955 6121 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6cb0b013
PC
6122 if (arm_feature(env, ARM_FEATURE_V6)) {
6123 /* PMSAv6 not implemented */
6124 assert(arm_feature(env, ARM_FEATURE_V7));
6125 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6126 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6127 } else {
6128 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6129 }
18032bec 6130 } else {
8e5d75c9 6131 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
18032bec 6132 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
ab638a32
RH
6133 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
6134 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6135 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6136 }
18032bec 6137 }
c326b979
PM
6138 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6139 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6140 }
6cc7a3ae
PM
6141 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6142 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6143 }
4a501606
PM
6144 if (arm_feature(env, ARM_FEATURE_VAPA)) {
6145 define_arm_cp_regs(cpu, vapa_cp_reginfo);
6146 }
c4804214
PM
6147 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6148 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6149 }
6150 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6151 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6152 }
6153 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6154 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6155 }
18032bec
PM
6156 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6157 define_arm_cp_regs(cpu, omap_cp_reginfo);
6158 }
34f90529
PM
6159 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6160 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6161 }
1047b9d7
PM
6162 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6163 define_arm_cp_regs(cpu, xscale_cp_reginfo);
6164 }
6165 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6166 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6167 }
7ac681cf
PM
6168 if (arm_feature(env, ARM_FEATURE_LPAE)) {
6169 define_arm_cp_regs(cpu, lpae_cp_reginfo);
6170 }
7884849c
PM
6171 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6172 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6173 * be read-only (ie write causes UNDEF exception).
6174 */
6175 {
00a29f3d
PM
6176 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6177 /* Pre-v8 MIDR space.
6178 * Note that the MIDR isn't a simple constant register because
7884849c
PM
6179 * of the TI925 behaviour where writes to another register can
6180 * cause the MIDR value to change.
97ce8d61
PC
6181 *
6182 * Unimplemented registers in the c15 0 0 0 space default to
6183 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6184 * and friends override accordingly.
7884849c
PM
6185 */
6186 { .name = "MIDR",
97ce8d61 6187 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7884849c 6188 .access = PL1_R, .resetvalue = cpu->midr,
d4e6df63 6189 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
731de9e6 6190 .readfn = midr_read,
97ce8d61
PC
6191 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6192 .type = ARM_CP_OVERRIDE },
7884849c
PM
6193 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6194 { .name = "DUMMY",
6195 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6196 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6197 { .name = "DUMMY",
6198 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6199 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6200 { .name = "DUMMY",
6201 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6202 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6203 { .name = "DUMMY",
6204 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6205 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6206 { .name = "DUMMY",
6207 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6208 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6209 REGINFO_SENTINEL
6210 };
00a29f3d 6211 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
00a29f3d
PM
6212 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6213 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
731de9e6
EI
6214 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6215 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6216 .readfn = midr_read },
ac00c79f
SF
6217 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6218 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6219 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6220 .access = PL1_R, .resetvalue = cpu->midr },
6221 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6222 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6223 .access = PL1_R, .resetvalue = cpu->midr },
00a29f3d
PM
6224 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6225 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
13b72b2b 6226 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
00a29f3d
PM
6227 REGINFO_SENTINEL
6228 };
6229 ARMCPRegInfo id_cp_reginfo[] = {
6230 /* These are common to v8 and pre-v8 */
6231 { .name = "CTR",
6232 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6233 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6234 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6235 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6236 .access = PL0_R, .accessfn = ctr_el0_access,
6237 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6238 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6239 { .name = "TCMTR",
6240 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6241 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
00a29f3d
PM
6242 REGINFO_SENTINEL
6243 };
8085ce63
PC
6244 /* TLBTR is specific to VMSA */
6245 ARMCPRegInfo id_tlbtr_reginfo = {
6246 .name = "TLBTR",
6247 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6248 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6249 };
3281af81
PC
6250 /* MPUIR is specific to PMSA V6+ */
6251 ARMCPRegInfo id_mpuir_reginfo = {
6252 .name = "MPUIR",
6253 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6254 .access = PL1_R, .type = ARM_CP_CONST,
6255 .resetvalue = cpu->pmsav7_dregion << 8
6256 };
7884849c
PM
6257 ARMCPRegInfo crn0_wi_reginfo = {
6258 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6259 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6260 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6261 };
6262 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6263 arm_feature(env, ARM_FEATURE_STRONGARM)) {
6264 ARMCPRegInfo *r;
6265 /* Register the blanket "writes ignored" value first to cover the
a703eda1
PC
6266 * whole space. Then update the specific ID registers to allow write
6267 * access, so that they ignore writes rather than causing them to
6268 * UNDEF.
7884849c
PM
6269 */
6270 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
00a29f3d
PM
6271 for (r = id_pre_v8_midr_cp_reginfo;
6272 r->type != ARM_CP_SENTINEL; r++) {
6273 r->access = PL1_RW;
6274 }
7884849c
PM
6275 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6276 r->access = PL1_RW;
7884849c 6277 }
10006112 6278 id_mpuir_reginfo.access = PL1_RW;
3281af81 6279 id_tlbtr_reginfo.access = PL1_RW;
7884849c 6280 }
00a29f3d
PM
6281 if (arm_feature(env, ARM_FEATURE_V8)) {
6282 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6283 } else {
6284 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6285 }
a703eda1 6286 define_arm_cp_regs(cpu, id_cp_reginfo);
452a0955 6287 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8085ce63 6288 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
3281af81
PC
6289 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6290 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8085ce63 6291 }
7884849c
PM
6292 }
6293
97ce8d61
PC
6294 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6295 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6296 }
6297
2771db27 6298 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
834a6c69
PM
6299 ARMCPRegInfo auxcr_reginfo[] = {
6300 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6301 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6302 .access = PL1_RW, .type = ARM_CP_CONST,
6303 .resetvalue = cpu->reset_auxcr },
6304 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6305 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6306 .access = PL2_RW, .type = ARM_CP_CONST,
6307 .resetvalue = 0 },
6308 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6309 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6310 .access = PL3_RW, .type = ARM_CP_CONST,
6311 .resetvalue = 0 },
6312 REGINFO_SENTINEL
2771db27 6313 };
834a6c69 6314 define_arm_cp_regs(cpu, auxcr_reginfo);
0e0456ab
PM
6315 if (arm_feature(env, ARM_FEATURE_V8)) {
6316 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6317 ARMCPRegInfo hactlr2_reginfo = {
6318 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6319 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6320 .access = PL2_RW, .type = ARM_CP_CONST,
6321 .resetvalue = 0
6322 };
6323 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6324 }
2771db27
PM
6325 }
6326
d8ba780b 6327 if (arm_feature(env, ARM_FEATURE_CBAR)) {
f318cec6
PM
6328 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6329 /* 32 bit view is [31:18] 0...0 [43:32]. */
6330 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6331 | extract64(cpu->reset_cbar, 32, 12);
6332 ARMCPRegInfo cbar_reginfo[] = {
6333 { .name = "CBAR",
6334 .type = ARM_CP_CONST,
6335 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6336 .access = PL1_R, .resetvalue = cpu->reset_cbar },
6337 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6338 .type = ARM_CP_CONST,
6339 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6340 .access = PL1_R, .resetvalue = cbar32 },
6341 REGINFO_SENTINEL
6342 };
6343 /* We don't implement a r/w 64 bit CBAR currently */
6344 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6345 define_arm_cp_regs(cpu, cbar_reginfo);
6346 } else {
6347 ARMCPRegInfo cbar = {
6348 .name = "CBAR",
6349 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6350 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6351 .fieldoffset = offsetof(CPUARMState,
6352 cp15.c15_config_base_address)
6353 };
6354 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6355 cbar.access = PL1_R;
6356 cbar.fieldoffset = 0;
6357 cbar.type = ARM_CP_CONST;
6358 }
6359 define_one_arm_cp_reg(cpu, &cbar);
6360 }
d8ba780b
PC
6361 }
6362
91db4642
CLG
6363 if (arm_feature(env, ARM_FEATURE_VBAR)) {
6364 ARMCPRegInfo vbar_cp_reginfo[] = {
6365 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6366 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6367 .access = PL1_RW, .writefn = vbar_write,
6368 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6369 offsetof(CPUARMState, cp15.vbar_ns) },
6370 .resetvalue = 0 },
6371 REGINFO_SENTINEL
6372 };
6373 define_arm_cp_regs(cpu, vbar_cp_reginfo);
6374 }
6375
2771db27
PM
6376 /* Generic registers whose values depend on the implementation */
6377 {
6378 ARMCPRegInfo sctlr = {
5ebafdf3 6379 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
137feaa9
FA
6380 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6381 .access = PL1_RW,
6382 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6383 offsetof(CPUARMState, cp15.sctlr_ns) },
d4e6df63
PM
6384 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6385 .raw_writefn = raw_write,
2771db27
PM
6386 };
6387 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6388 /* Normally we would always end the TB on an SCTLR write, but Linux
6389 * arch/arm/mach-pxa/sleep.S expects two instructions following
6390 * an MMU enable to execute from cache. Imitate this behaviour.
6391 */
6392 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6393 }
6394 define_one_arm_cp_reg(cpu, &sctlr);
6395 }
5be5e8ed 6396
2d7137c1
RH
6397 if (cpu_isar_feature(aa64_lor, cpu)) {
6398 /*
6399 * A trivial implementation of ARMv8.1-LOR leaves all of these
6400 * registers fixed at 0, which indicates that there are zero
6401 * supported Limited Ordering regions.
6402 */
6403 static const ARMCPRegInfo lor_reginfo[] = {
6404 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6405 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6406 .access = PL1_RW, .accessfn = access_lor_other,
6407 .type = ARM_CP_CONST, .resetvalue = 0 },
6408 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6409 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6410 .access = PL1_RW, .accessfn = access_lor_other,
6411 .type = ARM_CP_CONST, .resetvalue = 0 },
6412 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6413 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6414 .access = PL1_RW, .accessfn = access_lor_other,
6415 .type = ARM_CP_CONST, .resetvalue = 0 },
6416 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6417 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6418 .access = PL1_RW, .accessfn = access_lor_other,
6419 .type = ARM_CP_CONST, .resetvalue = 0 },
6420 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6421 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6422 .access = PL1_R, .accessfn = access_lorid,
6423 .type = ARM_CP_CONST, .resetvalue = 0 },
6424 REGINFO_SENTINEL
6425 };
6426 define_arm_cp_regs(cpu, lor_reginfo);
6427 }
6428
cd208a1c 6429 if (cpu_isar_feature(aa64_sve, cpu)) {
5be5e8ed
RH
6430 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6431 if (arm_feature(env, ARM_FEATURE_EL2)) {
6432 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6433 } else {
6434 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6435 }
6436 if (arm_feature(env, ARM_FEATURE_EL3)) {
6437 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6438 }
6439 }
967aa94f
RH
6440
6441#ifdef TARGET_AARCH64
6442 if (cpu_isar_feature(aa64_pauth, cpu)) {
6443 define_arm_cp_regs(cpu, pauth_reginfo);
6444 }
6445#endif
2ceb98c0
PM
6446}
6447
14969266
AF
6448void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6449{
22169d41 6450 CPUState *cs = CPU(cpu);
14969266
AF
6451 CPUARMState *env = &cpu->env;
6452
6a669427
PM
6453 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6454 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6455 aarch64_fpu_gdb_set_reg,
6456 34, "aarch64-fpu.xml", 0);
6457 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
22169d41 6458 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
6459 51, "arm-neon.xml", 0);
6460 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
22169d41 6461 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
6462 35, "arm-vfp3.xml", 0);
6463 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
22169d41 6464 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
6465 19, "arm-vfp.xml", 0);
6466 }
200bf5b7
AB
6467 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6468 arm_gen_dynamic_xml(cs),
6469 "system-registers.xml", 0);
40f137e1
PB
6470}
6471
777dc784
PM
6472/* Sort alphabetically by type name, except for "any". */
6473static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 6474{
777dc784
PM
6475 ObjectClass *class_a = (ObjectClass *)a;
6476 ObjectClass *class_b = (ObjectClass *)b;
6477 const char *name_a, *name_b;
5adb4839 6478
777dc784
PM
6479 name_a = object_class_get_name(class_a);
6480 name_b = object_class_get_name(class_b);
51492fd1 6481 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 6482 return 1;
51492fd1 6483 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
6484 return -1;
6485 } else {
6486 return strcmp(name_a, name_b);
5adb4839
PB
6487 }
6488}
6489
777dc784 6490static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 6491{
777dc784 6492 ObjectClass *oc = data;
92a31361 6493 CPUListState *s = user_data;
51492fd1
AF
6494 const char *typename;
6495 char *name;
3371d272 6496
51492fd1
AF
6497 typename = object_class_get_name(oc);
6498 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
777dc784 6499 (*s->cpu_fprintf)(s->file, " %s\n",
51492fd1
AF
6500 name);
6501 g_free(name);
777dc784
PM
6502}
6503
6504void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
6505{
92a31361 6506 CPUListState s = {
777dc784
PM
6507 .file = f,
6508 .cpu_fprintf = cpu_fprintf,
6509 };
6510 GSList *list;
6511
6512 list = object_class_get_list(TYPE_ARM_CPU, false);
6513 list = g_slist_sort(list, arm_cpu_list_compare);
6514 (*cpu_fprintf)(f, "Available CPUs:\n");
6515 g_slist_foreach(list, arm_cpu_list_entry, &s);
6516 g_slist_free(list);
40f137e1
PB
6517}
6518
78027bb6
CR
6519static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6520{
6521 ObjectClass *oc = data;
6522 CpuDefinitionInfoList **cpu_list = user_data;
6523 CpuDefinitionInfoList *entry;
6524 CpuDefinitionInfo *info;
6525 const char *typename;
6526
6527 typename = object_class_get_name(oc);
6528 info = g_malloc0(sizeof(*info));
6529 info->name = g_strndup(typename,
6530 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8ed877b7 6531 info->q_typename = g_strdup(typename);
78027bb6
CR
6532
6533 entry = g_malloc0(sizeof(*entry));
6534 entry->value = info;
6535 entry->next = *cpu_list;
6536 *cpu_list = entry;
6537}
6538
6539CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
6540{
6541 CpuDefinitionInfoList *cpu_list = NULL;
6542 GSList *list;
6543
6544 list = object_class_get_list(TYPE_ARM_CPU, false);
6545 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6546 g_slist_free(list);
6547
6548 return cpu_list;
6549}
6550
6e6efd61 6551static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
51a79b03 6552 void *opaque, int state, int secstate,
9c513e78
AB
6553 int crm, int opc1, int opc2,
6554 const char *name)
6e6efd61
PM
6555{
6556 /* Private utility function for define_one_arm_cp_reg_with_opaque():
6557 * add a single reginfo struct to the hash table.
6558 */
6559 uint32_t *key = g_new(uint32_t, 1);
6560 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
6561 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3f3c82a5
FA
6562 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
6563
9c513e78 6564 r2->name = g_strdup(name);
3f3c82a5
FA
6565 /* Reset the secure state to the specific incoming state. This is
6566 * necessary as the register may have been defined with both states.
6567 */
6568 r2->secure = secstate;
6569
6570 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6571 /* Register is banked (using both entries in array).
6572 * Overwriting fieldoffset as the array is only used to define
6573 * banked registers but later only fieldoffset is used.
f5a0a5a5 6574 */
3f3c82a5
FA
6575 r2->fieldoffset = r->bank_fieldoffsets[ns];
6576 }
6577
6578 if (state == ARM_CP_STATE_AA32) {
6579 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6580 /* If the register is banked then we don't need to migrate or
6581 * reset the 32-bit instance in certain cases:
6582 *
6583 * 1) If the register has both 32-bit and 64-bit instances then we
6584 * can count on the 64-bit instance taking care of the
6585 * non-secure bank.
6586 * 2) If ARMv8 is enabled then we can count on a 64-bit version
6587 * taking care of the secure bank. This requires that separate
6588 * 32 and 64-bit definitions are provided.
6589 */
6590 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
6591 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7a0e58fa 6592 r2->type |= ARM_CP_ALIAS;
3f3c82a5
FA
6593 }
6594 } else if ((secstate != r->secure) && !ns) {
6595 /* The register is not banked so we only want to allow migration of
6596 * the non-secure instance.
6597 */
7a0e58fa 6598 r2->type |= ARM_CP_ALIAS;
58a1d8ce 6599 }
3f3c82a5
FA
6600
6601 if (r->state == ARM_CP_STATE_BOTH) {
6602 /* We assume it is a cp15 register if the .cp field is left unset.
6603 */
6604 if (r2->cp == 0) {
6605 r2->cp = 15;
6606 }
6607
f5a0a5a5 6608#ifdef HOST_WORDS_BIGENDIAN
3f3c82a5
FA
6609 if (r2->fieldoffset) {
6610 r2->fieldoffset += sizeof(uint32_t);
6611 }
f5a0a5a5 6612#endif
3f3c82a5 6613 }
f5a0a5a5
PM
6614 }
6615 if (state == ARM_CP_STATE_AA64) {
6616 /* To allow abbreviation of ARMCPRegInfo
6617 * definitions, we treat cp == 0 as equivalent to
6618 * the value for "standard guest-visible sysreg".
58a1d8ce
PM
6619 * STATE_BOTH definitions are also always "standard
6620 * sysreg" in their AArch64 view (the .cp value may
6621 * be non-zero for the benefit of the AArch32 view).
f5a0a5a5 6622 */
58a1d8ce 6623 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
f5a0a5a5
PM
6624 r2->cp = CP_REG_ARM64_SYSREG_CP;
6625 }
6626 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
6627 r2->opc0, opc1, opc2);
6628 } else {
51a79b03 6629 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
f5a0a5a5 6630 }
6e6efd61
PM
6631 if (opaque) {
6632 r2->opaque = opaque;
6633 }
67ed771d
PM
6634 /* reginfo passed to helpers is correct for the actual access,
6635 * and is never ARM_CP_STATE_BOTH:
6636 */
6637 r2->state = state;
6e6efd61
PM
6638 /* Make sure reginfo passed to helpers for wildcarded regs
6639 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6640 */
6641 r2->crm = crm;
6642 r2->opc1 = opc1;
6643 r2->opc2 = opc2;
6644 /* By convention, for wildcarded registers only the first
6645 * entry is used for migration; the others are marked as
7a0e58fa 6646 * ALIAS so we don't try to transfer the register
6e6efd61 6647 * multiple times. Special registers (ie NOP/WFI) are
7a0e58fa 6648 * never migratable and not even raw-accessible.
6e6efd61 6649 */
7a0e58fa
PM
6650 if ((r->type & ARM_CP_SPECIAL)) {
6651 r2->type |= ARM_CP_NO_RAW;
6652 }
6653 if (((r->crm == CP_ANY) && crm != 0) ||
6e6efd61
PM
6654 ((r->opc1 == CP_ANY) && opc1 != 0) ||
6655 ((r->opc2 == CP_ANY) && opc2 != 0)) {
1f163787 6656 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6e6efd61
PM
6657 }
6658
375421cc
PM
6659 /* Check that raw accesses are either forbidden or handled. Note that
6660 * we can't assert this earlier because the setup of fieldoffset for
6661 * banked registers has to be done first.
6662 */
6663 if (!(r2->type & ARM_CP_NO_RAW)) {
6664 assert(!raw_accessors_invalid(r2));
6665 }
6666
6e6efd61
PM
6667 /* Overriding of an existing definition must be explicitly
6668 * requested.
6669 */
6670 if (!(r->type & ARM_CP_OVERRIDE)) {
6671 ARMCPRegInfo *oldreg;
6672 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
6673 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
6674 fprintf(stderr, "Register redefined: cp=%d %d bit "
6675 "crn=%d crm=%d opc1=%d opc2=%d, "
6676 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
6677 r2->crn, r2->crm, r2->opc1, r2->opc2,
6678 oldreg->name, r2->name);
6679 g_assert_not_reached();
6680 }
6681 }
6682 g_hash_table_insert(cpu->cp_regs, key, r2);
6683}
6684
6685
4b6a83fb
PM
6686void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
6687 const ARMCPRegInfo *r, void *opaque)
6688{
6689 /* Define implementations of coprocessor registers.
6690 * We store these in a hashtable because typically
6691 * there are less than 150 registers in a space which
6692 * is 16*16*16*8*8 = 262144 in size.
6693 * Wildcarding is supported for the crm, opc1 and opc2 fields.
6694 * If a register is defined twice then the second definition is
6695 * used, so this can be used to define some generic registers and
6696 * then override them with implementation specific variations.
6697 * At least one of the original and the second definition should
6698 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
6699 * against accidental use.
f5a0a5a5
PM
6700 *
6701 * The state field defines whether the register is to be
6702 * visible in the AArch32 or AArch64 execution state. If the
6703 * state is set to ARM_CP_STATE_BOTH then we synthesise a
6704 * reginfo structure for the AArch32 view, which sees the lower
6705 * 32 bits of the 64 bit register.
6706 *
6707 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
6708 * be wildcarded. AArch64 registers are always considered to be 64
6709 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
6710 * the register, if any.
4b6a83fb 6711 */
f5a0a5a5 6712 int crm, opc1, opc2, state;
4b6a83fb
PM
6713 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
6714 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
6715 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
6716 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
6717 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
6718 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
6719 /* 64 bit registers have only CRm and Opc1 fields */
6720 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
f5a0a5a5
PM
6721 /* op0 only exists in the AArch64 encodings */
6722 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
6723 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
6724 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
6725 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
6726 * encodes a minimum access level for the register. We roll this
6727 * runtime check into our general permission check code, so check
6728 * here that the reginfo's specified permissions are strict enough
6729 * to encompass the generic architectural permission check.
6730 */
6731 if (r->state != ARM_CP_STATE_AA32) {
6732 int mask = 0;
6733 switch (r->opc1) {
6734 case 0: case 1: case 2:
6735 /* min_EL EL1 */
6736 mask = PL1_RW;
6737 break;
6738 case 3:
6739 /* min_EL EL0 */
6740 mask = PL0_RW;
6741 break;
6742 case 4:
6743 /* min_EL EL2 */
6744 mask = PL2_RW;
6745 break;
6746 case 5:
6747 /* unallocated encoding, so not possible */
6748 assert(false);
6749 break;
6750 case 6:
6751 /* min_EL EL3 */
6752 mask = PL3_RW;
6753 break;
6754 case 7:
6755 /* min_EL EL1, secure mode only (we don't check the latter) */
6756 mask = PL1_RW;
6757 break;
6758 default:
6759 /* broken reginfo with out-of-range opc1 */
6760 assert(false);
6761 break;
6762 }
6763 /* assert our permissions are not too lax (stricter is fine) */
6764 assert((r->access & ~mask) == 0);
6765 }
6766
4b6a83fb
PM
6767 /* Check that the register definition has enough info to handle
6768 * reads and writes if they are permitted.
6769 */
6770 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
6771 if (r->access & PL3_R) {
3f3c82a5
FA
6772 assert((r->fieldoffset ||
6773 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6774 r->readfn);
4b6a83fb
PM
6775 }
6776 if (r->access & PL3_W) {
3f3c82a5
FA
6777 assert((r->fieldoffset ||
6778 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6779 r->writefn);
4b6a83fb
PM
6780 }
6781 }
6782 /* Bad type field probably means missing sentinel at end of reg list */
6783 assert(cptype_valid(r->type));
6784 for (crm = crmmin; crm <= crmmax; crm++) {
6785 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
6786 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
f5a0a5a5
PM
6787 for (state = ARM_CP_STATE_AA32;
6788 state <= ARM_CP_STATE_AA64; state++) {
6789 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
6790 continue;
6791 }
3f3c82a5
FA
6792 if (state == ARM_CP_STATE_AA32) {
6793 /* Under AArch32 CP registers can be common
6794 * (same for secure and non-secure world) or banked.
6795 */
9c513e78
AB
6796 char *name;
6797
3f3c82a5
FA
6798 switch (r->secure) {
6799 case ARM_CP_SECSTATE_S:
6800 case ARM_CP_SECSTATE_NS:
6801 add_cpreg_to_hashtable(cpu, r, opaque, state,
9c513e78
AB
6802 r->secure, crm, opc1, opc2,
6803 r->name);
3f3c82a5
FA
6804 break;
6805 default:
9c513e78 6806 name = g_strdup_printf("%s_S", r->name);
3f3c82a5
FA
6807 add_cpreg_to_hashtable(cpu, r, opaque, state,
6808 ARM_CP_SECSTATE_S,
9c513e78
AB
6809 crm, opc1, opc2, name);
6810 g_free(name);
3f3c82a5
FA
6811 add_cpreg_to_hashtable(cpu, r, opaque, state,
6812 ARM_CP_SECSTATE_NS,
9c513e78 6813 crm, opc1, opc2, r->name);
3f3c82a5
FA
6814 break;
6815 }
6816 } else {
6817 /* AArch64 registers get mapped to non-secure instance
6818 * of AArch32 */
6819 add_cpreg_to_hashtable(cpu, r, opaque, state,
6820 ARM_CP_SECSTATE_NS,
9c513e78 6821 crm, opc1, opc2, r->name);
3f3c82a5 6822 }
f5a0a5a5 6823 }
4b6a83fb
PM
6824 }
6825 }
6826 }
6827}
6828
6829void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
6830 const ARMCPRegInfo *regs, void *opaque)
6831{
6832 /* Define a whole list of registers */
6833 const ARMCPRegInfo *r;
6834 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
6835 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
6836 }
6837}
6838
60322b39 6839const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4b6a83fb 6840{
60322b39 6841 return g_hash_table_lookup(cpregs, &encoded_cp);
4b6a83fb
PM
6842}
6843
c4241c7d
PM
6844void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
6845 uint64_t value)
4b6a83fb
PM
6846{
6847 /* Helper coprocessor write function for write-ignore registers */
4b6a83fb
PM
6848}
6849
c4241c7d 6850uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4b6a83fb
PM
6851{
6852 /* Helper coprocessor write function for read-as-zero registers */
4b6a83fb
PM
6853 return 0;
6854}
6855
f5a0a5a5
PM
6856void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
6857{
6858 /* Helper coprocessor reset function for do-nothing-on-reset registers */
6859}
6860
af393ffc 6861static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
37064a8b
PM
6862{
6863 /* Return true if it is not valid for us to switch to
6864 * this CPU mode (ie all the UNPREDICTABLE cases in
6865 * the ARM ARM CPSRWriteByInstr pseudocode).
6866 */
af393ffc
PM
6867
6868 /* Changes to or from Hyp via MSR and CPS are illegal. */
6869 if (write_type == CPSRWriteByInstr &&
6870 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
6871 mode == ARM_CPU_MODE_HYP)) {
6872 return 1;
6873 }
6874
37064a8b
PM
6875 switch (mode) {
6876 case ARM_CPU_MODE_USR:
10eacda7 6877 return 0;
37064a8b
PM
6878 case ARM_CPU_MODE_SYS:
6879 case ARM_CPU_MODE_SVC:
6880 case ARM_CPU_MODE_ABT:
6881 case ARM_CPU_MODE_UND:
6882 case ARM_CPU_MODE_IRQ:
6883 case ARM_CPU_MODE_FIQ:
52ff951b
PM
6884 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
6885 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
6886 */
10eacda7
PM
6887 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
6888 * and CPS are treated as illegal mode changes.
6889 */
6890 if (write_type == CPSRWriteByInstr &&
10eacda7 6891 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7c208e0f 6892 (arm_hcr_el2_eff(env) & HCR_TGE)) {
10eacda7
PM
6893 return 1;
6894 }
37064a8b 6895 return 0;
e6c8fc07
PM
6896 case ARM_CPU_MODE_HYP:
6897 return !arm_feature(env, ARM_FEATURE_EL2)
2d2a4549 6898 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
027fc527 6899 case ARM_CPU_MODE_MON:
58ae2d1f 6900 return arm_current_el(env) < 3;
37064a8b
PM
6901 default:
6902 return 1;
6903 }
6904}
6905
2f4a40e5
AZ
6906uint32_t cpsr_read(CPUARMState *env)
6907{
6908 int ZF;
6fbe23d5
PB
6909 ZF = (env->ZF == 0);
6910 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
6911 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
6912 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
6913 | ((env->condexec_bits & 0xfc) << 8)
af519934 6914 | (env->GE << 16) | (env->daif & CPSR_AIF);
2f4a40e5
AZ
6915}
6916
50866ba5
PM
6917void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
6918 CPSRWriteType write_type)
2f4a40e5 6919{
6e8801f9
FA
6920 uint32_t changed_daif;
6921
2f4a40e5 6922 if (mask & CPSR_NZCV) {
6fbe23d5
PB
6923 env->ZF = (~val) & CPSR_Z;
6924 env->NF = val;
2f4a40e5
AZ
6925 env->CF = (val >> 29) & 1;
6926 env->VF = (val << 3) & 0x80000000;
6927 }
6928 if (mask & CPSR_Q)
6929 env->QF = ((val & CPSR_Q) != 0);
6930 if (mask & CPSR_T)
6931 env->thumb = ((val & CPSR_T) != 0);
6932 if (mask & CPSR_IT_0_1) {
6933 env->condexec_bits &= ~3;
6934 env->condexec_bits |= (val >> 25) & 3;
6935 }
6936 if (mask & CPSR_IT_2_7) {
6937 env->condexec_bits &= 3;
6938 env->condexec_bits |= (val >> 8) & 0xfc;
6939 }
6940 if (mask & CPSR_GE) {
6941 env->GE = (val >> 16) & 0xf;
6942 }
6943
6e8801f9
FA
6944 /* In a V7 implementation that includes the security extensions but does
6945 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
6946 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
6947 * bits respectively.
6948 *
6949 * In a V8 implementation, it is permitted for privileged software to
6950 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
6951 */
f8c88bbc 6952 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6e8801f9
FA
6953 arm_feature(env, ARM_FEATURE_EL3) &&
6954 !arm_feature(env, ARM_FEATURE_EL2) &&
6955 !arm_is_secure(env)) {
6956
6957 changed_daif = (env->daif ^ val) & mask;
6958
6959 if (changed_daif & CPSR_A) {
6960 /* Check to see if we are allowed to change the masking of async
6961 * abort exceptions from a non-secure state.
6962 */
6963 if (!(env->cp15.scr_el3 & SCR_AW)) {
6964 qemu_log_mask(LOG_GUEST_ERROR,
6965 "Ignoring attempt to switch CPSR_A flag from "
6966 "non-secure world with SCR.AW bit clear\n");
6967 mask &= ~CPSR_A;
6968 }
6969 }
6970
6971 if (changed_daif & CPSR_F) {
6972 /* Check to see if we are allowed to change the masking of FIQ
6973 * exceptions from a non-secure state.
6974 */
6975 if (!(env->cp15.scr_el3 & SCR_FW)) {
6976 qemu_log_mask(LOG_GUEST_ERROR,
6977 "Ignoring attempt to switch CPSR_F flag from "
6978 "non-secure world with SCR.FW bit clear\n");
6979 mask &= ~CPSR_F;
6980 }
6981
6982 /* Check whether non-maskable FIQ (NMFI) support is enabled.
6983 * If this bit is set software is not allowed to mask
6984 * FIQs, but is allowed to set CPSR_F to 0.
6985 */
6986 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
6987 (val & CPSR_F)) {
6988 qemu_log_mask(LOG_GUEST_ERROR,
6989 "Ignoring attempt to enable CPSR_F flag "
6990 "(non-maskable FIQ [NMFI] support enabled)\n");
6991 mask &= ~CPSR_F;
6992 }
6993 }
6994 }
6995
4cc35614
PM
6996 env->daif &= ~(CPSR_AIF & mask);
6997 env->daif |= val & CPSR_AIF & mask;
6998
f8c88bbc
PM
6999 if (write_type != CPSRWriteRaw &&
7000 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8c4f0eb9
PM
7001 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7002 /* Note that we can only get here in USR mode if this is a
7003 * gdb stub write; for this case we follow the architectural
7004 * behaviour for guest writes in USR mode of ignoring an attempt
7005 * to switch mode. (Those are caught by translate.c for writes
7006 * triggered by guest instructions.)
7007 */
7008 mask &= ~CPSR_M;
7009 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
81907a58
PM
7010 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7011 * v7, and has defined behaviour in v8:
7012 * + leave CPSR.M untouched
7013 * + allow changes to the other CPSR fields
7014 * + set PSTATE.IL
7015 * For user changes via the GDB stub, we don't set PSTATE.IL,
7016 * as this would be unnecessarily harsh for a user error.
37064a8b
PM
7017 */
7018 mask &= ~CPSR_M;
81907a58
PM
7019 if (write_type != CPSRWriteByGDBStub &&
7020 arm_feature(env, ARM_FEATURE_V8)) {
7021 mask |= CPSR_IL;
7022 val |= CPSR_IL;
7023 }
81e37284
PM
7024 qemu_log_mask(LOG_GUEST_ERROR,
7025 "Illegal AArch32 mode switch attempt from %s to %s\n",
7026 aarch32_mode_name(env->uncached_cpsr),
7027 aarch32_mode_name(val));
37064a8b 7028 } else {
81e37284
PM
7029 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7030 write_type == CPSRWriteExceptionReturn ?
7031 "Exception return from AArch32" :
7032 "AArch32 mode switch from",
7033 aarch32_mode_name(env->uncached_cpsr),
7034 aarch32_mode_name(val), env->regs[15]);
37064a8b
PM
7035 switch_mode(env, val & CPSR_M);
7036 }
2f4a40e5
AZ
7037 }
7038 mask &= ~CACHED_CPSR_BITS;
7039 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7040}
7041
b26eefb6
PB
7042/* Sign/zero extend */
7043uint32_t HELPER(sxtb16)(uint32_t x)
7044{
7045 uint32_t res;
7046 res = (uint16_t)(int8_t)x;
7047 res |= (uint32_t)(int8_t)(x >> 16) << 16;
7048 return res;
7049}
7050
7051uint32_t HELPER(uxtb16)(uint32_t x)
7052{
7053 uint32_t res;
7054 res = (uint16_t)(uint8_t)x;
7055 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7056 return res;
7057}
7058
3670669c
PB
7059int32_t HELPER(sdiv)(int32_t num, int32_t den)
7060{
7061 if (den == 0)
7062 return 0;
686eeb93
AJ
7063 if (num == INT_MIN && den == -1)
7064 return INT_MIN;
3670669c
PB
7065 return num / den;
7066}
7067
7068uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7069{
7070 if (den == 0)
7071 return 0;
7072 return num / den;
7073}
7074
7075uint32_t HELPER(rbit)(uint32_t x)
7076{
42fedbca 7077 return revbit32(x);
3670669c
PB
7078}
7079
5fafdf24 7080#if defined(CONFIG_USER_ONLY)
b5ff1b31 7081
9ee6e8bb 7082/* These should probably raise undefined insn exceptions. */
0ecb72a5 7083void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 7084{
a47dddd7
AF
7085 ARMCPU *cpu = arm_env_get_cpu(env);
7086
7087 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
9ee6e8bb
PB
7088}
7089
0ecb72a5 7090uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 7091{
a47dddd7
AF
7092 ARMCPU *cpu = arm_env_get_cpu(env);
7093
7094 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
9ee6e8bb
PB
7095 return 0;
7096}
7097
fb602cb7
PM
7098void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7099{
7100 /* translate.c should never generate calls here in user-only mode */
7101 g_assert_not_reached();
7102}
7103
3e3fa230
PM
7104void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7105{
7106 /* translate.c should never generate calls here in user-only mode */
7107 g_assert_not_reached();
7108}
7109
5158de24
PM
7110uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
7111{
7112 /* The TT instructions can be used by unprivileged code, but in
7113 * user-only emulation we don't have the MPU.
7114 * Luckily since we know we are NonSecure unprivileged (and that in
7115 * turn means that the A flag wasn't specified), all the bits in the
7116 * register must be zero:
7117 * IREGION: 0 because IRVALID is 0
7118 * IRVALID: 0 because NS
7119 * S: 0 because NS
7120 * NSRW: 0 because NS
7121 * NSR: 0 because NS
7122 * RW: 0 because unpriv and A flag not set
7123 * R: 0 because unpriv and A flag not set
7124 * SRVALID: 0 because NS
7125 * MRVALID: 0 because unpriv and A flag not set
7126 * SREGION: 0 becaus SRVALID is 0
7127 * MREGION: 0 because MRVALID is 0
7128 */
7129 return 0;
7130}
7131
affdb64d 7132static void switch_mode(CPUARMState *env, int mode)
b5ff1b31 7133{
a47dddd7
AF
7134 ARMCPU *cpu = arm_env_get_cpu(env);
7135
7136 if (mode != ARM_CPU_MODE_USR) {
7137 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7138 }
b5ff1b31
FB
7139}
7140
012a906b
GB
7141uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7142 uint32_t cur_el, bool secure)
9e729b57
EI
7143{
7144 return 1;
7145}
7146
ce02049d
GB
7147void aarch64_sync_64_to_32(CPUARMState *env)
7148{
7149 g_assert_not_reached();
7150}
7151
b5ff1b31
FB
7152#else
7153
affdb64d 7154static void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
7155{
7156 int old_mode;
7157 int i;
7158
7159 old_mode = env->uncached_cpsr & CPSR_M;
7160 if (mode == old_mode)
7161 return;
7162
7163 if (old_mode == ARM_CPU_MODE_FIQ) {
7164 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 7165 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
7166 } else if (mode == ARM_CPU_MODE_FIQ) {
7167 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 7168 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
7169 }
7170
f5206413 7171 i = bank_number(old_mode);
b5ff1b31 7172 env->banked_r13[i] = env->regs[13];
b5ff1b31
FB
7173 env->banked_spsr[i] = env->spsr;
7174
f5206413 7175 i = bank_number(mode);
b5ff1b31 7176 env->regs[13] = env->banked_r13[i];
b5ff1b31 7177 env->spsr = env->banked_spsr[i];
593cfa2b
PM
7178
7179 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7180 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
b5ff1b31
FB
7181}
7182
0eeb17d6
GB
7183/* Physical Interrupt Target EL Lookup Table
7184 *
7185 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7186 *
7187 * The below multi-dimensional table is used for looking up the target
7188 * exception level given numerous condition criteria. Specifically, the
7189 * target EL is based on SCR and HCR routing controls as well as the
7190 * currently executing EL and secure state.
7191 *
7192 * Dimensions:
7193 * target_el_table[2][2][2][2][2][4]
7194 * | | | | | +--- Current EL
7195 * | | | | +------ Non-secure(0)/Secure(1)
7196 * | | | +--------- HCR mask override
7197 * | | +------------ SCR exec state control
7198 * | +--------------- SCR mask override
7199 * +------------------ 32-bit(0)/64-bit(1) EL3
7200 *
7201 * The table values are as such:
7202 * 0-3 = EL0-EL3
7203 * -1 = Cannot occur
7204 *
7205 * The ARM ARM target EL table includes entries indicating that an "exception
7206 * is not taken". The two cases where this is applicable are:
7207 * 1) An exception is taken from EL3 but the SCR does not have the exception
7208 * routed to EL3.
7209 * 2) An exception is taken from EL2 but the HCR does not have the exception
7210 * routed to EL2.
7211 * In these two cases, the below table contain a target of EL1. This value is
7212 * returned as it is expected that the consumer of the table data will check
7213 * for "target EL >= current EL" to ensure the exception is not taken.
7214 *
7215 * SCR HCR
7216 * 64 EA AMO From
7217 * BIT IRQ IMO Non-secure Secure
7218 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
7219 */
82c39f6a 7220static const int8_t target_el_table[2][2][2][2][2][4] = {
0eeb17d6
GB
7221 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7222 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
7223 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7224 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
7225 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7226 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
7227 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7228 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
7229 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
7230 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
7231 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
7232 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
7233 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7234 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
7235 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7236 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
7237};
7238
7239/*
7240 * Determine the target EL for physical exceptions
7241 */
012a906b
GB
7242uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7243 uint32_t cur_el, bool secure)
0eeb17d6
GB
7244{
7245 CPUARMState *env = cs->env_ptr;
f7778444
RH
7246 bool rw;
7247 bool scr;
7248 bool hcr;
0eeb17d6 7249 int target_el;
2cde031f 7250 /* Is the highest EL AArch64? */
f7778444
RH
7251 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7252 uint64_t hcr_el2;
2cde031f
SS
7253
7254 if (arm_feature(env, ARM_FEATURE_EL3)) {
7255 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7256 } else {
7257 /* Either EL2 is the highest EL (and so the EL2 register width
7258 * is given by is64); or there is no EL2 or EL3, in which case
7259 * the value of 'rw' does not affect the table lookup anyway.
7260 */
7261 rw = is64;
7262 }
0eeb17d6 7263
f7778444 7264 hcr_el2 = arm_hcr_el2_eff(env);
0eeb17d6
GB
7265 switch (excp_idx) {
7266 case EXCP_IRQ:
7267 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
f7778444 7268 hcr = hcr_el2 & HCR_IMO;
0eeb17d6
GB
7269 break;
7270 case EXCP_FIQ:
7271 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
f7778444 7272 hcr = hcr_el2 & HCR_FMO;
0eeb17d6
GB
7273 break;
7274 default:
7275 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
f7778444 7276 hcr = hcr_el2 & HCR_AMO;
0eeb17d6
GB
7277 break;
7278 };
7279
0eeb17d6
GB
7280 /* Perform a table-lookup for the target EL given the current state */
7281 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7282
7283 assert(target_el > 0);
7284
7285 return target_el;
7286}
7287
fd592d89
PM
7288static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
7289 ARMMMUIdx mmu_idx, bool ignfault)
9ee6e8bb 7290{
fd592d89
PM
7291 CPUState *cs = CPU(cpu);
7292 CPUARMState *env = &cpu->env;
7293 MemTxAttrs attrs = {};
7294 MemTxResult txres;
7295 target_ulong page_size;
7296 hwaddr physaddr;
7297 int prot;
ab44c7b7 7298 ARMMMUFaultInfo fi = {};
fd592d89
PM
7299 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7300 int exc;
7301 bool exc_secure;
7302
7303 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
7304 &attrs, &prot, &page_size, &fi, NULL)) {
7305 /* MPU/SAU lookup failed */
7306 if (fi.type == ARMFault_QEMU_SFault) {
7307 qemu_log_mask(CPU_LOG_INT,
7308 "...SecureFault with SFSR.AUVIOL during stacking\n");
7309 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7310 env->v7m.sfar = addr;
7311 exc = ARMV7M_EXCP_SECURE;
7312 exc_secure = false;
7313 } else {
7314 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
7315 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
7316 exc = ARMV7M_EXCP_MEM;
7317 exc_secure = secure;
7318 }
7319 goto pend_fault;
7320 }
7321 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
7322 attrs, &txres);
7323 if (txres != MEMTX_OK) {
7324 /* BusFault trying to write the data */
7325 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
7326 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
7327 exc = ARMV7M_EXCP_BUS;
7328 exc_secure = false;
7329 goto pend_fault;
7330 }
7331 return true;
70d74660 7332
fd592d89
PM
7333pend_fault:
7334 /* By pending the exception at this point we are making
7335 * the IMPDEF choice "overridden exceptions pended" (see the
7336 * MergeExcInfo() pseudocode). The other choice would be to not
7337 * pend them now and then make a choice about which to throw away
7338 * later if we have two derived exceptions.
7339 * The only case when we must not pend the exception but instead
7340 * throw it away is if we are doing the push of the callee registers
7341 * and we've already generated a derived exception. Even in this
7342 * case we will still update the fault status registers.
7343 */
7344 if (!ignfault) {
7345 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
7346 }
7347 return false;
9ee6e8bb
PB
7348}
7349
95695eff
PM
7350static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
7351 ARMMMUIdx mmu_idx)
7352{
7353 CPUState *cs = CPU(cpu);
7354 CPUARMState *env = &cpu->env;
7355 MemTxAttrs attrs = {};
7356 MemTxResult txres;
7357 target_ulong page_size;
7358 hwaddr physaddr;
7359 int prot;
ab44c7b7 7360 ARMMMUFaultInfo fi = {};
95695eff
PM
7361 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7362 int exc;
7363 bool exc_secure;
7364 uint32_t value;
7365
7366 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
7367 &attrs, &prot, &page_size, &fi, NULL)) {
7368 /* MPU/SAU lookup failed */
7369 if (fi.type == ARMFault_QEMU_SFault) {
7370 qemu_log_mask(CPU_LOG_INT,
7371 "...SecureFault with SFSR.AUVIOL during unstack\n");
7372 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7373 env->v7m.sfar = addr;
7374 exc = ARMV7M_EXCP_SECURE;
7375 exc_secure = false;
7376 } else {
7377 qemu_log_mask(CPU_LOG_INT,
7378 "...MemManageFault with CFSR.MUNSTKERR\n");
7379 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
7380 exc = ARMV7M_EXCP_MEM;
7381 exc_secure = secure;
7382 }
7383 goto pend_fault;
7384 }
7385
7386 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
7387 attrs, &txres);
7388 if (txres != MEMTX_OK) {
7389 /* BusFault trying to read the data */
7390 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
7391 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
7392 exc = ARMV7M_EXCP_BUS;
7393 exc_secure = false;
7394 goto pend_fault;
7395 }
7396
7397 *dest = value;
7398 return true;
7399
7400pend_fault:
7401 /* By pending the exception at this point we are making
7402 * the IMPDEF choice "overridden exceptions pended" (see the
7403 * MergeExcInfo() pseudocode). The other choice would be to not
7404 * pend them now and then make a choice about which to throw away
7405 * later if we have two derived exceptions.
7406 */
7407 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
7408 return false;
7409}
7410
3f0cddee
PM
7411/* Write to v7M CONTROL.SPSEL bit for the specified security bank.
7412 * This may change the current stack pointer between Main and Process
7413 * stack pointers if it is done for the CONTROL register for the current
7414 * security state.
de2db7ec 7415 */
3f0cddee
PM
7416static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
7417 bool new_spsel,
7418 bool secstate)
9ee6e8bb 7419{
3f0cddee 7420 bool old_is_psp = v7m_using_psp(env);
de2db7ec 7421
3f0cddee
PM
7422 env->v7m.control[secstate] =
7423 deposit32(env->v7m.control[secstate],
de2db7ec
PM
7424 R_V7M_CONTROL_SPSEL_SHIFT,
7425 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
7426
3f0cddee
PM
7427 if (secstate == env->v7m.secure) {
7428 bool new_is_psp = v7m_using_psp(env);
7429 uint32_t tmp;
abc24d86 7430
3f0cddee
PM
7431 if (old_is_psp != new_is_psp) {
7432 tmp = env->v7m.other_sp;
7433 env->v7m.other_sp = env->regs[13];
7434 env->regs[13] = tmp;
7435 }
de2db7ec
PM
7436 }
7437}
7438
3f0cddee
PM
7439/* Write to v7M CONTROL.SPSEL bit. This may change the current
7440 * stack pointer between Main and Process stack pointers.
7441 */
7442static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
7443{
7444 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
7445}
7446
de2db7ec
PM
7447void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
7448{
7449 /* Write a new value to v7m.exception, thus transitioning into or out
7450 * of Handler mode; this may result in a change of active stack pointer.
7451 */
7452 bool new_is_psp, old_is_psp = v7m_using_psp(env);
7453 uint32_t tmp;
abc24d86 7454
de2db7ec
PM
7455 env->v7m.exception = new_exc;
7456
7457 new_is_psp = v7m_using_psp(env);
7458
7459 if (old_is_psp != new_is_psp) {
7460 tmp = env->v7m.other_sp;
7461 env->v7m.other_sp = env->regs[13];
7462 env->regs[13] = tmp;
9ee6e8bb
PB
7463 }
7464}
7465
fb602cb7
PM
7466/* Switch M profile security state between NS and S */
7467static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
7468{
7469 uint32_t new_ss_msp, new_ss_psp;
7470
7471 if (env->v7m.secure == new_secstate) {
7472 return;
7473 }
7474
7475 /* All the banked state is accessed by looking at env->v7m.secure
7476 * except for the stack pointer; rearrange the SP appropriately.
7477 */
7478 new_ss_msp = env->v7m.other_ss_msp;
7479 new_ss_psp = env->v7m.other_ss_psp;
7480
7481 if (v7m_using_psp(env)) {
7482 env->v7m.other_ss_psp = env->regs[13];
7483 env->v7m.other_ss_msp = env->v7m.other_sp;
7484 } else {
7485 env->v7m.other_ss_msp = env->regs[13];
7486 env->v7m.other_ss_psp = env->v7m.other_sp;
7487 }
7488
7489 env->v7m.secure = new_secstate;
7490
7491 if (v7m_using_psp(env)) {
7492 env->regs[13] = new_ss_psp;
7493 env->v7m.other_sp = new_ss_msp;
7494 } else {
7495 env->regs[13] = new_ss_msp;
7496 env->v7m.other_sp = new_ss_psp;
7497 }
7498}
7499
7500void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7501{
7502 /* Handle v7M BXNS:
7503 * - if the return value is a magic value, do exception return (like BX)
7504 * - otherwise bit 0 of the return value is the target security state
7505 */
d02a8698
PM
7506 uint32_t min_magic;
7507
7508 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7509 /* Covers FNC_RETURN and EXC_RETURN magic */
7510 min_magic = FNC_RETURN_MIN_MAGIC;
7511 } else {
7512 /* EXC_RETURN magic only */
7513 min_magic = EXC_RETURN_MIN_MAGIC;
7514 }
7515
7516 if (dest >= min_magic) {
fb602cb7
PM
7517 /* This is an exception return magic value; put it where
7518 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
7519 * Note that if we ever add gen_ss_advance() singlestep support to
7520 * M profile this should count as an "instruction execution complete"
7521 * event (compare gen_bx_excret_final_code()).
7522 */
7523 env->regs[15] = dest & ~1;
7524 env->thumb = dest & 1;
7525 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
7526 /* notreached */
7527 }
7528
7529 /* translate.c should have made BXNS UNDEF unless we're secure */
7530 assert(env->v7m.secure);
7531
7532 switch_v7m_security_state(env, dest & 1);
7533 env->thumb = 1;
7534 env->regs[15] = dest & ~1;
7535}
7536
3e3fa230
PM
7537void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7538{
7539 /* Handle v7M BLXNS:
7540 * - bit 0 of the destination address is the target security state
7541 */
7542
7543 /* At this point regs[15] is the address just after the BLXNS */
7544 uint32_t nextinst = env->regs[15] | 1;
7545 uint32_t sp = env->regs[13] - 8;
7546 uint32_t saved_psr;
7547
7548 /* translate.c will have made BLXNS UNDEF unless we're secure */
7549 assert(env->v7m.secure);
7550
7551 if (dest & 1) {
7552 /* target is Secure, so this is just a normal BLX,
7553 * except that the low bit doesn't indicate Thumb/not.
7554 */
7555 env->regs[14] = nextinst;
7556 env->thumb = 1;
7557 env->regs[15] = dest & ~1;
7558 return;
7559 }
7560
7561 /* Target is non-secure: first push a stack frame */
7562 if (!QEMU_IS_ALIGNED(sp, 8)) {
7563 qemu_log_mask(LOG_GUEST_ERROR,
7564 "BLXNS with misaligned SP is UNPREDICTABLE\n");
7565 }
7566
597610eb
PM
7567 if (sp < v7m_sp_limit(env)) {
7568 raise_exception(env, EXCP_STKOF, 0, 1);
7569 }
7570
3e3fa230
PM
7571 saved_psr = env->v7m.exception;
7572 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
7573 saved_psr |= XPSR_SFPA;
7574 }
7575
7576 /* Note that these stores can throw exceptions on MPU faults */
7577 cpu_stl_data(env, sp, nextinst);
7578 cpu_stl_data(env, sp + 4, saved_psr);
7579
7580 env->regs[13] = sp;
7581 env->regs[14] = 0xfeffffff;
7582 if (arm_v7m_is_handler_mode(env)) {
7583 /* Write a dummy value to IPSR, to avoid leaking the current secure
7584 * exception number to non-secure code. This is guaranteed not
7585 * to cause write_v7m_exception() to actually change stacks.
7586 */
7587 write_v7m_exception(env, 1);
7588 }
7589 switch_v7m_security_state(env, 0);
7590 env->thumb = 1;
7591 env->regs[15] = dest;
7592}
7593
5b522399
PM
7594static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
7595 bool spsel)
7596{
7597 /* Return a pointer to the location where we currently store the
7598 * stack pointer for the requested security state and thread mode.
7599 * This pointer will become invalid if the CPU state is updated
7600 * such that the stack pointers are switched around (eg changing
7601 * the SPSEL control bit).
7602 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
7603 * Unlike that pseudocode, we require the caller to pass us in the
7604 * SPSEL control bit value; this is because we also use this
7605 * function in handling of pushing of the callee-saves registers
7606 * part of the v8M stack frame (pseudocode PushCalleeStack()),
7607 * and in the tailchain codepath the SPSEL bit comes from the exception
7608 * return magic LR value from the previous exception. The pseudocode
7609 * opencodes the stack-selection in PushCalleeStack(), but we prefer
7610 * to make this utility function generic enough to do the job.
7611 */
7612 bool want_psp = threadmode && spsel;
7613
7614 if (secure == env->v7m.secure) {
de2db7ec
PM
7615 if (want_psp == v7m_using_psp(env)) {
7616 return &env->regs[13];
7617 } else {
7618 return &env->v7m.other_sp;
7619 }
5b522399
PM
7620 } else {
7621 if (want_psp) {
7622 return &env->v7m.other_ss_psp;
7623 } else {
7624 return &env->v7m.other_ss_msp;
7625 }
7626 }
7627}
7628
600c33f2
PM
7629static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
7630 uint32_t *pvec)
39ae2474
PM
7631{
7632 CPUState *cs = CPU(cpu);
7633 CPUARMState *env = &cpu->env;
7634 MemTxResult result;
600c33f2
PM
7635 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
7636 uint32_t vector_entry;
7637 MemTxAttrs attrs = {};
7638 ARMMMUIdx mmu_idx;
7639 bool exc_secure;
7640
7641 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
39ae2474 7642
600c33f2
PM
7643 /* We don't do a get_phys_addr() here because the rules for vector
7644 * loads are special: they always use the default memory map, and
7645 * the default memory map permits reads from all addresses.
7646 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
7647 * that we want this special case which would always say "yes",
7648 * we just do the SAU lookup here followed by a direct physical load.
7649 */
7650 attrs.secure = targets_secure;
7651 attrs.user = false;
7652
7653 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7654 V8M_SAttributes sattrs = {};
7655
7656 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
7657 if (sattrs.ns) {
7658 attrs.secure = false;
7659 } else if (!targets_secure) {
7660 /* NS access to S memory */
7661 goto load_fail;
7662 }
7663 }
7664
7665 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
7666 attrs, &result);
39ae2474 7667 if (result != MEMTX_OK) {
600c33f2 7668 goto load_fail;
39ae2474 7669 }
600c33f2
PM
7670 *pvec = vector_entry;
7671 return true;
7672
7673load_fail:
7674 /* All vector table fetch fails are reported as HardFault, with
7675 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
7676 * technically the underlying exception is a MemManage or BusFault
7677 * that is escalated to HardFault.) This is a terminal exception,
7678 * so we will either take the HardFault immediately or else enter
7679 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
7680 */
7681 exc_secure = targets_secure ||
7682 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
7683 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
7684 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
7685 return false;
39ae2474
PM
7686}
7687
65b4234f 7688static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
0094ca70 7689 bool ignore_faults)
d3392718
PM
7690{
7691 /* For v8M, push the callee-saves register part of the stack frame.
7692 * Compare the v8M pseudocode PushCalleeStack().
7693 * In the tailchaining case this may not be the current stack.
7694 */
7695 CPUARMState *env = &cpu->env;
d3392718
PM
7696 uint32_t *frame_sp_p;
7697 uint32_t frameptr;
65b4234f
PM
7698 ARMMMUIdx mmu_idx;
7699 bool stacked_ok;
c32da7aa
PM
7700 uint32_t limit;
7701 bool want_psp;
d3392718
PM
7702
7703 if (dotailchain) {
65b4234f
PM
7704 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
7705 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
7706 !mode;
7707
7708 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
7709 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
d3392718 7710 lr & R_V7M_EXCRET_SPSEL_MASK);
c32da7aa
PM
7711 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
7712 if (want_psp) {
7713 limit = env->v7m.psplim[M_REG_S];
7714 } else {
7715 limit = env->v7m.msplim[M_REG_S];
7716 }
d3392718 7717 } else {
50494a27 7718 mmu_idx = arm_mmu_idx(env);
d3392718 7719 frame_sp_p = &env->regs[13];
c32da7aa 7720 limit = v7m_sp_limit(env);
d3392718
PM
7721 }
7722
7723 frameptr = *frame_sp_p - 0x28;
c32da7aa
PM
7724 if (frameptr < limit) {
7725 /*
7726 * Stack limit failure: set SP to the limit value, and generate
7727 * STKOF UsageFault. Stack pushes below the limit must not be
7728 * performed. It is IMPDEF whether pushes above the limit are
7729 * performed; we choose not to.
7730 */
7731 qemu_log_mask(CPU_LOG_INT,
7732 "...STKOF during callee-saves register stacking\n");
7733 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
7734 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7735 env->v7m.secure);
7736 *frame_sp_p = limit;
7737 return true;
7738 }
d3392718 7739
65b4234f
PM
7740 /* Write as much of the stack frame as we can. A write failure may
7741 * cause us to pend a derived exception.
7742 */
7743 stacked_ok =
7744 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
7745 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
7746 ignore_faults) &&
7747 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
7748 ignore_faults) &&
7749 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
7750 ignore_faults) &&
7751 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
7752 ignore_faults) &&
7753 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
7754 ignore_faults) &&
7755 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
7756 ignore_faults) &&
7757 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
7758 ignore_faults) &&
7759 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
7760 ignore_faults);
7761
c32da7aa 7762 /* Update SP regardless of whether any of the stack accesses failed. */
d3392718 7763 *frame_sp_p = frameptr;
65b4234f
PM
7764
7765 return !stacked_ok;
d3392718
PM
7766}
7767
0094ca70
PM
7768static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
7769 bool ignore_stackfaults)
39ae2474
PM
7770{
7771 /* Do the "take the exception" parts of exception entry,
7772 * but not the pushing of state to the stack. This is
7773 * similar to the pseudocode ExceptionTaken() function.
7774 */
7775 CPUARMState *env = &cpu->env;
7776 uint32_t addr;
d3392718 7777 bool targets_secure;
6c948518 7778 int exc;
65b4234f 7779 bool push_failed = false;
d3392718 7780
6c948518 7781 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
a9074977
PM
7782 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
7783 targets_secure ? "secure" : "nonsecure", exc);
d3392718
PM
7784
7785 if (arm_feature(env, ARM_FEATURE_V8)) {
7786 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7787 (lr & R_V7M_EXCRET_S_MASK)) {
7788 /* The background code (the owner of the registers in the
7789 * exception frame) is Secure. This means it may either already
7790 * have or now needs to push callee-saves registers.
7791 */
7792 if (targets_secure) {
7793 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
7794 /* We took an exception from Secure to NonSecure
7795 * (which means the callee-saved registers got stacked)
7796 * and are now tailchaining to a Secure exception.
7797 * Clear DCRS so eventual return from this Secure
7798 * exception unstacks the callee-saved registers.
7799 */
7800 lr &= ~R_V7M_EXCRET_DCRS_MASK;
7801 }
7802 } else {
7803 /* We're going to a non-secure exception; push the
7804 * callee-saves registers to the stack now, if they're
7805 * not already saved.
7806 */
7807 if (lr & R_V7M_EXCRET_DCRS_MASK &&
7b73a1ca 7808 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
65b4234f
PM
7809 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
7810 ignore_stackfaults);
d3392718
PM
7811 }
7812 lr |= R_V7M_EXCRET_DCRS_MASK;
7813 }
7814 }
7815
7816 lr &= ~R_V7M_EXCRET_ES_MASK;
7817 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7818 lr |= R_V7M_EXCRET_ES_MASK;
7819 }
7820 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
7821 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
7822 lr |= R_V7M_EXCRET_SPSEL_MASK;
7823 }
7824
7825 /* Clear registers if necessary to prevent non-secure exception
7826 * code being able to see register values from secure code.
7827 * Where register values become architecturally UNKNOWN we leave
7828 * them with their previous values.
7829 */
7830 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7831 if (!targets_secure) {
7832 /* Always clear the caller-saved registers (they have been
7833 * pushed to the stack earlier in v7m_push_stack()).
7834 * Clear callee-saved registers if the background code is
7835 * Secure (in which case these regs were saved in
7836 * v7m_push_callee_stack()).
7837 */
7838 int i;
7839
7840 for (i = 0; i < 13; i++) {
7841 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
7842 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
7843 env->regs[i] = 0;
7844 }
7845 }
7846 /* Clear EAPSR */
7847 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
7848 }
7849 }
7850 }
39ae2474 7851
65b4234f
PM
7852 if (push_failed && !ignore_stackfaults) {
7853 /* Derived exception on callee-saves register stacking:
7854 * we might now want to take a different exception which
7855 * targets a different security state, so try again from the top.
7856 */
a9074977
PM
7857 qemu_log_mask(CPU_LOG_INT,
7858 "...derived exception on callee-saves register stacking");
65b4234f
PM
7859 v7m_exception_taken(cpu, lr, true, true);
7860 return;
7861 }
7862
600c33f2
PM
7863 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
7864 /* Vector load failed: derived exception */
a9074977 7865 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
600c33f2
PM
7866 v7m_exception_taken(cpu, lr, true, true);
7867 return;
7868 }
6c948518
PM
7869
7870 /* Now we've done everything that might cause a derived exception
7871 * we can go ahead and activate whichever exception we're going to
7872 * take (which might now be the derived exception).
7873 */
7874 armv7m_nvic_acknowledge_irq(env->nvic);
7875
d3392718
PM
7876 /* Switch to target security state -- must do this before writing SPSEL */
7877 switch_v7m_security_state(env, targets_secure);
de2db7ec 7878 write_v7m_control_spsel(env, 0);
dc3c4c14 7879 arm_clear_exclusive(env);
39ae2474
PM
7880 /* Clear IT bits */
7881 env->condexec_bits = 0;
7882 env->regs[14] = lr;
39ae2474
PM
7883 env->regs[15] = addr & 0xfffffffe;
7884 env->thumb = addr & 1;
7885}
7886
0094ca70 7887static bool v7m_push_stack(ARMCPU *cpu)
39ae2474
PM
7888{
7889 /* Do the "set up stack frame" part of exception entry,
7890 * similar to pseudocode PushStack().
0094ca70
PM
7891 * Return true if we generate a derived exception (and so
7892 * should ignore further stack faults trying to process
7893 * that derived exception.)
39ae2474 7894 */
fd592d89 7895 bool stacked_ok;
39ae2474
PM
7896 CPUARMState *env = &cpu->env;
7897 uint32_t xpsr = xpsr_read(env);
fd592d89 7898 uint32_t frameptr = env->regs[13];
50494a27 7899 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
39ae2474
PM
7900
7901 /* Align stack pointer if the guest wants that */
fd592d89 7902 if ((frameptr & 4) &&
9d40cd8a 7903 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
fd592d89 7904 frameptr -= 4;
987ab45e 7905 xpsr |= XPSR_SPREALIGN;
39ae2474 7906 }
0094ca70 7907
fd592d89
PM
7908 frameptr -= 0x20;
7909
c32da7aa
PM
7910 if (arm_feature(env, ARM_FEATURE_V8)) {
7911 uint32_t limit = v7m_sp_limit(env);
7912
7913 if (frameptr < limit) {
7914 /*
7915 * Stack limit failure: set SP to the limit value, and generate
7916 * STKOF UsageFault. Stack pushes below the limit must not be
7917 * performed. It is IMPDEF whether pushes above the limit are
7918 * performed; we choose not to.
7919 */
7920 qemu_log_mask(CPU_LOG_INT,
7921 "...STKOF during stacking\n");
7922 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
7923 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7924 env->v7m.secure);
7925 env->regs[13] = limit;
7926 return true;
7927 }
7928 }
7929
fd592d89
PM
7930 /* Write as much of the stack frame as we can. If we fail a stack
7931 * write this will result in a derived exception being pended
7932 * (which may be taken in preference to the one we started with
7933 * if it has higher priority).
7934 */
7935 stacked_ok =
7936 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
7937 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
7938 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
7939 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
7940 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
7941 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
7942 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
7943 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
7944
c32da7aa 7945 /* Update SP regardless of whether any of the stack accesses failed. */
fd592d89
PM
7946 env->regs[13] = frameptr;
7947
7948 return !stacked_ok;
39ae2474
PM
7949}
7950
aa488fe3 7951static void do_v7m_exception_exit(ARMCPU *cpu)
9ee6e8bb 7952{
aa488fe3 7953 CPUARMState *env = &cpu->env;
351e527a 7954 uint32_t excret;
9ee6e8bb 7955 uint32_t xpsr;
aa488fe3 7956 bool ufault = false;
bfb2eb52
PM
7957 bool sfault = false;
7958 bool return_to_sp_process;
7959 bool return_to_handler;
aa488fe3 7960 bool rettobase = false;
5cb18069 7961 bool exc_secure = false;
5b522399 7962 bool return_to_secure;
aa488fe3 7963
d02a8698
PM
7964 /* If we're not in Handler mode then jumps to magic exception-exit
7965 * addresses don't have magic behaviour. However for the v8M
7966 * security extensions the magic secure-function-return has to
7967 * work in thread mode too, so to avoid doing an extra check in
7968 * the generated code we allow exception-exit magic to also cause the
7969 * internal exception and bring us here in thread mode. Correct code
7970 * will never try to do this (the following insn fetch will always
7971 * fault) so we the overhead of having taken an unnecessary exception
7972 * doesn't matter.
aa488fe3 7973 */
d02a8698
PM
7974 if (!arm_v7m_is_handler_mode(env)) {
7975 return;
7976 }
aa488fe3
PM
7977
7978 /* In the spec pseudocode ExceptionReturn() is called directly
7979 * from BXWritePC() and gets the full target PC value including
7980 * bit zero. In QEMU's implementation we treat it as a normal
7981 * jump-to-register (which is then caught later on), and so split
7982 * the target value up between env->regs[15] and env->thumb in
7983 * gen_bx(). Reconstitute it.
7984 */
351e527a 7985 excret = env->regs[15];
aa488fe3 7986 if (env->thumb) {
351e527a 7987 excret |= 1;
aa488fe3
PM
7988 }
7989
7990 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
7991 " previous exception %d\n",
351e527a 7992 excret, env->v7m.exception);
aa488fe3 7993
351e527a 7994 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
aa488fe3 7995 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
351e527a
PM
7996 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
7997 excret);
aa488fe3
PM
7998 }
7999
bfb2eb52
PM
8000 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8001 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
8002 * we pick which FAULTMASK to clear.
8003 */
8004 if (!env->v7m.secure &&
8005 ((excret & R_V7M_EXCRET_ES_MASK) ||
8006 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
8007 sfault = 1;
8008 /* For all other purposes, treat ES as 0 (R_HXSR) */
8009 excret &= ~R_V7M_EXCRET_ES_MASK;
8010 }
b8109608 8011 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
bfb2eb52
PM
8012 }
8013
a20ee600 8014 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
42a6686b
PM
8015 /* Auto-clear FAULTMASK on return from other than NMI.
8016 * If the security extension is implemented then this only
8017 * happens if the raw execution priority is >= 0; the
8018 * value of the ES bit in the exception return value indicates
8019 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
8020 */
8021 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
42a6686b 8022 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
5cb18069 8023 env->v7m.faultmask[exc_secure] = 0;
42a6686b
PM
8024 }
8025 } else {
8026 env->v7m.faultmask[M_REG_NS] = 0;
8027 }
a20ee600 8028 }
aa488fe3 8029
5cb18069
PM
8030 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
8031 exc_secure)) {
aa488fe3
PM
8032 case -1:
8033 /* attempt to exit an exception that isn't active */
8034 ufault = true;
8035 break;
8036 case 0:
8037 /* still an irq active now */
8038 break;
8039 case 1:
8040 /* we returned to base exception level, no nesting.
8041 * (In the pseudocode this is written using "NestedActivation != 1"
8042 * where we have 'rettobase == false'.)
8043 */
8044 rettobase = true;
8045 break;
8046 default:
8047 g_assert_not_reached();
8048 }
8049
bfb2eb52
PM
8050 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
8051 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
5b522399
PM
8052 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8053 (excret & R_V7M_EXCRET_S_MASK);
8054
bfb2eb52
PM
8055 if (arm_feature(env, ARM_FEATURE_V8)) {
8056 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8057 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
8058 * we choose to take the UsageFault.
8059 */
8060 if ((excret & R_V7M_EXCRET_S_MASK) ||
8061 (excret & R_V7M_EXCRET_ES_MASK) ||
8062 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
8063 ufault = true;
8064 }
8065 }
8066 if (excret & R_V7M_EXCRET_RES0_MASK) {
aa488fe3
PM
8067 ufault = true;
8068 }
bfb2eb52
PM
8069 } else {
8070 /* For v7M we only recognize certain combinations of the low bits */
8071 switch (excret & 0xf) {
8072 case 1: /* Return to Handler */
8073 break;
8074 case 13: /* Return to Thread using Process stack */
8075 case 9: /* Return to Thread using Main stack */
8076 /* We only need to check NONBASETHRDENA for v7M, because in
8077 * v8M this bit does not exist (it is RES1).
8078 */
8079 if (!rettobase &&
8080 !(env->v7m.ccr[env->v7m.secure] &
8081 R_V7M_CCR_NONBASETHRDENA_MASK)) {
8082 ufault = true;
8083 }
8084 break;
8085 default:
8086 ufault = true;
8087 }
8088 }
8089
89b1fec1
PM
8090 /*
8091 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
8092 * Handler mode (and will be until we write the new XPSR.Interrupt
8093 * field) this does not switch around the current stack pointer.
8094 * We must do this before we do any kind of tailchaining, including
8095 * for the derived exceptions on integrity check failures, or we will
8096 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
8097 */
8098 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
8099
bfb2eb52
PM
8100 if (sfault) {
8101 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
8102 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
bfb2eb52
PM
8103 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8104 "stackframe: failed EXC_RETURN.ES validity check\n");
a9074977 8105 v7m_exception_taken(cpu, excret, true, false);
bfb2eb52 8106 return;
aa488fe3
PM
8107 }
8108
8109 if (ufault) {
8110 /* Bad exception return: instead of popping the exception
8111 * stack, directly take a usage fault on the current stack.
8112 */
334e8dad 8113 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
2fb50a33 8114 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
aa488fe3
PM
8115 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8116 "stackframe: failed exception return integrity check\n");
a9074977 8117 v7m_exception_taken(cpu, excret, true, false);
aa488fe3 8118 return;
a20ee600 8119 }
9ee6e8bb 8120
5f62d3b9
PM
8121 /*
8122 * Tailchaining: if there is currently a pending exception that
8123 * is high enough priority to preempt execution at the level we're
8124 * about to return to, then just directly take that exception now,
8125 * avoiding an unstack-and-then-stack. Note that now we have
8126 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
8127 * our current execution priority is already the execution priority we are
8128 * returning to -- none of the state we would unstack or set based on
8129 * the EXCRET value affects it.
8130 */
8131 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
8132 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
8133 v7m_exception_taken(cpu, excret, true, false);
8134 return;
8135 }
8136
3919e60b
PM
8137 switch_v7m_security_state(env, return_to_secure);
8138
5b522399
PM
8139 {
8140 /* The stack pointer we should be reading the exception frame from
8141 * depends on bits in the magic exception return type value (and
8142 * for v8M isn't necessarily the stack pointer we will eventually
8143 * end up resuming execution with). Get a pointer to the location
8144 * in the CPU state struct where the SP we need is currently being
8145 * stored; we will use and modify it in place.
8146 * We use this limited C variable scope so we don't accidentally
8147 * use 'frame_sp_p' after we do something that makes it invalid.
fcf83ab1 8148 */
5b522399
PM
8149 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
8150 return_to_secure,
8151 !return_to_handler,
8152 return_to_sp_process);
8153 uint32_t frameptr = *frame_sp_p;
95695eff
PM
8154 bool pop_ok = true;
8155 ARMMMUIdx mmu_idx;
2b83714d
PM
8156 bool return_to_priv = return_to_handler ||
8157 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
95695eff
PM
8158
8159 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
2b83714d 8160 return_to_priv);
5b522399 8161
cb484f9a
PM
8162 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
8163 arm_feature(env, ARM_FEATURE_V8)) {
8164 qemu_log_mask(LOG_GUEST_ERROR,
8165 "M profile exception return with non-8-aligned SP "
8166 "for destination state is UNPREDICTABLE\n");
8167 }
8168
907bedb3
PM
8169 /* Do we need to pop callee-saved registers? */
8170 if (return_to_secure &&
8171 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
8172 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
8173 uint32_t expected_sig = 0xfefa125b;
4818bad9
PM
8174 uint32_t actual_sig;
8175
8176 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
907bedb3 8177
4818bad9 8178 if (pop_ok && expected_sig != actual_sig) {
907bedb3
PM
8179 /* Take a SecureFault on the current stack */
8180 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
8181 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
907bedb3
PM
8182 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8183 "stackframe: failed exception return integrity "
8184 "signature check\n");
a9074977 8185 v7m_exception_taken(cpu, excret, true, false);
907bedb3
PM
8186 return;
8187 }
8188
4818bad9 8189 pop_ok = pop_ok &&
95695eff
PM
8190 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
8191 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
8192 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
8193 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
8194 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
8195 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
8196 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
8197 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
907bedb3
PM
8198
8199 frameptr += 0x28;
8200 }
8201
95695eff
PM
8202 /* Pop registers */
8203 pop_ok = pop_ok &&
8204 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
8205 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
8206 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
8207 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
8208 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
8209 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
8210 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
8211 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
8212
8213 if (!pop_ok) {
8214 /* v7m_stack_read() pended a fault, so take it (as a tail
8215 * chained exception on the same stack frame)
8216 */
a9074977 8217 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
95695eff
PM
8218 v7m_exception_taken(cpu, excret, true, false);
8219 return;
8220 }
4e4259d3
PM
8221
8222 /* Returning from an exception with a PC with bit 0 set is defined
8223 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
8224 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
8225 * the lsbit, and there are several RTOSes out there which incorrectly
8226 * assume the r15 in the stack frame should be a Thumb-style "lsbit
8227 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
8228 * complain about the badly behaved guest.
8229 */
5b522399 8230 if (env->regs[15] & 1) {
5b522399 8231 env->regs[15] &= ~1U;
4e4259d3
PM
8232 if (!arm_feature(env, ARM_FEATURE_V8)) {
8233 qemu_log_mask(LOG_GUEST_ERROR,
8234 "M profile return from interrupt with misaligned "
8235 "PC is UNPREDICTABLE on v7M\n");
8236 }
5b522399 8237 }
4e4259d3 8238
224e0c30
PM
8239 if (arm_feature(env, ARM_FEATURE_V8)) {
8240 /* For v8M we have to check whether the xPSR exception field
8241 * matches the EXCRET value for return to handler/thread
8242 * before we commit to changing the SP and xPSR.
8243 */
8244 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
8245 if (return_to_handler != will_be_handler) {
8246 /* Take an INVPC UsageFault on the current stack.
8247 * By this point we will have switched to the security state
8248 * for the background state, so this UsageFault will target
8249 * that state.
8250 */
8251 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8252 env->v7m.secure);
8253 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
224e0c30
PM
8254 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8255 "stackframe: failed exception return integrity "
8256 "check\n");
a9074977 8257 v7m_exception_taken(cpu, excret, true, false);
224e0c30
PM
8258 return;
8259 }
8260 }
8261
5b522399
PM
8262 /* Commit to consuming the stack frame */
8263 frameptr += 0x20;
8264 /* Undo stack alignment (the SPREALIGN bit indicates that the original
8265 * pre-exception SP was not 8-aligned and we added a padding word to
8266 * align it, so we undo this by ORing in the bit that increases it
8267 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
8268 * would work too but a logical OR is how the pseudocode specifies it.)
8269 */
8270 if (xpsr & XPSR_SPREALIGN) {
8271 frameptr |= 4;
8272 }
8273 *frame_sp_p = frameptr;
fcf83ab1 8274 }
5b522399 8275 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
987ab45e 8276 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
aa488fe3
PM
8277
8278 /* The restored xPSR exception field will be zero if we're
8279 * resuming in Thread mode. If that doesn't match what the
351e527a 8280 * exception return excret specified then this is a UsageFault.
224e0c30 8281 * v7M requires we make this check here; v8M did it earlier.
aa488fe3 8282 */
15b3f556 8283 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
224e0c30
PM
8284 /* Take an INVPC UsageFault by pushing the stack again;
8285 * we know we're v7M so this is never a Secure UsageFault.
2fb50a33 8286 */
0094ca70
PM
8287 bool ignore_stackfaults;
8288
224e0c30 8289 assert(!arm_feature(env, ARM_FEATURE_V8));
2fb50a33 8290 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
334e8dad 8291 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
0094ca70 8292 ignore_stackfaults = v7m_push_stack(cpu);
aa488fe3
PM
8293 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
8294 "failed exception return integrity check\n");
a9074977 8295 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
aa488fe3
PM
8296 return;
8297 }
8298
8299 /* Otherwise, we have a successful exception exit. */
dc3c4c14 8300 arm_clear_exclusive(env);
aa488fe3 8301 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
9ee6e8bb
PB
8302}
8303
d02a8698
PM
8304static bool do_v7m_function_return(ARMCPU *cpu)
8305{
8306 /* v8M security extensions magic function return.
8307 * We may either:
8308 * (1) throw an exception (longjump)
8309 * (2) return true if we successfully handled the function return
8310 * (3) return false if we failed a consistency check and have
8311 * pended a UsageFault that needs to be taken now
8312 *
8313 * At this point the magic return value is split between env->regs[15]
8314 * and env->thumb. We don't bother to reconstitute it because we don't
8315 * need it (all values are handled the same way).
8316 */
8317 CPUARMState *env = &cpu->env;
8318 uint32_t newpc, newpsr, newpsr_exc;
8319
8320 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
8321
8322 {
8323 bool threadmode, spsel;
8324 TCGMemOpIdx oi;
8325 ARMMMUIdx mmu_idx;
8326 uint32_t *frame_sp_p;
8327 uint32_t frameptr;
8328
8329 /* Pull the return address and IPSR from the Secure stack */
8330 threadmode = !arm_v7m_is_handler_mode(env);
8331 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
8332
8333 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
8334 frameptr = *frame_sp_p;
8335
8336 /* These loads may throw an exception (for MPU faults). We want to
8337 * do them as secure, so work out what MMU index that is.
8338 */
8339 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8340 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
8341 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
8342 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
8343
8344 /* Consistency checks on new IPSR */
8345 newpsr_exc = newpsr & XPSR_EXCP;
8346 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
8347 (env->v7m.exception == 1 && newpsr_exc != 0))) {
8348 /* Pend the fault and tell our caller to take it */
8349 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8350 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8351 env->v7m.secure);
8352 qemu_log_mask(CPU_LOG_INT,
8353 "...taking INVPC UsageFault: "
8354 "IPSR consistency check failed\n");
8355 return false;
8356 }
8357
8358 *frame_sp_p = frameptr + 8;
8359 }
8360
8361 /* This invalidates frame_sp_p */
8362 switch_v7m_security_state(env, true);
8363 env->v7m.exception = newpsr_exc;
8364 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8365 if (newpsr & XPSR_SFPA) {
8366 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
8367 }
8368 xpsr_write(env, 0, XPSR_IT);
8369 env->thumb = newpc & 1;
8370 env->regs[15] = newpc & ~1;
8371
8372 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
8373 return true;
8374}
8375
27a7ea8a
PB
8376static void arm_log_exception(int idx)
8377{
8378 if (qemu_loglevel_mask(CPU_LOG_INT)) {
8379 const char *exc = NULL;
2c4a7cc5
PM
8380 static const char * const excnames[] = {
8381 [EXCP_UDEF] = "Undefined Instruction",
8382 [EXCP_SWI] = "SVC",
8383 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
8384 [EXCP_DATA_ABORT] = "Data Abort",
8385 [EXCP_IRQ] = "IRQ",
8386 [EXCP_FIQ] = "FIQ",
8387 [EXCP_BKPT] = "Breakpoint",
8388 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
8389 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
8390 [EXCP_HVC] = "Hypervisor Call",
8391 [EXCP_HYP_TRAP] = "Hypervisor Trap",
8392 [EXCP_SMC] = "Secure Monitor Call",
8393 [EXCP_VIRQ] = "Virtual IRQ",
8394 [EXCP_VFIQ] = "Virtual FIQ",
8395 [EXCP_SEMIHOST] = "Semihosting call",
8396 [EXCP_NOCP] = "v7M NOCP UsageFault",
8397 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
86f026de 8398 [EXCP_STKOF] = "v8M STKOF UsageFault",
2c4a7cc5 8399 };
27a7ea8a
PB
8400
8401 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8402 exc = excnames[idx];
8403 }
8404 if (!exc) {
8405 exc = "unknown";
8406 }
8407 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8408 }
8409}
8410
333e10c5
PM
8411static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
8412 uint32_t addr, uint16_t *insn)
8413{
8414 /* Load a 16-bit portion of a v7M instruction, returning true on success,
8415 * or false on failure (in which case we will have pended the appropriate
8416 * exception).
8417 * We need to do the instruction fetch's MPU and SAU checks
8418 * like this because there is no MMU index that would allow
8419 * doing the load with a single function call. Instead we must
8420 * first check that the security attributes permit the load
8421 * and that they don't mismatch on the two halves of the instruction,
8422 * and then we do the load as a secure load (ie using the security
8423 * attributes of the address, not the CPU, as architecturally required).
8424 */
8425 CPUState *cs = CPU(cpu);
8426 CPUARMState *env = &cpu->env;
8427 V8M_SAttributes sattrs = {};
8428 MemTxAttrs attrs = {};
8429 ARMMMUFaultInfo fi = {};
8430 MemTxResult txres;
8431 target_ulong page_size;
8432 hwaddr physaddr;
8433 int prot;
333e10c5
PM
8434
8435 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
8436 if (!sattrs.nsc || sattrs.ns) {
8437 /* This must be the second half of the insn, and it straddles a
8438 * region boundary with the second half not being S&NSC.
8439 */
8440 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8441 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8442 qemu_log_mask(CPU_LOG_INT,
8443 "...really SecureFault with SFSR.INVEP\n");
8444 return false;
8445 }
8446 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
bc52bfeb 8447 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
333e10c5
PM
8448 /* the MPU lookup failed */
8449 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
8450 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
8451 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
8452 return false;
8453 }
8454 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
8455 attrs, &txres);
8456 if (txres != MEMTX_OK) {
8457 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8458 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
8459 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
8460 return false;
8461 }
8462 return true;
8463}
8464
8465static bool v7m_handle_execute_nsc(ARMCPU *cpu)
8466{
8467 /* Check whether this attempt to execute code in a Secure & NS-Callable
8468 * memory region is for an SG instruction; if so, then emulate the
8469 * effect of the SG instruction and return true. Otherwise pend
8470 * the correct kind of exception and return false.
8471 */
8472 CPUARMState *env = &cpu->env;
8473 ARMMMUIdx mmu_idx;
8474 uint16_t insn;
8475
8476 /* We should never get here unless get_phys_addr_pmsav8() caused
8477 * an exception for NS executing in S&NSC memory.
8478 */
8479 assert(!env->v7m.secure);
8480 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8481
8482 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
8483 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8484
8485 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
8486 return false;
8487 }
8488
8489 if (!env->thumb) {
8490 goto gen_invep;
8491 }
8492
8493 if (insn != 0xe97f) {
8494 /* Not an SG instruction first half (we choose the IMPDEF
8495 * early-SG-check option).
8496 */
8497 goto gen_invep;
8498 }
8499
8500 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
8501 return false;
8502 }
8503
8504 if (insn != 0xe97f) {
8505 /* Not an SG instruction second half (yes, both halves of the SG
8506 * insn have the same hex value)
8507 */
8508 goto gen_invep;
8509 }
8510
8511 /* OK, we have confirmed that we really have an SG instruction.
8512 * We know we're NS in S memory so don't need to repeat those checks.
8513 */
8514 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
8515 ", executing it\n", env->regs[15]);
8516 env->regs[14] &= ~1;
8517 switch_v7m_security_state(env, true);
8518 xpsr_write(env, 0, XPSR_IT);
8519 env->regs[15] += 4;
8520 return true;
8521
8522gen_invep:
8523 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8524 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8525 qemu_log_mask(CPU_LOG_INT,
8526 "...really SecureFault with SFSR.INVEP\n");
8527 return false;
8528}
8529
e6f010cc 8530void arm_v7m_cpu_do_interrupt(CPUState *cs)
9ee6e8bb 8531{
e6f010cc
AF
8532 ARMCPU *cpu = ARM_CPU(cs);
8533 CPUARMState *env = &cpu->env;
9ee6e8bb 8534 uint32_t lr;
0094ca70 8535 bool ignore_stackfaults;
9ee6e8bb 8536
27103424 8537 arm_log_exception(cs->exception_index);
3f1beaca 8538
9ee6e8bb
PB
8539 /* For exceptions we just mark as pending on the NVIC, and let that
8540 handle it. */
27103424 8541 switch (cs->exception_index) {
9ee6e8bb 8542 case EXCP_UDEF:
2fb50a33 8543 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
334e8dad 8544 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
a25dc805 8545 break;
7517748e 8546 case EXCP_NOCP:
2fb50a33 8547 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
334e8dad 8548 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
a25dc805 8549 break;
e13886e3 8550 case EXCP_INVSTATE:
2fb50a33 8551 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
334e8dad 8552 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
e13886e3 8553 break;
86f026de
PM
8554 case EXCP_STKOF:
8555 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8556 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8557 break;
9ee6e8bb 8558 case EXCP_SWI:
314e2296 8559 /* The PC already points to the next instruction. */
2fb50a33 8560 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
a25dc805 8561 break;
9ee6e8bb
PB
8562 case EXCP_PREFETCH_ABORT:
8563 case EXCP_DATA_ABORT:
5dd0641d
MD
8564 /* Note that for M profile we don't have a guest facing FSR, but
8565 * the env->exception.fsr will be populated by the code that
8566 * raises the fault, in the A profile short-descriptor format.
abf1172f 8567 */
5dd0641d 8568 switch (env->exception.fsr & 0xf) {
35337cc3
PM
8569 case M_FAKE_FSR_NSC_EXEC:
8570 /* Exception generated when we try to execute code at an address
8571 * which is marked as Secure & Non-Secure Callable and the CPU
8572 * is in the Non-Secure state. The only instruction which can
8573 * be executed like this is SG (and that only if both halves of
8574 * the SG instruction have the same security attributes.)
8575 * Everything else must generate an INVEP SecureFault, so we
8576 * emulate the SG instruction here.
35337cc3 8577 */
333e10c5
PM
8578 if (v7m_handle_execute_nsc(cpu)) {
8579 return;
8580 }
35337cc3
PM
8581 break;
8582 case M_FAKE_FSR_SFAULT:
8583 /* Various flavours of SecureFault for attempts to execute or
8584 * access data in the wrong security state.
8585 */
8586 switch (cs->exception_index) {
8587 case EXCP_PREFETCH_ABORT:
8588 if (env->v7m.secure) {
8589 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
8590 qemu_log_mask(CPU_LOG_INT,
8591 "...really SecureFault with SFSR.INVTRAN\n");
8592 } else {
8593 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8594 qemu_log_mask(CPU_LOG_INT,
8595 "...really SecureFault with SFSR.INVEP\n");
8596 }
8597 break;
8598 case EXCP_DATA_ABORT:
8599 /* This must be an NS access to S memory */
8600 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
8601 qemu_log_mask(CPU_LOG_INT,
8602 "...really SecureFault with SFSR.AUVIOL\n");
8603 break;
8604 }
8605 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8606 break;
5dd0641d
MD
8607 case 0x8: /* External Abort */
8608 switch (cs->exception_index) {
8609 case EXCP_PREFETCH_ABORT:
c6158878
PM
8610 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8611 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
5dd0641d
MD
8612 break;
8613 case EXCP_DATA_ABORT:
334e8dad 8614 env->v7m.cfsr[M_REG_NS] |=
c6158878 8615 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
5dd0641d
MD
8616 env->v7m.bfar = env->exception.vaddress;
8617 qemu_log_mask(CPU_LOG_INT,
c6158878 8618 "...with CFSR.PRECISERR and BFAR 0x%x\n",
5dd0641d
MD
8619 env->v7m.bfar);
8620 break;
8621 }
2fb50a33 8622 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
5dd0641d
MD
8623 break;
8624 default:
8625 /* All other FSR values are either MPU faults or "can't happen
8626 * for M profile" cases.
8627 */
8628 switch (cs->exception_index) {
8629 case EXCP_PREFETCH_ABORT:
334e8dad 8630 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
5dd0641d
MD
8631 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
8632 break;
8633 case EXCP_DATA_ABORT:
334e8dad 8634 env->v7m.cfsr[env->v7m.secure] |=
5dd0641d 8635 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
c51a5cfc 8636 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
5dd0641d
MD
8637 qemu_log_mask(CPU_LOG_INT,
8638 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
c51a5cfc 8639 env->v7m.mmfar[env->v7m.secure]);
5dd0641d
MD
8640 break;
8641 }
2fb50a33
PM
8642 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
8643 env->v7m.secure);
5dd0641d
MD
8644 break;
8645 }
a25dc805 8646 break;
9ee6e8bb 8647 case EXCP_BKPT:
cfe67cef 8648 if (semihosting_enabled()) {
2ad207d4 8649 int nr;
f9fd40eb 8650 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
2ad207d4
PB
8651 if (nr == 0xab) {
8652 env->regs[15] += 2;
205ace55
CC
8653 qemu_log_mask(CPU_LOG_INT,
8654 "...handling as semihosting call 0x%x\n",
8655 env->regs[0]);
2ad207d4
PB
8656 env->regs[0] = do_arm_semihosting(env);
8657 return;
8658 }
8659 }
2fb50a33 8660 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
a25dc805 8661 break;
9ee6e8bb 8662 case EXCP_IRQ:
9ee6e8bb
PB
8663 break;
8664 case EXCP_EXCEPTION_EXIT:
d02a8698
PM
8665 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
8666 /* Must be v8M security extension function return */
8667 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
8668 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8669 if (do_v7m_function_return(cpu)) {
8670 return;
8671 }
8672 } else {
8673 do_v7m_exception_exit(cpu);
8674 return;
8675 }
8676 break;
9ee6e8bb 8677 default:
a47dddd7 8678 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9ee6e8bb
PB
8679 return; /* Never happens. Keep compiler happy. */
8680 }
8681
d3392718
PM
8682 if (arm_feature(env, ARM_FEATURE_V8)) {
8683 lr = R_V7M_EXCRET_RES1_MASK |
8684 R_V7M_EXCRET_DCRS_MASK |
8685 R_V7M_EXCRET_FTYPE_MASK;
8686 /* The S bit indicates whether we should return to Secure
8687 * or NonSecure (ie our current state).
8688 * The ES bit indicates whether we're taking this exception
8689 * to Secure or NonSecure (ie our target state). We set it
8690 * later, in v7m_exception_taken().
8691 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
8692 * This corresponds to the ARM ARM pseudocode for v8M setting
8693 * some LR bits in PushStack() and some in ExceptionTaken();
8694 * the distinction matters for the tailchain cases where we
8695 * can take an exception without pushing the stack.
8696 */
8697 if (env->v7m.secure) {
8698 lr |= R_V7M_EXCRET_S_MASK;
8699 }
8700 } else {
8701 lr = R_V7M_EXCRET_RES1_MASK |
8702 R_V7M_EXCRET_S_MASK |
8703 R_V7M_EXCRET_DCRS_MASK |
8704 R_V7M_EXCRET_FTYPE_MASK |
8705 R_V7M_EXCRET_ES_MASK;
8706 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
8707 lr |= R_V7M_EXCRET_SPSEL_MASK;
8708 }
bd70b29b 8709 }
15b3f556 8710 if (!arm_v7m_is_handler_mode(env)) {
4d1e7a47 8711 lr |= R_V7M_EXCRET_MODE_MASK;
bd70b29b
PM
8712 }
8713
0094ca70
PM
8714 ignore_stackfaults = v7m_push_stack(cpu);
8715 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
9ee6e8bb
PB
8716}
8717
ce02049d
GB
8718/* Function used to synchronize QEMU's AArch64 register set with AArch32
8719 * register set. This is necessary when switching between AArch32 and AArch64
8720 * execution state.
8721 */
8722void aarch64_sync_32_to_64(CPUARMState *env)
8723{
8724 int i;
8725 uint32_t mode = env->uncached_cpsr & CPSR_M;
8726
8727 /* We can blanket copy R[0:7] to X[0:7] */
8728 for (i = 0; i < 8; i++) {
8729 env->xregs[i] = env->regs[i];
8730 }
8731
8732 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8733 * Otherwise, they come from the banked user regs.
8734 */
8735 if (mode == ARM_CPU_MODE_FIQ) {
8736 for (i = 8; i < 13; i++) {
8737 env->xregs[i] = env->usr_regs[i - 8];
8738 }
8739 } else {
8740 for (i = 8; i < 13; i++) {
8741 env->xregs[i] = env->regs[i];
8742 }
8743 }
8744
8745 /* Registers x13-x23 are the various mode SP and FP registers. Registers
8746 * r13 and r14 are only copied if we are in that mode, otherwise we copy
8747 * from the mode banked register.
8748 */
8749 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8750 env->xregs[13] = env->regs[13];
8751 env->xregs[14] = env->regs[14];
8752 } else {
8753 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8754 /* HYP is an exception in that it is copied from r14 */
8755 if (mode == ARM_CPU_MODE_HYP) {
8756 env->xregs[14] = env->regs[14];
8757 } else {
593cfa2b 8758 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
ce02049d
GB
8759 }
8760 }
8761
8762 if (mode == ARM_CPU_MODE_HYP) {
8763 env->xregs[15] = env->regs[13];
8764 } else {
8765 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
8766 }
8767
8768 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
8769 env->xregs[16] = env->regs[14];
8770 env->xregs[17] = env->regs[13];
ce02049d 8771 } else {
593cfa2b 8772 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
3a9148d0 8773 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
ce02049d
GB
8774 }
8775
8776 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
8777 env->xregs[18] = env->regs[14];
8778 env->xregs[19] = env->regs[13];
ce02049d 8779 } else {
593cfa2b 8780 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
3a9148d0 8781 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
ce02049d
GB
8782 }
8783
8784 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
8785 env->xregs[20] = env->regs[14];
8786 env->xregs[21] = env->regs[13];
ce02049d 8787 } else {
593cfa2b 8788 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
3a9148d0 8789 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
ce02049d
GB
8790 }
8791
8792 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
8793 env->xregs[22] = env->regs[14];
8794 env->xregs[23] = env->regs[13];
ce02049d 8795 } else {
593cfa2b 8796 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
3a9148d0 8797 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
ce02049d
GB
8798 }
8799
8800 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8801 * mode, then we can copy from r8-r14. Otherwise, we copy from the
8802 * FIQ bank for r8-r14.
8803 */
8804 if (mode == ARM_CPU_MODE_FIQ) {
8805 for (i = 24; i < 31; i++) {
8806 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
8807 }
8808 } else {
8809 for (i = 24; i < 29; i++) {
8810 env->xregs[i] = env->fiq_regs[i - 24];
8811 }
8812 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
593cfa2b 8813 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
ce02049d
GB
8814 }
8815
8816 env->pc = env->regs[15];
8817}
8818
8819/* Function used to synchronize QEMU's AArch32 register set with AArch64
8820 * register set. This is necessary when switching between AArch32 and AArch64
8821 * execution state.
8822 */
8823void aarch64_sync_64_to_32(CPUARMState *env)
8824{
8825 int i;
8826 uint32_t mode = env->uncached_cpsr & CPSR_M;
8827
8828 /* We can blanket copy X[0:7] to R[0:7] */
8829 for (i = 0; i < 8; i++) {
8830 env->regs[i] = env->xregs[i];
8831 }
8832
8833 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
8834 * Otherwise, we copy x8-x12 into the banked user regs.
8835 */
8836 if (mode == ARM_CPU_MODE_FIQ) {
8837 for (i = 8; i < 13; i++) {
8838 env->usr_regs[i - 8] = env->xregs[i];
8839 }
8840 } else {
8841 for (i = 8; i < 13; i++) {
8842 env->regs[i] = env->xregs[i];
8843 }
8844 }
8845
8846 /* Registers r13 & r14 depend on the current mode.
8847 * If we are in a given mode, we copy the corresponding x registers to r13
8848 * and r14. Otherwise, we copy the x register to the banked r13 and r14
8849 * for the mode.
8850 */
8851 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8852 env->regs[13] = env->xregs[13];
8853 env->regs[14] = env->xregs[14];
8854 } else {
8855 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
8856
8857 /* HYP is an exception in that it does not have its own banked r14 but
8858 * shares the USR r14
8859 */
8860 if (mode == ARM_CPU_MODE_HYP) {
8861 env->regs[14] = env->xregs[14];
8862 } else {
593cfa2b 8863 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
ce02049d
GB
8864 }
8865 }
8866
8867 if (mode == ARM_CPU_MODE_HYP) {
8868 env->regs[13] = env->xregs[15];
8869 } else {
8870 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
8871 }
8872
8873 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
8874 env->regs[14] = env->xregs[16];
8875 env->regs[13] = env->xregs[17];
ce02049d 8876 } else {
593cfa2b 8877 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
3a9148d0 8878 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
ce02049d
GB
8879 }
8880
8881 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
8882 env->regs[14] = env->xregs[18];
8883 env->regs[13] = env->xregs[19];
ce02049d 8884 } else {
593cfa2b 8885 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
3a9148d0 8886 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
ce02049d
GB
8887 }
8888
8889 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
8890 env->regs[14] = env->xregs[20];
8891 env->regs[13] = env->xregs[21];
ce02049d 8892 } else {
593cfa2b 8893 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
3a9148d0 8894 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
ce02049d
GB
8895 }
8896
8897 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
8898 env->regs[14] = env->xregs[22];
8899 env->regs[13] = env->xregs[23];
ce02049d 8900 } else {
593cfa2b 8901 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
3a9148d0 8902 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
ce02049d
GB
8903 }
8904
8905 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8906 * mode, then we can copy to r8-r14. Otherwise, we copy to the
8907 * FIQ bank for r8-r14.
8908 */
8909 if (mode == ARM_CPU_MODE_FIQ) {
8910 for (i = 24; i < 31; i++) {
8911 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
8912 }
8913 } else {
8914 for (i = 24; i < 29; i++) {
8915 env->fiq_regs[i - 24] = env->xregs[i];
8916 }
8917 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
593cfa2b 8918 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
ce02049d
GB
8919 }
8920
8921 env->regs[15] = env->pc;
8922}
8923
dea8378b
PM
8924static void take_aarch32_exception(CPUARMState *env, int new_mode,
8925 uint32_t mask, uint32_t offset,
8926 uint32_t newpc)
8927{
8928 /* Change the CPU state so as to actually take the exception. */
8929 switch_mode(env, new_mode);
8930 /*
8931 * For exceptions taken to AArch32 we must clear the SS bit in both
8932 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8933 */
8934 env->uncached_cpsr &= ~PSTATE_SS;
8935 env->spsr = cpsr_read(env);
8936 /* Clear IT bits. */
8937 env->condexec_bits = 0;
8938 /* Switch to the new mode, and to the correct instruction set. */
8939 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8940 /* Set new mode endianness */
8941 env->uncached_cpsr &= ~CPSR_E;
8942 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8943 env->uncached_cpsr |= CPSR_E;
8944 }
829f9fd3
PM
8945 /* J and IL must always be cleared for exception entry */
8946 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
dea8378b
PM
8947 env->daif |= mask;
8948
8949 if (new_mode == ARM_CPU_MODE_HYP) {
8950 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
8951 env->elr_el[2] = env->regs[15];
8952 } else {
8953 /*
8954 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
8955 * and we should just guard the thumb mode on V4
8956 */
8957 if (arm_feature(env, ARM_FEATURE_V4T)) {
8958 env->thumb =
8959 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8960 }
8961 env->regs[14] = env->regs[15] + offset;
8962 }
8963 env->regs[15] = newpc;
8964}
8965
b9bc21ff
PM
8966static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
8967{
8968 /*
8969 * Handle exception entry to Hyp mode; this is sufficiently
8970 * different to entry to other AArch32 modes that we handle it
8971 * separately here.
8972 *
8973 * The vector table entry used is always the 0x14 Hyp mode entry point,
8974 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
8975 * The offset applied to the preferred return address is always zero
8976 * (see DDI0487C.a section G1.12.3).
8977 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8978 */
8979 uint32_t addr, mask;
8980 ARMCPU *cpu = ARM_CPU(cs);
8981 CPUARMState *env = &cpu->env;
8982
8983 switch (cs->exception_index) {
8984 case EXCP_UDEF:
8985 addr = 0x04;
8986 break;
8987 case EXCP_SWI:
8988 addr = 0x14;
8989 break;
8990 case EXCP_BKPT:
8991 /* Fall through to prefetch abort. */
8992 case EXCP_PREFETCH_ABORT:
8993 env->cp15.ifar_s = env->exception.vaddress;
8994 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
8995 (uint32_t)env->exception.vaddress);
8996 addr = 0x0c;
8997 break;
8998 case EXCP_DATA_ABORT:
8999 env->cp15.dfar_s = env->exception.vaddress;
9000 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9001 (uint32_t)env->exception.vaddress);
9002 addr = 0x10;
9003 break;
9004 case EXCP_IRQ:
9005 addr = 0x18;
9006 break;
9007 case EXCP_FIQ:
9008 addr = 0x1c;
9009 break;
9010 case EXCP_HVC:
9011 addr = 0x08;
9012 break;
9013 case EXCP_HYP_TRAP:
9014 addr = 0x14;
9015 default:
9016 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9017 }
9018
9019 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
2ed08180
PM
9020 if (!arm_feature(env, ARM_FEATURE_V8)) {
9021 /*
9022 * QEMU syndrome values are v8-style. v7 has the IL bit
9023 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9024 * If this is a v7 CPU, squash the IL bit in those cases.
9025 */
9026 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9027 (cs->exception_index == EXCP_DATA_ABORT &&
9028 !(env->exception.syndrome & ARM_EL_ISV)) ||
9029 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9030 env->exception.syndrome &= ~ARM_EL_IL;
9031 }
9032 }
b9bc21ff
PM
9033 env->cp15.esr_el[2] = env->exception.syndrome;
9034 }
9035
9036 if (arm_current_el(env) != 2 && addr < 0x14) {
9037 addr = 0x14;
9038 }
9039
9040 mask = 0;
9041 if (!(env->cp15.scr_el3 & SCR_EA)) {
9042 mask |= CPSR_A;
9043 }
9044 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9045 mask |= CPSR_I;
9046 }
9047 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9048 mask |= CPSR_F;
9049 }
9050
9051 addr += env->cp15.hvbar;
9052
9053 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9054}
9055
966f758c 9056static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
b5ff1b31 9057{
97a8ea5a
AF
9058 ARMCPU *cpu = ARM_CPU(cs);
9059 CPUARMState *env = &cpu->env;
b5ff1b31
FB
9060 uint32_t addr;
9061 uint32_t mask;
9062 int new_mode;
9063 uint32_t offset;
16a906fd 9064 uint32_t moe;
b5ff1b31 9065
16a906fd 9066 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
64b91e3f 9067 switch (syn_get_ec(env->exception.syndrome)) {
16a906fd
PM
9068 case EC_BREAKPOINT:
9069 case EC_BREAKPOINT_SAME_EL:
9070 moe = 1;
9071 break;
9072 case EC_WATCHPOINT:
9073 case EC_WATCHPOINT_SAME_EL:
9074 moe = 10;
9075 break;
9076 case EC_AA32_BKPT:
9077 moe = 3;
9078 break;
9079 case EC_VECTORCATCH:
9080 moe = 5;
9081 break;
9082 default:
9083 moe = 0;
9084 break;
9085 }
9086
9087 if (moe) {
9088 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9089 }
9090
b9bc21ff
PM
9091 if (env->exception.target_el == 2) {
9092 arm_cpu_do_interrupt_aarch32_hyp(cs);
9093 return;
9094 }
9095
27103424 9096 switch (cs->exception_index) {
b5ff1b31
FB
9097 case EXCP_UDEF:
9098 new_mode = ARM_CPU_MODE_UND;
9099 addr = 0x04;
9100 mask = CPSR_I;
9101 if (env->thumb)
9102 offset = 2;
9103 else
9104 offset = 4;
9105 break;
9106 case EXCP_SWI:
9107 new_mode = ARM_CPU_MODE_SVC;
9108 addr = 0x08;
9109 mask = CPSR_I;
601d70b9 9110 /* The PC already points to the next instruction. */
b5ff1b31
FB
9111 offset = 0;
9112 break;
06c949e6 9113 case EXCP_BKPT:
9ee6e8bb
PB
9114 /* Fall through to prefetch abort. */
9115 case EXCP_PREFETCH_ABORT:
88ca1c2d 9116 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
b848ce2b 9117 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
3f1beaca 9118 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
88ca1c2d 9119 env->exception.fsr, (uint32_t)env->exception.vaddress);
b5ff1b31
FB
9120 new_mode = ARM_CPU_MODE_ABT;
9121 addr = 0x0c;
9122 mask = CPSR_A | CPSR_I;
9123 offset = 4;
9124 break;
9125 case EXCP_DATA_ABORT:
4a7e2d73 9126 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
b848ce2b 9127 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
3f1beaca 9128 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4a7e2d73 9129 env->exception.fsr,
6cd8a264 9130 (uint32_t)env->exception.vaddress);
b5ff1b31
FB
9131 new_mode = ARM_CPU_MODE_ABT;
9132 addr = 0x10;
9133 mask = CPSR_A | CPSR_I;
9134 offset = 8;
9135 break;
9136 case EXCP_IRQ:
9137 new_mode = ARM_CPU_MODE_IRQ;
9138 addr = 0x18;
9139 /* Disable IRQ and imprecise data aborts. */
9140 mask = CPSR_A | CPSR_I;
9141 offset = 4;
de38d23b
FA
9142 if (env->cp15.scr_el3 & SCR_IRQ) {
9143 /* IRQ routed to monitor mode */
9144 new_mode = ARM_CPU_MODE_MON;
9145 mask |= CPSR_F;
9146 }
b5ff1b31
FB
9147 break;
9148 case EXCP_FIQ:
9149 new_mode = ARM_CPU_MODE_FIQ;
9150 addr = 0x1c;
9151 /* Disable FIQ, IRQ and imprecise data aborts. */
9152 mask = CPSR_A | CPSR_I | CPSR_F;
de38d23b
FA
9153 if (env->cp15.scr_el3 & SCR_FIQ) {
9154 /* FIQ routed to monitor mode */
9155 new_mode = ARM_CPU_MODE_MON;
9156 }
b5ff1b31
FB
9157 offset = 4;
9158 break;
87a4b270
PM
9159 case EXCP_VIRQ:
9160 new_mode = ARM_CPU_MODE_IRQ;
9161 addr = 0x18;
9162 /* Disable IRQ and imprecise data aborts. */
9163 mask = CPSR_A | CPSR_I;
9164 offset = 4;
9165 break;
9166 case EXCP_VFIQ:
9167 new_mode = ARM_CPU_MODE_FIQ;
9168 addr = 0x1c;
9169 /* Disable FIQ, IRQ and imprecise data aborts. */
9170 mask = CPSR_A | CPSR_I | CPSR_F;
9171 offset = 4;
9172 break;
dbe9d163
FA
9173 case EXCP_SMC:
9174 new_mode = ARM_CPU_MODE_MON;
9175 addr = 0x08;
9176 mask = CPSR_A | CPSR_I | CPSR_F;
9177 offset = 0;
9178 break;
b5ff1b31 9179 default:
a47dddd7 9180 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
b5ff1b31
FB
9181 return; /* Never happens. Keep compiler happy. */
9182 }
e89e51a1
FA
9183
9184 if (new_mode == ARM_CPU_MODE_MON) {
9185 addr += env->cp15.mvbar;
137feaa9 9186 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
e89e51a1 9187 /* High vectors. When enabled, base address cannot be remapped. */
b5ff1b31 9188 addr += 0xffff0000;
8641136c
NR
9189 } else {
9190 /* ARM v7 architectures provide a vector base address register to remap
9191 * the interrupt vector table.
e89e51a1 9192 * This register is only followed in non-monitor mode, and is banked.
8641136c
NR
9193 * Note: only bits 31:5 are valid.
9194 */
fb6c91ba 9195 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
b5ff1b31 9196 }
dbe9d163
FA
9197
9198 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9199 env->cp15.scr_el3 &= ~SCR_NS;
9200 }
9201
dea8378b 9202 take_aarch32_exception(env, new_mode, mask, offset, addr);
b5ff1b31
FB
9203}
9204
966f758c
PM
9205/* Handle exception entry to a target EL which is using AArch64 */
9206static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
f3a9b694
PM
9207{
9208 ARMCPU *cpu = ARM_CPU(cs);
9209 CPUARMState *env = &cpu->env;
9210 unsigned int new_el = env->exception.target_el;
9211 target_ulong addr = env->cp15.vbar_el[new_el];
9212 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
0ab5953b
RH
9213 unsigned int cur_el = arm_current_el(env);
9214
9a05f7b6
RH
9215 /*
9216 * Note that new_el can never be 0. If cur_el is 0, then
9217 * el0_a64 is is_a64(), else el0_a64 is ignored.
9218 */
9219 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
f3a9b694 9220
0ab5953b 9221 if (cur_el < new_el) {
3d6f7617
PM
9222 /* Entry vector offset depends on whether the implemented EL
9223 * immediately lower than the target level is using AArch32 or AArch64
9224 */
9225 bool is_aa64;
9226
9227 switch (new_el) {
9228 case 3:
9229 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9230 break;
9231 case 2:
9232 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
9233 break;
9234 case 1:
9235 is_aa64 = is_a64(env);
9236 break;
9237 default:
9238 g_assert_not_reached();
9239 }
9240
9241 if (is_aa64) {
f3a9b694
PM
9242 addr += 0x400;
9243 } else {
9244 addr += 0x600;
9245 }
9246 } else if (pstate_read(env) & PSTATE_SP) {
9247 addr += 0x200;
9248 }
9249
f3a9b694
PM
9250 switch (cs->exception_index) {
9251 case EXCP_PREFETCH_ABORT:
9252 case EXCP_DATA_ABORT:
9253 env->cp15.far_el[new_el] = env->exception.vaddress;
9254 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9255 env->cp15.far_el[new_el]);
9256 /* fall through */
9257 case EXCP_BKPT:
9258 case EXCP_UDEF:
9259 case EXCP_SWI:
9260 case EXCP_HVC:
9261 case EXCP_HYP_TRAP:
9262 case EXCP_SMC:
4be42f40
PM
9263 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
9264 /*
9265 * QEMU internal FP/SIMD syndromes from AArch32 include the
9266 * TA and coproc fields which are only exposed if the exception
9267 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9268 * AArch64 format syndrome.
9269 */
9270 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9271 }
f3a9b694
PM
9272 env->cp15.esr_el[new_el] = env->exception.syndrome;
9273 break;
9274 case EXCP_IRQ:
9275 case EXCP_VIRQ:
9276 addr += 0x80;
9277 break;
9278 case EXCP_FIQ:
9279 case EXCP_VFIQ:
9280 addr += 0x100;
9281 break;
9282 case EXCP_SEMIHOST:
9283 qemu_log_mask(CPU_LOG_INT,
9284 "...handling as semihosting call 0x%" PRIx64 "\n",
9285 env->xregs[0]);
9286 env->xregs[0] = do_arm_semihosting(env);
9287 return;
9288 default:
9289 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9290 }
9291
9292 if (is_a64(env)) {
9293 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
9294 aarch64_save_sp(env, arm_current_el(env));
9295 env->elr_el[new_el] = env->pc;
9296 } else {
9297 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
f3a9b694
PM
9298 env->elr_el[new_el] = env->regs[15];
9299
9300 aarch64_sync_32_to_64(env);
9301
9302 env->condexec_bits = 0;
9303 }
9304 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9305 env->elr_el[new_el]);
9306
9307 pstate_write(env, PSTATE_DAIF | new_mode);
9308 env->aarch64 = 1;
9309 aarch64_restore_sp(env, new_el);
9310
9311 env->pc = addr;
9312
9313 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9314 new_el, env->pc, pstate_read(env));
966f758c
PM
9315}
9316
904c04de
PM
9317static inline bool check_for_semihosting(CPUState *cs)
9318{
9319 /* Check whether this exception is a semihosting call; if so
9320 * then handle it and return true; otherwise return false.
9321 */
9322 ARMCPU *cpu = ARM_CPU(cs);
9323 CPUARMState *env = &cpu->env;
9324
9325 if (is_a64(env)) {
9326 if (cs->exception_index == EXCP_SEMIHOST) {
9327 /* This is always the 64-bit semihosting exception.
9328 * The "is this usermode" and "is semihosting enabled"
9329 * checks have been done at translate time.
9330 */
9331 qemu_log_mask(CPU_LOG_INT,
9332 "...handling as semihosting call 0x%" PRIx64 "\n",
9333 env->xregs[0]);
9334 env->xregs[0] = do_arm_semihosting(env);
9335 return true;
9336 }
9337 return false;
9338 } else {
9339 uint32_t imm;
9340
9341 /* Only intercept calls from privileged modes, to provide some
9342 * semblance of security.
9343 */
19a6e31c
PM
9344 if (cs->exception_index != EXCP_SEMIHOST &&
9345 (!semihosting_enabled() ||
9346 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
904c04de
PM
9347 return false;
9348 }
9349
9350 switch (cs->exception_index) {
19a6e31c
PM
9351 case EXCP_SEMIHOST:
9352 /* This is always a semihosting call; the "is this usermode"
9353 * and "is semihosting enabled" checks have been done at
9354 * translate time.
9355 */
9356 break;
904c04de
PM
9357 case EXCP_SWI:
9358 /* Check for semihosting interrupt. */
9359 if (env->thumb) {
f9fd40eb 9360 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
904c04de
PM
9361 & 0xff;
9362 if (imm == 0xab) {
9363 break;
9364 }
9365 } else {
f9fd40eb 9366 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
904c04de
PM
9367 & 0xffffff;
9368 if (imm == 0x123456) {
9369 break;
9370 }
9371 }
9372 return false;
9373 case EXCP_BKPT:
9374 /* See if this is a semihosting syscall. */
9375 if (env->thumb) {
f9fd40eb 9376 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
904c04de
PM
9377 & 0xff;
9378 if (imm == 0xab) {
9379 env->regs[15] += 2;
9380 break;
9381 }
9382 }
9383 return false;
9384 default:
9385 return false;
9386 }
9387
9388 qemu_log_mask(CPU_LOG_INT,
9389 "...handling as semihosting call 0x%x\n",
9390 env->regs[0]);
9391 env->regs[0] = do_arm_semihosting(env);
9392 return true;
9393 }
9394}
9395
966f758c
PM
9396/* Handle a CPU exception for A and R profile CPUs.
9397 * Do any appropriate logging, handle PSCI calls, and then hand off
9398 * to the AArch64-entry or AArch32-entry function depending on the
9399 * target exception level's register width.
9400 */
9401void arm_cpu_do_interrupt(CPUState *cs)
9402{
9403 ARMCPU *cpu = ARM_CPU(cs);
9404 CPUARMState *env = &cpu->env;
9405 unsigned int new_el = env->exception.target_el;
9406
531c60a9 9407 assert(!arm_feature(env, ARM_FEATURE_M));
966f758c
PM
9408
9409 arm_log_exception(cs->exception_index);
9410 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9411 new_el);
9412 if (qemu_loglevel_mask(CPU_LOG_INT)
9413 && !excp_is_internal(cs->exception_index)) {
6568da45 9414 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
64b91e3f 9415 syn_get_ec(env->exception.syndrome),
966f758c
PM
9416 env->exception.syndrome);
9417 }
9418
9419 if (arm_is_psci_call(cpu, cs->exception_index)) {
9420 arm_handle_psci_call(cpu);
9421 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9422 return;
9423 }
9424
904c04de
PM
9425 /* Semihosting semantics depend on the register width of the
9426 * code that caused the exception, not the target exception level,
9427 * so must be handled here.
966f758c 9428 */
904c04de
PM
9429 if (check_for_semihosting(cs)) {
9430 return;
9431 }
9432
b5c53d1b
AL
9433 /* Hooks may change global state so BQL should be held, also the
9434 * BQL needs to be held for any modification of
9435 * cs->interrupt_request.
9436 */
9437 g_assert(qemu_mutex_iothread_locked());
9438
9439 arm_call_pre_el_change_hook(cpu);
9440
904c04de
PM
9441 assert(!excp_is_internal(cs->exception_index));
9442 if (arm_el_is_aa64(env, new_el)) {
966f758c
PM
9443 arm_cpu_do_interrupt_aarch64(cs);
9444 } else {
9445 arm_cpu_do_interrupt_aarch32(cs);
9446 }
f3a9b694 9447
bd7d00fc
PM
9448 arm_call_el_change_hook(cpu);
9449
f3a9b694
PM
9450 if (!kvm_enabled()) {
9451 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9452 }
9453}
0480f69a
PM
9454
9455/* Return the exception level which controls this address translation regime */
9456static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
9457{
9458 switch (mmu_idx) {
9459 case ARMMMUIdx_S2NS:
9460 case ARMMMUIdx_S1E2:
9461 return 2;
9462 case ARMMMUIdx_S1E3:
9463 return 3;
9464 case ARMMMUIdx_S1SE0:
9465 return arm_el_is_aa64(env, 3) ? 1 : 3;
9466 case ARMMMUIdx_S1SE1:
9467 case ARMMMUIdx_S1NSE0:
9468 case ARMMMUIdx_S1NSE1:
62593718
PM
9469 case ARMMMUIdx_MPrivNegPri:
9470 case ARMMMUIdx_MUserNegPri:
e7b921c2
PM
9471 case ARMMMUIdx_MPriv:
9472 case ARMMMUIdx_MUser:
62593718
PM
9473 case ARMMMUIdx_MSPrivNegPri:
9474 case ARMMMUIdx_MSUserNegPri:
66787c78 9475 case ARMMMUIdx_MSPriv:
66787c78 9476 case ARMMMUIdx_MSUser:
0480f69a
PM
9477 return 1;
9478 default:
9479 g_assert_not_reached();
9480 }
9481}
9482
9483/* Return the SCTLR value which controls this address translation regime */
9484static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9485{
9486 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9487}
9488
9489/* Return true if the specified stage of address translation is disabled */
9490static inline bool regime_translation_disabled(CPUARMState *env,
9491 ARMMMUIdx mmu_idx)
9492{
29c483a5 9493 if (arm_feature(env, ARM_FEATURE_M)) {
ecf5e8ea 9494 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
3bef7012
PM
9495 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9496 case R_V7M_MPU_CTRL_ENABLE_MASK:
9497 /* Enabled, but not for HardFault and NMI */
62593718 9498 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
3bef7012
PM
9499 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9500 /* Enabled for all cases */
9501 return false;
9502 case 0:
9503 default:
9504 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9505 * we warned about that in armv7m_nvic.c when the guest set it.
9506 */
9507 return true;
9508 }
29c483a5
MD
9509 }
9510
0480f69a 9511 if (mmu_idx == ARMMMUIdx_S2NS) {
9d1bab33
PM
9512 /* HCR.DC means HCR.VM behaves as 1 */
9513 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
0480f69a 9514 }
3d0e3080
PM
9515
9516 if (env->cp15.hcr_el2 & HCR_TGE) {
9517 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9518 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9519 return true;
9520 }
9521 }
9522
9d1bab33
PM
9523 if ((env->cp15.hcr_el2 & HCR_DC) &&
9524 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
9525 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9526 return true;
9527 }
9528
0480f69a
PM
9529 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9530}
9531
73462ddd
PC
9532static inline bool regime_translation_big_endian(CPUARMState *env,
9533 ARMMMUIdx mmu_idx)
9534{
9535 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
9536}
9537
0480f69a
PM
9538/* Return the TCR controlling this translation regime */
9539static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
9540{
9541 if (mmu_idx == ARMMMUIdx_S2NS) {
68e9c2fe 9542 return &env->cp15.vtcr_el2;
0480f69a
PM
9543 }
9544 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
9545}
9546
8bd5c820
PM
9547/* Convert a possible stage1+2 MMU index into the appropriate
9548 * stage 1 MMU index
9549 */
9550static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
9551{
9552 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9553 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
9554 }
9555 return mmu_idx;
9556}
9557
aef878be
GB
9558/* Return the TTBR associated with this translation regime */
9559static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
9560 int ttbrn)
9561{
9562 if (mmu_idx == ARMMMUIdx_S2NS) {
b698e9cf 9563 return env->cp15.vttbr_el2;
aef878be
GB
9564 }
9565 if (ttbrn == 0) {
9566 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
9567 } else {
9568 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
9569 }
9570}
9571
0480f69a
PM
9572/* Return true if the translation regime is using LPAE format page tables */
9573static inline bool regime_using_lpae_format(CPUARMState *env,
9574 ARMMMUIdx mmu_idx)
9575{
9576 int el = regime_el(env, mmu_idx);
9577 if (el == 2 || arm_el_is_aa64(env, el)) {
9578 return true;
9579 }
9580 if (arm_feature(env, ARM_FEATURE_LPAE)
9581 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
9582 return true;
9583 }
9584 return false;
9585}
9586
deb2db99
AR
9587/* Returns true if the stage 1 translation regime is using LPAE format page
9588 * tables. Used when raising alignment exceptions, whose FSR changes depending
9589 * on whether the long or short descriptor format is in use. */
9590bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
30901475 9591{
8bd5c820 9592 mmu_idx = stage_1_mmu_idx(mmu_idx);
deb2db99 9593
30901475
AB
9594 return regime_using_lpae_format(env, mmu_idx);
9595}
9596
0480f69a
PM
9597static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
9598{
9599 switch (mmu_idx) {
9600 case ARMMMUIdx_S1SE0:
9601 case ARMMMUIdx_S1NSE0:
e7b921c2 9602 case ARMMMUIdx_MUser:
871bec7c 9603 case ARMMMUIdx_MSUser:
62593718
PM
9604 case ARMMMUIdx_MUserNegPri:
9605 case ARMMMUIdx_MSUserNegPri:
0480f69a
PM
9606 return true;
9607 default:
9608 return false;
9609 case ARMMMUIdx_S12NSE0:
9610 case ARMMMUIdx_S12NSE1:
9611 g_assert_not_reached();
9612 }
9613}
9614
0fbf5238
AJ
9615/* Translate section/page access permissions to page
9616 * R/W protection flags
d76951b6
AJ
9617 *
9618 * @env: CPUARMState
9619 * @mmu_idx: MMU index indicating required translation regime
9620 * @ap: The 3-bit access permissions (AP[2:0])
9621 * @domain_prot: The 2-bit domain access permissions
0fbf5238
AJ
9622 */
9623static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
9624 int ap, int domain_prot)
9625{
554b0b09
PM
9626 bool is_user = regime_is_user(env, mmu_idx);
9627
9628 if (domain_prot == 3) {
9629 return PAGE_READ | PAGE_WRITE;
9630 }
9631
554b0b09
PM
9632 switch (ap) {
9633 case 0:
9634 if (arm_feature(env, ARM_FEATURE_V7)) {
9635 return 0;
9636 }
554b0b09
PM
9637 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
9638 case SCTLR_S:
9639 return is_user ? 0 : PAGE_READ;
9640 case SCTLR_R:
9641 return PAGE_READ;
9642 default:
9643 return 0;
9644 }
9645 case 1:
9646 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9647 case 2:
87c3d486 9648 if (is_user) {
0fbf5238 9649 return PAGE_READ;
87c3d486 9650 } else {
554b0b09 9651 return PAGE_READ | PAGE_WRITE;
87c3d486 9652 }
554b0b09
PM
9653 case 3:
9654 return PAGE_READ | PAGE_WRITE;
9655 case 4: /* Reserved. */
9656 return 0;
9657 case 5:
0fbf5238 9658 return is_user ? 0 : PAGE_READ;
554b0b09 9659 case 6:
0fbf5238 9660 return PAGE_READ;
554b0b09 9661 case 7:
87c3d486 9662 if (!arm_feature(env, ARM_FEATURE_V6K)) {
554b0b09 9663 return 0;
87c3d486 9664 }
0fbf5238 9665 return PAGE_READ;
554b0b09 9666 default:
0fbf5238 9667 g_assert_not_reached();
554b0b09 9668 }
b5ff1b31
FB
9669}
9670
d76951b6
AJ
9671/* Translate section/page access permissions to page
9672 * R/W protection flags.
9673 *
d76951b6 9674 * @ap: The 2-bit simple AP (AP[2:1])
d8e052b3 9675 * @is_user: TRUE if accessing from PL0
d76951b6 9676 */
d8e052b3 9677static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
d76951b6 9678{
d76951b6
AJ
9679 switch (ap) {
9680 case 0:
9681 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9682 case 1:
9683 return PAGE_READ | PAGE_WRITE;
9684 case 2:
9685 return is_user ? 0 : PAGE_READ;
9686 case 3:
9687 return PAGE_READ;
9688 default:
9689 g_assert_not_reached();
9690 }
9691}
9692
d8e052b3
AJ
9693static inline int
9694simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9695{
9696 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9697}
9698
6ab1a5ee
EI
9699/* Translate S2 section/page access permissions to protection flags
9700 *
9701 * @env: CPUARMState
9702 * @s2ap: The 2-bit stage2 access permissions (S2AP)
9703 * @xn: XN (execute-never) bit
9704 */
9705static int get_S2prot(CPUARMState *env, int s2ap, int xn)
9706{
9707 int prot = 0;
9708
9709 if (s2ap & 1) {
9710 prot |= PAGE_READ;
9711 }
9712 if (s2ap & 2) {
9713 prot |= PAGE_WRITE;
9714 }
9715 if (!xn) {
dfda6837
SS
9716 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
9717 prot |= PAGE_EXEC;
9718 }
6ab1a5ee
EI
9719 }
9720 return prot;
9721}
9722
d8e052b3
AJ
9723/* Translate section/page access permissions to protection flags
9724 *
9725 * @env: CPUARMState
9726 * @mmu_idx: MMU index indicating required translation regime
9727 * @is_aa64: TRUE if AArch64
9728 * @ap: The 2-bit simple AP (AP[2:1])
9729 * @ns: NS (non-secure) bit
9730 * @xn: XN (execute-never) bit
9731 * @pxn: PXN (privileged execute-never) bit
9732 */
9733static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
9734 int ap, int ns, int xn, int pxn)
9735{
9736 bool is_user = regime_is_user(env, mmu_idx);
9737 int prot_rw, user_rw;
9738 bool have_wxn;
9739 int wxn = 0;
9740
9741 assert(mmu_idx != ARMMMUIdx_S2NS);
9742
9743 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
9744 if (is_user) {
9745 prot_rw = user_rw;
9746 } else {
9747 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
9748 }
9749
9750 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
9751 return prot_rw;
9752 }
9753
9754 /* TODO have_wxn should be replaced with
9755 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
9756 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
9757 * compatible processors have EL2, which is required for [U]WXN.
9758 */
9759 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
9760
9761 if (have_wxn) {
9762 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
9763 }
9764
9765 if (is_aa64) {
9766 switch (regime_el(env, mmu_idx)) {
9767 case 1:
9768 if (!is_user) {
9769 xn = pxn || (user_rw & PAGE_WRITE);
9770 }
9771 break;
9772 case 2:
9773 case 3:
9774 break;
9775 }
9776 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9777 switch (regime_el(env, mmu_idx)) {
9778 case 1:
9779 case 3:
9780 if (is_user) {
9781 xn = xn || !(user_rw & PAGE_READ);
9782 } else {
9783 int uwxn = 0;
9784 if (have_wxn) {
9785 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
9786 }
9787 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
9788 (uwxn && (user_rw & PAGE_WRITE));
9789 }
9790 break;
9791 case 2:
9792 break;
9793 }
9794 } else {
9795 xn = wxn = 0;
9796 }
9797
9798 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
9799 return prot_rw;
9800 }
9801 return prot_rw | PAGE_EXEC;
9802}
9803
0480f69a
PM
9804static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
9805 uint32_t *table, uint32_t address)
b2fa1797 9806{
0480f69a 9807 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
0480f69a 9808 TCR *tcr = regime_tcr(env, mmu_idx);
11f136ee 9809
11f136ee
FA
9810 if (address & tcr->mask) {
9811 if (tcr->raw_tcr & TTBCR_PD1) {
e389be16
FA
9812 /* Translation table walk disabled for TTBR1 */
9813 return false;
9814 }
aef878be 9815 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
e389be16 9816 } else {
11f136ee 9817 if (tcr->raw_tcr & TTBCR_PD0) {
e389be16
FA
9818 /* Translation table walk disabled for TTBR0 */
9819 return false;
9820 }
aef878be 9821 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
e389be16
FA
9822 }
9823 *table |= (address >> 18) & 0x3ffc;
9824 return true;
b2fa1797
PB
9825}
9826
37785977
EI
9827/* Translate a S1 pagetable walk through S2 if needed. */
9828static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
9829 hwaddr addr, MemTxAttrs txattrs,
37785977
EI
9830 ARMMMUFaultInfo *fi)
9831{
9832 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
9833 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9834 target_ulong s2size;
9835 hwaddr s2pa;
9836 int s2prot;
9837 int ret;
eadb2feb
PM
9838 ARMCacheAttrs cacheattrs = {};
9839 ARMCacheAttrs *pcacheattrs = NULL;
9840
9841 if (env->cp15.hcr_el2 & HCR_PTW) {
9842 /*
9843 * PTW means we must fault if this S1 walk touches S2 Device
9844 * memory; otherwise we don't care about the attributes and can
9845 * save the S2 translation the effort of computing them.
9846 */
9847 pcacheattrs = &cacheattrs;
9848 }
37785977
EI
9849
9850 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
eadb2feb 9851 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
37785977 9852 if (ret) {
3b39d734 9853 assert(fi->type != ARMFault_None);
37785977
EI
9854 fi->s2addr = addr;
9855 fi->stage2 = true;
9856 fi->s1ptw = true;
9857 return ~0;
9858 }
eadb2feb
PM
9859 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
9860 /* Access was to Device memory: generate Permission fault */
9861 fi->type = ARMFault_Permission;
9862 fi->s2addr = addr;
9863 fi->stage2 = true;
9864 fi->s1ptw = true;
9865 return ~0;
9866 }
37785977
EI
9867 addr = s2pa;
9868 }
9869 return addr;
9870}
9871
14577270 9872/* All loads done in the course of a page table walk go through here. */
a614e698 9873static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
3795a6de 9874 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
ebca90e4 9875{
a614e698
EI
9876 ARMCPU *cpu = ARM_CPU(cs);
9877 CPUARMState *env = &cpu->env;
ebca90e4 9878 MemTxAttrs attrs = {};
3b39d734 9879 MemTxResult result = MEMTX_OK;
5ce4ff65 9880 AddressSpace *as;
3b39d734 9881 uint32_t data;
ebca90e4
PM
9882
9883 attrs.secure = is_secure;
5ce4ff65 9884 as = arm_addressspace(cs, attrs);
3795a6de 9885 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
a614e698
EI
9886 if (fi->s1ptw) {
9887 return 0;
9888 }
73462ddd 9889 if (regime_translation_big_endian(env, mmu_idx)) {
3b39d734 9890 data = address_space_ldl_be(as, addr, attrs, &result);
73462ddd 9891 } else {
3b39d734 9892 data = address_space_ldl_le(as, addr, attrs, &result);
73462ddd 9893 }
3b39d734
PM
9894 if (result == MEMTX_OK) {
9895 return data;
9896 }
9897 fi->type = ARMFault_SyncExternalOnWalk;
9898 fi->ea = arm_extabort_type(result);
9899 return 0;
ebca90e4
PM
9900}
9901
37785977 9902static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
3795a6de 9903 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
ebca90e4 9904{
37785977
EI
9905 ARMCPU *cpu = ARM_CPU(cs);
9906 CPUARMState *env = &cpu->env;
ebca90e4 9907 MemTxAttrs attrs = {};
3b39d734 9908 MemTxResult result = MEMTX_OK;
5ce4ff65 9909 AddressSpace *as;
9aea1ea3 9910 uint64_t data;
ebca90e4
PM
9911
9912 attrs.secure = is_secure;
5ce4ff65 9913 as = arm_addressspace(cs, attrs);
3795a6de 9914 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
37785977
EI
9915 if (fi->s1ptw) {
9916 return 0;
9917 }
73462ddd 9918 if (regime_translation_big_endian(env, mmu_idx)) {
3b39d734 9919 data = address_space_ldq_be(as, addr, attrs, &result);
73462ddd 9920 } else {
3b39d734
PM
9921 data = address_space_ldq_le(as, addr, attrs, &result);
9922 }
9923 if (result == MEMTX_OK) {
9924 return data;
73462ddd 9925 }
3b39d734
PM
9926 fi->type = ARMFault_SyncExternalOnWalk;
9927 fi->ea = arm_extabort_type(result);
9928 return 0;
ebca90e4
PM
9929}
9930
b7cc4e82 9931static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
03ae85f8 9932 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 9933 hwaddr *phys_ptr, int *prot,
f989983e 9934 target_ulong *page_size,
e14b5a23 9935 ARMMMUFaultInfo *fi)
b5ff1b31 9936{
70d74660 9937 CPUState *cs = CPU(arm_env_get_cpu(env));
f989983e 9938 int level = 1;
b5ff1b31
FB
9939 uint32_t table;
9940 uint32_t desc;
9941 int type;
9942 int ap;
e389be16 9943 int domain = 0;
dd4ebc2e 9944 int domain_prot;
a8170e5e 9945 hwaddr phys_addr;
0480f69a 9946 uint32_t dacr;
b5ff1b31 9947
9ee6e8bb
PB
9948 /* Pagetable walk. */
9949 /* Lookup l1 descriptor. */
0480f69a 9950 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16 9951 /* Section translation fault if page walk is disabled by PD0 or PD1 */
f989983e 9952 fi->type = ARMFault_Translation;
e389be16
FA
9953 goto do_fault;
9954 }
a614e698 9955 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
3795a6de 9956 mmu_idx, fi);
3b39d734
PM
9957 if (fi->type != ARMFault_None) {
9958 goto do_fault;
9959 }
9ee6e8bb 9960 type = (desc & 3);
dd4ebc2e 9961 domain = (desc >> 5) & 0x0f;
0480f69a
PM
9962 if (regime_el(env, mmu_idx) == 1) {
9963 dacr = env->cp15.dacr_ns;
9964 } else {
9965 dacr = env->cp15.dacr_s;
9966 }
9967 domain_prot = (dacr >> (domain * 2)) & 3;
9ee6e8bb 9968 if (type == 0) {
601d70b9 9969 /* Section translation fault. */
f989983e 9970 fi->type = ARMFault_Translation;
9ee6e8bb
PB
9971 goto do_fault;
9972 }
f989983e
PM
9973 if (type != 2) {
9974 level = 2;
9975 }
dd4ebc2e 9976 if (domain_prot == 0 || domain_prot == 2) {
f989983e 9977 fi->type = ARMFault_Domain;
9ee6e8bb
PB
9978 goto do_fault;
9979 }
9980 if (type == 2) {
9981 /* 1Mb section. */
9982 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9983 ap = (desc >> 10) & 3;
d4c430a8 9984 *page_size = 1024 * 1024;
9ee6e8bb
PB
9985 } else {
9986 /* Lookup l2 entry. */
554b0b09
PM
9987 if (type == 1) {
9988 /* Coarse pagetable. */
9989 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9990 } else {
9991 /* Fine pagetable. */
9992 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
9993 }
a614e698 9994 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
3795a6de 9995 mmu_idx, fi);
3b39d734
PM
9996 if (fi->type != ARMFault_None) {
9997 goto do_fault;
9998 }
9ee6e8bb
PB
9999 switch (desc & 3) {
10000 case 0: /* Page translation fault. */
f989983e 10001 fi->type = ARMFault_Translation;
9ee6e8bb
PB
10002 goto do_fault;
10003 case 1: /* 64k page. */
10004 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10005 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 10006 *page_size = 0x10000;
ce819861 10007 break;
9ee6e8bb
PB
10008 case 2: /* 4k page. */
10009 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
c10f7fc3 10010 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
d4c430a8 10011 *page_size = 0x1000;
ce819861 10012 break;
fc1891c7 10013 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
554b0b09 10014 if (type == 1) {
fc1891c7
PM
10015 /* ARMv6/XScale extended small page format */
10016 if (arm_feature(env, ARM_FEATURE_XSCALE)
10017 || arm_feature(env, ARM_FEATURE_V6)) {
554b0b09 10018 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
fc1891c7 10019 *page_size = 0x1000;
554b0b09 10020 } else {
fc1891c7
PM
10021 /* UNPREDICTABLE in ARMv5; we choose to take a
10022 * page translation fault.
10023 */
f989983e 10024 fi->type = ARMFault_Translation;
554b0b09
PM
10025 goto do_fault;
10026 }
10027 } else {
10028 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
fc1891c7 10029 *page_size = 0x400;
554b0b09 10030 }
9ee6e8bb 10031 ap = (desc >> 4) & 3;
ce819861
PB
10032 break;
10033 default:
9ee6e8bb
PB
10034 /* Never happens, but compiler isn't smart enough to tell. */
10035 abort();
ce819861 10036 }
9ee6e8bb 10037 }
0fbf5238
AJ
10038 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10039 *prot |= *prot ? PAGE_EXEC : 0;
10040 if (!(*prot & (1 << access_type))) {
9ee6e8bb 10041 /* Access permission fault. */
f989983e 10042 fi->type = ARMFault_Permission;
9ee6e8bb
PB
10043 goto do_fault;
10044 }
10045 *phys_ptr = phys_addr;
b7cc4e82 10046 return false;
9ee6e8bb 10047do_fault:
f989983e
PM
10048 fi->domain = domain;
10049 fi->level = level;
b7cc4e82 10050 return true;
9ee6e8bb
PB
10051}
10052
b7cc4e82 10053static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
03ae85f8 10054 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 10055 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
f06cf243 10056 target_ulong *page_size, ARMMMUFaultInfo *fi)
9ee6e8bb 10057{
70d74660 10058 CPUState *cs = CPU(arm_env_get_cpu(env));
f06cf243 10059 int level = 1;
9ee6e8bb
PB
10060 uint32_t table;
10061 uint32_t desc;
10062 uint32_t xn;
de9b05b8 10063 uint32_t pxn = 0;
9ee6e8bb
PB
10064 int type;
10065 int ap;
de9b05b8 10066 int domain = 0;
dd4ebc2e 10067 int domain_prot;
a8170e5e 10068 hwaddr phys_addr;
0480f69a 10069 uint32_t dacr;
8bf5b6a9 10070 bool ns;
9ee6e8bb
PB
10071
10072 /* Pagetable walk. */
10073 /* Lookup l1 descriptor. */
0480f69a 10074 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16 10075 /* Section translation fault if page walk is disabled by PD0 or PD1 */
f06cf243 10076 fi->type = ARMFault_Translation;
e389be16
FA
10077 goto do_fault;
10078 }
a614e698 10079 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
3795a6de 10080 mmu_idx, fi);
3b39d734
PM
10081 if (fi->type != ARMFault_None) {
10082 goto do_fault;
10083 }
9ee6e8bb 10084 type = (desc & 3);
de9b05b8
PM
10085 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
10086 /* Section translation fault, or attempt to use the encoding
10087 * which is Reserved on implementations without PXN.
10088 */
f06cf243 10089 fi->type = ARMFault_Translation;
9ee6e8bb 10090 goto do_fault;
de9b05b8
PM
10091 }
10092 if ((type == 1) || !(desc & (1 << 18))) {
10093 /* Page or Section. */
dd4ebc2e 10094 domain = (desc >> 5) & 0x0f;
9ee6e8bb 10095 }
0480f69a
PM
10096 if (regime_el(env, mmu_idx) == 1) {
10097 dacr = env->cp15.dacr_ns;
10098 } else {
10099 dacr = env->cp15.dacr_s;
10100 }
f06cf243
PM
10101 if (type == 1) {
10102 level = 2;
10103 }
0480f69a 10104 domain_prot = (dacr >> (domain * 2)) & 3;
dd4ebc2e 10105 if (domain_prot == 0 || domain_prot == 2) {
f06cf243
PM
10106 /* Section or Page domain fault */
10107 fi->type = ARMFault_Domain;
9ee6e8bb
PB
10108 goto do_fault;
10109 }
de9b05b8 10110 if (type != 1) {
9ee6e8bb
PB
10111 if (desc & (1 << 18)) {
10112 /* Supersection. */
10113 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
4e42a6ca
SF
10114 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10115 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
d4c430a8 10116 *page_size = 0x1000000;
b5ff1b31 10117 } else {
9ee6e8bb
PB
10118 /* Section. */
10119 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 10120 *page_size = 0x100000;
b5ff1b31 10121 }
9ee6e8bb
PB
10122 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10123 xn = desc & (1 << 4);
de9b05b8 10124 pxn = desc & 1;
8bf5b6a9 10125 ns = extract32(desc, 19, 1);
9ee6e8bb 10126 } else {
de9b05b8
PM
10127 if (arm_feature(env, ARM_FEATURE_PXN)) {
10128 pxn = (desc >> 2) & 1;
10129 }
8bf5b6a9 10130 ns = extract32(desc, 3, 1);
9ee6e8bb
PB
10131 /* Lookup l2 entry. */
10132 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
a614e698 10133 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
3795a6de 10134 mmu_idx, fi);
3b39d734
PM
10135 if (fi->type != ARMFault_None) {
10136 goto do_fault;
10137 }
9ee6e8bb
PB
10138 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10139 switch (desc & 3) {
10140 case 0: /* Page translation fault. */
f06cf243 10141 fi->type = ARMFault_Translation;
b5ff1b31 10142 goto do_fault;
9ee6e8bb
PB
10143 case 1: /* 64k page. */
10144 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10145 xn = desc & (1 << 15);
d4c430a8 10146 *page_size = 0x10000;
9ee6e8bb
PB
10147 break;
10148 case 2: case 3: /* 4k page. */
10149 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10150 xn = desc & 1;
d4c430a8 10151 *page_size = 0x1000;
9ee6e8bb
PB
10152 break;
10153 default:
10154 /* Never happens, but compiler isn't smart enough to tell. */
10155 abort();
b5ff1b31 10156 }
9ee6e8bb 10157 }
dd4ebc2e 10158 if (domain_prot == 3) {
c0034328
JR
10159 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10160 } else {
0480f69a 10161 if (pxn && !regime_is_user(env, mmu_idx)) {
de9b05b8
PM
10162 xn = 1;
10163 }
f06cf243
PM
10164 if (xn && access_type == MMU_INST_FETCH) {
10165 fi->type = ARMFault_Permission;
c0034328 10166 goto do_fault;
f06cf243 10167 }
9ee6e8bb 10168
d76951b6
AJ
10169 if (arm_feature(env, ARM_FEATURE_V6K) &&
10170 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10171 /* The simplified model uses AP[0] as an access control bit. */
10172 if ((ap & 1) == 0) {
10173 /* Access flag fault. */
f06cf243 10174 fi->type = ARMFault_AccessFlag;
d76951b6
AJ
10175 goto do_fault;
10176 }
10177 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10178 } else {
10179 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
c0034328 10180 }
0fbf5238
AJ
10181 if (*prot && !xn) {
10182 *prot |= PAGE_EXEC;
10183 }
10184 if (!(*prot & (1 << access_type))) {
c0034328 10185 /* Access permission fault. */
f06cf243 10186 fi->type = ARMFault_Permission;
c0034328
JR
10187 goto do_fault;
10188 }
3ad493fc 10189 }
8bf5b6a9
PM
10190 if (ns) {
10191 /* The NS bit will (as required by the architecture) have no effect if
10192 * the CPU doesn't support TZ or this is a non-secure translation
10193 * regime, because the attribute will already be non-secure.
10194 */
10195 attrs->secure = false;
10196 }
9ee6e8bb 10197 *phys_ptr = phys_addr;
b7cc4e82 10198 return false;
b5ff1b31 10199do_fault:
f06cf243
PM
10200 fi->domain = domain;
10201 fi->level = level;
b7cc4e82 10202 return true;
b5ff1b31
FB
10203}
10204
1853d5a9 10205/*
a0e966c9 10206 * check_s2_mmu_setup
1853d5a9
EI
10207 * @cpu: ARMCPU
10208 * @is_aa64: True if the translation regime is in AArch64 state
10209 * @startlevel: Suggested starting level
10210 * @inputsize: Bitsize of IPAs
10211 * @stride: Page-table stride (See the ARM ARM)
10212 *
a0e966c9
EI
10213 * Returns true if the suggested S2 translation parameters are OK and
10214 * false otherwise.
1853d5a9 10215 */
a0e966c9
EI
10216static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10217 int inputsize, int stride)
1853d5a9 10218{
98d68ec2
EI
10219 const int grainsize = stride + 3;
10220 int startsizecheck;
10221
1853d5a9
EI
10222 /* Negative levels are never allowed. */
10223 if (level < 0) {
10224 return false;
10225 }
10226
98d68ec2
EI
10227 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10228 if (startsizecheck < 1 || startsizecheck > stride + 4) {
10229 return false;
10230 }
10231
1853d5a9 10232 if (is_aa64) {
3526423e 10233 CPUARMState *env = &cpu->env;
1853d5a9
EI
10234 unsigned int pamax = arm_pamax(cpu);
10235
10236 switch (stride) {
10237 case 13: /* 64KB Pages. */
10238 if (level == 0 || (level == 1 && pamax <= 42)) {
10239 return false;
10240 }
10241 break;
10242 case 11: /* 16KB Pages. */
10243 if (level == 0 || (level == 1 && pamax <= 40)) {
10244 return false;
10245 }
10246 break;
10247 case 9: /* 4KB Pages. */
10248 if (level == 0 && pamax <= 42) {
10249 return false;
10250 }
10251 break;
10252 default:
10253 g_assert_not_reached();
10254 }
3526423e
EI
10255
10256 /* Inputsize checks. */
10257 if (inputsize > pamax &&
10258 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10259 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
10260 return false;
10261 }
1853d5a9 10262 } else {
1853d5a9
EI
10263 /* AArch32 only supports 4KB pages. Assert on that. */
10264 assert(stride == 9);
10265
10266 if (level == 0) {
10267 return false;
10268 }
1853d5a9
EI
10269 }
10270 return true;
10271}
10272
5b2d261d
AB
10273/* Translate from the 4-bit stage 2 representation of
10274 * memory attributes (without cache-allocation hints) to
10275 * the 8-bit representation of the stage 1 MAIR registers
10276 * (which includes allocation hints).
10277 *
10278 * ref: shared/translation/attrs/S2AttrDecode()
10279 * .../S2ConvertAttrsHints()
10280 */
10281static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10282{
10283 uint8_t hiattr = extract32(s2attrs, 2, 2);
10284 uint8_t loattr = extract32(s2attrs, 0, 2);
10285 uint8_t hihint = 0, lohint = 0;
10286
10287 if (hiattr != 0) { /* normal memory */
10288 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10289 hiattr = loattr = 1; /* non-cacheable */
10290 } else {
10291 if (hiattr != 1) { /* Write-through or write-back */
10292 hihint = 3; /* RW allocate */
10293 }
10294 if (loattr != 1) { /* Write-through or write-back */
10295 lohint = 3; /* RW allocate */
10296 }
10297 }
10298 }
10299
10300 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10301}
10302
e737ed2a
RH
10303ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
10304 ARMMMUIdx mmu_idx)
ba97be9f
RH
10305{
10306 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10307 uint32_t el = regime_el(env, mmu_idx);
8220af7e 10308 bool tbi, tbid, epd, hpd, using16k, using64k;
ba97be9f
RH
10309 int select, tsz;
10310
10311 /*
10312 * Bit 55 is always between the two regions, and is canonical for
10313 * determining if address tagging is enabled.
10314 */
10315 select = extract64(va, 55, 1);
10316
10317 if (el > 1) {
10318 tsz = extract32(tcr, 0, 6);
10319 using64k = extract32(tcr, 14, 1);
10320 using16k = extract32(tcr, 15, 1);
10321 if (mmu_idx == ARMMMUIdx_S2NS) {
10322 /* VTCR_EL2 */
8220af7e 10323 tbi = tbid = hpd = false;
ba97be9f
RH
10324 } else {
10325 tbi = extract32(tcr, 20, 1);
10326 hpd = extract32(tcr, 24, 1);
8220af7e 10327 tbid = extract32(tcr, 29, 1);
ba97be9f
RH
10328 }
10329 epd = false;
10330 } else if (!select) {
10331 tsz = extract32(tcr, 0, 6);
10332 epd = extract32(tcr, 7, 1);
10333 using64k = extract32(tcr, 14, 1);
10334 using16k = extract32(tcr, 15, 1);
10335 tbi = extract64(tcr, 37, 1);
10336 hpd = extract64(tcr, 41, 1);
8220af7e 10337 tbid = extract64(tcr, 51, 1);
ba97be9f
RH
10338 } else {
10339 int tg = extract32(tcr, 30, 2);
10340 using16k = tg == 1;
10341 using64k = tg == 3;
10342 tsz = extract32(tcr, 16, 6);
10343 epd = extract32(tcr, 23, 1);
10344 tbi = extract64(tcr, 38, 1);
10345 hpd = extract64(tcr, 42, 1);
8220af7e 10346 tbid = extract64(tcr, 52, 1);
ba97be9f
RH
10347 }
10348 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
10349 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
10350
10351 return (ARMVAParameters) {
10352 .tsz = tsz,
10353 .select = select,
10354 .tbi = tbi,
8220af7e 10355 .tbid = tbid,
ba97be9f
RH
10356 .epd = epd,
10357 .hpd = hpd,
10358 .using16k = using16k,
10359 .using64k = using64k,
10360 };
10361}
10362
e737ed2a
RH
10363ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10364 ARMMMUIdx mmu_idx, bool data)
10365{
8220af7e
RH
10366 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
10367
10368 /* Present TBI as a composite with TBID. */
10369 ret.tbi &= (data || !ret.tbid);
10370 return ret;
e737ed2a
RH
10371}
10372
ba97be9f
RH
10373static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10374 ARMMMUIdx mmu_idx)
10375{
10376 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10377 uint32_t el = regime_el(env, mmu_idx);
10378 int select, tsz;
10379 bool epd, hpd;
10380
10381 if (mmu_idx == ARMMMUIdx_S2NS) {
10382 /* VTCR */
10383 bool sext = extract32(tcr, 4, 1);
10384 bool sign = extract32(tcr, 3, 1);
10385
10386 /*
10387 * If the sign-extend bit is not the same as t0sz[3], the result
10388 * is unpredictable. Flag this as a guest error.
10389 */
10390 if (sign != sext) {
10391 qemu_log_mask(LOG_GUEST_ERROR,
10392 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10393 }
10394 tsz = sextract32(tcr, 0, 4) + 8;
10395 select = 0;
10396 hpd = false;
10397 epd = false;
10398 } else if (el == 2) {
10399 /* HTCR */
10400 tsz = extract32(tcr, 0, 3);
10401 select = 0;
10402 hpd = extract64(tcr, 24, 1);
10403 epd = false;
10404 } else {
10405 int t0sz = extract32(tcr, 0, 3);
10406 int t1sz = extract32(tcr, 16, 3);
10407
10408 if (t1sz == 0) {
10409 select = va > (0xffffffffu >> t0sz);
10410 } else {
10411 /* Note that we will detect errors later. */
10412 select = va >= ~(0xffffffffu >> t1sz);
10413 }
10414 if (!select) {
10415 tsz = t0sz;
10416 epd = extract32(tcr, 7, 1);
10417 hpd = extract64(tcr, 41, 1);
10418 } else {
10419 tsz = t1sz;
10420 epd = extract32(tcr, 23, 1);
10421 hpd = extract64(tcr, 42, 1);
10422 }
10423 /* For aarch32, hpd0 is not enabled without t2e as well. */
10424 hpd &= extract32(tcr, 6, 1);
10425 }
10426
10427 return (ARMVAParameters) {
10428 .tsz = tsz,
10429 .select = select,
10430 .epd = epd,
10431 .hpd = hpd,
10432 };
10433}
10434
b7cc4e82 10435static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
03ae85f8 10436 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 10437 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
da909b2c 10438 target_ulong *page_size_ptr,
5b2d261d 10439 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
3dde962f 10440{
1853d5a9
EI
10441 ARMCPU *cpu = arm_env_get_cpu(env);
10442 CPUState *cs = CPU(cpu);
3dde962f 10443 /* Read an LPAE long-descriptor translation table. */
da909b2c 10444 ARMFaultType fault_type = ARMFault_Translation;
1b4093ea 10445 uint32_t level;
ba97be9f 10446 ARMVAParameters param;
3dde962f 10447 uint64_t ttbr;
dddb5223 10448 hwaddr descaddr, indexmask, indexmask_grainsize;
3dde962f 10449 uint32_t tableattrs;
36d820af 10450 target_ulong page_size;
3dde962f 10451 uint32_t attrs;
ba97be9f
RH
10452 int32_t stride;
10453 int addrsize, inputsize;
0480f69a 10454 TCR *tcr = regime_tcr(env, mmu_idx);
d8e052b3 10455 int ap, ns, xn, pxn;
88e8add8 10456 uint32_t el = regime_el(env, mmu_idx);
ba97be9f 10457 bool ttbr1_valid;
6109769a 10458 uint64_t descaddrmask;
6e99f762 10459 bool aarch64 = arm_el_is_aa64(env, el);
0480f69a
PM
10460
10461 /* TODO:
88e8add8
GB
10462 * This code does not handle the different format TCR for VTCR_EL2.
10463 * This code also does not support shareability levels.
10464 * Attribute and permission bit handling should also be checked when adding
10465 * support for those page table walks.
0480f69a 10466 */
6e99f762 10467 if (aarch64) {
ba97be9f
RH
10468 param = aa64_va_parameters(env, address, mmu_idx,
10469 access_type != MMU_INST_FETCH);
1b4093ea 10470 level = 0;
88e8add8
GB
10471 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
10472 * invalid.
10473 */
ba97be9f
RH
10474 ttbr1_valid = (el < 2);
10475 addrsize = 64 - 8 * param.tbi;
10476 inputsize = 64 - param.tsz;
d0a2cbce 10477 } else {
ba97be9f 10478 param = aa32_va_parameters(env, address, mmu_idx);
1b4093ea 10479 level = 1;
d0a2cbce 10480 /* There is no TTBR1 for EL2 */
ba97be9f
RH
10481 ttbr1_valid = (el != 2);
10482 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
10483 inputsize = addrsize - param.tsz;
2c8dd318 10484 }
3dde962f 10485
ba97be9f
RH
10486 /*
10487 * We determined the region when collecting the parameters, but we
10488 * have not yet validated that the address is valid for the region.
10489 * Extract the top bits and verify that they all match select.
36d820af
RH
10490 *
10491 * For aa32, if inputsize == addrsize, then we have selected the
10492 * region by exclusion in aa32_va_parameters and there is no more
10493 * validation to do here.
10494 */
10495 if (inputsize < addrsize) {
10496 target_ulong top_bits = sextract64(address, inputsize,
10497 addrsize - inputsize);
10498 if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
10499 /* The gap between the two regions is a Translation fault */
10500 fault_type = ARMFault_Translation;
10501 goto do_fault;
10502 }
3dde962f
PM
10503 }
10504
ba97be9f
RH
10505 if (param.using64k) {
10506 stride = 13;
10507 } else if (param.using16k) {
10508 stride = 11;
10509 } else {
10510 stride = 9;
10511 }
10512
3dde962f
PM
10513 /* Note that QEMU ignores shareability and cacheability attributes,
10514 * so we don't need to do anything with the SH, ORGN, IRGN fields
10515 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
10516 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
10517 * implement any ASID-like capability so we can ignore it (instead
10518 * we will always flush the TLB any time the ASID is changed).
10519 */
ba97be9f 10520 ttbr = regime_ttbr(env, mmu_idx, param.select);
3dde962f 10521
0480f69a 10522 /* Here we should have set up all the parameters for the translation:
6e99f762 10523 * inputsize, ttbr, epd, stride, tbi
0480f69a
PM
10524 */
10525
ba97be9f 10526 if (param.epd) {
88e8add8
GB
10527 /* Translation table walk disabled => Translation fault on TLB miss
10528 * Note: This is always 0 on 64-bit EL2 and EL3.
10529 */
3dde962f
PM
10530 goto do_fault;
10531 }
10532
1853d5a9
EI
10533 if (mmu_idx != ARMMMUIdx_S2NS) {
10534 /* The starting level depends on the virtual address size (which can
10535 * be up to 48 bits) and the translation granule size. It indicates
10536 * the number of strides (stride bits at a time) needed to
10537 * consume the bits of the input address. In the pseudocode this is:
10538 * level = 4 - RoundUp((inputsize - grainsize) / stride)
10539 * where their 'inputsize' is our 'inputsize', 'grainsize' is
10540 * our 'stride + 3' and 'stride' is our 'stride'.
10541 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
10542 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
10543 * = 4 - (inputsize - 4) / stride;
10544 */
10545 level = 4 - (inputsize - 4) / stride;
10546 } else {
10547 /* For stage 2 translations the starting level is specified by the
10548 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
10549 */
1b4093ea
SS
10550 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
10551 uint32_t startlevel;
1853d5a9
EI
10552 bool ok;
10553
6e99f762 10554 if (!aarch64 || stride == 9) {
1853d5a9 10555 /* AArch32 or 4KB pages */
1b4093ea 10556 startlevel = 2 - sl0;
1853d5a9
EI
10557 } else {
10558 /* 16KB or 64KB pages */
1b4093ea 10559 startlevel = 3 - sl0;
1853d5a9
EI
10560 }
10561
10562 /* Check that the starting level is valid. */
6e99f762 10563 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1b4093ea 10564 inputsize, stride);
1853d5a9 10565 if (!ok) {
da909b2c 10566 fault_type = ARMFault_Translation;
1853d5a9
EI
10567 goto do_fault;
10568 }
1b4093ea 10569 level = startlevel;
1853d5a9 10570 }
3dde962f 10571
dddb5223
SS
10572 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
10573 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
3dde962f
PM
10574
10575 /* Now we can extract the actual base address from the TTBR */
2c8dd318 10576 descaddr = extract64(ttbr, 0, 48);
dddb5223 10577 descaddr &= ~indexmask;
3dde962f 10578
6109769a 10579 /* The address field in the descriptor goes up to bit 39 for ARMv7
dddb5223
SS
10580 * but up to bit 47 for ARMv8, but we use the descaddrmask
10581 * up to bit 39 for AArch32, because we don't need other bits in that case
10582 * to construct next descriptor address (anyway they should be all zeroes).
6109769a 10583 */
6e99f762 10584 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
dddb5223 10585 ~indexmask_grainsize;
6109769a 10586
ebca90e4
PM
10587 /* Secure accesses start with the page table in secure memory and
10588 * can be downgraded to non-secure at any step. Non-secure accesses
10589 * remain non-secure. We implement this by just ORing in the NSTable/NS
10590 * bits at each step.
10591 */
10592 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
3dde962f
PM
10593 for (;;) {
10594 uint64_t descriptor;
ebca90e4 10595 bool nstable;
3dde962f 10596
dddb5223 10597 descaddr |= (address >> (stride * (4 - level))) & indexmask;
2c8dd318 10598 descaddr &= ~7ULL;
ebca90e4 10599 nstable = extract32(tableattrs, 4, 1);
3795a6de 10600 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
3b39d734 10601 if (fi->type != ARMFault_None) {
37785977
EI
10602 goto do_fault;
10603 }
10604
3dde962f
PM
10605 if (!(descriptor & 1) ||
10606 (!(descriptor & 2) && (level == 3))) {
10607 /* Invalid, or the Reserved level 3 encoding */
10608 goto do_fault;
10609 }
6109769a 10610 descaddr = descriptor & descaddrmask;
3dde962f
PM
10611
10612 if ((descriptor & 2) && (level < 3)) {
037c13c5 10613 /* Table entry. The top five bits are attributes which may
3dde962f
PM
10614 * propagate down through lower levels of the table (and
10615 * which are all arranged so that 0 means "no effect", so
10616 * we can gather them up by ORing in the bits at each level).
10617 */
10618 tableattrs |= extract64(descriptor, 59, 5);
10619 level++;
dddb5223 10620 indexmask = indexmask_grainsize;
3dde962f
PM
10621 continue;
10622 }
10623 /* Block entry at level 1 or 2, or page entry at level 3.
10624 * These are basically the same thing, although the number
10625 * of bits we pull in from the vaddr varies.
10626 */
973a5434 10627 page_size = (1ULL << ((stride * (4 - level)) + 3));
3dde962f 10628 descaddr |= (address & (page_size - 1));
6ab1a5ee 10629 /* Extract attributes from the descriptor */
d615efac
IC
10630 attrs = extract64(descriptor, 2, 10)
10631 | (extract64(descriptor, 52, 12) << 10);
6ab1a5ee
EI
10632
10633 if (mmu_idx == ARMMMUIdx_S2NS) {
10634 /* Stage 2 table descriptors do not include any attribute fields */
10635 break;
10636 }
10637 /* Merge in attributes from table descriptors */
037c13c5 10638 attrs |= nstable << 3; /* NS */
ba97be9f 10639 if (param.hpd) {
037c13c5
RH
10640 /* HPD disables all the table attributes except NSTable. */
10641 break;
10642 }
10643 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
3dde962f
PM
10644 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10645 * means "force PL1 access only", which means forcing AP[1] to 0.
10646 */
037c13c5
RH
10647 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
10648 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
3dde962f
PM
10649 break;
10650 }
10651 /* Here descaddr is the final physical address, and attributes
10652 * are all in attrs.
10653 */
da909b2c 10654 fault_type = ARMFault_AccessFlag;
3dde962f
PM
10655 if ((attrs & (1 << 8)) == 0) {
10656 /* Access flag */
10657 goto do_fault;
10658 }
d8e052b3
AJ
10659
10660 ap = extract32(attrs, 4, 2);
d8e052b3 10661 xn = extract32(attrs, 12, 1);
d8e052b3 10662
6ab1a5ee
EI
10663 if (mmu_idx == ARMMMUIdx_S2NS) {
10664 ns = true;
10665 *prot = get_S2prot(env, ap, xn);
10666 } else {
10667 ns = extract32(attrs, 3, 1);
10668 pxn = extract32(attrs, 11, 1);
6e99f762 10669 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
6ab1a5ee 10670 }
d8e052b3 10671
da909b2c 10672 fault_type = ARMFault_Permission;
d8e052b3 10673 if (!(*prot & (1 << access_type))) {
3dde962f
PM
10674 goto do_fault;
10675 }
3dde962f 10676
8bf5b6a9
PM
10677 if (ns) {
10678 /* The NS bit will (as required by the architecture) have no effect if
10679 * the CPU doesn't support TZ or this is a non-secure translation
10680 * regime, because the attribute will already be non-secure.
10681 */
10682 txattrs->secure = false;
10683 }
5b2d261d
AB
10684
10685 if (cacheattrs != NULL) {
10686 if (mmu_idx == ARMMMUIdx_S2NS) {
10687 cacheattrs->attrs = convert_stage2_attrs(env,
10688 extract32(attrs, 0, 4));
10689 } else {
10690 /* Index into MAIR registers for cache attributes */
10691 uint8_t attrindx = extract32(attrs, 0, 3);
10692 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
10693 assert(attrindx <= 7);
10694 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
10695 }
10696 cacheattrs->shareability = extract32(attrs, 6, 2);
10697 }
10698
3dde962f
PM
10699 *phys_ptr = descaddr;
10700 *page_size_ptr = page_size;
b7cc4e82 10701 return false;
3dde962f
PM
10702
10703do_fault:
da909b2c
PM
10704 fi->type = fault_type;
10705 fi->level = level;
37785977
EI
10706 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
10707 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
b7cc4e82 10708 return true;
3dde962f
PM
10709}
10710
f6bda88f
PC
10711static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
10712 ARMMMUIdx mmu_idx,
10713 int32_t address, int *prot)
10714{
3a00d560
MD
10715 if (!arm_feature(env, ARM_FEATURE_M)) {
10716 *prot = PAGE_READ | PAGE_WRITE;
10717 switch (address) {
10718 case 0xF0000000 ... 0xFFFFFFFF:
10719 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
10720 /* hivecs execing is ok */
10721 *prot |= PAGE_EXEC;
10722 }
10723 break;
10724 case 0x00000000 ... 0x7FFFFFFF:
f6bda88f 10725 *prot |= PAGE_EXEC;
3a00d560
MD
10726 break;
10727 }
10728 } else {
10729 /* Default system address map for M profile cores.
10730 * The architecture specifies which regions are execute-never;
10731 * at the MPU level no other checks are defined.
10732 */
10733 switch (address) {
10734 case 0x00000000 ... 0x1fffffff: /* ROM */
10735 case 0x20000000 ... 0x3fffffff: /* SRAM */
10736 case 0x60000000 ... 0x7fffffff: /* RAM */
10737 case 0x80000000 ... 0x9fffffff: /* RAM */
10738 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10739 break;
10740 case 0x40000000 ... 0x5fffffff: /* Peripheral */
10741 case 0xa0000000 ... 0xbfffffff: /* Device */
10742 case 0xc0000000 ... 0xdfffffff: /* Device */
10743 case 0xe0000000 ... 0xffffffff: /* System */
10744 *prot = PAGE_READ | PAGE_WRITE;
10745 break;
10746 default:
10747 g_assert_not_reached();
f6bda88f 10748 }
f6bda88f 10749 }
f6bda88f
PC
10750}
10751
29c483a5
MD
10752static bool pmsav7_use_background_region(ARMCPU *cpu,
10753 ARMMMUIdx mmu_idx, bool is_user)
10754{
10755 /* Return true if we should use the default memory map as a
10756 * "background" region if there are no hits against any MPU regions.
10757 */
10758 CPUARMState *env = &cpu->env;
10759
10760 if (is_user) {
10761 return false;
10762 }
10763
10764 if (arm_feature(env, ARM_FEATURE_M)) {
ecf5e8ea
PM
10765 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
10766 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
29c483a5
MD
10767 } else {
10768 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
10769 }
10770}
10771
38aaa60c
PM
10772static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
10773{
10774 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
10775 return arm_feature(env, ARM_FEATURE_M) &&
10776 extract32(address, 20, 12) == 0xe00;
10777}
10778
bf446a11
PM
10779static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
10780{
10781 /* True if address is in the M profile system region
10782 * 0xe0000000 - 0xffffffff
10783 */
10784 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
10785}
10786
f6bda88f 10787static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
03ae85f8 10788 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9375ad15 10789 hwaddr *phys_ptr, int *prot,
e5e40999 10790 target_ulong *page_size,
9375ad15 10791 ARMMMUFaultInfo *fi)
f6bda88f
PC
10792{
10793 ARMCPU *cpu = arm_env_get_cpu(env);
10794 int n;
10795 bool is_user = regime_is_user(env, mmu_idx);
10796
10797 *phys_ptr = address;
e5e40999 10798 *page_size = TARGET_PAGE_SIZE;
f6bda88f
PC
10799 *prot = 0;
10800
38aaa60c
PM
10801 if (regime_translation_disabled(env, mmu_idx) ||
10802 m_is_ppb_region(env, address)) {
10803 /* MPU disabled or M profile PPB access: use default memory map.
10804 * The other case which uses the default memory map in the
10805 * v7M ARM ARM pseudocode is exception vector reads from the vector
10806 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
10807 * which always does a direct read using address_space_ldl(), rather
10808 * than going via this function, so we don't need to check that here.
10809 */
f6bda88f
PC
10810 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10811 } else { /* MPU enabled */
10812 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10813 /* region search */
10814 uint32_t base = env->pmsav7.drbar[n];
10815 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
10816 uint32_t rmask;
10817 bool srdis = false;
10818
10819 if (!(env->pmsav7.drsr[n] & 0x1)) {
10820 continue;
10821 }
10822
10823 if (!rsize) {
c9f9f124
MD
10824 qemu_log_mask(LOG_GUEST_ERROR,
10825 "DRSR[%d]: Rsize field cannot be 0\n", n);
f6bda88f
PC
10826 continue;
10827 }
10828 rsize++;
10829 rmask = (1ull << rsize) - 1;
10830
10831 if (base & rmask) {
c9f9f124
MD
10832 qemu_log_mask(LOG_GUEST_ERROR,
10833 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
10834 "to DRSR region size, mask = 0x%" PRIx32 "\n",
10835 n, base, rmask);
f6bda88f
PC
10836 continue;
10837 }
10838
10839 if (address < base || address > base + rmask) {
9d2b5a58
PM
10840 /*
10841 * Address not in this region. We must check whether the
10842 * region covers addresses in the same page as our address.
10843 * In that case we must not report a size that covers the
10844 * whole page for a subsequent hit against a different MPU
10845 * region or the background region, because it would result in
10846 * incorrect TLB hits for subsequent accesses to addresses that
10847 * are in this MPU region.
10848 */
10849 if (ranges_overlap(base, rmask,
10850 address & TARGET_PAGE_MASK,
10851 TARGET_PAGE_SIZE)) {
10852 *page_size = 1;
10853 }
f6bda88f
PC
10854 continue;
10855 }
10856
10857 /* Region matched */
10858
10859 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
10860 int i, snd;
10861 uint32_t srdis_mask;
10862
10863 rsize -= 3; /* sub region size (power of 2) */
10864 snd = ((address - base) >> rsize) & 0x7;
10865 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
10866
10867 srdis_mask = srdis ? 0x3 : 0x0;
10868 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
10869 /* This will check in groups of 2, 4 and then 8, whether
10870 * the subregion bits are consistent. rsize is incremented
10871 * back up to give the region size, considering consistent
10872 * adjacent subregions as one region. Stop testing if rsize
10873 * is already big enough for an entire QEMU page.
10874 */
10875 int snd_rounded = snd & ~(i - 1);
10876 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
10877 snd_rounded + 8, i);
10878 if (srdis_mask ^ srdis_multi) {
10879 break;
10880 }
10881 srdis_mask = (srdis_mask << i) | srdis_mask;
10882 rsize++;
10883 }
10884 }
f6bda88f
PC
10885 if (srdis) {
10886 continue;
10887 }
e5e40999
PM
10888 if (rsize < TARGET_PAGE_BITS) {
10889 *page_size = 1 << rsize;
10890 }
f6bda88f
PC
10891 break;
10892 }
10893
10894 if (n == -1) { /* no hits */
29c483a5 10895 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
f6bda88f 10896 /* background fault */
9375ad15 10897 fi->type = ARMFault_Background;
f6bda88f
PC
10898 return true;
10899 }
10900 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10901 } else { /* a MPU hit! */
10902 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
bf446a11
PM
10903 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
10904
10905 if (m_is_system_region(env, address)) {
10906 /* System space is always execute never */
10907 xn = 1;
10908 }
f6bda88f
PC
10909
10910 if (is_user) { /* User mode AP bit decoding */
10911 switch (ap) {
10912 case 0:
10913 case 1:
10914 case 5:
10915 break; /* no access */
10916 case 3:
10917 *prot |= PAGE_WRITE;
10918 /* fall through */
10919 case 2:
10920 case 6:
10921 *prot |= PAGE_READ | PAGE_EXEC;
10922 break;
8638f1ad
PM
10923 case 7:
10924 /* for v7M, same as 6; for R profile a reserved value */
10925 if (arm_feature(env, ARM_FEATURE_M)) {
10926 *prot |= PAGE_READ | PAGE_EXEC;
10927 break;
10928 }
10929 /* fall through */
f6bda88f
PC
10930 default:
10931 qemu_log_mask(LOG_GUEST_ERROR,
c9f9f124
MD
10932 "DRACR[%d]: Bad value for AP bits: 0x%"
10933 PRIx32 "\n", n, ap);
f6bda88f
PC
10934 }
10935 } else { /* Priv. mode AP bits decoding */
10936 switch (ap) {
10937 case 0:
10938 break; /* no access */
10939 case 1:
10940 case 2:
10941 case 3:
10942 *prot |= PAGE_WRITE;
10943 /* fall through */
10944 case 5:
10945 case 6:
10946 *prot |= PAGE_READ | PAGE_EXEC;
10947 break;
8638f1ad
PM
10948 case 7:
10949 /* for v7M, same as 6; for R profile a reserved value */
10950 if (arm_feature(env, ARM_FEATURE_M)) {
10951 *prot |= PAGE_READ | PAGE_EXEC;
10952 break;
10953 }
10954 /* fall through */
f6bda88f
PC
10955 default:
10956 qemu_log_mask(LOG_GUEST_ERROR,
c9f9f124
MD
10957 "DRACR[%d]: Bad value for AP bits: 0x%"
10958 PRIx32 "\n", n, ap);
f6bda88f
PC
10959 }
10960 }
10961
10962 /* execute never */
bf446a11 10963 if (xn) {
f6bda88f
PC
10964 *prot &= ~PAGE_EXEC;
10965 }
10966 }
10967 }
10968
9375ad15
PM
10969 fi->type = ARMFault_Permission;
10970 fi->level = 1;
f6bda88f
PC
10971 return !(*prot & (1 << access_type));
10972}
10973
35337cc3
PM
10974static bool v8m_is_sau_exempt(CPUARMState *env,
10975 uint32_t address, MMUAccessType access_type)
10976{
10977 /* The architecture specifies that certain address ranges are
10978 * exempt from v8M SAU/IDAU checks.
10979 */
10980 return
10981 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
10982 (address >= 0xe0000000 && address <= 0xe0002fff) ||
10983 (address >= 0xe000e000 && address <= 0xe000efff) ||
10984 (address >= 0xe002e000 && address <= 0xe002efff) ||
10985 (address >= 0xe0040000 && address <= 0xe0041fff) ||
10986 (address >= 0xe00ff000 && address <= 0xe00fffff);
10987}
10988
10989static void v8m_security_lookup(CPUARMState *env, uint32_t address,
10990 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10991 V8M_SAttributes *sattrs)
10992{
10993 /* Look up the security attributes for this address. Compare the
10994 * pseudocode SecurityCheck() function.
10995 * We assume the caller has zero-initialized *sattrs.
10996 */
10997 ARMCPU *cpu = arm_env_get_cpu(env);
10998 int r;
181962fd
PM
10999 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11000 int idau_region = IREGION_NOTVALID;
72042435
PM
11001 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11002 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
35337cc3 11003
181962fd
PM
11004 if (cpu->idau) {
11005 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11006 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11007
11008 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11009 &idau_nsc);
11010 }
35337cc3
PM
11011
11012 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11013 /* 0xf0000000..0xffffffff is always S for insn fetches */
11014 return;
11015 }
11016
181962fd 11017 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
35337cc3
PM
11018 sattrs->ns = !regime_is_secure(env, mmu_idx);
11019 return;
11020 }
11021
181962fd
PM
11022 if (idau_region != IREGION_NOTVALID) {
11023 sattrs->irvalid = true;
11024 sattrs->iregion = idau_region;
11025 }
11026
35337cc3
PM
11027 switch (env->sau.ctrl & 3) {
11028 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11029 break;
11030 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11031 sattrs->ns = true;
11032 break;
11033 default: /* SAU.ENABLE == 1 */
11034 for (r = 0; r < cpu->sau_sregion; r++) {
11035 if (env->sau.rlar[r] & 1) {
11036 uint32_t base = env->sau.rbar[r] & ~0x1f;
11037 uint32_t limit = env->sau.rlar[r] | 0x1f;
11038
11039 if (base <= address && limit >= address) {
72042435
PM
11040 if (base > addr_page_base || limit < addr_page_limit) {
11041 sattrs->subpage = true;
11042 }
35337cc3
PM
11043 if (sattrs->srvalid) {
11044 /* If we hit in more than one region then we must report
11045 * as Secure, not NS-Callable, with no valid region
11046 * number info.
11047 */
11048 sattrs->ns = false;
11049 sattrs->nsc = false;
11050 sattrs->sregion = 0;
11051 sattrs->srvalid = false;
11052 break;
11053 } else {
11054 if (env->sau.rlar[r] & 2) {
11055 sattrs->nsc = true;
11056 } else {
11057 sattrs->ns = true;
11058 }
11059 sattrs->srvalid = true;
11060 sattrs->sregion = r;
11061 }
9d2b5a58
PM
11062 } else {
11063 /*
11064 * Address not in this region. We must check whether the
11065 * region covers addresses in the same page as our address.
11066 * In that case we must not report a size that covers the
11067 * whole page for a subsequent hit against a different MPU
11068 * region or the background region, because it would result
11069 * in incorrect TLB hits for subsequent accesses to
11070 * addresses that are in this MPU region.
11071 */
11072 if (limit >= base &&
11073 ranges_overlap(base, limit - base + 1,
11074 addr_page_base,
11075 TARGET_PAGE_SIZE)) {
11076 sattrs->subpage = true;
11077 }
35337cc3
PM
11078 }
11079 }
11080 }
7e3f1223
TR
11081 break;
11082 }
35337cc3 11083
7e3f1223
TR
11084 /*
11085 * The IDAU will override the SAU lookup results if it specifies
11086 * higher security than the SAU does.
11087 */
11088 if (!idau_ns) {
11089 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11090 sattrs->ns = false;
11091 sattrs->nsc = idau_nsc;
181962fd 11092 }
35337cc3
PM
11093 }
11094}
11095
54317c0f
PM
11096static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11097 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11098 hwaddr *phys_ptr, MemTxAttrs *txattrs,
72042435
PM
11099 int *prot, bool *is_subpage,
11100 ARMMMUFaultInfo *fi, uint32_t *mregion)
54317c0f
PM
11101{
11102 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11103 * that a full phys-to-virt translation does).
11104 * mregion is (if not NULL) set to the region number which matched,
11105 * or -1 if no region number is returned (MPU off, address did not
11106 * hit a region, address hit in multiple regions).
72042435
PM
11107 * We set is_subpage to true if the region hit doesn't cover the
11108 * entire TARGET_PAGE the address is within.
54317c0f 11109 */
504e3cc3
PM
11110 ARMCPU *cpu = arm_env_get_cpu(env);
11111 bool is_user = regime_is_user(env, mmu_idx);
62c58ee0 11112 uint32_t secure = regime_is_secure(env, mmu_idx);
504e3cc3
PM
11113 int n;
11114 int matchregion = -1;
11115 bool hit = false;
72042435
PM
11116 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11117 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
504e3cc3 11118
72042435 11119 *is_subpage = false;
504e3cc3
PM
11120 *phys_ptr = address;
11121 *prot = 0;
54317c0f
PM
11122 if (mregion) {
11123 *mregion = -1;
35337cc3
PM
11124 }
11125
504e3cc3
PM
11126 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11127 * was an exception vector read from the vector table (which is always
11128 * done using the default system address map), because those accesses
11129 * are done in arm_v7m_load_vector(), which always does a direct
11130 * read using address_space_ldl(), rather than going via this function.
11131 */
11132 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11133 hit = true;
11134 } else if (m_is_ppb_region(env, address)) {
11135 hit = true;
11136 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11137 hit = true;
11138 } else {
11139 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11140 /* region search */
11141 /* Note that the base address is bits [31:5] from the register
11142 * with bits [4:0] all zeroes, but the limit address is bits
11143 * [31:5] from the register with bits [4:0] all ones.
11144 */
62c58ee0
PM
11145 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11146 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
504e3cc3 11147
62c58ee0 11148 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
504e3cc3
PM
11149 /* Region disabled */
11150 continue;
11151 }
11152
11153 if (address < base || address > limit) {
9d2b5a58
PM
11154 /*
11155 * Address not in this region. We must check whether the
11156 * region covers addresses in the same page as our address.
11157 * In that case we must not report a size that covers the
11158 * whole page for a subsequent hit against a different MPU
11159 * region or the background region, because it would result in
11160 * incorrect TLB hits for subsequent accesses to addresses that
11161 * are in this MPU region.
11162 */
11163 if (limit >= base &&
11164 ranges_overlap(base, limit - base + 1,
11165 addr_page_base,
11166 TARGET_PAGE_SIZE)) {
11167 *is_subpage = true;
11168 }
504e3cc3
PM
11169 continue;
11170 }
11171
72042435
PM
11172 if (base > addr_page_base || limit < addr_page_limit) {
11173 *is_subpage = true;
11174 }
11175
504e3cc3
PM
11176 if (hit) {
11177 /* Multiple regions match -- always a failure (unlike
11178 * PMSAv7 where highest-numbered-region wins)
11179 */
3f551b5b
PM
11180 fi->type = ARMFault_Permission;
11181 fi->level = 1;
504e3cc3
PM
11182 return true;
11183 }
11184
11185 matchregion = n;
11186 hit = true;
504e3cc3
PM
11187 }
11188 }
11189
11190 if (!hit) {
11191 /* background fault */
3f551b5b 11192 fi->type = ARMFault_Background;
504e3cc3
PM
11193 return true;
11194 }
11195
11196 if (matchregion == -1) {
11197 /* hit using the background region */
11198 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11199 } else {
62c58ee0
PM
11200 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11201 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
504e3cc3
PM
11202
11203 if (m_is_system_region(env, address)) {
11204 /* System space is always execute never */
11205 xn = 1;
11206 }
11207
11208 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11209 if (*prot && !xn) {
11210 *prot |= PAGE_EXEC;
11211 }
11212 /* We don't need to look the attribute up in the MAIR0/MAIR1
11213 * registers because that only tells us about cacheability.
11214 */
54317c0f
PM
11215 if (mregion) {
11216 *mregion = matchregion;
11217 }
504e3cc3
PM
11218 }
11219
3f551b5b
PM
11220 fi->type = ARMFault_Permission;
11221 fi->level = 1;
504e3cc3
PM
11222 return !(*prot & (1 << access_type));
11223}
11224
54317c0f
PM
11225
11226static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11227 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11228 hwaddr *phys_ptr, MemTxAttrs *txattrs,
72042435
PM
11229 int *prot, target_ulong *page_size,
11230 ARMMMUFaultInfo *fi)
54317c0f
PM
11231{
11232 uint32_t secure = regime_is_secure(env, mmu_idx);
11233 V8M_SAttributes sattrs = {};
72042435
PM
11234 bool ret;
11235 bool mpu_is_subpage;
54317c0f
PM
11236
11237 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11238 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11239 if (access_type == MMU_INST_FETCH) {
11240 /* Instruction fetches always use the MMU bank and the
11241 * transaction attribute determined by the fetch address,
11242 * regardless of CPU state. This is painful for QEMU
11243 * to handle, because it would mean we need to encode
11244 * into the mmu_idx not just the (user, negpri) information
11245 * for the current security state but also that for the
11246 * other security state, which would balloon the number
11247 * of mmu_idx values needed alarmingly.
11248 * Fortunately we can avoid this because it's not actually
11249 * possible to arbitrarily execute code from memory with
11250 * the wrong security attribute: it will always generate
11251 * an exception of some kind or another, apart from the
11252 * special case of an NS CPU executing an SG instruction
11253 * in S&NSC memory. So we always just fail the translation
11254 * here and sort things out in the exception handler
11255 * (including possibly emulating an SG instruction).
11256 */
11257 if (sattrs.ns != !secure) {
3f551b5b
PM
11258 if (sattrs.nsc) {
11259 fi->type = ARMFault_QEMU_NSCExec;
11260 } else {
11261 fi->type = ARMFault_QEMU_SFault;
11262 }
72042435 11263 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
54317c0f
PM
11264 *phys_ptr = address;
11265 *prot = 0;
11266 return true;
11267 }
11268 } else {
11269 /* For data accesses we always use the MMU bank indicated
11270 * by the current CPU state, but the security attributes
11271 * might downgrade a secure access to nonsecure.
11272 */
11273 if (sattrs.ns) {
11274 txattrs->secure = false;
11275 } else if (!secure) {
11276 /* NS access to S memory must fault.
11277 * Architecturally we should first check whether the
11278 * MPU information for this address indicates that we
11279 * are doing an unaligned access to Device memory, which
11280 * should generate a UsageFault instead. QEMU does not
11281 * currently check for that kind of unaligned access though.
11282 * If we added it we would need to do so as a special case
11283 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11284 */
3f551b5b 11285 fi->type = ARMFault_QEMU_SFault;
72042435 11286 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
54317c0f
PM
11287 *phys_ptr = address;
11288 *prot = 0;
11289 return true;
11290 }
11291 }
11292 }
11293
72042435
PM
11294 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11295 txattrs, prot, &mpu_is_subpage, fi, NULL);
72042435
PM
11296 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11297 return ret;
54317c0f
PM
11298}
11299
13689d43 11300static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
03ae85f8 11301 MMUAccessType access_type, ARMMMUIdx mmu_idx,
53a4e5c5
PM
11302 hwaddr *phys_ptr, int *prot,
11303 ARMMMUFaultInfo *fi)
9ee6e8bb
PB
11304{
11305 int n;
11306 uint32_t mask;
11307 uint32_t base;
0480f69a 11308 bool is_user = regime_is_user(env, mmu_idx);
9ee6e8bb 11309
3279adb9
PM
11310 if (regime_translation_disabled(env, mmu_idx)) {
11311 /* MPU disabled. */
11312 *phys_ptr = address;
11313 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11314 return false;
11315 }
11316
9ee6e8bb
PB
11317 *phys_ptr = address;
11318 for (n = 7; n >= 0; n--) {
554b0b09 11319 base = env->cp15.c6_region[n];
87c3d486 11320 if ((base & 1) == 0) {
554b0b09 11321 continue;
87c3d486 11322 }
554b0b09
PM
11323 mask = 1 << ((base >> 1) & 0x1f);
11324 /* Keep this shift separate from the above to avoid an
11325 (undefined) << 32. */
11326 mask = (mask << 1) - 1;
87c3d486 11327 if (((base ^ address) & ~mask) == 0) {
554b0b09 11328 break;
87c3d486 11329 }
9ee6e8bb 11330 }
87c3d486 11331 if (n < 0) {
53a4e5c5 11332 fi->type = ARMFault_Background;
b7cc4e82 11333 return true;
87c3d486 11334 }
9ee6e8bb 11335
03ae85f8 11336 if (access_type == MMU_INST_FETCH) {
7e09797c 11337 mask = env->cp15.pmsav5_insn_ap;
9ee6e8bb 11338 } else {
7e09797c 11339 mask = env->cp15.pmsav5_data_ap;
9ee6e8bb
PB
11340 }
11341 mask = (mask >> (n * 4)) & 0xf;
11342 switch (mask) {
11343 case 0:
53a4e5c5
PM
11344 fi->type = ARMFault_Permission;
11345 fi->level = 1;
b7cc4e82 11346 return true;
9ee6e8bb 11347 case 1:
87c3d486 11348 if (is_user) {
53a4e5c5
PM
11349 fi->type = ARMFault_Permission;
11350 fi->level = 1;
b7cc4e82 11351 return true;
87c3d486 11352 }
554b0b09
PM
11353 *prot = PAGE_READ | PAGE_WRITE;
11354 break;
9ee6e8bb 11355 case 2:
554b0b09 11356 *prot = PAGE_READ;
87c3d486 11357 if (!is_user) {
554b0b09 11358 *prot |= PAGE_WRITE;
87c3d486 11359 }
554b0b09 11360 break;
9ee6e8bb 11361 case 3:
554b0b09
PM
11362 *prot = PAGE_READ | PAGE_WRITE;
11363 break;
9ee6e8bb 11364 case 5:
87c3d486 11365 if (is_user) {
53a4e5c5
PM
11366 fi->type = ARMFault_Permission;
11367 fi->level = 1;
b7cc4e82 11368 return true;
87c3d486 11369 }
554b0b09
PM
11370 *prot = PAGE_READ;
11371 break;
9ee6e8bb 11372 case 6:
554b0b09
PM
11373 *prot = PAGE_READ;
11374 break;
9ee6e8bb 11375 default:
554b0b09 11376 /* Bad permission. */
53a4e5c5
PM
11377 fi->type = ARMFault_Permission;
11378 fi->level = 1;
b7cc4e82 11379 return true;
9ee6e8bb 11380 }
3ad493fc 11381 *prot |= PAGE_EXEC;
b7cc4e82 11382 return false;
9ee6e8bb
PB
11383}
11384
5b2d261d
AB
11385/* Combine either inner or outer cacheability attributes for normal
11386 * memory, according to table D4-42 and pseudocode procedure
11387 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11388 *
11389 * NB: only stage 1 includes allocation hints (RW bits), leading to
11390 * some asymmetry.
11391 */
11392static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11393{
11394 if (s1 == 4 || s2 == 4) {
11395 /* non-cacheable has precedence */
11396 return 4;
11397 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11398 /* stage 1 write-through takes precedence */
11399 return s1;
11400 } else if (extract32(s2, 2, 2) == 2) {
11401 /* stage 2 write-through takes precedence, but the allocation hint
11402 * is still taken from stage 1
11403 */
11404 return (2 << 2) | extract32(s1, 0, 2);
11405 } else { /* write-back */
11406 return s1;
11407 }
11408}
11409
11410/* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11411 * and CombineS1S2Desc()
11412 *
11413 * @s1: Attributes from stage 1 walk
11414 * @s2: Attributes from stage 2 walk
11415 */
11416static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11417{
11418 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
11419 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
11420 ARMCacheAttrs ret;
11421
11422 /* Combine shareability attributes (table D4-43) */
11423 if (s1.shareability == 2 || s2.shareability == 2) {
11424 /* if either are outer-shareable, the result is outer-shareable */
11425 ret.shareability = 2;
11426 } else if (s1.shareability == 3 || s2.shareability == 3) {
11427 /* if either are inner-shareable, the result is inner-shareable */
11428 ret.shareability = 3;
11429 } else {
11430 /* both non-shareable */
11431 ret.shareability = 0;
11432 }
11433
11434 /* Combine memory type and cacheability attributes */
11435 if (s1hi == 0 || s2hi == 0) {
11436 /* Device has precedence over normal */
11437 if (s1lo == 0 || s2lo == 0) {
11438 /* nGnRnE has precedence over anything */
11439 ret.attrs = 0;
11440 } else if (s1lo == 4 || s2lo == 4) {
11441 /* non-Reordering has precedence over Reordering */
11442 ret.attrs = 4; /* nGnRE */
11443 } else if (s1lo == 8 || s2lo == 8) {
11444 /* non-Gathering has precedence over Gathering */
11445 ret.attrs = 8; /* nGRE */
11446 } else {
11447 ret.attrs = 0xc; /* GRE */
11448 }
11449
11450 /* Any location for which the resultant memory type is any
11451 * type of Device memory is always treated as Outer Shareable.
11452 */
11453 ret.shareability = 2;
11454 } else { /* Normal memory */
11455 /* Outer/inner cacheability combine independently */
11456 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11457 | combine_cacheattr_nibble(s1lo, s2lo);
11458
11459 if (ret.attrs == 0x44) {
11460 /* Any location for which the resultant memory type is Normal
11461 * Inner Non-cacheable, Outer Non-cacheable is always treated
11462 * as Outer Shareable.
11463 */
11464 ret.shareability = 2;
11465 }
11466 }
11467
11468 return ret;
11469}
11470
11471
702a9357
PM
11472/* get_phys_addr - get the physical address for this virtual address
11473 *
11474 * Find the physical address corresponding to the given virtual address,
11475 * by doing a translation table walk on MMU based systems or using the
11476 * MPU state on MPU based systems.
11477 *
b7cc4e82
PC
11478 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11479 * prot and page_size may not be filled in, and the populated fsr value provides
702a9357
PM
11480 * information on why the translation aborted, in the format of a
11481 * DFSR/IFSR fault register, with the following caveats:
11482 * * we honour the short vs long DFSR format differences.
11483 * * the WnR bit is never set (the caller must do this).
f6bda88f 11484 * * for PSMAv5 based systems we don't bother to return a full FSR format
702a9357
PM
11485 * value.
11486 *
11487 * @env: CPUARMState
11488 * @address: virtual address to get physical address for
11489 * @access_type: 0 for read, 1 for write, 2 for execute
d3649702 11490 * @mmu_idx: MMU index indicating required translation regime
702a9357 11491 * @phys_ptr: set to the physical address corresponding to the virtual address
8bf5b6a9 11492 * @attrs: set to the memory transaction attributes to use
702a9357
PM
11493 * @prot: set to the permissions for the page containing phys_ptr
11494 * @page_size: set to the size of the page containing phys_ptr
5b2d261d
AB
11495 * @fi: set to fault info if the translation fails
11496 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
702a9357 11497 */
af51f566 11498static bool get_phys_addr(CPUARMState *env, target_ulong address,
03ae85f8 11499 MMUAccessType access_type, ARMMMUIdx mmu_idx,
af51f566 11500 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
bc52bfeb 11501 target_ulong *page_size,
5b2d261d 11502 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9ee6e8bb 11503{
0480f69a 11504 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9b539263
EI
11505 /* Call ourselves recursively to do the stage 1 and then stage 2
11506 * translations.
0480f69a 11507 */
9b539263
EI
11508 if (arm_feature(env, ARM_FEATURE_EL2)) {
11509 hwaddr ipa;
11510 int s2_prot;
11511 int ret;
5b2d261d 11512 ARMCacheAttrs cacheattrs2 = {};
9b539263
EI
11513
11514 ret = get_phys_addr(env, address, access_type,
8bd5c820 11515 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
bc52bfeb 11516 prot, page_size, fi, cacheattrs);
9b539263
EI
11517
11518 /* If S1 fails or S2 is disabled, return early. */
11519 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
11520 *phys_ptr = ipa;
11521 return ret;
11522 }
11523
11524 /* S1 is done. Now do S2 translation. */
11525 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
11526 phys_ptr, attrs, &s2_prot,
da909b2c 11527 page_size, fi,
5b2d261d 11528 cacheattrs != NULL ? &cacheattrs2 : NULL);
9b539263
EI
11529 fi->s2addr = ipa;
11530 /* Combine the S1 and S2 perms. */
11531 *prot &= s2_prot;
5b2d261d
AB
11532
11533 /* Combine the S1 and S2 cache attributes, if needed */
11534 if (!ret && cacheattrs != NULL) {
9d1bab33
PM
11535 if (env->cp15.hcr_el2 & HCR_DC) {
11536 /*
11537 * HCR.DC forces the first stage attributes to
11538 * Normal Non-Shareable,
11539 * Inner Write-Back Read-Allocate Write-Allocate,
11540 * Outer Write-Back Read-Allocate Write-Allocate.
11541 */
11542 cacheattrs->attrs = 0xff;
11543 cacheattrs->shareability = 0;
11544 }
5b2d261d
AB
11545 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
11546 }
11547
9b539263
EI
11548 return ret;
11549 } else {
11550 /*
11551 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
11552 */
8bd5c820 11553 mmu_idx = stage_1_mmu_idx(mmu_idx);
9b539263 11554 }
0480f69a 11555 }
d3649702 11556
8bf5b6a9
PM
11557 /* The page table entries may downgrade secure to non-secure, but
11558 * cannot upgrade an non-secure translation regime's attributes
11559 * to secure.
11560 */
11561 attrs->secure = regime_is_secure(env, mmu_idx);
0995bf8c 11562 attrs->user = regime_is_user(env, mmu_idx);
8bf5b6a9 11563
0480f69a
PM
11564 /* Fast Context Switch Extension. This doesn't exist at all in v8.
11565 * In v7 and earlier it affects all stage 1 translations.
11566 */
11567 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
11568 && !arm_feature(env, ARM_FEATURE_V8)) {
11569 if (regime_el(env, mmu_idx) == 3) {
11570 address += env->cp15.fcseidr_s;
11571 } else {
11572 address += env->cp15.fcseidr_ns;
11573 }
54bf36ed 11574 }
9ee6e8bb 11575
3279adb9 11576 if (arm_feature(env, ARM_FEATURE_PMSA)) {
c9f9f124 11577 bool ret;
f6bda88f 11578 *page_size = TARGET_PAGE_SIZE;
3279adb9 11579
504e3cc3
PM
11580 if (arm_feature(env, ARM_FEATURE_V8)) {
11581 /* PMSAv8 */
11582 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
72042435 11583 phys_ptr, attrs, prot, page_size, fi);
504e3cc3 11584 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3279adb9
PM
11585 /* PMSAv7 */
11586 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
e5e40999 11587 phys_ptr, prot, page_size, fi);
3279adb9
PM
11588 } else {
11589 /* Pre-v7 MPU */
11590 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
53a4e5c5 11591 phys_ptr, prot, fi);
3279adb9
PM
11592 }
11593 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
c9f9f124 11594 " mmu_idx %u -> %s (prot %c%c%c)\n",
709e4407
PM
11595 access_type == MMU_DATA_LOAD ? "reading" :
11596 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
c9f9f124
MD
11597 (uint32_t)address, mmu_idx,
11598 ret ? "Miss" : "Hit",
11599 *prot & PAGE_READ ? 'r' : '-',
11600 *prot & PAGE_WRITE ? 'w' : '-',
11601 *prot & PAGE_EXEC ? 'x' : '-');
11602
11603 return ret;
f6bda88f
PC
11604 }
11605
3279adb9
PM
11606 /* Definitely a real MMU, not an MPU */
11607
0480f69a 11608 if (regime_translation_disabled(env, mmu_idx)) {
3279adb9 11609 /* MMU disabled. */
9ee6e8bb 11610 *phys_ptr = address;
3ad493fc 11611 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 11612 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb 11613 return 0;
0480f69a
PM
11614 }
11615
0480f69a 11616 if (regime_using_lpae_format(env, mmu_idx)) {
bc52bfeb
PM
11617 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
11618 phys_ptr, attrs, prot, page_size,
11619 fi, cacheattrs);
0480f69a 11620 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
bc52bfeb
PM
11621 return get_phys_addr_v6(env, address, access_type, mmu_idx,
11622 phys_ptr, attrs, prot, page_size, fi);
9ee6e8bb 11623 } else {
bc52bfeb 11624 return get_phys_addr_v5(env, address, access_type, mmu_idx,
f989983e 11625 phys_ptr, prot, page_size, fi);
9ee6e8bb
PB
11626 }
11627}
11628
8c6084bf 11629/* Walk the page table and (if the mapping exists) add the page
b7cc4e82
PC
11630 * to the TLB. Return false on success, or true on failure. Populate
11631 * fsr with ARM DFSR/IFSR fault register format value on failure.
8c6084bf 11632 */
b7cc4e82 11633bool arm_tlb_fill(CPUState *cs, vaddr address,
bc52bfeb 11634 MMUAccessType access_type, int mmu_idx,
e14b5a23 11635 ARMMMUFaultInfo *fi)
b5ff1b31 11636{
7510454e
AF
11637 ARMCPU *cpu = ARM_CPU(cs);
11638 CPUARMState *env = &cpu->env;
a8170e5e 11639 hwaddr phys_addr;
d4c430a8 11640 target_ulong page_size;
b5ff1b31 11641 int prot;
d3649702 11642 int ret;
8bf5b6a9 11643 MemTxAttrs attrs = {};
b5ff1b31 11644
8bd5c820
PM
11645 ret = get_phys_addr(env, address, access_type,
11646 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
bc52bfeb 11647 &attrs, &prot, &page_size, fi, NULL);
b7cc4e82 11648 if (!ret) {
e5e40999
PM
11649 /*
11650 * Map a single [sub]page. Regions smaller than our declared
11651 * target page size are handled specially, so for those we
11652 * pass in the exact addresses.
11653 */
11654 if (page_size >= TARGET_PAGE_SIZE) {
11655 phys_addr &= TARGET_PAGE_MASK;
11656 address &= TARGET_PAGE_MASK;
11657 }
8bf5b6a9
PM
11658 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
11659 prot, mmu_idx, page_size);
d4c430a8 11660 return 0;
b5ff1b31
FB
11661 }
11662
8c6084bf 11663 return ret;
b5ff1b31
FB
11664}
11665
0faea0c7
PM
11666hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
11667 MemTxAttrs *attrs)
b5ff1b31 11668{
00b941e5 11669 ARMCPU *cpu = ARM_CPU(cs);
d3649702 11670 CPUARMState *env = &cpu->env;
a8170e5e 11671 hwaddr phys_addr;
d4c430a8 11672 target_ulong page_size;
b5ff1b31 11673 int prot;
b7cc4e82 11674 bool ret;
e14b5a23 11675 ARMMMUFaultInfo fi = {};
50494a27 11676 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
b5ff1b31 11677
0faea0c7
PM
11678 *attrs = (MemTxAttrs) {};
11679
8bd5c820 11680 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
bc52bfeb 11681 attrs, &prot, &page_size, &fi, NULL);
b5ff1b31 11682
b7cc4e82 11683 if (ret) {
b5ff1b31 11684 return -1;
00b941e5 11685 }
b5ff1b31
FB
11686 return phys_addr;
11687}
11688
0ecb72a5 11689uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 11690{
58117c9b
MD
11691 uint32_t mask;
11692 unsigned el = arm_current_el(env);
11693
11694 /* First handle registers which unprivileged can read */
11695
11696 switch (reg) {
11697 case 0 ... 7: /* xPSR sub-fields */
11698 mask = 0;
11699 if ((reg & 1) && el) {
987ab45e 11700 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
58117c9b
MD
11701 }
11702 if (!(reg & 4)) {
987ab45e 11703 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
58117c9b
MD
11704 }
11705 /* EPSR reads as zero */
11706 return xpsr_read(env) & mask;
11707 break;
11708 case 20: /* CONTROL */
8bfc26ea 11709 return env->v7m.control[env->v7m.secure];
50f11062
PM
11710 case 0x94: /* CONTROL_NS */
11711 /* We have to handle this here because unprivileged Secure code
11712 * can read the NS CONTROL register.
11713 */
11714 if (!env->v7m.secure) {
11715 return 0;
11716 }
11717 return env->v7m.control[M_REG_NS];
58117c9b
MD
11718 }
11719
11720 if (el == 0) {
11721 return 0; /* unprivileged reads others as zero */
11722 }
a47dddd7 11723
50f11062
PM
11724 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11725 switch (reg) {
11726 case 0x88: /* MSP_NS */
11727 if (!env->v7m.secure) {
11728 return 0;
11729 }
11730 return env->v7m.other_ss_msp;
11731 case 0x89: /* PSP_NS */
11732 if (!env->v7m.secure) {
11733 return 0;
11734 }
11735 return env->v7m.other_ss_psp;
57bb3156
PM
11736 case 0x8a: /* MSPLIM_NS */
11737 if (!env->v7m.secure) {
11738 return 0;
11739 }
11740 return env->v7m.msplim[M_REG_NS];
11741 case 0x8b: /* PSPLIM_NS */
11742 if (!env->v7m.secure) {
11743 return 0;
11744 }
11745 return env->v7m.psplim[M_REG_NS];
50f11062
PM
11746 case 0x90: /* PRIMASK_NS */
11747 if (!env->v7m.secure) {
11748 return 0;
11749 }
11750 return env->v7m.primask[M_REG_NS];
11751 case 0x91: /* BASEPRI_NS */
11752 if (!env->v7m.secure) {
11753 return 0;
11754 }
11755 return env->v7m.basepri[M_REG_NS];
11756 case 0x93: /* FAULTMASK_NS */
11757 if (!env->v7m.secure) {
11758 return 0;
11759 }
11760 return env->v7m.faultmask[M_REG_NS];
11761 case 0x98: /* SP_NS */
11762 {
11763 /* This gives the non-secure SP selected based on whether we're
11764 * currently in handler mode or not, using the NS CONTROL.SPSEL.
11765 */
11766 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
11767
11768 if (!env->v7m.secure) {
11769 return 0;
11770 }
11771 if (!arm_v7m_is_handler_mode(env) && spsel) {
11772 return env->v7m.other_ss_psp;
11773 } else {
11774 return env->v7m.other_ss_msp;
11775 }
11776 }
11777 default:
11778 break;
11779 }
11780 }
11781
9ee6e8bb 11782 switch (reg) {
9ee6e8bb 11783 case 8: /* MSP */
1169d3aa 11784 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
9ee6e8bb 11785 case 9: /* PSP */
1169d3aa 11786 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
57bb3156
PM
11787 case 10: /* MSPLIM */
11788 if (!arm_feature(env, ARM_FEATURE_V8)) {
11789 goto bad_reg;
11790 }
11791 return env->v7m.msplim[env->v7m.secure];
11792 case 11: /* PSPLIM */
11793 if (!arm_feature(env, ARM_FEATURE_V8)) {
11794 goto bad_reg;
11795 }
11796 return env->v7m.psplim[env->v7m.secure];
9ee6e8bb 11797 case 16: /* PRIMASK */
6d804834 11798 return env->v7m.primask[env->v7m.secure];
82845826
SH
11799 case 17: /* BASEPRI */
11800 case 18: /* BASEPRI_MAX */
acf94941 11801 return env->v7m.basepri[env->v7m.secure];
82845826 11802 case 19: /* FAULTMASK */
42a6686b 11803 return env->v7m.faultmask[env->v7m.secure];
9ee6e8bb 11804 default:
57bb3156 11805 bad_reg:
58117c9b
MD
11806 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
11807 " register %d\n", reg);
9ee6e8bb
PB
11808 return 0;
11809 }
11810}
11811
b28b3377
PM
11812void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
11813{
11814 /* We're passed bits [11..0] of the instruction; extract
11815 * SYSm and the mask bits.
11816 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
11817 * we choose to treat them as if the mask bits were valid.
11818 * NB that the pseudocode 'mask' variable is bits [11..10],
11819 * whereas ours is [11..8].
11820 */
11821 uint32_t mask = extract32(maskreg, 8, 4);
11822 uint32_t reg = extract32(maskreg, 0, 8);
11823
58117c9b
MD
11824 if (arm_current_el(env) == 0 && reg > 7) {
11825 /* only xPSR sub-fields may be written by unprivileged */
11826 return;
11827 }
a47dddd7 11828
50f11062
PM
11829 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11830 switch (reg) {
11831 case 0x88: /* MSP_NS */
11832 if (!env->v7m.secure) {
11833 return;
11834 }
11835 env->v7m.other_ss_msp = val;
11836 return;
11837 case 0x89: /* PSP_NS */
11838 if (!env->v7m.secure) {
11839 return;
11840 }
11841 env->v7m.other_ss_psp = val;
11842 return;
57bb3156
PM
11843 case 0x8a: /* MSPLIM_NS */
11844 if (!env->v7m.secure) {
11845 return;
11846 }
11847 env->v7m.msplim[M_REG_NS] = val & ~7;
11848 return;
11849 case 0x8b: /* PSPLIM_NS */
11850 if (!env->v7m.secure) {
11851 return;
11852 }
11853 env->v7m.psplim[M_REG_NS] = val & ~7;
11854 return;
50f11062
PM
11855 case 0x90: /* PRIMASK_NS */
11856 if (!env->v7m.secure) {
11857 return;
11858 }
11859 env->v7m.primask[M_REG_NS] = val & 1;
11860 return;
11861 case 0x91: /* BASEPRI_NS */
22ab3460 11862 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
50f11062
PM
11863 return;
11864 }
11865 env->v7m.basepri[M_REG_NS] = val & 0xff;
11866 return;
11867 case 0x93: /* FAULTMASK_NS */
22ab3460 11868 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
50f11062
PM
11869 return;
11870 }
11871 env->v7m.faultmask[M_REG_NS] = val & 1;
11872 return;
6eb3a64e
PM
11873 case 0x94: /* CONTROL_NS */
11874 if (!env->v7m.secure) {
11875 return;
11876 }
11877 write_v7m_control_spsel_for_secstate(env,
11878 val & R_V7M_CONTROL_SPSEL_MASK,
11879 M_REG_NS);
def18344
JS
11880 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
11881 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
11882 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
11883 }
6eb3a64e 11884 return;
50f11062
PM
11885 case 0x98: /* SP_NS */
11886 {
11887 /* This gives the non-secure SP selected based on whether we're
11888 * currently in handler mode or not, using the NS CONTROL.SPSEL.
11889 */
11890 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
167765f0
PM
11891 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
11892 uint32_t limit;
50f11062
PM
11893
11894 if (!env->v7m.secure) {
11895 return;
11896 }
167765f0
PM
11897
11898 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
11899
11900 if (val < limit) {
11901 CPUState *cs = CPU(arm_env_get_cpu(env));
11902
11903 cpu_restore_state(cs, GETPC(), true);
11904 raise_exception(env, EXCP_STKOF, 0, 1);
11905 }
11906
11907 if (is_psp) {
50f11062
PM
11908 env->v7m.other_ss_psp = val;
11909 } else {
11910 env->v7m.other_ss_msp = val;
11911 }
11912 return;
11913 }
11914 default:
11915 break;
11916 }
11917 }
11918
9ee6e8bb 11919 switch (reg) {
58117c9b
MD
11920 case 0 ... 7: /* xPSR sub-fields */
11921 /* only APSR is actually writable */
b28b3377
PM
11922 if (!(reg & 4)) {
11923 uint32_t apsrmask = 0;
11924
11925 if (mask & 8) {
987ab45e 11926 apsrmask |= XPSR_NZCV | XPSR_Q;
b28b3377
PM
11927 }
11928 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
987ab45e 11929 apsrmask |= XPSR_GE;
b28b3377
PM
11930 }
11931 xpsr_write(env, val, apsrmask);
58117c9b 11932 }
9ee6e8bb
PB
11933 break;
11934 case 8: /* MSP */
1169d3aa 11935 if (v7m_using_psp(env)) {
9ee6e8bb 11936 env->v7m.other_sp = val;
abc24d86 11937 } else {
9ee6e8bb 11938 env->regs[13] = val;
abc24d86 11939 }
9ee6e8bb
PB
11940 break;
11941 case 9: /* PSP */
1169d3aa 11942 if (v7m_using_psp(env)) {
9ee6e8bb 11943 env->regs[13] = val;
abc24d86 11944 } else {
9ee6e8bb 11945 env->v7m.other_sp = val;
abc24d86 11946 }
9ee6e8bb 11947 break;
57bb3156
PM
11948 case 10: /* MSPLIM */
11949 if (!arm_feature(env, ARM_FEATURE_V8)) {
11950 goto bad_reg;
11951 }
11952 env->v7m.msplim[env->v7m.secure] = val & ~7;
11953 break;
11954 case 11: /* PSPLIM */
11955 if (!arm_feature(env, ARM_FEATURE_V8)) {
11956 goto bad_reg;
11957 }
11958 env->v7m.psplim[env->v7m.secure] = val & ~7;
11959 break;
9ee6e8bb 11960 case 16: /* PRIMASK */
6d804834 11961 env->v7m.primask[env->v7m.secure] = val & 1;
9ee6e8bb 11962 break;
82845826 11963 case 17: /* BASEPRI */
22ab3460
JS
11964 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
11965 goto bad_reg;
11966 }
acf94941 11967 env->v7m.basepri[env->v7m.secure] = val & 0xff;
9ee6e8bb 11968 break;
82845826 11969 case 18: /* BASEPRI_MAX */
22ab3460
JS
11970 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
11971 goto bad_reg;
11972 }
9ee6e8bb 11973 val &= 0xff;
acf94941
PM
11974 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
11975 || env->v7m.basepri[env->v7m.secure] == 0)) {
11976 env->v7m.basepri[env->v7m.secure] = val;
11977 }
9ee6e8bb 11978 break;
82845826 11979 case 19: /* FAULTMASK */
22ab3460
JS
11980 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
11981 goto bad_reg;
11982 }
42a6686b 11983 env->v7m.faultmask[env->v7m.secure] = val & 1;
82845826 11984 break;
9ee6e8bb 11985 case 20: /* CONTROL */
792dac30
PM
11986 /* Writing to the SPSEL bit only has an effect if we are in
11987 * thread mode; other bits can be updated by any privileged code.
de2db7ec 11988 * write_v7m_control_spsel() deals with updating the SPSEL bit in
792dac30 11989 * env->v7m.control, so we only need update the others.
83d7f86d
PM
11990 * For v7M, we must just ignore explicit writes to SPSEL in handler
11991 * mode; for v8M the write is permitted but will have no effect.
792dac30 11992 */
83d7f86d
PM
11993 if (arm_feature(env, ARM_FEATURE_V8) ||
11994 !arm_v7m_is_handler_mode(env)) {
de2db7ec 11995 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
792dac30 11996 }
def18344
JS
11997 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
11998 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
11999 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
12000 }
9ee6e8bb
PB
12001 break;
12002 default:
57bb3156 12003 bad_reg:
58117c9b
MD
12004 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
12005 " register %d\n", reg);
9ee6e8bb
PB
12006 return;
12007 }
12008}
12009
5158de24
PM
12010uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
12011{
12012 /* Implement the TT instruction. op is bits [7:6] of the insn. */
12013 bool forceunpriv = op & 1;
12014 bool alt = op & 2;
12015 V8M_SAttributes sattrs = {};
12016 uint32_t tt_resp;
12017 bool r, rw, nsr, nsrw, mrvalid;
12018 int prot;
3f551b5b 12019 ARMMMUFaultInfo fi = {};
5158de24
PM
12020 MemTxAttrs attrs = {};
12021 hwaddr phys_addr;
5158de24
PM
12022 ARMMMUIdx mmu_idx;
12023 uint32_t mregion;
12024 bool targetpriv;
12025 bool targetsec = env->v7m.secure;
72042435 12026 bool is_subpage;
5158de24
PM
12027
12028 /* Work out what the security state and privilege level we're
12029 * interested in is...
12030 */
12031 if (alt) {
12032 targetsec = !targetsec;
12033 }
12034
12035 if (forceunpriv) {
12036 targetpriv = false;
12037 } else {
12038 targetpriv = arm_v7m_is_handler_mode(env) ||
12039 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
12040 }
12041
12042 /* ...and then figure out which MMU index this is */
12043 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
12044
12045 /* We know that the MPU and SAU don't care about the access type
12046 * for our purposes beyond that we don't want to claim to be
12047 * an insn fetch, so we arbitrarily call this a read.
12048 */
12049
12050 /* MPU region info only available for privileged or if
12051 * inspecting the other MPU state.
12052 */
12053 if (arm_current_el(env) != 0 || alt) {
12054 /* We can ignore the return value as prot is always set */
12055 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
72042435
PM
12056 &phys_addr, &attrs, &prot, &is_subpage,
12057 &fi, &mregion);
5158de24
PM
12058 if (mregion == -1) {
12059 mrvalid = false;
12060 mregion = 0;
12061 } else {
12062 mrvalid = true;
12063 }
12064 r = prot & PAGE_READ;
12065 rw = prot & PAGE_WRITE;
12066 } else {
12067 r = false;
12068 rw = false;
12069 mrvalid = false;
12070 mregion = 0;
12071 }
12072
12073 if (env->v7m.secure) {
12074 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
12075 nsr = sattrs.ns && r;
12076 nsrw = sattrs.ns && rw;
12077 } else {
12078 sattrs.ns = true;
12079 nsr = false;
12080 nsrw = false;
12081 }
12082
12083 tt_resp = (sattrs.iregion << 24) |
12084 (sattrs.irvalid << 23) |
12085 ((!sattrs.ns) << 22) |
12086 (nsrw << 21) |
12087 (nsr << 20) |
12088 (rw << 19) |
12089 (r << 18) |
12090 (sattrs.srvalid << 17) |
12091 (mrvalid << 16) |
12092 (sattrs.sregion << 8) |
12093 mregion;
12094
12095 return tt_resp;
12096}
12097
b5ff1b31 12098#endif
6ddbc6e4 12099
aca3f40b
PM
12100void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
12101{
12102 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
12103 * Note that we do not implement the (architecturally mandated)
12104 * alignment fault for attempts to use this on Device memory
12105 * (which matches the usual QEMU behaviour of not implementing either
12106 * alignment faults or any memory attribute handling).
12107 */
12108
12109 ARMCPU *cpu = arm_env_get_cpu(env);
12110 uint64_t blocklen = 4 << cpu->dcz_blocksize;
12111 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
12112
12113#ifndef CONFIG_USER_ONLY
12114 {
12115 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
12116 * the block size so we might have to do more than one TLB lookup.
12117 * We know that in fact for any v8 CPU the page size is at least 4K
12118 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
12119 * 1K as an artefact of legacy v5 subpage support being present in the
12120 * same QEMU executable.
12121 */
12122 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
12123 void *hostaddr[maxidx];
12124 int try, i;
97ed5ccd 12125 unsigned mmu_idx = cpu_mmu_index(env, false);
3972ef6f 12126 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
aca3f40b
PM
12127
12128 for (try = 0; try < 2; try++) {
12129
12130 for (i = 0; i < maxidx; i++) {
12131 hostaddr[i] = tlb_vaddr_to_host(env,
12132 vaddr + TARGET_PAGE_SIZE * i,
3972ef6f 12133 1, mmu_idx);
aca3f40b
PM
12134 if (!hostaddr[i]) {
12135 break;
12136 }
12137 }
12138 if (i == maxidx) {
12139 /* If it's all in the TLB it's fair game for just writing to;
12140 * we know we don't need to update dirty status, etc.
12141 */
12142 for (i = 0; i < maxidx - 1; i++) {
12143 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
12144 }
12145 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
12146 return;
12147 }
12148 /* OK, try a store and see if we can populate the tlb. This
12149 * might cause an exception if the memory isn't writable,
12150 * in which case we will longjmp out of here. We must for
12151 * this purpose use the actual register value passed to us
12152 * so that we get the fault address right.
12153 */
01ecaf43 12154 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
aca3f40b
PM
12155 /* Now we can populate the other TLB entries, if any */
12156 for (i = 0; i < maxidx; i++) {
12157 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
12158 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
01ecaf43 12159 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
aca3f40b
PM
12160 }
12161 }
12162 }
12163
12164 /* Slow path (probably attempt to do this to an I/O device or
12165 * similar, or clearing of a block of code we have translations
12166 * cached for). Just do a series of byte writes as the architecture
12167 * demands. It's not worth trying to use a cpu_physical_memory_map(),
12168 * memset(), unmap() sequence here because:
12169 * + we'd need to account for the blocksize being larger than a page
12170 * + the direct-RAM access case is almost always going to be dealt
12171 * with in the fastpath code above, so there's no speed benefit
12172 * + we would have to deal with the map returning NULL because the
12173 * bounce buffer was in use
12174 */
12175 for (i = 0; i < blocklen; i++) {
01ecaf43 12176 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
aca3f40b
PM
12177 }
12178 }
12179#else
12180 memset(g2h(vaddr), 0, blocklen);
12181#endif
12182}
12183
6ddbc6e4
PB
12184/* Note that signed overflow is undefined in C. The following routines are
12185 careful to use unsigned types where modulo arithmetic is required.
12186 Failure to do so _will_ break on newer gcc. */
12187
12188/* Signed saturating arithmetic. */
12189
1654b2d6 12190/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
12191static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12192{
12193 uint16_t res;
12194
12195 res = a + b;
12196 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12197 if (a & 0x8000)
12198 res = 0x8000;
12199 else
12200 res = 0x7fff;
12201 }
12202 return res;
12203}
12204
1654b2d6 12205/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
12206static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12207{
12208 uint8_t res;
12209
12210 res = a + b;
12211 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12212 if (a & 0x80)
12213 res = 0x80;
12214 else
12215 res = 0x7f;
12216 }
12217 return res;
12218}
12219
1654b2d6 12220/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
12221static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12222{
12223 uint16_t res;
12224
12225 res = a - b;
12226 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12227 if (a & 0x8000)
12228 res = 0x8000;
12229 else
12230 res = 0x7fff;
12231 }
12232 return res;
12233}
12234
1654b2d6 12235/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
12236static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12237{
12238 uint8_t res;
12239
12240 res = a - b;
12241 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12242 if (a & 0x80)
12243 res = 0x80;
12244 else
12245 res = 0x7f;
12246 }
12247 return res;
12248}
12249
12250#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12251#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12252#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12253#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12254#define PFX q
12255
12256#include "op_addsub.h"
12257
12258/* Unsigned saturating arithmetic. */
460a09c1 12259static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
12260{
12261 uint16_t res;
12262 res = a + b;
12263 if (res < a)
12264 res = 0xffff;
12265 return res;
12266}
12267
460a09c1 12268static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 12269{
4c4fd3f8 12270 if (a > b)
6ddbc6e4
PB
12271 return a - b;
12272 else
12273 return 0;
12274}
12275
12276static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12277{
12278 uint8_t res;
12279 res = a + b;
12280 if (res < a)
12281 res = 0xff;
12282 return res;
12283}
12284
12285static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12286{
4c4fd3f8 12287 if (a > b)
6ddbc6e4
PB
12288 return a - b;
12289 else
12290 return 0;
12291}
12292
12293#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12294#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12295#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12296#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12297#define PFX uq
12298
12299#include "op_addsub.h"
12300
12301/* Signed modulo arithmetic. */
12302#define SARITH16(a, b, n, op) do { \
12303 int32_t sum; \
db6e2e65 12304 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
12305 RESULT(sum, n, 16); \
12306 if (sum >= 0) \
12307 ge |= 3 << (n * 2); \
12308 } while(0)
12309
12310#define SARITH8(a, b, n, op) do { \
12311 int32_t sum; \
db6e2e65 12312 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
12313 RESULT(sum, n, 8); \
12314 if (sum >= 0) \
12315 ge |= 1 << n; \
12316 } while(0)
12317
12318
12319#define ADD16(a, b, n) SARITH16(a, b, n, +)
12320#define SUB16(a, b, n) SARITH16(a, b, n, -)
12321#define ADD8(a, b, n) SARITH8(a, b, n, +)
12322#define SUB8(a, b, n) SARITH8(a, b, n, -)
12323#define PFX s
12324#define ARITH_GE
12325
12326#include "op_addsub.h"
12327
12328/* Unsigned modulo arithmetic. */
12329#define ADD16(a, b, n) do { \
12330 uint32_t sum; \
12331 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12332 RESULT(sum, n, 16); \
a87aa10b 12333 if ((sum >> 16) == 1) \
6ddbc6e4
PB
12334 ge |= 3 << (n * 2); \
12335 } while(0)
12336
12337#define ADD8(a, b, n) do { \
12338 uint32_t sum; \
12339 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12340 RESULT(sum, n, 8); \
a87aa10b
AZ
12341 if ((sum >> 8) == 1) \
12342 ge |= 1 << n; \
6ddbc6e4
PB
12343 } while(0)
12344
12345#define SUB16(a, b, n) do { \
12346 uint32_t sum; \
12347 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12348 RESULT(sum, n, 16); \
12349 if ((sum >> 16) == 0) \
12350 ge |= 3 << (n * 2); \
12351 } while(0)
12352
12353#define SUB8(a, b, n) do { \
12354 uint32_t sum; \
12355 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12356 RESULT(sum, n, 8); \
12357 if ((sum >> 8) == 0) \
a87aa10b 12358 ge |= 1 << n; \
6ddbc6e4
PB
12359 } while(0)
12360
12361#define PFX u
12362#define ARITH_GE
12363
12364#include "op_addsub.h"
12365
12366/* Halved signed arithmetic. */
12367#define ADD16(a, b, n) \
12368 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12369#define SUB16(a, b, n) \
12370 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12371#define ADD8(a, b, n) \
12372 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12373#define SUB8(a, b, n) \
12374 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12375#define PFX sh
12376
12377#include "op_addsub.h"
12378
12379/* Halved unsigned arithmetic. */
12380#define ADD16(a, b, n) \
12381 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12382#define SUB16(a, b, n) \
12383 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12384#define ADD8(a, b, n) \
12385 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12386#define SUB8(a, b, n) \
12387 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12388#define PFX uh
12389
12390#include "op_addsub.h"
12391
12392static inline uint8_t do_usad(uint8_t a, uint8_t b)
12393{
12394 if (a > b)
12395 return a - b;
12396 else
12397 return b - a;
12398}
12399
12400/* Unsigned sum of absolute byte differences. */
12401uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12402{
12403 uint32_t sum;
12404 sum = do_usad(a, b);
12405 sum += do_usad(a >> 8, b >> 8);
12406 sum += do_usad(a >> 16, b >>16);
12407 sum += do_usad(a >> 24, b >> 24);
12408 return sum;
12409}
12410
12411/* For ARMv6 SEL instruction. */
12412uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12413{
12414 uint32_t mask;
12415
12416 mask = 0;
12417 if (flags & 1)
12418 mask |= 0xff;
12419 if (flags & 2)
12420 mask |= 0xff00;
12421 if (flags & 4)
12422 mask |= 0xff0000;
12423 if (flags & 8)
12424 mask |= 0xff000000;
12425 return (a & mask) | (b & ~mask);
12426}
12427
b90372ad
PM
12428/* VFP support. We follow the convention used for VFP instructions:
12429 Single precision routines have a "s" suffix, double precision a
4373f3ce
PB
12430 "d" suffix. */
12431
12432/* Convert host exception flags to vfp form. */
12433static inline int vfp_exceptbits_from_host(int host_bits)
12434{
12435 int target_bits = 0;
12436
12437 if (host_bits & float_flag_invalid)
12438 target_bits |= 1;
12439 if (host_bits & float_flag_divbyzero)
12440 target_bits |= 2;
12441 if (host_bits & float_flag_overflow)
12442 target_bits |= 4;
36802b6b 12443 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4373f3ce
PB
12444 target_bits |= 8;
12445 if (host_bits & float_flag_inexact)
12446 target_bits |= 0x10;
cecd8504
PM
12447 if (host_bits & float_flag_input_denormal)
12448 target_bits |= 0x80;
4373f3ce
PB
12449 return target_bits;
12450}
12451
0ecb72a5 12452uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4373f3ce
PB
12453{
12454 int i;
12455 uint32_t fpscr;
12456
12457 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
12458 | (env->vfp.vec_len << 16)
12459 | (env->vfp.vec_stride << 20);
19062c16 12460
4373f3ce 12461 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 12462 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
19062c16
RH
12463 /* FZ16 does not generate an input denormal exception. */
12464 i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
12465 & ~float_flag_input_denormal);
12466
4373f3ce
PB
12467 fpscr |= vfp_exceptbits_from_host(i);
12468 return fpscr;
12469}
12470
0ecb72a5 12471uint32_t vfp_get_fpscr(CPUARMState *env)
01653295
PM
12472{
12473 return HELPER(vfp_get_fpscr)(env);
12474}
12475
4373f3ce
PB
12476/* Convert vfp exception flags to target form. */
12477static inline int vfp_exceptbits_to_host(int target_bits)
12478{
12479 int host_bits = 0;
12480
12481 if (target_bits & 1)
12482 host_bits |= float_flag_invalid;
12483 if (target_bits & 2)
12484 host_bits |= float_flag_divbyzero;
12485 if (target_bits & 4)
12486 host_bits |= float_flag_overflow;
12487 if (target_bits & 8)
12488 host_bits |= float_flag_underflow;
12489 if (target_bits & 0x10)
12490 host_bits |= float_flag_inexact;
cecd8504
PM
12491 if (target_bits & 0x80)
12492 host_bits |= float_flag_input_denormal;
4373f3ce
PB
12493 return host_bits;
12494}
12495
0ecb72a5 12496void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4373f3ce
PB
12497{
12498 int i;
12499 uint32_t changed;
12500
0b62159b 12501 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
5763190f 12502 if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) {
0b62159b
RH
12503 val &= ~FPCR_FZ16;
12504 }
12505
4373f3ce
PB
12506 changed = env->vfp.xregs[ARM_VFP_FPSCR];
12507 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
12508 env->vfp.vec_len = (val >> 16) & 7;
12509 env->vfp.vec_stride = (val >> 20) & 3;
12510
12511 changed ^= val;
12512 if (changed & (3 << 22)) {
12513 i = (val >> 22) & 3;
12514 switch (i) {
4d3da0f3 12515 case FPROUNDING_TIEEVEN:
4373f3ce
PB
12516 i = float_round_nearest_even;
12517 break;
4d3da0f3 12518 case FPROUNDING_POSINF:
4373f3ce
PB
12519 i = float_round_up;
12520 break;
4d3da0f3 12521 case FPROUNDING_NEGINF:
4373f3ce
PB
12522 i = float_round_down;
12523 break;
4d3da0f3 12524 case FPROUNDING_ZERO:
4373f3ce
PB
12525 i = float_round_to_zero;
12526 break;
12527 }
12528 set_float_rounding_mode(i, &env->vfp.fp_status);
d81ce0ef 12529 set_float_rounding_mode(i, &env->vfp.fp_status_f16);
4373f3ce 12530 }
d81ce0ef
AB
12531 if (changed & FPCR_FZ16) {
12532 bool ftz_enabled = val & FPCR_FZ16;
12533 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
12534 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
12535 }
12536 if (changed & FPCR_FZ) {
12537 bool ftz_enabled = val & FPCR_FZ;
12538 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
12539 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
12540 }
12541 if (changed & FPCR_DN) {
12542 bool dnan_enabled = val & FPCR_DN;
12543 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
12544 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
cecd8504 12545 }
4373f3ce 12546
d81ce0ef
AB
12547 /* The exception flags are ORed together when we read fpscr so we
12548 * only need to preserve the current state in one of our
12549 * float_status values.
12550 */
b12c390b 12551 i = vfp_exceptbits_to_host(val);
4373f3ce 12552 set_float_exception_flags(i, &env->vfp.fp_status);
d81ce0ef 12553 set_float_exception_flags(0, &env->vfp.fp_status_f16);
3a492f3a 12554 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
12555}
12556
0ecb72a5 12557void vfp_set_fpscr(CPUARMState *env, uint32_t val)
01653295
PM
12558{
12559 HELPER(vfp_set_fpscr)(env, val);
12560}
12561
4373f3ce
PB
12562#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
12563
12564#define VFP_BINOP(name) \
ae1857ec 12565float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4373f3ce 12566{ \
ae1857ec
PM
12567 float_status *fpst = fpstp; \
12568 return float32_ ## name(a, b, fpst); \
4373f3ce 12569} \
ae1857ec 12570float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4373f3ce 12571{ \
ae1857ec
PM
12572 float_status *fpst = fpstp; \
12573 return float64_ ## name(a, b, fpst); \
4373f3ce
PB
12574}
12575VFP_BINOP(add)
12576VFP_BINOP(sub)
12577VFP_BINOP(mul)
12578VFP_BINOP(div)
f71a2ae5
PM
12579VFP_BINOP(min)
12580VFP_BINOP(max)
12581VFP_BINOP(minnum)
12582VFP_BINOP(maxnum)
4373f3ce
PB
12583#undef VFP_BINOP
12584
12585float32 VFP_HELPER(neg, s)(float32 a)
12586{
12587 return float32_chs(a);
12588}
12589
12590float64 VFP_HELPER(neg, d)(float64 a)
12591{
66230e0d 12592 return float64_chs(a);
4373f3ce
PB
12593}
12594
12595float32 VFP_HELPER(abs, s)(float32 a)
12596{
12597 return float32_abs(a);
12598}
12599
12600float64 VFP_HELPER(abs, d)(float64 a)
12601{
66230e0d 12602 return float64_abs(a);
4373f3ce
PB
12603}
12604
0ecb72a5 12605float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4373f3ce
PB
12606{
12607 return float32_sqrt(a, &env->vfp.fp_status);
12608}
12609
0ecb72a5 12610float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4373f3ce
PB
12611{
12612 return float64_sqrt(a, &env->vfp.fp_status);
12613}
12614
12615/* XXX: check quiet/signaling case */
12616#define DO_VFP_cmp(p, type) \
0ecb72a5 12617void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
12618{ \
12619 uint32_t flags; \
12620 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
12621 case 0: flags = 0x6; break; \
12622 case -1: flags = 0x8; break; \
12623 case 1: flags = 0x2; break; \
12624 default: case 2: flags = 0x3; break; \
12625 } \
12626 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
12627 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
12628} \
0ecb72a5 12629void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
12630{ \
12631 uint32_t flags; \
12632 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
12633 case 0: flags = 0x6; break; \
12634 case -1: flags = 0x8; break; \
12635 case 1: flags = 0x2; break; \
12636 default: case 2: flags = 0x3; break; \
12637 } \
12638 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
12639 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
12640}
12641DO_VFP_cmp(s, float32)
12642DO_VFP_cmp(d, float64)
12643#undef DO_VFP_cmp
12644
5500b06c 12645/* Integer to float and float to integer conversions */
4373f3ce 12646
6c2be133
RH
12647#define CONV_ITOF(name, ftype, fsz, sign) \
12648ftype HELPER(name)(uint32_t x, void *fpstp) \
12649{ \
12650 float_status *fpst = fpstp; \
12651 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
12652}
12653
12654#define CONV_FTOI(name, ftype, fsz, sign, round) \
df4de1af 12655sign##int32_t HELPER(name)(ftype x, void *fpstp) \
6c2be133
RH
12656{ \
12657 float_status *fpst = fpstp; \
12658 if (float##fsz##_is_any_nan(x)) { \
12659 float_raise(float_flag_invalid, fpst); \
12660 return 0; \
12661 } \
12662 return float##fsz##_to_##sign##int32##round(x, fpst); \
12663}
12664
12665#define FLOAT_CONVS(name, p, ftype, fsz, sign) \
12666 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
12667 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
12668 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
12669
12670FLOAT_CONVS(si, h, uint32_t, 16, )
12671FLOAT_CONVS(si, s, float32, 32, )
12672FLOAT_CONVS(si, d, float64, 64, )
12673FLOAT_CONVS(ui, h, uint32_t, 16, u)
12674FLOAT_CONVS(ui, s, float32, 32, u)
12675FLOAT_CONVS(ui, d, float64, 64, u)
4373f3ce 12676
5500b06c
PM
12677#undef CONV_ITOF
12678#undef CONV_FTOI
12679#undef FLOAT_CONVS
4373f3ce
PB
12680
12681/* floating point conversion */
0ecb72a5 12682float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4373f3ce 12683{
a9d173dc 12684 return float32_to_float64(x, &env->vfp.fp_status);
4373f3ce
PB
12685}
12686
0ecb72a5 12687float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4373f3ce 12688{
a9d173dc 12689 return float64_to_float32(x, &env->vfp.fp_status);
4373f3ce
PB
12690}
12691
12692/* VFP3 fixed point conversion. */
16d5b3ca 12693#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8ed697e8
WN
12694float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
12695 void *fpstp) \
b9b903cf 12696{ return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
16d5b3ca 12697
323cd490
RH
12698#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \
12699uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
12700 void *fpst) \
12701{ \
12702 if (unlikely(float##fsz##_is_any_nan(x))) { \
12703 float_raise(float_flag_invalid, fpst); \
12704 return 0; \
12705 } \
12706 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
622465e1
PM
12707}
12708
16d5b3ca
WN
12709#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
12710VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
323cd490
RH
12711VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
12712 float_round_to_zero, _round_to_zero) \
12713VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
12714 get_float_rounding_mode(fpst), )
3c6a074a
WN
12715
12716#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
12717VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
323cd490
RH
12718VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
12719 get_float_rounding_mode(fpst), )
16d5b3ca 12720
8ed697e8
WN
12721VFP_CONV_FIX(sh, d, 64, 64, int16)
12722VFP_CONV_FIX(sl, d, 64, 64, int32)
3c6a074a 12723VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8ed697e8
WN
12724VFP_CONV_FIX(uh, d, 64, 64, uint16)
12725VFP_CONV_FIX(ul, d, 64, 64, uint32)
3c6a074a 12726VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8ed697e8
WN
12727VFP_CONV_FIX(sh, s, 32, 32, int16)
12728VFP_CONV_FIX(sl, s, 32, 32, int32)
3c6a074a 12729VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8ed697e8
WN
12730VFP_CONV_FIX(uh, s, 32, 32, uint16)
12731VFP_CONV_FIX(ul, s, 32, 32, uint32)
3c6a074a 12732VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
88808a02 12733
4373f3ce 12734#undef VFP_CONV_FIX
16d5b3ca
WN
12735#undef VFP_CONV_FIX_FLOAT
12736#undef VFP_CONV_FLOAT_FIX_ROUND
88808a02
RH
12737#undef VFP_CONV_FIX_A64
12738
6c2be133 12739uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
88808a02 12740{
b9b903cf 12741 return int32_to_float16_scalbn(x, -shift, fpst);
88808a02
RH
12742}
12743
6c2be133 12744uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
88808a02 12745{
b9b903cf 12746 return uint32_to_float16_scalbn(x, -shift, fpst);
88808a02
RH
12747}
12748
6c2be133 12749uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
564a0632 12750{
b9b903cf 12751 return int64_to_float16_scalbn(x, -shift, fpst);
564a0632
RH
12752}
12753
6c2be133 12754uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
564a0632 12755{
b9b903cf 12756 return uint64_to_float16_scalbn(x, -shift, fpst);
564a0632
RH
12757}
12758
323cd490 12759uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
88808a02 12760{
323cd490 12761 if (unlikely(float16_is_any_nan(x))) {
88808a02
RH
12762 float_raise(float_flag_invalid, fpst);
12763 return 0;
88808a02 12764 }
323cd490
RH
12765 return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
12766 shift, fpst);
88808a02
RH
12767}
12768
6c2be133 12769uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
88808a02 12770{
323cd490
RH
12771 if (unlikely(float16_is_any_nan(x))) {
12772 float_raise(float_flag_invalid, fpst);
12773 return 0;
12774 }
12775 return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
12776 shift, fpst);
88808a02 12777}
4373f3ce 12778
6c2be133 12779uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
564a0632 12780{
323cd490
RH
12781 if (unlikely(float16_is_any_nan(x))) {
12782 float_raise(float_flag_invalid, fpst);
12783 return 0;
12784 }
12785 return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
12786 shift, fpst);
564a0632
RH
12787}
12788
6c2be133 12789uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
564a0632 12790{
323cd490
RH
12791 if (unlikely(float16_is_any_nan(x))) {
12792 float_raise(float_flag_invalid, fpst);
12793 return 0;
12794 }
12795 return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
12796 shift, fpst);
564a0632
RH
12797}
12798
6c2be133 12799uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
564a0632 12800{
323cd490
RH
12801 if (unlikely(float16_is_any_nan(x))) {
12802 float_raise(float_flag_invalid, fpst);
12803 return 0;
12804 }
12805 return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
12806 shift, fpst);
564a0632
RH
12807}
12808
6c2be133 12809uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
564a0632 12810{
323cd490
RH
12811 if (unlikely(float16_is_any_nan(x))) {
12812 float_raise(float_flag_invalid, fpst);
12813 return 0;
12814 }
12815 return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
12816 shift, fpst);
564a0632
RH
12817}
12818
52a1f6a3
AG
12819/* Set the current fp rounding mode and return the old one.
12820 * The argument is a softfloat float_round_ value.
12821 */
9b049916 12822uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
52a1f6a3 12823{
9b049916 12824 float_status *fp_status = fpstp;
52a1f6a3
AG
12825
12826 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
12827 set_float_rounding_mode(rmode, fp_status);
12828
12829 return prev_rmode;
12830}
12831
43630e58
WN
12832/* Set the current fp rounding mode in the standard fp status and return
12833 * the old one. This is for NEON instructions that need to change the
12834 * rounding mode but wish to use the standard FPSCR values for everything
12835 * else. Always set the rounding mode back to the correct value after
12836 * modifying it.
12837 * The argument is a softfloat float_round_ value.
12838 */
12839uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
12840{
12841 float_status *fp_status = &env->vfp.standard_fp_status;
12842
12843 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
12844 set_float_rounding_mode(rmode, fp_status);
12845
12846 return prev_rmode;
12847}
12848
60011498 12849/* Half precision conversions. */
6c2be133 12850float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
60011498 12851{
0acb9e7c
AB
12852 /* Squash FZ16 to 0 for the duration of conversion. In this case,
12853 * it would affect flushing input denormals.
12854 */
12855 float_status *fpst = fpstp;
12856 flag save = get_flush_inputs_to_zero(fpst);
12857 set_flush_inputs_to_zero(false, fpst);
12858 float32 r = float16_to_float32(a, !ahp_mode, fpst);
12859 set_flush_inputs_to_zero(save, fpst);
12860 return r;
2d981da7
PM
12861}
12862
6c2be133 12863uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
2d981da7 12864{
0acb9e7c
AB
12865 /* Squash FZ16 to 0 for the duration of conversion. In this case,
12866 * it would affect flushing output denormals.
12867 */
12868 float_status *fpst = fpstp;
12869 flag save = get_flush_to_zero(fpst);
12870 set_flush_to_zero(false, fpst);
12871 float16 r = float32_to_float16(a, !ahp_mode, fpst);
12872 set_flush_to_zero(save, fpst);
12873 return r;
2d981da7
PM
12874}
12875
6c2be133 12876float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
2d981da7 12877{
0acb9e7c
AB
12878 /* Squash FZ16 to 0 for the duration of conversion. In this case,
12879 * it would affect flushing input denormals.
12880 */
12881 float_status *fpst = fpstp;
12882 flag save = get_flush_inputs_to_zero(fpst);
12883 set_flush_inputs_to_zero(false, fpst);
12884 float64 r = float16_to_float64(a, !ahp_mode, fpst);
12885 set_flush_inputs_to_zero(save, fpst);
12886 return r;
2d981da7
PM
12887}
12888
6c2be133 12889uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
2d981da7 12890{
0acb9e7c
AB
12891 /* Squash FZ16 to 0 for the duration of conversion. In this case,
12892 * it would affect flushing output denormals.
12893 */
12894 float_status *fpst = fpstp;
12895 flag save = get_flush_to_zero(fpst);
12896 set_flush_to_zero(false, fpst);
12897 float16 r = float64_to_float16(a, !ahp_mode, fpst);
12898 set_flush_to_zero(save, fpst);
12899 return r;
8900aad2
PM
12900}
12901
dda3ec49 12902#define float32_two make_float32(0x40000000)
6aae3df1
PM
12903#define float32_three make_float32(0x40400000)
12904#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 12905
0ecb72a5 12906float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 12907{
dda3ec49
PM
12908 float_status *s = &env->vfp.standard_fp_status;
12909 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
12910 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
12911 if (!(float32_is_zero(a) || float32_is_zero(b))) {
12912 float_raise(float_flag_input_denormal, s);
12913 }
dda3ec49
PM
12914 return float32_two;
12915 }
12916 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
12917}
12918
0ecb72a5 12919float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 12920{
71826966 12921 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
12922 float32 product;
12923 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
12924 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
12925 if (!(float32_is_zero(a) || float32_is_zero(b))) {
12926 float_raise(float_flag_input_denormal, s);
12927 }
6aae3df1 12928 return float32_one_point_five;
9ea62f57 12929 }
6aae3df1
PM
12930 product = float32_mul(a, b, s);
12931 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
12932}
12933
8f8e3aa4
PB
12934/* NEON helpers. */
12935
56bf4fe2
CL
12936/* Constants 256 and 512 are used in some helpers; we avoid relying on
12937 * int->float conversions at run-time. */
12938#define float64_256 make_float64(0x4070000000000000LL)
12939#define float64_512 make_float64(0x4080000000000000LL)
5eb70735 12940#define float16_maxnorm make_float16(0x7bff)
b6d4443a
AB
12941#define float32_maxnorm make_float32(0x7f7fffff)
12942#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
56bf4fe2 12943
b6d4443a
AB
12944/* Reciprocal functions
12945 *
12946 * The algorithm that must be used to calculate the estimate
5eb70735 12947 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
fe0e4872 12948 */
b6d4443a 12949
5eb70735
AB
12950/* See RecipEstimate()
12951 *
12952 * input is a 9 bit fixed point number
12953 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
12954 * result range 256 .. 511 for a number from 1.0 to 511/256.
12955 */
fe0e4872 12956
5eb70735
AB
12957static int recip_estimate(int input)
12958{
12959 int a, b, r;
12960 assert(256 <= input && input < 512);
12961 a = (input * 2) + 1;
12962 b = (1 << 19) / a;
12963 r = (b + 1) >> 1;
12964 assert(256 <= r && r < 512);
12965 return r;
fe0e4872
CL
12966}
12967
5eb70735
AB
12968/*
12969 * Common wrapper to call recip_estimate
12970 *
12971 * The parameters are exponent and 64 bit fraction (without implicit
12972 * bit) where the binary point is nominally at bit 52. Returns a
12973 * float64 which can then be rounded to the appropriate size by the
12974 * callee.
12975 */
12976
12977static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
4373f3ce 12978{
5eb70735
AB
12979 uint32_t scaled, estimate;
12980 uint64_t result_frac;
12981 int result_exp;
fe0e4872 12982
5eb70735
AB
12983 /* Handle sub-normals */
12984 if (*exp == 0) {
b6d4443a 12985 if (extract64(frac, 51, 1) == 0) {
5eb70735
AB
12986 *exp = -1;
12987 frac <<= 2;
b6d4443a 12988 } else {
5eb70735 12989 frac <<= 1;
b6d4443a
AB
12990 }
12991 }
fe0e4872 12992
5eb70735
AB
12993 /* scaled = UInt('1':fraction<51:44>) */
12994 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
12995 estimate = recip_estimate(scaled);
b6d4443a 12996
5eb70735
AB
12997 result_exp = exp_off - *exp;
12998 result_frac = deposit64(0, 44, 8, estimate);
12999 if (result_exp == 0) {
13000 result_frac = deposit64(result_frac >> 1, 51, 1, 1);
13001 } else if (result_exp == -1) {
13002 result_frac = deposit64(result_frac >> 2, 50, 2, 1);
13003 result_exp = 0;
b6d4443a
AB
13004 }
13005
5eb70735
AB
13006 *exp = result_exp;
13007
13008 return result_frac;
b6d4443a
AB
13009}
13010
13011static bool round_to_inf(float_status *fpst, bool sign_bit)
13012{
13013 switch (fpst->float_rounding_mode) {
13014 case float_round_nearest_even: /* Round to Nearest */
13015 return true;
13016 case float_round_up: /* Round to +Inf */
13017 return !sign_bit;
13018 case float_round_down: /* Round to -Inf */
13019 return sign_bit;
13020 case float_round_to_zero: /* Round to Zero */
13021 return false;
13022 }
13023
13024 g_assert_not_reached();
13025}
13026
6c2be133 13027uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
5eb70735
AB
13028{
13029 float_status *fpst = fpstp;
13030 float16 f16 = float16_squash_input_denormal(input, fpst);
13031 uint32_t f16_val = float16_val(f16);
13032 uint32_t f16_sign = float16_is_neg(f16);
13033 int f16_exp = extract32(f16_val, 10, 5);
13034 uint32_t f16_frac = extract32(f16_val, 0, 10);
13035 uint64_t f64_frac;
13036
13037 if (float16_is_any_nan(f16)) {
13038 float16 nan = f16;
13039 if (float16_is_signaling_nan(f16, fpst)) {
13040 float_raise(float_flag_invalid, fpst);
d7ecc062 13041 nan = float16_silence_nan(f16, fpst);
5eb70735
AB
13042 }
13043 if (fpst->default_nan_mode) {
13044 nan = float16_default_nan(fpst);
13045 }
13046 return nan;
13047 } else if (float16_is_infinity(f16)) {
13048 return float16_set_sign(float16_zero, float16_is_neg(f16));
13049 } else if (float16_is_zero(f16)) {
13050 float_raise(float_flag_divbyzero, fpst);
13051 return float16_set_sign(float16_infinity, float16_is_neg(f16));
13052 } else if (float16_abs(f16) < (1 << 8)) {
13053 /* Abs(value) < 2.0^-16 */
13054 float_raise(float_flag_overflow | float_flag_inexact, fpst);
13055 if (round_to_inf(fpst, f16_sign)) {
13056 return float16_set_sign(float16_infinity, f16_sign);
13057 } else {
13058 return float16_set_sign(float16_maxnorm, f16_sign);
13059 }
13060 } else if (f16_exp >= 29 && fpst->flush_to_zero) {
13061 float_raise(float_flag_underflow, fpst);
13062 return float16_set_sign(float16_zero, float16_is_neg(f16));
13063 }
13064
13065 f64_frac = call_recip_estimate(&f16_exp, 29,
13066 ((uint64_t) f16_frac) << (52 - 10));
13067
13068 /* result = sign : result_exp<4:0> : fraction<51:42> */
13069 f16_val = deposit32(0, 15, 1, f16_sign);
13070 f16_val = deposit32(f16_val, 10, 5, f16_exp);
13071 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
13072 return make_float16(f16_val);
13073}
13074
b6d4443a
AB
13075float32 HELPER(recpe_f32)(float32 input, void *fpstp)
13076{
13077 float_status *fpst = fpstp;
13078 float32 f32 = float32_squash_input_denormal(input, fpst);
13079 uint32_t f32_val = float32_val(f32);
5eb70735
AB
13080 bool f32_sign = float32_is_neg(f32);
13081 int f32_exp = extract32(f32_val, 23, 8);
b6d4443a 13082 uint32_t f32_frac = extract32(f32_val, 0, 23);
5eb70735 13083 uint64_t f64_frac;
b6d4443a
AB
13084
13085 if (float32_is_any_nan(f32)) {
13086 float32 nan = f32;
af39bc8c 13087 if (float32_is_signaling_nan(f32, fpst)) {
b6d4443a 13088 float_raise(float_flag_invalid, fpst);
d7ecc062 13089 nan = float32_silence_nan(f32, fpst);
fe0e4872 13090 }
b6d4443a 13091 if (fpst->default_nan_mode) {
af39bc8c 13092 nan = float32_default_nan(fpst);
43fe9bdb 13093 }
b6d4443a
AB
13094 return nan;
13095 } else if (float32_is_infinity(f32)) {
13096 return float32_set_sign(float32_zero, float32_is_neg(f32));
13097 } else if (float32_is_zero(f32)) {
13098 float_raise(float_flag_divbyzero, fpst);
13099 return float32_set_sign(float32_infinity, float32_is_neg(f32));
5eb70735 13100 } else if (float32_abs(f32) < (1ULL << 21)) {
b6d4443a
AB
13101 /* Abs(value) < 2.0^-128 */
13102 float_raise(float_flag_overflow | float_flag_inexact, fpst);
5eb70735
AB
13103 if (round_to_inf(fpst, f32_sign)) {
13104 return float32_set_sign(float32_infinity, f32_sign);
b6d4443a 13105 } else {
5eb70735 13106 return float32_set_sign(float32_maxnorm, f32_sign);
b6d4443a
AB
13107 }
13108 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
13109 float_raise(float_flag_underflow, fpst);
13110 return float32_set_sign(float32_zero, float32_is_neg(f32));
fe0e4872
CL
13111 }
13112
5eb70735
AB
13113 f64_frac = call_recip_estimate(&f32_exp, 253,
13114 ((uint64_t) f32_frac) << (52 - 23));
fe0e4872 13115
5eb70735
AB
13116 /* result = sign : result_exp<7:0> : fraction<51:29> */
13117 f32_val = deposit32(0, 31, 1, f32_sign);
13118 f32_val = deposit32(f32_val, 23, 8, f32_exp);
13119 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
13120 return make_float32(f32_val);
b6d4443a
AB
13121}
13122
13123float64 HELPER(recpe_f64)(float64 input, void *fpstp)
13124{
13125 float_status *fpst = fpstp;
13126 float64 f64 = float64_squash_input_denormal(input, fpst);
13127 uint64_t f64_val = float64_val(f64);
5eb70735
AB
13128 bool f64_sign = float64_is_neg(f64);
13129 int f64_exp = extract64(f64_val, 52, 11);
13130 uint64_t f64_frac = extract64(f64_val, 0, 52);
b6d4443a
AB
13131
13132 /* Deal with any special cases */
13133 if (float64_is_any_nan(f64)) {
13134 float64 nan = f64;
af39bc8c 13135 if (float64_is_signaling_nan(f64, fpst)) {
b6d4443a 13136 float_raise(float_flag_invalid, fpst);
d7ecc062 13137 nan = float64_silence_nan(f64, fpst);
b6d4443a
AB
13138 }
13139 if (fpst->default_nan_mode) {
af39bc8c 13140 nan = float64_default_nan(fpst);
b6d4443a
AB
13141 }
13142 return nan;
13143 } else if (float64_is_infinity(f64)) {
13144 return float64_set_sign(float64_zero, float64_is_neg(f64));
13145 } else if (float64_is_zero(f64)) {
13146 float_raise(float_flag_divbyzero, fpst);
13147 return float64_set_sign(float64_infinity, float64_is_neg(f64));
13148 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
13149 /* Abs(value) < 2.0^-1024 */
13150 float_raise(float_flag_overflow | float_flag_inexact, fpst);
5eb70735
AB
13151 if (round_to_inf(fpst, f64_sign)) {
13152 return float64_set_sign(float64_infinity, f64_sign);
b6d4443a 13153 } else {
5eb70735 13154 return float64_set_sign(float64_maxnorm, f64_sign);
b6d4443a 13155 }
fc1792e9 13156 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
b6d4443a
AB
13157 float_raise(float_flag_underflow, fpst);
13158 return float64_set_sign(float64_zero, float64_is_neg(f64));
13159 }
fe0e4872 13160
5eb70735 13161 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
fe0e4872 13162
5eb70735
AB
13163 /* result = sign : result_exp<10:0> : fraction<51:0>; */
13164 f64_val = deposit64(0, 63, 1, f64_sign);
13165 f64_val = deposit64(f64_val, 52, 11, f64_exp);
13166 f64_val = deposit64(f64_val, 0, 52, f64_frac);
13167 return make_float64(f64_val);
4373f3ce
PB
13168}
13169
e07be5d2
CL
13170/* The algorithm that must be used to calculate the estimate
13171 * is specified by the ARM ARM.
13172 */
d719cbc7
AB
13173
13174static int do_recip_sqrt_estimate(int a)
13175{
13176 int b, estimate;
13177
13178 assert(128 <= a && a < 512);
13179 if (a < 256) {
13180 a = a * 2 + 1;
e07be5d2 13181 } else {
d719cbc7
AB
13182 a = (a >> 1) << 1;
13183 a = (a + 1) * 2;
13184 }
13185 b = 512;
13186 while (a * (b + 1) * (b + 1) < (1 << 28)) {
13187 b += 1;
13188 }
13189 estimate = (b + 1) / 2;
13190 assert(256 <= estimate && estimate < 512);
13191
13192 return estimate;
13193}
13194
e07be5d2 13195
d719cbc7
AB
13196static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
13197{
13198 int estimate;
13199 uint32_t scaled;
e07be5d2 13200
d719cbc7
AB
13201 if (*exp == 0) {
13202 while (extract64(frac, 51, 1) == 0) {
13203 frac = frac << 1;
13204 *exp -= 1;
13205 }
13206 frac = extract64(frac, 0, 51) << 1;
e07be5d2 13207 }
e07be5d2 13208
d719cbc7
AB
13209 if (*exp & 1) {
13210 /* scaled = UInt('01':fraction<51:45>) */
13211 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
13212 } else {
13213 /* scaled = UInt('1':fraction<51:44>) */
13214 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
13215 }
13216 estimate = do_recip_sqrt_estimate(scaled);
e07be5d2 13217
d719cbc7
AB
13218 *exp = (exp_off - *exp) / 2;
13219 return extract64(estimate, 0, 8) << 44;
13220}
13221
6c2be133 13222uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
d719cbc7
AB
13223{
13224 float_status *s = fpstp;
13225 float16 f16 = float16_squash_input_denormal(input, s);
13226 uint16_t val = float16_val(f16);
13227 bool f16_sign = float16_is_neg(f16);
13228 int f16_exp = extract32(val, 10, 5);
13229 uint16_t f16_frac = extract32(val, 0, 10);
13230 uint64_t f64_frac;
13231
13232 if (float16_is_any_nan(f16)) {
13233 float16 nan = f16;
13234 if (float16_is_signaling_nan(f16, s)) {
13235 float_raise(float_flag_invalid, s);
d7ecc062 13236 nan = float16_silence_nan(f16, s);
d719cbc7
AB
13237 }
13238 if (s->default_nan_mode) {
13239 nan = float16_default_nan(s);
13240 }
13241 return nan;
13242 } else if (float16_is_zero(f16)) {
13243 float_raise(float_flag_divbyzero, s);
13244 return float16_set_sign(float16_infinity, f16_sign);
13245 } else if (f16_sign) {
13246 float_raise(float_flag_invalid, s);
13247 return float16_default_nan(s);
13248 } else if (float16_is_infinity(f16)) {
13249 return float16_zero;
13250 }
13251
13252 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
13253 * preserving the parity of the exponent. */
13254
13255 f64_frac = ((uint64_t) f16_frac) << (52 - 10);
13256
13257 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
13258
13259 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
13260 val = deposit32(0, 15, 1, f16_sign);
13261 val = deposit32(val, 10, 5, f16_exp);
13262 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
13263 return make_float16(val);
e07be5d2
CL
13264}
13265
c2fb418e 13266float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
4373f3ce 13267{
c2fb418e
AB
13268 float_status *s = fpstp;
13269 float32 f32 = float32_squash_input_denormal(input, s);
13270 uint32_t val = float32_val(f32);
d719cbc7
AB
13271 uint32_t f32_sign = float32_is_neg(f32);
13272 int f32_exp = extract32(val, 23, 8);
c2fb418e
AB
13273 uint32_t f32_frac = extract32(val, 0, 23);
13274 uint64_t f64_frac;
e07be5d2 13275
c2fb418e
AB
13276 if (float32_is_any_nan(f32)) {
13277 float32 nan = f32;
af39bc8c 13278 if (float32_is_signaling_nan(f32, s)) {
e07be5d2 13279 float_raise(float_flag_invalid, s);
d7ecc062 13280 nan = float32_silence_nan(f32, s);
e07be5d2 13281 }
c2fb418e 13282 if (s->default_nan_mode) {
af39bc8c 13283 nan = float32_default_nan(s);
43fe9bdb 13284 }
c2fb418e
AB
13285 return nan;
13286 } else if (float32_is_zero(f32)) {
e07be5d2 13287 float_raise(float_flag_divbyzero, s);
c2fb418e
AB
13288 return float32_set_sign(float32_infinity, float32_is_neg(f32));
13289 } else if (float32_is_neg(f32)) {
e07be5d2 13290 float_raise(float_flag_invalid, s);
af39bc8c 13291 return float32_default_nan(s);
c2fb418e 13292 } else if (float32_is_infinity(f32)) {
e07be5d2
CL
13293 return float32_zero;
13294 }
13295
c2fb418e 13296 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
e07be5d2 13297 * preserving the parity of the exponent. */
c2fb418e
AB
13298
13299 f64_frac = ((uint64_t) f32_frac) << 29;
e07be5d2 13300
d719cbc7 13301 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
e07be5d2 13302
d719cbc7
AB
13303 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
13304 val = deposit32(0, 31, 1, f32_sign);
13305 val = deposit32(val, 23, 8, f32_exp);
13306 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
e07be5d2 13307 return make_float32(val);
4373f3ce
PB
13308}
13309
c2fb418e
AB
13310float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
13311{
13312 float_status *s = fpstp;
13313 float64 f64 = float64_squash_input_denormal(input, s);
13314 uint64_t val = float64_val(f64);
d719cbc7
AB
13315 bool f64_sign = float64_is_neg(f64);
13316 int f64_exp = extract64(val, 52, 11);
c2fb418e 13317 uint64_t f64_frac = extract64(val, 0, 52);
c2fb418e
AB
13318
13319 if (float64_is_any_nan(f64)) {
13320 float64 nan = f64;
af39bc8c 13321 if (float64_is_signaling_nan(f64, s)) {
c2fb418e 13322 float_raise(float_flag_invalid, s);
d7ecc062 13323 nan = float64_silence_nan(f64, s);
c2fb418e
AB
13324 }
13325 if (s->default_nan_mode) {
af39bc8c 13326 nan = float64_default_nan(s);
c2fb418e
AB
13327 }
13328 return nan;
13329 } else if (float64_is_zero(f64)) {
13330 float_raise(float_flag_divbyzero, s);
13331 return float64_set_sign(float64_infinity, float64_is_neg(f64));
13332 } else if (float64_is_neg(f64)) {
13333 float_raise(float_flag_invalid, s);
af39bc8c 13334 return float64_default_nan(s);
c2fb418e
AB
13335 } else if (float64_is_infinity(f64)) {
13336 return float64_zero;
13337 }
13338
d719cbc7 13339 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
c2fb418e 13340
d719cbc7
AB
13341 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
13342 val = deposit64(0, 61, 1, f64_sign);
13343 val = deposit64(val, 52, 11, f64_exp);
13344 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
13345 return make_float64(val);
c2fb418e
AB
13346}
13347
b6d4443a 13348uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
4373f3ce 13349{
5eb70735
AB
13350 /* float_status *s = fpstp; */
13351 int input, estimate;
fe0e4872
CL
13352
13353 if ((a & 0x80000000) == 0) {
13354 return 0xffffffff;
13355 }
13356
5eb70735
AB
13357 input = extract32(a, 23, 9);
13358 estimate = recip_estimate(input);
fe0e4872 13359
5eb70735 13360 return deposit32(0, (32 - 9), 9, estimate);
4373f3ce
PB
13361}
13362
c2fb418e 13363uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
4373f3ce 13364{
d719cbc7 13365 int estimate;
e07be5d2
CL
13366
13367 if ((a & 0xc0000000) == 0) {
13368 return 0xffffffff;
13369 }
13370
d719cbc7 13371 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
e07be5d2 13372
d719cbc7 13373 return deposit32(0, 23, 9, estimate);
4373f3ce 13374}
fe1479c3 13375
da97f52c
PM
13376/* VFPv4 fused multiply-accumulate */
13377float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
13378{
13379 float_status *fpst = fpstp;
13380 return float32_muladd(a, b, c, 0, fpst);
13381}
13382
13383float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
13384{
13385 float_status *fpst = fpstp;
13386 return float64_muladd(a, b, c, 0, fpst);
13387}
d9b0848d
PM
13388
13389/* ARMv8 round to integral */
13390float32 HELPER(rints_exact)(float32 x, void *fp_status)
13391{
13392 return float32_round_to_int(x, fp_status);
13393}
13394
13395float64 HELPER(rintd_exact)(float64 x, void *fp_status)
13396{
13397 return float64_round_to_int(x, fp_status);
13398}
13399
13400float32 HELPER(rints)(float32 x, void *fp_status)
13401{
13402 int old_flags = get_float_exception_flags(fp_status), new_flags;
13403 float32 ret;
13404
13405 ret = float32_round_to_int(x, fp_status);
13406
13407 /* Suppress any inexact exceptions the conversion produced */
13408 if (!(old_flags & float_flag_inexact)) {
13409 new_flags = get_float_exception_flags(fp_status);
13410 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
13411 }
13412
13413 return ret;
13414}
13415
13416float64 HELPER(rintd)(float64 x, void *fp_status)
13417{
13418 int old_flags = get_float_exception_flags(fp_status), new_flags;
13419 float64 ret;
13420
13421 ret = float64_round_to_int(x, fp_status);
13422
13423 new_flags = get_float_exception_flags(fp_status);
13424
13425 /* Suppress any inexact exceptions the conversion produced */
13426 if (!(old_flags & float_flag_inexact)) {
13427 new_flags = get_float_exception_flags(fp_status);
13428 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
13429 }
13430
13431 return ret;
13432}
9972da66
WN
13433
13434/* Convert ARM rounding mode to softfloat */
13435int arm_rmode_to_sf(int rmode)
13436{
13437 switch (rmode) {
13438 case FPROUNDING_TIEAWAY:
13439 rmode = float_round_ties_away;
13440 break;
13441 case FPROUNDING_ODD:
13442 /* FIXME: add support for TIEAWAY and ODD */
13443 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
13444 rmode);
edd7541b 13445 /* fall through for now */
9972da66
WN
13446 case FPROUNDING_TIEEVEN:
13447 default:
13448 rmode = float_round_nearest_even;
13449 break;
13450 case FPROUNDING_POSINF:
13451 rmode = float_round_up;
13452 break;
13453 case FPROUNDING_NEGINF:
13454 rmode = float_round_down;
13455 break;
13456 case FPROUNDING_ZERO:
13457 rmode = float_round_to_zero;
13458 break;
13459 }
13460 return rmode;
13461}
eb0ecd5a 13462
aa633469
PM
13463/* CRC helpers.
13464 * The upper bytes of val (above the number specified by 'bytes') must have
13465 * been zeroed out by the caller.
13466 */
eb0ecd5a
WN
13467uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13468{
13469 uint8_t buf[4];
13470
aa633469 13471 stl_le_p(buf, val);
eb0ecd5a
WN
13472
13473 /* zlib crc32 converts the accumulator and output to one's complement. */
13474 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13475}
13476
13477uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13478{
13479 uint8_t buf[4];
13480
aa633469 13481 stl_le_p(buf, val);
eb0ecd5a
WN
13482
13483 /* Linux crc32c converts the output to one's complement. */
13484 return crc32c(acc, buf, bytes) ^ 0xffffffff;
13485}
a9e01311
RH
13486
13487/* Return the exception level to which FP-disabled exceptions should
13488 * be taken, or 0 if FP is enabled.
13489 */
ced31551 13490int fp_exception_el(CPUARMState *env, int cur_el)
a9e01311 13491{
55faa212 13492#ifndef CONFIG_USER_ONLY
a9e01311 13493 int fpen;
a9e01311
RH
13494
13495 /* CPACR and the CPTR registers don't exist before v6, so FP is
13496 * always accessible
13497 */
13498 if (!arm_feature(env, ARM_FEATURE_V6)) {
13499 return 0;
13500 }
13501
13502 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13503 * 0, 2 : trap EL0 and EL1/PL1 accesses
13504 * 1 : trap only EL0 accesses
13505 * 3 : trap no accesses
13506 */
13507 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13508 switch (fpen) {
13509 case 0:
13510 case 2:
13511 if (cur_el == 0 || cur_el == 1) {
13512 /* Trap to PL1, which might be EL1 or EL3 */
13513 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13514 return 3;
13515 }
13516 return 1;
13517 }
13518 if (cur_el == 3 && !is_a64(env)) {
13519 /* Secure PL1 running at EL3 */
13520 return 3;
13521 }
13522 break;
13523 case 1:
13524 if (cur_el == 0) {
13525 return 1;
13526 }
13527 break;
13528 case 3:
13529 break;
13530 }
13531
13532 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13533 * check because zero bits in the registers mean "don't trap".
13534 */
13535
13536 /* CPTR_EL2 : present in v7VE or v8 */
13537 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13538 && !arm_is_secure_below_el3(env)) {
13539 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13540 return 2;
13541 }
13542
13543 /* CPTR_EL3 : present in v8 */
13544 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13545 /* Trap all FP ops to EL3 */
13546 return 3;
13547 }
55faa212 13548#endif
a9e01311
RH
13549 return 0;
13550}
13551
65e4655c
RH
13552ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
13553 bool secstate, bool priv)
13554{
13555 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
13556
13557 if (priv) {
13558 mmu_idx |= ARM_MMU_IDX_M_PRIV;
13559 }
13560
13561 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
13562 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
13563 }
13564
13565 if (secstate) {
13566 mmu_idx |= ARM_MMU_IDX_M_S;
13567 }
13568
13569 return mmu_idx;
13570}
13571
13572/* Return the MMU index for a v7M CPU in the specified security state */
13573ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13574{
13575 bool priv = arm_current_el(env) != 0;
13576
13577 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
13578}
13579
50494a27 13580ARMMMUIdx arm_mmu_idx(CPUARMState *env)
65e4655c 13581{
50494a27 13582 int el;
65e4655c
RH
13583
13584 if (arm_feature(env, ARM_FEATURE_M)) {
50494a27 13585 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
65e4655c
RH
13586 }
13587
50494a27 13588 el = arm_current_el(env);
65e4655c 13589 if (el < 2 && arm_is_secure_below_el3(env)) {
50494a27
RH
13590 return ARMMMUIdx_S1SE0 + el;
13591 } else {
13592 return ARMMMUIdx_S12NSE0 + el;
65e4655c 13593 }
50494a27
RH
13594}
13595
13596int cpu_mmu_index(CPUARMState *env, bool ifetch)
13597{
13598 return arm_to_core_mmu_idx(arm_mmu_idx(env));
65e4655c
RH
13599}
13600
64be86ab
RH
13601#ifndef CONFIG_USER_ONLY
13602ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13603{
13604 return stage_1_mmu_idx(arm_mmu_idx(env));
13605}
13606#endif
13607
a9e01311 13608void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
b9adaa70 13609 target_ulong *cs_base, uint32_t *pflags)
a9e01311 13610{
50494a27 13611 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
2de7ace2
RH
13612 int current_el = arm_current_el(env);
13613 int fp_el = fp_exception_el(env, current_el);
aad821ac 13614 uint32_t flags = 0;
b9adaa70 13615
a9e01311 13616 if (is_a64(env)) {
cd208a1c
RH
13617 ARMCPU *cpu = arm_env_get_cpu(env);
13618
a9e01311 13619 *pc = env->pc;
aad821ac 13620 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
5d8634f5
RH
13621
13622#ifndef CONFIG_USER_ONLY
13623 /*
13624 * Get control bits for tagged addresses. Note that the
13625 * translator only uses this for instruction addresses.
13626 */
13627 {
13628 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13629 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
13630 int tbii, tbid;
13631
13632 /* FIXME: ARMv8.1-VHE S2 translation regime. */
13633 if (regime_el(env, stage1) < 2) {
13634 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
13635 tbid = (p1.tbi << 1) | p0.tbi;
13636 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
13637 } else {
13638 tbid = p0.tbi;
13639 tbii = tbid & !p0.tbid;
13640 }
13641
13642 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
13643 }
13644#endif
1db5e96c 13645
cd208a1c 13646 if (cpu_isar_feature(aa64_sve, cpu)) {
2de7ace2 13647 int sve_el = sve_exception_el(env, current_el);
e79b445d 13648 uint32_t zcr_len;
1db5e96c 13649
e79b445d
RH
13650 /* If SVE is disabled, but FP is enabled,
13651 * then the effective len is 0.
13652 */
13653 if (sve_el != 0 && fp_el == 0) {
13654 zcr_len = 0;
13655 } else {
0ab5953b 13656 zcr_len = sve_zcr_len_for_el(env, current_el);
1db5e96c 13657 }
aad821ac
RH
13658 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
13659 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
1db5e96c 13660 }
0816ef1b
RH
13661
13662 if (cpu_isar_feature(aa64_pauth, cpu)) {
13663 /*
13664 * In order to save space in flags, we record only whether
13665 * pauth is "inactive", meaning all insns are implemented as
13666 * a nop, or "active" when some action must be performed.
13667 * The decision of which action to take is left to a helper.
13668 */
13669 uint64_t sctlr;
13670 if (current_el == 0) {
13671 /* FIXME: ARMv8.1-VHE S2 translation regime. */
13672 sctlr = env->cp15.sctlr_el[1];
13673 } else {
13674 sctlr = env->cp15.sctlr_el[current_el];
13675 }
13676 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13677 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
13678 }
13679 }
a9e01311
RH
13680 } else {
13681 *pc = env->regs[15];
aad821ac
RH
13682 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
13683 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
13684 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
13685 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
13686 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
13687 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
a9e01311
RH
13688 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
13689 || arm_el_is_aa64(env, 1)) {
aad821ac 13690 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
a9e01311 13691 }
aad821ac 13692 flags = FIELD_DP32(flags, TBFLAG_A32, XSCALE_CPAR, env->cp15.c15_cpar);
a9e01311
RH
13693 }
13694
aad821ac 13695 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
a9e01311
RH
13696
13697 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13698 * states defined in the ARM ARM for software singlestep:
13699 * SS_ACTIVE PSTATE.SS State
13700 * 0 x Inactive (the TB flag for SS is always 0)
13701 * 1 0 Active-pending
13702 * 1 1 Active-not-pending
13703 */
13704 if (arm_singlestep_active(env)) {
aad821ac 13705 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
a9e01311
RH
13706 if (is_a64(env)) {
13707 if (env->pstate & PSTATE_SS) {
aad821ac 13708 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
a9e01311
RH
13709 }
13710 } else {
13711 if (env->uncached_cpsr & PSTATE_SS) {
aad821ac 13712 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
a9e01311
RH
13713 }
13714 }
13715 }
13716 if (arm_cpu_data_is_big_endian(env)) {
aad821ac 13717 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
a9e01311 13718 }
aad821ac 13719 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
a9e01311
RH
13720
13721 if (arm_v7m_is_handler_mode(env)) {
aad821ac 13722 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
a9e01311
RH
13723 }
13724
4730fb85
PM
13725 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
13726 * suppressing them because the requested execution priority is less than 0.
13727 */
13728 if (arm_feature(env, ARM_FEATURE_V8) &&
13729 arm_feature(env, ARM_FEATURE_M) &&
13730 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13731 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
aad821ac 13732 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
4730fb85
PM
13733 }
13734
b9adaa70 13735 *pflags = flags;
a9e01311
RH
13736 *cs_base = 0;
13737}
0ab5953b
RH
13738
13739#ifdef TARGET_AARCH64
13740/*
13741 * The manual says that when SVE is enabled and VQ is widened the
13742 * implementation is allowed to zero the previously inaccessible
13743 * portion of the registers. The corollary to that is that when
13744 * SVE is enabled and VQ is narrowed we are also allowed to zero
13745 * the now inaccessible portion of the registers.
13746 *
13747 * The intent of this is that no predicate bit beyond VQ is ever set.
13748 * Which means that some operations on predicate registers themselves
13749 * may operate on full uint64_t or even unrolled across the maximum
13750 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13751 * may well be cheaper than conditionals to restrict the operation
13752 * to the relevant portion of a uint16_t[16].
13753 */
13754void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13755{
13756 int i, j;
13757 uint64_t pmask;
13758
13759 assert(vq >= 1 && vq <= ARM_MAX_VQ);
13760 assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
13761
13762 /* Zap the high bits of the zregs. */
13763 for (i = 0; i < 32; i++) {
13764 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13765 }
13766
13767 /* Zap the high bits of the pregs and ffr. */
13768 pmask = 0;
13769 if (vq & 3) {
13770 pmask = ~(-1ULL << (16 * (vq & 3)));
13771 }
13772 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13773 for (i = 0; i < 17; ++i) {
13774 env->vfp.pregs[i].p[j] &= pmask;
13775 }
13776 pmask = 0;
13777 }
13778}
13779
13780/*
13781 * Notice a change in SVE vector size when changing EL.
13782 */
9a05f7b6
RH
13783void aarch64_sve_change_el(CPUARMState *env, int old_el,
13784 int new_el, bool el0_a64)
0ab5953b 13785{
cd208a1c 13786 ARMCPU *cpu = arm_env_get_cpu(env);
0ab5953b 13787 int old_len, new_len;
9a05f7b6 13788 bool old_a64, new_a64;
0ab5953b
RH
13789
13790 /* Nothing to do if no SVE. */
cd208a1c 13791 if (!cpu_isar_feature(aa64_sve, cpu)) {
0ab5953b
RH
13792 return;
13793 }
13794
13795 /* Nothing to do if FP is disabled in either EL. */
13796 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13797 return;
13798 }
13799
13800 /*
13801 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13802 * at ELx, or not available because the EL is in AArch32 state, then
13803 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13804 * has an effective value of 0".
13805 *
13806 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13807 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13808 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13809 * we already have the correct register contents when encountering the
13810 * vq0->vq0 transition between EL0->EL1.
13811 */
9a05f7b6
RH
13812 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13813 old_len = (old_a64 && !sve_exception_el(env, old_el)
0ab5953b 13814 ? sve_zcr_len_for_el(env, old_el) : 0);
9a05f7b6
RH
13815 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13816 new_len = (new_a64 && !sve_exception_el(env, new_el)
0ab5953b
RH
13817 ? sve_zcr_len_for_el(env, new_el) : 0);
13818
13819 /* When changing vector length, clear inaccessible state. */
13820 if (new_len < old_len) {
13821 aarch64_sve_narrow_vq(env, new_len + 1);
13822 }
13823}
13824#endif