]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/helper.c
target/arm: Add CONTEXTIDR_EL2
[mirror_qemu.git] / target / arm / helper.c
CommitLineData
ed3baad1
PMD
1/*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
db725815 8
74c21bd0 9#include "qemu/osdep.h"
63159601 10#include "qemu/units.h"
181962fd 11#include "target/arm/idau.h"
194cbc49 12#include "trace.h"
b5ff1b31 13#include "cpu.h"
ccd38087 14#include "internals.h"
022c62cb 15#include "exec/gdbstub.h"
2ef6175a 16#include "exec/helper-proto.h"
1de7afc9 17#include "qemu/host-utils.h"
db725815 18#include "qemu/main-loop.h"
1de7afc9 19#include "qemu/bitops.h"
eb0ecd5a 20#include "qemu/crc32c.h"
0442428a 21#include "qemu/qemu-print.h"
63c91552 22#include "exec/exec-all.h"
eb0ecd5a 23#include <zlib.h> /* For crc32 */
64552b6b 24#include "hw/irq.h"
f1672e6f 25#include "hw/semihosting/semihost.h"
b2e23725 26#include "sysemu/cpus.h"
f3a9b694 27#include "sysemu/kvm.h"
9d2b5a58 28#include "qemu/range.h"
7f7b4e7a 29#include "qapi/qapi-commands-machine-target.h"
de390645
RH
30#include "qapi/error.h"
31#include "qemu/guest-random.h"
91f78c58
PMD
32#ifdef CONFIG_TCG
33#include "arm_ldst.h"
7aab5a8c 34#include "exec/cpu_ldst.h"
91f78c58 35#endif
0b03bdfc 36
352c98e5
LV
37#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
38
4a501606 39#ifndef CONFIG_USER_ONLY
7c2cb42b 40
37785977 41static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
03ae85f8 42 MMUAccessType access_type, ARMMMUIdx mmu_idx,
37785977 43 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
da909b2c 44 target_ulong *page_size_ptr,
5b2d261d 45 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
4a501606
PM
46#endif
47
affdb64d
PM
48static void switch_mode(CPUARMState *env, int mode);
49
0ecb72a5 50static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
51{
52 int nregs;
53
54 /* VFP data registers are always little-endian. */
55 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
56 if (reg < nregs) {
9a2b5256 57 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
56aebc89
PB
58 return 8;
59 }
60 if (arm_feature(env, ARM_FEATURE_NEON)) {
61 /* Aliases for Q regs. */
62 nregs += 16;
63 if (reg < nregs) {
9a2b5256
RH
64 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
65 stq_le_p(buf, q[0]);
66 stq_le_p(buf + 8, q[1]);
56aebc89
PB
67 return 16;
68 }
69 }
70 switch (reg - nregs) {
71 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
b0a909a4 72 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
56aebc89
PB
73 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
74 }
75 return 0;
76}
77
0ecb72a5 78static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
79{
80 int nregs;
81
82 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
83 if (reg < nregs) {
9a2b5256 84 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
56aebc89
PB
85 return 8;
86 }
87 if (arm_feature(env, ARM_FEATURE_NEON)) {
88 nregs += 16;
89 if (reg < nregs) {
9a2b5256
RH
90 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
91 q[0] = ldq_le_p(buf);
92 q[1] = ldq_le_p(buf + 8);
56aebc89
PB
93 return 16;
94 }
95 }
96 switch (reg - nregs) {
97 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
b0a909a4 98 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
71b3c3de 99 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
100 }
101 return 0;
102}
103
6a669427
PM
104static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
105{
106 switch (reg) {
107 case 0 ... 31:
108 /* 128 bit FP register */
9a2b5256
RH
109 {
110 uint64_t *q = aa64_vfp_qreg(env, reg);
111 stq_le_p(buf, q[0]);
112 stq_le_p(buf + 8, q[1]);
113 return 16;
114 }
6a669427
PM
115 case 32:
116 /* FPSR */
117 stl_p(buf, vfp_get_fpsr(env));
118 return 4;
119 case 33:
120 /* FPCR */
121 stl_p(buf, vfp_get_fpcr(env));
122 return 4;
123 default:
124 return 0;
125 }
126}
127
128static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
129{
130 switch (reg) {
131 case 0 ... 31:
132 /* 128 bit FP register */
9a2b5256
RH
133 {
134 uint64_t *q = aa64_vfp_qreg(env, reg);
135 q[0] = ldq_le_p(buf);
136 q[1] = ldq_le_p(buf + 8);
137 return 16;
138 }
6a669427
PM
139 case 32:
140 /* FPSR */
141 vfp_set_fpsr(env, ldl_p(buf));
142 return 4;
143 case 33:
144 /* FPCR */
145 vfp_set_fpcr(env, ldl_p(buf));
146 return 4;
147 default:
148 return 0;
149 }
150}
151
c4241c7d 152static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
d4e6df63 153{
375421cc 154 assert(ri->fieldoffset);
67ed771d 155 if (cpreg_field_is_64bit(ri)) {
c4241c7d 156 return CPREG_FIELD64(env, ri);
22d9e1a9 157 } else {
c4241c7d 158 return CPREG_FIELD32(env, ri);
22d9e1a9 159 }
d4e6df63
PM
160}
161
c4241c7d
PM
162static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163 uint64_t value)
d4e6df63 164{
375421cc 165 assert(ri->fieldoffset);
67ed771d 166 if (cpreg_field_is_64bit(ri)) {
22d9e1a9
PM
167 CPREG_FIELD64(env, ri) = value;
168 } else {
169 CPREG_FIELD32(env, ri) = value;
170 }
d4e6df63
PM
171}
172
11f136ee
FA
173static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
174{
175 return (char *)env + ri->fieldoffset;
176}
177
49a66191 178uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
721fae12 179{
59a1c327 180 /* Raw read of a coprocessor register (as needed for migration, etc). */
721fae12 181 if (ri->type & ARM_CP_CONST) {
59a1c327 182 return ri->resetvalue;
721fae12 183 } else if (ri->raw_readfn) {
59a1c327 184 return ri->raw_readfn(env, ri);
721fae12 185 } else if (ri->readfn) {
59a1c327 186 return ri->readfn(env, ri);
721fae12 187 } else {
59a1c327 188 return raw_read(env, ri);
721fae12 189 }
721fae12
PM
190}
191
59a1c327 192static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
7900e9f1 193 uint64_t v)
721fae12
PM
194{
195 /* Raw write of a coprocessor register (as needed for migration, etc).
721fae12
PM
196 * Note that constant registers are treated as write-ignored; the
197 * caller should check for success by whether a readback gives the
198 * value written.
199 */
200 if (ri->type & ARM_CP_CONST) {
59a1c327 201 return;
721fae12 202 } else if (ri->raw_writefn) {
c4241c7d 203 ri->raw_writefn(env, ri, v);
721fae12 204 } else if (ri->writefn) {
c4241c7d 205 ri->writefn(env, ri, v);
721fae12 206 } else {
afb2530f 207 raw_write(env, ri, v);
721fae12 208 }
721fae12
PM
209}
210
200bf5b7
AB
211static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
212{
2fc0cc0e 213 ARMCPU *cpu = env_archcpu(env);
200bf5b7
AB
214 const ARMCPRegInfo *ri;
215 uint32_t key;
216
217 key = cpu->dyn_xml.cpregs_keys[reg];
218 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
219 if (ri) {
220 if (cpreg_field_is_64bit(ri)) {
221 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
222 } else {
223 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
224 }
225 }
226 return 0;
227}
228
229static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
230{
231 return 0;
232}
233
375421cc
PM
234static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
235{
236 /* Return true if the regdef would cause an assertion if you called
237 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
238 * program bug for it not to have the NO_RAW flag).
239 * NB that returning false here doesn't necessarily mean that calling
240 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
241 * read/write access functions which are safe for raw use" from "has
242 * read/write access functions which have side effects but has forgotten
243 * to provide raw access functions".
244 * The tests here line up with the conditions in read/write_raw_cp_reg()
245 * and assertions in raw_read()/raw_write().
246 */
247 if ((ri->type & ARM_CP_CONST) ||
248 ri->fieldoffset ||
249 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
250 return false;
251 }
252 return true;
253}
254
b698e4ee 255bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
721fae12
PM
256{
257 /* Write the coprocessor state from cpu->env to the (index,value) list. */
258 int i;
259 bool ok = true;
260
261 for (i = 0; i < cpu->cpreg_array_len; i++) {
262 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
263 const ARMCPRegInfo *ri;
b698e4ee 264 uint64_t newval;
59a1c327 265
60322b39 266 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
267 if (!ri) {
268 ok = false;
269 continue;
270 }
7a0e58fa 271 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
272 continue;
273 }
b698e4ee
PM
274
275 newval = read_raw_cp_reg(&cpu->env, ri);
276 if (kvm_sync) {
277 /*
278 * Only sync if the previous list->cpustate sync succeeded.
279 * Rather than tracking the success/failure state for every
280 * item in the list, we just recheck "does the raw write we must
281 * have made in write_list_to_cpustate() read back OK" here.
282 */
283 uint64_t oldval = cpu->cpreg_values[i];
284
285 if (oldval == newval) {
286 continue;
287 }
288
289 write_raw_cp_reg(&cpu->env, ri, oldval);
290 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
291 continue;
292 }
293
294 write_raw_cp_reg(&cpu->env, ri, newval);
295 }
296 cpu->cpreg_values[i] = newval;
721fae12
PM
297 }
298 return ok;
299}
300
301bool write_list_to_cpustate(ARMCPU *cpu)
302{
303 int i;
304 bool ok = true;
305
306 for (i = 0; i < cpu->cpreg_array_len; i++) {
307 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
308 uint64_t v = cpu->cpreg_values[i];
721fae12
PM
309 const ARMCPRegInfo *ri;
310
60322b39 311 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
312 if (!ri) {
313 ok = false;
314 continue;
315 }
7a0e58fa 316 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
317 continue;
318 }
319 /* Write value and confirm it reads back as written
320 * (to catch read-only registers and partially read-only
321 * registers where the incoming migration value doesn't match)
322 */
59a1c327
PM
323 write_raw_cp_reg(&cpu->env, ri, v);
324 if (read_raw_cp_reg(&cpu->env, ri) != v) {
721fae12
PM
325 ok = false;
326 }
327 }
328 return ok;
329}
330
331static void add_cpreg_to_list(gpointer key, gpointer opaque)
332{
333 ARMCPU *cpu = opaque;
334 uint64_t regidx;
335 const ARMCPRegInfo *ri;
336
337 regidx = *(uint32_t *)key;
60322b39 338 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 339
7a0e58fa 340 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
341 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
342 /* The value array need not be initialized at this point */
343 cpu->cpreg_array_len++;
344 }
345}
346
347static void count_cpreg(gpointer key, gpointer opaque)
348{
349 ARMCPU *cpu = opaque;
350 uint64_t regidx;
351 const ARMCPRegInfo *ri;
352
353 regidx = *(uint32_t *)key;
60322b39 354 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 355
7a0e58fa 356 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
357 cpu->cpreg_array_len++;
358 }
359}
360
361static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
362{
cbf239b7
AR
363 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
364 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
721fae12 365
cbf239b7
AR
366 if (aidx > bidx) {
367 return 1;
368 }
369 if (aidx < bidx) {
370 return -1;
371 }
372 return 0;
721fae12
PM
373}
374
375void init_cpreg_list(ARMCPU *cpu)
376{
377 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
378 * Note that we require cpreg_tuples[] to be sorted by key ID.
379 */
57b6d95e 380 GList *keys;
721fae12
PM
381 int arraylen;
382
57b6d95e 383 keys = g_hash_table_get_keys(cpu->cp_regs);
721fae12
PM
384 keys = g_list_sort(keys, cpreg_key_compare);
385
386 cpu->cpreg_array_len = 0;
387
388 g_list_foreach(keys, count_cpreg, cpu);
389
390 arraylen = cpu->cpreg_array_len;
391 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
392 cpu->cpreg_values = g_new(uint64_t, arraylen);
393 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
394 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
395 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
396 cpu->cpreg_array_len = 0;
397
398 g_list_foreach(keys, add_cpreg_to_list, cpu);
399
400 assert(cpu->cpreg_array_len == arraylen);
401
402 g_list_free(keys);
403}
404
68e9c2fe
EI
405/*
406 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
407 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
408 *
409 * access_el3_aa32ns: Used to check AArch32 register views.
410 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
411 */
412static CPAccessResult access_el3_aa32ns(CPUARMState *env,
3f208fd7
PM
413 const ARMCPRegInfo *ri,
414 bool isread)
68e9c2fe
EI
415{
416 bool secure = arm_is_secure_below_el3(env);
417
418 assert(!arm_el_is_aa64(env, 3));
419 if (secure) {
420 return CP_ACCESS_TRAP_UNCATEGORIZED;
421 }
422 return CP_ACCESS_OK;
423}
424
425static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
3f208fd7
PM
426 const ARMCPRegInfo *ri,
427 bool isread)
68e9c2fe
EI
428{
429 if (!arm_el_is_aa64(env, 3)) {
3f208fd7 430 return access_el3_aa32ns(env, ri, isread);
68e9c2fe
EI
431 }
432 return CP_ACCESS_OK;
433}
434
5513c3ab
PM
435/* Some secure-only AArch32 registers trap to EL3 if used from
436 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
437 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
438 * We assume that the .access field is set to PL1_RW.
439 */
440static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
3f208fd7
PM
441 const ARMCPRegInfo *ri,
442 bool isread)
5513c3ab
PM
443{
444 if (arm_current_el(env) == 3) {
445 return CP_ACCESS_OK;
446 }
447 if (arm_is_secure_below_el3(env)) {
448 return CP_ACCESS_TRAP_EL3;
449 }
450 /* This will be EL1 NS and EL2 NS, which just UNDEF */
451 return CP_ACCESS_TRAP_UNCATEGORIZED;
452}
453
187f678d
PM
454/* Check for traps to "powerdown debug" registers, which are controlled
455 * by MDCR.TDOSA
456 */
457static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
458 bool isread)
459{
460 int el = arm_current_el(env);
30ac6339
PM
461 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
462 (env->cp15.mdcr_el2 & MDCR_TDE) ||
7c208e0f 463 (arm_hcr_el2_eff(env) & HCR_TGE);
187f678d 464
30ac6339 465 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
187f678d
PM
466 return CP_ACCESS_TRAP_EL2;
467 }
468 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
469 return CP_ACCESS_TRAP_EL3;
470 }
471 return CP_ACCESS_OK;
472}
473
91b0a238
PM
474/* Check for traps to "debug ROM" registers, which are controlled
475 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
476 */
477static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
478 bool isread)
479{
480 int el = arm_current_el(env);
30ac6339
PM
481 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
482 (env->cp15.mdcr_el2 & MDCR_TDE) ||
7c208e0f 483 (arm_hcr_el2_eff(env) & HCR_TGE);
91b0a238 484
30ac6339 485 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
91b0a238
PM
486 return CP_ACCESS_TRAP_EL2;
487 }
488 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
489 return CP_ACCESS_TRAP_EL3;
490 }
491 return CP_ACCESS_OK;
492}
493
d6c8cf81
PM
494/* Check for traps to general debug registers, which are controlled
495 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
496 */
497static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
498 bool isread)
499{
500 int el = arm_current_el(env);
30ac6339
PM
501 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
502 (env->cp15.mdcr_el2 & MDCR_TDE) ||
7c208e0f 503 (arm_hcr_el2_eff(env) & HCR_TGE);
d6c8cf81 504
30ac6339 505 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
d6c8cf81
PM
506 return CP_ACCESS_TRAP_EL2;
507 }
508 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
509 return CP_ACCESS_TRAP_EL3;
510 }
511 return CP_ACCESS_OK;
512}
513
1fce1ba9
PM
514/* Check for traps to performance monitor registers, which are controlled
515 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
516 */
517static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
518 bool isread)
519{
520 int el = arm_current_el(env);
521
522 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
523 && !arm_is_secure_below_el3(env)) {
524 return CP_ACCESS_TRAP_EL2;
525 }
526 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
527 return CP_ACCESS_TRAP_EL3;
528 }
529 return CP_ACCESS_OK;
530}
531
c4241c7d 532static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
c983fe6c 533{
2fc0cc0e 534 ARMCPU *cpu = env_archcpu(env);
00c8cb0a 535
8d5c773e 536 raw_write(env, ri, value);
d10eb08f 537 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
c983fe6c
PM
538}
539
c4241c7d 540static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
08de207b 541{
2fc0cc0e 542 ARMCPU *cpu = env_archcpu(env);
00c8cb0a 543
8d5c773e 544 if (raw_read(env, ri) != value) {
08de207b
PM
545 /* Unlike real hardware the qemu TLB uses virtual addresses,
546 * not modified virtual addresses, so this causes a TLB flush.
547 */
d10eb08f 548 tlb_flush(CPU(cpu));
8d5c773e 549 raw_write(env, ri, value);
08de207b 550 }
08de207b 551}
c4241c7d
PM
552
553static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
554 uint64_t value)
08de207b 555{
2fc0cc0e 556 ARMCPU *cpu = env_archcpu(env);
00c8cb0a 557
452a0955 558 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
014406b5 559 && !extended_addresses_enabled(env)) {
08de207b
PM
560 /* For VMSA (when not using the LPAE long descriptor page table
561 * format) this register includes the ASID, so do a TLB flush.
562 * For PMSA it is purely a process ID and no action is needed.
563 */
d10eb08f 564 tlb_flush(CPU(cpu));
08de207b 565 }
8d5c773e 566 raw_write(env, ri, value);
08de207b
PM
567}
568
b4ab8ce9
PM
569/* IS variants of TLB operations must affect all cores */
570static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
571 uint64_t value)
572{
29a0af61 573 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
574
575 tlb_flush_all_cpus_synced(cs);
576}
577
578static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579 uint64_t value)
580{
29a0af61 581 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
582
583 tlb_flush_all_cpus_synced(cs);
584}
585
586static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
587 uint64_t value)
588{
29a0af61 589 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
590
591 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
592}
593
594static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
595 uint64_t value)
596{
29a0af61 597 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
598
599 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
600}
601
602/*
603 * Non-IS variants of TLB operations are upgraded to
604 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
605 * force broadcast of these operations.
606 */
607static bool tlb_force_broadcast(CPUARMState *env)
608{
609 return (env->cp15.hcr_el2 & HCR_FB) &&
610 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
611}
612
c4241c7d
PM
613static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
614 uint64_t value)
d929823f
PM
615{
616 /* Invalidate all (TLBIALL) */
2fc0cc0e 617 ARMCPU *cpu = env_archcpu(env);
00c8cb0a 618
b4ab8ce9
PM
619 if (tlb_force_broadcast(env)) {
620 tlbiall_is_write(env, NULL, value);
621 return;
622 }
623
d10eb08f 624 tlb_flush(CPU(cpu));
d929823f
PM
625}
626
c4241c7d
PM
627static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
628 uint64_t value)
d929823f
PM
629{
630 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
2fc0cc0e 631 ARMCPU *cpu = env_archcpu(env);
31b030d4 632
b4ab8ce9
PM
633 if (tlb_force_broadcast(env)) {
634 tlbimva_is_write(env, NULL, value);
635 return;
636 }
637
31b030d4 638 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
639}
640
c4241c7d
PM
641static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
642 uint64_t value)
d929823f
PM
643{
644 /* Invalidate by ASID (TLBIASID) */
2fc0cc0e 645 ARMCPU *cpu = env_archcpu(env);
00c8cb0a 646
b4ab8ce9
PM
647 if (tlb_force_broadcast(env)) {
648 tlbiasid_is_write(env, NULL, value);
649 return;
650 }
651
d10eb08f 652 tlb_flush(CPU(cpu));
d929823f
PM
653}
654
c4241c7d
PM
655static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
656 uint64_t value)
d929823f
PM
657{
658 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
2fc0cc0e 659 ARMCPU *cpu = env_archcpu(env);
31b030d4 660
b4ab8ce9
PM
661 if (tlb_force_broadcast(env)) {
662 tlbimvaa_is_write(env, NULL, value);
663 return;
664 }
fa439fc5 665
b4ab8ce9 666 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
fa439fc5
PM
667}
668
541ef8c2
SS
669static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
670 uint64_t value)
671{
29a0af61 672 CPUState *cs = env_cpu(env);
541ef8c2 673
0336cbf8 674 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
675 ARMMMUIdxBit_S12NSE1 |
676 ARMMMUIdxBit_S12NSE0 |
677 ARMMMUIdxBit_S2NS);
541ef8c2
SS
678}
679
680static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
681 uint64_t value)
682{
29a0af61 683 CPUState *cs = env_cpu(env);
541ef8c2 684
a67cf277 685 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
686 ARMMMUIdxBit_S12NSE1 |
687 ARMMMUIdxBit_S12NSE0 |
688 ARMMMUIdxBit_S2NS);
541ef8c2
SS
689}
690
691static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
692 uint64_t value)
693{
694 /* Invalidate by IPA. This has to invalidate any structures that
695 * contain only stage 2 translation information, but does not need
696 * to apply to structures that contain combined stage 1 and stage 2
697 * translation information.
698 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
699 */
29a0af61 700 CPUState *cs = env_cpu(env);
541ef8c2
SS
701 uint64_t pageaddr;
702
703 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
704 return;
705 }
706
707 pageaddr = sextract64(value << 12, 0, 40);
708
8bd5c820 709 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
541ef8c2
SS
710}
711
712static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
713 uint64_t value)
714{
29a0af61 715 CPUState *cs = env_cpu(env);
541ef8c2
SS
716 uint64_t pageaddr;
717
718 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
719 return;
720 }
721
722 pageaddr = sextract64(value << 12, 0, 40);
723
a67cf277 724 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 725 ARMMMUIdxBit_S2NS);
541ef8c2
SS
726}
727
728static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
729 uint64_t value)
730{
29a0af61 731 CPUState *cs = env_cpu(env);
541ef8c2 732
8bd5c820 733 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
541ef8c2
SS
734}
735
736static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
737 uint64_t value)
738{
29a0af61 739 CPUState *cs = env_cpu(env);
541ef8c2 740
8bd5c820 741 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
541ef8c2
SS
742}
743
744static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
745 uint64_t value)
746{
29a0af61 747 CPUState *cs = env_cpu(env);
541ef8c2
SS
748 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
749
8bd5c820 750 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
541ef8c2
SS
751}
752
753static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
754 uint64_t value)
755{
29a0af61 756 CPUState *cs = env_cpu(env);
541ef8c2
SS
757 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
758
a67cf277 759 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 760 ARMMMUIdxBit_S1E2);
541ef8c2
SS
761}
762
e9aa6c21 763static const ARMCPRegInfo cp_reginfo[] = {
54bf36ed
FA
764 /* Define the secure and non-secure FCSE identifier CP registers
765 * separately because there is no secure bank in V8 (no _EL3). This allows
766 * the secure register to be properly reset and migrated. There is also no
767 * v8 EL1 version of the register so the non-secure instance stands alone.
768 */
9c513e78 769 { .name = "FCSEIDR",
54bf36ed
FA
770 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
771 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
772 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
773 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
9c513e78 774 { .name = "FCSEIDR_S",
54bf36ed
FA
775 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
776 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
777 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
d4e6df63 778 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
54bf36ed
FA
779 /* Define the secure and non-secure context identifier CP registers
780 * separately because there is no secure bank in V8 (no _EL3). This allows
781 * the secure register to be properly reset and migrated. In the
782 * non-secure case, the 32-bit register will have reset and migration
783 * disabled during registration as it is handled by the 64-bit instance.
784 */
785 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
014406b5 786 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
54bf36ed
FA
787 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
788 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
789 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9c513e78 790 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
54bf36ed
FA
791 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
792 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
793 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
d4e6df63 794 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9449fdf6
PM
795 REGINFO_SENTINEL
796};
797
798static const ARMCPRegInfo not_v8_cp_reginfo[] = {
799 /* NB: Some of these registers exist in v8 but with more precise
800 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
801 */
802 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
803 { .name = "DACR",
804 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
805 .access = PL1_RW, .resetvalue = 0,
806 .writefn = dacr_write, .raw_writefn = raw_write,
807 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
808 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a903c449
EI
809 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
810 * For v6 and v5, these mappings are overly broad.
4fdd17dd 811 */
a903c449
EI
812 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
813 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
814 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
815 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
816 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
817 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
818 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
4fdd17dd 819 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
c4804214
PM
820 /* Cache maintenance ops; some of this space may be overridden later. */
821 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
822 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
823 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
824 REGINFO_SENTINEL
825};
826
7d57f408
PM
827static const ARMCPRegInfo not_v6_cp_reginfo[] = {
828 /* Not all pre-v6 cores implemented this WFI, so this is slightly
829 * over-broad.
830 */
831 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
832 .access = PL1_W, .type = ARM_CP_WFI },
833 REGINFO_SENTINEL
834};
835
836static const ARMCPRegInfo not_v7_cp_reginfo[] = {
837 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
838 * is UNPREDICTABLE; we choose to NOP as most implementations do).
839 */
840 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
841 .access = PL1_W, .type = ARM_CP_WFI },
34f90529
PM
842 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
843 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
844 * OMAPCP will override this space.
845 */
846 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
847 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
848 .resetvalue = 0 },
849 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
850 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
851 .resetvalue = 0 },
776d4e5c
PM
852 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
853 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
7a0e58fa 854 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 855 .resetvalue = 0 },
50300698
PM
856 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
857 * implementing it as RAZ means the "debug architecture version" bits
858 * will read as a reserved value, which should cause Linux to not try
859 * to use the debug hardware.
860 */
861 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
862 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
995939a6
PM
863 /* MMU TLB control. Note that the wildcarding means we cover not just
864 * the unified TLB ops but also the dside/iside/inner-shareable variants.
865 */
866 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
867 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
7a0e58fa 868 .type = ARM_CP_NO_RAW },
995939a6
PM
869 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
870 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
7a0e58fa 871 .type = ARM_CP_NO_RAW },
995939a6
PM
872 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
873 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
7a0e58fa 874 .type = ARM_CP_NO_RAW },
995939a6
PM
875 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
876 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
7a0e58fa 877 .type = ARM_CP_NO_RAW },
a903c449
EI
878 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
879 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
880 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
881 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
7d57f408
PM
882 REGINFO_SENTINEL
883};
884
c4241c7d
PM
885static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
886 uint64_t value)
2771db27 887{
f0aff255
FA
888 uint32_t mask = 0;
889
890 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
891 if (!arm_feature(env, ARM_FEATURE_V8)) {
892 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
893 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
894 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
895 */
896 if (arm_feature(env, ARM_FEATURE_VFP)) {
897 /* VFP coprocessor: cp10 & cp11 [23:20] */
898 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
899
900 if (!arm_feature(env, ARM_FEATURE_NEON)) {
901 /* ASEDIS [31] bit is RAO/WI */
902 value |= (1 << 31);
903 }
904
905 /* VFPv3 and upwards with NEON implement 32 double precision
906 * registers (D0-D31).
907 */
908 if (!arm_feature(env, ARM_FEATURE_NEON) ||
909 !arm_feature(env, ARM_FEATURE_VFP3)) {
910 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
911 value |= (1 << 30);
912 }
913 }
914 value &= mask;
2771db27 915 }
fc1120a7
PM
916
917 /*
918 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
919 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
920 */
921 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
922 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
923 value &= ~(0xf << 20);
924 value |= env->cp15.cpacr_el1 & (0xf << 20);
925 }
926
7ebd5f2e 927 env->cp15.cpacr_el1 = value;
2771db27
PM
928}
929
fc1120a7
PM
930static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
931{
932 /*
933 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
934 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
935 */
936 uint64_t value = env->cp15.cpacr_el1;
937
938 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
939 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
940 value &= ~(0xf << 20);
941 }
942 return value;
943}
944
945
5deac39c
PM
946static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
947{
948 /* Call cpacr_write() so that we reset with the correct RAO bits set
949 * for our CPU features.
950 */
951 cpacr_write(env, ri, 0);
952}
953
3f208fd7
PM
954static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
955 bool isread)
c6f19164
GB
956{
957 if (arm_feature(env, ARM_FEATURE_V8)) {
958 /* Check if CPACR accesses are to be trapped to EL2 */
959 if (arm_current_el(env) == 1 &&
960 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
961 return CP_ACCESS_TRAP_EL2;
962 /* Check if CPACR accesses are to be trapped to EL3 */
963 } else if (arm_current_el(env) < 3 &&
964 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
965 return CP_ACCESS_TRAP_EL3;
966 }
967 }
968
969 return CP_ACCESS_OK;
970}
971
3f208fd7
PM
972static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
973 bool isread)
c6f19164
GB
974{
975 /* Check if CPTR accesses are set to trap to EL3 */
976 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
977 return CP_ACCESS_TRAP_EL3;
978 }
979
980 return CP_ACCESS_OK;
981}
982
7d57f408
PM
983static const ARMCPRegInfo v6_cp_reginfo[] = {
984 /* prefetch by MVA in v6, NOP in v7 */
985 { .name = "MVA_prefetch",
986 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
987 .access = PL1_W, .type = ARM_CP_NOP },
6df99dec
SS
988 /* We need to break the TB after ISB to execute self-modifying code
989 * correctly and also to take any pending interrupts immediately.
990 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
991 */
7d57f408 992 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
6df99dec 993 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
091fd17c 994 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 995 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 996 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 997 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31 998 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
6cd8a264 999 .access = PL1_RW,
b848ce2b
FA
1000 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1001 offsetof(CPUARMState, cp15.ifar_ns) },
06d76f31
PM
1002 .resetvalue = 0, },
1003 /* Watchpoint Fault Address Register : should actually only be present
1004 * for 1136, 1176, 11MPCore.
1005 */
1006 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1007 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
34222fb8 1008 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
c6f19164 1009 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
7ebd5f2e 1010 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
fc1120a7 1011 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
7d57f408
PM
1012 REGINFO_SENTINEL
1013};
1014
7ece99b1
AL
1015/* Definitions for the PMU registers */
1016#define PMCRN_MASK 0xf800
1017#define PMCRN_SHIFT 11
f4efb4b2 1018#define PMCRLC 0x40
033614c4 1019#define PMCRDP 0x10
7ece99b1
AL
1020#define PMCRD 0x8
1021#define PMCRC 0x4
5ecdd3e4 1022#define PMCRP 0x2
7ece99b1
AL
1023#define PMCRE 0x1
1024
033614c4
AL
1025#define PMXEVTYPER_P 0x80000000
1026#define PMXEVTYPER_U 0x40000000
1027#define PMXEVTYPER_NSK 0x20000000
1028#define PMXEVTYPER_NSU 0x10000000
1029#define PMXEVTYPER_NSH 0x08000000
1030#define PMXEVTYPER_M 0x04000000
1031#define PMXEVTYPER_MT 0x02000000
1032#define PMXEVTYPER_EVTCOUNT 0x0000ffff
1033#define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1034 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1035 PMXEVTYPER_M | PMXEVTYPER_MT | \
1036 PMXEVTYPER_EVTCOUNT)
1037
4b8afa1f
AL
1038#define PMCCFILTR 0xf8000000
1039#define PMCCFILTR_M PMXEVTYPER_M
1040#define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1041
7ece99b1
AL
1042static inline uint32_t pmu_num_counters(CPUARMState *env)
1043{
1044 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1045}
1046
1047/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1048static inline uint64_t pmu_counter_mask(CPUARMState *env)
1049{
1050 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1051}
1052
57a4a11b
AL
1053typedef struct pm_event {
1054 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1055 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1056 bool (*supported)(CPUARMState *);
1057 /*
1058 * Retrieve the current count of the underlying event. The programmed
1059 * counters hold a difference from the return value from this function
1060 */
1061 uint64_t (*get_count)(CPUARMState *);
4e7beb0c
AL
1062 /*
1063 * Return how many nanoseconds it will take (at a minimum) for count events
1064 * to occur. A negative value indicates the counter will never overflow, or
1065 * that the counter has otherwise arranged for the overflow bit to be set
1066 * and the PMU interrupt to be raised on overflow.
1067 */
1068 int64_t (*ns_per_count)(uint64_t);
57a4a11b
AL
1069} pm_event;
1070
b2e23725
AL
1071static bool event_always_supported(CPUARMState *env)
1072{
1073 return true;
1074}
1075
0d4bfd7d
AL
1076static uint64_t swinc_get_count(CPUARMState *env)
1077{
1078 /*
1079 * SW_INCR events are written directly to the pmevcntr's by writes to
1080 * PMSWINC, so there is no underlying count maintained by the PMU itself
1081 */
1082 return 0;
1083}
1084
4e7beb0c
AL
1085static int64_t swinc_ns_per(uint64_t ignored)
1086{
1087 return -1;
1088}
1089
b2e23725
AL
1090/*
1091 * Return the underlying cycle count for the PMU cycle counters. If we're in
1092 * usermode, simply return 0.
1093 */
1094static uint64_t cycles_get_count(CPUARMState *env)
1095{
1096#ifndef CONFIG_USER_ONLY
1097 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1098 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1099#else
1100 return cpu_get_host_ticks();
1101#endif
1102}
1103
1104#ifndef CONFIG_USER_ONLY
4e7beb0c
AL
1105static int64_t cycles_ns_per(uint64_t cycles)
1106{
1107 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1108}
1109
b2e23725
AL
1110static bool instructions_supported(CPUARMState *env)
1111{
1112 return use_icount == 1 /* Precise instruction counting */;
1113}
1114
1115static uint64_t instructions_get_count(CPUARMState *env)
1116{
1117 return (uint64_t)cpu_get_icount_raw();
1118}
4e7beb0c
AL
1119
1120static int64_t instructions_ns_per(uint64_t icount)
1121{
1122 return cpu_icount_to_ns((int64_t)icount);
1123}
b2e23725
AL
1124#endif
1125
57a4a11b 1126static const pm_event pm_events[] = {
0d4bfd7d
AL
1127 { .number = 0x000, /* SW_INCR */
1128 .supported = event_always_supported,
1129 .get_count = swinc_get_count,
4e7beb0c 1130 .ns_per_count = swinc_ns_per,
0d4bfd7d 1131 },
b2e23725
AL
1132#ifndef CONFIG_USER_ONLY
1133 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1134 .supported = instructions_supported,
1135 .get_count = instructions_get_count,
4e7beb0c 1136 .ns_per_count = instructions_ns_per,
b2e23725
AL
1137 },
1138 { .number = 0x011, /* CPU_CYCLES, Cycle */
1139 .supported = event_always_supported,
1140 .get_count = cycles_get_count,
4e7beb0c 1141 .ns_per_count = cycles_ns_per,
b2e23725
AL
1142 }
1143#endif
57a4a11b
AL
1144};
1145
1146/*
1147 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1148 * events (i.e. the statistical profiling extension), this implementation
1149 * should first be updated to something sparse instead of the current
1150 * supported_event_map[] array.
1151 */
b2e23725 1152#define MAX_EVENT_ID 0x11
57a4a11b
AL
1153#define UNSUPPORTED_EVENT UINT16_MAX
1154static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1155
1156/*
bf8d0969
AL
1157 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1158 * of ARM event numbers to indices in our pm_events array.
57a4a11b
AL
1159 *
1160 * Note: Events in the 0x40XX range are not currently supported.
1161 */
bf8d0969 1162void pmu_init(ARMCPU *cpu)
57a4a11b 1163{
57a4a11b
AL
1164 unsigned int i;
1165
bf8d0969
AL
1166 /*
1167 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1168 * events to them
1169 */
57a4a11b
AL
1170 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1171 supported_event_map[i] = UNSUPPORTED_EVENT;
1172 }
bf8d0969
AL
1173 cpu->pmceid0 = 0;
1174 cpu->pmceid1 = 0;
57a4a11b
AL
1175
1176 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1177 const pm_event *cnt = &pm_events[i];
1178 assert(cnt->number <= MAX_EVENT_ID);
1179 /* We do not currently support events in the 0x40xx range */
1180 assert(cnt->number <= 0x3f);
1181
bf8d0969 1182 if (cnt->supported(&cpu->env)) {
57a4a11b 1183 supported_event_map[cnt->number] = i;
67da43d6 1184 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
bf8d0969
AL
1185 if (cnt->number & 0x20) {
1186 cpu->pmceid1 |= event_mask;
1187 } else {
1188 cpu->pmceid0 |= event_mask;
1189 }
57a4a11b
AL
1190 }
1191 }
57a4a11b
AL
1192}
1193
5ecdd3e4
AL
1194/*
1195 * Check at runtime whether a PMU event is supported for the current machine
1196 */
1197static bool event_supported(uint16_t number)
1198{
1199 if (number > MAX_EVENT_ID) {
1200 return false;
1201 }
1202 return supported_event_map[number] != UNSUPPORTED_EVENT;
1203}
1204
3f208fd7
PM
1205static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1206 bool isread)
200ac0ef 1207{
3b163b01 1208 /* Performance monitor registers user accessibility is controlled
1fce1ba9
PM
1209 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1210 * trapping to EL2 or EL3 for other accesses.
200ac0ef 1211 */
1fce1ba9
PM
1212 int el = arm_current_el(env);
1213
6ecd0b6b 1214 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
fcd25206 1215 return CP_ACCESS_TRAP;
200ac0ef 1216 }
1fce1ba9
PM
1217 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1218 && !arm_is_secure_below_el3(env)) {
1219 return CP_ACCESS_TRAP_EL2;
1220 }
1221 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1222 return CP_ACCESS_TRAP_EL3;
1223 }
1224
fcd25206 1225 return CP_ACCESS_OK;
200ac0ef
PM
1226}
1227
6ecd0b6b
AB
1228static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1229 const ARMCPRegInfo *ri,
1230 bool isread)
1231{
1232 /* ER: event counter read trap control */
1233 if (arm_feature(env, ARM_FEATURE_V8)
1234 && arm_current_el(env) == 0
1235 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1236 && isread) {
1237 return CP_ACCESS_OK;
1238 }
1239
1240 return pmreg_access(env, ri, isread);
1241}
1242
1243static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1244 const ARMCPRegInfo *ri,
1245 bool isread)
1246{
1247 /* SW: software increment write trap control */
1248 if (arm_feature(env, ARM_FEATURE_V8)
1249 && arm_current_el(env) == 0
1250 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1251 && !isread) {
1252 return CP_ACCESS_OK;
1253 }
1254
1255 return pmreg_access(env, ri, isread);
1256}
1257
6ecd0b6b
AB
1258static CPAccessResult pmreg_access_selr(CPUARMState *env,
1259 const ARMCPRegInfo *ri,
1260 bool isread)
1261{
1262 /* ER: event counter read trap control */
1263 if (arm_feature(env, ARM_FEATURE_V8)
1264 && arm_current_el(env) == 0
1265 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1266 return CP_ACCESS_OK;
1267 }
1268
1269 return pmreg_access(env, ri, isread);
1270}
1271
1272static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1273 const ARMCPRegInfo *ri,
1274 bool isread)
1275{
1276 /* CR: cycle counter read trap control */
1277 if (arm_feature(env, ARM_FEATURE_V8)
1278 && arm_current_el(env) == 0
1279 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1280 && isread) {
1281 return CP_ACCESS_OK;
1282 }
1283
1284 return pmreg_access(env, ri, isread);
1285}
1286
033614c4
AL
1287/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1288 * the current EL, security state, and register configuration.
1289 */
1290static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
87124fde 1291{
033614c4
AL
1292 uint64_t filter;
1293 bool e, p, u, nsk, nsu, nsh, m;
1294 bool enabled, prohibited, filtered;
1295 bool secure = arm_is_secure(env);
1296 int el = arm_current_el(env);
1297 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
87124fde 1298
cbbb3041
AJ
1299 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1300 return false;
1301 }
1302
033614c4
AL
1303 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1304 (counter < hpmn || counter == 31)) {
1305 e = env->cp15.c9_pmcr & PMCRE;
1306 } else {
1307 e = env->cp15.mdcr_el2 & MDCR_HPME;
87124fde 1308 }
033614c4 1309 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
87124fde 1310
033614c4
AL
1311 if (!secure) {
1312 if (el == 2 && (counter < hpmn || counter == 31)) {
1313 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1314 } else {
1315 prohibited = false;
1316 }
1317 } else {
1318 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1319 (env->cp15.mdcr_el3 & MDCR_SPME);
1320 }
1321
1322 if (prohibited && counter == 31) {
1323 prohibited = env->cp15.c9_pmcr & PMCRDP;
1324 }
1325
5ecdd3e4
AL
1326 if (counter == 31) {
1327 filter = env->cp15.pmccfiltr_el0;
1328 } else {
1329 filter = env->cp15.c14_pmevtyper[counter];
1330 }
033614c4
AL
1331
1332 p = filter & PMXEVTYPER_P;
1333 u = filter & PMXEVTYPER_U;
1334 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1335 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1336 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1337 m = arm_el_is_aa64(env, 1) &&
1338 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1339
1340 if (el == 0) {
1341 filtered = secure ? u : u != nsu;
1342 } else if (el == 1) {
1343 filtered = secure ? p : p != nsk;
1344 } else if (el == 2) {
1345 filtered = !nsh;
1346 } else { /* EL3 */
1347 filtered = m != p;
1348 }
1349
5ecdd3e4
AL
1350 if (counter != 31) {
1351 /*
1352 * If not checking PMCCNTR, ensure the counter is setup to an event we
1353 * support
1354 */
1355 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1356 if (!event_supported(event)) {
1357 return false;
1358 }
1359 }
1360
033614c4 1361 return enabled && !prohibited && !filtered;
87124fde 1362}
033614c4 1363
f4efb4b2
AL
1364static void pmu_update_irq(CPUARMState *env)
1365{
2fc0cc0e 1366 ARMCPU *cpu = env_archcpu(env);
f4efb4b2
AL
1367 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1368 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1369}
1370
5d05b9d4
AL
1371/*
1372 * Ensure c15_ccnt is the guest-visible count so that operations such as
1373 * enabling/disabling the counter or filtering, modifying the count itself,
1374 * etc. can be done logically. This is essentially a no-op if the counter is
1375 * not enabled at the time of the call.
1376 */
f2b2f53f 1377static void pmccntr_op_start(CPUARMState *env)
ec7b4ce4 1378{
b2e23725 1379 uint64_t cycles = cycles_get_count(env);
ec7b4ce4 1380
033614c4 1381 if (pmu_counter_enabled(env, 31)) {
5d05b9d4
AL
1382 uint64_t eff_cycles = cycles;
1383 if (env->cp15.c9_pmcr & PMCRD) {
1384 /* Increment once every 64 processor clock cycles */
1385 eff_cycles /= 64;
1386 }
1387
f4efb4b2
AL
1388 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1389
1390 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1391 1ull << 63 : 1ull << 31;
1392 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1393 env->cp15.c9_pmovsr |= (1 << 31);
1394 pmu_update_irq(env);
1395 }
1396
1397 env->cp15.c15_ccnt = new_pmccntr;
ec7b4ce4 1398 }
5d05b9d4
AL
1399 env->cp15.c15_ccnt_delta = cycles;
1400}
ec7b4ce4 1401
5d05b9d4
AL
1402/*
1403 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1404 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1405 * pmccntr_op_start.
1406 */
f2b2f53f 1407static void pmccntr_op_finish(CPUARMState *env)
5d05b9d4 1408{
033614c4 1409 if (pmu_counter_enabled(env, 31)) {
4e7beb0c
AL
1410#ifndef CONFIG_USER_ONLY
1411 /* Calculate when the counter will next overflow */
1412 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1413 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1414 remaining_cycles = (uint32_t)remaining_cycles;
1415 }
1416 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1417
1418 if (overflow_in > 0) {
1419 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1420 overflow_in;
2fc0cc0e 1421 ARMCPU *cpu = env_archcpu(env);
4e7beb0c
AL
1422 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1423 }
1424#endif
5d05b9d4 1425
4e7beb0c 1426 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
5d05b9d4
AL
1427 if (env->cp15.c9_pmcr & PMCRD) {
1428 /* Increment once every 64 processor clock cycles */
1429 prev_cycles /= 64;
1430 }
5d05b9d4 1431 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
ec7b4ce4
AF
1432 }
1433}
1434
5ecdd3e4
AL
1435static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1436{
1437
1438 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1439 uint64_t count = 0;
1440 if (event_supported(event)) {
1441 uint16_t event_idx = supported_event_map[event];
1442 count = pm_events[event_idx].get_count(env);
1443 }
1444
1445 if (pmu_counter_enabled(env, counter)) {
f4efb4b2
AL
1446 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1447
1448 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1449 env->cp15.c9_pmovsr |= (1 << counter);
1450 pmu_update_irq(env);
1451 }
1452 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
5ecdd3e4
AL
1453 }
1454 env->cp15.c14_pmevcntr_delta[counter] = count;
1455}
1456
1457static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1458{
1459 if (pmu_counter_enabled(env, counter)) {
4e7beb0c
AL
1460#ifndef CONFIG_USER_ONLY
1461 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1462 uint16_t event_idx = supported_event_map[event];
1463 uint64_t delta = UINT32_MAX -
1464 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1465 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1466
1467 if (overflow_in > 0) {
1468 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1469 overflow_in;
2fc0cc0e 1470 ARMCPU *cpu = env_archcpu(env);
4e7beb0c
AL
1471 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1472 }
1473#endif
1474
5ecdd3e4
AL
1475 env->cp15.c14_pmevcntr_delta[counter] -=
1476 env->cp15.c14_pmevcntr[counter];
1477 }
1478}
1479
5d05b9d4
AL
1480void pmu_op_start(CPUARMState *env)
1481{
5ecdd3e4 1482 unsigned int i;
5d05b9d4 1483 pmccntr_op_start(env);
5ecdd3e4
AL
1484 for (i = 0; i < pmu_num_counters(env); i++) {
1485 pmevcntr_op_start(env, i);
1486 }
5d05b9d4
AL
1487}
1488
1489void pmu_op_finish(CPUARMState *env)
1490{
5ecdd3e4 1491 unsigned int i;
5d05b9d4 1492 pmccntr_op_finish(env);
5ecdd3e4
AL
1493 for (i = 0; i < pmu_num_counters(env); i++) {
1494 pmevcntr_op_finish(env, i);
1495 }
5d05b9d4
AL
1496}
1497
033614c4
AL
1498void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1499{
1500 pmu_op_start(&cpu->env);
1501}
1502
1503void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1504{
1505 pmu_op_finish(&cpu->env);
1506}
1507
4e7beb0c
AL
1508void arm_pmu_timer_cb(void *opaque)
1509{
1510 ARMCPU *cpu = opaque;
1511
1512 /*
1513 * Update all the counter values based on the current underlying counts,
1514 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1515 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1516 * counter may expire.
1517 */
1518 pmu_op_start(&cpu->env);
1519 pmu_op_finish(&cpu->env);
1520}
1521
c4241c7d
PM
1522static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523 uint64_t value)
200ac0ef 1524{
5d05b9d4 1525 pmu_op_start(env);
7c2cb42b
AF
1526
1527 if (value & PMCRC) {
1528 /* The counter has been reset */
1529 env->cp15.c15_ccnt = 0;
1530 }
1531
5ecdd3e4
AL
1532 if (value & PMCRP) {
1533 unsigned int i;
1534 for (i = 0; i < pmu_num_counters(env); i++) {
1535 env->cp15.c14_pmevcntr[i] = 0;
1536 }
1537 }
1538
200ac0ef
PM
1539 /* only the DP, X, D and E bits are writable */
1540 env->cp15.c9_pmcr &= ~0x39;
1541 env->cp15.c9_pmcr |= (value & 0x39);
7c2cb42b 1542
5d05b9d4 1543 pmu_op_finish(env);
7c2cb42b
AF
1544}
1545
0d4bfd7d
AL
1546static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1547 uint64_t value)
1548{
1549 unsigned int i;
1550 for (i = 0; i < pmu_num_counters(env); i++) {
1551 /* Increment a counter's count iff: */
1552 if ((value & (1 << i)) && /* counter's bit is set */
1553 /* counter is enabled and not filtered */
1554 pmu_counter_enabled(env, i) &&
1555 /* counter is SW_INCR */
1556 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1557 pmevcntr_op_start(env, i);
f4efb4b2
AL
1558
1559 /*
1560 * Detect if this write causes an overflow since we can't predict
1561 * PMSWINC overflows like we can for other events
1562 */
1563 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1564
1565 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1566 env->cp15.c9_pmovsr |= (1 << i);
1567 pmu_update_irq(env);
1568 }
1569
1570 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1571
0d4bfd7d
AL
1572 pmevcntr_op_finish(env, i);
1573 }
1574 }
1575}
1576
7c2cb42b
AF
1577static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1578{
5d05b9d4
AL
1579 uint64_t ret;
1580 pmccntr_op_start(env);
1581 ret = env->cp15.c15_ccnt;
1582 pmccntr_op_finish(env);
1583 return ret;
7c2cb42b
AF
1584}
1585
6b040780
WH
1586static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1587 uint64_t value)
1588{
1589 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1590 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1591 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1592 * accessed.
1593 */
1594 env->cp15.c9_pmselr = value & 0x1f;
1595}
1596
7c2cb42b
AF
1597static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1598 uint64_t value)
1599{
5d05b9d4
AL
1600 pmccntr_op_start(env);
1601 env->cp15.c15_ccnt = value;
1602 pmccntr_op_finish(env);
200ac0ef 1603}
421c7ebd
PC
1604
1605static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1606 uint64_t value)
1607{
1608 uint64_t cur_val = pmccntr_read(env, NULL);
1609
1610 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1611}
1612
0614601c
AF
1613static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1614 uint64_t value)
1615{
5d05b9d4 1616 pmccntr_op_start(env);
4b8afa1f
AL
1617 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1618 pmccntr_op_finish(env);
1619}
1620
1621static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1622 uint64_t value)
1623{
1624 pmccntr_op_start(env);
1625 /* M is not accessible from AArch32 */
1626 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1627 (value & PMCCFILTR);
5d05b9d4 1628 pmccntr_op_finish(env);
0614601c
AF
1629}
1630
4b8afa1f
AL
1631static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1632{
1633 /* M is not visible in AArch32 */
1634 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1635}
1636
c4241c7d 1637static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1638 uint64_t value)
1639{
7ece99b1 1640 value &= pmu_counter_mask(env);
200ac0ef 1641 env->cp15.c9_pmcnten |= value;
200ac0ef
PM
1642}
1643
c4241c7d
PM
1644static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1645 uint64_t value)
200ac0ef 1646{
7ece99b1 1647 value &= pmu_counter_mask(env);
200ac0ef 1648 env->cp15.c9_pmcnten &= ~value;
200ac0ef
PM
1649}
1650
c4241c7d
PM
1651static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1652 uint64_t value)
200ac0ef 1653{
599b71e2 1654 value &= pmu_counter_mask(env);
200ac0ef 1655 env->cp15.c9_pmovsr &= ~value;
f4efb4b2 1656 pmu_update_irq(env);
200ac0ef
PM
1657}
1658
327dd510
AL
1659static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1660 uint64_t value)
1661{
1662 value &= pmu_counter_mask(env);
1663 env->cp15.c9_pmovsr |= value;
f4efb4b2 1664 pmu_update_irq(env);
327dd510
AL
1665}
1666
5ecdd3e4
AL
1667static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1668 uint64_t value, const uint8_t counter)
200ac0ef 1669{
5ecdd3e4
AL
1670 if (counter == 31) {
1671 pmccfiltr_write(env, ri, value);
1672 } else if (counter < pmu_num_counters(env)) {
1673 pmevcntr_op_start(env, counter);
1674
1675 /*
1676 * If this counter's event type is changing, store the current
1677 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1678 * pmevcntr_op_finish has the correct baseline when it converts back to
1679 * a delta.
1680 */
1681 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1682 PMXEVTYPER_EVTCOUNT;
1683 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1684 if (old_event != new_event) {
1685 uint64_t count = 0;
1686 if (event_supported(new_event)) {
1687 uint16_t event_idx = supported_event_map[new_event];
1688 count = pm_events[event_idx].get_count(env);
1689 }
1690 env->cp15.c14_pmevcntr_delta[counter] = count;
1691 }
1692
1693 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1694 pmevcntr_op_finish(env, counter);
1695 }
fdb86656
WH
1696 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1697 * PMSELR value is equal to or greater than the number of implemented
1698 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1699 */
5ecdd3e4
AL
1700}
1701
1702static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1703 const uint8_t counter)
1704{
1705 if (counter == 31) {
1706 return env->cp15.pmccfiltr_el0;
1707 } else if (counter < pmu_num_counters(env)) {
1708 return env->cp15.c14_pmevtyper[counter];
1709 } else {
1710 /*
1711 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1712 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1713 */
1714 return 0;
1715 }
1716}
1717
1718static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1719 uint64_t value)
1720{
1721 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1722 pmevtyper_write(env, ri, value, counter);
1723}
1724
1725static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1726 uint64_t value)
1727{
1728 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1729 env->cp15.c14_pmevtyper[counter] = value;
1730
1731 /*
1732 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1733 * pmu_op_finish calls when loading saved state for a migration. Because
1734 * we're potentially updating the type of event here, the value written to
1735 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1736 * different counter type. Therefore, we need to set this value to the
1737 * current count for the counter type we're writing so that pmu_op_finish
1738 * has the correct count for its calculation.
1739 */
1740 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1741 if (event_supported(event)) {
1742 uint16_t event_idx = supported_event_map[event];
1743 env->cp15.c14_pmevcntr_delta[counter] =
1744 pm_events[event_idx].get_count(env);
fdb86656
WH
1745 }
1746}
1747
5ecdd3e4
AL
1748static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1749{
1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751 return pmevtyper_read(env, ri, counter);
1752}
1753
1754static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1755 uint64_t value)
1756{
1757 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1758}
1759
fdb86656
WH
1760static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1761{
5ecdd3e4
AL
1762 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1763}
1764
1765static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1766 uint64_t value, uint8_t counter)
1767{
1768 if (counter < pmu_num_counters(env)) {
1769 pmevcntr_op_start(env, counter);
1770 env->cp15.c14_pmevcntr[counter] = value;
1771 pmevcntr_op_finish(env, counter);
1772 }
1773 /*
1774 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1775 * are CONSTRAINED UNPREDICTABLE.
fdb86656 1776 */
5ecdd3e4
AL
1777}
1778
1779static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1780 uint8_t counter)
1781{
1782 if (counter < pmu_num_counters(env)) {
1783 uint64_t ret;
1784 pmevcntr_op_start(env, counter);
1785 ret = env->cp15.c14_pmevcntr[counter];
1786 pmevcntr_op_finish(env, counter);
1787 return ret;
fdb86656 1788 } else {
5ecdd3e4
AL
1789 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1790 * are CONSTRAINED UNPREDICTABLE. */
fdb86656
WH
1791 return 0;
1792 }
200ac0ef
PM
1793}
1794
5ecdd3e4
AL
1795static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1796 uint64_t value)
1797{
1798 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1799 pmevcntr_write(env, ri, value, counter);
1800}
1801
1802static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1803{
1804 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1805 return pmevcntr_read(env, ri, counter);
1806}
1807
1808static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1809 uint64_t value)
1810{
1811 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1812 assert(counter < pmu_num_counters(env));
1813 env->cp15.c14_pmevcntr[counter] = value;
1814 pmevcntr_write(env, ri, value, counter);
1815}
1816
1817static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1818{
1819 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1820 assert(counter < pmu_num_counters(env));
1821 return env->cp15.c14_pmevcntr[counter];
1822}
1823
1824static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1825 uint64_t value)
1826{
1827 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1828}
1829
1830static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1831{
1832 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1833}
1834
c4241c7d 1835static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
1836 uint64_t value)
1837{
6ecd0b6b
AB
1838 if (arm_feature(env, ARM_FEATURE_V8)) {
1839 env->cp15.c9_pmuserenr = value & 0xf;
1840 } else {
1841 env->cp15.c9_pmuserenr = value & 1;
1842 }
200ac0ef
PM
1843}
1844
c4241c7d
PM
1845static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1846 uint64_t value)
200ac0ef
PM
1847{
1848 /* We have no event counters so only the C bit can be changed */
7ece99b1 1849 value &= pmu_counter_mask(env);
200ac0ef 1850 env->cp15.c9_pminten |= value;
f4efb4b2 1851 pmu_update_irq(env);
200ac0ef
PM
1852}
1853
c4241c7d
PM
1854static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1855 uint64_t value)
200ac0ef 1856{
7ece99b1 1857 value &= pmu_counter_mask(env);
200ac0ef 1858 env->cp15.c9_pminten &= ~value;
f4efb4b2 1859 pmu_update_irq(env);
200ac0ef
PM
1860}
1861
c4241c7d
PM
1862static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1863 uint64_t value)
8641136c 1864{
a505d7fe
PM
1865 /* Note that even though the AArch64 view of this register has bits
1866 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1867 * architectural requirements for bits which are RES0 only in some
1868 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1869 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1870 */
855ea66d 1871 raw_write(env, ri, value & ~0x1FULL);
8641136c
NR
1872}
1873
64e0e2de
EI
1874static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1875{
ea22747c
RH
1876 /* Begin with base v8.0 state. */
1877 uint32_t valid_mask = 0x3fff;
2fc0cc0e 1878 ARMCPU *cpu = env_archcpu(env);
ea22747c
RH
1879
1880 if (arm_el_is_aa64(env, 3)) {
1881 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1882 valid_mask &= ~SCR_NET;
1883 } else {
1884 valid_mask &= ~(SCR_RW | SCR_ST);
1885 }
64e0e2de
EI
1886
1887 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1888 valid_mask &= ~SCR_HCE;
1889
1890 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1891 * supported if EL2 exists. The bit is UNK/SBZP when
1892 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1893 * when EL2 is unavailable.
4eb27640 1894 * On ARMv8, this bit is always available.
64e0e2de 1895 */
4eb27640
GB
1896 if (arm_feature(env, ARM_FEATURE_V7) &&
1897 !arm_feature(env, ARM_FEATURE_V8)) {
64e0e2de
EI
1898 valid_mask &= ~SCR_SMD;
1899 }
1900 }
2d7137c1
RH
1901 if (cpu_isar_feature(aa64_lor, cpu)) {
1902 valid_mask |= SCR_TLOR;
1903 }
ef682cdb
RH
1904 if (cpu_isar_feature(aa64_pauth, cpu)) {
1905 valid_mask |= SCR_API | SCR_APK;
1906 }
64e0e2de
EI
1907
1908 /* Clear all-context RES0 bits. */
1909 value &= valid_mask;
1910 raw_write(env, ri, value);
1911}
1912
630fcd4d
MZ
1913static CPAccessResult access_aa64_tid2(CPUARMState *env,
1914 const ARMCPRegInfo *ri,
1915 bool isread)
1916{
1917 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1918 return CP_ACCESS_TRAP_EL2;
1919 }
1920
1921 return CP_ACCESS_OK;
1922}
1923
c4241c7d 1924static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
776d4e5c 1925{
2fc0cc0e 1926 ARMCPU *cpu = env_archcpu(env);
b85a1fd6
FA
1927
1928 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1929 * bank
1930 */
1931 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1932 ri->secure & ARM_CP_SECSTATE_S);
1933
1934 return cpu->ccsidr[index];
776d4e5c
PM
1935}
1936
c4241c7d
PM
1937static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1938 uint64_t value)
776d4e5c 1939{
8d5c773e 1940 raw_write(env, ri, value & 0xf);
776d4e5c
PM
1941}
1942
1090b9c6
PM
1943static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1944{
29a0af61 1945 CPUState *cs = env_cpu(env);
f7778444 1946 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1090b9c6 1947 uint64_t ret = 0;
7cf95aed
MZ
1948 bool allow_virt = (arm_current_el(env) == 1 &&
1949 (!arm_is_secure_below_el3(env) ||
1950 (env->cp15.scr_el3 & SCR_EEL2)));
1090b9c6 1951
7cf95aed 1952 if (allow_virt && (hcr_el2 & HCR_IMO)) {
636540e9
PM
1953 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1954 ret |= CPSR_I;
1955 }
1956 } else {
1957 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1958 ret |= CPSR_I;
1959 }
1090b9c6 1960 }
636540e9 1961
7cf95aed 1962 if (allow_virt && (hcr_el2 & HCR_FMO)) {
636540e9
PM
1963 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1964 ret |= CPSR_F;
1965 }
1966 } else {
1967 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1968 ret |= CPSR_F;
1969 }
1090b9c6 1970 }
636540e9 1971
1090b9c6
PM
1972 /* External aborts are not possible in QEMU so A bit is always clear */
1973 return ret;
1974}
1975
93fbc983
MZ
1976static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1977 bool isread)
1978{
1979 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1980 return CP_ACCESS_TRAP_EL2;
1981 }
1982
1983 return CP_ACCESS_OK;
1984}
1985
1986static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1987 bool isread)
1988{
1989 if (arm_feature(env, ARM_FEATURE_V8)) {
1990 return access_aa64_tid1(env, ri, isread);
1991 }
1992
1993 return CP_ACCESS_OK;
1994}
1995
e9aa6c21 1996static const ARMCPRegInfo v7_cp_reginfo[] = {
7d57f408
PM
1997 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1998 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1999 .access = PL1_W, .type = ARM_CP_NOP },
200ac0ef
PM
2000 /* Performance monitors are implementation defined in v7,
2001 * but with an ARM recommended set of registers, which we
ac689a2e 2002 * follow.
200ac0ef
PM
2003 *
2004 * Performance registers fall into three categories:
2005 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2006 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2007 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2008 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2009 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2010 */
2011 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
7a0e58fa 2012 .access = PL0_RW, .type = ARM_CP_ALIAS,
8521466b 2013 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
2014 .writefn = pmcntenset_write,
2015 .accessfn = pmreg_access,
2016 .raw_writefn = raw_write },
8521466b
AF
2017 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2018 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2019 .access = PL0_RW, .accessfn = pmreg_access,
2020 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2021 .writefn = pmcntenset_write, .raw_writefn = raw_write },
200ac0ef 2022 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
8521466b
AF
2023 .access = PL0_RW,
2024 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
2025 .accessfn = pmreg_access,
2026 .writefn = pmcntenclr_write,
7a0e58fa 2027 .type = ARM_CP_ALIAS },
8521466b
AF
2028 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2029 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2030 .access = PL0_RW, .accessfn = pmreg_access,
7a0e58fa 2031 .type = ARM_CP_ALIAS,
8521466b
AF
2032 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2033 .writefn = pmcntenclr_write },
200ac0ef 2034 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
f4efb4b2 2035 .access = PL0_RW, .type = ARM_CP_IO,
e4e91a21 2036 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
fcd25206
PM
2037 .accessfn = pmreg_access,
2038 .writefn = pmovsr_write,
2039 .raw_writefn = raw_write },
978364f1
AF
2040 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2041 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2042 .access = PL0_RW, .accessfn = pmreg_access,
f4efb4b2 2043 .type = ARM_CP_ALIAS | ARM_CP_IO,
978364f1
AF
2044 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2045 .writefn = pmovsr_write,
2046 .raw_writefn = raw_write },
200ac0ef 2047 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
f4efb4b2
AL
2048 .access = PL0_W, .accessfn = pmreg_access_swinc,
2049 .type = ARM_CP_NO_RAW | ARM_CP_IO,
0d4bfd7d
AL
2050 .writefn = pmswinc_write },
2051 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2052 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
f4efb4b2
AL
2053 .access = PL0_W, .accessfn = pmreg_access_swinc,
2054 .type = ARM_CP_NO_RAW | ARM_CP_IO,
0d4bfd7d 2055 .writefn = pmswinc_write },
6b040780
WH
2056 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2057 .access = PL0_RW, .type = ARM_CP_ALIAS,
2058 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
6ecd0b6b 2059 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
6b040780
WH
2060 .raw_writefn = raw_write},
2061 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2062 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
6ecd0b6b 2063 .access = PL0_RW, .accessfn = pmreg_access_selr,
6b040780
WH
2064 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2065 .writefn = pmselr_write, .raw_writefn = raw_write, },
200ac0ef 2066 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
169c8938 2067 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
421c7ebd 2068 .readfn = pmccntr_read, .writefn = pmccntr_write32,
6ecd0b6b 2069 .accessfn = pmreg_access_ccntr },
8521466b
AF
2070 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2071 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
6ecd0b6b 2072 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
8521466b 2073 .type = ARM_CP_IO,
980ebe87
AL
2074 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2075 .readfn = pmccntr_read, .writefn = pmccntr_write,
2076 .raw_readfn = raw_read, .raw_writefn = raw_write, },
4b8afa1f
AL
2077 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2078 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2079 .access = PL0_RW, .accessfn = pmreg_access,
2080 .type = ARM_CP_ALIAS | ARM_CP_IO,
2081 .resetvalue = 0, },
8521466b
AF
2082 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2083 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
980ebe87 2084 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
8521466b
AF
2085 .access = PL0_RW, .accessfn = pmreg_access,
2086 .type = ARM_CP_IO,
2087 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2088 .resetvalue = 0, },
200ac0ef 2089 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
5ecdd3e4
AL
2090 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2091 .accessfn = pmreg_access,
fdb86656
WH
2092 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2093 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2094 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
5ecdd3e4
AL
2095 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2096 .accessfn = pmreg_access,
fdb86656 2097 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
200ac0ef 2098 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
5ecdd3e4
AL
2099 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2100 .accessfn = pmreg_access_xevcntr,
2101 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2102 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2103 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2104 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2105 .accessfn = pmreg_access_xevcntr,
2106 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
200ac0ef 2107 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1fce1ba9 2108 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
e4e91a21 2109 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
200ac0ef 2110 .resetvalue = 0,
d4e6df63 2111 .writefn = pmuserenr_write, .raw_writefn = raw_write },
8a83ffc2
AF
2112 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2113 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1fce1ba9 2114 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
8a83ffc2
AF
2115 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2116 .resetvalue = 0,
2117 .writefn = pmuserenr_write, .raw_writefn = raw_write },
200ac0ef 2118 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1fce1ba9 2119 .access = PL1_RW, .accessfn = access_tpm,
b7d793ad 2120 .type = ARM_CP_ALIAS | ARM_CP_IO,
e6ec5457 2121 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
200ac0ef 2122 .resetvalue = 0,
d4e6df63 2123 .writefn = pmintenset_write, .raw_writefn = raw_write },
e6ec5457
WH
2124 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2125 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2126 .access = PL1_RW, .accessfn = access_tpm,
2127 .type = ARM_CP_IO,
2128 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2129 .writefn = pmintenset_write, .raw_writefn = raw_write,
2130 .resetvalue = 0x0 },
200ac0ef 2131 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
fc5f6856
AL
2132 .access = PL1_RW, .accessfn = access_tpm,
2133 .type = ARM_CP_ALIAS | ARM_CP_IO,
200ac0ef 2134 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
b061a82b 2135 .writefn = pmintenclr_write, },
978364f1
AF
2136 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2137 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
fc5f6856
AL
2138 .access = PL1_RW, .accessfn = access_tpm,
2139 .type = ARM_CP_ALIAS | ARM_CP_IO,
978364f1
AF
2140 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2141 .writefn = pmintenclr_write },
7da845b0
PM
2142 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2143 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
630fcd4d
MZ
2144 .access = PL1_R,
2145 .accessfn = access_aa64_tid2,
2146 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
7da845b0
PM
2147 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2148 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
630fcd4d
MZ
2149 .access = PL1_RW,
2150 .accessfn = access_aa64_tid2,
2151 .writefn = csselr_write, .resetvalue = 0,
b85a1fd6
FA
2152 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2153 offsetof(CPUARMState, cp15.csselr_ns) } },
776d4e5c
PM
2154 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2155 * just RAZ for all cores:
2156 */
0ff644a7
PM
2157 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2158 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
93fbc983
MZ
2159 .access = PL1_R, .type = ARM_CP_CONST,
2160 .accessfn = access_aa64_tid1,
2161 .resetvalue = 0 },
f32cdad5
PM
2162 /* Auxiliary fault status registers: these also are IMPDEF, and we
2163 * choose to RAZ/WI for all cores.
2164 */
2165 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2166 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2167 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2168 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2169 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2170 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b0fe2427
PM
2171 /* MAIR can just read-as-written because we don't implement caches
2172 * and so don't need to care about memory attributes.
2173 */
2174 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2175 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
be693c87 2176 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
b0fe2427 2177 .resetvalue = 0 },
4cfb8ad8
PM
2178 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2179 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2180 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2181 .resetvalue = 0 },
b0fe2427
PM
2182 /* For non-long-descriptor page tables these are PRRR and NMRR;
2183 * regardless they still act as reads-as-written for QEMU.
b0fe2427 2184 */
1281f8e3 2185 /* MAIR0/1 are defined separately from their 64-bit counterpart which
be693c87
GB
2186 * allows them to assign the correct fieldoffset based on the endianness
2187 * handled in the field definitions.
2188 */
a903c449 2189 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
b0fe2427 2190 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
be693c87
GB
2191 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2192 offsetof(CPUARMState, cp15.mair0_ns) },
b0fe2427 2193 .resetfn = arm_cp_reset_ignore },
a903c449 2194 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
b0fe2427 2195 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
be693c87
GB
2196 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2197 offsetof(CPUARMState, cp15.mair1_ns) },
b0fe2427 2198 .resetfn = arm_cp_reset_ignore },
1090b9c6
PM
2199 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2200 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
7a0e58fa 2201 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
995939a6
PM
2202 /* 32 bit ITLB invalidates */
2203 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
7a0e58fa 2204 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 2205 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7a0e58fa 2206 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 2207 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
7a0e58fa 2208 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
2209 /* 32 bit DTLB invalidates */
2210 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
7a0e58fa 2211 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 2212 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7a0e58fa 2213 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 2214 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
7a0e58fa 2215 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
2216 /* 32 bit TLB invalidates */
2217 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 2218 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 2219 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 2220 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 2221 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 2222 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6 2223 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 2224 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
995939a6
PM
2225 REGINFO_SENTINEL
2226};
2227
2228static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2229 /* 32 bit TLB invalidates, Inner Shareable */
2230 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 2231 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
995939a6 2232 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 2233 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
995939a6 2234 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 2235 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 2236 .writefn = tlbiasid_is_write },
995939a6 2237 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 2238 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 2239 .writefn = tlbimvaa_is_write },
e9aa6c21
PM
2240 REGINFO_SENTINEL
2241};
2242
327dd510
AL
2243static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2244 /* PMOVSSET is not implemented in v7 before v7ve */
2245 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2246 .access = PL0_RW, .accessfn = pmreg_access,
f4efb4b2 2247 .type = ARM_CP_ALIAS | ARM_CP_IO,
327dd510
AL
2248 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2249 .writefn = pmovsset_write,
2250 .raw_writefn = raw_write },
2251 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2252 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2253 .access = PL0_RW, .accessfn = pmreg_access,
f4efb4b2 2254 .type = ARM_CP_ALIAS | ARM_CP_IO,
327dd510
AL
2255 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2256 .writefn = pmovsset_write,
2257 .raw_writefn = raw_write },
2258 REGINFO_SENTINEL
2259};
2260
c4241c7d
PM
2261static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2262 uint64_t value)
c326b979
PM
2263{
2264 value &= 1;
2265 env->teecr = value;
c326b979
PM
2266}
2267
3f208fd7
PM
2268static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2269 bool isread)
c326b979 2270{
dcbff19b 2271 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
92611c00 2272 return CP_ACCESS_TRAP;
c326b979 2273 }
92611c00 2274 return CP_ACCESS_OK;
c326b979
PM
2275}
2276
2277static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2278 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2279 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2280 .resetvalue = 0,
2281 .writefn = teecr_write },
2282 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2283 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
92611c00 2284 .accessfn = teehbr_access, .resetvalue = 0 },
c326b979
PM
2285 REGINFO_SENTINEL
2286};
2287
4d31c596 2288static const ARMCPRegInfo v6k_cp_reginfo[] = {
e4fe830b
PM
2289 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2290 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2291 .access = PL0_RW,
54bf36ed 2292 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
4d31c596
PM
2293 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2294 .access = PL0_RW,
54bf36ed
FA
2295 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2296 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
e4fe830b
PM
2297 .resetfn = arm_cp_reset_ignore },
2298 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2299 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2300 .access = PL0_R|PL1_W,
54bf36ed
FA
2301 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2302 .resetvalue = 0},
4d31c596
PM
2303 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2304 .access = PL0_R|PL1_W,
54bf36ed
FA
2305 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2306 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
e4fe830b 2307 .resetfn = arm_cp_reset_ignore },
54bf36ed 2308 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
e4fe830b 2309 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
4d31c596 2310 .access = PL1_RW,
54bf36ed
FA
2311 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2312 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2313 .access = PL1_RW,
2314 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2315 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2316 .resetvalue = 0 },
4d31c596
PM
2317 REGINFO_SENTINEL
2318};
2319
55d284af
PM
2320#ifndef CONFIG_USER_ONLY
2321
3f208fd7
PM
2322static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2323 bool isread)
00108f2d 2324{
75502672
PM
2325 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2326 * Writable only at the highest implemented exception level.
2327 */
2328 int el = arm_current_el(env);
2329
2330 switch (el) {
2331 case 0:
2332 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2333 return CP_ACCESS_TRAP;
2334 }
2335 break;
2336 case 1:
2337 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2338 arm_is_secure_below_el3(env)) {
2339 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2340 return CP_ACCESS_TRAP_UNCATEGORIZED;
2341 }
2342 break;
2343 case 2:
2344 case 3:
2345 break;
00108f2d 2346 }
75502672
PM
2347
2348 if (!isread && el < arm_highest_el(env)) {
2349 return CP_ACCESS_TRAP_UNCATEGORIZED;
2350 }
2351
00108f2d
PM
2352 return CP_ACCESS_OK;
2353}
2354
3f208fd7
PM
2355static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2356 bool isread)
00108f2d 2357{
0b6440af
EI
2358 unsigned int cur_el = arm_current_el(env);
2359 bool secure = arm_is_secure(env);
2360
00108f2d 2361 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
0b6440af 2362 if (cur_el == 0 &&
00108f2d
PM
2363 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2364 return CP_ACCESS_TRAP;
2365 }
0b6440af
EI
2366
2367 if (arm_feature(env, ARM_FEATURE_EL2) &&
2368 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2369 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2370 return CP_ACCESS_TRAP_EL2;
2371 }
00108f2d
PM
2372 return CP_ACCESS_OK;
2373}
2374
3f208fd7
PM
2375static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2376 bool isread)
00108f2d 2377{
0b6440af
EI
2378 unsigned int cur_el = arm_current_el(env);
2379 bool secure = arm_is_secure(env);
2380
00108f2d
PM
2381 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2382 * EL0[PV]TEN is zero.
2383 */
0b6440af 2384 if (cur_el == 0 &&
00108f2d
PM
2385 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2386 return CP_ACCESS_TRAP;
2387 }
0b6440af
EI
2388
2389 if (arm_feature(env, ARM_FEATURE_EL2) &&
2390 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2391 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2392 return CP_ACCESS_TRAP_EL2;
2393 }
00108f2d
PM
2394 return CP_ACCESS_OK;
2395}
2396
2397static CPAccessResult gt_pct_access(CPUARMState *env,
3f208fd7
PM
2398 const ARMCPRegInfo *ri,
2399 bool isread)
00108f2d 2400{
3f208fd7 2401 return gt_counter_access(env, GTIMER_PHYS, isread);
00108f2d
PM
2402}
2403
2404static CPAccessResult gt_vct_access(CPUARMState *env,
3f208fd7
PM
2405 const ARMCPRegInfo *ri,
2406 bool isread)
00108f2d 2407{
3f208fd7 2408 return gt_counter_access(env, GTIMER_VIRT, isread);
00108f2d
PM
2409}
2410
3f208fd7
PM
2411static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2412 bool isread)
00108f2d 2413{
3f208fd7 2414 return gt_timer_access(env, GTIMER_PHYS, isread);
00108f2d
PM
2415}
2416
3f208fd7
PM
2417static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2418 bool isread)
00108f2d 2419{
3f208fd7 2420 return gt_timer_access(env, GTIMER_VIRT, isread);
00108f2d
PM
2421}
2422
b4d3978c 2423static CPAccessResult gt_stimer_access(CPUARMState *env,
3f208fd7
PM
2424 const ARMCPRegInfo *ri,
2425 bool isread)
b4d3978c
PM
2426{
2427 /* The AArch64 register view of the secure physical timer is
2428 * always accessible from EL3, and configurably accessible from
2429 * Secure EL1.
2430 */
2431 switch (arm_current_el(env)) {
2432 case 1:
2433 if (!arm_is_secure(env)) {
2434 return CP_ACCESS_TRAP;
2435 }
2436 if (!(env->cp15.scr_el3 & SCR_ST)) {
2437 return CP_ACCESS_TRAP_EL3;
2438 }
2439 return CP_ACCESS_OK;
2440 case 0:
2441 case 2:
2442 return CP_ACCESS_TRAP;
2443 case 3:
2444 return CP_ACCESS_OK;
2445 default:
2446 g_assert_not_reached();
2447 }
2448}
2449
55d284af
PM
2450static uint64_t gt_get_countervalue(CPUARMState *env)
2451{
7def8754
AJ
2452 ARMCPU *cpu = env_archcpu(env);
2453
2454 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
55d284af
PM
2455}
2456
2457static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2458{
2459 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2460
2461 if (gt->ctl & 1) {
2462 /* Timer enabled: calculate and set current ISTATUS, irq, and
2463 * reset timer to when ISTATUS next has to change
2464 */
edac4d8a
EI
2465 uint64_t offset = timeridx == GTIMER_VIRT ?
2466 cpu->env.cp15.cntvoff_el2 : 0;
55d284af
PM
2467 uint64_t count = gt_get_countervalue(&cpu->env);
2468 /* Note that this must be unsigned 64 bit arithmetic: */
edac4d8a 2469 int istatus = count - offset >= gt->cval;
55d284af 2470 uint64_t nexttick;
194cbc49 2471 int irqstate;
55d284af
PM
2472
2473 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
194cbc49
PM
2474
2475 irqstate = (istatus && !(gt->ctl & 2));
2476 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2477
55d284af
PM
2478 if (istatus) {
2479 /* Next transition is when count rolls back over to zero */
2480 nexttick = UINT64_MAX;
2481 } else {
2482 /* Next transition is when we hit cval */
edac4d8a 2483 nexttick = gt->cval + offset;
55d284af
PM
2484 }
2485 /* Note that the desired next expiry time might be beyond the
2486 * signed-64-bit range of a QEMUTimer -- in this case we just
2487 * set the timer for as far in the future as possible. When the
2488 * timer expires we will reset the timer for any remaining period.
2489 */
7def8754 2490 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
4a0245b6
AJ
2491 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2492 } else {
2493 timer_mod(cpu->gt_timer[timeridx], nexttick);
55d284af 2494 }
194cbc49 2495 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
55d284af
PM
2496 } else {
2497 /* Timer disabled: ISTATUS and timer output always clear */
2498 gt->ctl &= ~4;
2499 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
bc72ad67 2500 timer_del(cpu->gt_timer[timeridx]);
194cbc49 2501 trace_arm_gt_recalc_disabled(timeridx);
55d284af
PM
2502 }
2503}
2504
0e3eca4c
EI
2505static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2506 int timeridx)
55d284af 2507{
2fc0cc0e 2508 ARMCPU *cpu = env_archcpu(env);
55d284af 2509
bc72ad67 2510 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
2511}
2512
c4241c7d 2513static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af 2514{
c4241c7d 2515 return gt_get_countervalue(env);
55d284af
PM
2516}
2517
edac4d8a
EI
2518static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2519{
2520 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2521}
2522
c4241c7d 2523static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 2524 int timeridx,
c4241c7d 2525 uint64_t value)
55d284af 2526{
194cbc49 2527 trace_arm_gt_cval_write(timeridx, value);
55d284af 2528 env->cp15.c14_timer[timeridx].cval = value;
2fc0cc0e 2529 gt_recalc_timer(env_archcpu(env), timeridx);
55d284af 2530}
c4241c7d 2531
0e3eca4c
EI
2532static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2533 int timeridx)
55d284af 2534{
edac4d8a 2535 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 2536
c4241c7d 2537 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
edac4d8a 2538 (gt_get_countervalue(env) - offset));
55d284af
PM
2539}
2540
c4241c7d 2541static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 2542 int timeridx,
c4241c7d 2543 uint64_t value)
55d284af 2544{
edac4d8a 2545 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 2546
194cbc49 2547 trace_arm_gt_tval_write(timeridx, value);
edac4d8a 2548 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
18084b2f 2549 sextract64(value, 0, 32);
2fc0cc0e 2550 gt_recalc_timer(env_archcpu(env), timeridx);
55d284af
PM
2551}
2552
c4241c7d 2553static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 2554 int timeridx,
c4241c7d 2555 uint64_t value)
55d284af 2556{
2fc0cc0e 2557 ARMCPU *cpu = env_archcpu(env);
55d284af
PM
2558 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2559
194cbc49 2560 trace_arm_gt_ctl_write(timeridx, value);
d3afacc7 2561 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
55d284af
PM
2562 if ((oldval ^ value) & 1) {
2563 /* Enable toggled */
2564 gt_recalc_timer(cpu, timeridx);
d3afacc7 2565 } else if ((oldval ^ value) & 2) {
55d284af
PM
2566 /* IMASK toggled: don't need to recalculate,
2567 * just set the interrupt line based on ISTATUS
2568 */
194cbc49
PM
2569 int irqstate = (oldval & 4) && !(value & 2);
2570
2571 trace_arm_gt_imask_toggle(timeridx, irqstate);
2572 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
55d284af 2573 }
55d284af
PM
2574}
2575
0e3eca4c
EI
2576static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2577{
2578 gt_timer_reset(env, ri, GTIMER_PHYS);
2579}
2580
2581static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2582 uint64_t value)
2583{
2584 gt_cval_write(env, ri, GTIMER_PHYS, value);
2585}
2586
2587static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2588{
2589 return gt_tval_read(env, ri, GTIMER_PHYS);
2590}
2591
2592static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2593 uint64_t value)
2594{
2595 gt_tval_write(env, ri, GTIMER_PHYS, value);
2596}
2597
2598static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2599 uint64_t value)
2600{
2601 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2602}
2603
2604static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2605{
2606 gt_timer_reset(env, ri, GTIMER_VIRT);
2607}
2608
2609static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2610 uint64_t value)
2611{
2612 gt_cval_write(env, ri, GTIMER_VIRT, value);
2613}
2614
2615static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2616{
2617 return gt_tval_read(env, ri, GTIMER_VIRT);
2618}
2619
2620static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2621 uint64_t value)
2622{
2623 gt_tval_write(env, ri, GTIMER_VIRT, value);
2624}
2625
2626static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2627 uint64_t value)
2628{
2629 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2630}
2631
edac4d8a
EI
2632static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2633 uint64_t value)
2634{
2fc0cc0e 2635 ARMCPU *cpu = env_archcpu(env);
edac4d8a 2636
194cbc49 2637 trace_arm_gt_cntvoff_write(value);
edac4d8a
EI
2638 raw_write(env, ri, value);
2639 gt_recalc_timer(cpu, GTIMER_VIRT);
2640}
2641
b0e66d95
EI
2642static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2643{
2644 gt_timer_reset(env, ri, GTIMER_HYP);
2645}
2646
2647static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2648 uint64_t value)
2649{
2650 gt_cval_write(env, ri, GTIMER_HYP, value);
2651}
2652
2653static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2654{
2655 return gt_tval_read(env, ri, GTIMER_HYP);
2656}
2657
2658static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2659 uint64_t value)
2660{
2661 gt_tval_write(env, ri, GTIMER_HYP, value);
2662}
2663
2664static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2665 uint64_t value)
2666{
2667 gt_ctl_write(env, ri, GTIMER_HYP, value);
2668}
2669
b4d3978c
PM
2670static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2671{
2672 gt_timer_reset(env, ri, GTIMER_SEC);
2673}
2674
2675static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2676 uint64_t value)
2677{
2678 gt_cval_write(env, ri, GTIMER_SEC, value);
2679}
2680
2681static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2682{
2683 return gt_tval_read(env, ri, GTIMER_SEC);
2684}
2685
2686static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2687 uint64_t value)
2688{
2689 gt_tval_write(env, ri, GTIMER_SEC, value);
2690}
2691
2692static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2693 uint64_t value)
2694{
2695 gt_ctl_write(env, ri, GTIMER_SEC, value);
2696}
2697
55d284af
PM
2698void arm_gt_ptimer_cb(void *opaque)
2699{
2700 ARMCPU *cpu = opaque;
2701
2702 gt_recalc_timer(cpu, GTIMER_PHYS);
2703}
2704
2705void arm_gt_vtimer_cb(void *opaque)
2706{
2707 ARMCPU *cpu = opaque;
2708
2709 gt_recalc_timer(cpu, GTIMER_VIRT);
2710}
2711
b0e66d95
EI
2712void arm_gt_htimer_cb(void *opaque)
2713{
2714 ARMCPU *cpu = opaque;
2715
2716 gt_recalc_timer(cpu, GTIMER_HYP);
2717}
2718
b4d3978c
PM
2719void arm_gt_stimer_cb(void *opaque)
2720{
2721 ARMCPU *cpu = opaque;
2722
2723 gt_recalc_timer(cpu, GTIMER_SEC);
2724}
2725
96eec6b2
AJ
2726static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2727{
2728 ARMCPU *cpu = env_archcpu(env);
2729
2730 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2731}
2732
55d284af
PM
2733static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2734 /* Note that CNTFRQ is purely reads-as-written for the benefit
2735 * of software; writing it doesn't actually change the timer frequency.
2736 * Our reset value matches the fixed frequency we implement the timer at.
2737 */
2738 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2739 .type = ARM_CP_ALIAS,
a7adc4b7
PM
2740 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2741 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
a7adc4b7
PM
2742 },
2743 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2744 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2745 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
55d284af 2746 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
96eec6b2 2747 .resetfn = arm_gt_cntfrq_reset,
55d284af
PM
2748 },
2749 /* overall control: mostly access permissions */
a7adc4b7
PM
2750 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2751 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
55d284af
PM
2752 .access = PL1_RW,
2753 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2754 .resetvalue = 0,
2755 },
2756 /* per-timer control */
2757 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
9ff9dd3c 2758 .secure = ARM_CP_SECSTATE_NS,
daf1dc5f 2759 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
a7adc4b7
PM
2760 .accessfn = gt_ptimer_access,
2761 .fieldoffset = offsetoflow32(CPUARMState,
2762 cp15.c14_timer[GTIMER_PHYS].ctl),
0e3eca4c 2763 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
a7adc4b7 2764 },
9c513e78 2765 { .name = "CNTP_CTL_S",
9ff9dd3c
PM
2766 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2767 .secure = ARM_CP_SECSTATE_S,
daf1dc5f 2768 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
9ff9dd3c
PM
2769 .accessfn = gt_ptimer_access,
2770 .fieldoffset = offsetoflow32(CPUARMState,
2771 cp15.c14_timer[GTIMER_SEC].ctl),
2772 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2773 },
a7adc4b7
PM
2774 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2775 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
daf1dc5f 2776 .type = ARM_CP_IO, .access = PL0_RW,
a7adc4b7 2777 .accessfn = gt_ptimer_access,
55d284af
PM
2778 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2779 .resetvalue = 0,
0e3eca4c 2780 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
55d284af
PM
2781 },
2782 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
daf1dc5f 2783 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
a7adc4b7
PM
2784 .accessfn = gt_vtimer_access,
2785 .fieldoffset = offsetoflow32(CPUARMState,
2786 cp15.c14_timer[GTIMER_VIRT].ctl),
0e3eca4c 2787 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
a7adc4b7
PM
2788 },
2789 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2790 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
daf1dc5f 2791 .type = ARM_CP_IO, .access = PL0_RW,
a7adc4b7 2792 .accessfn = gt_vtimer_access,
55d284af
PM
2793 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2794 .resetvalue = 0,
0e3eca4c 2795 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
55d284af
PM
2796 },
2797 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2798 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
9ff9dd3c 2799 .secure = ARM_CP_SECSTATE_NS,
daf1dc5f 2800 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
00108f2d 2801 .accessfn = gt_ptimer_access,
0e3eca4c 2802 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
55d284af 2803 },
9c513e78 2804 { .name = "CNTP_TVAL_S",
9ff9dd3c
PM
2805 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2806 .secure = ARM_CP_SECSTATE_S,
daf1dc5f 2807 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
9ff9dd3c
PM
2808 .accessfn = gt_ptimer_access,
2809 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2810 },
a7adc4b7
PM
2811 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2812 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
daf1dc5f 2813 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
0e3eca4c
EI
2814 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2815 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
a7adc4b7 2816 },
55d284af 2817 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
daf1dc5f 2818 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
00108f2d 2819 .accessfn = gt_vtimer_access,
0e3eca4c 2820 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
55d284af 2821 },
a7adc4b7
PM
2822 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2823 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
daf1dc5f 2824 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
0e3eca4c
EI
2825 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2826 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
a7adc4b7 2827 },
55d284af
PM
2828 /* The counter itself */
2829 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
7a0e58fa 2830 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 2831 .accessfn = gt_pct_access,
a7adc4b7
PM
2832 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2833 },
2834 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2835 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
7a0e58fa 2836 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 2837 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
55d284af
PM
2838 },
2839 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
7a0e58fa 2840 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 2841 .accessfn = gt_vct_access,
edac4d8a 2842 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
a7adc4b7
PM
2843 },
2844 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2845 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
7a0e58fa 2846 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 2847 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
55d284af
PM
2848 },
2849 /* Comparison value, indicating when the timer goes off */
2850 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 2851 .secure = ARM_CP_SECSTATE_NS,
daf1dc5f 2852 .access = PL0_RW,
7a0e58fa 2853 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 2854 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
b061a82b 2855 .accessfn = gt_ptimer_access,
0e3eca4c 2856 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
a7adc4b7 2857 },
9c513e78 2858 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 2859 .secure = ARM_CP_SECSTATE_S,
daf1dc5f 2860 .access = PL0_RW,
9ff9dd3c
PM
2861 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2862 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2863 .accessfn = gt_ptimer_access,
2864 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2865 },
a7adc4b7
PM
2866 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2867 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
daf1dc5f 2868 .access = PL0_RW,
a7adc4b7
PM
2869 .type = ARM_CP_IO,
2870 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
12cde08a 2871 .resetvalue = 0, .accessfn = gt_ptimer_access,
0e3eca4c 2872 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
55d284af
PM
2873 },
2874 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
daf1dc5f 2875 .access = PL0_RW,
7a0e58fa 2876 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 2877 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
b061a82b 2878 .accessfn = gt_vtimer_access,
0e3eca4c 2879 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
a7adc4b7
PM
2880 },
2881 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2882 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
daf1dc5f 2883 .access = PL0_RW,
a7adc4b7
PM
2884 .type = ARM_CP_IO,
2885 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2886 .resetvalue = 0, .accessfn = gt_vtimer_access,
0e3eca4c 2887 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
55d284af 2888 },
b4d3978c
PM
2889 /* Secure timer -- this is actually restricted to only EL3
2890 * and configurably Secure-EL1 via the accessfn.
2891 */
2892 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2893 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2894 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2895 .accessfn = gt_stimer_access,
2896 .readfn = gt_sec_tval_read,
2897 .writefn = gt_sec_tval_write,
2898 .resetfn = gt_sec_timer_reset,
2899 },
2900 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2901 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2902 .type = ARM_CP_IO, .access = PL1_RW,
2903 .accessfn = gt_stimer_access,
2904 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2905 .resetvalue = 0,
2906 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2907 },
2908 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2909 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2910 .type = ARM_CP_IO, .access = PL1_RW,
2911 .accessfn = gt_stimer_access,
2912 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2913 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2914 },
55d284af
PM
2915 REGINFO_SENTINEL
2916};
2917
2918#else
26c4a83b
AB
2919
2920/* In user-mode most of the generic timer registers are inaccessible
2921 * however modern kernels (4.12+) allow access to cntvct_el0
55d284af 2922 */
26c4a83b
AB
2923
2924static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2925{
7def8754
AJ
2926 ARMCPU *cpu = env_archcpu(env);
2927
26c4a83b
AB
2928 /* Currently we have no support for QEMUTimer in linux-user so we
2929 * can't call gt_get_countervalue(env), instead we directly
2930 * call the lower level functions.
2931 */
7def8754 2932 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
26c4a83b
AB
2933}
2934
6cc7a3ae 2935static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
26c4a83b
AB
2936 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2937 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2938 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2939 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2940 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2941 },
2942 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2943 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2944 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2945 .readfn = gt_virt_cnt_read,
2946 },
6cc7a3ae
PM
2947 REGINFO_SENTINEL
2948};
2949
55d284af
PM
2950#endif
2951
c4241c7d 2952static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 2953{
891a2fe7 2954 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8d5c773e 2955 raw_write(env, ri, value);
891a2fe7 2956 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8d5c773e 2957 raw_write(env, ri, value & 0xfffff6ff);
4a501606 2958 } else {
8d5c773e 2959 raw_write(env, ri, value & 0xfffff1ff);
4a501606 2960 }
4a501606
PM
2961}
2962
2963#ifndef CONFIG_USER_ONLY
2964/* get_phys_addr() isn't present for user-mode-only targets */
702a9357 2965
3f208fd7
PM
2966static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2967 bool isread)
92611c00
PM
2968{
2969 if (ri->opc2 & 4) {
87562e4f
PM
2970 /* The ATS12NSO* operations must trap to EL3 if executed in
2971 * Secure EL1 (which can only happen if EL3 is AArch64).
2972 * They are simply UNDEF if executed from NS EL1.
2973 * They function normally from EL2 or EL3.
92611c00 2974 */
87562e4f
PM
2975 if (arm_current_el(env) == 1) {
2976 if (arm_is_secure_below_el3(env)) {
2977 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2978 }
2979 return CP_ACCESS_TRAP_UNCATEGORIZED;
2980 }
92611c00
PM
2981 }
2982 return CP_ACCESS_OK;
2983}
2984
060e8a48 2985static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
03ae85f8 2986 MMUAccessType access_type, ARMMMUIdx mmu_idx)
4a501606 2987{
a8170e5e 2988 hwaddr phys_addr;
4a501606
PM
2989 target_ulong page_size;
2990 int prot;
b7cc4e82 2991 bool ret;
01c097f7 2992 uint64_t par64;
1313e2d7 2993 bool format64 = false;
8bf5b6a9 2994 MemTxAttrs attrs = {};
e14b5a23 2995 ARMMMUFaultInfo fi = {};
5b2d261d 2996 ARMCacheAttrs cacheattrs = {};
4a501606 2997
5b2d261d 2998 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
bc52bfeb 2999 &prot, &page_size, &fi, &cacheattrs);
1313e2d7 3000
0710b2fa
PM
3001 if (ret) {
3002 /*
3003 * Some kinds of translation fault must cause exceptions rather
3004 * than being reported in the PAR.
3005 */
3006 int current_el = arm_current_el(env);
3007 int target_el;
3008 uint32_t syn, fsr, fsc;
3009 bool take_exc = false;
3010
3011 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
3012 && (mmu_idx == ARMMMUIdx_S1NSE1 || mmu_idx == ARMMMUIdx_S1NSE0)) {
3013 /*
3014 * Synchronous stage 2 fault on an access made as part of the
3015 * translation table walk for AT S1E0* or AT S1E1* insn
3016 * executed from NS EL1. If this is a synchronous external abort
3017 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3018 * to EL3. Otherwise the fault is taken as an exception to EL2,
3019 * and HPFAR_EL2 holds the faulting IPA.
3020 */
3021 if (fi.type == ARMFault_SyncExternalOnWalk &&
3022 (env->cp15.scr_el3 & SCR_EA)) {
3023 target_el = 3;
3024 } else {
3025 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3026 target_el = 2;
3027 }
3028 take_exc = true;
3029 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3030 /*
3031 * Synchronous external aborts during a translation table walk
3032 * are taken as Data Abort exceptions.
3033 */
3034 if (fi.stage2) {
3035 if (current_el == 3) {
3036 target_el = 3;
3037 } else {
3038 target_el = 2;
3039 }
3040 } else {
3041 target_el = exception_target_el(env);
3042 }
3043 take_exc = true;
3044 }
3045
3046 if (take_exc) {
3047 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3048 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3049 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3050 fsr = arm_fi_to_lfsc(&fi);
3051 fsc = extract32(fsr, 0, 6);
3052 } else {
3053 fsr = arm_fi_to_sfsc(&fi);
3054 fsc = 0x3f;
3055 }
3056 /*
3057 * Report exception with ESR indicating a fault due to a
3058 * translation table walk for a cache maintenance instruction.
3059 */
3060 syn = syn_data_abort_no_iss(current_el == target_el,
3061 fi.ea, 1, fi.s1ptw, 1, fsc);
3062 env->exception.vaddress = value;
3063 env->exception.fsr = fsr;
3064 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3065 }
3066 }
3067
1313e2d7
EI
3068 if (is_a64(env)) {
3069 format64 = true;
3070 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3071 /*
3072 * ATS1Cxx:
3073 * * TTBCR.EAE determines whether the result is returned using the
3074 * 32-bit or the 64-bit PAR format
3075 * * Instructions executed in Hyp mode always use the 64bit format
3076 *
3077 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3078 * * The Non-secure TTBCR.EAE bit is set to 1
3079 * * The implementation includes EL2, and the value of HCR.VM is 1
3080 *
9d1bab33
PM
3081 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3082 *
23463e0e 3083 * ATS1Hx always uses the 64bit format.
1313e2d7
EI
3084 */
3085 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3086
3087 if (arm_feature(env, ARM_FEATURE_EL2)) {
3088 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9d1bab33 3089 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
1313e2d7
EI
3090 } else {
3091 format64 |= arm_current_el(env) == 2;
3092 }
3093 }
3094 }
3095
3096 if (format64) {
5efe9ed4 3097 /* Create a 64-bit PAR */
01c097f7 3098 par64 = (1 << 11); /* LPAE bit always set */
b7cc4e82 3099 if (!ret) {
702a9357 3100 par64 |= phys_addr & ~0xfffULL;
8bf5b6a9
PM
3101 if (!attrs.secure) {
3102 par64 |= (1 << 9); /* NS */
3103 }
5b2d261d
AB
3104 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3105 par64 |= cacheattrs.shareability << 7; /* SH */
4a501606 3106 } else {
5efe9ed4
PM
3107 uint32_t fsr = arm_fi_to_lfsc(&fi);
3108
702a9357 3109 par64 |= 1; /* F */
b7cc4e82 3110 par64 |= (fsr & 0x3f) << 1; /* FS */
0f7b791b
PM
3111 if (fi.stage2) {
3112 par64 |= (1 << 9); /* S */
3113 }
3114 if (fi.s1ptw) {
3115 par64 |= (1 << 8); /* PTW */
3116 }
4a501606
PM
3117 }
3118 } else {
b7cc4e82 3119 /* fsr is a DFSR/IFSR value for the short descriptor
702a9357
PM
3120 * translation table format (with WnR always clear).
3121 * Convert it to a 32-bit PAR.
3122 */
b7cc4e82 3123 if (!ret) {
702a9357
PM
3124 /* We do not set any attribute bits in the PAR */
3125 if (page_size == (1 << 24)
3126 && arm_feature(env, ARM_FEATURE_V7)) {
01c097f7 3127 par64 = (phys_addr & 0xff000000) | (1 << 1);
702a9357 3128 } else {
01c097f7 3129 par64 = phys_addr & 0xfffff000;
702a9357 3130 }
8bf5b6a9
PM
3131 if (!attrs.secure) {
3132 par64 |= (1 << 9); /* NS */
3133 }
702a9357 3134 } else {
5efe9ed4
PM
3135 uint32_t fsr = arm_fi_to_sfsc(&fi);
3136
b7cc4e82
PC
3137 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3138 ((fsr & 0xf) << 1) | 1;
702a9357 3139 }
4a501606 3140 }
060e8a48
PM
3141 return par64;
3142}
3143
3144static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3145{
03ae85f8 3146 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
060e8a48 3147 uint64_t par64;
d3649702
PM
3148 ARMMMUIdx mmu_idx;
3149 int el = arm_current_el(env);
3150 bool secure = arm_is_secure_below_el3(env);
060e8a48 3151
d3649702
PM
3152 switch (ri->opc2 & 6) {
3153 case 0:
3154 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3155 switch (el) {
3156 case 3:
3157 mmu_idx = ARMMMUIdx_S1E3;
3158 break;
3159 case 2:
3160 mmu_idx = ARMMMUIdx_S1NSE1;
3161 break;
3162 case 1:
3163 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3164 break;
3165 default:
3166 g_assert_not_reached();
3167 }
3168 break;
3169 case 2:
3170 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3171 switch (el) {
3172 case 3:
3173 mmu_idx = ARMMMUIdx_S1SE0;
3174 break;
3175 case 2:
3176 mmu_idx = ARMMMUIdx_S1NSE0;
3177 break;
3178 case 1:
3179 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3180 break;
3181 default:
3182 g_assert_not_reached();
3183 }
3184 break;
3185 case 4:
3186 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3187 mmu_idx = ARMMMUIdx_S12NSE1;
3188 break;
3189 case 6:
3190 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3191 mmu_idx = ARMMMUIdx_S12NSE0;
3192 break;
3193 default:
3194 g_assert_not_reached();
3195 }
3196
3197 par64 = do_ats_write(env, value, access_type, mmu_idx);
01c097f7
FA
3198
3199 A32_BANKED_CURRENT_REG_SET(env, par, par64);
4a501606 3200}
060e8a48 3201
14db7fe0
PM
3202static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3203 uint64_t value)
3204{
03ae85f8 3205 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
14db7fe0
PM
3206 uint64_t par64;
3207
23463e0e 3208 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
14db7fe0
PM
3209
3210 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3211}
3212
3f208fd7
PM
3213static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3214 bool isread)
2a47df95
PM
3215{
3216 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3217 return CP_ACCESS_TRAP;
3218 }
3219 return CP_ACCESS_OK;
3220}
3221
060e8a48
PM
3222static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3223 uint64_t value)
3224{
03ae85f8 3225 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
d3649702
PM
3226 ARMMMUIdx mmu_idx;
3227 int secure = arm_is_secure_below_el3(env);
3228
3229 switch (ri->opc2 & 6) {
3230 case 0:
3231 switch (ri->opc1) {
3232 case 0: /* AT S1E1R, AT S1E1W */
3233 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3234 break;
3235 case 4: /* AT S1E2R, AT S1E2W */
3236 mmu_idx = ARMMMUIdx_S1E2;
3237 break;
3238 case 6: /* AT S1E3R, AT S1E3W */
3239 mmu_idx = ARMMMUIdx_S1E3;
3240 break;
3241 default:
3242 g_assert_not_reached();
3243 }
3244 break;
3245 case 2: /* AT S1E0R, AT S1E0W */
3246 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3247 break;
3248 case 4: /* AT S12E1R, AT S12E1W */
2a47df95 3249 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
d3649702
PM
3250 break;
3251 case 6: /* AT S12E0R, AT S12E0W */
2a47df95 3252 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
d3649702
PM
3253 break;
3254 default:
3255 g_assert_not_reached();
3256 }
060e8a48 3257
d3649702 3258 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
060e8a48 3259}
4a501606
PM
3260#endif
3261
3262static const ARMCPRegInfo vapa_cp_reginfo[] = {
3263 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3264 .access = PL1_RW, .resetvalue = 0,
01c097f7
FA
3265 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3266 offsetoflow32(CPUARMState, cp15.par_ns) },
4a501606
PM
3267 .writefn = par_write },
3268#ifndef CONFIG_USER_ONLY
87562e4f 3269 /* This underdecoding is safe because the reginfo is NO_RAW. */
4a501606 3270 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
92611c00 3271 .access = PL1_W, .accessfn = ats_access,
0710b2fa 3272 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
4a501606
PM
3273#endif
3274 REGINFO_SENTINEL
3275};
3276
18032bec
PM
3277/* Return basic MPU access permission bits. */
3278static uint32_t simple_mpu_ap_bits(uint32_t val)
3279{
3280 uint32_t ret;
3281 uint32_t mask;
3282 int i;
3283 ret = 0;
3284 mask = 3;
3285 for (i = 0; i < 16; i += 2) {
3286 ret |= (val >> i) & mask;
3287 mask <<= 2;
3288 }
3289 return ret;
3290}
3291
3292/* Pad basic MPU access permission bits to extended format. */
3293static uint32_t extended_mpu_ap_bits(uint32_t val)
3294{
3295 uint32_t ret;
3296 uint32_t mask;
3297 int i;
3298 ret = 0;
3299 mask = 3;
3300 for (i = 0; i < 16; i += 2) {
3301 ret |= (val & mask) << i;
3302 mask <<= 2;
3303 }
3304 return ret;
3305}
3306
c4241c7d
PM
3307static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3308 uint64_t value)
18032bec 3309{
7e09797c 3310 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
18032bec
PM
3311}
3312
c4241c7d 3313static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 3314{
7e09797c 3315 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
18032bec
PM
3316}
3317
c4241c7d
PM
3318static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3319 uint64_t value)
18032bec 3320{
7e09797c 3321 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
18032bec
PM
3322}
3323
c4241c7d 3324static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 3325{
7e09797c 3326 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
18032bec
PM
3327}
3328
6cb0b013
PC
3329static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3330{
3331 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3332
3333 if (!u32p) {
3334 return 0;
3335 }
3336
1bc04a88 3337 u32p += env->pmsav7.rnr[M_REG_NS];
6cb0b013
PC
3338 return *u32p;
3339}
3340
3341static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3342 uint64_t value)
3343{
2fc0cc0e 3344 ARMCPU *cpu = env_archcpu(env);
6cb0b013
PC
3345 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3346
3347 if (!u32p) {
3348 return;
3349 }
3350
1bc04a88 3351 u32p += env->pmsav7.rnr[M_REG_NS];
d10eb08f 3352 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
6cb0b013
PC
3353 *u32p = value;
3354}
3355
6cb0b013
PC
3356static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3357 uint64_t value)
3358{
2fc0cc0e 3359 ARMCPU *cpu = env_archcpu(env);
6cb0b013
PC
3360 uint32_t nrgs = cpu->pmsav7_dregion;
3361
3362 if (value >= nrgs) {
3363 qemu_log_mask(LOG_GUEST_ERROR,
3364 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3365 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3366 return;
3367 }
3368
3369 raw_write(env, ri, value);
3370}
3371
3372static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
69ceea64
PM
3373 /* Reset for all these registers is handled in arm_cpu_reset(),
3374 * because the PMSAv7 is also used by M-profile CPUs, which do
3375 * not register cpregs but still need the state to be reset.
3376 */
6cb0b013
PC
3377 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3378 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3379 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
69ceea64
PM
3380 .readfn = pmsav7_read, .writefn = pmsav7_write,
3381 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
3382 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3383 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3384 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
69ceea64
PM
3385 .readfn = pmsav7_read, .writefn = pmsav7_write,
3386 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
3387 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3388 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3389 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
69ceea64
PM
3390 .readfn = pmsav7_read, .writefn = pmsav7_write,
3391 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
3392 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3393 .access = PL1_RW,
1bc04a88 3394 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
69ceea64
PM
3395 .writefn = pmsav7_rgnr_write,
3396 .resetfn = arm_cp_reset_ignore },
6cb0b013
PC
3397 REGINFO_SENTINEL
3398};
3399
18032bec
PM
3400static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3401 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 3402 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 3403 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
18032bec
PM
3404 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3405 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
7a0e58fa 3406 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 3407 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
18032bec
PM
3408 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3409 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3410 .access = PL1_RW,
7e09797c
PM
3411 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3412 .resetvalue = 0, },
18032bec
PM
3413 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3414 .access = PL1_RW,
7e09797c
PM
3415 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3416 .resetvalue = 0, },
ecce5c3c
PM
3417 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3418 .access = PL1_RW,
3419 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3420 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3421 .access = PL1_RW,
3422 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31 3423 /* Protection region base and size registers */
e508a92b
PM
3424 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3425 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3426 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3427 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3428 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3429 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3430 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3431 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3432 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3433 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3434 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3435 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3436 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3437 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3438 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3439 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3440 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3441 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3442 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3443 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3444 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3445 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3446 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3447 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
18032bec
PM
3448 REGINFO_SENTINEL
3449};
3450
c4241c7d
PM
3451static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3452 uint64_t value)
ecce5c3c 3453{
11f136ee 3454 TCR *tcr = raw_ptr(env, ri);
2ebcebe2
PM
3455 int maskshift = extract32(value, 0, 3);
3456
e389be16
FA
3457 if (!arm_feature(env, ARM_FEATURE_V8)) {
3458 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3459 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3460 * using Long-desciptor translation table format */
3461 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3462 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3463 /* In an implementation that includes the Security Extensions
3464 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3465 * Short-descriptor translation table format.
3466 */
3467 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3468 } else {
3469 value &= TTBCR_N;
3470 }
e42c4db3 3471 }
e389be16 3472
b6af0975 3473 /* Update the masks corresponding to the TCR bank being written
11f136ee 3474 * Note that we always calculate mask and base_mask, but
e42c4db3 3475 * they are only used for short-descriptor tables (ie if EAE is 0);
11f136ee
FA
3476 * for long-descriptor tables the TCR fields are used differently
3477 * and the mask and base_mask values are meaningless.
e42c4db3 3478 */
11f136ee
FA
3479 tcr->raw_tcr = value;
3480 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3481 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
ecce5c3c
PM
3482}
3483
c4241c7d
PM
3484static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3485 uint64_t value)
d4e6df63 3486{
2fc0cc0e 3487 ARMCPU *cpu = env_archcpu(env);
ab638a32 3488 TCR *tcr = raw_ptr(env, ri);
00c8cb0a 3489
d4e6df63
PM
3490 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3491 /* With LPAE the TTBCR could result in a change of ASID
3492 * via the TTBCR.A1 bit, so do a TLB flush.
3493 */
d10eb08f 3494 tlb_flush(CPU(cpu));
d4e6df63 3495 }
ab638a32
RH
3496 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3497 value = deposit64(tcr->raw_tcr, 0, 32, value);
c4241c7d 3498 vmsa_ttbcr_raw_write(env, ri, value);
d4e6df63
PM
3499}
3500
ecce5c3c
PM
3501static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3502{
11f136ee
FA
3503 TCR *tcr = raw_ptr(env, ri);
3504
3505 /* Reset both the TCR as well as the masks corresponding to the bank of
3506 * the TCR being reset.
3507 */
3508 tcr->raw_tcr = 0;
3509 tcr->mask = 0;
3510 tcr->base_mask = 0xffffc000u;
ecce5c3c
PM
3511}
3512
cb2e37df
PM
3513static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3514 uint64_t value)
3515{
2fc0cc0e 3516 ARMCPU *cpu = env_archcpu(env);
11f136ee 3517 TCR *tcr = raw_ptr(env, ri);
00c8cb0a 3518
cb2e37df 3519 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
d10eb08f 3520 tlb_flush(CPU(cpu));
11f136ee 3521 tcr->raw_tcr = value;
cb2e37df
PM
3522}
3523
327ed10f
PM
3524static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3525 uint64_t value)
3526{
93f379b0
RH
3527 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3528 if (cpreg_field_is_64bit(ri) &&
3529 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
2fc0cc0e 3530 ARMCPU *cpu = env_archcpu(env);
d10eb08f 3531 tlb_flush(CPU(cpu));
327ed10f
PM
3532 }
3533 raw_write(env, ri, value);
3534}
3535
b698e9cf
EI
3536static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3537 uint64_t value)
3538{
2fc0cc0e 3539 ARMCPU *cpu = env_archcpu(env);
b698e9cf
EI
3540 CPUState *cs = CPU(cpu);
3541
3542 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
3543 if (raw_read(env, ri) != value) {
0336cbf8 3544 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3545 ARMMMUIdxBit_S12NSE1 |
3546 ARMMMUIdxBit_S12NSE0 |
3547 ARMMMUIdxBit_S2NS);
b698e9cf
EI
3548 raw_write(env, ri, value);
3549 }
3550}
3551
8e5d75c9 3552static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
18032bec 3553 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 3554 .access = PL1_RW, .type = ARM_CP_ALIAS,
4a7e2d73 3555 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
b061a82b 3556 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
18032bec 3557 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
88ca1c2d
FA
3558 .access = PL1_RW, .resetvalue = 0,
3559 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3560 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
8e5d75c9
PC
3561 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3562 .access = PL1_RW, .resetvalue = 0,
3563 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3564 offsetof(CPUARMState, cp15.dfar_ns) } },
3565 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3566 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3567 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3568 .resetvalue = 0, },
3569 REGINFO_SENTINEL
3570};
3571
3572static const ARMCPRegInfo vmsa_cp_reginfo[] = {
6cd8a264
RH
3573 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3574 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3575 .access = PL1_RW,
d81c519c 3576 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
327ed10f 3577 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
3578 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3579 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3580 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3581 offsetof(CPUARMState, cp15.ttbr0_ns) } },
327ed10f 3582 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
3583 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3584 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3585 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3586 offsetof(CPUARMState, cp15.ttbr1_ns) } },
cb2e37df
PM
3587 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3588 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3589 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3590 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
11f136ee 3591 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
cb2e37df 3592 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
7a0e58fa 3593 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
b061a82b 3594 .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee
FA
3595 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3596 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
18032bec
PM
3597 REGINFO_SENTINEL
3598};
3599
ab638a32
RH
3600/* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3601 * qemu tlbs nor adjusting cached masks.
3602 */
3603static const ARMCPRegInfo ttbcr2_reginfo = {
3604 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3605 .access = PL1_RW, .type = ARM_CP_ALIAS,
3606 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3607 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3608};
3609
c4241c7d
PM
3610static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3611 uint64_t value)
1047b9d7
PM
3612{
3613 env->cp15.c15_ticonfig = value & 0xe7;
3614 /* The OS_TYPE bit in this register changes the reported CPUID! */
3615 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3616 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1047b9d7
PM
3617}
3618
c4241c7d
PM
3619static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3620 uint64_t value)
1047b9d7
PM
3621{
3622 env->cp15.c15_threadid = value & 0xffff;
1047b9d7
PM
3623}
3624
c4241c7d
PM
3625static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3626 uint64_t value)
1047b9d7
PM
3627{
3628 /* Wait-for-interrupt (deprecated) */
2fc0cc0e 3629 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
1047b9d7
PM
3630}
3631
c4241c7d
PM
3632static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3633 uint64_t value)
c4804214
PM
3634{
3635 /* On OMAP there are registers indicating the max/min index of dcache lines
3636 * containing a dirty line; cache flush operations have to reset these.
3637 */
3638 env->cp15.c15_i_max = 0x000;
3639 env->cp15.c15_i_min = 0xff0;
c4804214
PM
3640}
3641
18032bec
PM
3642static const ARMCPRegInfo omap_cp_reginfo[] = {
3643 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3644 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
d81c519c 3645 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
6cd8a264 3646 .resetvalue = 0, },
1047b9d7
PM
3647 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3648 .access = PL1_RW, .type = ARM_CP_NOP },
3649 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3650 .access = PL1_RW,
3651 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3652 .writefn = omap_ticonfig_write },
3653 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3654 .access = PL1_RW,
3655 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3656 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3657 .access = PL1_RW, .resetvalue = 0xff0,
3658 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3659 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3660 .access = PL1_RW,
3661 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3662 .writefn = omap_threadid_write },
3663 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3664 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
7a0e58fa 3665 .type = ARM_CP_NO_RAW,
1047b9d7
PM
3666 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3667 /* TODO: Peripheral port remap register:
3668 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3669 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3670 * when MMU is off.
3671 */
c4804214 3672 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
d4e6df63 3673 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
7a0e58fa 3674 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
c4804214 3675 .writefn = omap_cachemaint_write },
34f90529
PM
3676 { .name = "C9", .cp = 15, .crn = 9,
3677 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3678 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
3679 REGINFO_SENTINEL
3680};
3681
c4241c7d
PM
3682static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3683 uint64_t value)
1047b9d7 3684{
c0f4af17 3685 env->cp15.c15_cpar = value & 0x3fff;
1047b9d7
PM
3686}
3687
3688static const ARMCPRegInfo xscale_cp_reginfo[] = {
3689 { .name = "XSCALE_CPAR",
3690 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3691 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3692 .writefn = xscale_cpar_write, },
2771db27
PM
3693 { .name = "XSCALE_AUXCR",
3694 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3695 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3696 .resetvalue = 0, },
3b771579
PM
3697 /* XScale specific cache-lockdown: since we have no cache we NOP these
3698 * and hope the guest does not really rely on cache behaviour.
3699 */
3700 { .name = "XSCALE_LOCK_ICACHE_LINE",
3701 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3702 .access = PL1_W, .type = ARM_CP_NOP },
3703 { .name = "XSCALE_UNLOCK_ICACHE",
3704 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3705 .access = PL1_W, .type = ARM_CP_NOP },
3706 { .name = "XSCALE_DCACHE_LOCK",
3707 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3708 .access = PL1_RW, .type = ARM_CP_NOP },
3709 { .name = "XSCALE_UNLOCK_DCACHE",
3710 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3711 .access = PL1_W, .type = ARM_CP_NOP },
1047b9d7
PM
3712 REGINFO_SENTINEL
3713};
3714
3715static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3716 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3717 * implementation of this implementation-defined space.
3718 * Ideally this should eventually disappear in favour of actually
3719 * implementing the correct behaviour for all cores.
3720 */
3721 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3722 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671cd87 3723 .access = PL1_RW,
7a0e58fa 3724 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
d4e6df63 3725 .resetvalue = 0 },
18032bec
PM
3726 REGINFO_SENTINEL
3727};
3728
c4804214
PM
3729static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3730 /* Cache status: RAZ because we have no cache so it's always clean */
3731 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
7a0e58fa 3732 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 3733 .resetvalue = 0 },
c4804214
PM
3734 REGINFO_SENTINEL
3735};
3736
3737static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3738 /* We never have a a block transfer operation in progress */
3739 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
7a0e58fa 3740 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 3741 .resetvalue = 0 },
30b05bba
PM
3742 /* The cache ops themselves: these all NOP for QEMU */
3743 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3744 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3745 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3746 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3747 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3748 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3749 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3750 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3751 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3752 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3753 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3754 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
c4804214
PM
3755 REGINFO_SENTINEL
3756};
3757
3758static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3759 /* The cache test-and-clean instructions always return (1 << 30)
3760 * to indicate that there are no dirty cache lines.
3761 */
3762 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
7a0e58fa 3763 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 3764 .resetvalue = (1 << 30) },
c4804214 3765 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
7a0e58fa 3766 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 3767 .resetvalue = (1 << 30) },
c4804214
PM
3768 REGINFO_SENTINEL
3769};
3770
34f90529
PM
3771static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3772 /* Ignore ReadBuffer accesses */
3773 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3774 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
d4e6df63 3775 .access = PL1_RW, .resetvalue = 0,
7a0e58fa 3776 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
34f90529
PM
3777 REGINFO_SENTINEL
3778};
3779
731de9e6
EI
3780static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3781{
2fc0cc0e 3782 ARMCPU *cpu = env_archcpu(env);
731de9e6
EI
3783 unsigned int cur_el = arm_current_el(env);
3784 bool secure = arm_is_secure(env);
3785
3786 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3787 return env->cp15.vpidr_el2;
3788 }
3789 return raw_read(env, ri);
3790}
3791
06a7e647 3792static uint64_t mpidr_read_val(CPUARMState *env)
81bdde9d 3793{
2fc0cc0e 3794 ARMCPU *cpu = env_archcpu(env);
eb5e1d3c
PF
3795 uint64_t mpidr = cpu->mp_affinity;
3796
81bdde9d 3797 if (arm_feature(env, ARM_FEATURE_V7MP)) {
78dbbbe4 3798 mpidr |= (1U << 31);
81bdde9d
PM
3799 /* Cores which are uniprocessor (non-coherent)
3800 * but still implement the MP extensions set
a8e81b31 3801 * bit 30. (For instance, Cortex-R5).
81bdde9d 3802 */
a8e81b31
PC
3803 if (cpu->mp_is_up) {
3804 mpidr |= (1u << 30);
3805 }
81bdde9d 3806 }
c4241c7d 3807 return mpidr;
81bdde9d
PM
3808}
3809
06a7e647
EI
3810static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3811{
f0d574d6
EI
3812 unsigned int cur_el = arm_current_el(env);
3813 bool secure = arm_is_secure(env);
3814
3815 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3816 return env->cp15.vmpidr_el2;
3817 }
06a7e647
EI
3818 return mpidr_read_val(env);
3819}
3820
7ac681cf 3821static const ARMCPRegInfo lpae_cp_reginfo[] = {
a903c449 3822 /* NOP AMAIR0/1 */
b0fe2427
PM
3823 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3824 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
a903c449 3825 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 3826 .resetvalue = 0 },
b0fe2427 3827 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
7ac681cf 3828 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
a903c449 3829 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 3830 .resetvalue = 0 },
891a2fe7 3831 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
01c097f7
FA
3832 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3833 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3834 offsetof(CPUARMState, cp15.par_ns)} },
891a2fe7 3835 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
7a0e58fa 3836 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
3837 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3838 offsetof(CPUARMState, cp15.ttbr0_ns) },
b061a82b 3839 .writefn = vmsa_ttbr_write, },
891a2fe7 3840 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
7a0e58fa 3841 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
3842 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3843 offsetof(CPUARMState, cp15.ttbr1_ns) },
b061a82b 3844 .writefn = vmsa_ttbr_write, },
7ac681cf
PM
3845 REGINFO_SENTINEL
3846};
3847
c4241c7d 3848static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 3849{
c4241c7d 3850 return vfp_get_fpcr(env);
b0d2b7d0
PM
3851}
3852
c4241c7d
PM
3853static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3854 uint64_t value)
b0d2b7d0
PM
3855{
3856 vfp_set_fpcr(env, value);
b0d2b7d0
PM
3857}
3858
c4241c7d 3859static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 3860{
c4241c7d 3861 return vfp_get_fpsr(env);
b0d2b7d0
PM
3862}
3863
c4241c7d
PM
3864static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3865 uint64_t value)
b0d2b7d0
PM
3866{
3867 vfp_set_fpsr(env, value);
b0d2b7d0
PM
3868}
3869
3f208fd7
PM
3870static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3871 bool isread)
c2b820fe 3872{
137feaa9 3873 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
c2b820fe
PM
3874 return CP_ACCESS_TRAP;
3875 }
3876 return CP_ACCESS_OK;
3877}
3878
3879static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3880 uint64_t value)
3881{
3882 env->daif = value & PSTATE_DAIF;
3883}
3884
8af35c37 3885static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3f208fd7
PM
3886 const ARMCPRegInfo *ri,
3887 bool isread)
8af35c37
PM
3888{
3889 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3890 * SCTLR_EL1.UCI is set.
3891 */
137feaa9 3892 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
8af35c37
PM
3893 return CP_ACCESS_TRAP;
3894 }
3895 return CP_ACCESS_OK;
3896}
3897
dbb1fb27
AB
3898/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3899 * Page D4-1736 (DDI0487A.b)
3900 */
3901
fd3ed969
PM
3902static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3903 uint64_t value)
168aa23b 3904{
29a0af61 3905 CPUState *cs = env_cpu(env);
fd3ed969 3906 bool sec = arm_is_secure_below_el3(env);
dbb1fb27 3907
a67cf277
AB
3908 if (sec) {
3909 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3910 ARMMMUIdxBit_S1SE1 |
3911 ARMMMUIdxBit_S1SE0);
a67cf277
AB
3912 } else {
3913 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3914 ARMMMUIdxBit_S12NSE1 |
3915 ARMMMUIdxBit_S12NSE0);
fd3ed969 3916 }
168aa23b
PM
3917}
3918
b4ab8ce9
PM
3919static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3920 uint64_t value)
3921{
29a0af61 3922 CPUState *cs = env_cpu(env);
b4ab8ce9
PM
3923
3924 if (tlb_force_broadcast(env)) {
09a86dfa 3925 tlbi_aa64_vmalle1is_write(env, NULL, value);
b4ab8ce9
PM
3926 return;
3927 }
3928
3929 if (arm_is_secure_below_el3(env)) {
3930 tlb_flush_by_mmuidx(cs,
3931 ARMMMUIdxBit_S1SE1 |
3932 ARMMMUIdxBit_S1SE0);
3933 } else {
3934 tlb_flush_by_mmuidx(cs,
3935 ARMMMUIdxBit_S12NSE1 |
3936 ARMMMUIdxBit_S12NSE0);
3937 }
3938}
3939
fd3ed969
PM
3940static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3941 uint64_t value)
168aa23b 3942{
fd3ed969
PM
3943 /* Note that the 'ALL' scope must invalidate both stage 1 and
3944 * stage 2 translations, whereas most other scopes only invalidate
3945 * stage 1 translations.
3946 */
2fc0cc0e 3947 ARMCPU *cpu = env_archcpu(env);
fd3ed969
PM
3948 CPUState *cs = CPU(cpu);
3949
3950 if (arm_is_secure_below_el3(env)) {
0336cbf8 3951 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3952 ARMMMUIdxBit_S1SE1 |
3953 ARMMMUIdxBit_S1SE0);
fd3ed969
PM
3954 } else {
3955 if (arm_feature(env, ARM_FEATURE_EL2)) {
0336cbf8 3956 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3957 ARMMMUIdxBit_S12NSE1 |
3958 ARMMMUIdxBit_S12NSE0 |
3959 ARMMMUIdxBit_S2NS);
fd3ed969 3960 } else {
0336cbf8 3961 tlb_flush_by_mmuidx(cs,
8bd5c820
PM
3962 ARMMMUIdxBit_S12NSE1 |
3963 ARMMMUIdxBit_S12NSE0);
fd3ed969
PM
3964 }
3965 }
168aa23b
PM
3966}
3967
fd3ed969 3968static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
fa439fc5
PM
3969 uint64_t value)
3970{
2fc0cc0e 3971 ARMCPU *cpu = env_archcpu(env);
fd3ed969
PM
3972 CPUState *cs = CPU(cpu);
3973
8bd5c820 3974 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
fd3ed969
PM
3975}
3976
43efaa33
PM
3977static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3978 uint64_t value)
3979{
2fc0cc0e 3980 ARMCPU *cpu = env_archcpu(env);
43efaa33
PM
3981 CPUState *cs = CPU(cpu);
3982
8bd5c820 3983 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
43efaa33
PM
3984}
3985
fd3ed969
PM
3986static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3987 uint64_t value)
3988{
3989 /* Note that the 'ALL' scope must invalidate both stage 1 and
3990 * stage 2 translations, whereas most other scopes only invalidate
3991 * stage 1 translations.
3992 */
29a0af61 3993 CPUState *cs = env_cpu(env);
fd3ed969
PM
3994 bool sec = arm_is_secure_below_el3(env);
3995 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
a67cf277
AB
3996
3997 if (sec) {
3998 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
3999 ARMMMUIdxBit_S1SE1 |
4000 ARMMMUIdxBit_S1SE0);
a67cf277
AB
4001 } else if (has_el2) {
4002 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
4003 ARMMMUIdxBit_S12NSE1 |
4004 ARMMMUIdxBit_S12NSE0 |
4005 ARMMMUIdxBit_S2NS);
a67cf277
AB
4006 } else {
4007 tlb_flush_by_mmuidx_all_cpus_synced(cs,
8bd5c820
PM
4008 ARMMMUIdxBit_S12NSE1 |
4009 ARMMMUIdxBit_S12NSE0);
fa439fc5
PM
4010 }
4011}
4012
2bfb9d75
PM
4013static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4014 uint64_t value)
4015{
29a0af61 4016 CPUState *cs = env_cpu(env);
2bfb9d75 4017
8bd5c820 4018 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
2bfb9d75
PM
4019}
4020
43efaa33
PM
4021static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4022 uint64_t value)
4023{
29a0af61 4024 CPUState *cs = env_cpu(env);
43efaa33 4025
8bd5c820 4026 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
43efaa33
PM
4027}
4028
fd3ed969
PM
4029static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4030 uint64_t value)
fa439fc5 4031{
fd3ed969
PM
4032 /* Invalidate by VA, EL2
4033 * Currently handles both VAE2 and VALE2, since we don't support
4034 * flush-last-level-only.
4035 */
2fc0cc0e 4036 ARMCPU *cpu = env_archcpu(env);
fd3ed969
PM
4037 CPUState *cs = CPU(cpu);
4038 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4039
8bd5c820 4040 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
fd3ed969
PM
4041}
4042
43efaa33
PM
4043static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4044 uint64_t value)
4045{
4046 /* Invalidate by VA, EL3
4047 * Currently handles both VAE3 and VALE3, since we don't support
4048 * flush-last-level-only.
4049 */
2fc0cc0e 4050 ARMCPU *cpu = env_archcpu(env);
43efaa33
PM
4051 CPUState *cs = CPU(cpu);
4052 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4053
8bd5c820 4054 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
43efaa33
PM
4055}
4056
fd3ed969
PM
4057static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4058 uint64_t value)
4059{
2fc0cc0e 4060 ARMCPU *cpu = env_archcpu(env);
a67cf277 4061 CPUState *cs = CPU(cpu);
fd3ed969 4062 bool sec = arm_is_secure_below_el3(env);
fa439fc5
PM
4063 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4064
a67cf277
AB
4065 if (sec) {
4066 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820
PM
4067 ARMMMUIdxBit_S1SE1 |
4068 ARMMMUIdxBit_S1SE0);
a67cf277
AB
4069 } else {
4070 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820
PM
4071 ARMMMUIdxBit_S12NSE1 |
4072 ARMMMUIdxBit_S12NSE0);
fa439fc5
PM
4073 }
4074}
4075
b4ab8ce9
PM
4076static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4077 uint64_t value)
4078{
4079 /* Invalidate by VA, EL1&0 (AArch64 version).
4080 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4081 * since we don't support flush-for-specific-ASID-only or
4082 * flush-last-level-only.
4083 */
2fc0cc0e 4084 ARMCPU *cpu = env_archcpu(env);
b4ab8ce9
PM
4085 CPUState *cs = CPU(cpu);
4086 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4087
4088 if (tlb_force_broadcast(env)) {
4089 tlbi_aa64_vae1is_write(env, NULL, value);
4090 return;
4091 }
4092
4093 if (arm_is_secure_below_el3(env)) {
4094 tlb_flush_page_by_mmuidx(cs, pageaddr,
4095 ARMMMUIdxBit_S1SE1 |
4096 ARMMMUIdxBit_S1SE0);
4097 } else {
4098 tlb_flush_page_by_mmuidx(cs, pageaddr,
4099 ARMMMUIdxBit_S12NSE1 |
4100 ARMMMUIdxBit_S12NSE0);
4101 }
4102}
4103
fd3ed969
PM
4104static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4105 uint64_t value)
fa439fc5 4106{
29a0af61 4107 CPUState *cs = env_cpu(env);
fd3ed969 4108 uint64_t pageaddr = sextract64(value << 12, 0, 56);
fa439fc5 4109
a67cf277 4110 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 4111 ARMMMUIdxBit_S1E2);
fa439fc5
PM
4112}
4113
43efaa33
PM
4114static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4115 uint64_t value)
4116{
29a0af61 4117 CPUState *cs = env_cpu(env);
43efaa33
PM
4118 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4119
a67cf277 4120 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 4121 ARMMMUIdxBit_S1E3);
43efaa33
PM
4122}
4123
cea66e91
PM
4124static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4125 uint64_t value)
4126{
4127 /* Invalidate by IPA. This has to invalidate any structures that
4128 * contain only stage 2 translation information, but does not need
4129 * to apply to structures that contain combined stage 1 and stage 2
4130 * translation information.
4131 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4132 */
2fc0cc0e 4133 ARMCPU *cpu = env_archcpu(env);
cea66e91
PM
4134 CPUState *cs = CPU(cpu);
4135 uint64_t pageaddr;
4136
4137 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4138 return;
4139 }
4140
4141 pageaddr = sextract64(value << 12, 0, 48);
4142
8bd5c820 4143 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
cea66e91
PM
4144}
4145
4146static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4147 uint64_t value)
4148{
29a0af61 4149 CPUState *cs = env_cpu(env);
cea66e91
PM
4150 uint64_t pageaddr;
4151
4152 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4153 return;
4154 }
4155
4156 pageaddr = sextract64(value << 12, 0, 48);
4157
a67cf277 4158 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
8bd5c820 4159 ARMMMUIdxBit_S2NS);
cea66e91
PM
4160}
4161
3f208fd7
PM
4162static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4163 bool isread)
aca3f40b
PM
4164{
4165 /* We don't implement EL2, so the only control on DC ZVA is the
4166 * bit in the SCTLR which can prohibit access for EL0.
4167 */
137feaa9 4168 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
aca3f40b
PM
4169 return CP_ACCESS_TRAP;
4170 }
4171 return CP_ACCESS_OK;
4172}
4173
4174static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4175{
2fc0cc0e 4176 ARMCPU *cpu = env_archcpu(env);
aca3f40b
PM
4177 int dzp_bit = 1 << 4;
4178
4179 /* DZP indicates whether DC ZVA access is allowed */
3f208fd7 4180 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
aca3f40b
PM
4181 dzp_bit = 0;
4182 }
4183 return cpu->dcz_blocksize | dzp_bit;
4184}
4185
3f208fd7
PM
4186static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4187 bool isread)
f502cfc2 4188{
cdcf1405 4189 if (!(env->pstate & PSTATE_SP)) {
f502cfc2
PM
4190 /* Access to SP_EL0 is undefined if it's being used as
4191 * the stack pointer.
4192 */
4193 return CP_ACCESS_TRAP_UNCATEGORIZED;
4194 }
4195 return CP_ACCESS_OK;
4196}
4197
4198static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4199{
4200 return env->pstate & PSTATE_SP;
4201}
4202
4203static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4204{
4205 update_spsel(env, val);
4206}
4207
137feaa9
FA
4208static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4209 uint64_t value)
4210{
2fc0cc0e 4211 ARMCPU *cpu = env_archcpu(env);
137feaa9
FA
4212
4213 if (raw_read(env, ri) == value) {
4214 /* Skip the TLB flush if nothing actually changed; Linux likes
4215 * to do a lot of pointless SCTLR writes.
4216 */
4217 return;
4218 }
4219
06312feb
PM
4220 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4221 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4222 value &= ~SCTLR_M;
4223 }
4224
137feaa9
FA
4225 raw_write(env, ri, value);
4226 /* ??? Lots of these bits are not implemented. */
4227 /* This may enable/disable the MMU, so do a TLB flush. */
d10eb08f 4228 tlb_flush(CPU(cpu));
2e5dcf36
RH
4229
4230 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4231 /*
4232 * Normally we would always end the TB on an SCTLR write; see the
4233 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4234 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4235 * of hflags from the translator, so do it here.
4236 */
4237 arm_rebuild_hflags(env);
4238 }
137feaa9
FA
4239}
4240
3f208fd7
PM
4241static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4242 bool isread)
03fbf20f
PM
4243{
4244 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
f2cae609 4245 return CP_ACCESS_TRAP_FP_EL2;
03fbf20f
PM
4246 }
4247 if (env->cp15.cptr_el[3] & CPTR_TFP) {
f2cae609 4248 return CP_ACCESS_TRAP_FP_EL3;
03fbf20f
PM
4249 }
4250 return CP_ACCESS_OK;
4251}
4252
a8d64e73
PM
4253static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4254 uint64_t value)
4255{
4256 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4257}
4258
b0d2b7d0
PM
4259static const ARMCPRegInfo v8_cp_reginfo[] = {
4260 /* Minimal set of EL0-visible registers. This will need to be expanded
4261 * significantly for system emulation of AArch64 CPUs.
4262 */
4263 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4264 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4265 .access = PL0_RW, .type = ARM_CP_NZCV },
c2b820fe
PM
4266 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4267 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
7a0e58fa 4268 .type = ARM_CP_NO_RAW,
c2b820fe
PM
4269 .access = PL0_RW, .accessfn = aa64_daif_access,
4270 .fieldoffset = offsetof(CPUARMState, daif),
4271 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
b0d2b7d0
PM
4272 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4273 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
b916c9c3 4274 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
fe03d45f 4275 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
b0d2b7d0
PM
4276 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4277 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
b916c9c3 4278 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
fe03d45f 4279 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
b0d2b7d0
PM
4280 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4281 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
7a0e58fa 4282 .access = PL0_R, .type = ARM_CP_NO_RAW,
aca3f40b
PM
4283 .readfn = aa64_dczid_read },
4284 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4285 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4286 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4287#ifndef CONFIG_USER_ONLY
4288 /* Avoid overhead of an access check that always passes in user-mode */
4289 .accessfn = aa64_zva_access,
4290#endif
4291 },
0eef9d98
PM
4292 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4293 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4294 .access = PL1_R, .type = ARM_CP_CURRENTEL },
8af35c37
PM
4295 /* Cache ops: all NOPs since we don't emulate caches */
4296 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4297 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4298 .access = PL1_W, .type = ARM_CP_NOP },
4299 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4300 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4301 .access = PL1_W, .type = ARM_CP_NOP },
4302 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4303 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4304 .access = PL0_W, .type = ARM_CP_NOP,
4305 .accessfn = aa64_cacheop_access },
4306 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4307 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4308 .access = PL1_W, .type = ARM_CP_NOP },
4309 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4310 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4311 .access = PL1_W, .type = ARM_CP_NOP },
4312 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4313 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4314 .access = PL0_W, .type = ARM_CP_NOP,
4315 .accessfn = aa64_cacheop_access },
4316 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4317 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4318 .access = PL1_W, .type = ARM_CP_NOP },
4319 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4320 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4321 .access = PL0_W, .type = ARM_CP_NOP,
4322 .accessfn = aa64_cacheop_access },
4323 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4324 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4325 .access = PL0_W, .type = ARM_CP_NOP,
4326 .accessfn = aa64_cacheop_access },
4327 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4328 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4329 .access = PL1_W, .type = ARM_CP_NOP },
168aa23b
PM
4330 /* TLBI operations */
4331 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4332 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 4333 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4334 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 4335 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4336 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 4337 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4338 .writefn = tlbi_aa64_vae1is_write },
168aa23b 4339 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4340 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 4341 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4342 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 4343 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4344 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 4345 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4346 .writefn = tlbi_aa64_vae1is_write },
168aa23b 4347 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4348 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 4349 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4350 .writefn = tlbi_aa64_vae1is_write },
168aa23b 4351 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 4352 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 4353 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4354 .writefn = tlbi_aa64_vae1is_write },
168aa23b 4355 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4356 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 4357 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4358 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 4359 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4360 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 4361 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4362 .writefn = tlbi_aa64_vae1_write },
168aa23b 4363 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4364 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 4365 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4366 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 4367 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4368 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 4369 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4370 .writefn = tlbi_aa64_vae1_write },
168aa23b 4371 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4372 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 4373 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4374 .writefn = tlbi_aa64_vae1_write },
168aa23b 4375 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 4376 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 4377 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 4378 .writefn = tlbi_aa64_vae1_write },
cea66e91
PM
4379 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4380 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4381 .access = PL2_W, .type = ARM_CP_NO_RAW,
4382 .writefn = tlbi_aa64_ipas2e1is_write },
4383 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4384 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4385 .access = PL2_W, .type = ARM_CP_NO_RAW,
4386 .writefn = tlbi_aa64_ipas2e1is_write },
83ddf975
PM
4387 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4388 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4389 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 4390 .writefn = tlbi_aa64_alle1is_write },
43efaa33
PM
4391 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4392 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4393 .access = PL2_W, .type = ARM_CP_NO_RAW,
4394 .writefn = tlbi_aa64_alle1is_write },
cea66e91
PM
4395 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4396 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4397 .access = PL2_W, .type = ARM_CP_NO_RAW,
4398 .writefn = tlbi_aa64_ipas2e1_write },
4399 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4400 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4401 .access = PL2_W, .type = ARM_CP_NO_RAW,
4402 .writefn = tlbi_aa64_ipas2e1_write },
83ddf975
PM
4403 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4404 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4405 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 4406 .writefn = tlbi_aa64_alle1_write },
43efaa33
PM
4407 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4408 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4409 .access = PL2_W, .type = ARM_CP_NO_RAW,
4410 .writefn = tlbi_aa64_alle1is_write },
19525524
PM
4411#ifndef CONFIG_USER_ONLY
4412 /* 64 bit address translation operations */
4413 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4414 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
0710b2fa
PM
4415 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4416 .writefn = ats_write64 },
19525524
PM
4417 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4418 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
0710b2fa
PM
4419 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4420 .writefn = ats_write64 },
19525524
PM
4421 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4422 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
0710b2fa
PM
4423 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4424 .writefn = ats_write64 },
19525524
PM
4425 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4426 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
0710b2fa
PM
4427 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4428 .writefn = ats_write64 },
2a47df95 4429 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
7a379c7e 4430 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
0710b2fa
PM
4431 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4432 .writefn = ats_write64 },
2a47df95 4433 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
7a379c7e 4434 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
0710b2fa
PM
4435 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4436 .writefn = ats_write64 },
2a47df95 4437 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
7a379c7e 4438 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
0710b2fa
PM
4439 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4440 .writefn = ats_write64 },
2a47df95 4441 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
7a379c7e 4442 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
0710b2fa
PM
4443 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4444 .writefn = ats_write64 },
2a47df95
PM
4445 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4446 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4447 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
0710b2fa
PM
4448 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4449 .writefn = ats_write64 },
2a47df95
PM
4450 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4451 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
0710b2fa
PM
4452 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4453 .writefn = ats_write64 },
c96fc9b5
EI
4454 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4455 .type = ARM_CP_ALIAS,
4456 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4457 .access = PL1_RW, .resetvalue = 0,
4458 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4459 .writefn = par_write },
19525524 4460#endif
995939a6 4461 /* TLB invalidate last level of translation table walk */
9449fdf6 4462 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 4463 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
9449fdf6 4464 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 4465 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 4466 .writefn = tlbimvaa_is_write },
9449fdf6 4467 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 4468 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
9449fdf6 4469 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 4470 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
541ef8c2
SS
4471 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4472 .type = ARM_CP_NO_RAW, .access = PL2_W,
4473 .writefn = tlbimva_hyp_write },
4474 { .name = "TLBIMVALHIS",
4475 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4476 .type = ARM_CP_NO_RAW, .access = PL2_W,
4477 .writefn = tlbimva_hyp_is_write },
4478 { .name = "TLBIIPAS2",
4479 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4480 .type = ARM_CP_NO_RAW, .access = PL2_W,
4481 .writefn = tlbiipas2_write },
4482 { .name = "TLBIIPAS2IS",
4483 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4484 .type = ARM_CP_NO_RAW, .access = PL2_W,
4485 .writefn = tlbiipas2_is_write },
4486 { .name = "TLBIIPAS2L",
4487 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4488 .type = ARM_CP_NO_RAW, .access = PL2_W,
4489 .writefn = tlbiipas2_write },
4490 { .name = "TLBIIPAS2LIS",
4491 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4492 .type = ARM_CP_NO_RAW, .access = PL2_W,
4493 .writefn = tlbiipas2_is_write },
9449fdf6
PM
4494 /* 32 bit cache operations */
4495 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4496 .type = ARM_CP_NOP, .access = PL1_W },
4497 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4498 .type = ARM_CP_NOP, .access = PL1_W },
4499 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4500 .type = ARM_CP_NOP, .access = PL1_W },
4501 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4502 .type = ARM_CP_NOP, .access = PL1_W },
4503 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4504 .type = ARM_CP_NOP, .access = PL1_W },
4505 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4506 .type = ARM_CP_NOP, .access = PL1_W },
4507 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4508 .type = ARM_CP_NOP, .access = PL1_W },
4509 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4510 .type = ARM_CP_NOP, .access = PL1_W },
4511 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4512 .type = ARM_CP_NOP, .access = PL1_W },
4513 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4514 .type = ARM_CP_NOP, .access = PL1_W },
4515 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4516 .type = ARM_CP_NOP, .access = PL1_W },
4517 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4518 .type = ARM_CP_NOP, .access = PL1_W },
4519 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4520 .type = ARM_CP_NOP, .access = PL1_W },
4521 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
4522 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4523 .access = PL1_RW, .resetvalue = 0,
4524 .writefn = dacr_write, .raw_writefn = raw_write,
4525 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4526 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a0618a19 4527 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 4528 .type = ARM_CP_ALIAS,
a0618a19 4529 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
6947f059
EI
4530 .access = PL1_RW,
4531 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
a65f1de9 4532 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 4533 .type = ARM_CP_ALIAS,
a65f1de9 4534 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
4535 .access = PL1_RW,
4536 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
f502cfc2
PM
4537 /* We rely on the access checks not allowing the guest to write to the
4538 * state field when SPSel indicates that it's being used as the stack
4539 * pointer.
4540 */
4541 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4542 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4543 .access = PL1_RW, .accessfn = sp_el0_access,
7a0e58fa 4544 .type = ARM_CP_ALIAS,
f502cfc2 4545 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
884b4dee
GB
4546 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4547 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 4548 .access = PL2_RW, .type = ARM_CP_ALIAS,
884b4dee 4549 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
f502cfc2
PM
4550 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4551 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
7a0e58fa 4552 .type = ARM_CP_NO_RAW,
f502cfc2 4553 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
03fbf20f
PM
4554 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4555 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4556 .type = ARM_CP_ALIAS,
4557 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4558 .access = PL2_RW, .accessfn = fpexc32_access },
6a43e0b6
PM
4559 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4560 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4561 .access = PL2_RW, .resetvalue = 0,
4562 .writefn = dacr_write, .raw_writefn = raw_write,
4563 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4564 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4565 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4566 .access = PL2_RW, .resetvalue = 0,
4567 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4568 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4569 .type = ARM_CP_ALIAS,
4570 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4571 .access = PL2_RW,
4572 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4573 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4574 .type = ARM_CP_ALIAS,
4575 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4576 .access = PL2_RW,
4577 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4578 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4579 .type = ARM_CP_ALIAS,
4580 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4581 .access = PL2_RW,
4582 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4583 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4584 .type = ARM_CP_ALIAS,
4585 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4586 .access = PL2_RW,
4587 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
a8d64e73
PM
4588 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4589 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4590 .resetvalue = 0,
4591 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4592 { .name = "SDCR", .type = ARM_CP_ALIAS,
4593 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4594 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4595 .writefn = sdcr_write,
4596 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
b0d2b7d0
PM
4597 REGINFO_SENTINEL
4598};
4599
d42e3c26 4600/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4771cd01 4601static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
d79e0c06 4602 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
d42e3c26
EI
4603 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4604 .access = PL2_RW,
4605 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
ce4afed8 4606 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
7a0e58fa 4607 .type = ARM_CP_NO_RAW,
f149e3e8
EI
4608 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4609 .access = PL2_RW,
ce4afed8 4610 .type = ARM_CP_CONST, .resetvalue = 0 },
831a2fca
PM
4611 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4612 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4613 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
68e78e33
PM
4614 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4615 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4616 .access = PL2_RW,
4617 .type = ARM_CP_CONST, .resetvalue = 0 },
c6f19164
GB
4618 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4619 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4620 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
95f949ac
EI
4621 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4622 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4623 .access = PL2_RW, .type = ARM_CP_CONST,
4624 .resetvalue = 0 },
4625 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
b5ede85b 4626 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
95f949ac 4627 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2179ef95
PM
4628 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4629 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4630 .access = PL2_RW, .type = ARM_CP_CONST,
4631 .resetvalue = 0 },
55b53c71 4632 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
b5ede85b 4633 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
2179ef95
PM
4634 .access = PL2_RW, .type = ARM_CP_CONST,
4635 .resetvalue = 0 },
37cd6c24
PM
4636 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4637 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4638 .access = PL2_RW, .type = ARM_CP_CONST,
4639 .resetvalue = 0 },
4640 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4641 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4642 .access = PL2_RW, .type = ARM_CP_CONST,
4643 .resetvalue = 0 },
06ec4c8c
EI
4644 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4645 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4646 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
68e9c2fe
EI
4647 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4648 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4649 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4650 .type = ARM_CP_CONST, .resetvalue = 0 },
b698e9cf
EI
4651 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4652 .cp = 15, .opc1 = 6, .crm = 2,
4653 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4654 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4655 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4656 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4657 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b9cb5323
EI
4658 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4659 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4660 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
ff05f37b
EI
4661 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4662 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4663 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
a57633c0
EI
4664 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4665 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4666 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4667 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4668 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4669 .resetvalue = 0 },
0b6440af
EI
4670 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4671 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4672 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
edac4d8a
EI
4673 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4674 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4675 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4676 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4677 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4678 .resetvalue = 0 },
b0e66d95
EI
4679 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4680 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4681 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4682 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4683 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4684 .resetvalue = 0 },
4685 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4686 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4687 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4688 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4689 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4690 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
14cc7b54
SF
4691 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4692 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
d6c8cf81
PM
4693 .access = PL2_RW, .accessfn = access_tda,
4694 .type = ARM_CP_CONST, .resetvalue = 0 },
59e05530
EI
4695 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4696 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4697 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4698 .type = ARM_CP_CONST, .resetvalue = 0 },
2a5a9abd
AF
4699 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4700 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4701 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
cba517c3
PM
4702 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4703 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4704 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4705 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4706 .type = ARM_CP_CONST,
4707 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4708 .access = PL2_RW, .resetvalue = 0 },
d42e3c26
EI
4709 REGINFO_SENTINEL
4710};
4711
ce4afed8
PM
4712/* Ditto, but for registers which exist in ARMv8 but not v7 */
4713static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4714 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4715 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4716 .access = PL2_RW,
4717 .type = ARM_CP_CONST, .resetvalue = 0 },
4718 REGINFO_SENTINEL
4719};
4720
f149e3e8
EI
4721static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4722{
2fc0cc0e 4723 ARMCPU *cpu = env_archcpu(env);
03c76131
RH
4724 /* Begin with bits defined in base ARMv8.0. */
4725 uint64_t valid_mask = MAKE_64BIT_MASK(0, 34);
f149e3e8
EI
4726
4727 if (arm_feature(env, ARM_FEATURE_EL3)) {
4728 valid_mask &= ~HCR_HCD;
77077a83
JK
4729 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4730 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4731 * However, if we're using the SMC PSCI conduit then QEMU is
4732 * effectively acting like EL3 firmware and so the guest at
4733 * EL2 should retain the ability to prevent EL1 from being
4734 * able to make SMC calls into the ersatz firmware, so in
4735 * that case HCR.TSC should be read/write.
4736 */
f149e3e8
EI
4737 valid_mask &= ~HCR_TSC;
4738 }
03c76131
RH
4739 if (cpu_isar_feature(aa64_vh, cpu)) {
4740 valid_mask |= HCR_E2H;
4741 }
2d7137c1
RH
4742 if (cpu_isar_feature(aa64_lor, cpu)) {
4743 valid_mask |= HCR_TLOR;
4744 }
ef682cdb
RH
4745 if (cpu_isar_feature(aa64_pauth, cpu)) {
4746 valid_mask |= HCR_API | HCR_APK;
4747 }
f149e3e8
EI
4748
4749 /* Clear RES0 bits. */
4750 value &= valid_mask;
4751
4752 /* These bits change the MMU setup:
4753 * HCR_VM enables stage 2 translation
4754 * HCR_PTW forbids certain page-table setups
4755 * HCR_DC Disables stage1 and enables stage2 translation
4756 */
ce4afed8 4757 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
d10eb08f 4758 tlb_flush(CPU(cpu));
f149e3e8 4759 }
ce4afed8 4760 env->cp15.hcr_el2 = value;
89430fc6
PM
4761
4762 /*
4763 * Updates to VI and VF require us to update the status of
4764 * virtual interrupts, which are the logical OR of these bits
4765 * and the state of the input lines from the GIC. (This requires
4766 * that we have the iothread lock, which is done by marking the
4767 * reginfo structs as ARM_CP_IO.)
4768 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4769 * possible for it to be taken immediately, because VIRQ and
4770 * VFIQ are masked unless running at EL0 or EL1, and HCR
4771 * can only be written at EL2.
4772 */
4773 g_assert(qemu_mutex_iothread_locked());
4774 arm_cpu_update_virq(cpu);
4775 arm_cpu_update_vfiq(cpu);
ce4afed8
PM
4776}
4777
4778static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4779 uint64_t value)
4780{
4781 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4782 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4783 hcr_write(env, NULL, value);
4784}
4785
4786static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4787 uint64_t value)
4788{
4789 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4790 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4791 hcr_write(env, NULL, value);
f149e3e8
EI
4792}
4793
f7778444
RH
4794/*
4795 * Return the effective value of HCR_EL2.
4796 * Bits that are not included here:
4797 * RW (read from SCR_EL3.RW as needed)
4798 */
4799uint64_t arm_hcr_el2_eff(CPUARMState *env)
4800{
4801 uint64_t ret = env->cp15.hcr_el2;
4802
4803 if (arm_is_secure_below_el3(env)) {
4804 /*
4805 * "This register has no effect if EL2 is not enabled in the
4806 * current Security state". This is ARMv8.4-SecEL2 speak for
4807 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4808 *
4809 * Prior to that, the language was "In an implementation that
4810 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4811 * as if this field is 0 for all purposes other than a direct
4812 * read or write access of HCR_EL2". With lots of enumeration
4813 * on a per-field basis. In current QEMU, this is condition
4814 * is arm_is_secure_below_el3.
4815 *
4816 * Since the v8.4 language applies to the entire register, and
4817 * appears to be backward compatible, use that.
4818 */
4819 ret = 0;
4820 } else if (ret & HCR_TGE) {
4821 /* These bits are up-to-date as of ARMv8.4. */
4822 if (ret & HCR_E2H) {
4823 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4824 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4825 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4826 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4827 } else {
4828 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4829 }
4830 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4831 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4832 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4833 HCR_TLOR);
4834 }
4835
4836 return ret;
4837}
4838
fc1120a7
PM
4839static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4840 uint64_t value)
4841{
4842 /*
4843 * For A-profile AArch32 EL3, if NSACR.CP10
4844 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4845 */
4846 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4847 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4848 value &= ~(0x3 << 10);
4849 value |= env->cp15.cptr_el[2] & (0x3 << 10);
4850 }
4851 env->cp15.cptr_el[2] = value;
4852}
4853
4854static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
4855{
4856 /*
4857 * For A-profile AArch32 EL3, if NSACR.CP10
4858 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4859 */
4860 uint64_t value = env->cp15.cptr_el[2];
4861
4862 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4863 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4864 value |= 0x3 << 10;
4865 }
4866 return value;
4867}
4868
4771cd01 4869static const ARMCPRegInfo el2_cp_reginfo[] = {
f149e3e8 4870 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
89430fc6 4871 .type = ARM_CP_IO,
f149e3e8
EI
4872 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4873 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
c624ea0f 4874 .writefn = hcr_write },
ce4afed8 4875 { .name = "HCR", .state = ARM_CP_STATE_AA32,
89430fc6 4876 .type = ARM_CP_ALIAS | ARM_CP_IO,
ce4afed8
PM
4877 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4878 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
c624ea0f 4879 .writefn = hcr_writelow },
831a2fca
PM
4880 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4881 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4882 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3b685ba7 4883 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 4884 .type = ARM_CP_ALIAS,
3b685ba7
EI
4885 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4886 .access = PL2_RW,
4887 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
68e78e33 4888 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
f2c30f42
EI
4889 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4890 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
cba517c3 4891 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
63b60551
EI
4892 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4893 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
cba517c3
PM
4894 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4895 .type = ARM_CP_ALIAS,
4896 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4897 .access = PL2_RW,
4898 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
3b685ba7 4899 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 4900 .type = ARM_CP_ALIAS,
3b685ba7 4901 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
4902 .access = PL2_RW,
4903 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
d79e0c06 4904 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
d42e3c26
EI
4905 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4906 .access = PL2_RW, .writefn = vbar_write,
4907 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4908 .resetvalue = 0 },
884b4dee
GB
4909 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4910 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 4911 .access = PL3_RW, .type = ARM_CP_ALIAS,
884b4dee 4912 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
c6f19164
GB
4913 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4914 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4915 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
fc1120a7
PM
4916 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
4917 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
95f949ac
EI
4918 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4919 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4920 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4921 .resetvalue = 0 },
4922 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
b5ede85b 4923 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
95f949ac
EI
4924 .access = PL2_RW, .type = ARM_CP_ALIAS,
4925 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2179ef95
PM
4926 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4927 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4928 .access = PL2_RW, .type = ARM_CP_CONST,
4929 .resetvalue = 0 },
4930 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
55b53c71 4931 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
b5ede85b 4932 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
2179ef95
PM
4933 .access = PL2_RW, .type = ARM_CP_CONST,
4934 .resetvalue = 0 },
37cd6c24
PM
4935 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4936 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4937 .access = PL2_RW, .type = ARM_CP_CONST,
4938 .resetvalue = 0 },
4939 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4940 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4941 .access = PL2_RW, .type = ARM_CP_CONST,
4942 .resetvalue = 0 },
06ec4c8c
EI
4943 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4944 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
4945 .access = PL2_RW,
4946 /* no .writefn needed as this can't cause an ASID change;
4947 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4948 */
06ec4c8c 4949 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
68e9c2fe
EI
4950 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4951 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112 4952 .type = ARM_CP_ALIAS,
68e9c2fe
EI
4953 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4954 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4955 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4956 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112
PM
4957 .access = PL2_RW,
4958 /* no .writefn needed as this can't cause an ASID change;
4959 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4960 */
68e9c2fe 4961 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
b698e9cf
EI
4962 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4963 .cp = 15, .opc1 = 6, .crm = 2,
4964 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4965 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4966 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4967 .writefn = vttbr_write },
4968 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4969 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4970 .access = PL2_RW, .writefn = vttbr_write,
4971 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
b9cb5323
EI
4972 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4973 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4974 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4975 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
ff05f37b
EI
4976 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4977 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4978 .access = PL2_RW, .resetvalue = 0,
4979 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
a57633c0
EI
4980 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4981 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4982 .access = PL2_RW, .resetvalue = 0,
4983 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4984 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4985 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
a57633c0 4986 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
541ef8c2
SS
4987 { .name = "TLBIALLNSNH",
4988 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4989 .type = ARM_CP_NO_RAW, .access = PL2_W,
4990 .writefn = tlbiall_nsnh_write },
4991 { .name = "TLBIALLNSNHIS",
4992 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4993 .type = ARM_CP_NO_RAW, .access = PL2_W,
4994 .writefn = tlbiall_nsnh_is_write },
4995 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4996 .type = ARM_CP_NO_RAW, .access = PL2_W,
4997 .writefn = tlbiall_hyp_write },
4998 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4999 .type = ARM_CP_NO_RAW, .access = PL2_W,
5000 .writefn = tlbiall_hyp_is_write },
5001 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5002 .type = ARM_CP_NO_RAW, .access = PL2_W,
5003 .writefn = tlbimva_hyp_write },
5004 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5005 .type = ARM_CP_NO_RAW, .access = PL2_W,
5006 .writefn = tlbimva_hyp_is_write },
51da9014
EI
5007 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5008 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5009 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 5010 .writefn = tlbi_aa64_alle2_write },
8742d49d
EI
5011 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5012 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5013 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 5014 .writefn = tlbi_aa64_vae2_write },
2bfb9d75
PM
5015 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5016 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5017 .access = PL2_W, .type = ARM_CP_NO_RAW,
5018 .writefn = tlbi_aa64_vae2_write },
5019 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5020 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5021 .access = PL2_W, .type = ARM_CP_NO_RAW,
5022 .writefn = tlbi_aa64_alle2is_write },
8742d49d
EI
5023 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5024 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5025 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 5026 .writefn = tlbi_aa64_vae2is_write },
2bfb9d75
PM
5027 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5028 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5029 .access = PL2_W, .type = ARM_CP_NO_RAW,
5030 .writefn = tlbi_aa64_vae2is_write },
edac4d8a 5031#ifndef CONFIG_USER_ONLY
2a47df95
PM
5032 /* Unlike the other EL2-related AT operations, these must
5033 * UNDEF from EL3 if EL2 is not implemented, which is why we
5034 * define them here rather than with the rest of the AT ops.
5035 */
5036 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5037 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5038 .access = PL2_W, .accessfn = at_s1e2_access,
0710b2fa 5039 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
2a47df95
PM
5040 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5041 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5042 .access = PL2_W, .accessfn = at_s1e2_access,
0710b2fa 5043 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
14db7fe0
PM
5044 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5045 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5046 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5047 * to behave as if SCR.NS was 1.
5048 */
5049 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5050 .access = PL2_W,
0710b2fa 5051 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
14db7fe0
PM
5052 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5053 .access = PL2_W,
0710b2fa 5054 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
0b6440af
EI
5055 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5056 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5057 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5058 * reset values as IMPDEF. We choose to reset to 3 to comply with
5059 * both ARMv7 and ARMv8.
5060 */
5061 .access = PL2_RW, .resetvalue = 3,
5062 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
edac4d8a
EI
5063 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5064 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5065 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5066 .writefn = gt_cntvoff_write,
5067 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5068 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5069 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5070 .writefn = gt_cntvoff_write,
5071 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
b0e66d95
EI
5072 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5073 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5074 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5075 .type = ARM_CP_IO, .access = PL2_RW,
5076 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5077 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5078 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5079 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5080 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5081 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5082 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
d44ec156 5083 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
b0e66d95
EI
5084 .resetfn = gt_hyp_timer_reset,
5085 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5086 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5087 .type = ARM_CP_IO,
5088 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5089 .access = PL2_RW,
5090 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5091 .resetvalue = 0,
5092 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
edac4d8a 5093#endif
14cc7b54
SF
5094 /* The only field of MDCR_EL2 that has a defined architectural reset value
5095 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5ecdd3e4 5096 * don't implement any PMU event counters, so using zero as a reset
14cc7b54
SF
5097 * value for MDCR_EL2 is okay
5098 */
5099 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5100 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5101 .access = PL2_RW, .resetvalue = 0,
5102 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
59e05530
EI
5103 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5104 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5105 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5106 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5107 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5108 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5109 .access = PL2_RW,
5110 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
2a5a9abd
AF
5111 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5112 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5113 .access = PL2_RW,
5114 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3b685ba7
EI
5115 REGINFO_SENTINEL
5116};
5117
ce4afed8
PM
5118static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5119 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
89430fc6 5120 .type = ARM_CP_ALIAS | ARM_CP_IO,
ce4afed8
PM
5121 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5122 .access = PL2_RW,
5123 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5124 .writefn = hcr_writehigh },
5125 REGINFO_SENTINEL
5126};
5127
2f027fc5
PM
5128static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5129 bool isread)
5130{
5131 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5132 * At Secure EL1 it traps to EL3.
5133 */
5134 if (arm_current_el(env) == 3) {
5135 return CP_ACCESS_OK;
5136 }
5137 if (arm_is_secure_below_el3(env)) {
5138 return CP_ACCESS_TRAP_EL3;
5139 }
5140 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5141 if (isread) {
5142 return CP_ACCESS_OK;
5143 }
5144 return CP_ACCESS_TRAP_UNCATEGORIZED;
5145}
5146
60fb1a87
GB
5147static const ARMCPRegInfo el3_cp_reginfo[] = {
5148 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5149 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5150 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5151 .resetvalue = 0, .writefn = scr_write },
f80741d1 5152 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
60fb1a87 5153 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
efe4a274
PM
5154 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5155 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
b061a82b 5156 .writefn = scr_write },
60fb1a87
GB
5157 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5158 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5159 .access = PL3_RW, .resetvalue = 0,
5160 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5161 { .name = "SDER",
5162 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5163 .access = PL3_RW, .resetvalue = 0,
5164 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
60fb1a87 5165 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
efe4a274
PM
5166 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5167 .writefn = vbar_write, .resetvalue = 0,
60fb1a87 5168 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
7dd8c9af
FA
5169 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5170 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
f478847f 5171 .access = PL3_RW, .resetvalue = 0,
7dd8c9af 5172 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
11f136ee
FA
5173 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5174 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
5175 .access = PL3_RW,
5176 /* no .writefn needed as this can't cause an ASID change;
811595a2
PM
5177 * we must provide a .raw_writefn and .resetfn because we handle
5178 * reset and migration for the AArch32 TTBCR(S), which might be
5179 * using mask and base_mask.
6459b94c 5180 */
811595a2 5181 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee 5182 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
81547d66 5183 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 5184 .type = ARM_CP_ALIAS,
81547d66
EI
5185 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5186 .access = PL3_RW,
5187 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
f2c30f42 5188 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
5189 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5190 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
63b60551
EI
5191 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5192 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5193 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
81547d66 5194 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 5195 .type = ARM_CP_ALIAS,
81547d66 5196 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
5197 .access = PL3_RW,
5198 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
a1ba125c
EI
5199 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5200 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5201 .access = PL3_RW, .writefn = vbar_write,
5202 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5203 .resetvalue = 0 },
c6f19164
GB
5204 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5205 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5206 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5207 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4cfb8ad8
PM
5208 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5209 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5210 .access = PL3_RW, .resetvalue = 0,
5211 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
2179ef95
PM
5212 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5213 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5214 .access = PL3_RW, .type = ARM_CP_CONST,
5215 .resetvalue = 0 },
37cd6c24
PM
5216 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5217 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5218 .access = PL3_RW, .type = ARM_CP_CONST,
5219 .resetvalue = 0 },
5220 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5221 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5222 .access = PL3_RW, .type = ARM_CP_CONST,
5223 .resetvalue = 0 },
43efaa33
PM
5224 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5225 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5226 .access = PL3_W, .type = ARM_CP_NO_RAW,
5227 .writefn = tlbi_aa64_alle3is_write },
5228 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5229 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5230 .access = PL3_W, .type = ARM_CP_NO_RAW,
5231 .writefn = tlbi_aa64_vae3is_write },
5232 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5233 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5234 .access = PL3_W, .type = ARM_CP_NO_RAW,
5235 .writefn = tlbi_aa64_vae3is_write },
5236 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5237 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5238 .access = PL3_W, .type = ARM_CP_NO_RAW,
5239 .writefn = tlbi_aa64_alle3_write },
5240 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5241 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5242 .access = PL3_W, .type = ARM_CP_NO_RAW,
5243 .writefn = tlbi_aa64_vae3_write },
5244 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5245 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5246 .access = PL3_W, .type = ARM_CP_NO_RAW,
5247 .writefn = tlbi_aa64_vae3_write },
0f1a3b24
FA
5248 REGINFO_SENTINEL
5249};
5250
3f208fd7
PM
5251static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5252 bool isread)
7da845b0
PM
5253{
5254 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5255 * but the AArch32 CTR has its own reginfo struct)
5256 */
137feaa9 5257 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7da845b0
PM
5258 return CP_ACCESS_TRAP;
5259 }
630fcd4d
MZ
5260
5261 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5262 return CP_ACCESS_TRAP_EL2;
5263 }
5264
7da845b0
PM
5265 return CP_ACCESS_OK;
5266}
5267
1424ca8d
DM
5268static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5269 uint64_t value)
5270{
5271 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5272 * read via a bit in OSLSR_EL1.
5273 */
5274 int oslock;
5275
5276 if (ri->state == ARM_CP_STATE_AA32) {
5277 oslock = (value == 0xC5ACCE55);
5278 } else {
5279 oslock = value & 1;
5280 }
5281
5282 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5283}
5284
50300698 5285static const ARMCPRegInfo debug_cp_reginfo[] = {
50300698 5286 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
10aae104
PM
5287 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5288 * unlike DBGDRAR it is never accessible from EL0.
5289 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5290 * accessor.
50300698
PM
5291 */
5292 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
5293 .access = PL0_R, .accessfn = access_tdra,
5294 .type = ARM_CP_CONST, .resetvalue = 0 },
10aae104
PM
5295 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5296 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
91b0a238
PM
5297 .access = PL1_R, .accessfn = access_tdra,
5298 .type = ARM_CP_CONST, .resetvalue = 0 },
50300698 5299 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
5300 .access = PL0_R, .accessfn = access_tdra,
5301 .type = ARM_CP_CONST, .resetvalue = 0 },
17a9eb53 5302 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
10aae104
PM
5303 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5304 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
d6c8cf81 5305 .access = PL1_RW, .accessfn = access_tda,
0e5e8935
PM
5306 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5307 .resetvalue = 0 },
5e8b12ff
PM
5308 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5309 * We don't implement the configurable EL0 access.
5310 */
5311 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5312 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7a0e58fa 5313 .type = ARM_CP_ALIAS,
d6c8cf81 5314 .access = PL1_R, .accessfn = access_tda,
b061a82b 5315 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
10aae104
PM
5316 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5317 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1424ca8d 5318 .access = PL1_W, .type = ARM_CP_NO_RAW,
187f678d 5319 .accessfn = access_tdosa,
1424ca8d
DM
5320 .writefn = oslar_write },
5321 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5322 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5323 .access = PL1_R, .resetvalue = 10,
187f678d 5324 .accessfn = access_tdosa,
1424ca8d 5325 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5e8b12ff
PM
5326 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5327 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5328 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
187f678d
PM
5329 .access = PL1_RW, .accessfn = access_tdosa,
5330 .type = ARM_CP_NOP },
5e8b12ff
PM
5331 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5332 * implement vector catch debug events yet.
5333 */
5334 { .name = "DBGVCR",
5335 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
d6c8cf81
PM
5336 .access = PL1_RW, .accessfn = access_tda,
5337 .type = ARM_CP_NOP },
4d2ec4da
PM
5338 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5339 * to save and restore a 32-bit guest's DBGVCR)
5340 */
5341 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5342 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5343 .access = PL2_RW, .accessfn = access_tda,
5344 .type = ARM_CP_NOP },
5dbdc434
PM
5345 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5346 * Channel but Linux may try to access this register. The 32-bit
5347 * alias is DBGDCCINT.
5348 */
5349 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5350 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5351 .access = PL1_RW, .accessfn = access_tda,
5352 .type = ARM_CP_NOP },
50300698
PM
5353 REGINFO_SENTINEL
5354};
5355
5356static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5357 /* 64 bit access versions of the (dummy) debug registers */
5358 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5359 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5360 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5361 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5362 REGINFO_SENTINEL
5363};
5364
60eed086
RH
5365/* Return the exception level to which exceptions should be taken
5366 * via SVEAccessTrap. If an exception should be routed through
5367 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5368 * take care of raising that exception.
5369 * C.f. the ARM pseudocode function CheckSVEEnabled.
5be5e8ed 5370 */
ced31551 5371int sve_exception_el(CPUARMState *env, int el)
5be5e8ed
RH
5372{
5373#ifndef CONFIG_USER_ONLY
2de7ace2 5374 if (el <= 1) {
60eed086
RH
5375 bool disabled = false;
5376
5377 /* The CPACR.ZEN controls traps to EL1:
5378 * 0, 2 : trap EL0 and EL1 accesses
5379 * 1 : trap only EL0 accesses
5380 * 3 : trap no accesses
5381 */
5382 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5383 disabled = true;
5384 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
2de7ace2 5385 disabled = el == 0;
5be5e8ed 5386 }
60eed086
RH
5387 if (disabled) {
5388 /* route_to_el2 */
5389 return (arm_feature(env, ARM_FEATURE_EL2)
7c208e0f 5390 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5be5e8ed 5391 }
5be5e8ed 5392
60eed086
RH
5393 /* Check CPACR.FPEN. */
5394 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5395 disabled = true;
5396 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
2de7ace2 5397 disabled = el == 0;
5be5e8ed 5398 }
60eed086
RH
5399 if (disabled) {
5400 return 0;
5be5e8ed 5401 }
5be5e8ed
RH
5402 }
5403
60eed086
RH
5404 /* CPTR_EL2. Since TZ and TFP are positive,
5405 * they will be zero when EL2 is not present.
5406 */
2de7ace2 5407 if (el <= 2 && !arm_is_secure_below_el3(env)) {
60eed086
RH
5408 if (env->cp15.cptr_el[2] & CPTR_TZ) {
5409 return 2;
5410 }
5411 if (env->cp15.cptr_el[2] & CPTR_TFP) {
5412 return 0;
5413 }
5be5e8ed
RH
5414 }
5415
60eed086
RH
5416 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5417 if (arm_feature(env, ARM_FEATURE_EL3)
5418 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5be5e8ed
RH
5419 return 3;
5420 }
5421#endif
5422 return 0;
5423}
5424
0df9142d
AJ
5425static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
5426{
6e553f2a 5427 uint32_t end_len;
0df9142d 5428
6e553f2a
RH
5429 end_len = start_len &= 0xf;
5430 if (!test_bit(start_len, cpu->sve_vq_map)) {
5431 end_len = find_last_bit(cpu->sve_vq_map, start_len);
5432 assert(end_len < start_len);
5433 }
5434 return end_len;
0df9142d
AJ
5435}
5436
0ab5953b
RH
5437/*
5438 * Given that SVE is enabled, return the vector length for EL.
5439 */
ced31551 5440uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
0ab5953b 5441{
2fc0cc0e 5442 ARMCPU *cpu = env_archcpu(env);
0ab5953b
RH
5443 uint32_t zcr_len = cpu->sve_max_vq - 1;
5444
5445 if (el <= 1) {
5446 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5447 }
6a02a732 5448 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
0ab5953b
RH
5449 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5450 }
6a02a732 5451 if (arm_feature(env, ARM_FEATURE_EL3)) {
0ab5953b
RH
5452 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5453 }
0df9142d
AJ
5454
5455 return sve_zcr_get_valid_len(cpu, zcr_len);
0ab5953b
RH
5456}
5457
5be5e8ed
RH
5458static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5459 uint64_t value)
5460{
0ab5953b
RH
5461 int cur_el = arm_current_el(env);
5462 int old_len = sve_zcr_len_for_el(env, cur_el);
5463 int new_len;
5464
5be5e8ed 5465 /* Bits other than [3:0] are RAZ/WI. */
7b351d98 5466 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
5be5e8ed 5467 raw_write(env, ri, value & 0xf);
0ab5953b
RH
5468
5469 /*
5470 * Because we arrived here, we know both FP and SVE are enabled;
5471 * otherwise we would have trapped access to the ZCR_ELn register.
5472 */
5473 new_len = sve_zcr_len_for_el(env, cur_el);
5474 if (new_len < old_len) {
5475 aarch64_sve_narrow_vq(env, new_len + 1);
5476 }
5be5e8ed
RH
5477}
5478
5479static const ARMCPRegInfo zcr_el1_reginfo = {
5480 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5481 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
11d7870b 5482 .access = PL1_RW, .type = ARM_CP_SVE,
5be5e8ed
RH
5483 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5484 .writefn = zcr_write, .raw_writefn = raw_write
5485};
5486
5487static const ARMCPRegInfo zcr_el2_reginfo = {
5488 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5489 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
11d7870b 5490 .access = PL2_RW, .type = ARM_CP_SVE,
5be5e8ed
RH
5491 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5492 .writefn = zcr_write, .raw_writefn = raw_write
5493};
5494
5495static const ARMCPRegInfo zcr_no_el2_reginfo = {
5496 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5497 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
11d7870b 5498 .access = PL2_RW, .type = ARM_CP_SVE,
5be5e8ed
RH
5499 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5500};
5501
5502static const ARMCPRegInfo zcr_el3_reginfo = {
5503 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5504 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
11d7870b 5505 .access = PL3_RW, .type = ARM_CP_SVE,
5be5e8ed
RH
5506 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5507 .writefn = zcr_write, .raw_writefn = raw_write
5508};
5509
9ee98ce8
PM
5510void hw_watchpoint_update(ARMCPU *cpu, int n)
5511{
5512 CPUARMState *env = &cpu->env;
5513 vaddr len = 0;
5514 vaddr wvr = env->cp15.dbgwvr[n];
5515 uint64_t wcr = env->cp15.dbgwcr[n];
5516 int mask;
5517 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5518
5519 if (env->cpu_watchpoint[n]) {
5520 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5521 env->cpu_watchpoint[n] = NULL;
5522 }
5523
5524 if (!extract64(wcr, 0, 1)) {
5525 /* E bit clear : watchpoint disabled */
5526 return;
5527 }
5528
5529 switch (extract64(wcr, 3, 2)) {
5530 case 0:
5531 /* LSC 00 is reserved and must behave as if the wp is disabled */
5532 return;
5533 case 1:
5534 flags |= BP_MEM_READ;
5535 break;
5536 case 2:
5537 flags |= BP_MEM_WRITE;
5538 break;
5539 case 3:
5540 flags |= BP_MEM_ACCESS;
5541 break;
5542 }
5543
5544 /* Attempts to use both MASK and BAS fields simultaneously are
5545 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5546 * thus generating a watchpoint for every byte in the masked region.
5547 */
5548 mask = extract64(wcr, 24, 4);
5549 if (mask == 1 || mask == 2) {
5550 /* Reserved values of MASK; we must act as if the mask value was
5551 * some non-reserved value, or as if the watchpoint were disabled.
5552 * We choose the latter.
5553 */
5554 return;
5555 } else if (mask) {
5556 /* Watchpoint covers an aligned area up to 2GB in size */
5557 len = 1ULL << mask;
5558 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5559 * whether the watchpoint fires when the unmasked bits match; we opt
5560 * to generate the exceptions.
5561 */
5562 wvr &= ~(len - 1);
5563 } else {
5564 /* Watchpoint covers bytes defined by the byte address select bits */
5565 int bas = extract64(wcr, 5, 8);
5566 int basstart;
5567
5568 if (bas == 0) {
5569 /* This must act as if the watchpoint is disabled */
5570 return;
5571 }
5572
5573 if (extract64(wvr, 2, 1)) {
5574 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5575 * ignored, and BAS[3:0] define which bytes to watch.
5576 */
5577 bas &= 0xf;
5578 }
5579 /* The BAS bits are supposed to be programmed to indicate a contiguous
5580 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5581 * we fire for each byte in the word/doubleword addressed by the WVR.
5582 * We choose to ignore any non-zero bits after the first range of 1s.
5583 */
5584 basstart = ctz32(bas);
5585 len = cto32(bas >> basstart);
5586 wvr += basstart;
5587 }
5588
5589 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5590 &env->cpu_watchpoint[n]);
5591}
5592
5593void hw_watchpoint_update_all(ARMCPU *cpu)
5594{
5595 int i;
5596 CPUARMState *env = &cpu->env;
5597
5598 /* Completely clear out existing QEMU watchpoints and our array, to
5599 * avoid possible stale entries following migration load.
5600 */
5601 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5602 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5603
5604 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5605 hw_watchpoint_update(cpu, i);
5606 }
5607}
5608
5609static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5610 uint64_t value)
5611{
2fc0cc0e 5612 ARMCPU *cpu = env_archcpu(env);
9ee98ce8
PM
5613 int i = ri->crm;
5614
5615 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5616 * register reads and behaves as if values written are sign extended.
5617 * Bits [1:0] are RES0.
5618 */
5619 value = sextract64(value, 0, 49) & ~3ULL;
5620
5621 raw_write(env, ri, value);
5622 hw_watchpoint_update(cpu, i);
5623}
5624
5625static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5626 uint64_t value)
5627{
2fc0cc0e 5628 ARMCPU *cpu = env_archcpu(env);
9ee98ce8
PM
5629 int i = ri->crm;
5630
5631 raw_write(env, ri, value);
5632 hw_watchpoint_update(cpu, i);
5633}
5634
46747d15
PM
5635void hw_breakpoint_update(ARMCPU *cpu, int n)
5636{
5637 CPUARMState *env = &cpu->env;
5638 uint64_t bvr = env->cp15.dbgbvr[n];
5639 uint64_t bcr = env->cp15.dbgbcr[n];
5640 vaddr addr;
5641 int bt;
5642 int flags = BP_CPU;
5643
5644 if (env->cpu_breakpoint[n]) {
5645 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5646 env->cpu_breakpoint[n] = NULL;
5647 }
5648
5649 if (!extract64(bcr, 0, 1)) {
5650 /* E bit clear : watchpoint disabled */
5651 return;
5652 }
5653
5654 bt = extract64(bcr, 20, 4);
5655
5656 switch (bt) {
5657 case 4: /* unlinked address mismatch (reserved if AArch64) */
5658 case 5: /* linked address mismatch (reserved if AArch64) */
5659 qemu_log_mask(LOG_UNIMP,
0221c8fd 5660 "arm: address mismatch breakpoint types not implemented\n");
46747d15
PM
5661 return;
5662 case 0: /* unlinked address match */
5663 case 1: /* linked address match */
5664 {
5665 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5666 * we behave as if the register was sign extended. Bits [1:0] are
5667 * RES0. The BAS field is used to allow setting breakpoints on 16
5668 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5669 * a bp will fire if the addresses covered by the bp and the addresses
5670 * covered by the insn overlap but the insn doesn't start at the
5671 * start of the bp address range. We choose to require the insn and
5672 * the bp to have the same address. The constraints on writing to
5673 * BAS enforced in dbgbcr_write mean we have only four cases:
5674 * 0b0000 => no breakpoint
5675 * 0b0011 => breakpoint on addr
5676 * 0b1100 => breakpoint on addr + 2
5677 * 0b1111 => breakpoint on addr
5678 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5679 */
5680 int bas = extract64(bcr, 5, 4);
5681 addr = sextract64(bvr, 0, 49) & ~3ULL;
5682 if (bas == 0) {
5683 return;
5684 }
5685 if (bas == 0xc) {
5686 addr += 2;
5687 }
5688 break;
5689 }
5690 case 2: /* unlinked context ID match */
5691 case 8: /* unlinked VMID match (reserved if no EL2) */
5692 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5693 qemu_log_mask(LOG_UNIMP,
0221c8fd 5694 "arm: unlinked context breakpoint types not implemented\n");
46747d15
PM
5695 return;
5696 case 9: /* linked VMID match (reserved if no EL2) */
5697 case 11: /* linked context ID and VMID match (reserved if no EL2) */
5698 case 3: /* linked context ID match */
5699 default:
5700 /* We must generate no events for Linked context matches (unless
5701 * they are linked to by some other bp/wp, which is handled in
5702 * updates for the linking bp/wp). We choose to also generate no events
5703 * for reserved values.
5704 */
5705 return;
5706 }
5707
5708 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5709}
5710
5711void hw_breakpoint_update_all(ARMCPU *cpu)
5712{
5713 int i;
5714 CPUARMState *env = &cpu->env;
5715
5716 /* Completely clear out existing QEMU breakpoints and our array, to
5717 * avoid possible stale entries following migration load.
5718 */
5719 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5720 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5721
5722 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5723 hw_breakpoint_update(cpu, i);
5724 }
5725}
5726
5727static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5728 uint64_t value)
5729{
2fc0cc0e 5730 ARMCPU *cpu = env_archcpu(env);
46747d15
PM
5731 int i = ri->crm;
5732
5733 raw_write(env, ri, value);
5734 hw_breakpoint_update(cpu, i);
5735}
5736
5737static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5738 uint64_t value)
5739{
2fc0cc0e 5740 ARMCPU *cpu = env_archcpu(env);
46747d15
PM
5741 int i = ri->crm;
5742
5743 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5744 * copy of BAS[0].
5745 */
5746 value = deposit64(value, 6, 1, extract64(value, 5, 1));
5747 value = deposit64(value, 8, 1, extract64(value, 7, 1));
5748
5749 raw_write(env, ri, value);
5750 hw_breakpoint_update(cpu, i);
5751}
5752
50300698 5753static void define_debug_regs(ARMCPU *cpu)
0b45451e 5754{
50300698
PM
5755 /* Define v7 and v8 architectural debug registers.
5756 * These are just dummy implementations for now.
0b45451e
PM
5757 */
5758 int i;
3ff6fc91 5759 int wrps, brps, ctx_cmps;
48eb3ae6
PM
5760 ARMCPRegInfo dbgdidr = {
5761 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
d6c8cf81
PM
5762 .access = PL0_R, .accessfn = access_tda,
5763 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
48eb3ae6
PM
5764 };
5765
3ff6fc91 5766 /* Note that all these register fields hold "number of Xs minus 1". */
48eb3ae6
PM
5767 brps = extract32(cpu->dbgdidr, 24, 4);
5768 wrps = extract32(cpu->dbgdidr, 28, 4);
3ff6fc91
PM
5769 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5770
5771 assert(ctx_cmps <= brps);
48eb3ae6
PM
5772
5773 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5774 * of the debug registers such as number of breakpoints;
5775 * check that if they both exist then they agree.
5776 */
5777 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5778 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5779 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3ff6fc91 5780 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
48eb3ae6 5781 }
0b45451e 5782
48eb3ae6 5783 define_one_arm_cp_reg(cpu, &dbgdidr);
50300698
PM
5784 define_arm_cp_regs(cpu, debug_cp_reginfo);
5785
5786 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5787 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5788 }
5789
48eb3ae6 5790 for (i = 0; i < brps + 1; i++) {
0b45451e 5791 ARMCPRegInfo dbgregs[] = {
10aae104
PM
5792 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5793 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
d6c8cf81 5794 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
5795 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5796 .writefn = dbgbvr_write, .raw_writefn = raw_write
5797 },
10aae104
PM
5798 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5799 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
d6c8cf81 5800 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
5801 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5802 .writefn = dbgbcr_write, .raw_writefn = raw_write
5803 },
48eb3ae6
PM
5804 REGINFO_SENTINEL
5805 };
5806 define_arm_cp_regs(cpu, dbgregs);
5807 }
5808
5809 for (i = 0; i < wrps + 1; i++) {
5810 ARMCPRegInfo dbgregs[] = {
10aae104
PM
5811 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5812 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
d6c8cf81 5813 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
5814 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5815 .writefn = dbgwvr_write, .raw_writefn = raw_write
5816 },
10aae104
PM
5817 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5818 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
d6c8cf81 5819 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
5820 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5821 .writefn = dbgwcr_write, .raw_writefn = raw_write
5822 },
5823 REGINFO_SENTINEL
0b45451e
PM
5824 };
5825 define_arm_cp_regs(cpu, dbgregs);
5826 }
5827}
5828
96a8b92e
PM
5829/* We don't know until after realize whether there's a GICv3
5830 * attached, and that is what registers the gicv3 sysregs.
5831 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5832 * at runtime.
5833 */
5834static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5835{
2fc0cc0e 5836 ARMCPU *cpu = env_archcpu(env);
96a8b92e
PM
5837 uint64_t pfr1 = cpu->id_pfr1;
5838
5839 if (env->gicv3state) {
5840 pfr1 |= 1 << 28;
5841 }
5842 return pfr1;
5843}
5844
5845static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5846{
2fc0cc0e 5847 ARMCPU *cpu = env_archcpu(env);
47576b94 5848 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
96a8b92e
PM
5849
5850 if (env->gicv3state) {
5851 pfr0 |= 1 << 24;
5852 }
5853 return pfr0;
5854}
5855
2d7137c1
RH
5856/* Shared logic between LORID and the rest of the LOR* registers.
5857 * Secure state has already been delt with.
5858 */
5859static CPAccessResult access_lor_ns(CPUARMState *env)
5860{
5861 int el = arm_current_el(env);
5862
5863 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5864 return CP_ACCESS_TRAP_EL2;
5865 }
5866 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5867 return CP_ACCESS_TRAP_EL3;
5868 }
5869 return CP_ACCESS_OK;
5870}
5871
5872static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5873 bool isread)
5874{
5875 if (arm_is_secure_below_el3(env)) {
5876 /* Access ok in secure mode. */
5877 return CP_ACCESS_OK;
5878 }
5879 return access_lor_ns(env);
5880}
5881
5882static CPAccessResult access_lor_other(CPUARMState *env,
5883 const ARMCPRegInfo *ri, bool isread)
5884{
5885 if (arm_is_secure_below_el3(env)) {
5886 /* Access denied in secure mode. */
5887 return CP_ACCESS_TRAP;
5888 }
5889 return access_lor_ns(env);
5890}
5891
967aa94f
RH
5892#ifdef TARGET_AARCH64
5893static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5894 bool isread)
5895{
5896 int el = arm_current_el(env);
5897
5898 if (el < 2 &&
5899 arm_feature(env, ARM_FEATURE_EL2) &&
5900 !(arm_hcr_el2_eff(env) & HCR_APK)) {
5901 return CP_ACCESS_TRAP_EL2;
5902 }
5903 if (el < 3 &&
5904 arm_feature(env, ARM_FEATURE_EL3) &&
5905 !(env->cp15.scr_el3 & SCR_APK)) {
5906 return CP_ACCESS_TRAP_EL3;
5907 }
5908 return CP_ACCESS_OK;
5909}
5910
5911static const ARMCPRegInfo pauth_reginfo[] = {
5912 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5913 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5914 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5915 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
967aa94f
RH
5916 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5917 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5918 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5919 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
967aa94f
RH
5920 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5921 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5922 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5923 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
967aa94f
RH
5924 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5925 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5926 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5927 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
967aa94f
RH
5928 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5929 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5930 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5931 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
967aa94f
RH
5932 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5933 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5934 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5935 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
967aa94f
RH
5936 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5937 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5938 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5939 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
967aa94f
RH
5940 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5941 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5942 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5943 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
967aa94f
RH
5944 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5945 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5946 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5947 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
967aa94f
RH
5948 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5949 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5950 .access = PL1_RW, .accessfn = access_pauth,
108b3ba8 5951 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
967aa94f
RH
5952 REGINFO_SENTINEL
5953};
de390645
RH
5954
5955static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
5956{
5957 Error *err = NULL;
5958 uint64_t ret;
5959
5960 /* Success sets NZCV = 0000. */
5961 env->NF = env->CF = env->VF = 0, env->ZF = 1;
5962
5963 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
5964 /*
5965 * ??? Failed, for unknown reasons in the crypto subsystem.
5966 * The best we can do is log the reason and return the
5967 * timed-out indication to the guest. There is no reason
5968 * we know to expect this failure to be transitory, so the
5969 * guest may well hang retrying the operation.
5970 */
5971 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
5972 ri->name, error_get_pretty(err));
5973 error_free(err);
5974
5975 env->ZF = 0; /* NZCF = 0100 */
5976 return 0;
5977 }
5978 return ret;
5979}
5980
5981/* We do not support re-seeding, so the two registers operate the same. */
5982static const ARMCPRegInfo rndr_reginfo[] = {
5983 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
5984 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5985 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
5986 .access = PL0_R, .readfn = rndr_readfn },
5987 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
5988 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5989 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
5990 .access = PL0_R, .readfn = rndr_readfn },
5991 REGINFO_SENTINEL
5992};
0d57b499
BM
5993
5994#ifndef CONFIG_USER_ONLY
5995static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
5996 uint64_t value)
5997{
5998 ARMCPU *cpu = env_archcpu(env);
5999 /* CTR_EL0 System register -> DminLine, bits [19:16] */
6000 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6001 uint64_t vaddr_in = (uint64_t) value;
6002 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6003 void *haddr;
6004 int mem_idx = cpu_mmu_index(env, false);
6005
6006 /* This won't be crossing page boundaries */
6007 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6008 if (haddr) {
6009
6010 ram_addr_t offset;
6011 MemoryRegion *mr;
6012
6013 /* RCU lock is already being held */
6014 mr = memory_region_from_host(haddr, &offset);
6015
6016 if (mr) {
6017 memory_region_do_writeback(mr, offset, dline_size);
6018 }
6019 }
6020}
6021
6022static const ARMCPRegInfo dcpop_reg[] = {
6023 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6024 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6025 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6026 .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn },
6027 REGINFO_SENTINEL
6028};
6029
6030static const ARMCPRegInfo dcpodp_reg[] = {
6031 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6032 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6033 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6034 .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn },
6035 REGINFO_SENTINEL
6036};
6037#endif /*CONFIG_USER_ONLY*/
6038
967aa94f
RH
6039#endif
6040
cb570bd3
RH
6041static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
6042 bool isread)
6043{
6044 int el = arm_current_el(env);
6045
6046 if (el == 0) {
6047 uint64_t sctlr = arm_sctlr(env, el);
6048 if (!(sctlr & SCTLR_EnRCTX)) {
6049 return CP_ACCESS_TRAP;
6050 }
6051 } else if (el == 1) {
6052 uint64_t hcr = arm_hcr_el2_eff(env);
6053 if (hcr & HCR_NV) {
6054 return CP_ACCESS_TRAP_EL2;
6055 }
6056 }
6057 return CP_ACCESS_OK;
6058}
6059
6060static const ARMCPRegInfo predinv_reginfo[] = {
6061 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
6062 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
6063 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6064 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
6065 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
6066 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6067 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
6068 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
6069 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6070 /*
6071 * Note the AArch32 opcodes have a different OPC1.
6072 */
6073 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
6074 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
6075 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6076 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
6077 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
6078 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6079 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
6080 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
6081 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6082 REGINFO_SENTINEL
6083};
6084
6a4ef4e5
MZ
6085static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6086 bool isread)
6087{
6088 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
6089 return CP_ACCESS_TRAP_EL2;
6090 }
6091
6092 return CP_ACCESS_OK;
6093}
6094
6095static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6096 bool isread)
6097{
6098 if (arm_feature(env, ARM_FEATURE_V8)) {
6099 return access_aa64_tid3(env, ri, isread);
6100 }
6101
6102 return CP_ACCESS_OK;
6103}
6104
f96f3d5f
MZ
6105static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
6106 bool isread)
6107{
6108 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
6109 return CP_ACCESS_TRAP_EL2;
6110 }
6111
6112 return CP_ACCESS_OK;
6113}
6114
6115static const ARMCPRegInfo jazelle_regs[] = {
6116 { .name = "JIDR",
6117 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
6118 .access = PL1_R, .accessfn = access_jazelle,
6119 .type = ARM_CP_CONST, .resetvalue = 0 },
6120 { .name = "JOSCR",
6121 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
6122 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6123 { .name = "JMCR",
6124 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
6125 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6126 REGINFO_SENTINEL
6127};
6128
e2a1a461
RH
6129static const ARMCPRegInfo vhe_reginfo[] = {
6130 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
6131 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
6132 .access = PL2_RW,
6133 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
6134 REGINFO_SENTINEL
6135};
6136
2ceb98c0
PM
6137void register_cp_regs_for_features(ARMCPU *cpu)
6138{
6139 /* Register all the coprocessor registers based on feature bits */
6140 CPUARMState *env = &cpu->env;
6141 if (arm_feature(env, ARM_FEATURE_M)) {
6142 /* M profile has no coprocessor registers */
6143 return;
6144 }
6145
e9aa6c21 6146 define_arm_cp_regs(cpu, cp_reginfo);
9449fdf6
PM
6147 if (!arm_feature(env, ARM_FEATURE_V8)) {
6148 /* Must go early as it is full of wildcards that may be
6149 * overridden by later definitions.
6150 */
6151 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
6152 }
6153
7d57f408 6154 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
6155 /* The ID registers all have impdef reset values */
6156 ARMCPRegInfo v6_idregs[] = {
0ff644a7
PM
6157 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
6158 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6159 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6160 .accessfn = access_aa32_tid3,
8515a092 6161 .resetvalue = cpu->id_pfr0 },
96a8b92e
PM
6162 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
6163 * the value of the GIC field until after we define these regs.
6164 */
0ff644a7
PM
6165 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
6166 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
96a8b92e 6167 .access = PL1_R, .type = ARM_CP_NO_RAW,
6a4ef4e5 6168 .accessfn = access_aa32_tid3,
96a8b92e
PM
6169 .readfn = id_pfr1_read,
6170 .writefn = arm_cp_write_ignore },
0ff644a7
PM
6171 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
6172 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
6173 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6174 .accessfn = access_aa32_tid3,
8515a092 6175 .resetvalue = cpu->id_dfr0 },
0ff644a7
PM
6176 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
6177 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
6178 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6179 .accessfn = access_aa32_tid3,
8515a092 6180 .resetvalue = cpu->id_afr0 },
0ff644a7
PM
6181 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
6182 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
6183 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6184 .accessfn = access_aa32_tid3,
8515a092 6185 .resetvalue = cpu->id_mmfr0 },
0ff644a7
PM
6186 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
6187 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
6188 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6189 .accessfn = access_aa32_tid3,
8515a092 6190 .resetvalue = cpu->id_mmfr1 },
0ff644a7
PM
6191 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
6192 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
6193 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6194 .accessfn = access_aa32_tid3,
8515a092 6195 .resetvalue = cpu->id_mmfr2 },
0ff644a7
PM
6196 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
6197 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
6198 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6199 .accessfn = access_aa32_tid3,
8515a092 6200 .resetvalue = cpu->id_mmfr3 },
0ff644a7
PM
6201 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
6202 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6203 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6204 .accessfn = access_aa32_tid3,
47576b94 6205 .resetvalue = cpu->isar.id_isar0 },
0ff644a7
PM
6206 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
6207 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
6208 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6209 .accessfn = access_aa32_tid3,
47576b94 6210 .resetvalue = cpu->isar.id_isar1 },
0ff644a7
PM
6211 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
6212 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6213 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6214 .accessfn = access_aa32_tid3,
47576b94 6215 .resetvalue = cpu->isar.id_isar2 },
0ff644a7
PM
6216 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
6217 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
6218 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6219 .accessfn = access_aa32_tid3,
47576b94 6220 .resetvalue = cpu->isar.id_isar3 },
0ff644a7
PM
6221 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
6222 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
6223 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6224 .accessfn = access_aa32_tid3,
47576b94 6225 .resetvalue = cpu->isar.id_isar4 },
0ff644a7
PM
6226 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
6227 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
6228 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6229 .accessfn = access_aa32_tid3,
47576b94 6230 .resetvalue = cpu->isar.id_isar5 },
e20d84c1
PM
6231 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
6232 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
6233 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6234 .accessfn = access_aa32_tid3,
e20d84c1 6235 .resetvalue = cpu->id_mmfr4 },
802abf40 6236 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
e20d84c1
PM
6237 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
6238 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6239 .accessfn = access_aa32_tid3,
47576b94 6240 .resetvalue = cpu->isar.id_isar6 },
8515a092
PM
6241 REGINFO_SENTINEL
6242 };
6243 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
6244 define_arm_cp_regs(cpu, v6_cp_reginfo);
6245 } else {
6246 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
6247 }
4d31c596
PM
6248 if (arm_feature(env, ARM_FEATURE_V6K)) {
6249 define_arm_cp_regs(cpu, v6k_cp_reginfo);
6250 }
5e5cf9e3 6251 if (arm_feature(env, ARM_FEATURE_V7MP) &&
452a0955 6252 !arm_feature(env, ARM_FEATURE_PMSA)) {
995939a6
PM
6253 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
6254 }
327dd510
AL
6255 if (arm_feature(env, ARM_FEATURE_V7VE)) {
6256 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
6257 }
e9aa6c21 6258 if (arm_feature(env, ARM_FEATURE_V7)) {
200ac0ef 6259 /* v7 performance monitor control register: same implementor
ac689a2e
AL
6260 * field as main ID register, and we implement four counters in
6261 * addition to the cycle count register.
200ac0ef 6262 */
ac689a2e 6263 unsigned int i, pmcrn = 4;
200ac0ef
PM
6264 ARMCPRegInfo pmcr = {
6265 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
8521466b 6266 .access = PL0_RW,
7a0e58fa 6267 .type = ARM_CP_IO | ARM_CP_ALIAS,
8521466b 6268 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
fcd25206
PM
6269 .accessfn = pmreg_access, .writefn = pmcr_write,
6270 .raw_writefn = raw_write,
200ac0ef 6271 };
8521466b
AF
6272 ARMCPRegInfo pmcr64 = {
6273 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6274 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6275 .access = PL0_RW, .accessfn = pmreg_access,
6276 .type = ARM_CP_IO,
6277 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
ac689a2e 6278 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
8521466b
AF
6279 .writefn = pmcr_write, .raw_writefn = raw_write,
6280 };
7c2cb42b 6281 define_one_arm_cp_reg(cpu, &pmcr);
8521466b 6282 define_one_arm_cp_reg(cpu, &pmcr64);
5ecdd3e4
AL
6283 for (i = 0; i < pmcrn; i++) {
6284 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6285 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6286 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6287 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6288 ARMCPRegInfo pmev_regs[] = {
62c7ec34 6289 { .name = pmevcntr_name, .cp = 15, .crn = 14,
5ecdd3e4
AL
6290 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6291 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6292 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6293 .accessfn = pmreg_access },
6294 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
62c7ec34 6295 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
5ecdd3e4
AL
6296 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6297 .type = ARM_CP_IO,
6298 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6299 .raw_readfn = pmevcntr_rawread,
6300 .raw_writefn = pmevcntr_rawwrite },
62c7ec34 6301 { .name = pmevtyper_name, .cp = 15, .crn = 14,
5ecdd3e4
AL
6302 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6303 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6304 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6305 .accessfn = pmreg_access },
6306 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
62c7ec34 6307 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
5ecdd3e4
AL
6308 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6309 .type = ARM_CP_IO,
6310 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6311 .raw_writefn = pmevtyper_rawwrite },
6312 REGINFO_SENTINEL
6313 };
6314 define_arm_cp_regs(cpu, pmev_regs);
6315 g_free(pmevcntr_name);
6316 g_free(pmevcntr_el0_name);
6317 g_free(pmevtyper_name);
6318 g_free(pmevtyper_el0_name);
6319 }
776d4e5c 6320 ARMCPRegInfo clidr = {
7da845b0
PM
6321 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
6322 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
630fcd4d
MZ
6323 .access = PL1_R, .type = ARM_CP_CONST,
6324 .accessfn = access_aa64_tid2,
6325 .resetvalue = cpu->clidr
776d4e5c 6326 };
776d4e5c 6327 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 6328 define_arm_cp_regs(cpu, v7_cp_reginfo);
50300698 6329 define_debug_regs(cpu);
7d57f408
PM
6330 } else {
6331 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 6332 }
cad86737
AL
6333 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
6334 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
6335 ARMCPRegInfo v81_pmu_regs[] = {
6336 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6337 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6338 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6339 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6340 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6341 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6342 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6343 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6344 REGINFO_SENTINEL
6345 };
6346 define_arm_cp_regs(cpu, v81_pmu_regs);
6347 }
b0d2b7d0 6348 if (arm_feature(env, ARM_FEATURE_V8)) {
e20d84c1
PM
6349 /* AArch64 ID registers, which all have impdef reset values.
6350 * Note that within the ID register ranges the unused slots
6351 * must all RAZ, not UNDEF; future architecture versions may
6352 * define new registers here.
6353 */
e60cef86 6354 ARMCPRegInfo v8_idregs[] = {
96a8b92e
PM
6355 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
6356 * know the right value for the GIC field until after we
6357 * define these regs.
6358 */
e60cef86
PM
6359 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
6360 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
96a8b92e 6361 .access = PL1_R, .type = ARM_CP_NO_RAW,
6a4ef4e5 6362 .accessfn = access_aa64_tid3,
96a8b92e
PM
6363 .readfn = id_aa64pfr0_read,
6364 .writefn = arm_cp_write_ignore },
e60cef86
PM
6365 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
6366 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
6367 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6368 .accessfn = access_aa64_tid3,
47576b94 6369 .resetvalue = cpu->isar.id_aa64pfr1},
e20d84c1
PM
6370 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6371 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
6372 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6373 .accessfn = access_aa64_tid3,
e20d84c1
PM
6374 .resetvalue = 0 },
6375 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6376 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
6377 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6378 .accessfn = access_aa64_tid3,
e20d84c1 6379 .resetvalue = 0 },
9516d772 6380 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
e20d84c1
PM
6381 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
6382 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6383 .accessfn = access_aa64_tid3,
9516d772 6384 /* At present, only SVEver == 0 is defined anyway. */
e20d84c1
PM
6385 .resetvalue = 0 },
6386 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6387 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
6388 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6389 .accessfn = access_aa64_tid3,
e20d84c1
PM
6390 .resetvalue = 0 },
6391 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6392 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6393 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6394 .accessfn = access_aa64_tid3,
e20d84c1
PM
6395 .resetvalue = 0 },
6396 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6397 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6398 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6399 .accessfn = access_aa64_tid3,
e20d84c1 6400 .resetvalue = 0 },
e60cef86
PM
6401 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6402 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6403 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6404 .accessfn = access_aa64_tid3,
d6f02ce3 6405 .resetvalue = cpu->id_aa64dfr0 },
e60cef86
PM
6406 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6407 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6408 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6409 .accessfn = access_aa64_tid3,
e60cef86 6410 .resetvalue = cpu->id_aa64dfr1 },
e20d84c1
PM
6411 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6412 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6413 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6414 .accessfn = access_aa64_tid3,
e20d84c1
PM
6415 .resetvalue = 0 },
6416 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6417 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6418 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6419 .accessfn = access_aa64_tid3,
e20d84c1 6420 .resetvalue = 0 },
e60cef86
PM
6421 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6422 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6423 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6424 .accessfn = access_aa64_tid3,
e60cef86
PM
6425 .resetvalue = cpu->id_aa64afr0 },
6426 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6427 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6428 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6429 .accessfn = access_aa64_tid3,
e60cef86 6430 .resetvalue = cpu->id_aa64afr1 },
e20d84c1
PM
6431 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6432 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6433 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6434 .accessfn = access_aa64_tid3,
e20d84c1
PM
6435 .resetvalue = 0 },
6436 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6437 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6438 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6439 .accessfn = access_aa64_tid3,
e20d84c1 6440 .resetvalue = 0 },
e60cef86
PM
6441 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6442 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6443 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6444 .accessfn = access_aa64_tid3,
47576b94 6445 .resetvalue = cpu->isar.id_aa64isar0 },
e60cef86
PM
6446 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6447 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6448 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6449 .accessfn = access_aa64_tid3,
47576b94 6450 .resetvalue = cpu->isar.id_aa64isar1 },
e20d84c1
PM
6451 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6452 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6453 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6454 .accessfn = access_aa64_tid3,
e20d84c1
PM
6455 .resetvalue = 0 },
6456 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6457 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6458 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6459 .accessfn = access_aa64_tid3,
e20d84c1
PM
6460 .resetvalue = 0 },
6461 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6462 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6463 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6464 .accessfn = access_aa64_tid3,
e20d84c1
PM
6465 .resetvalue = 0 },
6466 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6467 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6468 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6469 .accessfn = access_aa64_tid3,
e20d84c1
PM
6470 .resetvalue = 0 },
6471 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6472 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6473 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6474 .accessfn = access_aa64_tid3,
e20d84c1
PM
6475 .resetvalue = 0 },
6476 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6477 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6478 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6479 .accessfn = access_aa64_tid3,
e20d84c1 6480 .resetvalue = 0 },
e60cef86
PM
6481 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6482 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6483 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6484 .accessfn = access_aa64_tid3,
3dc91ddb 6485 .resetvalue = cpu->isar.id_aa64mmfr0 },
e60cef86
PM
6486 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6487 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6488 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6489 .accessfn = access_aa64_tid3,
3dc91ddb 6490 .resetvalue = cpu->isar.id_aa64mmfr1 },
e20d84c1
PM
6491 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6492 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6493 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6494 .accessfn = access_aa64_tid3,
e20d84c1
PM
6495 .resetvalue = 0 },
6496 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6497 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6498 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6499 .accessfn = access_aa64_tid3,
e20d84c1
PM
6500 .resetvalue = 0 },
6501 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6502 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6503 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6504 .accessfn = access_aa64_tid3,
e20d84c1
PM
6505 .resetvalue = 0 },
6506 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6507 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6508 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6509 .accessfn = access_aa64_tid3,
e20d84c1
PM
6510 .resetvalue = 0 },
6511 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6512 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6513 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6514 .accessfn = access_aa64_tid3,
e20d84c1
PM
6515 .resetvalue = 0 },
6516 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6517 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6518 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6519 .accessfn = access_aa64_tid3,
e20d84c1 6520 .resetvalue = 0 },
a50c0f51
PM
6521 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6522 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6523 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6524 .accessfn = access_aa64_tid3,
47576b94 6525 .resetvalue = cpu->isar.mvfr0 },
a50c0f51
PM
6526 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6527 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6528 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6529 .accessfn = access_aa64_tid3,
47576b94 6530 .resetvalue = cpu->isar.mvfr1 },
a50c0f51
PM
6531 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6532 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6533 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6534 .accessfn = access_aa64_tid3,
47576b94 6535 .resetvalue = cpu->isar.mvfr2 },
e20d84c1
PM
6536 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6537 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6538 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6539 .accessfn = access_aa64_tid3,
e20d84c1
PM
6540 .resetvalue = 0 },
6541 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6542 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6543 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6544 .accessfn = access_aa64_tid3,
e20d84c1
PM
6545 .resetvalue = 0 },
6546 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6547 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6548 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6549 .accessfn = access_aa64_tid3,
e20d84c1
PM
6550 .resetvalue = 0 },
6551 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6552 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6553 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6554 .accessfn = access_aa64_tid3,
e20d84c1
PM
6555 .resetvalue = 0 },
6556 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6557 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6558 .access = PL1_R, .type = ARM_CP_CONST,
6a4ef4e5 6559 .accessfn = access_aa64_tid3,
e20d84c1 6560 .resetvalue = 0 },
4054bfa9
AF
6561 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6562 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6563 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
cad86737 6564 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
4054bfa9
AF
6565 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6566 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6567 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6568 .resetvalue = cpu->pmceid0 },
6569 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6570 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6571 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
cad86737 6572 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
4054bfa9
AF
6573 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6574 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6575 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6576 .resetvalue = cpu->pmceid1 },
e60cef86
PM
6577 REGINFO_SENTINEL
6578 };
6c5c0fec
AB
6579#ifdef CONFIG_USER_ONLY
6580 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6581 { .name = "ID_AA64PFR0_EL1",
6582 .exported_bits = 0x000f000f00ff0000,
6583 .fixed_bits = 0x0000000000000011 },
6584 { .name = "ID_AA64PFR1_EL1",
6585 .exported_bits = 0x00000000000000f0 },
d040242e
AB
6586 { .name = "ID_AA64PFR*_EL1_RESERVED",
6587 .is_glob = true },
6c5c0fec
AB
6588 { .name = "ID_AA64ZFR0_EL1" },
6589 { .name = "ID_AA64MMFR0_EL1",
6590 .fixed_bits = 0x00000000ff000000 },
6591 { .name = "ID_AA64MMFR1_EL1" },
d040242e
AB
6592 { .name = "ID_AA64MMFR*_EL1_RESERVED",
6593 .is_glob = true },
6c5c0fec
AB
6594 { .name = "ID_AA64DFR0_EL1",
6595 .fixed_bits = 0x0000000000000006 },
6596 { .name = "ID_AA64DFR1_EL1" },
d040242e
AB
6597 { .name = "ID_AA64DFR*_EL1_RESERVED",
6598 .is_glob = true },
6599 { .name = "ID_AA64AFR*",
6600 .is_glob = true },
6c5c0fec
AB
6601 { .name = "ID_AA64ISAR0_EL1",
6602 .exported_bits = 0x00fffffff0fffff0 },
6603 { .name = "ID_AA64ISAR1_EL1",
6604 .exported_bits = 0x000000f0ffffffff },
d040242e
AB
6605 { .name = "ID_AA64ISAR*_EL1_RESERVED",
6606 .is_glob = true },
6c5c0fec
AB
6607 REGUSERINFO_SENTINEL
6608 };
6609 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6610#endif
be8e8128
GB
6611 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6612 if (!arm_feature(env, ARM_FEATURE_EL3) &&
6613 !arm_feature(env, ARM_FEATURE_EL2)) {
6614 ARMCPRegInfo rvbar = {
6615 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6616 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6617 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6618 };
6619 define_one_arm_cp_reg(cpu, &rvbar);
6620 }
e60cef86 6621 define_arm_cp_regs(cpu, v8_idregs);
b0d2b7d0
PM
6622 define_arm_cp_regs(cpu, v8_cp_reginfo);
6623 }
3b685ba7 6624 if (arm_feature(env, ARM_FEATURE_EL2)) {
f0d574d6 6625 uint64_t vmpidr_def = mpidr_read_val(env);
731de9e6
EI
6626 ARMCPRegInfo vpidr_regs[] = {
6627 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6628 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6629 .access = PL2_RW, .accessfn = access_el3_aa32ns,
36476562
PM
6630 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6631 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
731de9e6
EI
6632 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6633 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6634 .access = PL2_RW, .resetvalue = cpu->midr,
6635 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
6636 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6637 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6638 .access = PL2_RW, .accessfn = access_el3_aa32ns,
36476562
PM
6639 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6640 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
f0d574d6
EI
6641 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6642 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6643 .access = PL2_RW,
6644 .resetvalue = vmpidr_def,
6645 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
731de9e6
EI
6646 REGINFO_SENTINEL
6647 };
6648 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 6649 define_arm_cp_regs(cpu, el2_cp_reginfo);
ce4afed8
PM
6650 if (arm_feature(env, ARM_FEATURE_V8)) {
6651 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6652 }
be8e8128
GB
6653 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6654 if (!arm_feature(env, ARM_FEATURE_EL3)) {
6655 ARMCPRegInfo rvbar = {
6656 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6657 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6658 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6659 };
6660 define_one_arm_cp_reg(cpu, &rvbar);
6661 }
d42e3c26
EI
6662 } else {
6663 /* If EL2 is missing but higher ELs are enabled, we need to
6664 * register the no_el2 reginfos.
6665 */
6666 if (arm_feature(env, ARM_FEATURE_EL3)) {
f0d574d6
EI
6667 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6668 * of MIDR_EL1 and MPIDR_EL1.
731de9e6
EI
6669 */
6670 ARMCPRegInfo vpidr_regs[] = {
6671 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6672 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6673 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6674 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6675 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
6676 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6677 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6678 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6679 .type = ARM_CP_NO_RAW,
6680 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
731de9e6
EI
6681 REGINFO_SENTINEL
6682 };
6683 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 6684 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
ce4afed8
PM
6685 if (arm_feature(env, ARM_FEATURE_V8)) {
6686 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6687 }
d42e3c26 6688 }
3b685ba7 6689 }
81547d66 6690 if (arm_feature(env, ARM_FEATURE_EL3)) {
0f1a3b24 6691 define_arm_cp_regs(cpu, el3_cp_reginfo);
e24fdd23
PM
6692 ARMCPRegInfo el3_regs[] = {
6693 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6694 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6695 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6696 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6697 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6698 .access = PL3_RW,
6699 .raw_writefn = raw_write, .writefn = sctlr_write,
6700 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6701 .resetvalue = cpu->reset_sctlr },
6702 REGINFO_SENTINEL
be8e8128 6703 };
e24fdd23
PM
6704
6705 define_arm_cp_regs(cpu, el3_regs);
81547d66 6706 }
2f027fc5
PM
6707 /* The behaviour of NSACR is sufficiently various that we don't
6708 * try to describe it in a single reginfo:
6709 * if EL3 is 64 bit, then trap to EL3 from S EL1,
6710 * reads as constant 0xc00 from NS EL1 and NS EL2
6711 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6712 * if v7 without EL3, register doesn't exist
6713 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6714 */
6715 if (arm_feature(env, ARM_FEATURE_EL3)) {
6716 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6717 ARMCPRegInfo nsacr = {
6718 .name = "NSACR", .type = ARM_CP_CONST,
6719 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6720 .access = PL1_RW, .accessfn = nsacr_access,
6721 .resetvalue = 0xc00
6722 };
6723 define_one_arm_cp_reg(cpu, &nsacr);
6724 } else {
6725 ARMCPRegInfo nsacr = {
6726 .name = "NSACR",
6727 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6728 .access = PL3_RW | PL1_R,
6729 .resetvalue = 0,
6730 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6731 };
6732 define_one_arm_cp_reg(cpu, &nsacr);
6733 }
6734 } else {
6735 if (arm_feature(env, ARM_FEATURE_V8)) {
6736 ARMCPRegInfo nsacr = {
6737 .name = "NSACR", .type = ARM_CP_CONST,
6738 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6739 .access = PL1_R,
6740 .resetvalue = 0xc00
6741 };
6742 define_one_arm_cp_reg(cpu, &nsacr);
6743 }
6744 }
6745
452a0955 6746 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6cb0b013
PC
6747 if (arm_feature(env, ARM_FEATURE_V6)) {
6748 /* PMSAv6 not implemented */
6749 assert(arm_feature(env, ARM_FEATURE_V7));
6750 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6751 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6752 } else {
6753 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6754 }
18032bec 6755 } else {
8e5d75c9 6756 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
18032bec 6757 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
ab638a32
RH
6758 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
6759 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6760 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6761 }
18032bec 6762 }
c326b979
PM
6763 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6764 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6765 }
6cc7a3ae
PM
6766 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6767 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6768 }
4a501606
PM
6769 if (arm_feature(env, ARM_FEATURE_VAPA)) {
6770 define_arm_cp_regs(cpu, vapa_cp_reginfo);
6771 }
c4804214
PM
6772 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6773 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6774 }
6775 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6776 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6777 }
6778 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6779 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6780 }
18032bec
PM
6781 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6782 define_arm_cp_regs(cpu, omap_cp_reginfo);
6783 }
34f90529
PM
6784 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6785 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6786 }
1047b9d7
PM
6787 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6788 define_arm_cp_regs(cpu, xscale_cp_reginfo);
6789 }
6790 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6791 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6792 }
7ac681cf
PM
6793 if (arm_feature(env, ARM_FEATURE_LPAE)) {
6794 define_arm_cp_regs(cpu, lpae_cp_reginfo);
6795 }
f96f3d5f
MZ
6796 if (cpu_isar_feature(jazelle, cpu)) {
6797 define_arm_cp_regs(cpu, jazelle_regs);
6798 }
7884849c
PM
6799 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6800 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6801 * be read-only (ie write causes UNDEF exception).
6802 */
6803 {
00a29f3d
PM
6804 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6805 /* Pre-v8 MIDR space.
6806 * Note that the MIDR isn't a simple constant register because
7884849c
PM
6807 * of the TI925 behaviour where writes to another register can
6808 * cause the MIDR value to change.
97ce8d61
PC
6809 *
6810 * Unimplemented registers in the c15 0 0 0 space default to
6811 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6812 * and friends override accordingly.
7884849c
PM
6813 */
6814 { .name = "MIDR",
97ce8d61 6815 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7884849c 6816 .access = PL1_R, .resetvalue = cpu->midr,
d4e6df63 6817 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
731de9e6 6818 .readfn = midr_read,
97ce8d61
PC
6819 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6820 .type = ARM_CP_OVERRIDE },
7884849c
PM
6821 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6822 { .name = "DUMMY",
6823 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6824 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6825 { .name = "DUMMY",
6826 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6827 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6828 { .name = "DUMMY",
6829 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6830 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6831 { .name = "DUMMY",
6832 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6833 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6834 { .name = "DUMMY",
6835 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6836 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6837 REGINFO_SENTINEL
6838 };
00a29f3d 6839 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
00a29f3d
PM
6840 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6841 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
731de9e6
EI
6842 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6843 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6844 .readfn = midr_read },
ac00c79f
SF
6845 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6846 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6847 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6848 .access = PL1_R, .resetvalue = cpu->midr },
6849 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6850 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6851 .access = PL1_R, .resetvalue = cpu->midr },
00a29f3d
PM
6852 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6853 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
93fbc983
MZ
6854 .access = PL1_R,
6855 .accessfn = access_aa64_tid1,
6856 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
00a29f3d
PM
6857 REGINFO_SENTINEL
6858 };
6859 ARMCPRegInfo id_cp_reginfo[] = {
6860 /* These are common to v8 and pre-v8 */
6861 { .name = "CTR",
6862 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
630fcd4d
MZ
6863 .access = PL1_R, .accessfn = ctr_el0_access,
6864 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
00a29f3d
PM
6865 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6866 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6867 .access = PL0_R, .accessfn = ctr_el0_access,
6868 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6869 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6870 { .name = "TCMTR",
6871 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
93fbc983
MZ
6872 .access = PL1_R,
6873 .accessfn = access_aa32_tid1,
6874 .type = ARM_CP_CONST, .resetvalue = 0 },
00a29f3d
PM
6875 REGINFO_SENTINEL
6876 };
8085ce63
PC
6877 /* TLBTR is specific to VMSA */
6878 ARMCPRegInfo id_tlbtr_reginfo = {
6879 .name = "TLBTR",
6880 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
93fbc983
MZ
6881 .access = PL1_R,
6882 .accessfn = access_aa32_tid1,
6883 .type = ARM_CP_CONST, .resetvalue = 0,
8085ce63 6884 };
3281af81
PC
6885 /* MPUIR is specific to PMSA V6+ */
6886 ARMCPRegInfo id_mpuir_reginfo = {
6887 .name = "MPUIR",
6888 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6889 .access = PL1_R, .type = ARM_CP_CONST,
6890 .resetvalue = cpu->pmsav7_dregion << 8
6891 };
7884849c
PM
6892 ARMCPRegInfo crn0_wi_reginfo = {
6893 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6894 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6895 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6896 };
6c5c0fec
AB
6897#ifdef CONFIG_USER_ONLY
6898 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6899 { .name = "MIDR_EL1",
6900 .exported_bits = 0x00000000ffffffff },
6901 { .name = "REVIDR_EL1" },
6902 REGUSERINFO_SENTINEL
6903 };
6904 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6905#endif
7884849c
PM
6906 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6907 arm_feature(env, ARM_FEATURE_STRONGARM)) {
6908 ARMCPRegInfo *r;
6909 /* Register the blanket "writes ignored" value first to cover the
a703eda1
PC
6910 * whole space. Then update the specific ID registers to allow write
6911 * access, so that they ignore writes rather than causing them to
6912 * UNDEF.
7884849c
PM
6913 */
6914 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
00a29f3d
PM
6915 for (r = id_pre_v8_midr_cp_reginfo;
6916 r->type != ARM_CP_SENTINEL; r++) {
6917 r->access = PL1_RW;
6918 }
7884849c
PM
6919 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6920 r->access = PL1_RW;
7884849c 6921 }
10006112 6922 id_mpuir_reginfo.access = PL1_RW;
3281af81 6923 id_tlbtr_reginfo.access = PL1_RW;
7884849c 6924 }
00a29f3d
PM
6925 if (arm_feature(env, ARM_FEATURE_V8)) {
6926 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6927 } else {
6928 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6929 }
a703eda1 6930 define_arm_cp_regs(cpu, id_cp_reginfo);
452a0955 6931 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8085ce63 6932 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
3281af81
PC
6933 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6934 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8085ce63 6935 }
7884849c
PM
6936 }
6937
97ce8d61 6938 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
52264166
AB
6939 ARMCPRegInfo mpidr_cp_reginfo[] = {
6940 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6941 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6942 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6943 REGINFO_SENTINEL
6944 };
6945#ifdef CONFIG_USER_ONLY
6946 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6947 { .name = "MPIDR_EL1",
6948 .fixed_bits = 0x0000000080000000 },
6949 REGUSERINFO_SENTINEL
6950 };
6951 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6952#endif
97ce8d61
PC
6953 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6954 }
6955
2771db27 6956 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
834a6c69
PM
6957 ARMCPRegInfo auxcr_reginfo[] = {
6958 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6959 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6960 .access = PL1_RW, .type = ARM_CP_CONST,
6961 .resetvalue = cpu->reset_auxcr },
6962 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6963 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6964 .access = PL2_RW, .type = ARM_CP_CONST,
6965 .resetvalue = 0 },
6966 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6967 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6968 .access = PL3_RW, .type = ARM_CP_CONST,
6969 .resetvalue = 0 },
6970 REGINFO_SENTINEL
2771db27 6971 };
834a6c69 6972 define_arm_cp_regs(cpu, auxcr_reginfo);
0e0456ab
PM
6973 if (arm_feature(env, ARM_FEATURE_V8)) {
6974 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6975 ARMCPRegInfo hactlr2_reginfo = {
6976 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6977 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6978 .access = PL2_RW, .type = ARM_CP_CONST,
6979 .resetvalue = 0
6980 };
6981 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6982 }
2771db27
PM
6983 }
6984
d8ba780b 6985 if (arm_feature(env, ARM_FEATURE_CBAR)) {
d56974af
LM
6986 /*
6987 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
6988 * There are two flavours:
6989 * (1) older 32-bit only cores have a simple 32-bit CBAR
6990 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
6991 * 32-bit register visible to AArch32 at a different encoding
6992 * to the "flavour 1" register and with the bits rearranged to
6993 * be able to squash a 64-bit address into the 32-bit view.
6994 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
6995 * in future if we support AArch32-only configs of some of the
6996 * AArch64 cores we might need to add a specific feature flag
6997 * to indicate cores with "flavour 2" CBAR.
6998 */
f318cec6
PM
6999 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7000 /* 32 bit view is [31:18] 0...0 [43:32]. */
7001 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
7002 | extract64(cpu->reset_cbar, 32, 12);
7003 ARMCPRegInfo cbar_reginfo[] = {
7004 { .name = "CBAR",
7005 .type = ARM_CP_CONST,
d56974af
LM
7006 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
7007 .access = PL1_R, .resetvalue = cbar32 },
f318cec6
PM
7008 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
7009 .type = ARM_CP_CONST,
7010 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
d56974af 7011 .access = PL1_R, .resetvalue = cpu->reset_cbar },
f318cec6
PM
7012 REGINFO_SENTINEL
7013 };
7014 /* We don't implement a r/w 64 bit CBAR currently */
7015 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
7016 define_arm_cp_regs(cpu, cbar_reginfo);
7017 } else {
7018 ARMCPRegInfo cbar = {
7019 .name = "CBAR",
7020 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
7021 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
7022 .fieldoffset = offsetof(CPUARMState,
7023 cp15.c15_config_base_address)
7024 };
7025 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
7026 cbar.access = PL1_R;
7027 cbar.fieldoffset = 0;
7028 cbar.type = ARM_CP_CONST;
7029 }
7030 define_one_arm_cp_reg(cpu, &cbar);
7031 }
d8ba780b
PC
7032 }
7033
91db4642
CLG
7034 if (arm_feature(env, ARM_FEATURE_VBAR)) {
7035 ARMCPRegInfo vbar_cp_reginfo[] = {
7036 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
7037 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
7038 .access = PL1_RW, .writefn = vbar_write,
7039 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
7040 offsetof(CPUARMState, cp15.vbar_ns) },
7041 .resetvalue = 0 },
7042 REGINFO_SENTINEL
7043 };
7044 define_arm_cp_regs(cpu, vbar_cp_reginfo);
7045 }
7046
2771db27
PM
7047 /* Generic registers whose values depend on the implementation */
7048 {
7049 ARMCPRegInfo sctlr = {
5ebafdf3 7050 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
137feaa9
FA
7051 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
7052 .access = PL1_RW,
7053 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
7054 offsetof(CPUARMState, cp15.sctlr_ns) },
d4e6df63
PM
7055 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
7056 .raw_writefn = raw_write,
2771db27
PM
7057 };
7058 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7059 /* Normally we would always end the TB on an SCTLR write, but Linux
7060 * arch/arm/mach-pxa/sleep.S expects two instructions following
7061 * an MMU enable to execute from cache. Imitate this behaviour.
7062 */
7063 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
7064 }
7065 define_one_arm_cp_reg(cpu, &sctlr);
7066 }
5be5e8ed 7067
2d7137c1
RH
7068 if (cpu_isar_feature(aa64_lor, cpu)) {
7069 /*
7070 * A trivial implementation of ARMv8.1-LOR leaves all of these
7071 * registers fixed at 0, which indicates that there are zero
7072 * supported Limited Ordering regions.
7073 */
7074 static const ARMCPRegInfo lor_reginfo[] = {
7075 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7076 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7077 .access = PL1_RW, .accessfn = access_lor_other,
7078 .type = ARM_CP_CONST, .resetvalue = 0 },
7079 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7080 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7081 .access = PL1_RW, .accessfn = access_lor_other,
7082 .type = ARM_CP_CONST, .resetvalue = 0 },
7083 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7084 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7085 .access = PL1_RW, .accessfn = access_lor_other,
7086 .type = ARM_CP_CONST, .resetvalue = 0 },
7087 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7088 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7089 .access = PL1_RW, .accessfn = access_lor_other,
7090 .type = ARM_CP_CONST, .resetvalue = 0 },
7091 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7092 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7093 .access = PL1_R, .accessfn = access_lorid,
7094 .type = ARM_CP_CONST, .resetvalue = 0 },
7095 REGINFO_SENTINEL
7096 };
7097 define_arm_cp_regs(cpu, lor_reginfo);
7098 }
7099
e2a1a461
RH
7100 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
7101 define_arm_cp_regs(cpu, vhe_reginfo);
7102 }
7103
cd208a1c 7104 if (cpu_isar_feature(aa64_sve, cpu)) {
5be5e8ed
RH
7105 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
7106 if (arm_feature(env, ARM_FEATURE_EL2)) {
7107 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
7108 } else {
7109 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
7110 }
7111 if (arm_feature(env, ARM_FEATURE_EL3)) {
7112 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
7113 }
7114 }
967aa94f
RH
7115
7116#ifdef TARGET_AARCH64
7117 if (cpu_isar_feature(aa64_pauth, cpu)) {
7118 define_arm_cp_regs(cpu, pauth_reginfo);
7119 }
de390645
RH
7120 if (cpu_isar_feature(aa64_rndr, cpu)) {
7121 define_arm_cp_regs(cpu, rndr_reginfo);
7122 }
0d57b499
BM
7123#ifndef CONFIG_USER_ONLY
7124 /* Data Cache clean instructions up to PoP */
7125 if (cpu_isar_feature(aa64_dcpop, cpu)) {
7126 define_one_arm_cp_reg(cpu, dcpop_reg);
7127
7128 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
7129 define_one_arm_cp_reg(cpu, dcpodp_reg);
7130 }
7131 }
7132#endif /*CONFIG_USER_ONLY*/
967aa94f 7133#endif
cb570bd3
RH
7134
7135 /*
7136 * While all v8.0 cpus support aarch64, QEMU does have configurations
7137 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
7138 * which will set ID_ISAR6.
7139 */
7140 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
7141 ? cpu_isar_feature(aa64_predinv, cpu)
7142 : cpu_isar_feature(aa32_predinv, cpu)) {
7143 define_arm_cp_regs(cpu, predinv_reginfo);
7144 }
2ceb98c0
PM
7145}
7146
14969266
AF
7147void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
7148{
22169d41 7149 CPUState *cs = CPU(cpu);
14969266
AF
7150 CPUARMState *env = &cpu->env;
7151
6a669427
PM
7152 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7153 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
7154 aarch64_fpu_gdb_set_reg,
7155 34, "aarch64-fpu.xml", 0);
7156 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
22169d41 7157 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
7158 51, "arm-neon.xml", 0);
7159 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
22169d41 7160 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
7161 35, "arm-vfp3.xml", 0);
7162 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
22169d41 7163 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
7164 19, "arm-vfp.xml", 0);
7165 }
200bf5b7
AB
7166 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
7167 arm_gen_dynamic_xml(cs),
7168 "system-registers.xml", 0);
40f137e1
PB
7169}
7170
777dc784
PM
7171/* Sort alphabetically by type name, except for "any". */
7172static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 7173{
777dc784
PM
7174 ObjectClass *class_a = (ObjectClass *)a;
7175 ObjectClass *class_b = (ObjectClass *)b;
7176 const char *name_a, *name_b;
5adb4839 7177
777dc784
PM
7178 name_a = object_class_get_name(class_a);
7179 name_b = object_class_get_name(class_b);
51492fd1 7180 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 7181 return 1;
51492fd1 7182 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
7183 return -1;
7184 } else {
7185 return strcmp(name_a, name_b);
5adb4839
PB
7186 }
7187}
7188
777dc784 7189static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 7190{
777dc784 7191 ObjectClass *oc = data;
51492fd1
AF
7192 const char *typename;
7193 char *name;
3371d272 7194
51492fd1
AF
7195 typename = object_class_get_name(oc);
7196 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
0442428a 7197 qemu_printf(" %s\n", name);
51492fd1 7198 g_free(name);
777dc784
PM
7199}
7200
0442428a 7201void arm_cpu_list(void)
777dc784 7202{
777dc784
PM
7203 GSList *list;
7204
7205 list = object_class_get_list(TYPE_ARM_CPU, false);
7206 list = g_slist_sort(list, arm_cpu_list_compare);
0442428a
MA
7207 qemu_printf("Available CPUs:\n");
7208 g_slist_foreach(list, arm_cpu_list_entry, NULL);
777dc784 7209 g_slist_free(list);
40f137e1
PB
7210}
7211
78027bb6
CR
7212static void arm_cpu_add_definition(gpointer data, gpointer user_data)
7213{
7214 ObjectClass *oc = data;
7215 CpuDefinitionInfoList **cpu_list = user_data;
7216 CpuDefinitionInfoList *entry;
7217 CpuDefinitionInfo *info;
7218 const char *typename;
7219
7220 typename = object_class_get_name(oc);
7221 info = g_malloc0(sizeof(*info));
7222 info->name = g_strndup(typename,
7223 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8ed877b7 7224 info->q_typename = g_strdup(typename);
78027bb6
CR
7225
7226 entry = g_malloc0(sizeof(*entry));
7227 entry->value = info;
7228 entry->next = *cpu_list;
7229 *cpu_list = entry;
7230}
7231
25a9d6ca 7232CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
78027bb6
CR
7233{
7234 CpuDefinitionInfoList *cpu_list = NULL;
7235 GSList *list;
7236
7237 list = object_class_get_list(TYPE_ARM_CPU, false);
7238 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
7239 g_slist_free(list);
7240
7241 return cpu_list;
7242}
7243
6e6efd61 7244static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
51a79b03 7245 void *opaque, int state, int secstate,
9c513e78
AB
7246 int crm, int opc1, int opc2,
7247 const char *name)
6e6efd61
PM
7248{
7249 /* Private utility function for define_one_arm_cp_reg_with_opaque():
7250 * add a single reginfo struct to the hash table.
7251 */
7252 uint32_t *key = g_new(uint32_t, 1);
7253 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
7254 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3f3c82a5
FA
7255 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
7256
9c513e78 7257 r2->name = g_strdup(name);
3f3c82a5
FA
7258 /* Reset the secure state to the specific incoming state. This is
7259 * necessary as the register may have been defined with both states.
7260 */
7261 r2->secure = secstate;
7262
7263 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7264 /* Register is banked (using both entries in array).
7265 * Overwriting fieldoffset as the array is only used to define
7266 * banked registers but later only fieldoffset is used.
f5a0a5a5 7267 */
3f3c82a5
FA
7268 r2->fieldoffset = r->bank_fieldoffsets[ns];
7269 }
7270
7271 if (state == ARM_CP_STATE_AA32) {
7272 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7273 /* If the register is banked then we don't need to migrate or
7274 * reset the 32-bit instance in certain cases:
7275 *
7276 * 1) If the register has both 32-bit and 64-bit instances then we
7277 * can count on the 64-bit instance taking care of the
7278 * non-secure bank.
7279 * 2) If ARMv8 is enabled then we can count on a 64-bit version
7280 * taking care of the secure bank. This requires that separate
7281 * 32 and 64-bit definitions are provided.
7282 */
7283 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
7284 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7a0e58fa 7285 r2->type |= ARM_CP_ALIAS;
3f3c82a5
FA
7286 }
7287 } else if ((secstate != r->secure) && !ns) {
7288 /* The register is not banked so we only want to allow migration of
7289 * the non-secure instance.
7290 */
7a0e58fa 7291 r2->type |= ARM_CP_ALIAS;
58a1d8ce 7292 }
3f3c82a5
FA
7293
7294 if (r->state == ARM_CP_STATE_BOTH) {
7295 /* We assume it is a cp15 register if the .cp field is left unset.
7296 */
7297 if (r2->cp == 0) {
7298 r2->cp = 15;
7299 }
7300
f5a0a5a5 7301#ifdef HOST_WORDS_BIGENDIAN
3f3c82a5
FA
7302 if (r2->fieldoffset) {
7303 r2->fieldoffset += sizeof(uint32_t);
7304 }
f5a0a5a5 7305#endif
3f3c82a5 7306 }
f5a0a5a5
PM
7307 }
7308 if (state == ARM_CP_STATE_AA64) {
7309 /* To allow abbreviation of ARMCPRegInfo
7310 * definitions, we treat cp == 0 as equivalent to
7311 * the value for "standard guest-visible sysreg".
58a1d8ce
PM
7312 * STATE_BOTH definitions are also always "standard
7313 * sysreg" in their AArch64 view (the .cp value may
7314 * be non-zero for the benefit of the AArch32 view).
f5a0a5a5 7315 */
58a1d8ce 7316 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
f5a0a5a5
PM
7317 r2->cp = CP_REG_ARM64_SYSREG_CP;
7318 }
7319 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
7320 r2->opc0, opc1, opc2);
7321 } else {
51a79b03 7322 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
f5a0a5a5 7323 }
6e6efd61
PM
7324 if (opaque) {
7325 r2->opaque = opaque;
7326 }
67ed771d
PM
7327 /* reginfo passed to helpers is correct for the actual access,
7328 * and is never ARM_CP_STATE_BOTH:
7329 */
7330 r2->state = state;
6e6efd61
PM
7331 /* Make sure reginfo passed to helpers for wildcarded regs
7332 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
7333 */
7334 r2->crm = crm;
7335 r2->opc1 = opc1;
7336 r2->opc2 = opc2;
7337 /* By convention, for wildcarded registers only the first
7338 * entry is used for migration; the others are marked as
7a0e58fa 7339 * ALIAS so we don't try to transfer the register
6e6efd61 7340 * multiple times. Special registers (ie NOP/WFI) are
7a0e58fa 7341 * never migratable and not even raw-accessible.
6e6efd61 7342 */
7a0e58fa
PM
7343 if ((r->type & ARM_CP_SPECIAL)) {
7344 r2->type |= ARM_CP_NO_RAW;
7345 }
7346 if (((r->crm == CP_ANY) && crm != 0) ||
6e6efd61
PM
7347 ((r->opc1 == CP_ANY) && opc1 != 0) ||
7348 ((r->opc2 == CP_ANY) && opc2 != 0)) {
1f163787 7349 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6e6efd61
PM
7350 }
7351
375421cc
PM
7352 /* Check that raw accesses are either forbidden or handled. Note that
7353 * we can't assert this earlier because the setup of fieldoffset for
7354 * banked registers has to be done first.
7355 */
7356 if (!(r2->type & ARM_CP_NO_RAW)) {
7357 assert(!raw_accessors_invalid(r2));
7358 }
7359
6e6efd61
PM
7360 /* Overriding of an existing definition must be explicitly
7361 * requested.
7362 */
7363 if (!(r->type & ARM_CP_OVERRIDE)) {
7364 ARMCPRegInfo *oldreg;
7365 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
7366 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
7367 fprintf(stderr, "Register redefined: cp=%d %d bit "
7368 "crn=%d crm=%d opc1=%d opc2=%d, "
7369 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
7370 r2->crn, r2->crm, r2->opc1, r2->opc2,
7371 oldreg->name, r2->name);
7372 g_assert_not_reached();
7373 }
7374 }
7375 g_hash_table_insert(cpu->cp_regs, key, r2);
7376}
7377
7378
4b6a83fb
PM
7379void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
7380 const ARMCPRegInfo *r, void *opaque)
7381{
7382 /* Define implementations of coprocessor registers.
7383 * We store these in a hashtable because typically
7384 * there are less than 150 registers in a space which
7385 * is 16*16*16*8*8 = 262144 in size.
7386 * Wildcarding is supported for the crm, opc1 and opc2 fields.
7387 * If a register is defined twice then the second definition is
7388 * used, so this can be used to define some generic registers and
7389 * then override them with implementation specific variations.
7390 * At least one of the original and the second definition should
7391 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
7392 * against accidental use.
f5a0a5a5
PM
7393 *
7394 * The state field defines whether the register is to be
7395 * visible in the AArch32 or AArch64 execution state. If the
7396 * state is set to ARM_CP_STATE_BOTH then we synthesise a
7397 * reginfo structure for the AArch32 view, which sees the lower
7398 * 32 bits of the 64 bit register.
7399 *
7400 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
7401 * be wildcarded. AArch64 registers are always considered to be 64
7402 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
7403 * the register, if any.
4b6a83fb 7404 */
f5a0a5a5 7405 int crm, opc1, opc2, state;
4b6a83fb
PM
7406 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
7407 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
7408 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
7409 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
7410 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
7411 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
7412 /* 64 bit registers have only CRm and Opc1 fields */
7413 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
f5a0a5a5
PM
7414 /* op0 only exists in the AArch64 encodings */
7415 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
7416 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
7417 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
7418 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
7419 * encodes a minimum access level for the register. We roll this
7420 * runtime check into our general permission check code, so check
7421 * here that the reginfo's specified permissions are strict enough
7422 * to encompass the generic architectural permission check.
7423 */
7424 if (r->state != ARM_CP_STATE_AA32) {
7425 int mask = 0;
7426 switch (r->opc1) {
b5bd7440
AB
7427 case 0:
7428 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
7429 mask = PL0U_R | PL1_RW;
7430 break;
7431 case 1: case 2:
f5a0a5a5
PM
7432 /* min_EL EL1 */
7433 mask = PL1_RW;
7434 break;
7435 case 3:
7436 /* min_EL EL0 */
7437 mask = PL0_RW;
7438 break;
7439 case 4:
7440 /* min_EL EL2 */
7441 mask = PL2_RW;
7442 break;
7443 case 5:
7444 /* unallocated encoding, so not possible */
7445 assert(false);
7446 break;
7447 case 6:
7448 /* min_EL EL3 */
7449 mask = PL3_RW;
7450 break;
7451 case 7:
7452 /* min_EL EL1, secure mode only (we don't check the latter) */
7453 mask = PL1_RW;
7454 break;
7455 default:
7456 /* broken reginfo with out-of-range opc1 */
7457 assert(false);
7458 break;
7459 }
7460 /* assert our permissions are not too lax (stricter is fine) */
7461 assert((r->access & ~mask) == 0);
7462 }
7463
4b6a83fb
PM
7464 /* Check that the register definition has enough info to handle
7465 * reads and writes if they are permitted.
7466 */
7467 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7468 if (r->access & PL3_R) {
3f3c82a5
FA
7469 assert((r->fieldoffset ||
7470 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7471 r->readfn);
4b6a83fb
PM
7472 }
7473 if (r->access & PL3_W) {
3f3c82a5
FA
7474 assert((r->fieldoffset ||
7475 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7476 r->writefn);
4b6a83fb
PM
7477 }
7478 }
7479 /* Bad type field probably means missing sentinel at end of reg list */
7480 assert(cptype_valid(r->type));
7481 for (crm = crmmin; crm <= crmmax; crm++) {
7482 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7483 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
f5a0a5a5
PM
7484 for (state = ARM_CP_STATE_AA32;
7485 state <= ARM_CP_STATE_AA64; state++) {
7486 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7487 continue;
7488 }
3f3c82a5
FA
7489 if (state == ARM_CP_STATE_AA32) {
7490 /* Under AArch32 CP registers can be common
7491 * (same for secure and non-secure world) or banked.
7492 */
9c513e78
AB
7493 char *name;
7494
3f3c82a5
FA
7495 switch (r->secure) {
7496 case ARM_CP_SECSTATE_S:
7497 case ARM_CP_SECSTATE_NS:
7498 add_cpreg_to_hashtable(cpu, r, opaque, state,
9c513e78
AB
7499 r->secure, crm, opc1, opc2,
7500 r->name);
3f3c82a5
FA
7501 break;
7502 default:
9c513e78 7503 name = g_strdup_printf("%s_S", r->name);
3f3c82a5
FA
7504 add_cpreg_to_hashtable(cpu, r, opaque, state,
7505 ARM_CP_SECSTATE_S,
9c513e78
AB
7506 crm, opc1, opc2, name);
7507 g_free(name);
3f3c82a5
FA
7508 add_cpreg_to_hashtable(cpu, r, opaque, state,
7509 ARM_CP_SECSTATE_NS,
9c513e78 7510 crm, opc1, opc2, r->name);
3f3c82a5
FA
7511 break;
7512 }
7513 } else {
7514 /* AArch64 registers get mapped to non-secure instance
7515 * of AArch32 */
7516 add_cpreg_to_hashtable(cpu, r, opaque, state,
7517 ARM_CP_SECSTATE_NS,
9c513e78 7518 crm, opc1, opc2, r->name);
3f3c82a5 7519 }
f5a0a5a5 7520 }
4b6a83fb
PM
7521 }
7522 }
7523 }
7524}
7525
7526void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7527 const ARMCPRegInfo *regs, void *opaque)
7528{
7529 /* Define a whole list of registers */
7530 const ARMCPRegInfo *r;
7531 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7532 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7533 }
7534}
7535
6c5c0fec
AB
7536/*
7537 * Modify ARMCPRegInfo for access from userspace.
7538 *
7539 * This is a data driven modification directed by
7540 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7541 * user-space cannot alter any values and dynamic values pertaining to
7542 * execution state are hidden from user space view anyway.
7543 */
7544void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7545{
7546 const ARMCPRegUserSpaceInfo *m;
7547 ARMCPRegInfo *r;
7548
7549 for (m = mods; m->name; m++) {
d040242e
AB
7550 GPatternSpec *pat = NULL;
7551 if (m->is_glob) {
7552 pat = g_pattern_spec_new(m->name);
7553 }
6c5c0fec 7554 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
d040242e
AB
7555 if (pat && g_pattern_match_string(pat, r->name)) {
7556 r->type = ARM_CP_CONST;
7557 r->access = PL0U_R;
7558 r->resetvalue = 0;
7559 /* continue */
7560 } else if (strcmp(r->name, m->name) == 0) {
6c5c0fec
AB
7561 r->type = ARM_CP_CONST;
7562 r->access = PL0U_R;
7563 r->resetvalue &= m->exported_bits;
7564 r->resetvalue |= m->fixed_bits;
7565 break;
7566 }
7567 }
d040242e
AB
7568 if (pat) {
7569 g_pattern_spec_free(pat);
7570 }
6c5c0fec
AB
7571 }
7572}
7573
60322b39 7574const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4b6a83fb 7575{
60322b39 7576 return g_hash_table_lookup(cpregs, &encoded_cp);
4b6a83fb
PM
7577}
7578
c4241c7d
PM
7579void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7580 uint64_t value)
4b6a83fb
PM
7581{
7582 /* Helper coprocessor write function for write-ignore registers */
4b6a83fb
PM
7583}
7584
c4241c7d 7585uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4b6a83fb
PM
7586{
7587 /* Helper coprocessor write function for read-as-zero registers */
4b6a83fb
PM
7588 return 0;
7589}
7590
f5a0a5a5
PM
7591void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7592{
7593 /* Helper coprocessor reset function for do-nothing-on-reset registers */
7594}
7595
af393ffc 7596static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
37064a8b
PM
7597{
7598 /* Return true if it is not valid for us to switch to
7599 * this CPU mode (ie all the UNPREDICTABLE cases in
7600 * the ARM ARM CPSRWriteByInstr pseudocode).
7601 */
af393ffc
PM
7602
7603 /* Changes to or from Hyp via MSR and CPS are illegal. */
7604 if (write_type == CPSRWriteByInstr &&
7605 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7606 mode == ARM_CPU_MODE_HYP)) {
7607 return 1;
7608 }
7609
37064a8b
PM
7610 switch (mode) {
7611 case ARM_CPU_MODE_USR:
10eacda7 7612 return 0;
37064a8b
PM
7613 case ARM_CPU_MODE_SYS:
7614 case ARM_CPU_MODE_SVC:
7615 case ARM_CPU_MODE_ABT:
7616 case ARM_CPU_MODE_UND:
7617 case ARM_CPU_MODE_IRQ:
7618 case ARM_CPU_MODE_FIQ:
52ff951b
PM
7619 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7620 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7621 */
10eacda7
PM
7622 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7623 * and CPS are treated as illegal mode changes.
7624 */
7625 if (write_type == CPSRWriteByInstr &&
10eacda7 7626 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7c208e0f 7627 (arm_hcr_el2_eff(env) & HCR_TGE)) {
10eacda7
PM
7628 return 1;
7629 }
37064a8b 7630 return 0;
e6c8fc07
PM
7631 case ARM_CPU_MODE_HYP:
7632 return !arm_feature(env, ARM_FEATURE_EL2)
2d2a4549 7633 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
027fc527 7634 case ARM_CPU_MODE_MON:
58ae2d1f 7635 return arm_current_el(env) < 3;
37064a8b
PM
7636 default:
7637 return 1;
7638 }
7639}
7640
2f4a40e5
AZ
7641uint32_t cpsr_read(CPUARMState *env)
7642{
7643 int ZF;
6fbe23d5
PB
7644 ZF = (env->ZF == 0);
7645 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
7646 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7647 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7648 | ((env->condexec_bits & 0xfc) << 8)
af519934 7649 | (env->GE << 16) | (env->daif & CPSR_AIF);
2f4a40e5
AZ
7650}
7651
50866ba5
PM
7652void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7653 CPSRWriteType write_type)
2f4a40e5 7654{
6e8801f9
FA
7655 uint32_t changed_daif;
7656
2f4a40e5 7657 if (mask & CPSR_NZCV) {
6fbe23d5
PB
7658 env->ZF = (~val) & CPSR_Z;
7659 env->NF = val;
2f4a40e5
AZ
7660 env->CF = (val >> 29) & 1;
7661 env->VF = (val << 3) & 0x80000000;
7662 }
7663 if (mask & CPSR_Q)
7664 env->QF = ((val & CPSR_Q) != 0);
7665 if (mask & CPSR_T)
7666 env->thumb = ((val & CPSR_T) != 0);
7667 if (mask & CPSR_IT_0_1) {
7668 env->condexec_bits &= ~3;
7669 env->condexec_bits |= (val >> 25) & 3;
7670 }
7671 if (mask & CPSR_IT_2_7) {
7672 env->condexec_bits &= 3;
7673 env->condexec_bits |= (val >> 8) & 0xfc;
7674 }
7675 if (mask & CPSR_GE) {
7676 env->GE = (val >> 16) & 0xf;
7677 }
7678
6e8801f9
FA
7679 /* In a V7 implementation that includes the security extensions but does
7680 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7681 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7682 * bits respectively.
7683 *
7684 * In a V8 implementation, it is permitted for privileged software to
7685 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7686 */
f8c88bbc 7687 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6e8801f9
FA
7688 arm_feature(env, ARM_FEATURE_EL3) &&
7689 !arm_feature(env, ARM_FEATURE_EL2) &&
7690 !arm_is_secure(env)) {
7691
7692 changed_daif = (env->daif ^ val) & mask;
7693
7694 if (changed_daif & CPSR_A) {
7695 /* Check to see if we are allowed to change the masking of async
7696 * abort exceptions from a non-secure state.
7697 */
7698 if (!(env->cp15.scr_el3 & SCR_AW)) {
7699 qemu_log_mask(LOG_GUEST_ERROR,
7700 "Ignoring attempt to switch CPSR_A flag from "
7701 "non-secure world with SCR.AW bit clear\n");
7702 mask &= ~CPSR_A;
7703 }
7704 }
7705
7706 if (changed_daif & CPSR_F) {
7707 /* Check to see if we are allowed to change the masking of FIQ
7708 * exceptions from a non-secure state.
7709 */
7710 if (!(env->cp15.scr_el3 & SCR_FW)) {
7711 qemu_log_mask(LOG_GUEST_ERROR,
7712 "Ignoring attempt to switch CPSR_F flag from "
7713 "non-secure world with SCR.FW bit clear\n");
7714 mask &= ~CPSR_F;
7715 }
7716
7717 /* Check whether non-maskable FIQ (NMFI) support is enabled.
7718 * If this bit is set software is not allowed to mask
7719 * FIQs, but is allowed to set CPSR_F to 0.
7720 */
7721 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7722 (val & CPSR_F)) {
7723 qemu_log_mask(LOG_GUEST_ERROR,
7724 "Ignoring attempt to enable CPSR_F flag "
7725 "(non-maskable FIQ [NMFI] support enabled)\n");
7726 mask &= ~CPSR_F;
7727 }
7728 }
7729 }
7730
4cc35614
PM
7731 env->daif &= ~(CPSR_AIF & mask);
7732 env->daif |= val & CPSR_AIF & mask;
7733
f8c88bbc
PM
7734 if (write_type != CPSRWriteRaw &&
7735 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8c4f0eb9
PM
7736 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7737 /* Note that we can only get here in USR mode if this is a
7738 * gdb stub write; for this case we follow the architectural
7739 * behaviour for guest writes in USR mode of ignoring an attempt
7740 * to switch mode. (Those are caught by translate.c for writes
7741 * triggered by guest instructions.)
7742 */
7743 mask &= ~CPSR_M;
7744 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
81907a58
PM
7745 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7746 * v7, and has defined behaviour in v8:
7747 * + leave CPSR.M untouched
7748 * + allow changes to the other CPSR fields
7749 * + set PSTATE.IL
7750 * For user changes via the GDB stub, we don't set PSTATE.IL,
7751 * as this would be unnecessarily harsh for a user error.
37064a8b
PM
7752 */
7753 mask &= ~CPSR_M;
81907a58
PM
7754 if (write_type != CPSRWriteByGDBStub &&
7755 arm_feature(env, ARM_FEATURE_V8)) {
7756 mask |= CPSR_IL;
7757 val |= CPSR_IL;
7758 }
81e37284
PM
7759 qemu_log_mask(LOG_GUEST_ERROR,
7760 "Illegal AArch32 mode switch attempt from %s to %s\n",
7761 aarch32_mode_name(env->uncached_cpsr),
7762 aarch32_mode_name(val));
37064a8b 7763 } else {
81e37284
PM
7764 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7765 write_type == CPSRWriteExceptionReturn ?
7766 "Exception return from AArch32" :
7767 "AArch32 mode switch from",
7768 aarch32_mode_name(env->uncached_cpsr),
7769 aarch32_mode_name(val), env->regs[15]);
37064a8b
PM
7770 switch_mode(env, val & CPSR_M);
7771 }
2f4a40e5
AZ
7772 }
7773 mask &= ~CACHED_CPSR_BITS;
7774 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7775}
7776
b26eefb6
PB
7777/* Sign/zero extend */
7778uint32_t HELPER(sxtb16)(uint32_t x)
7779{
7780 uint32_t res;
7781 res = (uint16_t)(int8_t)x;
7782 res |= (uint32_t)(int8_t)(x >> 16) << 16;
7783 return res;
7784}
7785
7786uint32_t HELPER(uxtb16)(uint32_t x)
7787{
7788 uint32_t res;
7789 res = (uint16_t)(uint8_t)x;
7790 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7791 return res;
7792}
7793
3670669c
PB
7794int32_t HELPER(sdiv)(int32_t num, int32_t den)
7795{
7796 if (den == 0)
7797 return 0;
686eeb93
AJ
7798 if (num == INT_MIN && den == -1)
7799 return INT_MIN;
3670669c
PB
7800 return num / den;
7801}
7802
7803uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7804{
7805 if (den == 0)
7806 return 0;
7807 return num / den;
7808}
7809
7810uint32_t HELPER(rbit)(uint32_t x)
7811{
42fedbca 7812 return revbit32(x);
3670669c
PB
7813}
7814
c47eaf9f 7815#ifdef CONFIG_USER_ONLY
b5ff1b31 7816
affdb64d 7817static void switch_mode(CPUARMState *env, int mode)
b5ff1b31 7818{
2fc0cc0e 7819 ARMCPU *cpu = env_archcpu(env);
a47dddd7
AF
7820
7821 if (mode != ARM_CPU_MODE_USR) {
7822 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7823 }
b5ff1b31
FB
7824}
7825
012a906b
GB
7826uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7827 uint32_t cur_el, bool secure)
9e729b57
EI
7828{
7829 return 1;
7830}
7831
ce02049d
GB
7832void aarch64_sync_64_to_32(CPUARMState *env)
7833{
7834 g_assert_not_reached();
7835}
7836
b5ff1b31
FB
7837#else
7838
affdb64d 7839static void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
7840{
7841 int old_mode;
7842 int i;
7843
7844 old_mode = env->uncached_cpsr & CPSR_M;
7845 if (mode == old_mode)
7846 return;
7847
7848 if (old_mode == ARM_CPU_MODE_FIQ) {
7849 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 7850 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
7851 } else if (mode == ARM_CPU_MODE_FIQ) {
7852 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 7853 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
7854 }
7855
f5206413 7856 i = bank_number(old_mode);
b5ff1b31 7857 env->banked_r13[i] = env->regs[13];
b5ff1b31
FB
7858 env->banked_spsr[i] = env->spsr;
7859
f5206413 7860 i = bank_number(mode);
b5ff1b31 7861 env->regs[13] = env->banked_r13[i];
b5ff1b31 7862 env->spsr = env->banked_spsr[i];
593cfa2b
PM
7863
7864 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7865 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
b5ff1b31
FB
7866}
7867
0eeb17d6
GB
7868/* Physical Interrupt Target EL Lookup Table
7869 *
7870 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7871 *
7872 * The below multi-dimensional table is used for looking up the target
7873 * exception level given numerous condition criteria. Specifically, the
7874 * target EL is based on SCR and HCR routing controls as well as the
7875 * currently executing EL and secure state.
7876 *
7877 * Dimensions:
7878 * target_el_table[2][2][2][2][2][4]
7879 * | | | | | +--- Current EL
7880 * | | | | +------ Non-secure(0)/Secure(1)
7881 * | | | +--------- HCR mask override
7882 * | | +------------ SCR exec state control
7883 * | +--------------- SCR mask override
7884 * +------------------ 32-bit(0)/64-bit(1) EL3
7885 *
7886 * The table values are as such:
7887 * 0-3 = EL0-EL3
7888 * -1 = Cannot occur
7889 *
7890 * The ARM ARM target EL table includes entries indicating that an "exception
7891 * is not taken". The two cases where this is applicable are:
7892 * 1) An exception is taken from EL3 but the SCR does not have the exception
7893 * routed to EL3.
7894 * 2) An exception is taken from EL2 but the HCR does not have the exception
7895 * routed to EL2.
7896 * In these two cases, the below table contain a target of EL1. This value is
7897 * returned as it is expected that the consumer of the table data will check
7898 * for "target EL >= current EL" to ensure the exception is not taken.
7899 *
7900 * SCR HCR
7901 * 64 EA AMO From
7902 * BIT IRQ IMO Non-secure Secure
7903 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
7904 */
82c39f6a 7905static const int8_t target_el_table[2][2][2][2][2][4] = {
0eeb17d6
GB
7906 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7907 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
7908 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7909 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
7910 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7911 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
7912 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7913 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
7914 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
7915 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
7916 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
7917 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
7918 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7919 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
7920 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7921 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
7922};
7923
7924/*
7925 * Determine the target EL for physical exceptions
7926 */
012a906b
GB
7927uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7928 uint32_t cur_el, bool secure)
0eeb17d6
GB
7929{
7930 CPUARMState *env = cs->env_ptr;
f7778444
RH
7931 bool rw;
7932 bool scr;
7933 bool hcr;
0eeb17d6 7934 int target_el;
2cde031f 7935 /* Is the highest EL AArch64? */
f7778444
RH
7936 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7937 uint64_t hcr_el2;
2cde031f
SS
7938
7939 if (arm_feature(env, ARM_FEATURE_EL3)) {
7940 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7941 } else {
7942 /* Either EL2 is the highest EL (and so the EL2 register width
7943 * is given by is64); or there is no EL2 or EL3, in which case
7944 * the value of 'rw' does not affect the table lookup anyway.
7945 */
7946 rw = is64;
7947 }
0eeb17d6 7948
f7778444 7949 hcr_el2 = arm_hcr_el2_eff(env);
0eeb17d6
GB
7950 switch (excp_idx) {
7951 case EXCP_IRQ:
7952 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
f7778444 7953 hcr = hcr_el2 & HCR_IMO;
0eeb17d6
GB
7954 break;
7955 case EXCP_FIQ:
7956 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
f7778444 7957 hcr = hcr_el2 & HCR_FMO;
0eeb17d6
GB
7958 break;
7959 default:
7960 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
f7778444 7961 hcr = hcr_el2 & HCR_AMO;
0eeb17d6
GB
7962 break;
7963 };
7964
0eeb17d6
GB
7965 /* Perform a table-lookup for the target EL given the current state */
7966 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7967
7968 assert(target_el > 0);
7969
7970 return target_el;
7971}
7972
b59f479b
PMD
7973void arm_log_exception(int idx)
7974{
7975 if (qemu_loglevel_mask(CPU_LOG_INT)) {
7976 const char *exc = NULL;
7977 static const char * const excnames[] = {
7978 [EXCP_UDEF] = "Undefined Instruction",
7979 [EXCP_SWI] = "SVC",
7980 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7981 [EXCP_DATA_ABORT] = "Data Abort",
7982 [EXCP_IRQ] = "IRQ",
7983 [EXCP_FIQ] = "FIQ",
7984 [EXCP_BKPT] = "Breakpoint",
7985 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7986 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7987 [EXCP_HVC] = "Hypervisor Call",
7988 [EXCP_HYP_TRAP] = "Hypervisor Trap",
7989 [EXCP_SMC] = "Secure Monitor Call",
7990 [EXCP_VIRQ] = "Virtual IRQ",
7991 [EXCP_VFIQ] = "Virtual FIQ",
7992 [EXCP_SEMIHOST] = "Semihosting call",
7993 [EXCP_NOCP] = "v7M NOCP UsageFault",
7994 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7995 [EXCP_STKOF] = "v8M STKOF UsageFault",
7996 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
7997 [EXCP_LSERR] = "v8M LSERR UsageFault",
7998 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
7999 };
8000
8001 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8002 exc = excnames[idx];
8003 }
8004 if (!exc) {
8005 exc = "unknown";
8006 }
8007 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8008 }
8009}
8010
a356dacf 8011/*
7aab5a8c
PMD
8012 * Function used to synchronize QEMU's AArch64 register set with AArch32
8013 * register set. This is necessary when switching between AArch32 and AArch64
8014 * execution state.
a356dacf 8015 */
7aab5a8c 8016void aarch64_sync_32_to_64(CPUARMState *env)
9ee6e8bb 8017{
7aab5a8c
PMD
8018 int i;
8019 uint32_t mode = env->uncached_cpsr & CPSR_M;
8020
8021 /* We can blanket copy R[0:7] to X[0:7] */
8022 for (i = 0; i < 8; i++) {
8023 env->xregs[i] = env->regs[i];
fd592d89 8024 }
70d74660 8025
9a223097 8026 /*
7aab5a8c
PMD
8027 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8028 * Otherwise, they come from the banked user regs.
fd592d89 8029 */
7aab5a8c
PMD
8030 if (mode == ARM_CPU_MODE_FIQ) {
8031 for (i = 8; i < 13; i++) {
8032 env->xregs[i] = env->usr_regs[i - 8];
8033 }
8034 } else {
8035 for (i = 8; i < 13; i++) {
8036 env->xregs[i] = env->regs[i];
8037 }
fd592d89 8038 }
9ee6e8bb 8039
7aab5a8c
PMD
8040 /*
8041 * Registers x13-x23 are the various mode SP and FP registers. Registers
8042 * r13 and r14 are only copied if we are in that mode, otherwise we copy
8043 * from the mode banked register.
8044 */
8045 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8046 env->xregs[13] = env->regs[13];
8047 env->xregs[14] = env->regs[14];
8048 } else {
8049 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8050 /* HYP is an exception in that it is copied from r14 */
8051 if (mode == ARM_CPU_MODE_HYP) {
8052 env->xregs[14] = env->regs[14];
95695eff 8053 } else {
7aab5a8c 8054 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
95695eff 8055 }
95695eff
PM
8056 }
8057
7aab5a8c
PMD
8058 if (mode == ARM_CPU_MODE_HYP) {
8059 env->xregs[15] = env->regs[13];
8060 } else {
8061 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
95695eff
PM
8062 }
8063
7aab5a8c
PMD
8064 if (mode == ARM_CPU_MODE_IRQ) {
8065 env->xregs[16] = env->regs[14];
8066 env->xregs[17] = env->regs[13];
8067 } else {
8068 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
8069 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
8070 }
95695eff 8071
7aab5a8c
PMD
8072 if (mode == ARM_CPU_MODE_SVC) {
8073 env->xregs[18] = env->regs[14];
8074 env->xregs[19] = env->regs[13];
8075 } else {
8076 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
8077 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
8078 }
95695eff 8079
7aab5a8c
PMD
8080 if (mode == ARM_CPU_MODE_ABT) {
8081 env->xregs[20] = env->regs[14];
8082 env->xregs[21] = env->regs[13];
8083 } else {
8084 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
8085 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
8086 }
e33cf0f8 8087
7aab5a8c
PMD
8088 if (mode == ARM_CPU_MODE_UND) {
8089 env->xregs[22] = env->regs[14];
8090 env->xregs[23] = env->regs[13];
8091 } else {
8092 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
8093 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
e33cf0f8
PM
8094 }
8095
8096 /*
7aab5a8c
PMD
8097 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8098 * mode, then we can copy from r8-r14. Otherwise, we copy from the
8099 * FIQ bank for r8-r14.
e33cf0f8 8100 */
7aab5a8c
PMD
8101 if (mode == ARM_CPU_MODE_FIQ) {
8102 for (i = 24; i < 31; i++) {
8103 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
8104 }
8105 } else {
8106 for (i = 24; i < 29; i++) {
8107 env->xregs[i] = env->fiq_regs[i - 24];
e33cf0f8 8108 }
7aab5a8c
PMD
8109 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
8110 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
e33cf0f8 8111 }
7aab5a8c
PMD
8112
8113 env->pc = env->regs[15];
e33cf0f8
PM
8114}
8115
9a223097 8116/*
7aab5a8c
PMD
8117 * Function used to synchronize QEMU's AArch32 register set with AArch64
8118 * register set. This is necessary when switching between AArch32 and AArch64
8119 * execution state.
de2db7ec 8120 */
7aab5a8c 8121void aarch64_sync_64_to_32(CPUARMState *env)
9ee6e8bb 8122{
7aab5a8c
PMD
8123 int i;
8124 uint32_t mode = env->uncached_cpsr & CPSR_M;
abc24d86 8125
7aab5a8c
PMD
8126 /* We can blanket copy X[0:7] to R[0:7] */
8127 for (i = 0; i < 8; i++) {
8128 env->regs[i] = env->xregs[i];
de2db7ec 8129 }
3f0cddee 8130
9a223097 8131 /*
7aab5a8c
PMD
8132 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
8133 * Otherwise, we copy x8-x12 into the banked user regs.
de2db7ec 8134 */
7aab5a8c
PMD
8135 if (mode == ARM_CPU_MODE_FIQ) {
8136 for (i = 8; i < 13; i++) {
8137 env->usr_regs[i - 8] = env->xregs[i];
8138 }
8139 } else {
8140 for (i = 8; i < 13; i++) {
8141 env->regs[i] = env->xregs[i];
8142 }
fb602cb7
PM
8143 }
8144
9a223097 8145 /*
7aab5a8c
PMD
8146 * Registers r13 & r14 depend on the current mode.
8147 * If we are in a given mode, we copy the corresponding x registers to r13
8148 * and r14. Otherwise, we copy the x register to the banked r13 and r14
8149 * for the mode.
fb602cb7 8150 */
7aab5a8c
PMD
8151 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8152 env->regs[13] = env->xregs[13];
8153 env->regs[14] = env->xregs[14];
fb602cb7 8154 } else {
7aab5a8c 8155 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
fb602cb7 8156
7aab5a8c
PMD
8157 /*
8158 * HYP is an exception in that it does not have its own banked r14 but
8159 * shares the USR r14
8160 */
8161 if (mode == ARM_CPU_MODE_HYP) {
8162 env->regs[14] = env->xregs[14];
8163 } else {
8164 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
8165 }
8166 }
fb602cb7 8167
7aab5a8c
PMD
8168 if (mode == ARM_CPU_MODE_HYP) {
8169 env->regs[13] = env->xregs[15];
fb602cb7 8170 } else {
7aab5a8c 8171 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
fb602cb7 8172 }
d02a8698 8173
7aab5a8c
PMD
8174 if (mode == ARM_CPU_MODE_IRQ) {
8175 env->regs[14] = env->xregs[16];
8176 env->regs[13] = env->xregs[17];
d02a8698 8177 } else {
7aab5a8c
PMD
8178 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
8179 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
d02a8698
PM
8180 }
8181
7aab5a8c
PMD
8182 if (mode == ARM_CPU_MODE_SVC) {
8183 env->regs[14] = env->xregs[18];
8184 env->regs[13] = env->xregs[19];
8185 } else {
8186 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
8187 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
fb602cb7
PM
8188 }
8189
7aab5a8c
PMD
8190 if (mode == ARM_CPU_MODE_ABT) {
8191 env->regs[14] = env->xregs[20];
8192 env->regs[13] = env->xregs[21];
8193 } else {
8194 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
8195 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
ce02049d
GB
8196 }
8197
8198 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
8199 env->regs[14] = env->xregs[22];
8200 env->regs[13] = env->xregs[23];
ce02049d 8201 } else {
593cfa2b 8202 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
3a9148d0 8203 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
ce02049d
GB
8204 }
8205
8206 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8207 * mode, then we can copy to r8-r14. Otherwise, we copy to the
8208 * FIQ bank for r8-r14.
8209 */
8210 if (mode == ARM_CPU_MODE_FIQ) {
8211 for (i = 24; i < 31; i++) {
8212 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
8213 }
8214 } else {
8215 for (i = 24; i < 29; i++) {
8216 env->fiq_regs[i - 24] = env->xregs[i];
8217 }
8218 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
593cfa2b 8219 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
ce02049d
GB
8220 }
8221
8222 env->regs[15] = env->pc;
8223}
8224
dea8378b
PM
8225static void take_aarch32_exception(CPUARMState *env, int new_mode,
8226 uint32_t mask, uint32_t offset,
8227 uint32_t newpc)
8228{
8229 /* Change the CPU state so as to actually take the exception. */
8230 switch_mode(env, new_mode);
8231 /*
8232 * For exceptions taken to AArch32 we must clear the SS bit in both
8233 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8234 */
8235 env->uncached_cpsr &= ~PSTATE_SS;
8236 env->spsr = cpsr_read(env);
8237 /* Clear IT bits. */
8238 env->condexec_bits = 0;
8239 /* Switch to the new mode, and to the correct instruction set. */
8240 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8241 /* Set new mode endianness */
8242 env->uncached_cpsr &= ~CPSR_E;
8243 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8244 env->uncached_cpsr |= CPSR_E;
8245 }
829f9fd3
PM
8246 /* J and IL must always be cleared for exception entry */
8247 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
dea8378b
PM
8248 env->daif |= mask;
8249
8250 if (new_mode == ARM_CPU_MODE_HYP) {
8251 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
8252 env->elr_el[2] = env->regs[15];
8253 } else {
8254 /*
8255 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
8256 * and we should just guard the thumb mode on V4
8257 */
8258 if (arm_feature(env, ARM_FEATURE_V4T)) {
8259 env->thumb =
8260 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8261 }
8262 env->regs[14] = env->regs[15] + offset;
8263 }
8264 env->regs[15] = newpc;
a8a79c7a 8265 arm_rebuild_hflags(env);
dea8378b
PM
8266}
8267
b9bc21ff
PM
8268static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
8269{
8270 /*
8271 * Handle exception entry to Hyp mode; this is sufficiently
8272 * different to entry to other AArch32 modes that we handle it
8273 * separately here.
8274 *
8275 * The vector table entry used is always the 0x14 Hyp mode entry point,
8276 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
8277 * The offset applied to the preferred return address is always zero
8278 * (see DDI0487C.a section G1.12.3).
8279 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8280 */
8281 uint32_t addr, mask;
8282 ARMCPU *cpu = ARM_CPU(cs);
8283 CPUARMState *env = &cpu->env;
8284
8285 switch (cs->exception_index) {
8286 case EXCP_UDEF:
8287 addr = 0x04;
8288 break;
8289 case EXCP_SWI:
8290 addr = 0x14;
8291 break;
8292 case EXCP_BKPT:
8293 /* Fall through to prefetch abort. */
8294 case EXCP_PREFETCH_ABORT:
8295 env->cp15.ifar_s = env->exception.vaddress;
8296 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
8297 (uint32_t)env->exception.vaddress);
8298 addr = 0x0c;
8299 break;
8300 case EXCP_DATA_ABORT:
8301 env->cp15.dfar_s = env->exception.vaddress;
8302 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
8303 (uint32_t)env->exception.vaddress);
8304 addr = 0x10;
8305 break;
8306 case EXCP_IRQ:
8307 addr = 0x18;
8308 break;
8309 case EXCP_FIQ:
8310 addr = 0x1c;
8311 break;
8312 case EXCP_HVC:
8313 addr = 0x08;
8314 break;
8315 case EXCP_HYP_TRAP:
8316 addr = 0x14;
9bbb4ef9 8317 break;
b9bc21ff
PM
8318 default:
8319 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8320 }
8321
8322 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
2ed08180
PM
8323 if (!arm_feature(env, ARM_FEATURE_V8)) {
8324 /*
8325 * QEMU syndrome values are v8-style. v7 has the IL bit
8326 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
8327 * If this is a v7 CPU, squash the IL bit in those cases.
8328 */
8329 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
8330 (cs->exception_index == EXCP_DATA_ABORT &&
8331 !(env->exception.syndrome & ARM_EL_ISV)) ||
8332 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
8333 env->exception.syndrome &= ~ARM_EL_IL;
8334 }
8335 }
b9bc21ff
PM
8336 env->cp15.esr_el[2] = env->exception.syndrome;
8337 }
8338
8339 if (arm_current_el(env) != 2 && addr < 0x14) {
8340 addr = 0x14;
8341 }
8342
8343 mask = 0;
8344 if (!(env->cp15.scr_el3 & SCR_EA)) {
8345 mask |= CPSR_A;
8346 }
8347 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
8348 mask |= CPSR_I;
8349 }
8350 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
8351 mask |= CPSR_F;
8352 }
8353
8354 addr += env->cp15.hvbar;
8355
8356 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
8357}
8358
966f758c 8359static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
b5ff1b31 8360{
97a8ea5a
AF
8361 ARMCPU *cpu = ARM_CPU(cs);
8362 CPUARMState *env = &cpu->env;
b5ff1b31
FB
8363 uint32_t addr;
8364 uint32_t mask;
8365 int new_mode;
8366 uint32_t offset;
16a906fd 8367 uint32_t moe;
b5ff1b31 8368
16a906fd 8369 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
64b91e3f 8370 switch (syn_get_ec(env->exception.syndrome)) {
16a906fd
PM
8371 case EC_BREAKPOINT:
8372 case EC_BREAKPOINT_SAME_EL:
8373 moe = 1;
8374 break;
8375 case EC_WATCHPOINT:
8376 case EC_WATCHPOINT_SAME_EL:
8377 moe = 10;
8378 break;
8379 case EC_AA32_BKPT:
8380 moe = 3;
8381 break;
8382 case EC_VECTORCATCH:
8383 moe = 5;
8384 break;
8385 default:
8386 moe = 0;
8387 break;
8388 }
8389
8390 if (moe) {
8391 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
8392 }
8393
b9bc21ff
PM
8394 if (env->exception.target_el == 2) {
8395 arm_cpu_do_interrupt_aarch32_hyp(cs);
8396 return;
8397 }
8398
27103424 8399 switch (cs->exception_index) {
b5ff1b31
FB
8400 case EXCP_UDEF:
8401 new_mode = ARM_CPU_MODE_UND;
8402 addr = 0x04;
8403 mask = CPSR_I;
8404 if (env->thumb)
8405 offset = 2;
8406 else
8407 offset = 4;
8408 break;
8409 case EXCP_SWI:
8410 new_mode = ARM_CPU_MODE_SVC;
8411 addr = 0x08;
8412 mask = CPSR_I;
601d70b9 8413 /* The PC already points to the next instruction. */
b5ff1b31
FB
8414 offset = 0;
8415 break;
06c949e6 8416 case EXCP_BKPT:
9ee6e8bb
PB
8417 /* Fall through to prefetch abort. */
8418 case EXCP_PREFETCH_ABORT:
88ca1c2d 8419 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
b848ce2b 8420 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
3f1beaca 8421 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
88ca1c2d 8422 env->exception.fsr, (uint32_t)env->exception.vaddress);
b5ff1b31
FB
8423 new_mode = ARM_CPU_MODE_ABT;
8424 addr = 0x0c;
8425 mask = CPSR_A | CPSR_I;
8426 offset = 4;
8427 break;
8428 case EXCP_DATA_ABORT:
4a7e2d73 8429 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
b848ce2b 8430 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
3f1beaca 8431 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4a7e2d73 8432 env->exception.fsr,
6cd8a264 8433 (uint32_t)env->exception.vaddress);
b5ff1b31
FB
8434 new_mode = ARM_CPU_MODE_ABT;
8435 addr = 0x10;
8436 mask = CPSR_A | CPSR_I;
8437 offset = 8;
8438 break;
8439 case EXCP_IRQ:
8440 new_mode = ARM_CPU_MODE_IRQ;
8441 addr = 0x18;
8442 /* Disable IRQ and imprecise data aborts. */
8443 mask = CPSR_A | CPSR_I;
8444 offset = 4;
de38d23b
FA
8445 if (env->cp15.scr_el3 & SCR_IRQ) {
8446 /* IRQ routed to monitor mode */
8447 new_mode = ARM_CPU_MODE_MON;
8448 mask |= CPSR_F;
8449 }
b5ff1b31
FB
8450 break;
8451 case EXCP_FIQ:
8452 new_mode = ARM_CPU_MODE_FIQ;
8453 addr = 0x1c;
8454 /* Disable FIQ, IRQ and imprecise data aborts. */
8455 mask = CPSR_A | CPSR_I | CPSR_F;
de38d23b
FA
8456 if (env->cp15.scr_el3 & SCR_FIQ) {
8457 /* FIQ routed to monitor mode */
8458 new_mode = ARM_CPU_MODE_MON;
8459 }
b5ff1b31
FB
8460 offset = 4;
8461 break;
87a4b270
PM
8462 case EXCP_VIRQ:
8463 new_mode = ARM_CPU_MODE_IRQ;
8464 addr = 0x18;
8465 /* Disable IRQ and imprecise data aborts. */
8466 mask = CPSR_A | CPSR_I;
8467 offset = 4;
8468 break;
8469 case EXCP_VFIQ:
8470 new_mode = ARM_CPU_MODE_FIQ;
8471 addr = 0x1c;
8472 /* Disable FIQ, IRQ and imprecise data aborts. */
8473 mask = CPSR_A | CPSR_I | CPSR_F;
8474 offset = 4;
8475 break;
dbe9d163
FA
8476 case EXCP_SMC:
8477 new_mode = ARM_CPU_MODE_MON;
8478 addr = 0x08;
8479 mask = CPSR_A | CPSR_I | CPSR_F;
8480 offset = 0;
8481 break;
b5ff1b31 8482 default:
a47dddd7 8483 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
b5ff1b31
FB
8484 return; /* Never happens. Keep compiler happy. */
8485 }
e89e51a1
FA
8486
8487 if (new_mode == ARM_CPU_MODE_MON) {
8488 addr += env->cp15.mvbar;
137feaa9 8489 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
e89e51a1 8490 /* High vectors. When enabled, base address cannot be remapped. */
b5ff1b31 8491 addr += 0xffff0000;
8641136c
NR
8492 } else {
8493 /* ARM v7 architectures provide a vector base address register to remap
8494 * the interrupt vector table.
e89e51a1 8495 * This register is only followed in non-monitor mode, and is banked.
8641136c
NR
8496 * Note: only bits 31:5 are valid.
8497 */
fb6c91ba 8498 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
b5ff1b31 8499 }
dbe9d163
FA
8500
8501 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8502 env->cp15.scr_el3 &= ~SCR_NS;
8503 }
8504
dea8378b 8505 take_aarch32_exception(env, new_mode, mask, offset, addr);
b5ff1b31
FB
8506}
8507
966f758c
PM
8508/* Handle exception entry to a target EL which is using AArch64 */
8509static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
f3a9b694
PM
8510{
8511 ARMCPU *cpu = ARM_CPU(cs);
8512 CPUARMState *env = &cpu->env;
8513 unsigned int new_el = env->exception.target_el;
8514 target_ulong addr = env->cp15.vbar_el[new_el];
8515 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
0ab5953b
RH
8516 unsigned int cur_el = arm_current_el(env);
8517
9a05f7b6
RH
8518 /*
8519 * Note that new_el can never be 0. If cur_el is 0, then
8520 * el0_a64 is is_a64(), else el0_a64 is ignored.
8521 */
8522 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
f3a9b694 8523
0ab5953b 8524 if (cur_el < new_el) {
3d6f7617
PM
8525 /* Entry vector offset depends on whether the implemented EL
8526 * immediately lower than the target level is using AArch32 or AArch64
8527 */
8528 bool is_aa64;
8529
8530 switch (new_el) {
8531 case 3:
8532 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8533 break;
8534 case 2:
8535 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8536 break;
8537 case 1:
8538 is_aa64 = is_a64(env);
8539 break;
8540 default:
8541 g_assert_not_reached();
8542 }
8543
8544 if (is_aa64) {
f3a9b694
PM
8545 addr += 0x400;
8546 } else {
8547 addr += 0x600;
8548 }
8549 } else if (pstate_read(env) & PSTATE_SP) {
8550 addr += 0x200;
8551 }
8552
f3a9b694
PM
8553 switch (cs->exception_index) {
8554 case EXCP_PREFETCH_ABORT:
8555 case EXCP_DATA_ABORT:
8556 env->cp15.far_el[new_el] = env->exception.vaddress;
8557 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8558 env->cp15.far_el[new_el]);
8559 /* fall through */
8560 case EXCP_BKPT:
8561 case EXCP_UDEF:
8562 case EXCP_SWI:
8563 case EXCP_HVC:
8564 case EXCP_HYP_TRAP:
8565 case EXCP_SMC:
4be42f40
PM
8566 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
8567 /*
8568 * QEMU internal FP/SIMD syndromes from AArch32 include the
8569 * TA and coproc fields which are only exposed if the exception
8570 * is taken to AArch32 Hyp mode. Mask them out to get a valid
8571 * AArch64 format syndrome.
8572 */
8573 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
8574 }
f3a9b694
PM
8575 env->cp15.esr_el[new_el] = env->exception.syndrome;
8576 break;
8577 case EXCP_IRQ:
8578 case EXCP_VIRQ:
8579 addr += 0x80;
8580 break;
8581 case EXCP_FIQ:
8582 case EXCP_VFIQ:
8583 addr += 0x100;
8584 break;
f3a9b694
PM
8585 default:
8586 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8587 }
8588
8589 if (is_a64(env)) {
8590 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8591 aarch64_save_sp(env, arm_current_el(env));
8592 env->elr_el[new_el] = env->pc;
8593 } else {
8594 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
f3a9b694
PM
8595 env->elr_el[new_el] = env->regs[15];
8596
8597 aarch64_sync_32_to_64(env);
8598
8599 env->condexec_bits = 0;
8600 }
8601 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8602 env->elr_el[new_el]);
8603
8604 pstate_write(env, PSTATE_DAIF | new_mode);
8605 env->aarch64 = 1;
8606 aarch64_restore_sp(env, new_el);
a8a79c7a 8607 helper_rebuild_hflags_a64(env, new_el);
f3a9b694
PM
8608
8609 env->pc = addr;
8610
8611 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8612 new_el, env->pc, pstate_read(env));
966f758c
PM
8613}
8614
ed6e6ba9
AB
8615/*
8616 * Do semihosting call and set the appropriate return value. All the
8617 * permission and validity checks have been done at translate time.
8618 *
8619 * We only see semihosting exceptions in TCG only as they are not
8620 * trapped to the hypervisor in KVM.
8621 */
91f78c58 8622#ifdef CONFIG_TCG
ed6e6ba9
AB
8623static void handle_semihosting(CPUState *cs)
8624{
904c04de
PM
8625 ARMCPU *cpu = ARM_CPU(cs);
8626 CPUARMState *env = &cpu->env;
8627
8628 if (is_a64(env)) {
ed6e6ba9
AB
8629 qemu_log_mask(CPU_LOG_INT,
8630 "...handling as semihosting call 0x%" PRIx64 "\n",
8631 env->xregs[0]);
8632 env->xregs[0] = do_arm_semihosting(env);
4ff5ef9e 8633 env->pc += 4;
904c04de 8634 } else {
904c04de
PM
8635 qemu_log_mask(CPU_LOG_INT,
8636 "...handling as semihosting call 0x%x\n",
8637 env->regs[0]);
8638 env->regs[0] = do_arm_semihosting(env);
4ff5ef9e 8639 env->regs[15] += env->thumb ? 2 : 4;
904c04de
PM
8640 }
8641}
ed6e6ba9 8642#endif
904c04de 8643
966f758c
PM
8644/* Handle a CPU exception for A and R profile CPUs.
8645 * Do any appropriate logging, handle PSCI calls, and then hand off
8646 * to the AArch64-entry or AArch32-entry function depending on the
8647 * target exception level's register width.
8648 */
8649void arm_cpu_do_interrupt(CPUState *cs)
8650{
8651 ARMCPU *cpu = ARM_CPU(cs);
8652 CPUARMState *env = &cpu->env;
8653 unsigned int new_el = env->exception.target_el;
8654
531c60a9 8655 assert(!arm_feature(env, ARM_FEATURE_M));
966f758c
PM
8656
8657 arm_log_exception(cs->exception_index);
8658 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8659 new_el);
8660 if (qemu_loglevel_mask(CPU_LOG_INT)
8661 && !excp_is_internal(cs->exception_index)) {
6568da45 8662 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
64b91e3f 8663 syn_get_ec(env->exception.syndrome),
966f758c
PM
8664 env->exception.syndrome);
8665 }
8666
8667 if (arm_is_psci_call(cpu, cs->exception_index)) {
8668 arm_handle_psci_call(cpu);
8669 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8670 return;
8671 }
8672
ed6e6ba9
AB
8673 /*
8674 * Semihosting semantics depend on the register width of the code
8675 * that caused the exception, not the target exception level, so
8676 * must be handled here.
966f758c 8677 */
ed6e6ba9
AB
8678#ifdef CONFIG_TCG
8679 if (cs->exception_index == EXCP_SEMIHOST) {
8680 handle_semihosting(cs);
904c04de
PM
8681 return;
8682 }
ed6e6ba9 8683#endif
904c04de 8684
b5c53d1b
AL
8685 /* Hooks may change global state so BQL should be held, also the
8686 * BQL needs to be held for any modification of
8687 * cs->interrupt_request.
8688 */
8689 g_assert(qemu_mutex_iothread_locked());
8690
8691 arm_call_pre_el_change_hook(cpu);
8692
904c04de
PM
8693 assert(!excp_is_internal(cs->exception_index));
8694 if (arm_el_is_aa64(env, new_el)) {
966f758c
PM
8695 arm_cpu_do_interrupt_aarch64(cs);
8696 } else {
8697 arm_cpu_do_interrupt_aarch32(cs);
8698 }
f3a9b694 8699
bd7d00fc
PM
8700 arm_call_el_change_hook(cpu);
8701
f3a9b694
PM
8702 if (!kvm_enabled()) {
8703 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8704 }
8705}
c47eaf9f 8706#endif /* !CONFIG_USER_ONLY */
0480f69a
PM
8707
8708/* Return the exception level which controls this address translation regime */
8709static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8710{
8711 switch (mmu_idx) {
8712 case ARMMMUIdx_S2NS:
8713 case ARMMMUIdx_S1E2:
8714 return 2;
8715 case ARMMMUIdx_S1E3:
8716 return 3;
8717 case ARMMMUIdx_S1SE0:
8718 return arm_el_is_aa64(env, 3) ? 1 : 3;
8719 case ARMMMUIdx_S1SE1:
8720 case ARMMMUIdx_S1NSE0:
8721 case ARMMMUIdx_S1NSE1:
62593718
PM
8722 case ARMMMUIdx_MPrivNegPri:
8723 case ARMMMUIdx_MUserNegPri:
e7b921c2
PM
8724 case ARMMMUIdx_MPriv:
8725 case ARMMMUIdx_MUser:
62593718
PM
8726 case ARMMMUIdx_MSPrivNegPri:
8727 case ARMMMUIdx_MSUserNegPri:
66787c78 8728 case ARMMMUIdx_MSPriv:
66787c78 8729 case ARMMMUIdx_MSUser:
0480f69a
PM
8730 return 1;
8731 default:
8732 g_assert_not_reached();
8733 }
8734}
8735
c47eaf9f
PM
8736#ifndef CONFIG_USER_ONLY
8737
0480f69a
PM
8738/* Return the SCTLR value which controls this address translation regime */
8739static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8740{
8741 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8742}
8743
8744/* Return true if the specified stage of address translation is disabled */
8745static inline bool regime_translation_disabled(CPUARMState *env,
8746 ARMMMUIdx mmu_idx)
8747{
29c483a5 8748 if (arm_feature(env, ARM_FEATURE_M)) {
ecf5e8ea 8749 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
3bef7012
PM
8750 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8751 case R_V7M_MPU_CTRL_ENABLE_MASK:
8752 /* Enabled, but not for HardFault and NMI */
62593718 8753 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
3bef7012
PM
8754 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8755 /* Enabled for all cases */
8756 return false;
8757 case 0:
8758 default:
8759 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8760 * we warned about that in armv7m_nvic.c when the guest set it.
8761 */
8762 return true;
8763 }
29c483a5
MD
8764 }
8765
0480f69a 8766 if (mmu_idx == ARMMMUIdx_S2NS) {
9d1bab33
PM
8767 /* HCR.DC means HCR.VM behaves as 1 */
8768 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
0480f69a 8769 }
3d0e3080
PM
8770
8771 if (env->cp15.hcr_el2 & HCR_TGE) {
8772 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8773 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
8774 return true;
8775 }
8776 }
8777
9d1bab33
PM
8778 if ((env->cp15.hcr_el2 & HCR_DC) &&
8779 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
8780 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
8781 return true;
8782 }
8783
0480f69a
PM
8784 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8785}
8786
73462ddd
PC
8787static inline bool regime_translation_big_endian(CPUARMState *env,
8788 ARMMMUIdx mmu_idx)
8789{
8790 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8791}
8792
c47eaf9f
PM
8793/* Return the TTBR associated with this translation regime */
8794static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8795 int ttbrn)
8796{
8797 if (mmu_idx == ARMMMUIdx_S2NS) {
8798 return env->cp15.vttbr_el2;
8799 }
8800 if (ttbrn == 0) {
8801 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8802 } else {
8803 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8804 }
8805}
8806
8807#endif /* !CONFIG_USER_ONLY */
8808
0480f69a
PM
8809/* Return the TCR controlling this translation regime */
8810static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8811{
8812 if (mmu_idx == ARMMMUIdx_S2NS) {
68e9c2fe 8813 return &env->cp15.vtcr_el2;
0480f69a
PM
8814 }
8815 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8816}
8817
8bd5c820
PM
8818/* Convert a possible stage1+2 MMU index into the appropriate
8819 * stage 1 MMU index
8820 */
8821static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8822{
8823 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8824 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8825 }
8826 return mmu_idx;
8827}
8828
0480f69a
PM
8829/* Return true if the translation regime is using LPAE format page tables */
8830static inline bool regime_using_lpae_format(CPUARMState *env,
8831 ARMMMUIdx mmu_idx)
8832{
8833 int el = regime_el(env, mmu_idx);
8834 if (el == 2 || arm_el_is_aa64(env, el)) {
8835 return true;
8836 }
8837 if (arm_feature(env, ARM_FEATURE_LPAE)
8838 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8839 return true;
8840 }
8841 return false;
8842}
8843
deb2db99
AR
8844/* Returns true if the stage 1 translation regime is using LPAE format page
8845 * tables. Used when raising alignment exceptions, whose FSR changes depending
8846 * on whether the long or short descriptor format is in use. */
8847bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
30901475 8848{
8bd5c820 8849 mmu_idx = stage_1_mmu_idx(mmu_idx);
deb2db99 8850
30901475
AB
8851 return regime_using_lpae_format(env, mmu_idx);
8852}
8853
c47eaf9f 8854#ifndef CONFIG_USER_ONLY
0480f69a
PM
8855static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8856{
8857 switch (mmu_idx) {
8858 case ARMMMUIdx_S1SE0:
8859 case ARMMMUIdx_S1NSE0:
e7b921c2 8860 case ARMMMUIdx_MUser:
871bec7c 8861 case ARMMMUIdx_MSUser:
62593718
PM
8862 case ARMMMUIdx_MUserNegPri:
8863 case ARMMMUIdx_MSUserNegPri:
0480f69a
PM
8864 return true;
8865 default:
8866 return false;
8867 case ARMMMUIdx_S12NSE0:
8868 case ARMMMUIdx_S12NSE1:
8869 g_assert_not_reached();
8870 }
8871}
8872
0fbf5238
AJ
8873/* Translate section/page access permissions to page
8874 * R/W protection flags
d76951b6
AJ
8875 *
8876 * @env: CPUARMState
8877 * @mmu_idx: MMU index indicating required translation regime
8878 * @ap: The 3-bit access permissions (AP[2:0])
8879 * @domain_prot: The 2-bit domain access permissions
0fbf5238
AJ
8880 */
8881static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8882 int ap, int domain_prot)
8883{
554b0b09
PM
8884 bool is_user = regime_is_user(env, mmu_idx);
8885
8886 if (domain_prot == 3) {
8887 return PAGE_READ | PAGE_WRITE;
8888 }
8889
554b0b09
PM
8890 switch (ap) {
8891 case 0:
8892 if (arm_feature(env, ARM_FEATURE_V7)) {
8893 return 0;
8894 }
554b0b09
PM
8895 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8896 case SCTLR_S:
8897 return is_user ? 0 : PAGE_READ;
8898 case SCTLR_R:
8899 return PAGE_READ;
8900 default:
8901 return 0;
8902 }
8903 case 1:
8904 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8905 case 2:
87c3d486 8906 if (is_user) {
0fbf5238 8907 return PAGE_READ;
87c3d486 8908 } else {
554b0b09 8909 return PAGE_READ | PAGE_WRITE;
87c3d486 8910 }
554b0b09
PM
8911 case 3:
8912 return PAGE_READ | PAGE_WRITE;
8913 case 4: /* Reserved. */
8914 return 0;
8915 case 5:
0fbf5238 8916 return is_user ? 0 : PAGE_READ;
554b0b09 8917 case 6:
0fbf5238 8918 return PAGE_READ;
554b0b09 8919 case 7:
87c3d486 8920 if (!arm_feature(env, ARM_FEATURE_V6K)) {
554b0b09 8921 return 0;
87c3d486 8922 }
0fbf5238 8923 return PAGE_READ;
554b0b09 8924 default:
0fbf5238 8925 g_assert_not_reached();
554b0b09 8926 }
b5ff1b31
FB
8927}
8928
d76951b6
AJ
8929/* Translate section/page access permissions to page
8930 * R/W protection flags.
8931 *
d76951b6 8932 * @ap: The 2-bit simple AP (AP[2:1])
d8e052b3 8933 * @is_user: TRUE if accessing from PL0
d76951b6 8934 */
d8e052b3 8935static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
d76951b6 8936{
d76951b6
AJ
8937 switch (ap) {
8938 case 0:
8939 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8940 case 1:
8941 return PAGE_READ | PAGE_WRITE;
8942 case 2:
8943 return is_user ? 0 : PAGE_READ;
8944 case 3:
8945 return PAGE_READ;
8946 default:
8947 g_assert_not_reached();
8948 }
8949}
8950
d8e052b3
AJ
8951static inline int
8952simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8953{
8954 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8955}
8956
6ab1a5ee
EI
8957/* Translate S2 section/page access permissions to protection flags
8958 *
8959 * @env: CPUARMState
8960 * @s2ap: The 2-bit stage2 access permissions (S2AP)
8961 * @xn: XN (execute-never) bit
8962 */
8963static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8964{
8965 int prot = 0;
8966
8967 if (s2ap & 1) {
8968 prot |= PAGE_READ;
8969 }
8970 if (s2ap & 2) {
8971 prot |= PAGE_WRITE;
8972 }
8973 if (!xn) {
dfda6837
SS
8974 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8975 prot |= PAGE_EXEC;
8976 }
6ab1a5ee
EI
8977 }
8978 return prot;
8979}
8980
d8e052b3
AJ
8981/* Translate section/page access permissions to protection flags
8982 *
8983 * @env: CPUARMState
8984 * @mmu_idx: MMU index indicating required translation regime
8985 * @is_aa64: TRUE if AArch64
8986 * @ap: The 2-bit simple AP (AP[2:1])
8987 * @ns: NS (non-secure) bit
8988 * @xn: XN (execute-never) bit
8989 * @pxn: PXN (privileged execute-never) bit
8990 */
8991static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8992 int ap, int ns, int xn, int pxn)
8993{
8994 bool is_user = regime_is_user(env, mmu_idx);
8995 int prot_rw, user_rw;
8996 bool have_wxn;
8997 int wxn = 0;
8998
8999 assert(mmu_idx != ARMMMUIdx_S2NS);
9000
9001 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
9002 if (is_user) {
9003 prot_rw = user_rw;
9004 } else {
9005 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
9006 }
9007
9008 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
9009 return prot_rw;
9010 }
9011
9012 /* TODO have_wxn should be replaced with
9013 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
9014 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
9015 * compatible processors have EL2, which is required for [U]WXN.
9016 */
9017 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
9018
9019 if (have_wxn) {
9020 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
9021 }
9022
9023 if (is_aa64) {
9024 switch (regime_el(env, mmu_idx)) {
9025 case 1:
9026 if (!is_user) {
9027 xn = pxn || (user_rw & PAGE_WRITE);
9028 }
9029 break;
9030 case 2:
9031 case 3:
9032 break;
9033 }
9034 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9035 switch (regime_el(env, mmu_idx)) {
9036 case 1:
9037 case 3:
9038 if (is_user) {
9039 xn = xn || !(user_rw & PAGE_READ);
9040 } else {
9041 int uwxn = 0;
9042 if (have_wxn) {
9043 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
9044 }
9045 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
9046 (uwxn && (user_rw & PAGE_WRITE));
9047 }
9048 break;
9049 case 2:
9050 break;
9051 }
9052 } else {
9053 xn = wxn = 0;
9054 }
9055
9056 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
9057 return prot_rw;
9058 }
9059 return prot_rw | PAGE_EXEC;
9060}
9061
0480f69a
PM
9062static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
9063 uint32_t *table, uint32_t address)
b2fa1797 9064{
0480f69a 9065 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
0480f69a 9066 TCR *tcr = regime_tcr(env, mmu_idx);
11f136ee 9067
11f136ee
FA
9068 if (address & tcr->mask) {
9069 if (tcr->raw_tcr & TTBCR_PD1) {
e389be16
FA
9070 /* Translation table walk disabled for TTBR1 */
9071 return false;
9072 }
aef878be 9073 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
e389be16 9074 } else {
11f136ee 9075 if (tcr->raw_tcr & TTBCR_PD0) {
e389be16
FA
9076 /* Translation table walk disabled for TTBR0 */
9077 return false;
9078 }
aef878be 9079 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
e389be16
FA
9080 }
9081 *table |= (address >> 18) & 0x3ffc;
9082 return true;
b2fa1797
PB
9083}
9084
37785977
EI
9085/* Translate a S1 pagetable walk through S2 if needed. */
9086static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
9087 hwaddr addr, MemTxAttrs txattrs,
37785977
EI
9088 ARMMMUFaultInfo *fi)
9089{
9090 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
9091 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9092 target_ulong s2size;
9093 hwaddr s2pa;
9094 int s2prot;
9095 int ret;
eadb2feb
PM
9096 ARMCacheAttrs cacheattrs = {};
9097 ARMCacheAttrs *pcacheattrs = NULL;
9098
9099 if (env->cp15.hcr_el2 & HCR_PTW) {
9100 /*
9101 * PTW means we must fault if this S1 walk touches S2 Device
9102 * memory; otherwise we don't care about the attributes and can
9103 * save the S2 translation the effort of computing them.
9104 */
9105 pcacheattrs = &cacheattrs;
9106 }
37785977
EI
9107
9108 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
eadb2feb 9109 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
37785977 9110 if (ret) {
3b39d734 9111 assert(fi->type != ARMFault_None);
37785977
EI
9112 fi->s2addr = addr;
9113 fi->stage2 = true;
9114 fi->s1ptw = true;
9115 return ~0;
9116 }
eadb2feb
PM
9117 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
9118 /* Access was to Device memory: generate Permission fault */
9119 fi->type = ARMFault_Permission;
9120 fi->s2addr = addr;
9121 fi->stage2 = true;
9122 fi->s1ptw = true;
9123 return ~0;
9124 }
37785977
EI
9125 addr = s2pa;
9126 }
9127 return addr;
9128}
9129
14577270 9130/* All loads done in the course of a page table walk go through here. */
a614e698 9131static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
3795a6de 9132 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
ebca90e4 9133{
a614e698
EI
9134 ARMCPU *cpu = ARM_CPU(cs);
9135 CPUARMState *env = &cpu->env;
ebca90e4 9136 MemTxAttrs attrs = {};
3b39d734 9137 MemTxResult result = MEMTX_OK;
5ce4ff65 9138 AddressSpace *as;
3b39d734 9139 uint32_t data;
ebca90e4
PM
9140
9141 attrs.secure = is_secure;
5ce4ff65 9142 as = arm_addressspace(cs, attrs);
3795a6de 9143 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
a614e698
EI
9144 if (fi->s1ptw) {
9145 return 0;
9146 }
73462ddd 9147 if (regime_translation_big_endian(env, mmu_idx)) {
3b39d734 9148 data = address_space_ldl_be(as, addr, attrs, &result);
73462ddd 9149 } else {
3b39d734 9150 data = address_space_ldl_le(as, addr, attrs, &result);
73462ddd 9151 }
3b39d734
PM
9152 if (result == MEMTX_OK) {
9153 return data;
9154 }
9155 fi->type = ARMFault_SyncExternalOnWalk;
9156 fi->ea = arm_extabort_type(result);
9157 return 0;
ebca90e4
PM
9158}
9159
37785977 9160static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
3795a6de 9161 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
ebca90e4 9162{
37785977
EI
9163 ARMCPU *cpu = ARM_CPU(cs);
9164 CPUARMState *env = &cpu->env;
ebca90e4 9165 MemTxAttrs attrs = {};
3b39d734 9166 MemTxResult result = MEMTX_OK;
5ce4ff65 9167 AddressSpace *as;
9aea1ea3 9168 uint64_t data;
ebca90e4
PM
9169
9170 attrs.secure = is_secure;
5ce4ff65 9171 as = arm_addressspace(cs, attrs);
3795a6de 9172 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
37785977
EI
9173 if (fi->s1ptw) {
9174 return 0;
9175 }
73462ddd 9176 if (regime_translation_big_endian(env, mmu_idx)) {
3b39d734 9177 data = address_space_ldq_be(as, addr, attrs, &result);
73462ddd 9178 } else {
3b39d734
PM
9179 data = address_space_ldq_le(as, addr, attrs, &result);
9180 }
9181 if (result == MEMTX_OK) {
9182 return data;
73462ddd 9183 }
3b39d734
PM
9184 fi->type = ARMFault_SyncExternalOnWalk;
9185 fi->ea = arm_extabort_type(result);
9186 return 0;
ebca90e4
PM
9187}
9188
b7cc4e82 9189static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
03ae85f8 9190 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 9191 hwaddr *phys_ptr, int *prot,
f989983e 9192 target_ulong *page_size,
e14b5a23 9193 ARMMMUFaultInfo *fi)
b5ff1b31 9194{
2fc0cc0e 9195 CPUState *cs = env_cpu(env);
f989983e 9196 int level = 1;
b5ff1b31
FB
9197 uint32_t table;
9198 uint32_t desc;
9199 int type;
9200 int ap;
e389be16 9201 int domain = 0;
dd4ebc2e 9202 int domain_prot;
a8170e5e 9203 hwaddr phys_addr;
0480f69a 9204 uint32_t dacr;
b5ff1b31 9205
9ee6e8bb
PB
9206 /* Pagetable walk. */
9207 /* Lookup l1 descriptor. */
0480f69a 9208 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16 9209 /* Section translation fault if page walk is disabled by PD0 or PD1 */
f989983e 9210 fi->type = ARMFault_Translation;
e389be16
FA
9211 goto do_fault;
9212 }
a614e698 9213 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
3795a6de 9214 mmu_idx, fi);
3b39d734
PM
9215 if (fi->type != ARMFault_None) {
9216 goto do_fault;
9217 }
9ee6e8bb 9218 type = (desc & 3);
dd4ebc2e 9219 domain = (desc >> 5) & 0x0f;
0480f69a
PM
9220 if (regime_el(env, mmu_idx) == 1) {
9221 dacr = env->cp15.dacr_ns;
9222 } else {
9223 dacr = env->cp15.dacr_s;
9224 }
9225 domain_prot = (dacr >> (domain * 2)) & 3;
9ee6e8bb 9226 if (type == 0) {
601d70b9 9227 /* Section translation fault. */
f989983e 9228 fi->type = ARMFault_Translation;
9ee6e8bb
PB
9229 goto do_fault;
9230 }
f989983e
PM
9231 if (type != 2) {
9232 level = 2;
9233 }
dd4ebc2e 9234 if (domain_prot == 0 || domain_prot == 2) {
f989983e 9235 fi->type = ARMFault_Domain;
9ee6e8bb
PB
9236 goto do_fault;
9237 }
9238 if (type == 2) {
9239 /* 1Mb section. */
9240 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9241 ap = (desc >> 10) & 3;
d4c430a8 9242 *page_size = 1024 * 1024;
9ee6e8bb
PB
9243 } else {
9244 /* Lookup l2 entry. */
554b0b09
PM
9245 if (type == 1) {
9246 /* Coarse pagetable. */
9247 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9248 } else {
9249 /* Fine pagetable. */
9250 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
9251 }
a614e698 9252 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
3795a6de 9253 mmu_idx, fi);
3b39d734
PM
9254 if (fi->type != ARMFault_None) {
9255 goto do_fault;
9256 }
9ee6e8bb
PB
9257 switch (desc & 3) {
9258 case 0: /* Page translation fault. */
f989983e 9259 fi->type = ARMFault_Translation;
9ee6e8bb
PB
9260 goto do_fault;
9261 case 1: /* 64k page. */
9262 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9263 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 9264 *page_size = 0x10000;
ce819861 9265 break;
9ee6e8bb
PB
9266 case 2: /* 4k page. */
9267 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
c10f7fc3 9268 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
d4c430a8 9269 *page_size = 0x1000;
ce819861 9270 break;
fc1891c7 9271 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
554b0b09 9272 if (type == 1) {
fc1891c7
PM
9273 /* ARMv6/XScale extended small page format */
9274 if (arm_feature(env, ARM_FEATURE_XSCALE)
9275 || arm_feature(env, ARM_FEATURE_V6)) {
554b0b09 9276 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
fc1891c7 9277 *page_size = 0x1000;
554b0b09 9278 } else {
fc1891c7
PM
9279 /* UNPREDICTABLE in ARMv5; we choose to take a
9280 * page translation fault.
9281 */
f989983e 9282 fi->type = ARMFault_Translation;
554b0b09
PM
9283 goto do_fault;
9284 }
9285 } else {
9286 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
fc1891c7 9287 *page_size = 0x400;
554b0b09 9288 }
9ee6e8bb 9289 ap = (desc >> 4) & 3;
ce819861
PB
9290 break;
9291 default:
9ee6e8bb
PB
9292 /* Never happens, but compiler isn't smart enough to tell. */
9293 abort();
ce819861 9294 }
9ee6e8bb 9295 }
0fbf5238
AJ
9296 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9297 *prot |= *prot ? PAGE_EXEC : 0;
9298 if (!(*prot & (1 << access_type))) {
9ee6e8bb 9299 /* Access permission fault. */
f989983e 9300 fi->type = ARMFault_Permission;
9ee6e8bb
PB
9301 goto do_fault;
9302 }
9303 *phys_ptr = phys_addr;
b7cc4e82 9304 return false;
9ee6e8bb 9305do_fault:
f989983e
PM
9306 fi->domain = domain;
9307 fi->level = level;
b7cc4e82 9308 return true;
9ee6e8bb
PB
9309}
9310
b7cc4e82 9311static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
03ae85f8 9312 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 9313 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
f06cf243 9314 target_ulong *page_size, ARMMMUFaultInfo *fi)
9ee6e8bb 9315{
2fc0cc0e 9316 CPUState *cs = env_cpu(env);
f06cf243 9317 int level = 1;
9ee6e8bb
PB
9318 uint32_t table;
9319 uint32_t desc;
9320 uint32_t xn;
de9b05b8 9321 uint32_t pxn = 0;
9ee6e8bb
PB
9322 int type;
9323 int ap;
de9b05b8 9324 int domain = 0;
dd4ebc2e 9325 int domain_prot;
a8170e5e 9326 hwaddr phys_addr;
0480f69a 9327 uint32_t dacr;
8bf5b6a9 9328 bool ns;
9ee6e8bb
PB
9329
9330 /* Pagetable walk. */
9331 /* Lookup l1 descriptor. */
0480f69a 9332 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16 9333 /* Section translation fault if page walk is disabled by PD0 or PD1 */
f06cf243 9334 fi->type = ARMFault_Translation;
e389be16
FA
9335 goto do_fault;
9336 }
a614e698 9337 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
3795a6de 9338 mmu_idx, fi);
3b39d734
PM
9339 if (fi->type != ARMFault_None) {
9340 goto do_fault;
9341 }
9ee6e8bb 9342 type = (desc & 3);
de9b05b8
PM
9343 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9344 /* Section translation fault, or attempt to use the encoding
9345 * which is Reserved on implementations without PXN.
9346 */
f06cf243 9347 fi->type = ARMFault_Translation;
9ee6e8bb 9348 goto do_fault;
de9b05b8
PM
9349 }
9350 if ((type == 1) || !(desc & (1 << 18))) {
9351 /* Page or Section. */
dd4ebc2e 9352 domain = (desc >> 5) & 0x0f;
9ee6e8bb 9353 }
0480f69a
PM
9354 if (regime_el(env, mmu_idx) == 1) {
9355 dacr = env->cp15.dacr_ns;
9356 } else {
9357 dacr = env->cp15.dacr_s;
9358 }
f06cf243
PM
9359 if (type == 1) {
9360 level = 2;
9361 }
0480f69a 9362 domain_prot = (dacr >> (domain * 2)) & 3;
dd4ebc2e 9363 if (domain_prot == 0 || domain_prot == 2) {
f06cf243
PM
9364 /* Section or Page domain fault */
9365 fi->type = ARMFault_Domain;
9ee6e8bb
PB
9366 goto do_fault;
9367 }
de9b05b8 9368 if (type != 1) {
9ee6e8bb
PB
9369 if (desc & (1 << 18)) {
9370 /* Supersection. */
9371 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
4e42a6ca
SF
9372 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9373 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
d4c430a8 9374 *page_size = 0x1000000;
b5ff1b31 9375 } else {
9ee6e8bb
PB
9376 /* Section. */
9377 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 9378 *page_size = 0x100000;
b5ff1b31 9379 }
9ee6e8bb
PB
9380 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9381 xn = desc & (1 << 4);
de9b05b8 9382 pxn = desc & 1;
8bf5b6a9 9383 ns = extract32(desc, 19, 1);
9ee6e8bb 9384 } else {
de9b05b8
PM
9385 if (arm_feature(env, ARM_FEATURE_PXN)) {
9386 pxn = (desc >> 2) & 1;
9387 }
8bf5b6a9 9388 ns = extract32(desc, 3, 1);
9ee6e8bb
PB
9389 /* Lookup l2 entry. */
9390 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
a614e698 9391 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
3795a6de 9392 mmu_idx, fi);
3b39d734
PM
9393 if (fi->type != ARMFault_None) {
9394 goto do_fault;
9395 }
9ee6e8bb
PB
9396 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9397 switch (desc & 3) {
9398 case 0: /* Page translation fault. */
f06cf243 9399 fi->type = ARMFault_Translation;
b5ff1b31 9400 goto do_fault;
9ee6e8bb
PB
9401 case 1: /* 64k page. */
9402 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9403 xn = desc & (1 << 15);
d4c430a8 9404 *page_size = 0x10000;
9ee6e8bb
PB
9405 break;
9406 case 2: case 3: /* 4k page. */
9407 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9408 xn = desc & 1;
d4c430a8 9409 *page_size = 0x1000;
9ee6e8bb
PB
9410 break;
9411 default:
9412 /* Never happens, but compiler isn't smart enough to tell. */
9413 abort();
b5ff1b31 9414 }
9ee6e8bb 9415 }
dd4ebc2e 9416 if (domain_prot == 3) {
c0034328
JR
9417 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9418 } else {
0480f69a 9419 if (pxn && !regime_is_user(env, mmu_idx)) {
de9b05b8
PM
9420 xn = 1;
9421 }
f06cf243
PM
9422 if (xn && access_type == MMU_INST_FETCH) {
9423 fi->type = ARMFault_Permission;
c0034328 9424 goto do_fault;
f06cf243 9425 }
9ee6e8bb 9426
d76951b6
AJ
9427 if (arm_feature(env, ARM_FEATURE_V6K) &&
9428 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9429 /* The simplified model uses AP[0] as an access control bit. */
9430 if ((ap & 1) == 0) {
9431 /* Access flag fault. */
f06cf243 9432 fi->type = ARMFault_AccessFlag;
d76951b6
AJ
9433 goto do_fault;
9434 }
9435 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9436 } else {
9437 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
c0034328 9438 }
0fbf5238
AJ
9439 if (*prot && !xn) {
9440 *prot |= PAGE_EXEC;
9441 }
9442 if (!(*prot & (1 << access_type))) {
c0034328 9443 /* Access permission fault. */
f06cf243 9444 fi->type = ARMFault_Permission;
c0034328
JR
9445 goto do_fault;
9446 }
3ad493fc 9447 }
8bf5b6a9
PM
9448 if (ns) {
9449 /* The NS bit will (as required by the architecture) have no effect if
9450 * the CPU doesn't support TZ or this is a non-secure translation
9451 * regime, because the attribute will already be non-secure.
9452 */
9453 attrs->secure = false;
9454 }
9ee6e8bb 9455 *phys_ptr = phys_addr;
b7cc4e82 9456 return false;
b5ff1b31 9457do_fault:
f06cf243
PM
9458 fi->domain = domain;
9459 fi->level = level;
b7cc4e82 9460 return true;
b5ff1b31
FB
9461}
9462
1853d5a9 9463/*
a0e966c9 9464 * check_s2_mmu_setup
1853d5a9
EI
9465 * @cpu: ARMCPU
9466 * @is_aa64: True if the translation regime is in AArch64 state
9467 * @startlevel: Suggested starting level
9468 * @inputsize: Bitsize of IPAs
9469 * @stride: Page-table stride (See the ARM ARM)
9470 *
a0e966c9
EI
9471 * Returns true if the suggested S2 translation parameters are OK and
9472 * false otherwise.
1853d5a9 9473 */
a0e966c9
EI
9474static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9475 int inputsize, int stride)
1853d5a9 9476{
98d68ec2
EI
9477 const int grainsize = stride + 3;
9478 int startsizecheck;
9479
1853d5a9
EI
9480 /* Negative levels are never allowed. */
9481 if (level < 0) {
9482 return false;
9483 }
9484
98d68ec2
EI
9485 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9486 if (startsizecheck < 1 || startsizecheck > stride + 4) {
9487 return false;
9488 }
9489
1853d5a9 9490 if (is_aa64) {
3526423e 9491 CPUARMState *env = &cpu->env;
1853d5a9
EI
9492 unsigned int pamax = arm_pamax(cpu);
9493
9494 switch (stride) {
9495 case 13: /* 64KB Pages. */
9496 if (level == 0 || (level == 1 && pamax <= 42)) {
9497 return false;
9498 }
9499 break;
9500 case 11: /* 16KB Pages. */
9501 if (level == 0 || (level == 1 && pamax <= 40)) {
9502 return false;
9503 }
9504 break;
9505 case 9: /* 4KB Pages. */
9506 if (level == 0 && pamax <= 42) {
9507 return false;
9508 }
9509 break;
9510 default:
9511 g_assert_not_reached();
9512 }
3526423e
EI
9513
9514 /* Inputsize checks. */
9515 if (inputsize > pamax &&
9516 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9517 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
9518 return false;
9519 }
1853d5a9 9520 } else {
1853d5a9
EI
9521 /* AArch32 only supports 4KB pages. Assert on that. */
9522 assert(stride == 9);
9523
9524 if (level == 0) {
9525 return false;
9526 }
1853d5a9
EI
9527 }
9528 return true;
9529}
9530
5b2d261d
AB
9531/* Translate from the 4-bit stage 2 representation of
9532 * memory attributes (without cache-allocation hints) to
9533 * the 8-bit representation of the stage 1 MAIR registers
9534 * (which includes allocation hints).
9535 *
9536 * ref: shared/translation/attrs/S2AttrDecode()
9537 * .../S2ConvertAttrsHints()
9538 */
9539static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9540{
9541 uint8_t hiattr = extract32(s2attrs, 2, 2);
9542 uint8_t loattr = extract32(s2attrs, 0, 2);
9543 uint8_t hihint = 0, lohint = 0;
9544
9545 if (hiattr != 0) { /* normal memory */
9546 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9547 hiattr = loattr = 1; /* non-cacheable */
9548 } else {
9549 if (hiattr != 1) { /* Write-through or write-back */
9550 hihint = 3; /* RW allocate */
9551 }
9552 if (loattr != 1) { /* Write-through or write-back */
9553 lohint = 3; /* RW allocate */
9554 }
9555 }
9556 }
9557
9558 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9559}
c47eaf9f 9560#endif /* !CONFIG_USER_ONLY */
5b2d261d 9561
e737ed2a
RH
9562ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
9563 ARMMMUIdx mmu_idx)
ba97be9f
RH
9564{
9565 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9566 uint32_t el = regime_el(env, mmu_idx);
8220af7e 9567 bool tbi, tbid, epd, hpd, using16k, using64k;
ba97be9f
RH
9568 int select, tsz;
9569
9570 /*
9571 * Bit 55 is always between the two regions, and is canonical for
9572 * determining if address tagging is enabled.
9573 */
9574 select = extract64(va, 55, 1);
9575
9576 if (el > 1) {
9577 tsz = extract32(tcr, 0, 6);
9578 using64k = extract32(tcr, 14, 1);
9579 using16k = extract32(tcr, 15, 1);
9580 if (mmu_idx == ARMMMUIdx_S2NS) {
9581 /* VTCR_EL2 */
8220af7e 9582 tbi = tbid = hpd = false;
ba97be9f
RH
9583 } else {
9584 tbi = extract32(tcr, 20, 1);
9585 hpd = extract32(tcr, 24, 1);
8220af7e 9586 tbid = extract32(tcr, 29, 1);
ba97be9f
RH
9587 }
9588 epd = false;
9589 } else if (!select) {
9590 tsz = extract32(tcr, 0, 6);
9591 epd = extract32(tcr, 7, 1);
9592 using64k = extract32(tcr, 14, 1);
9593 using16k = extract32(tcr, 15, 1);
9594 tbi = extract64(tcr, 37, 1);
9595 hpd = extract64(tcr, 41, 1);
8220af7e 9596 tbid = extract64(tcr, 51, 1);
ba97be9f
RH
9597 } else {
9598 int tg = extract32(tcr, 30, 2);
9599 using16k = tg == 1;
9600 using64k = tg == 3;
9601 tsz = extract32(tcr, 16, 6);
9602 epd = extract32(tcr, 23, 1);
9603 tbi = extract64(tcr, 38, 1);
9604 hpd = extract64(tcr, 42, 1);
8220af7e 9605 tbid = extract64(tcr, 52, 1);
ba97be9f
RH
9606 }
9607 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
9608 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
9609
9610 return (ARMVAParameters) {
9611 .tsz = tsz,
9612 .select = select,
9613 .tbi = tbi,
8220af7e 9614 .tbid = tbid,
ba97be9f
RH
9615 .epd = epd,
9616 .hpd = hpd,
9617 .using16k = using16k,
9618 .using64k = using64k,
9619 };
9620}
9621
e737ed2a
RH
9622ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
9623 ARMMMUIdx mmu_idx, bool data)
9624{
8220af7e
RH
9625 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
9626
9627 /* Present TBI as a composite with TBID. */
9628 ret.tbi &= (data || !ret.tbid);
9629 return ret;
e737ed2a
RH
9630}
9631
c47eaf9f 9632#ifndef CONFIG_USER_ONLY
ba97be9f
RH
9633static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
9634 ARMMMUIdx mmu_idx)
9635{
9636 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9637 uint32_t el = regime_el(env, mmu_idx);
9638 int select, tsz;
9639 bool epd, hpd;
9640
9641 if (mmu_idx == ARMMMUIdx_S2NS) {
9642 /* VTCR */
9643 bool sext = extract32(tcr, 4, 1);
9644 bool sign = extract32(tcr, 3, 1);
9645
9646 /*
9647 * If the sign-extend bit is not the same as t0sz[3], the result
9648 * is unpredictable. Flag this as a guest error.
9649 */
9650 if (sign != sext) {
9651 qemu_log_mask(LOG_GUEST_ERROR,
9652 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9653 }
9654 tsz = sextract32(tcr, 0, 4) + 8;
9655 select = 0;
9656 hpd = false;
9657 epd = false;
9658 } else if (el == 2) {
9659 /* HTCR */
9660 tsz = extract32(tcr, 0, 3);
9661 select = 0;
9662 hpd = extract64(tcr, 24, 1);
9663 epd = false;
9664 } else {
9665 int t0sz = extract32(tcr, 0, 3);
9666 int t1sz = extract32(tcr, 16, 3);
9667
9668 if (t1sz == 0) {
9669 select = va > (0xffffffffu >> t0sz);
9670 } else {
9671 /* Note that we will detect errors later. */
9672 select = va >= ~(0xffffffffu >> t1sz);
9673 }
9674 if (!select) {
9675 tsz = t0sz;
9676 epd = extract32(tcr, 7, 1);
9677 hpd = extract64(tcr, 41, 1);
9678 } else {
9679 tsz = t1sz;
9680 epd = extract32(tcr, 23, 1);
9681 hpd = extract64(tcr, 42, 1);
9682 }
9683 /* For aarch32, hpd0 is not enabled without t2e as well. */
9684 hpd &= extract32(tcr, 6, 1);
9685 }
9686
9687 return (ARMVAParameters) {
9688 .tsz = tsz,
9689 .select = select,
9690 .epd = epd,
9691 .hpd = hpd,
9692 };
9693}
9694
b7cc4e82 9695static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
03ae85f8 9696 MMUAccessType access_type, ARMMMUIdx mmu_idx,
b7cc4e82 9697 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
da909b2c 9698 target_ulong *page_size_ptr,
5b2d261d 9699 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
3dde962f 9700{
2fc0cc0e 9701 ARMCPU *cpu = env_archcpu(env);
1853d5a9 9702 CPUState *cs = CPU(cpu);
3dde962f 9703 /* Read an LPAE long-descriptor translation table. */
da909b2c 9704 ARMFaultType fault_type = ARMFault_Translation;
1b4093ea 9705 uint32_t level;
ba97be9f 9706 ARMVAParameters param;
3dde962f 9707 uint64_t ttbr;
dddb5223 9708 hwaddr descaddr, indexmask, indexmask_grainsize;
3dde962f 9709 uint32_t tableattrs;
36d820af 9710 target_ulong page_size;
3dde962f 9711 uint32_t attrs;
ba97be9f
RH
9712 int32_t stride;
9713 int addrsize, inputsize;
0480f69a 9714 TCR *tcr = regime_tcr(env, mmu_idx);
d8e052b3 9715 int ap, ns, xn, pxn;
88e8add8 9716 uint32_t el = regime_el(env, mmu_idx);
ba97be9f 9717 bool ttbr1_valid;
6109769a 9718 uint64_t descaddrmask;
6e99f762 9719 bool aarch64 = arm_el_is_aa64(env, el);
1bafc2ba 9720 bool guarded = false;
0480f69a
PM
9721
9722 /* TODO:
88e8add8
GB
9723 * This code does not handle the different format TCR for VTCR_EL2.
9724 * This code also does not support shareability levels.
9725 * Attribute and permission bit handling should also be checked when adding
9726 * support for those page table walks.
0480f69a 9727 */
6e99f762 9728 if (aarch64) {
ba97be9f
RH
9729 param = aa64_va_parameters(env, address, mmu_idx,
9730 access_type != MMU_INST_FETCH);
1b4093ea 9731 level = 0;
88e8add8
GB
9732 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9733 * invalid.
9734 */
ba97be9f
RH
9735 ttbr1_valid = (el < 2);
9736 addrsize = 64 - 8 * param.tbi;
9737 inputsize = 64 - param.tsz;
d0a2cbce 9738 } else {
ba97be9f 9739 param = aa32_va_parameters(env, address, mmu_idx);
1b4093ea 9740 level = 1;
d0a2cbce 9741 /* There is no TTBR1 for EL2 */
ba97be9f
RH
9742 ttbr1_valid = (el != 2);
9743 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
9744 inputsize = addrsize - param.tsz;
2c8dd318 9745 }
3dde962f 9746
ba97be9f
RH
9747 /*
9748 * We determined the region when collecting the parameters, but we
9749 * have not yet validated that the address is valid for the region.
9750 * Extract the top bits and verify that they all match select.
36d820af
RH
9751 *
9752 * For aa32, if inputsize == addrsize, then we have selected the
9753 * region by exclusion in aa32_va_parameters and there is no more
9754 * validation to do here.
9755 */
9756 if (inputsize < addrsize) {
9757 target_ulong top_bits = sextract64(address, inputsize,
9758 addrsize - inputsize);
9759 if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
9760 /* The gap between the two regions is a Translation fault */
9761 fault_type = ARMFault_Translation;
9762 goto do_fault;
9763 }
3dde962f
PM
9764 }
9765
ba97be9f
RH
9766 if (param.using64k) {
9767 stride = 13;
9768 } else if (param.using16k) {
9769 stride = 11;
9770 } else {
9771 stride = 9;
9772 }
9773
3dde962f
PM
9774 /* Note that QEMU ignores shareability and cacheability attributes,
9775 * so we don't need to do anything with the SH, ORGN, IRGN fields
9776 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
9777 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9778 * implement any ASID-like capability so we can ignore it (instead
9779 * we will always flush the TLB any time the ASID is changed).
9780 */
ba97be9f 9781 ttbr = regime_ttbr(env, mmu_idx, param.select);
3dde962f 9782
0480f69a 9783 /* Here we should have set up all the parameters for the translation:
6e99f762 9784 * inputsize, ttbr, epd, stride, tbi
0480f69a
PM
9785 */
9786
ba97be9f 9787 if (param.epd) {
88e8add8
GB
9788 /* Translation table walk disabled => Translation fault on TLB miss
9789 * Note: This is always 0 on 64-bit EL2 and EL3.
9790 */
3dde962f
PM
9791 goto do_fault;
9792 }
9793
1853d5a9
EI
9794 if (mmu_idx != ARMMMUIdx_S2NS) {
9795 /* The starting level depends on the virtual address size (which can
9796 * be up to 48 bits) and the translation granule size. It indicates
9797 * the number of strides (stride bits at a time) needed to
9798 * consume the bits of the input address. In the pseudocode this is:
9799 * level = 4 - RoundUp((inputsize - grainsize) / stride)
9800 * where their 'inputsize' is our 'inputsize', 'grainsize' is
9801 * our 'stride + 3' and 'stride' is our 'stride'.
9802 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9803 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9804 * = 4 - (inputsize - 4) / stride;
9805 */
9806 level = 4 - (inputsize - 4) / stride;
9807 } else {
9808 /* For stage 2 translations the starting level is specified by the
9809 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9810 */
1b4093ea
SS
9811 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9812 uint32_t startlevel;
1853d5a9
EI
9813 bool ok;
9814
6e99f762 9815 if (!aarch64 || stride == 9) {
1853d5a9 9816 /* AArch32 or 4KB pages */
1b4093ea 9817 startlevel = 2 - sl0;
1853d5a9
EI
9818 } else {
9819 /* 16KB or 64KB pages */
1b4093ea 9820 startlevel = 3 - sl0;
1853d5a9
EI
9821 }
9822
9823 /* Check that the starting level is valid. */
6e99f762 9824 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1b4093ea 9825 inputsize, stride);
1853d5a9 9826 if (!ok) {
da909b2c 9827 fault_type = ARMFault_Translation;
1853d5a9
EI
9828 goto do_fault;
9829 }
1b4093ea 9830 level = startlevel;
1853d5a9 9831 }
3dde962f 9832
dddb5223
SS
9833 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9834 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
3dde962f
PM
9835
9836 /* Now we can extract the actual base address from the TTBR */
2c8dd318 9837 descaddr = extract64(ttbr, 0, 48);
dddb5223 9838 descaddr &= ~indexmask;
3dde962f 9839
6109769a 9840 /* The address field in the descriptor goes up to bit 39 for ARMv7
dddb5223
SS
9841 * but up to bit 47 for ARMv8, but we use the descaddrmask
9842 * up to bit 39 for AArch32, because we don't need other bits in that case
9843 * to construct next descriptor address (anyway they should be all zeroes).
6109769a 9844 */
6e99f762 9845 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
dddb5223 9846 ~indexmask_grainsize;
6109769a 9847
ebca90e4
PM
9848 /* Secure accesses start with the page table in secure memory and
9849 * can be downgraded to non-secure at any step. Non-secure accesses
9850 * remain non-secure. We implement this by just ORing in the NSTable/NS
9851 * bits at each step.
9852 */
9853 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
3dde962f
PM
9854 for (;;) {
9855 uint64_t descriptor;
ebca90e4 9856 bool nstable;
3dde962f 9857
dddb5223 9858 descaddr |= (address >> (stride * (4 - level))) & indexmask;
2c8dd318 9859 descaddr &= ~7ULL;
ebca90e4 9860 nstable = extract32(tableattrs, 4, 1);
3795a6de 9861 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
3b39d734 9862 if (fi->type != ARMFault_None) {
37785977
EI
9863 goto do_fault;
9864 }
9865
3dde962f
PM
9866 if (!(descriptor & 1) ||
9867 (!(descriptor & 2) && (level == 3))) {
9868 /* Invalid, or the Reserved level 3 encoding */
9869 goto do_fault;
9870 }
6109769a 9871 descaddr = descriptor & descaddrmask;
3dde962f
PM
9872
9873 if ((descriptor & 2) && (level < 3)) {
037c13c5 9874 /* Table entry. The top five bits are attributes which may
3dde962f
PM
9875 * propagate down through lower levels of the table (and
9876 * which are all arranged so that 0 means "no effect", so
9877 * we can gather them up by ORing in the bits at each level).
9878 */
9879 tableattrs |= extract64(descriptor, 59, 5);
9880 level++;
dddb5223 9881 indexmask = indexmask_grainsize;
3dde962f
PM
9882 continue;
9883 }
9884 /* Block entry at level 1 or 2, or page entry at level 3.
9885 * These are basically the same thing, although the number
9886 * of bits we pull in from the vaddr varies.
9887 */
973a5434 9888 page_size = (1ULL << ((stride * (4 - level)) + 3));
3dde962f 9889 descaddr |= (address & (page_size - 1));
6ab1a5ee 9890 /* Extract attributes from the descriptor */
d615efac
IC
9891 attrs = extract64(descriptor, 2, 10)
9892 | (extract64(descriptor, 52, 12) << 10);
6ab1a5ee
EI
9893
9894 if (mmu_idx == ARMMMUIdx_S2NS) {
9895 /* Stage 2 table descriptors do not include any attribute fields */
9896 break;
9897 }
9898 /* Merge in attributes from table descriptors */
037c13c5 9899 attrs |= nstable << 3; /* NS */
1bafc2ba 9900 guarded = extract64(descriptor, 50, 1); /* GP */
ba97be9f 9901 if (param.hpd) {
037c13c5
RH
9902 /* HPD disables all the table attributes except NSTable. */
9903 break;
9904 }
9905 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
3dde962f
PM
9906 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9907 * means "force PL1 access only", which means forcing AP[1] to 0.
9908 */
037c13c5
RH
9909 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
9910 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
3dde962f
PM
9911 break;
9912 }
9913 /* Here descaddr is the final physical address, and attributes
9914 * are all in attrs.
9915 */
da909b2c 9916 fault_type = ARMFault_AccessFlag;
3dde962f
PM
9917 if ((attrs & (1 << 8)) == 0) {
9918 /* Access flag */
9919 goto do_fault;
9920 }
d8e052b3
AJ
9921
9922 ap = extract32(attrs, 4, 2);
d8e052b3 9923 xn = extract32(attrs, 12, 1);
d8e052b3 9924
6ab1a5ee
EI
9925 if (mmu_idx == ARMMMUIdx_S2NS) {
9926 ns = true;
9927 *prot = get_S2prot(env, ap, xn);
9928 } else {
9929 ns = extract32(attrs, 3, 1);
9930 pxn = extract32(attrs, 11, 1);
6e99f762 9931 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
6ab1a5ee 9932 }
d8e052b3 9933
da909b2c 9934 fault_type = ARMFault_Permission;
d8e052b3 9935 if (!(*prot & (1 << access_type))) {
3dde962f
PM
9936 goto do_fault;
9937 }
3dde962f 9938
8bf5b6a9
PM
9939 if (ns) {
9940 /* The NS bit will (as required by the architecture) have no effect if
9941 * the CPU doesn't support TZ or this is a non-secure translation
9942 * regime, because the attribute will already be non-secure.
9943 */
9944 txattrs->secure = false;
9945 }
1bafc2ba
RH
9946 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
9947 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
9948 txattrs->target_tlb_bit0 = true;
9949 }
5b2d261d
AB
9950
9951 if (cacheattrs != NULL) {
9952 if (mmu_idx == ARMMMUIdx_S2NS) {
9953 cacheattrs->attrs = convert_stage2_attrs(env,
9954 extract32(attrs, 0, 4));
9955 } else {
9956 /* Index into MAIR registers for cache attributes */
9957 uint8_t attrindx = extract32(attrs, 0, 3);
9958 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9959 assert(attrindx <= 7);
9960 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9961 }
9962 cacheattrs->shareability = extract32(attrs, 6, 2);
9963 }
9964
3dde962f
PM
9965 *phys_ptr = descaddr;
9966 *page_size_ptr = page_size;
b7cc4e82 9967 return false;
3dde962f
PM
9968
9969do_fault:
da909b2c
PM
9970 fi->type = fault_type;
9971 fi->level = level;
37785977
EI
9972 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
9973 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
b7cc4e82 9974 return true;
3dde962f
PM
9975}
9976
f6bda88f
PC
9977static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9978 ARMMMUIdx mmu_idx,
9979 int32_t address, int *prot)
9980{
3a00d560
MD
9981 if (!arm_feature(env, ARM_FEATURE_M)) {
9982 *prot = PAGE_READ | PAGE_WRITE;
9983 switch (address) {
9984 case 0xF0000000 ... 0xFFFFFFFF:
9985 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9986 /* hivecs execing is ok */
9987 *prot |= PAGE_EXEC;
9988 }
9989 break;
9990 case 0x00000000 ... 0x7FFFFFFF:
f6bda88f 9991 *prot |= PAGE_EXEC;
3a00d560
MD
9992 break;
9993 }
9994 } else {
9995 /* Default system address map for M profile cores.
9996 * The architecture specifies which regions are execute-never;
9997 * at the MPU level no other checks are defined.
9998 */
9999 switch (address) {
10000 case 0x00000000 ... 0x1fffffff: /* ROM */
10001 case 0x20000000 ... 0x3fffffff: /* SRAM */
10002 case 0x60000000 ... 0x7fffffff: /* RAM */
10003 case 0x80000000 ... 0x9fffffff: /* RAM */
10004 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10005 break;
10006 case 0x40000000 ... 0x5fffffff: /* Peripheral */
10007 case 0xa0000000 ... 0xbfffffff: /* Device */
10008 case 0xc0000000 ... 0xdfffffff: /* Device */
10009 case 0xe0000000 ... 0xffffffff: /* System */
10010 *prot = PAGE_READ | PAGE_WRITE;
10011 break;
10012 default:
10013 g_assert_not_reached();
f6bda88f 10014 }
f6bda88f 10015 }
f6bda88f
PC
10016}
10017
29c483a5
MD
10018static bool pmsav7_use_background_region(ARMCPU *cpu,
10019 ARMMMUIdx mmu_idx, bool is_user)
10020{
10021 /* Return true if we should use the default memory map as a
10022 * "background" region if there are no hits against any MPU regions.
10023 */
10024 CPUARMState *env = &cpu->env;
10025
10026 if (is_user) {
10027 return false;
10028 }
10029
10030 if (arm_feature(env, ARM_FEATURE_M)) {
ecf5e8ea
PM
10031 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
10032 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
29c483a5
MD
10033 } else {
10034 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
10035 }
10036}
10037
38aaa60c
PM
10038static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
10039{
10040 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
10041 return arm_feature(env, ARM_FEATURE_M) &&
10042 extract32(address, 20, 12) == 0xe00;
10043}
10044
bf446a11
PM
10045static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
10046{
10047 /* True if address is in the M profile system region
10048 * 0xe0000000 - 0xffffffff
10049 */
10050 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
10051}
10052
f6bda88f 10053static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
03ae85f8 10054 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9375ad15 10055 hwaddr *phys_ptr, int *prot,
e5e40999 10056 target_ulong *page_size,
9375ad15 10057 ARMMMUFaultInfo *fi)
f6bda88f 10058{
2fc0cc0e 10059 ARMCPU *cpu = env_archcpu(env);
f6bda88f
PC
10060 int n;
10061 bool is_user = regime_is_user(env, mmu_idx);
10062
10063 *phys_ptr = address;
e5e40999 10064 *page_size = TARGET_PAGE_SIZE;
f6bda88f
PC
10065 *prot = 0;
10066
38aaa60c
PM
10067 if (regime_translation_disabled(env, mmu_idx) ||
10068 m_is_ppb_region(env, address)) {
10069 /* MPU disabled or M profile PPB access: use default memory map.
10070 * The other case which uses the default memory map in the
10071 * v7M ARM ARM pseudocode is exception vector reads from the vector
10072 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
10073 * which always does a direct read using address_space_ldl(), rather
10074 * than going via this function, so we don't need to check that here.
10075 */
f6bda88f
PC
10076 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10077 } else { /* MPU enabled */
10078 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10079 /* region search */
10080 uint32_t base = env->pmsav7.drbar[n];
10081 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
10082 uint32_t rmask;
10083 bool srdis = false;
10084
10085 if (!(env->pmsav7.drsr[n] & 0x1)) {
10086 continue;
10087 }
10088
10089 if (!rsize) {
c9f9f124
MD
10090 qemu_log_mask(LOG_GUEST_ERROR,
10091 "DRSR[%d]: Rsize field cannot be 0\n", n);
f6bda88f
PC
10092 continue;
10093 }
10094 rsize++;
10095 rmask = (1ull << rsize) - 1;
10096
10097 if (base & rmask) {
c9f9f124
MD
10098 qemu_log_mask(LOG_GUEST_ERROR,
10099 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
10100 "to DRSR region size, mask = 0x%" PRIx32 "\n",
10101 n, base, rmask);
f6bda88f
PC
10102 continue;
10103 }
10104
10105 if (address < base || address > base + rmask) {
9d2b5a58
PM
10106 /*
10107 * Address not in this region. We must check whether the
10108 * region covers addresses in the same page as our address.
10109 * In that case we must not report a size that covers the
10110 * whole page for a subsequent hit against a different MPU
10111 * region or the background region, because it would result in
10112 * incorrect TLB hits for subsequent accesses to addresses that
10113 * are in this MPU region.
10114 */
10115 if (ranges_overlap(base, rmask,
10116 address & TARGET_PAGE_MASK,
10117 TARGET_PAGE_SIZE)) {
10118 *page_size = 1;
10119 }
f6bda88f
PC
10120 continue;
10121 }
10122
10123 /* Region matched */
10124
10125 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
10126 int i, snd;
10127 uint32_t srdis_mask;
10128
10129 rsize -= 3; /* sub region size (power of 2) */
10130 snd = ((address - base) >> rsize) & 0x7;
10131 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
10132
10133 srdis_mask = srdis ? 0x3 : 0x0;
10134 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
10135 /* This will check in groups of 2, 4 and then 8, whether
10136 * the subregion bits are consistent. rsize is incremented
10137 * back up to give the region size, considering consistent
10138 * adjacent subregions as one region. Stop testing if rsize
10139 * is already big enough for an entire QEMU page.
10140 */
10141 int snd_rounded = snd & ~(i - 1);
10142 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
10143 snd_rounded + 8, i);
10144 if (srdis_mask ^ srdis_multi) {
10145 break;
10146 }
10147 srdis_mask = (srdis_mask << i) | srdis_mask;
10148 rsize++;
10149 }
10150 }
f6bda88f
PC
10151 if (srdis) {
10152 continue;
10153 }
e5e40999
PM
10154 if (rsize < TARGET_PAGE_BITS) {
10155 *page_size = 1 << rsize;
10156 }
f6bda88f
PC
10157 break;
10158 }
10159
10160 if (n == -1) { /* no hits */
29c483a5 10161 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
f6bda88f 10162 /* background fault */
9375ad15 10163 fi->type = ARMFault_Background;
f6bda88f
PC
10164 return true;
10165 }
10166 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10167 } else { /* a MPU hit! */
10168 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
bf446a11
PM
10169 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
10170
10171 if (m_is_system_region(env, address)) {
10172 /* System space is always execute never */
10173 xn = 1;
10174 }
f6bda88f
PC
10175
10176 if (is_user) { /* User mode AP bit decoding */
10177 switch (ap) {
10178 case 0:
10179 case 1:
10180 case 5:
10181 break; /* no access */
10182 case 3:
10183 *prot |= PAGE_WRITE;
10184 /* fall through */
10185 case 2:
10186 case 6:
10187 *prot |= PAGE_READ | PAGE_EXEC;
10188 break;
8638f1ad
PM
10189 case 7:
10190 /* for v7M, same as 6; for R profile a reserved value */
10191 if (arm_feature(env, ARM_FEATURE_M)) {
10192 *prot |= PAGE_READ | PAGE_EXEC;
10193 break;
10194 }
10195 /* fall through */
f6bda88f
PC
10196 default:
10197 qemu_log_mask(LOG_GUEST_ERROR,
c9f9f124
MD
10198 "DRACR[%d]: Bad value for AP bits: 0x%"
10199 PRIx32 "\n", n, ap);
f6bda88f
PC
10200 }
10201 } else { /* Priv. mode AP bits decoding */
10202 switch (ap) {
10203 case 0:
10204 break; /* no access */
10205 case 1:
10206 case 2:
10207 case 3:
10208 *prot |= PAGE_WRITE;
10209 /* fall through */
10210 case 5:
10211 case 6:
10212 *prot |= PAGE_READ | PAGE_EXEC;
10213 break;
8638f1ad
PM
10214 case 7:
10215 /* for v7M, same as 6; for R profile a reserved value */
10216 if (arm_feature(env, ARM_FEATURE_M)) {
10217 *prot |= PAGE_READ | PAGE_EXEC;
10218 break;
10219 }
10220 /* fall through */
f6bda88f
PC
10221 default:
10222 qemu_log_mask(LOG_GUEST_ERROR,
c9f9f124
MD
10223 "DRACR[%d]: Bad value for AP bits: 0x%"
10224 PRIx32 "\n", n, ap);
f6bda88f
PC
10225 }
10226 }
10227
10228 /* execute never */
bf446a11 10229 if (xn) {
f6bda88f
PC
10230 *prot &= ~PAGE_EXEC;
10231 }
10232 }
10233 }
10234
9375ad15
PM
10235 fi->type = ARMFault_Permission;
10236 fi->level = 1;
f6bda88f
PC
10237 return !(*prot & (1 << access_type));
10238}
10239
35337cc3
PM
10240static bool v8m_is_sau_exempt(CPUARMState *env,
10241 uint32_t address, MMUAccessType access_type)
10242{
10243 /* The architecture specifies that certain address ranges are
10244 * exempt from v8M SAU/IDAU checks.
10245 */
10246 return
10247 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
10248 (address >= 0xe0000000 && address <= 0xe0002fff) ||
10249 (address >= 0xe000e000 && address <= 0xe000efff) ||
10250 (address >= 0xe002e000 && address <= 0xe002efff) ||
10251 (address >= 0xe0040000 && address <= 0xe0041fff) ||
10252 (address >= 0xe00ff000 && address <= 0xe00fffff);
10253}
10254
787a7e76 10255void v8m_security_lookup(CPUARMState *env, uint32_t address,
35337cc3
PM
10256 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10257 V8M_SAttributes *sattrs)
10258{
10259 /* Look up the security attributes for this address. Compare the
10260 * pseudocode SecurityCheck() function.
10261 * We assume the caller has zero-initialized *sattrs.
10262 */
2fc0cc0e 10263 ARMCPU *cpu = env_archcpu(env);
35337cc3 10264 int r;
181962fd
PM
10265 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
10266 int idau_region = IREGION_NOTVALID;
72042435
PM
10267 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10268 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
35337cc3 10269
181962fd
PM
10270 if (cpu->idau) {
10271 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
10272 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
10273
10274 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
10275 &idau_nsc);
10276 }
35337cc3
PM
10277
10278 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
10279 /* 0xf0000000..0xffffffff is always S for insn fetches */
10280 return;
10281 }
10282
181962fd 10283 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
35337cc3
PM
10284 sattrs->ns = !regime_is_secure(env, mmu_idx);
10285 return;
10286 }
10287
181962fd
PM
10288 if (idau_region != IREGION_NOTVALID) {
10289 sattrs->irvalid = true;
10290 sattrs->iregion = idau_region;
10291 }
10292
35337cc3
PM
10293 switch (env->sau.ctrl & 3) {
10294 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
10295 break;
10296 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
10297 sattrs->ns = true;
10298 break;
10299 default: /* SAU.ENABLE == 1 */
10300 for (r = 0; r < cpu->sau_sregion; r++) {
10301 if (env->sau.rlar[r] & 1) {
10302 uint32_t base = env->sau.rbar[r] & ~0x1f;
10303 uint32_t limit = env->sau.rlar[r] | 0x1f;
10304
10305 if (base <= address && limit >= address) {
72042435
PM
10306 if (base > addr_page_base || limit < addr_page_limit) {
10307 sattrs->subpage = true;
10308 }
35337cc3
PM
10309 if (sattrs->srvalid) {
10310 /* If we hit in more than one region then we must report
10311 * as Secure, not NS-Callable, with no valid region
10312 * number info.
10313 */
10314 sattrs->ns = false;
10315 sattrs->nsc = false;
10316 sattrs->sregion = 0;
10317 sattrs->srvalid = false;
10318 break;
10319 } else {
10320 if (env->sau.rlar[r] & 2) {
10321 sattrs->nsc = true;
10322 } else {
10323 sattrs->ns = true;
10324 }
10325 sattrs->srvalid = true;
10326 sattrs->sregion = r;
10327 }
9d2b5a58
PM
10328 } else {
10329 /*
10330 * Address not in this region. We must check whether the
10331 * region covers addresses in the same page as our address.
10332 * In that case we must not report a size that covers the
10333 * whole page for a subsequent hit against a different MPU
10334 * region or the background region, because it would result
10335 * in incorrect TLB hits for subsequent accesses to
10336 * addresses that are in this MPU region.
10337 */
10338 if (limit >= base &&
10339 ranges_overlap(base, limit - base + 1,
10340 addr_page_base,
10341 TARGET_PAGE_SIZE)) {
10342 sattrs->subpage = true;
10343 }
35337cc3
PM
10344 }
10345 }
10346 }
7e3f1223
TR
10347 break;
10348 }
35337cc3 10349
7e3f1223
TR
10350 /*
10351 * The IDAU will override the SAU lookup results if it specifies
10352 * higher security than the SAU does.
10353 */
10354 if (!idau_ns) {
10355 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
10356 sattrs->ns = false;
10357 sattrs->nsc = idau_nsc;
181962fd 10358 }
35337cc3
PM
10359 }
10360}
10361
787a7e76 10362bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
54317c0f
PM
10363 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10364 hwaddr *phys_ptr, MemTxAttrs *txattrs,
72042435
PM
10365 int *prot, bool *is_subpage,
10366 ARMMMUFaultInfo *fi, uint32_t *mregion)
54317c0f
PM
10367{
10368 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
10369 * that a full phys-to-virt translation does).
10370 * mregion is (if not NULL) set to the region number which matched,
10371 * or -1 if no region number is returned (MPU off, address did not
10372 * hit a region, address hit in multiple regions).
72042435
PM
10373 * We set is_subpage to true if the region hit doesn't cover the
10374 * entire TARGET_PAGE the address is within.
54317c0f 10375 */
2fc0cc0e 10376 ARMCPU *cpu = env_archcpu(env);
504e3cc3 10377 bool is_user = regime_is_user(env, mmu_idx);
62c58ee0 10378 uint32_t secure = regime_is_secure(env, mmu_idx);
504e3cc3
PM
10379 int n;
10380 int matchregion = -1;
10381 bool hit = false;
72042435
PM
10382 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10383 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
504e3cc3 10384
72042435 10385 *is_subpage = false;
504e3cc3
PM
10386 *phys_ptr = address;
10387 *prot = 0;
54317c0f
PM
10388 if (mregion) {
10389 *mregion = -1;
35337cc3
PM
10390 }
10391
504e3cc3
PM
10392 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10393 * was an exception vector read from the vector table (which is always
10394 * done using the default system address map), because those accesses
10395 * are done in arm_v7m_load_vector(), which always does a direct
10396 * read using address_space_ldl(), rather than going via this function.
10397 */
10398 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
10399 hit = true;
10400 } else if (m_is_ppb_region(env, address)) {
10401 hit = true;
504e3cc3 10402 } else {
cff21316
PM
10403 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10404 hit = true;
10405 }
10406
504e3cc3
PM
10407 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10408 /* region search */
10409 /* Note that the base address is bits [31:5] from the register
10410 * with bits [4:0] all zeroes, but the limit address is bits
10411 * [31:5] from the register with bits [4:0] all ones.
10412 */
62c58ee0
PM
10413 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10414 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
504e3cc3 10415
62c58ee0 10416 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
504e3cc3
PM
10417 /* Region disabled */
10418 continue;
10419 }
10420
10421 if (address < base || address > limit) {
9d2b5a58
PM
10422 /*
10423 * Address not in this region. We must check whether the
10424 * region covers addresses in the same page as our address.
10425 * In that case we must not report a size that covers the
10426 * whole page for a subsequent hit against a different MPU
10427 * region or the background region, because it would result in
10428 * incorrect TLB hits for subsequent accesses to addresses that
10429 * are in this MPU region.
10430 */
10431 if (limit >= base &&
10432 ranges_overlap(base, limit - base + 1,
10433 addr_page_base,
10434 TARGET_PAGE_SIZE)) {
10435 *is_subpage = true;
10436 }
504e3cc3
PM
10437 continue;
10438 }
10439
72042435
PM
10440 if (base > addr_page_base || limit < addr_page_limit) {
10441 *is_subpage = true;
10442 }
10443
cff21316 10444 if (matchregion != -1) {
504e3cc3
PM
10445 /* Multiple regions match -- always a failure (unlike
10446 * PMSAv7 where highest-numbered-region wins)
10447 */
3f551b5b
PM
10448 fi->type = ARMFault_Permission;
10449 fi->level = 1;
504e3cc3
PM
10450 return true;
10451 }
10452
10453 matchregion = n;
10454 hit = true;
504e3cc3
PM
10455 }
10456 }
10457
10458 if (!hit) {
10459 /* background fault */
3f551b5b 10460 fi->type = ARMFault_Background;
504e3cc3
PM
10461 return true;
10462 }
10463
10464 if (matchregion == -1) {
10465 /* hit using the background region */
10466 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10467 } else {
62c58ee0
PM
10468 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10469 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
504e3cc3
PM
10470
10471 if (m_is_system_region(env, address)) {
10472 /* System space is always execute never */
10473 xn = 1;
10474 }
10475
10476 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10477 if (*prot && !xn) {
10478 *prot |= PAGE_EXEC;
10479 }
10480 /* We don't need to look the attribute up in the MAIR0/MAIR1
10481 * registers because that only tells us about cacheability.
10482 */
54317c0f
PM
10483 if (mregion) {
10484 *mregion = matchregion;
10485 }
504e3cc3
PM
10486 }
10487
3f551b5b
PM
10488 fi->type = ARMFault_Permission;
10489 fi->level = 1;
504e3cc3
PM
10490 return !(*prot & (1 << access_type));
10491}
10492
54317c0f
PM
10493
10494static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10495 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10496 hwaddr *phys_ptr, MemTxAttrs *txattrs,
72042435
PM
10497 int *prot, target_ulong *page_size,
10498 ARMMMUFaultInfo *fi)
54317c0f
PM
10499{
10500 uint32_t secure = regime_is_secure(env, mmu_idx);
10501 V8M_SAttributes sattrs = {};
72042435
PM
10502 bool ret;
10503 bool mpu_is_subpage;
54317c0f
PM
10504
10505 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10506 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10507 if (access_type == MMU_INST_FETCH) {
10508 /* Instruction fetches always use the MMU bank and the
10509 * transaction attribute determined by the fetch address,
10510 * regardless of CPU state. This is painful for QEMU
10511 * to handle, because it would mean we need to encode
10512 * into the mmu_idx not just the (user, negpri) information
10513 * for the current security state but also that for the
10514 * other security state, which would balloon the number
10515 * of mmu_idx values needed alarmingly.
10516 * Fortunately we can avoid this because it's not actually
10517 * possible to arbitrarily execute code from memory with
10518 * the wrong security attribute: it will always generate
10519 * an exception of some kind or another, apart from the
10520 * special case of an NS CPU executing an SG instruction
10521 * in S&NSC memory. So we always just fail the translation
10522 * here and sort things out in the exception handler
10523 * (including possibly emulating an SG instruction).
10524 */
10525 if (sattrs.ns != !secure) {
3f551b5b
PM
10526 if (sattrs.nsc) {
10527 fi->type = ARMFault_QEMU_NSCExec;
10528 } else {
10529 fi->type = ARMFault_QEMU_SFault;
10530 }
72042435 10531 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
54317c0f
PM
10532 *phys_ptr = address;
10533 *prot = 0;
10534 return true;
10535 }
10536 } else {
10537 /* For data accesses we always use the MMU bank indicated
10538 * by the current CPU state, but the security attributes
10539 * might downgrade a secure access to nonsecure.
10540 */
10541 if (sattrs.ns) {
10542 txattrs->secure = false;
10543 } else if (!secure) {
10544 /* NS access to S memory must fault.
10545 * Architecturally we should first check whether the
10546 * MPU information for this address indicates that we
10547 * are doing an unaligned access to Device memory, which
10548 * should generate a UsageFault instead. QEMU does not
10549 * currently check for that kind of unaligned access though.
10550 * If we added it we would need to do so as a special case
10551 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10552 */
3f551b5b 10553 fi->type = ARMFault_QEMU_SFault;
72042435 10554 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
54317c0f
PM
10555 *phys_ptr = address;
10556 *prot = 0;
10557 return true;
10558 }
10559 }
10560 }
10561
72042435
PM
10562 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10563 txattrs, prot, &mpu_is_subpage, fi, NULL);
72042435
PM
10564 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
10565 return ret;
54317c0f
PM
10566}
10567
13689d43 10568static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
03ae85f8 10569 MMUAccessType access_type, ARMMMUIdx mmu_idx,
53a4e5c5
PM
10570 hwaddr *phys_ptr, int *prot,
10571 ARMMMUFaultInfo *fi)
9ee6e8bb
PB
10572{
10573 int n;
10574 uint32_t mask;
10575 uint32_t base;
0480f69a 10576 bool is_user = regime_is_user(env, mmu_idx);
9ee6e8bb 10577
3279adb9
PM
10578 if (regime_translation_disabled(env, mmu_idx)) {
10579 /* MPU disabled. */
10580 *phys_ptr = address;
10581 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10582 return false;
10583 }
10584
9ee6e8bb
PB
10585 *phys_ptr = address;
10586 for (n = 7; n >= 0; n--) {
554b0b09 10587 base = env->cp15.c6_region[n];
87c3d486 10588 if ((base & 1) == 0) {
554b0b09 10589 continue;
87c3d486 10590 }
554b0b09
PM
10591 mask = 1 << ((base >> 1) & 0x1f);
10592 /* Keep this shift separate from the above to avoid an
10593 (undefined) << 32. */
10594 mask = (mask << 1) - 1;
87c3d486 10595 if (((base ^ address) & ~mask) == 0) {
554b0b09 10596 break;
87c3d486 10597 }
9ee6e8bb 10598 }
87c3d486 10599 if (n < 0) {
53a4e5c5 10600 fi->type = ARMFault_Background;
b7cc4e82 10601 return true;
87c3d486 10602 }
9ee6e8bb 10603
03ae85f8 10604 if (access_type == MMU_INST_FETCH) {
7e09797c 10605 mask = env->cp15.pmsav5_insn_ap;
9ee6e8bb 10606 } else {
7e09797c 10607 mask = env->cp15.pmsav5_data_ap;
9ee6e8bb
PB
10608 }
10609 mask = (mask >> (n * 4)) & 0xf;
10610 switch (mask) {
10611 case 0:
53a4e5c5
PM
10612 fi->type = ARMFault_Permission;
10613 fi->level = 1;
b7cc4e82 10614 return true;
9ee6e8bb 10615 case 1:
87c3d486 10616 if (is_user) {
53a4e5c5
PM
10617 fi->type = ARMFault_Permission;
10618 fi->level = 1;
b7cc4e82 10619 return true;
87c3d486 10620 }
554b0b09
PM
10621 *prot = PAGE_READ | PAGE_WRITE;
10622 break;
9ee6e8bb 10623 case 2:
554b0b09 10624 *prot = PAGE_READ;
87c3d486 10625 if (!is_user) {
554b0b09 10626 *prot |= PAGE_WRITE;
87c3d486 10627 }
554b0b09 10628 break;
9ee6e8bb 10629 case 3:
554b0b09
PM
10630 *prot = PAGE_READ | PAGE_WRITE;
10631 break;
9ee6e8bb 10632 case 5:
87c3d486 10633 if (is_user) {
53a4e5c5
PM
10634 fi->type = ARMFault_Permission;
10635 fi->level = 1;
b7cc4e82 10636 return true;
87c3d486 10637 }
554b0b09
PM
10638 *prot = PAGE_READ;
10639 break;
9ee6e8bb 10640 case 6:
554b0b09
PM
10641 *prot = PAGE_READ;
10642 break;
9ee6e8bb 10643 default:
554b0b09 10644 /* Bad permission. */
53a4e5c5
PM
10645 fi->type = ARMFault_Permission;
10646 fi->level = 1;
b7cc4e82 10647 return true;
9ee6e8bb 10648 }
3ad493fc 10649 *prot |= PAGE_EXEC;
b7cc4e82 10650 return false;
9ee6e8bb
PB
10651}
10652
5b2d261d
AB
10653/* Combine either inner or outer cacheability attributes for normal
10654 * memory, according to table D4-42 and pseudocode procedure
10655 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10656 *
10657 * NB: only stage 1 includes allocation hints (RW bits), leading to
10658 * some asymmetry.
10659 */
10660static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10661{
10662 if (s1 == 4 || s2 == 4) {
10663 /* non-cacheable has precedence */
10664 return 4;
10665 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10666 /* stage 1 write-through takes precedence */
10667 return s1;
10668 } else if (extract32(s2, 2, 2) == 2) {
10669 /* stage 2 write-through takes precedence, but the allocation hint
10670 * is still taken from stage 1
10671 */
10672 return (2 << 2) | extract32(s1, 0, 2);
10673 } else { /* write-back */
10674 return s1;
10675 }
10676}
10677
10678/* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10679 * and CombineS1S2Desc()
10680 *
10681 * @s1: Attributes from stage 1 walk
10682 * @s2: Attributes from stage 2 walk
10683 */
10684static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10685{
10686 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10687 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10688 ARMCacheAttrs ret;
10689
10690 /* Combine shareability attributes (table D4-43) */
10691 if (s1.shareability == 2 || s2.shareability == 2) {
10692 /* if either are outer-shareable, the result is outer-shareable */
10693 ret.shareability = 2;
10694 } else if (s1.shareability == 3 || s2.shareability == 3) {
10695 /* if either are inner-shareable, the result is inner-shareable */
10696 ret.shareability = 3;
10697 } else {
10698 /* both non-shareable */
10699 ret.shareability = 0;
10700 }
10701
10702 /* Combine memory type and cacheability attributes */
10703 if (s1hi == 0 || s2hi == 0) {
10704 /* Device has precedence over normal */
10705 if (s1lo == 0 || s2lo == 0) {
10706 /* nGnRnE has precedence over anything */
10707 ret.attrs = 0;
10708 } else if (s1lo == 4 || s2lo == 4) {
10709 /* non-Reordering has precedence over Reordering */
10710 ret.attrs = 4; /* nGnRE */
10711 } else if (s1lo == 8 || s2lo == 8) {
10712 /* non-Gathering has precedence over Gathering */
10713 ret.attrs = 8; /* nGRE */
10714 } else {
10715 ret.attrs = 0xc; /* GRE */
10716 }
10717
10718 /* Any location for which the resultant memory type is any
10719 * type of Device memory is always treated as Outer Shareable.
10720 */
10721 ret.shareability = 2;
10722 } else { /* Normal memory */
10723 /* Outer/inner cacheability combine independently */
10724 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10725 | combine_cacheattr_nibble(s1lo, s2lo);
10726
10727 if (ret.attrs == 0x44) {
10728 /* Any location for which the resultant memory type is Normal
10729 * Inner Non-cacheable, Outer Non-cacheable is always treated
10730 * as Outer Shareable.
10731 */
10732 ret.shareability = 2;
10733 }
10734 }
10735
10736 return ret;
10737}
10738
10739
702a9357
PM
10740/* get_phys_addr - get the physical address for this virtual address
10741 *
10742 * Find the physical address corresponding to the given virtual address,
10743 * by doing a translation table walk on MMU based systems or using the
10744 * MPU state on MPU based systems.
10745 *
b7cc4e82
PC
10746 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10747 * prot and page_size may not be filled in, and the populated fsr value provides
702a9357
PM
10748 * information on why the translation aborted, in the format of a
10749 * DFSR/IFSR fault register, with the following caveats:
10750 * * we honour the short vs long DFSR format differences.
10751 * * the WnR bit is never set (the caller must do this).
f6bda88f 10752 * * for PSMAv5 based systems we don't bother to return a full FSR format
702a9357
PM
10753 * value.
10754 *
10755 * @env: CPUARMState
10756 * @address: virtual address to get physical address for
10757 * @access_type: 0 for read, 1 for write, 2 for execute
d3649702 10758 * @mmu_idx: MMU index indicating required translation regime
702a9357 10759 * @phys_ptr: set to the physical address corresponding to the virtual address
8bf5b6a9 10760 * @attrs: set to the memory transaction attributes to use
702a9357
PM
10761 * @prot: set to the permissions for the page containing phys_ptr
10762 * @page_size: set to the size of the page containing phys_ptr
5b2d261d
AB
10763 * @fi: set to fault info if the translation fails
10764 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
702a9357 10765 */
ebae861f
PMD
10766bool get_phys_addr(CPUARMState *env, target_ulong address,
10767 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10768 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10769 target_ulong *page_size,
10770 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9ee6e8bb 10771{
0480f69a 10772 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9b539263
EI
10773 /* Call ourselves recursively to do the stage 1 and then stage 2
10774 * translations.
0480f69a 10775 */
9b539263
EI
10776 if (arm_feature(env, ARM_FEATURE_EL2)) {
10777 hwaddr ipa;
10778 int s2_prot;
10779 int ret;
5b2d261d 10780 ARMCacheAttrs cacheattrs2 = {};
9b539263
EI
10781
10782 ret = get_phys_addr(env, address, access_type,
8bd5c820 10783 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
bc52bfeb 10784 prot, page_size, fi, cacheattrs);
9b539263
EI
10785
10786 /* If S1 fails or S2 is disabled, return early. */
10787 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10788 *phys_ptr = ipa;
10789 return ret;
10790 }
10791
10792 /* S1 is done. Now do S2 translation. */
10793 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10794 phys_ptr, attrs, &s2_prot,
da909b2c 10795 page_size, fi,
5b2d261d 10796 cacheattrs != NULL ? &cacheattrs2 : NULL);
9b539263
EI
10797 fi->s2addr = ipa;
10798 /* Combine the S1 and S2 perms. */
10799 *prot &= s2_prot;
5b2d261d
AB
10800
10801 /* Combine the S1 and S2 cache attributes, if needed */
10802 if (!ret && cacheattrs != NULL) {
9d1bab33
PM
10803 if (env->cp15.hcr_el2 & HCR_DC) {
10804 /*
10805 * HCR.DC forces the first stage attributes to
10806 * Normal Non-Shareable,
10807 * Inner Write-Back Read-Allocate Write-Allocate,
10808 * Outer Write-Back Read-Allocate Write-Allocate.
10809 */
10810 cacheattrs->attrs = 0xff;
10811 cacheattrs->shareability = 0;
10812 }
5b2d261d
AB
10813 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10814 }
10815
9b539263
EI
10816 return ret;
10817 } else {
10818 /*
10819 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10820 */
8bd5c820 10821 mmu_idx = stage_1_mmu_idx(mmu_idx);
9b539263 10822 }
0480f69a 10823 }
d3649702 10824
8bf5b6a9
PM
10825 /* The page table entries may downgrade secure to non-secure, but
10826 * cannot upgrade an non-secure translation regime's attributes
10827 * to secure.
10828 */
10829 attrs->secure = regime_is_secure(env, mmu_idx);
0995bf8c 10830 attrs->user = regime_is_user(env, mmu_idx);
8bf5b6a9 10831
0480f69a
PM
10832 /* Fast Context Switch Extension. This doesn't exist at all in v8.
10833 * In v7 and earlier it affects all stage 1 translations.
10834 */
10835 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10836 && !arm_feature(env, ARM_FEATURE_V8)) {
10837 if (regime_el(env, mmu_idx) == 3) {
10838 address += env->cp15.fcseidr_s;
10839 } else {
10840 address += env->cp15.fcseidr_ns;
10841 }
54bf36ed 10842 }
9ee6e8bb 10843
3279adb9 10844 if (arm_feature(env, ARM_FEATURE_PMSA)) {
c9f9f124 10845 bool ret;
f6bda88f 10846 *page_size = TARGET_PAGE_SIZE;
3279adb9 10847
504e3cc3
PM
10848 if (arm_feature(env, ARM_FEATURE_V8)) {
10849 /* PMSAv8 */
10850 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
72042435 10851 phys_ptr, attrs, prot, page_size, fi);
504e3cc3 10852 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3279adb9
PM
10853 /* PMSAv7 */
10854 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
e5e40999 10855 phys_ptr, prot, page_size, fi);
3279adb9
PM
10856 } else {
10857 /* Pre-v7 MPU */
10858 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
53a4e5c5 10859 phys_ptr, prot, fi);
3279adb9
PM
10860 }
10861 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
c9f9f124 10862 " mmu_idx %u -> %s (prot %c%c%c)\n",
709e4407
PM
10863 access_type == MMU_DATA_LOAD ? "reading" :
10864 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
c9f9f124
MD
10865 (uint32_t)address, mmu_idx,
10866 ret ? "Miss" : "Hit",
10867 *prot & PAGE_READ ? 'r' : '-',
10868 *prot & PAGE_WRITE ? 'w' : '-',
10869 *prot & PAGE_EXEC ? 'x' : '-');
10870
10871 return ret;
f6bda88f
PC
10872 }
10873
3279adb9
PM
10874 /* Definitely a real MMU, not an MPU */
10875
0480f69a 10876 if (regime_translation_disabled(env, mmu_idx)) {
3279adb9 10877 /* MMU disabled. */
9ee6e8bb 10878 *phys_ptr = address;
3ad493fc 10879 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 10880 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb 10881 return 0;
0480f69a
PM
10882 }
10883
0480f69a 10884 if (regime_using_lpae_format(env, mmu_idx)) {
bc52bfeb
PM
10885 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10886 phys_ptr, attrs, prot, page_size,
10887 fi, cacheattrs);
0480f69a 10888 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
bc52bfeb
PM
10889 return get_phys_addr_v6(env, address, access_type, mmu_idx,
10890 phys_ptr, attrs, prot, page_size, fi);
9ee6e8bb 10891 } else {
bc52bfeb 10892 return get_phys_addr_v5(env, address, access_type, mmu_idx,
f989983e 10893 phys_ptr, prot, page_size, fi);
9ee6e8bb
PB
10894 }
10895}
10896
0faea0c7
PM
10897hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10898 MemTxAttrs *attrs)
b5ff1b31 10899{
00b941e5 10900 ARMCPU *cpu = ARM_CPU(cs);
d3649702 10901 CPUARMState *env = &cpu->env;
a8170e5e 10902 hwaddr phys_addr;
d4c430a8 10903 target_ulong page_size;
b5ff1b31 10904 int prot;
b7cc4e82 10905 bool ret;
e14b5a23 10906 ARMMMUFaultInfo fi = {};
50494a27 10907 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
b5ff1b31 10908
0faea0c7
PM
10909 *attrs = (MemTxAttrs) {};
10910
8bd5c820 10911 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
bc52bfeb 10912 attrs, &prot, &page_size, &fi, NULL);
b5ff1b31 10913
b7cc4e82 10914 if (ret) {
b5ff1b31 10915 return -1;
00b941e5 10916 }
b5ff1b31
FB
10917 return phys_addr;
10918}
10919
b5ff1b31 10920#endif
6ddbc6e4
PB
10921
10922/* Note that signed overflow is undefined in C. The following routines are
10923 careful to use unsigned types where modulo arithmetic is required.
10924 Failure to do so _will_ break on newer gcc. */
10925
10926/* Signed saturating arithmetic. */
10927
1654b2d6 10928/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
10929static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10930{
10931 uint16_t res;
10932
10933 res = a + b;
10934 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10935 if (a & 0x8000)
10936 res = 0x8000;
10937 else
10938 res = 0x7fff;
10939 }
10940 return res;
10941}
10942
1654b2d6 10943/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
10944static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10945{
10946 uint8_t res;
10947
10948 res = a + b;
10949 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10950 if (a & 0x80)
10951 res = 0x80;
10952 else
10953 res = 0x7f;
10954 }
10955 return res;
10956}
10957
1654b2d6 10958/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
10959static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10960{
10961 uint16_t res;
10962
10963 res = a - b;
10964 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10965 if (a & 0x8000)
10966 res = 0x8000;
10967 else
10968 res = 0x7fff;
10969 }
10970 return res;
10971}
10972
1654b2d6 10973/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
10974static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10975{
10976 uint8_t res;
10977
10978 res = a - b;
10979 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10980 if (a & 0x80)
10981 res = 0x80;
10982 else
10983 res = 0x7f;
10984 }
10985 return res;
10986}
10987
10988#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10989#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10990#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
10991#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
10992#define PFX q
10993
10994#include "op_addsub.h"
10995
10996/* Unsigned saturating arithmetic. */
460a09c1 10997static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
10998{
10999 uint16_t res;
11000 res = a + b;
11001 if (res < a)
11002 res = 0xffff;
11003 return res;
11004}
11005
460a09c1 11006static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 11007{
4c4fd3f8 11008 if (a > b)
6ddbc6e4
PB
11009 return a - b;
11010 else
11011 return 0;
11012}
11013
11014static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11015{
11016 uint8_t res;
11017 res = a + b;
11018 if (res < a)
11019 res = 0xff;
11020 return res;
11021}
11022
11023static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11024{
4c4fd3f8 11025 if (a > b)
6ddbc6e4
PB
11026 return a - b;
11027 else
11028 return 0;
11029}
11030
11031#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11032#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11033#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11034#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11035#define PFX uq
11036
11037#include "op_addsub.h"
11038
11039/* Signed modulo arithmetic. */
11040#define SARITH16(a, b, n, op) do { \
11041 int32_t sum; \
db6e2e65 11042 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
11043 RESULT(sum, n, 16); \
11044 if (sum >= 0) \
11045 ge |= 3 << (n * 2); \
11046 } while(0)
11047
11048#define SARITH8(a, b, n, op) do { \
11049 int32_t sum; \
db6e2e65 11050 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
11051 RESULT(sum, n, 8); \
11052 if (sum >= 0) \
11053 ge |= 1 << n; \
11054 } while(0)
11055
11056
11057#define ADD16(a, b, n) SARITH16(a, b, n, +)
11058#define SUB16(a, b, n) SARITH16(a, b, n, -)
11059#define ADD8(a, b, n) SARITH8(a, b, n, +)
11060#define SUB8(a, b, n) SARITH8(a, b, n, -)
11061#define PFX s
11062#define ARITH_GE
11063
11064#include "op_addsub.h"
11065
11066/* Unsigned modulo arithmetic. */
11067#define ADD16(a, b, n) do { \
11068 uint32_t sum; \
11069 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11070 RESULT(sum, n, 16); \
a87aa10b 11071 if ((sum >> 16) == 1) \
6ddbc6e4
PB
11072 ge |= 3 << (n * 2); \
11073 } while(0)
11074
11075#define ADD8(a, b, n) do { \
11076 uint32_t sum; \
11077 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11078 RESULT(sum, n, 8); \
a87aa10b
AZ
11079 if ((sum >> 8) == 1) \
11080 ge |= 1 << n; \
6ddbc6e4
PB
11081 } while(0)
11082
11083#define SUB16(a, b, n) do { \
11084 uint32_t sum; \
11085 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11086 RESULT(sum, n, 16); \
11087 if ((sum >> 16) == 0) \
11088 ge |= 3 << (n * 2); \
11089 } while(0)
11090
11091#define SUB8(a, b, n) do { \
11092 uint32_t sum; \
11093 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11094 RESULT(sum, n, 8); \
11095 if ((sum >> 8) == 0) \
a87aa10b 11096 ge |= 1 << n; \
6ddbc6e4
PB
11097 } while(0)
11098
11099#define PFX u
11100#define ARITH_GE
11101
11102#include "op_addsub.h"
11103
11104/* Halved signed arithmetic. */
11105#define ADD16(a, b, n) \
11106 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11107#define SUB16(a, b, n) \
11108 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11109#define ADD8(a, b, n) \
11110 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11111#define SUB8(a, b, n) \
11112 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11113#define PFX sh
11114
11115#include "op_addsub.h"
11116
11117/* Halved unsigned arithmetic. */
11118#define ADD16(a, b, n) \
11119 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11120#define SUB16(a, b, n) \
11121 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11122#define ADD8(a, b, n) \
11123 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11124#define SUB8(a, b, n) \
11125 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11126#define PFX uh
11127
11128#include "op_addsub.h"
11129
11130static inline uint8_t do_usad(uint8_t a, uint8_t b)
11131{
11132 if (a > b)
11133 return a - b;
11134 else
11135 return b - a;
11136}
11137
11138/* Unsigned sum of absolute byte differences. */
11139uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11140{
11141 uint32_t sum;
11142 sum = do_usad(a, b);
11143 sum += do_usad(a >> 8, b >> 8);
11144 sum += do_usad(a >> 16, b >>16);
11145 sum += do_usad(a >> 24, b >> 24);
11146 return sum;
11147}
11148
11149/* For ARMv6 SEL instruction. */
11150uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11151{
11152 uint32_t mask;
11153
11154 mask = 0;
11155 if (flags & 1)
11156 mask |= 0xff;
11157 if (flags & 2)
11158 mask |= 0xff00;
11159 if (flags & 4)
11160 mask |= 0xff0000;
11161 if (flags & 8)
11162 mask |= 0xff000000;
11163 return (a & mask) | (b & ~mask);
11164}
11165
aa633469
PM
11166/* CRC helpers.
11167 * The upper bytes of val (above the number specified by 'bytes') must have
11168 * been zeroed out by the caller.
11169 */
eb0ecd5a
WN
11170uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11171{
11172 uint8_t buf[4];
11173
aa633469 11174 stl_le_p(buf, val);
eb0ecd5a
WN
11175
11176 /* zlib crc32 converts the accumulator and output to one's complement. */
11177 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11178}
11179
11180uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11181{
11182 uint8_t buf[4];
11183
aa633469 11184 stl_le_p(buf, val);
eb0ecd5a
WN
11185
11186 /* Linux crc32c converts the output to one's complement. */
11187 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11188}
a9e01311
RH
11189
11190/* Return the exception level to which FP-disabled exceptions should
11191 * be taken, or 0 if FP is enabled.
11192 */
ced31551 11193int fp_exception_el(CPUARMState *env, int cur_el)
a9e01311 11194{
55faa212 11195#ifndef CONFIG_USER_ONLY
a9e01311 11196 int fpen;
a9e01311
RH
11197
11198 /* CPACR and the CPTR registers don't exist before v6, so FP is
11199 * always accessible
11200 */
11201 if (!arm_feature(env, ARM_FEATURE_V6)) {
11202 return 0;
11203 }
11204
d87513c0
PM
11205 if (arm_feature(env, ARM_FEATURE_M)) {
11206 /* CPACR can cause a NOCP UsageFault taken to current security state */
11207 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11208 return 1;
11209 }
11210
11211 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11212 if (!extract32(env->v7m.nsacr, 10, 1)) {
11213 /* FP insns cause a NOCP UsageFault taken to Secure */
11214 return 3;
11215 }
11216 }
11217
11218 return 0;
11219 }
11220
a9e01311
RH
11221 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11222 * 0, 2 : trap EL0 and EL1/PL1 accesses
11223 * 1 : trap only EL0 accesses
11224 * 3 : trap no accesses
11225 */
11226 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
11227 switch (fpen) {
11228 case 0:
11229 case 2:
11230 if (cur_el == 0 || cur_el == 1) {
11231 /* Trap to PL1, which might be EL1 or EL3 */
11232 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
11233 return 3;
11234 }
11235 return 1;
11236 }
11237 if (cur_el == 3 && !is_a64(env)) {
11238 /* Secure PL1 running at EL3 */
11239 return 3;
11240 }
11241 break;
11242 case 1:
11243 if (cur_el == 0) {
11244 return 1;
11245 }
11246 break;
11247 case 3:
11248 break;
11249 }
11250
fc1120a7
PM
11251 /*
11252 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11253 * to control non-secure access to the FPU. It doesn't have any
11254 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11255 */
11256 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11257 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11258 if (!extract32(env->cp15.nsacr, 10, 1)) {
11259 /* FP insns act as UNDEF */
11260 return cur_el == 2 ? 2 : 1;
11261 }
11262 }
11263
a9e01311
RH
11264 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
11265 * check because zero bits in the registers mean "don't trap".
11266 */
11267
11268 /* CPTR_EL2 : present in v7VE or v8 */
11269 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
11270 && !arm_is_secure_below_el3(env)) {
11271 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
11272 return 2;
11273 }
11274
11275 /* CPTR_EL3 : present in v8 */
11276 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
11277 /* Trap all FP ops to EL3 */
11278 return 3;
11279 }
55faa212 11280#endif
a9e01311
RH
11281 return 0;
11282}
11283
7aab5a8c 11284#ifndef CONFIG_TCG
65e4655c
RH
11285ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11286{
7aab5a8c 11287 g_assert_not_reached();
65e4655c 11288}
7aab5a8c 11289#endif
65e4655c 11290
164690b2 11291ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
65e4655c 11292{
65e4655c 11293 if (arm_feature(env, ARM_FEATURE_M)) {
50494a27 11294 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
65e4655c
RH
11295 }
11296
11297 if (el < 2 && arm_is_secure_below_el3(env)) {
50494a27
RH
11298 return ARMMMUIdx_S1SE0 + el;
11299 } else {
11300 return ARMMMUIdx_S12NSE0 + el;
65e4655c 11301 }
50494a27
RH
11302}
11303
164690b2
RH
11304ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11305{
11306 return arm_mmu_idx_el(env, arm_current_el(env));
11307}
11308
50494a27
RH
11309int cpu_mmu_index(CPUARMState *env, bool ifetch)
11310{
11311 return arm_to_core_mmu_idx(arm_mmu_idx(env));
65e4655c
RH
11312}
11313
64be86ab
RH
11314#ifndef CONFIG_USER_ONLY
11315ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
11316{
11317 return stage_1_mmu_idx(arm_mmu_idx(env));
11318}
11319#endif
11320
fdd1b228
RH
11321static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
11322 ARMMMUIdx mmu_idx, uint32_t flags)
11323{
11324 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
11325 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
11326 arm_to_core_mmu_idx(mmu_idx));
11327
fdd1b228
RH
11328 if (arm_singlestep_active(env)) {
11329 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
11330 }
11331 return flags;
11332}
11333
43eccfb6
RH
11334static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
11335 ARMMMUIdx mmu_idx, uint32_t flags)
11336{
8061a649
RH
11337 bool sctlr_b = arm_sctlr_b(env);
11338
11339 if (sctlr_b) {
11340 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
11341 }
11342 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
11343 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
11344 }
43eccfb6
RH
11345 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
11346
11347 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11348}
11349
6e33ced5
RH
11350static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
11351 ARMMMUIdx mmu_idx)
11352{
11353 uint32_t flags = 0;
11354
0a54d68e
RH
11355 /* v8M always enables the fpu. */
11356 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11357
6e33ced5
RH
11358 if (arm_v7m_is_handler_mode(env)) {
11359 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
11360 }
11361
11362 /*
11363 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
11364 * is suppressing them because the requested execution priority
11365 * is less than 0.
11366 */
11367 if (arm_feature(env, ARM_FEATURE_V8) &&
11368 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
11369 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
11370 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
11371 }
11372
11373 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11374}
11375
83f4baef
RH
11376static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
11377{
11378 int flags = 0;
11379
11380 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
11381 arm_debug_target_el(env));
11382 return flags;
11383}
11384
c747224c
RH
11385static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
11386 ARMMMUIdx mmu_idx)
11387{
83f4baef 11388 uint32_t flags = rebuild_hflags_aprofile(env);
0a54d68e
RH
11389
11390 if (arm_el_is_aa64(env, 1)) {
11391 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11392 }
5bb0a20b
MZ
11393
11394 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
11395 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11396 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
11397 }
11398
83f4baef 11399 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
c747224c
RH
11400}
11401
d4d7503a
RH
11402static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
11403 ARMMMUIdx mmu_idx)
a9e01311 11404{
83f4baef 11405 uint32_t flags = rebuild_hflags_aprofile(env);
d4d7503a
RH
11406 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
11407 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
d4d7503a
RH
11408 uint64_t sctlr;
11409 int tbii, tbid;
b9adaa70 11410
d4d7503a 11411 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
cd208a1c 11412
d4d7503a
RH
11413 /* FIXME: ARMv8.1-VHE S2 translation regime. */
11414 if (regime_el(env, stage1) < 2) {
11415 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
11416 tbid = (p1.tbi << 1) | p0.tbi;
11417 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
11418 } else {
11419 tbid = p0.tbi;
11420 tbii = tbid & !p0.tbid;
11421 }
5d8634f5 11422
d4d7503a
RH
11423 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
11424 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
11425
11426 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
11427 int sve_el = sve_exception_el(env, el);
11428 uint32_t zcr_len;
5d8634f5 11429
d4d7503a
RH
11430 /*
11431 * If SVE is disabled, but FP is enabled,
11432 * then the effective len is 0.
11433 */
11434 if (sve_el != 0 && fp_el == 0) {
11435 zcr_len = 0;
11436 } else {
11437 zcr_len = sve_zcr_len_for_el(env, el);
5d8634f5 11438 }
d4d7503a
RH
11439 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
11440 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
11441 }
1db5e96c 11442
d4d7503a 11443 sctlr = arm_sctlr(env, el);
1db5e96c 11444
8061a649
RH
11445 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
11446 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
11447 }
11448
d4d7503a
RH
11449 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
11450 /*
11451 * In order to save space in flags, we record only whether
11452 * pauth is "inactive", meaning all insns are implemented as
11453 * a nop, or "active" when some action must be performed.
11454 * The decision of which action to take is left to a helper.
11455 */
11456 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
11457 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
1db5e96c 11458 }
d4d7503a 11459 }
0816ef1b 11460
d4d7503a
RH
11461 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11462 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
11463 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
11464 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
0816ef1b 11465 }
d4d7503a 11466 }
08f1434a 11467
d4d7503a
RH
11468 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11469}
11470
3d74e2e9
RH
11471static uint32_t rebuild_hflags_internal(CPUARMState *env)
11472{
11473 int el = arm_current_el(env);
11474 int fp_el = fp_exception_el(env, el);
164690b2 11475 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
3d74e2e9
RH
11476
11477 if (is_a64(env)) {
11478 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11479 } else if (arm_feature(env, ARM_FEATURE_M)) {
11480 return rebuild_hflags_m32(env, fp_el, mmu_idx);
11481 } else {
11482 return rebuild_hflags_a32(env, fp_el, mmu_idx);
11483 }
11484}
11485
11486void arm_rebuild_hflags(CPUARMState *env)
11487{
11488 env->hflags = rebuild_hflags_internal(env);
11489}
11490
14f3c588
RH
11491void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
11492{
11493 int fp_el = fp_exception_el(env, el);
11494 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11495
11496 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11497}
11498
f80741d1
AB
11499/*
11500 * If we have triggered a EL state change we can't rely on the
11501 * translator having passed it too us, we need to recompute.
11502 */
11503void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
11504{
11505 int el = arm_current_el(env);
11506 int fp_el = fp_exception_el(env, el);
11507 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11508 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11509}
11510
14f3c588
RH
11511void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
11512{
11513 int fp_el = fp_exception_el(env, el);
11514 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11515
11516 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11517}
11518
11519void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
11520{
11521 int fp_el = fp_exception_el(env, el);
11522 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11523
11524 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11525}
11526
0ee8b24a
PMD
11527static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
11528{
11529#ifdef CONFIG_DEBUG_TCG
11530 uint32_t env_flags_current = env->hflags;
11531 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
11532
11533 if (unlikely(env_flags_current != env_flags_rebuilt)) {
11534 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
11535 env_flags_current, env_flags_rebuilt);
11536 abort();
11537 }
11538#endif
11539}
11540
d4d7503a
RH
11541void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11542 target_ulong *cs_base, uint32_t *pflags)
11543{
e979972a
RH
11544 uint32_t flags = env->hflags;
11545 uint32_t pstate_for_ss;
d4d7503a 11546
9b253fe5 11547 *cs_base = 0;
0ee8b24a 11548 assert_hflags_rebuild_correctly(env);
3d74e2e9 11549
e979972a 11550 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
d4d7503a 11551 *pc = env->pc;
d4d7503a 11552 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
08f1434a
RH
11553 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
11554 }
60e12c37 11555 pstate_for_ss = env->pstate;
a9e01311
RH
11556 } else {
11557 *pc = env->regs[15];
6e33ced5
RH
11558
11559 if (arm_feature(env, ARM_FEATURE_M)) {
9550d1bd
RH
11560 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11561 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11562 != env->v7m.secure) {
11563 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1);
11564 }
11565
11566 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11567 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11568 (env->v7m.secure &&
11569 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11570 /*
11571 * ASPEN is set, but FPCA/SFPA indicate that there is no
11572 * active FP context; we must create a new FP context before
11573 * executing any FP insn.
11574 */
11575 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1);
11576 }
11577
11578 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11579 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11580 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1);
11581 }
6e33ced5 11582 } else {
bbad7c62
RH
11583 /*
11584 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11585 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11586 */
11587 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11588 flags = FIELD_DP32(flags, TBFLAG_A32,
11589 XSCALE_CPAR, env->cp15.c15_cpar);
11590 } else {
11591 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
11592 env->vfp.vec_len);
11593 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
11594 env->vfp.vec_stride);
11595 }
0a54d68e
RH
11596 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
11597 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11598 }
6e33ced5
RH
11599 }
11600
aad821ac 11601 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
aad821ac 11602 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
60e12c37 11603 pstate_for_ss = env->uncached_cpsr;
d4d7503a 11604 }
a9e01311 11605
60e12c37
RH
11606 /*
11607 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
a9e01311
RH
11608 * states defined in the ARM ARM for software singlestep:
11609 * SS_ACTIVE PSTATE.SS State
11610 * 0 x Inactive (the TB flag for SS is always 0)
11611 * 1 0 Active-pending
11612 * 1 1 Active-not-pending
fdd1b228 11613 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
a9e01311 11614 */
60e12c37
RH
11615 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
11616 (pstate_for_ss & PSTATE_SS)) {
11617 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
a9e01311 11618 }
a9e01311 11619
b9adaa70 11620 *pflags = flags;
a9e01311 11621}
0ab5953b
RH
11622
11623#ifdef TARGET_AARCH64
11624/*
11625 * The manual says that when SVE is enabled and VQ is widened the
11626 * implementation is allowed to zero the previously inaccessible
11627 * portion of the registers. The corollary to that is that when
11628 * SVE is enabled and VQ is narrowed we are also allowed to zero
11629 * the now inaccessible portion of the registers.
11630 *
11631 * The intent of this is that no predicate bit beyond VQ is ever set.
11632 * Which means that some operations on predicate registers themselves
11633 * may operate on full uint64_t or even unrolled across the maximum
11634 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
11635 * may well be cheaper than conditionals to restrict the operation
11636 * to the relevant portion of a uint16_t[16].
11637 */
11638void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11639{
11640 int i, j;
11641 uint64_t pmask;
11642
11643 assert(vq >= 1 && vq <= ARM_MAX_VQ);
2fc0cc0e 11644 assert(vq <= env_archcpu(env)->sve_max_vq);
0ab5953b
RH
11645
11646 /* Zap the high bits of the zregs. */
11647 for (i = 0; i < 32; i++) {
11648 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11649 }
11650
11651 /* Zap the high bits of the pregs and ffr. */
11652 pmask = 0;
11653 if (vq & 3) {
11654 pmask = ~(-1ULL << (16 * (vq & 3)));
11655 }
11656 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11657 for (i = 0; i < 17; ++i) {
11658 env->vfp.pregs[i].p[j] &= pmask;
11659 }
11660 pmask = 0;
11661 }
11662}
11663
11664/*
11665 * Notice a change in SVE vector size when changing EL.
11666 */
9a05f7b6
RH
11667void aarch64_sve_change_el(CPUARMState *env, int old_el,
11668 int new_el, bool el0_a64)
0ab5953b 11669{
2fc0cc0e 11670 ARMCPU *cpu = env_archcpu(env);
0ab5953b 11671 int old_len, new_len;
9a05f7b6 11672 bool old_a64, new_a64;
0ab5953b
RH
11673
11674 /* Nothing to do if no SVE. */
cd208a1c 11675 if (!cpu_isar_feature(aa64_sve, cpu)) {
0ab5953b
RH
11676 return;
11677 }
11678
11679 /* Nothing to do if FP is disabled in either EL. */
11680 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
11681 return;
11682 }
11683
11684 /*
11685 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
11686 * at ELx, or not available because the EL is in AArch32 state, then
11687 * for all purposes other than a direct read, the ZCR_ELx.LEN field
11688 * has an effective value of 0".
11689 *
11690 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
11691 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
11692 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
11693 * we already have the correct register contents when encountering the
11694 * vq0->vq0 transition between EL0->EL1.
11695 */
9a05f7b6
RH
11696 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
11697 old_len = (old_a64 && !sve_exception_el(env, old_el)
0ab5953b 11698 ? sve_zcr_len_for_el(env, old_el) : 0);
9a05f7b6
RH
11699 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
11700 new_len = (new_a64 && !sve_exception_el(env, new_el)
0ab5953b
RH
11701 ? sve_zcr_len_for_el(env, new_el) : 0);
11702
11703 /* When changing vector length, clear inaccessible state. */
11704 if (new_len < old_len) {
11705 aarch64_sve_narrow_vq(env, new_len + 1);
11706 }
11707}
11708#endif