]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/hvf/hvf.c
MAINTAINERS: Adding myself as a reviewer of some components
[mirror_qemu.git] / target / arm / hvf / hvf.c
CommitLineData
a1477da3
AG
1/*
2 * QEMU Hypervisor.framework support for Apple Silicon
3
4 * Copyright 2020 Alexander Graf <agraf@csgraf.de>
219c101f 5 * Copyright 2020 Google LLC
a1477da3
AG
6 *
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
9 *
10 */
11
12#include "qemu/osdep.h"
13#include "qemu-common.h"
14#include "qemu/error-report.h"
15
16#include "sysemu/runstate.h"
17#include "sysemu/hvf.h"
18#include "sysemu/hvf_int.h"
19#include "sysemu/hw_accel.h"
585df85e 20#include "hvf_arm.h"
a1477da3
AG
21
22#include <mach/mach_time.h>
23
24#include "exec/address-spaces.h"
25#include "hw/irq.h"
26#include "qemu/main-loop.h"
27#include "sysemu/cpus.h"
2c9c0bf9 28#include "arm-powerctl.h"
a1477da3
AG
29#include "target/arm/cpu.h"
30#include "target/arm/internals.h"
31#include "trace/trace-target_arm_hvf.h"
32#include "migration/vmstate.h"
33
34#define HVF_SYSREG(crn, crm, op0, op1, op2) \
35 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
36#define PL1_WRITE_MASK 0x4
37
38#define SYSREG(op0, op1, crn, crm, op2) \
39 ((op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (crm << 1))
40#define SYSREG_MASK SYSREG(0x3, 0x7, 0xf, 0xf, 0x7)
41#define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4)
42#define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4)
43#define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4)
44#define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1)
dd43ac07
AG
45#define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0)
46#define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0)
47#define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
48#define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
49#define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
50#define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3)
51#define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4)
52#define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5)
53#define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6)
54#define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7)
55#define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0)
56#define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7)
a1477da3
AG
57
58#define WFX_IS_WFE (1 << 0)
59
60#define TMR_CTL_ENABLE (1 << 0)
61#define TMR_CTL_IMASK (1 << 1)
62#define TMR_CTL_ISTATUS (1 << 2)
63
2c9c0bf9
AG
64static void hvf_wfi(CPUState *cpu);
65
a1477da3
AG
66typedef struct HVFVTimer {
67 /* Vtimer value during migration and paused state */
68 uint64_t vtimer_val;
69} HVFVTimer;
70
71static HVFVTimer vtimer;
72
585df85e
PM
73typedef struct ARMHostCPUFeatures {
74 ARMISARegisters isar;
75 uint64_t features;
76 uint64_t midr;
77 uint32_t reset_sctlr;
78 const char *dtb_compatible;
79} ARMHostCPUFeatures;
80
81static ARMHostCPUFeatures arm_host_cpu_features;
82
a1477da3
AG
83struct hvf_reg_match {
84 int reg;
85 uint64_t offset;
86};
87
88static const struct hvf_reg_match hvf_reg_match[] = {
89 { HV_REG_X0, offsetof(CPUARMState, xregs[0]) },
90 { HV_REG_X1, offsetof(CPUARMState, xregs[1]) },
91 { HV_REG_X2, offsetof(CPUARMState, xregs[2]) },
92 { HV_REG_X3, offsetof(CPUARMState, xregs[3]) },
93 { HV_REG_X4, offsetof(CPUARMState, xregs[4]) },
94 { HV_REG_X5, offsetof(CPUARMState, xregs[5]) },
95 { HV_REG_X6, offsetof(CPUARMState, xregs[6]) },
96 { HV_REG_X7, offsetof(CPUARMState, xregs[7]) },
97 { HV_REG_X8, offsetof(CPUARMState, xregs[8]) },
98 { HV_REG_X9, offsetof(CPUARMState, xregs[9]) },
99 { HV_REG_X10, offsetof(CPUARMState, xregs[10]) },
100 { HV_REG_X11, offsetof(CPUARMState, xregs[11]) },
101 { HV_REG_X12, offsetof(CPUARMState, xregs[12]) },
102 { HV_REG_X13, offsetof(CPUARMState, xregs[13]) },
103 { HV_REG_X14, offsetof(CPUARMState, xregs[14]) },
104 { HV_REG_X15, offsetof(CPUARMState, xregs[15]) },
105 { HV_REG_X16, offsetof(CPUARMState, xregs[16]) },
106 { HV_REG_X17, offsetof(CPUARMState, xregs[17]) },
107 { HV_REG_X18, offsetof(CPUARMState, xregs[18]) },
108 { HV_REG_X19, offsetof(CPUARMState, xregs[19]) },
109 { HV_REG_X20, offsetof(CPUARMState, xregs[20]) },
110 { HV_REG_X21, offsetof(CPUARMState, xregs[21]) },
111 { HV_REG_X22, offsetof(CPUARMState, xregs[22]) },
112 { HV_REG_X23, offsetof(CPUARMState, xregs[23]) },
113 { HV_REG_X24, offsetof(CPUARMState, xregs[24]) },
114 { HV_REG_X25, offsetof(CPUARMState, xregs[25]) },
115 { HV_REG_X26, offsetof(CPUARMState, xregs[26]) },
116 { HV_REG_X27, offsetof(CPUARMState, xregs[27]) },
117 { HV_REG_X28, offsetof(CPUARMState, xregs[28]) },
118 { HV_REG_X29, offsetof(CPUARMState, xregs[29]) },
119 { HV_REG_X30, offsetof(CPUARMState, xregs[30]) },
120 { HV_REG_PC, offsetof(CPUARMState, pc) },
121};
122
123static const struct hvf_reg_match hvf_fpreg_match[] = {
124 { HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) },
125 { HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) },
126 { HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) },
127 { HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) },
128 { HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) },
129 { HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) },
130 { HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) },
131 { HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) },
132 { HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) },
133 { HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) },
134 { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
135 { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
136 { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
137 { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
138 { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
139 { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
140 { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
141 { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
142 { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
143 { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
144 { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
145 { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
146 { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
147 { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
148 { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
149 { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
150 { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
151 { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
152 { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
153 { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
154 { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
155 { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
156};
157
158struct hvf_sreg_match {
159 int reg;
160 uint32_t key;
161 uint32_t cp_idx;
162};
163
164static struct hvf_sreg_match hvf_sreg_match[] = {
165 { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
166 { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
167 { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
168 { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
169
170 { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
171 { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
172 { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
173 { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
174
175 { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
176 { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
177 { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
178 { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
179
180 { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
181 { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
182 { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
183 { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
184
185 { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
186 { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
187 { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
188 { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
189
190 { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
191 { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
192 { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
193 { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
194
195 { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
196 { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
197 { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
198 { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
199
200 { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
201 { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
202 { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
203 { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
204
205 { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
206 { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
207 { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
208 { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
209
210 { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
211 { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
212 { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
213 { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
214
215 { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
216 { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
217 { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
218 { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
219
220 { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
221 { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
222 { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
223 { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
224
225 { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
226 { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
227 { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
228 { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
229
230 { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
231 { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
232 { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
233 { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
234
235 { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
236 { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
237 { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
238 { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
239
240 { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
241 { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
242 { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
243 { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
244
245#ifdef SYNC_NO_RAW_REGS
246 /*
247 * The registers below are manually synced on init because they are
248 * marked as NO_RAW. We still list them to make number space sync easier.
249 */
250 { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
251 { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
252 { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
253 { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
254#endif
255 { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
256 { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
257 { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
258 { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
259 { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
260#ifdef SYNC_NO_MMFR0
261 /* We keep the hardware MMFR0 around. HW limits are there anyway */
262 { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
263#endif
264 { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
265 { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
266
267 { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
268 { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
269 { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
270 { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
271 { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
272 { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
273
274 { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
275 { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
276 { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
277 { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
278 { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
279 { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
280 { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
281 { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
282 { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
283 { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
284
285 { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
286 { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
287 { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
288 { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
289 { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
290 { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
291 { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
292 { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
293 { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
294 { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
295 { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
296 { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
297 { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
298 { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
299 { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
300 { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
301 { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
302 { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
303 { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
304 { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
305};
306
307int hvf_get_registers(CPUState *cpu)
308{
309 ARMCPU *arm_cpu = ARM_CPU(cpu);
310 CPUARMState *env = &arm_cpu->env;
311 hv_return_t ret;
312 uint64_t val;
313 hv_simd_fp_uchar16_t fpval;
314 int i;
315
316 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
317 ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val);
318 *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
319 assert_hvf_ok(ret);
320 }
321
322 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
323 ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
324 &fpval);
325 memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
326 assert_hvf_ok(ret);
327 }
328
329 val = 0;
330 ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val);
331 assert_hvf_ok(ret);
332 vfp_set_fpcr(env, val);
333
334 val = 0;
335 ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val);
336 assert_hvf_ok(ret);
337 vfp_set_fpsr(env, val);
338
339 ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val);
340 assert_hvf_ok(ret);
341 pstate_write(env, val);
342
343 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
344 if (hvf_sreg_match[i].cp_idx == -1) {
345 continue;
346 }
347
348 ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val);
349 assert_hvf_ok(ret);
350
351 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
352 }
353 assert(write_list_to_cpustate(arm_cpu));
354
355 aarch64_restore_sp(env, arm_current_el(env));
356
357 return 0;
358}
359
360int hvf_put_registers(CPUState *cpu)
361{
362 ARMCPU *arm_cpu = ARM_CPU(cpu);
363 CPUARMState *env = &arm_cpu->env;
364 hv_return_t ret;
365 uint64_t val;
366 hv_simd_fp_uchar16_t fpval;
367 int i;
368
369 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
370 val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
371 ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val);
372 assert_hvf_ok(ret);
373 }
374
375 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
376 memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
377 ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
378 fpval);
379 assert_hvf_ok(ret);
380 }
381
382 ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env));
383 assert_hvf_ok(ret);
384
385 ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env));
386 assert_hvf_ok(ret);
387
388 ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env));
389 assert_hvf_ok(ret);
390
391 aarch64_save_sp(env, arm_current_el(env));
392
393 assert(write_cpustate_to_list(arm_cpu, false));
394 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
395 if (hvf_sreg_match[i].cp_idx == -1) {
396 continue;
397 }
398
399 val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
400 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val);
401 assert_hvf_ok(ret);
402 }
403
404 ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset);
405 assert_hvf_ok(ret);
406
407 return 0;
408}
409
410static void flush_cpu_state(CPUState *cpu)
411{
412 if (cpu->vcpu_dirty) {
413 hvf_put_registers(cpu);
414 cpu->vcpu_dirty = false;
415 }
416}
417
418static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
419{
420 hv_return_t r;
421
422 flush_cpu_state(cpu);
423
424 if (rt < 31) {
425 r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val);
426 assert_hvf_ok(r);
427 }
428}
429
430static uint64_t hvf_get_reg(CPUState *cpu, int rt)
431{
432 uint64_t val = 0;
433 hv_return_t r;
434
435 flush_cpu_state(cpu);
436
437 if (rt < 31) {
438 r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val);
439 assert_hvf_ok(r);
440 }
441
442 return val;
443}
444
585df85e
PM
445static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
446{
447 ARMISARegisters host_isar = {};
448 const struct isar_regs {
449 int reg;
450 uint64_t *val;
451 } regs[] = {
452 { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
453 { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
454 { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
455 { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
456 { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
457 { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
458 { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
459 { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
460 { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
461 };
462 hv_vcpu_t fd;
463 hv_return_t r = HV_SUCCESS;
464 hv_vcpu_exit_t *exit;
465 int i;
466
467 ahcf->dtb_compatible = "arm,arm-v8";
468 ahcf->features = (1ULL << ARM_FEATURE_V8) |
469 (1ULL << ARM_FEATURE_NEON) |
470 (1ULL << ARM_FEATURE_AARCH64) |
471 (1ULL << ARM_FEATURE_PMU) |
472 (1ULL << ARM_FEATURE_GENERIC_TIMER);
473
474 /* We set up a small vcpu to extract host registers */
475
476 if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
477 return false;
478 }
479
480 for (i = 0; i < ARRAY_SIZE(regs); i++) {
481 r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
482 }
483 r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
484 r |= hv_vcpu_destroy(fd);
485
486 ahcf->isar = host_isar;
487
488 /*
489 * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
490 * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
491 */
492 ahcf->reset_sctlr = 0x30100180;
493 /*
494 * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
495 * let's disable it on boot and then allow guest software to turn it on by
496 * setting it to 0.
497 */
498 ahcf->reset_sctlr |= 0x00800000;
499
500 /* Make sure we don't advertise AArch32 support for EL0/EL1 */
501 if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
502 return false;
503 }
504
505 return r == HV_SUCCESS;
506}
507
508void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
509{
510 if (!arm_host_cpu_features.dtb_compatible) {
511 if (!hvf_enabled() ||
512 !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
513 /*
514 * We can't report this error yet, so flag that we need to
515 * in arm_cpu_realizefn().
516 */
517 cpu->host_cpu_probe_failed = true;
518 return;
519 }
520 }
521
522 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
523 cpu->isar = arm_host_cpu_features.isar;
524 cpu->env.features = arm_host_cpu_features.features;
525 cpu->midr = arm_host_cpu_features.midr;
526 cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
527}
528
a1477da3
AG
529void hvf_arch_vcpu_destroy(CPUState *cpu)
530{
531}
532
533int hvf_arch_init_vcpu(CPUState *cpu)
534{
535 ARMCPU *arm_cpu = ARM_CPU(cpu);
536 CPUARMState *env = &arm_cpu->env;
537 uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
538 uint32_t sregs_cnt = 0;
539 uint64_t pfr;
540 hv_return_t ret;
541 int i;
542
543 env->aarch64 = 1;
544 asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
545
546 /* Allocate enough space for our sysreg sync */
547 arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
548 sregs_match_len);
549 arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
550 sregs_match_len);
551 arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
552 arm_cpu->cpreg_vmstate_indexes,
553 sregs_match_len);
554 arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
555 arm_cpu->cpreg_vmstate_values,
556 sregs_match_len);
557
558 memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
559
560 /* Populate cp list for all known sysregs */
561 for (i = 0; i < sregs_match_len; i++) {
562 const ARMCPRegInfo *ri;
563 uint32_t key = hvf_sreg_match[i].key;
564
565 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
566 if (ri) {
567 assert(!(ri->type & ARM_CP_NO_RAW));
568 hvf_sreg_match[i].cp_idx = sregs_cnt;
569 arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
570 } else {
571 hvf_sreg_match[i].cp_idx = -1;
572 }
573 }
574 arm_cpu->cpreg_array_len = sregs_cnt;
575 arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
576
577 assert(write_cpustate_to_list(arm_cpu, false));
578
579 /* Set CP_NO_RAW system registers on init */
580 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1,
581 arm_cpu->midr);
582 assert_hvf_ok(ret);
583
584 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1,
585 arm_cpu->mp_affinity);
586 assert_hvf_ok(ret);
587
588 ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
589 assert_hvf_ok(ret);
590 pfr |= env->gicv3state ? (1 << 24) : 0;
591 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
592 assert_hvf_ok(ret);
593
594 /* We're limited to underlying hardware caps, override internal versions */
595 ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
596 &arm_cpu->isar.id_aa64mmfr0);
597 assert_hvf_ok(ret);
598
599 return 0;
600}
601
602void hvf_kick_vcpu_thread(CPUState *cpu)
603{
219c101f 604 cpus_kick_thread(cpu);
a1477da3
AG
605 hv_vcpus_exit(&cpu->hvf->fd, 1);
606}
607
608static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
609 uint32_t syndrome)
610{
611 ARMCPU *arm_cpu = ARM_CPU(cpu);
612 CPUARMState *env = &arm_cpu->env;
613
614 cpu->exception_index = excp;
615 env->exception.target_el = 1;
616 env->exception.syndrome = syndrome;
617
618 arm_cpu_do_interrupt(cpu);
619}
620
2c9c0bf9
AG
621static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
622{
623 int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity);
624 assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
625}
626
627/*
628 * Handle a PSCI call.
629 *
630 * Returns 0 on success
631 * -1 when the PSCI call is unknown,
632 */
633static bool hvf_handle_psci_call(CPUState *cpu)
634{
635 ARMCPU *arm_cpu = ARM_CPU(cpu);
636 CPUARMState *env = &arm_cpu->env;
637 uint64_t param[4] = {
638 env->xregs[0],
639 env->xregs[1],
640 env->xregs[2],
641 env->xregs[3]
642 };
643 uint64_t context_id, mpidr;
644 bool target_aarch64 = true;
645 CPUState *target_cpu_state;
646 ARMCPU *target_cpu;
647 target_ulong entry;
648 int target_el = 1;
649 int32_t ret = 0;
650
651 trace_hvf_psci_call(param[0], param[1], param[2], param[3],
652 arm_cpu->mp_affinity);
653
654 switch (param[0]) {
655 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
656 ret = QEMU_PSCI_0_2_RET_VERSION_0_2;
657 break;
658 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
659 ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
660 break;
661 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
662 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
663 mpidr = param[1];
664
665 switch (param[2]) {
666 case 0:
667 target_cpu_state = arm_get_cpu_by_id(mpidr);
668 if (!target_cpu_state) {
669 ret = QEMU_PSCI_RET_INVALID_PARAMS;
670 break;
671 }
672 target_cpu = ARM_CPU(target_cpu_state);
673
674 ret = target_cpu->power_state;
675 break;
676 default:
677 /* Everything above affinity level 0 is always on. */
678 ret = 0;
679 }
680 break;
681 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
682 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
683 /*
684 * QEMU reset and shutdown are async requests, but PSCI
685 * mandates that we never return from the reset/shutdown
686 * call, so power the CPU off now so it doesn't execute
687 * anything further.
688 */
689 hvf_psci_cpu_off(arm_cpu);
690 break;
691 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
692 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
693 hvf_psci_cpu_off(arm_cpu);
694 break;
695 case QEMU_PSCI_0_1_FN_CPU_ON:
696 case QEMU_PSCI_0_2_FN_CPU_ON:
697 case QEMU_PSCI_0_2_FN64_CPU_ON:
698 mpidr = param[1];
699 entry = param[2];
700 context_id = param[3];
701 ret = arm_set_cpu_on(mpidr, entry, context_id,
702 target_el, target_aarch64);
703 break;
704 case QEMU_PSCI_0_1_FN_CPU_OFF:
705 case QEMU_PSCI_0_2_FN_CPU_OFF:
706 hvf_psci_cpu_off(arm_cpu);
707 break;
708 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
709 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
710 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
711 /* Affinity levels are not supported in QEMU */
712 if (param[1] & 0xfffe0000) {
713 ret = QEMU_PSCI_RET_INVALID_PARAMS;
714 break;
715 }
716 /* Powerdown is not supported, we always go into WFI */
717 env->xregs[0] = 0;
718 hvf_wfi(cpu);
719 break;
720 case QEMU_PSCI_0_1_FN_MIGRATE:
721 case QEMU_PSCI_0_2_FN_MIGRATE:
722 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
723 break;
724 default:
725 return false;
726 }
727
728 env->xregs[0] = ret;
729 return true;
730}
731
a1477da3
AG
732static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
733{
734 ARMCPU *arm_cpu = ARM_CPU(cpu);
735 CPUARMState *env = &arm_cpu->env;
736 uint64_t val = 0;
737
738 switch (reg) {
739 case SYSREG_CNTPCT_EL0:
740 val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
741 gt_cntfrq_period_ns(arm_cpu);
742 break;
dd43ac07
AG
743 case SYSREG_PMCR_EL0:
744 val = env->cp15.c9_pmcr;
745 break;
746 case SYSREG_PMCCNTR_EL0:
747 pmu_op_start(env);
748 val = env->cp15.c15_ccnt;
749 pmu_op_finish(env);
750 break;
751 case SYSREG_PMCNTENCLR_EL0:
752 val = env->cp15.c9_pmcnten;
753 break;
754 case SYSREG_PMOVSCLR_EL0:
755 val = env->cp15.c9_pmovsr;
756 break;
757 case SYSREG_PMSELR_EL0:
758 val = env->cp15.c9_pmselr;
759 break;
760 case SYSREG_PMINTENCLR_EL1:
761 val = env->cp15.c9_pminten;
762 break;
763 case SYSREG_PMCCFILTR_EL0:
764 val = env->cp15.pmccfiltr_el0;
765 break;
766 case SYSREG_PMCNTENSET_EL0:
767 val = env->cp15.c9_pmcnten;
768 break;
769 case SYSREG_PMUSERENR_EL0:
770 val = env->cp15.c9_pmuserenr;
771 break;
772 case SYSREG_PMCEID0_EL0:
773 case SYSREG_PMCEID1_EL0:
774 /* We can't really count anything yet, declare all events invalid */
775 val = 0;
776 break;
a1477da3
AG
777 case SYSREG_OSLSR_EL1:
778 val = env->cp15.oslsr_el1;
779 break;
780 case SYSREG_OSDLR_EL1:
781 /* Dummy register */
782 break;
783 default:
784 cpu_synchronize_state(cpu);
785 trace_hvf_unhandled_sysreg_read(env->pc, reg,
786 (reg >> 20) & 0x3,
787 (reg >> 14) & 0x7,
788 (reg >> 10) & 0xf,
789 (reg >> 1) & 0xf,
790 (reg >> 17) & 0x7);
791 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
792 return 1;
793 }
794
795 trace_hvf_sysreg_read(reg,
796 (reg >> 20) & 0x3,
797 (reg >> 14) & 0x7,
798 (reg >> 10) & 0xf,
799 (reg >> 1) & 0xf,
800 (reg >> 17) & 0x7,
801 val);
802 hvf_set_reg(cpu, rt, val);
803
804 return 0;
805}
806
dd43ac07
AG
807static void pmu_update_irq(CPUARMState *env)
808{
809 ARMCPU *cpu = env_archcpu(env);
810 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
811 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
812}
813
814static bool pmu_event_supported(uint16_t number)
815{
816 return false;
817}
818
819/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
820 * the current EL, security state, and register configuration.
821 */
822static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
823{
824 uint64_t filter;
825 bool enabled, filtered = true;
826 int el = arm_current_el(env);
827
828 enabled = (env->cp15.c9_pmcr & PMCRE) &&
829 (env->cp15.c9_pmcnten & (1 << counter));
830
831 if (counter == 31) {
832 filter = env->cp15.pmccfiltr_el0;
833 } else {
834 filter = env->cp15.c14_pmevtyper[counter];
835 }
836
837 if (el == 0) {
838 filtered = filter & PMXEVTYPER_U;
839 } else if (el == 1) {
840 filtered = filter & PMXEVTYPER_P;
841 }
842
843 if (counter != 31) {
844 /*
845 * If not checking PMCCNTR, ensure the counter is setup to an event we
846 * support
847 */
848 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
849 if (!pmu_event_supported(event)) {
850 return false;
851 }
852 }
853
854 return enabled && !filtered;
855}
856
857static void pmswinc_write(CPUARMState *env, uint64_t value)
858{
859 unsigned int i;
860 for (i = 0; i < pmu_num_counters(env); i++) {
861 /* Increment a counter's count iff: */
862 if ((value & (1 << i)) && /* counter's bit is set */
863 /* counter is enabled and not filtered */
864 pmu_counter_enabled(env, i) &&
865 /* counter is SW_INCR */
866 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
867 /*
868 * Detect if this write causes an overflow since we can't predict
869 * PMSWINC overflows like we can for other events
870 */
871 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
872
873 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
874 env->cp15.c9_pmovsr |= (1 << i);
875 pmu_update_irq(env);
876 }
877
878 env->cp15.c14_pmevcntr[i] = new_pmswinc;
879 }
880 }
881}
882
a1477da3
AG
883static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
884{
885 ARMCPU *arm_cpu = ARM_CPU(cpu);
886 CPUARMState *env = &arm_cpu->env;
887
888 trace_hvf_sysreg_write(reg,
889 (reg >> 20) & 0x3,
890 (reg >> 14) & 0x7,
891 (reg >> 10) & 0xf,
892 (reg >> 1) & 0xf,
893 (reg >> 17) & 0x7,
894 val);
895
896 switch (reg) {
dd43ac07
AG
897 case SYSREG_PMCCNTR_EL0:
898 pmu_op_start(env);
899 env->cp15.c15_ccnt = val;
900 pmu_op_finish(env);
901 break;
902 case SYSREG_PMCR_EL0:
903 pmu_op_start(env);
904
905 if (val & PMCRC) {
906 /* The counter has been reset */
907 env->cp15.c15_ccnt = 0;
908 }
909
910 if (val & PMCRP) {
911 unsigned int i;
912 for (i = 0; i < pmu_num_counters(env); i++) {
913 env->cp15.c14_pmevcntr[i] = 0;
914 }
915 }
916
917 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
918 env->cp15.c9_pmcr |= (val & PMCR_WRITEABLE_MASK);
919
920 pmu_op_finish(env);
921 break;
922 case SYSREG_PMUSERENR_EL0:
923 env->cp15.c9_pmuserenr = val & 0xf;
924 break;
925 case SYSREG_PMCNTENSET_EL0:
926 env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
927 break;
928 case SYSREG_PMCNTENCLR_EL0:
929 env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
930 break;
931 case SYSREG_PMINTENCLR_EL1:
932 pmu_op_start(env);
933 env->cp15.c9_pminten |= val;
934 pmu_op_finish(env);
935 break;
936 case SYSREG_PMOVSCLR_EL0:
937 pmu_op_start(env);
938 env->cp15.c9_pmovsr &= ~val;
939 pmu_op_finish(env);
940 break;
941 case SYSREG_PMSWINC_EL0:
942 pmu_op_start(env);
943 pmswinc_write(env, val);
944 pmu_op_finish(env);
945 break;
946 case SYSREG_PMSELR_EL0:
947 env->cp15.c9_pmselr = val & 0x1f;
948 break;
949 case SYSREG_PMCCFILTR_EL0:
950 pmu_op_start(env);
951 env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
952 pmu_op_finish(env);
953 break;
a1477da3
AG
954 case SYSREG_OSLAR_EL1:
955 env->cp15.oslsr_el1 = val & 1;
956 break;
957 case SYSREG_OSDLR_EL1:
958 /* Dummy register */
959 break;
960 default:
961 cpu_synchronize_state(cpu);
962 trace_hvf_unhandled_sysreg_write(env->pc, reg,
963 (reg >> 20) & 0x3,
964 (reg >> 14) & 0x7,
965 (reg >> 10) & 0xf,
966 (reg >> 1) & 0xf,
967 (reg >> 17) & 0x7);
968 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
969 return 1;
970 }
971
972 return 0;
973}
974
975static int hvf_inject_interrupts(CPUState *cpu)
976{
977 if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
978 trace_hvf_inject_fiq();
979 hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ,
980 true);
981 }
982
983 if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
984 trace_hvf_inject_irq();
985 hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ,
986 true);
987 }
988
989 return 0;
990}
991
992static uint64_t hvf_vtimer_val_raw(void)
993{
994 /*
995 * mach_absolute_time() returns the vtimer value without the VM
996 * offset that we define. Add our own offset on top.
997 */
998 return mach_absolute_time() - hvf_state->vtimer_offset;
999}
1000
219c101f
PC
1001static uint64_t hvf_vtimer_val(void)
1002{
1003 if (!runstate_is_running()) {
1004 /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1005 return vtimer.vtimer_val;
1006 }
1007
1008 return hvf_vtimer_val_raw();
1009}
1010
1011static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1012{
1013 /*
1014 * Use pselect to sleep so that other threads can IPI us while we're
1015 * sleeping.
1016 */
1017 qatomic_mb_set(&cpu->thread_kicked, false);
1018 qemu_mutex_unlock_iothread();
1019 pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask);
1020 qemu_mutex_lock_iothread();
1021}
1022
1023static void hvf_wfi(CPUState *cpu)
1024{
1025 ARMCPU *arm_cpu = ARM_CPU(cpu);
1026 struct timespec ts;
1027 hv_return_t r;
1028 uint64_t ctl;
1029 uint64_t cval;
1030 int64_t ticks_to_sleep;
1031 uint64_t seconds;
1032 uint64_t nanos;
1033 uint32_t cntfrq;
1034
1035 if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1036 /* Interrupt pending, no need to wait */
1037 return;
1038 }
1039
1040 r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1041 assert_hvf_ok(r);
1042
1043 if (!(ctl & 1) || (ctl & 2)) {
1044 /* Timer disabled or masked, just wait for an IPI. */
1045 hvf_wait_for_ipi(cpu, NULL);
1046 return;
1047 }
1048
1049 r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1050 assert_hvf_ok(r);
1051
1052 ticks_to_sleep = cval - hvf_vtimer_val();
1053 if (ticks_to_sleep < 0) {
1054 return;
1055 }
1056
1057 cntfrq = gt_cntfrq_period_ns(arm_cpu);
1058 seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1059 ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1060 nanos = ticks_to_sleep * cntfrq;
1061
1062 /*
1063 * Don't sleep for less than the time a context switch would take,
1064 * so that we can satisfy fast timer requests on the same CPU.
1065 * Measurements on M1 show the sweet spot to be ~2ms.
1066 */
1067 if (!seconds && nanos < (2 * SCALE_MS)) {
1068 return;
1069 }
1070
1071 ts = (struct timespec) { seconds, nanos };
1072 hvf_wait_for_ipi(cpu, &ts);
1073}
1074
a1477da3
AG
1075static void hvf_sync_vtimer(CPUState *cpu)
1076{
1077 ARMCPU *arm_cpu = ARM_CPU(cpu);
1078 hv_return_t r;
1079 uint64_t ctl;
1080 bool irq_state;
1081
1082 if (!cpu->hvf->vtimer_masked) {
1083 /* We will get notified on vtimer changes by hvf, nothing to do */
1084 return;
1085 }
1086
1087 r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1088 assert_hvf_ok(r);
1089
1090 irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1091 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1092 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1093
1094 if (!irq_state) {
1095 /* Timer no longer asserting, we can unmask it */
1096 hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
1097 cpu->hvf->vtimer_masked = false;
1098 }
1099}
1100
1101int hvf_vcpu_exec(CPUState *cpu)
1102{
1103 ARMCPU *arm_cpu = ARM_CPU(cpu);
1104 CPUARMState *env = &arm_cpu->env;
1105 hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit;
1106 hv_return_t r;
1107 bool advance_pc = false;
1108
1109 if (hvf_inject_interrupts(cpu)) {
1110 return EXCP_INTERRUPT;
1111 }
1112
1113 if (cpu->halted) {
1114 return EXCP_HLT;
1115 }
1116
1117 flush_cpu_state(cpu);
1118
1119 qemu_mutex_unlock_iothread();
1120 assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd));
1121
1122 /* handle VMEXIT */
1123 uint64_t exit_reason = hvf_exit->reason;
1124 uint64_t syndrome = hvf_exit->exception.syndrome;
1125 uint32_t ec = syn_get_ec(syndrome);
1126
1127 qemu_mutex_lock_iothread();
1128 switch (exit_reason) {
1129 case HV_EXIT_REASON_EXCEPTION:
1130 /* This is the main one, handle below. */
1131 break;
1132 case HV_EXIT_REASON_VTIMER_ACTIVATED:
1133 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1134 cpu->hvf->vtimer_masked = true;
1135 return 0;
1136 case HV_EXIT_REASON_CANCELED:
1137 /* we got kicked, no exit to process */
1138 return 0;
1139 default:
1140 assert(0);
1141 }
1142
1143 hvf_sync_vtimer(cpu);
1144
1145 switch (ec) {
1146 case EC_DATAABORT: {
1147 bool isv = syndrome & ARM_EL_ISV;
1148 bool iswrite = (syndrome >> 6) & 1;
1149 bool s1ptw = (syndrome >> 7) & 1;
1150 uint32_t sas = (syndrome >> 22) & 3;
1151 uint32_t len = 1 << sas;
1152 uint32_t srt = (syndrome >> 16) & 0x1f;
5fd6a3e2 1153 uint32_t cm = (syndrome >> 8) & 0x1;
a1477da3
AG
1154 uint64_t val = 0;
1155
1156 trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1157 hvf_exit->exception.physical_address, isv,
1158 iswrite, s1ptw, len, srt);
1159
5fd6a3e2
AG
1160 if (cm) {
1161 /* We don't cache MMIO regions */
1162 advance_pc = true;
1163 break;
1164 }
1165
a1477da3
AG
1166 assert(isv);
1167
1168 if (iswrite) {
1169 val = hvf_get_reg(cpu, srt);
1170 address_space_write(&address_space_memory,
1171 hvf_exit->exception.physical_address,
1172 MEMTXATTRS_UNSPECIFIED, &val, len);
1173 } else {
1174 address_space_read(&address_space_memory,
1175 hvf_exit->exception.physical_address,
1176 MEMTXATTRS_UNSPECIFIED, &val, len);
1177 hvf_set_reg(cpu, srt, val);
1178 }
1179
1180 advance_pc = true;
1181 break;
1182 }
1183 case EC_SYSTEMREGISTERTRAP: {
1184 bool isread = (syndrome >> 0) & 1;
1185 uint32_t rt = (syndrome >> 5) & 0x1f;
1186 uint32_t reg = syndrome & SYSREG_MASK;
1187 uint64_t val;
1188 int ret = 0;
1189
1190 if (isread) {
1191 ret = hvf_sysreg_read(cpu, reg, rt);
1192 } else {
1193 val = hvf_get_reg(cpu, rt);
1194 ret = hvf_sysreg_write(cpu, reg, val);
1195 }
1196
1197 advance_pc = !ret;
1198 break;
1199 }
1200 case EC_WFX_TRAP:
1201 advance_pc = true;
219c101f
PC
1202 if (!(syndrome & WFX_IS_WFE)) {
1203 hvf_wfi(cpu);
1204 }
a1477da3
AG
1205 break;
1206 case EC_AA64_HVC:
1207 cpu_synchronize_state(cpu);
2c9c0bf9
AG
1208 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1209 if (!hvf_handle_psci_call(cpu)) {
1210 trace_hvf_unknown_hvc(env->xregs[0]);
1211 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1212 env->xregs[0] = -1;
1213 }
1214 } else {
1215 trace_hvf_unknown_hvc(env->xregs[0]);
1216 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1217 }
a1477da3
AG
1218 break;
1219 case EC_AA64_SMC:
1220 cpu_synchronize_state(cpu);
2c9c0bf9
AG
1221 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1222 advance_pc = true;
1223
1224 if (!hvf_handle_psci_call(cpu)) {
1225 trace_hvf_unknown_smc(env->xregs[0]);
1226 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1227 env->xregs[0] = -1;
1228 }
1229 } else {
1230 trace_hvf_unknown_smc(env->xregs[0]);
1231 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1232 }
a1477da3
AG
1233 break;
1234 default:
1235 cpu_synchronize_state(cpu);
1236 trace_hvf_exit(syndrome, ec, env->pc);
1237 error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1238 }
1239
1240 if (advance_pc) {
1241 uint64_t pc;
1242
1243 flush_cpu_state(cpu);
1244
1245 r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc);
1246 assert_hvf_ok(r);
1247 pc += 4;
1248 r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc);
1249 assert_hvf_ok(r);
1250 }
1251
1252 return 0;
1253}
1254
1255static const VMStateDescription vmstate_hvf_vtimer = {
1256 .name = "hvf-vtimer",
1257 .version_id = 1,
1258 .minimum_version_id = 1,
1259 .fields = (VMStateField[]) {
1260 VMSTATE_UINT64(vtimer_val, HVFVTimer),
1261 VMSTATE_END_OF_LIST()
1262 },
1263};
1264
1265static void hvf_vm_state_change(void *opaque, bool running, RunState state)
1266{
1267 HVFVTimer *s = opaque;
1268
1269 if (running) {
1270 /* Update vtimer offset on all CPUs */
1271 hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
1272 cpu_synchronize_all_states();
1273 } else {
1274 /* Remember vtimer value on every pause */
1275 s->vtimer_val = hvf_vtimer_val_raw();
1276 }
1277}
1278
1279int hvf_arch_init(void)
1280{
1281 hvf_state->vtimer_offset = mach_absolute_time();
1282 vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
1283 qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
1284 return 0;
1285}