]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/hvf/hvf.c
target/arm: Reorg ARMCPRegInfo type field bits
[mirror_qemu.git] / target / arm / hvf / hvf.c
CommitLineData
a1477da3
AG
1/*
2 * QEMU Hypervisor.framework support for Apple Silicon
3
4 * Copyright 2020 Alexander Graf <agraf@csgraf.de>
219c101f 5 * Copyright 2020 Google LLC
a1477da3
AG
6 *
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
9 *
10 */
11
12#include "qemu/osdep.h"
a1477da3
AG
13#include "qemu/error-report.h"
14
15#include "sysemu/runstate.h"
16#include "sysemu/hvf.h"
17#include "sysemu/hvf_int.h"
18#include "sysemu/hw_accel.h"
585df85e 19#include "hvf_arm.h"
a1477da3
AG
20
21#include <mach/mach_time.h>
22
23#include "exec/address-spaces.h"
24#include "hw/irq.h"
25#include "qemu/main-loop.h"
26#include "sysemu/cpus.h"
2c9c0bf9 27#include "arm-powerctl.h"
a1477da3
AG
28#include "target/arm/cpu.h"
29#include "target/arm/internals.h"
30#include "trace/trace-target_arm_hvf.h"
31#include "migration/vmstate.h"
32
33#define HVF_SYSREG(crn, crm, op0, op1, op2) \
34 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
35#define PL1_WRITE_MASK 0x4
36
ad99f64f
AG
37#define SYSREG_OP0_SHIFT 20
38#define SYSREG_OP0_MASK 0x3
39#define SYSREG_OP0(sysreg) ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
40#define SYSREG_OP1_SHIFT 14
41#define SYSREG_OP1_MASK 0x7
42#define SYSREG_OP1(sysreg) ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
43#define SYSREG_CRN_SHIFT 10
44#define SYSREG_CRN_MASK 0xf
45#define SYSREG_CRN(sysreg) ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
46#define SYSREG_CRM_SHIFT 1
47#define SYSREG_CRM_MASK 0xf
48#define SYSREG_CRM(sysreg) ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
49#define SYSREG_OP2_SHIFT 17
50#define SYSREG_OP2_MASK 0x7
51#define SYSREG_OP2(sysreg) ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
52
a1477da3 53#define SYSREG(op0, op1, crn, crm, op2) \
ad99f64f
AG
54 ((op0 << SYSREG_OP0_SHIFT) | \
55 (op1 << SYSREG_OP1_SHIFT) | \
56 (crn << SYSREG_CRN_SHIFT) | \
57 (crm << SYSREG_CRM_SHIFT) | \
58 (op2 << SYSREG_OP2_SHIFT))
59#define SYSREG_MASK \
60 SYSREG(SYSREG_OP0_MASK, \
61 SYSREG_OP1_MASK, \
62 SYSREG_CRN_MASK, \
63 SYSREG_CRM_MASK, \
64 SYSREG_OP2_MASK)
a1477da3
AG
65#define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4)
66#define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4)
67#define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4)
68#define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1)
dd43ac07
AG
69#define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0)
70#define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0)
71#define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
72#define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
73#define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
74#define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3)
75#define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4)
76#define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5)
77#define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6)
78#define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7)
79#define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0)
80#define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7)
a1477da3
AG
81
82#define WFX_IS_WFE (1 << 0)
83
84#define TMR_CTL_ENABLE (1 << 0)
85#define TMR_CTL_IMASK (1 << 1)
86#define TMR_CTL_ISTATUS (1 << 2)
87
2c9c0bf9
AG
88static void hvf_wfi(CPUState *cpu);
89
a1477da3
AG
90typedef struct HVFVTimer {
91 /* Vtimer value during migration and paused state */
92 uint64_t vtimer_val;
93} HVFVTimer;
94
95static HVFVTimer vtimer;
96
585df85e
PM
97typedef struct ARMHostCPUFeatures {
98 ARMISARegisters isar;
99 uint64_t features;
100 uint64_t midr;
101 uint32_t reset_sctlr;
102 const char *dtb_compatible;
103} ARMHostCPUFeatures;
104
105static ARMHostCPUFeatures arm_host_cpu_features;
106
a1477da3
AG
107struct hvf_reg_match {
108 int reg;
109 uint64_t offset;
110};
111
112static const struct hvf_reg_match hvf_reg_match[] = {
113 { HV_REG_X0, offsetof(CPUARMState, xregs[0]) },
114 { HV_REG_X1, offsetof(CPUARMState, xregs[1]) },
115 { HV_REG_X2, offsetof(CPUARMState, xregs[2]) },
116 { HV_REG_X3, offsetof(CPUARMState, xregs[3]) },
117 { HV_REG_X4, offsetof(CPUARMState, xregs[4]) },
118 { HV_REG_X5, offsetof(CPUARMState, xregs[5]) },
119 { HV_REG_X6, offsetof(CPUARMState, xregs[6]) },
120 { HV_REG_X7, offsetof(CPUARMState, xregs[7]) },
121 { HV_REG_X8, offsetof(CPUARMState, xregs[8]) },
122 { HV_REG_X9, offsetof(CPUARMState, xregs[9]) },
123 { HV_REG_X10, offsetof(CPUARMState, xregs[10]) },
124 { HV_REG_X11, offsetof(CPUARMState, xregs[11]) },
125 { HV_REG_X12, offsetof(CPUARMState, xregs[12]) },
126 { HV_REG_X13, offsetof(CPUARMState, xregs[13]) },
127 { HV_REG_X14, offsetof(CPUARMState, xregs[14]) },
128 { HV_REG_X15, offsetof(CPUARMState, xregs[15]) },
129 { HV_REG_X16, offsetof(CPUARMState, xregs[16]) },
130 { HV_REG_X17, offsetof(CPUARMState, xregs[17]) },
131 { HV_REG_X18, offsetof(CPUARMState, xregs[18]) },
132 { HV_REG_X19, offsetof(CPUARMState, xregs[19]) },
133 { HV_REG_X20, offsetof(CPUARMState, xregs[20]) },
134 { HV_REG_X21, offsetof(CPUARMState, xregs[21]) },
135 { HV_REG_X22, offsetof(CPUARMState, xregs[22]) },
136 { HV_REG_X23, offsetof(CPUARMState, xregs[23]) },
137 { HV_REG_X24, offsetof(CPUARMState, xregs[24]) },
138 { HV_REG_X25, offsetof(CPUARMState, xregs[25]) },
139 { HV_REG_X26, offsetof(CPUARMState, xregs[26]) },
140 { HV_REG_X27, offsetof(CPUARMState, xregs[27]) },
141 { HV_REG_X28, offsetof(CPUARMState, xregs[28]) },
142 { HV_REG_X29, offsetof(CPUARMState, xregs[29]) },
143 { HV_REG_X30, offsetof(CPUARMState, xregs[30]) },
144 { HV_REG_PC, offsetof(CPUARMState, pc) },
145};
146
147static const struct hvf_reg_match hvf_fpreg_match[] = {
148 { HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) },
149 { HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) },
150 { HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) },
151 { HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) },
152 { HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) },
153 { HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) },
154 { HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) },
155 { HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) },
156 { HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) },
157 { HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) },
158 { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
159 { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
160 { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
161 { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
162 { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
163 { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
164 { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
165 { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
166 { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
167 { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
168 { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
169 { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
170 { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
171 { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
172 { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
173 { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
174 { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
175 { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
176 { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
177 { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
178 { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
179 { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
180};
181
182struct hvf_sreg_match {
183 int reg;
184 uint32_t key;
185 uint32_t cp_idx;
186};
187
188static struct hvf_sreg_match hvf_sreg_match[] = {
189 { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
190 { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
191 { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
192 { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
193
194 { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
195 { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
196 { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
197 { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
198
199 { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
200 { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
201 { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
202 { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
203
204 { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
205 { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
206 { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
207 { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
208
209 { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
210 { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
211 { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
212 { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
213
214 { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
215 { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
216 { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
217 { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
218
219 { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
220 { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
221 { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
222 { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
223
224 { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
225 { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
226 { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
227 { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
228
229 { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
230 { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
231 { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
232 { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
233
234 { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
235 { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
236 { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
237 { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
238
239 { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
240 { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
241 { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
242 { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
243
244 { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
245 { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
246 { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
247 { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
248
249 { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
250 { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
251 { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
252 { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
253
254 { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
255 { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
256 { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
257 { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
258
259 { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
260 { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
261 { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
262 { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
263
264 { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
265 { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
266 { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
267 { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
268
269#ifdef SYNC_NO_RAW_REGS
270 /*
271 * The registers below are manually synced on init because they are
272 * marked as NO_RAW. We still list them to make number space sync easier.
273 */
274 { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
275 { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
276 { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
277 { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
278#endif
279 { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
280 { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
281 { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
282 { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
283 { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
284#ifdef SYNC_NO_MMFR0
285 /* We keep the hardware MMFR0 around. HW limits are there anyway */
286 { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
287#endif
288 { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
289 { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
290
291 { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
292 { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
293 { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
294 { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
295 { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
296 { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
297
298 { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
299 { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
300 { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
301 { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
302 { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
303 { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
304 { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
305 { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
306 { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
307 { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
308
309 { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
310 { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
311 { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
312 { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
313 { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
314 { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
315 { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
316 { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
317 { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
318 { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
319 { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
320 { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
321 { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
322 { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
323 { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
324 { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
325 { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
326 { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
327 { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
328 { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
329};
330
331int hvf_get_registers(CPUState *cpu)
332{
333 ARMCPU *arm_cpu = ARM_CPU(cpu);
334 CPUARMState *env = &arm_cpu->env;
335 hv_return_t ret;
336 uint64_t val;
337 hv_simd_fp_uchar16_t fpval;
338 int i;
339
340 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
341 ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val);
342 *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
343 assert_hvf_ok(ret);
344 }
345
346 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
347 ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
348 &fpval);
349 memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
350 assert_hvf_ok(ret);
351 }
352
353 val = 0;
354 ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val);
355 assert_hvf_ok(ret);
356 vfp_set_fpcr(env, val);
357
358 val = 0;
359 ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val);
360 assert_hvf_ok(ret);
361 vfp_set_fpsr(env, val);
362
363 ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val);
364 assert_hvf_ok(ret);
365 pstate_write(env, val);
366
367 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
368 if (hvf_sreg_match[i].cp_idx == -1) {
369 continue;
370 }
371
372 ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val);
373 assert_hvf_ok(ret);
374
375 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
376 }
377 assert(write_list_to_cpustate(arm_cpu));
378
379 aarch64_restore_sp(env, arm_current_el(env));
380
381 return 0;
382}
383
384int hvf_put_registers(CPUState *cpu)
385{
386 ARMCPU *arm_cpu = ARM_CPU(cpu);
387 CPUARMState *env = &arm_cpu->env;
388 hv_return_t ret;
389 uint64_t val;
390 hv_simd_fp_uchar16_t fpval;
391 int i;
392
393 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
394 val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
395 ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val);
396 assert_hvf_ok(ret);
397 }
398
399 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
400 memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
401 ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
402 fpval);
403 assert_hvf_ok(ret);
404 }
405
406 ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env));
407 assert_hvf_ok(ret);
408
409 ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env));
410 assert_hvf_ok(ret);
411
412 ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env));
413 assert_hvf_ok(ret);
414
415 aarch64_save_sp(env, arm_current_el(env));
416
417 assert(write_cpustate_to_list(arm_cpu, false));
418 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
419 if (hvf_sreg_match[i].cp_idx == -1) {
420 continue;
421 }
422
423 val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
424 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val);
425 assert_hvf_ok(ret);
426 }
427
428 ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset);
429 assert_hvf_ok(ret);
430
431 return 0;
432}
433
434static void flush_cpu_state(CPUState *cpu)
435{
436 if (cpu->vcpu_dirty) {
437 hvf_put_registers(cpu);
438 cpu->vcpu_dirty = false;
439 }
440}
441
442static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
443{
444 hv_return_t r;
445
446 flush_cpu_state(cpu);
447
448 if (rt < 31) {
449 r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val);
450 assert_hvf_ok(r);
451 }
452}
453
454static uint64_t hvf_get_reg(CPUState *cpu, int rt)
455{
456 uint64_t val = 0;
457 hv_return_t r;
458
459 flush_cpu_state(cpu);
460
461 if (rt < 31) {
462 r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val);
463 assert_hvf_ok(r);
464 }
465
466 return val;
467}
468
585df85e
PM
469static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
470{
471 ARMISARegisters host_isar = {};
472 const struct isar_regs {
473 int reg;
474 uint64_t *val;
475 } regs[] = {
476 { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
477 { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
478 { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
479 { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
480 { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
481 { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
482 { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
483 { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
484 { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
485 };
486 hv_vcpu_t fd;
487 hv_return_t r = HV_SUCCESS;
488 hv_vcpu_exit_t *exit;
489 int i;
490
491 ahcf->dtb_compatible = "arm,arm-v8";
492 ahcf->features = (1ULL << ARM_FEATURE_V8) |
493 (1ULL << ARM_FEATURE_NEON) |
494 (1ULL << ARM_FEATURE_AARCH64) |
495 (1ULL << ARM_FEATURE_PMU) |
496 (1ULL << ARM_FEATURE_GENERIC_TIMER);
497
498 /* We set up a small vcpu to extract host registers */
499
500 if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
501 return false;
502 }
503
504 for (i = 0; i < ARRAY_SIZE(regs); i++) {
505 r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
506 }
507 r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
508 r |= hv_vcpu_destroy(fd);
509
510 ahcf->isar = host_isar;
511
512 /*
513 * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
514 * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
515 */
516 ahcf->reset_sctlr = 0x30100180;
517 /*
518 * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
519 * let's disable it on boot and then allow guest software to turn it on by
520 * setting it to 0.
521 */
522 ahcf->reset_sctlr |= 0x00800000;
523
524 /* Make sure we don't advertise AArch32 support for EL0/EL1 */
525 if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
526 return false;
527 }
528
529 return r == HV_SUCCESS;
530}
531
532void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
533{
534 if (!arm_host_cpu_features.dtb_compatible) {
535 if (!hvf_enabled() ||
536 !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
537 /*
538 * We can't report this error yet, so flag that we need to
539 * in arm_cpu_realizefn().
540 */
541 cpu->host_cpu_probe_failed = true;
542 return;
543 }
544 }
545
546 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
547 cpu->isar = arm_host_cpu_features.isar;
548 cpu->env.features = arm_host_cpu_features.features;
549 cpu->midr = arm_host_cpu_features.midr;
550 cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
551}
552
a1477da3
AG
553void hvf_arch_vcpu_destroy(CPUState *cpu)
554{
555}
556
557int hvf_arch_init_vcpu(CPUState *cpu)
558{
559 ARMCPU *arm_cpu = ARM_CPU(cpu);
560 CPUARMState *env = &arm_cpu->env;
561 uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
562 uint32_t sregs_cnt = 0;
563 uint64_t pfr;
564 hv_return_t ret;
565 int i;
566
53221552 567 env->aarch64 = true;
a1477da3
AG
568 asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
569
570 /* Allocate enough space for our sysreg sync */
571 arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
572 sregs_match_len);
573 arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
574 sregs_match_len);
575 arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
576 arm_cpu->cpreg_vmstate_indexes,
577 sregs_match_len);
578 arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
579 arm_cpu->cpreg_vmstate_values,
580 sregs_match_len);
581
582 memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
583
584 /* Populate cp list for all known sysregs */
585 for (i = 0; i < sregs_match_len; i++) {
586 const ARMCPRegInfo *ri;
587 uint32_t key = hvf_sreg_match[i].key;
588
589 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
590 if (ri) {
591 assert(!(ri->type & ARM_CP_NO_RAW));
592 hvf_sreg_match[i].cp_idx = sregs_cnt;
593 arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
594 } else {
595 hvf_sreg_match[i].cp_idx = -1;
596 }
597 }
598 arm_cpu->cpreg_array_len = sregs_cnt;
599 arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
600
601 assert(write_cpustate_to_list(arm_cpu, false));
602
603 /* Set CP_NO_RAW system registers on init */
604 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1,
605 arm_cpu->midr);
606 assert_hvf_ok(ret);
607
608 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1,
609 arm_cpu->mp_affinity);
610 assert_hvf_ok(ret);
611
612 ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
613 assert_hvf_ok(ret);
614 pfr |= env->gicv3state ? (1 << 24) : 0;
615 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
616 assert_hvf_ok(ret);
617
618 /* We're limited to underlying hardware caps, override internal versions */
619 ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
620 &arm_cpu->isar.id_aa64mmfr0);
621 assert_hvf_ok(ret);
622
623 return 0;
624}
625
626void hvf_kick_vcpu_thread(CPUState *cpu)
627{
219c101f 628 cpus_kick_thread(cpu);
a1477da3
AG
629 hv_vcpus_exit(&cpu->hvf->fd, 1);
630}
631
632static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
633 uint32_t syndrome)
634{
635 ARMCPU *arm_cpu = ARM_CPU(cpu);
636 CPUARMState *env = &arm_cpu->env;
637
638 cpu->exception_index = excp;
639 env->exception.target_el = 1;
640 env->exception.syndrome = syndrome;
641
642 arm_cpu_do_interrupt(cpu);
643}
644
2c9c0bf9
AG
645static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
646{
647 int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity);
648 assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
649}
650
651/*
652 * Handle a PSCI call.
653 *
654 * Returns 0 on success
655 * -1 when the PSCI call is unknown,
656 */
657static bool hvf_handle_psci_call(CPUState *cpu)
658{
659 ARMCPU *arm_cpu = ARM_CPU(cpu);
660 CPUARMState *env = &arm_cpu->env;
661 uint64_t param[4] = {
662 env->xregs[0],
663 env->xregs[1],
664 env->xregs[2],
665 env->xregs[3]
666 };
667 uint64_t context_id, mpidr;
668 bool target_aarch64 = true;
669 CPUState *target_cpu_state;
670 ARMCPU *target_cpu;
671 target_ulong entry;
672 int target_el = 1;
673 int32_t ret = 0;
674
675 trace_hvf_psci_call(param[0], param[1], param[2], param[3],
676 arm_cpu->mp_affinity);
677
678 switch (param[0]) {
679 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
0dc71c70 680 ret = QEMU_PSCI_VERSION_1_1;
2c9c0bf9
AG
681 break;
682 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
683 ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
684 break;
685 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
686 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
687 mpidr = param[1];
688
689 switch (param[2]) {
690 case 0:
691 target_cpu_state = arm_get_cpu_by_id(mpidr);
692 if (!target_cpu_state) {
693 ret = QEMU_PSCI_RET_INVALID_PARAMS;
694 break;
695 }
696 target_cpu = ARM_CPU(target_cpu_state);
697
698 ret = target_cpu->power_state;
699 break;
700 default:
701 /* Everything above affinity level 0 is always on. */
702 ret = 0;
703 }
704 break;
705 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
706 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
707 /*
708 * QEMU reset and shutdown are async requests, but PSCI
709 * mandates that we never return from the reset/shutdown
710 * call, so power the CPU off now so it doesn't execute
711 * anything further.
712 */
713 hvf_psci_cpu_off(arm_cpu);
714 break;
715 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
716 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
717 hvf_psci_cpu_off(arm_cpu);
718 break;
719 case QEMU_PSCI_0_1_FN_CPU_ON:
720 case QEMU_PSCI_0_2_FN_CPU_ON:
721 case QEMU_PSCI_0_2_FN64_CPU_ON:
722 mpidr = param[1];
723 entry = param[2];
724 context_id = param[3];
725 ret = arm_set_cpu_on(mpidr, entry, context_id,
726 target_el, target_aarch64);
727 break;
728 case QEMU_PSCI_0_1_FN_CPU_OFF:
729 case QEMU_PSCI_0_2_FN_CPU_OFF:
730 hvf_psci_cpu_off(arm_cpu);
731 break;
732 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
733 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
734 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
735 /* Affinity levels are not supported in QEMU */
736 if (param[1] & 0xfffe0000) {
737 ret = QEMU_PSCI_RET_INVALID_PARAMS;
738 break;
739 }
740 /* Powerdown is not supported, we always go into WFI */
741 env->xregs[0] = 0;
742 hvf_wfi(cpu);
743 break;
744 case QEMU_PSCI_0_1_FN_MIGRATE:
745 case QEMU_PSCI_0_2_FN_MIGRATE:
746 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
747 break;
0dc71c70
AO
748 case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
749 switch (param[1]) {
750 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
751 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
752 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
753 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
754 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
755 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
756 case QEMU_PSCI_0_1_FN_CPU_ON:
757 case QEMU_PSCI_0_2_FN_CPU_ON:
758 case QEMU_PSCI_0_2_FN64_CPU_ON:
759 case QEMU_PSCI_0_1_FN_CPU_OFF:
760 case QEMU_PSCI_0_2_FN_CPU_OFF:
761 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
762 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
763 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
764 case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
765 ret = 0;
766 break;
767 case QEMU_PSCI_0_1_FN_MIGRATE:
768 case QEMU_PSCI_0_2_FN_MIGRATE:
769 default:
770 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
771 }
772 break;
2c9c0bf9
AG
773 default:
774 return false;
775 }
776
777 env->xregs[0] = ret;
778 return true;
779}
780
7f6c295c
AG
781static bool is_id_sysreg(uint32_t reg)
782{
783 return SYSREG_OP0(reg) == 3 &&
784 SYSREG_OP1(reg) == 0 &&
785 SYSREG_CRN(reg) == 0 &&
786 SYSREG_CRM(reg) >= 1 &&
787 SYSREG_CRM(reg) < 8;
788}
789
a1477da3
AG
790static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
791{
792 ARMCPU *arm_cpu = ARM_CPU(cpu);
793 CPUARMState *env = &arm_cpu->env;
794 uint64_t val = 0;
795
796 switch (reg) {
797 case SYSREG_CNTPCT_EL0:
798 val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
799 gt_cntfrq_period_ns(arm_cpu);
800 break;
dd43ac07
AG
801 case SYSREG_PMCR_EL0:
802 val = env->cp15.c9_pmcr;
803 break;
804 case SYSREG_PMCCNTR_EL0:
805 pmu_op_start(env);
806 val = env->cp15.c15_ccnt;
807 pmu_op_finish(env);
808 break;
809 case SYSREG_PMCNTENCLR_EL0:
810 val = env->cp15.c9_pmcnten;
811 break;
812 case SYSREG_PMOVSCLR_EL0:
813 val = env->cp15.c9_pmovsr;
814 break;
815 case SYSREG_PMSELR_EL0:
816 val = env->cp15.c9_pmselr;
817 break;
818 case SYSREG_PMINTENCLR_EL1:
819 val = env->cp15.c9_pminten;
820 break;
821 case SYSREG_PMCCFILTR_EL0:
822 val = env->cp15.pmccfiltr_el0;
823 break;
824 case SYSREG_PMCNTENSET_EL0:
825 val = env->cp15.c9_pmcnten;
826 break;
827 case SYSREG_PMUSERENR_EL0:
828 val = env->cp15.c9_pmuserenr;
829 break;
830 case SYSREG_PMCEID0_EL0:
831 case SYSREG_PMCEID1_EL0:
832 /* We can't really count anything yet, declare all events invalid */
833 val = 0;
834 break;
a1477da3
AG
835 case SYSREG_OSLSR_EL1:
836 val = env->cp15.oslsr_el1;
837 break;
838 case SYSREG_OSDLR_EL1:
839 /* Dummy register */
840 break;
841 default:
7f6c295c
AG
842 if (is_id_sysreg(reg)) {
843 /* ID system registers read as RES0 */
844 val = 0;
845 break;
846 }
a1477da3
AG
847 cpu_synchronize_state(cpu);
848 trace_hvf_unhandled_sysreg_read(env->pc, reg,
ad99f64f
AG
849 SYSREG_OP0(reg),
850 SYSREG_OP1(reg),
851 SYSREG_CRN(reg),
852 SYSREG_CRM(reg),
853 SYSREG_OP2(reg));
a1477da3
AG
854 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
855 return 1;
856 }
857
858 trace_hvf_sysreg_read(reg,
ad99f64f
AG
859 SYSREG_OP0(reg),
860 SYSREG_OP1(reg),
861 SYSREG_CRN(reg),
862 SYSREG_CRM(reg),
863 SYSREG_OP2(reg),
a1477da3
AG
864 val);
865 hvf_set_reg(cpu, rt, val);
866
867 return 0;
868}
869
dd43ac07
AG
870static void pmu_update_irq(CPUARMState *env)
871{
872 ARMCPU *cpu = env_archcpu(env);
873 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
874 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
875}
876
877static bool pmu_event_supported(uint16_t number)
878{
879 return false;
880}
881
882/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
883 * the current EL, security state, and register configuration.
884 */
885static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
886{
887 uint64_t filter;
888 bool enabled, filtered = true;
889 int el = arm_current_el(env);
890
891 enabled = (env->cp15.c9_pmcr & PMCRE) &&
892 (env->cp15.c9_pmcnten & (1 << counter));
893
894 if (counter == 31) {
895 filter = env->cp15.pmccfiltr_el0;
896 } else {
897 filter = env->cp15.c14_pmevtyper[counter];
898 }
899
900 if (el == 0) {
901 filtered = filter & PMXEVTYPER_U;
902 } else if (el == 1) {
903 filtered = filter & PMXEVTYPER_P;
904 }
905
906 if (counter != 31) {
907 /*
908 * If not checking PMCCNTR, ensure the counter is setup to an event we
909 * support
910 */
911 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
912 if (!pmu_event_supported(event)) {
913 return false;
914 }
915 }
916
917 return enabled && !filtered;
918}
919
920static void pmswinc_write(CPUARMState *env, uint64_t value)
921{
922 unsigned int i;
923 for (i = 0; i < pmu_num_counters(env); i++) {
924 /* Increment a counter's count iff: */
925 if ((value & (1 << i)) && /* counter's bit is set */
926 /* counter is enabled and not filtered */
927 pmu_counter_enabled(env, i) &&
928 /* counter is SW_INCR */
929 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
930 /*
931 * Detect if this write causes an overflow since we can't predict
932 * PMSWINC overflows like we can for other events
933 */
934 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
935
936 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
937 env->cp15.c9_pmovsr |= (1 << i);
938 pmu_update_irq(env);
939 }
940
941 env->cp15.c14_pmevcntr[i] = new_pmswinc;
942 }
943 }
944}
945
a1477da3
AG
946static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
947{
948 ARMCPU *arm_cpu = ARM_CPU(cpu);
949 CPUARMState *env = &arm_cpu->env;
950
951 trace_hvf_sysreg_write(reg,
ad99f64f
AG
952 SYSREG_OP0(reg),
953 SYSREG_OP1(reg),
954 SYSREG_CRN(reg),
955 SYSREG_CRM(reg),
956 SYSREG_OP2(reg),
a1477da3
AG
957 val);
958
959 switch (reg) {
dd43ac07
AG
960 case SYSREG_PMCCNTR_EL0:
961 pmu_op_start(env);
962 env->cp15.c15_ccnt = val;
963 pmu_op_finish(env);
964 break;
965 case SYSREG_PMCR_EL0:
966 pmu_op_start(env);
967
968 if (val & PMCRC) {
969 /* The counter has been reset */
970 env->cp15.c15_ccnt = 0;
971 }
972
973 if (val & PMCRP) {
974 unsigned int i;
975 for (i = 0; i < pmu_num_counters(env); i++) {
976 env->cp15.c14_pmevcntr[i] = 0;
977 }
978 }
979
980 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
981 env->cp15.c9_pmcr |= (val & PMCR_WRITEABLE_MASK);
982
983 pmu_op_finish(env);
984 break;
985 case SYSREG_PMUSERENR_EL0:
986 env->cp15.c9_pmuserenr = val & 0xf;
987 break;
988 case SYSREG_PMCNTENSET_EL0:
989 env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
990 break;
991 case SYSREG_PMCNTENCLR_EL0:
992 env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
993 break;
994 case SYSREG_PMINTENCLR_EL1:
995 pmu_op_start(env);
996 env->cp15.c9_pminten |= val;
997 pmu_op_finish(env);
998 break;
999 case SYSREG_PMOVSCLR_EL0:
1000 pmu_op_start(env);
1001 env->cp15.c9_pmovsr &= ~val;
1002 pmu_op_finish(env);
1003 break;
1004 case SYSREG_PMSWINC_EL0:
1005 pmu_op_start(env);
1006 pmswinc_write(env, val);
1007 pmu_op_finish(env);
1008 break;
1009 case SYSREG_PMSELR_EL0:
1010 env->cp15.c9_pmselr = val & 0x1f;
1011 break;
1012 case SYSREG_PMCCFILTR_EL0:
1013 pmu_op_start(env);
1014 env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1015 pmu_op_finish(env);
1016 break;
a1477da3
AG
1017 case SYSREG_OSLAR_EL1:
1018 env->cp15.oslsr_el1 = val & 1;
1019 break;
1020 case SYSREG_OSDLR_EL1:
1021 /* Dummy register */
1022 break;
1023 default:
1024 cpu_synchronize_state(cpu);
1025 trace_hvf_unhandled_sysreg_write(env->pc, reg,
ad99f64f
AG
1026 SYSREG_OP0(reg),
1027 SYSREG_OP1(reg),
1028 SYSREG_CRN(reg),
1029 SYSREG_CRM(reg),
1030 SYSREG_OP2(reg));
a1477da3
AG
1031 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1032 return 1;
1033 }
1034
1035 return 0;
1036}
1037
1038static int hvf_inject_interrupts(CPUState *cpu)
1039{
1040 if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1041 trace_hvf_inject_fiq();
1042 hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ,
1043 true);
1044 }
1045
1046 if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1047 trace_hvf_inject_irq();
1048 hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ,
1049 true);
1050 }
1051
1052 return 0;
1053}
1054
1055static uint64_t hvf_vtimer_val_raw(void)
1056{
1057 /*
1058 * mach_absolute_time() returns the vtimer value without the VM
1059 * offset that we define. Add our own offset on top.
1060 */
1061 return mach_absolute_time() - hvf_state->vtimer_offset;
1062}
1063
219c101f
PC
1064static uint64_t hvf_vtimer_val(void)
1065{
1066 if (!runstate_is_running()) {
1067 /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1068 return vtimer.vtimer_val;
1069 }
1070
1071 return hvf_vtimer_val_raw();
1072}
1073
1074static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1075{
1076 /*
1077 * Use pselect to sleep so that other threads can IPI us while we're
1078 * sleeping.
1079 */
1080 qatomic_mb_set(&cpu->thread_kicked, false);
1081 qemu_mutex_unlock_iothread();
1082 pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask);
1083 qemu_mutex_lock_iothread();
1084}
1085
1086static void hvf_wfi(CPUState *cpu)
1087{
1088 ARMCPU *arm_cpu = ARM_CPU(cpu);
1089 struct timespec ts;
1090 hv_return_t r;
1091 uint64_t ctl;
1092 uint64_t cval;
1093 int64_t ticks_to_sleep;
1094 uint64_t seconds;
1095 uint64_t nanos;
1096 uint32_t cntfrq;
1097
1098 if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1099 /* Interrupt pending, no need to wait */
1100 return;
1101 }
1102
1103 r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1104 assert_hvf_ok(r);
1105
1106 if (!(ctl & 1) || (ctl & 2)) {
1107 /* Timer disabled or masked, just wait for an IPI. */
1108 hvf_wait_for_ipi(cpu, NULL);
1109 return;
1110 }
1111
1112 r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1113 assert_hvf_ok(r);
1114
1115 ticks_to_sleep = cval - hvf_vtimer_val();
1116 if (ticks_to_sleep < 0) {
1117 return;
1118 }
1119
1120 cntfrq = gt_cntfrq_period_ns(arm_cpu);
1121 seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1122 ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1123 nanos = ticks_to_sleep * cntfrq;
1124
1125 /*
1126 * Don't sleep for less than the time a context switch would take,
1127 * so that we can satisfy fast timer requests on the same CPU.
1128 * Measurements on M1 show the sweet spot to be ~2ms.
1129 */
1130 if (!seconds && nanos < (2 * SCALE_MS)) {
1131 return;
1132 }
1133
1134 ts = (struct timespec) { seconds, nanos };
1135 hvf_wait_for_ipi(cpu, &ts);
1136}
1137
a1477da3
AG
1138static void hvf_sync_vtimer(CPUState *cpu)
1139{
1140 ARMCPU *arm_cpu = ARM_CPU(cpu);
1141 hv_return_t r;
1142 uint64_t ctl;
1143 bool irq_state;
1144
1145 if (!cpu->hvf->vtimer_masked) {
1146 /* We will get notified on vtimer changes by hvf, nothing to do */
1147 return;
1148 }
1149
1150 r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1151 assert_hvf_ok(r);
1152
1153 irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1154 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1155 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1156
1157 if (!irq_state) {
1158 /* Timer no longer asserting, we can unmask it */
1159 hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
1160 cpu->hvf->vtimer_masked = false;
1161 }
1162}
1163
1164int hvf_vcpu_exec(CPUState *cpu)
1165{
1166 ARMCPU *arm_cpu = ARM_CPU(cpu);
1167 CPUARMState *env = &arm_cpu->env;
1168 hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit;
1169 hv_return_t r;
1170 bool advance_pc = false;
1171
1172 if (hvf_inject_interrupts(cpu)) {
1173 return EXCP_INTERRUPT;
1174 }
1175
1176 if (cpu->halted) {
1177 return EXCP_HLT;
1178 }
1179
1180 flush_cpu_state(cpu);
1181
1182 qemu_mutex_unlock_iothread();
1183 assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd));
1184
1185 /* handle VMEXIT */
1186 uint64_t exit_reason = hvf_exit->reason;
1187 uint64_t syndrome = hvf_exit->exception.syndrome;
1188 uint32_t ec = syn_get_ec(syndrome);
1189
1190 qemu_mutex_lock_iothread();
1191 switch (exit_reason) {
1192 case HV_EXIT_REASON_EXCEPTION:
1193 /* This is the main one, handle below. */
1194 break;
1195 case HV_EXIT_REASON_VTIMER_ACTIVATED:
1196 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1197 cpu->hvf->vtimer_masked = true;
1198 return 0;
1199 case HV_EXIT_REASON_CANCELED:
1200 /* we got kicked, no exit to process */
1201 return 0;
1202 default:
1203 assert(0);
1204 }
1205
1206 hvf_sync_vtimer(cpu);
1207
1208 switch (ec) {
1209 case EC_DATAABORT: {
1210 bool isv = syndrome & ARM_EL_ISV;
1211 bool iswrite = (syndrome >> 6) & 1;
1212 bool s1ptw = (syndrome >> 7) & 1;
1213 uint32_t sas = (syndrome >> 22) & 3;
1214 uint32_t len = 1 << sas;
1215 uint32_t srt = (syndrome >> 16) & 0x1f;
5fd6a3e2 1216 uint32_t cm = (syndrome >> 8) & 0x1;
a1477da3
AG
1217 uint64_t val = 0;
1218
1219 trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1220 hvf_exit->exception.physical_address, isv,
1221 iswrite, s1ptw, len, srt);
1222
5fd6a3e2
AG
1223 if (cm) {
1224 /* We don't cache MMIO regions */
1225 advance_pc = true;
1226 break;
1227 }
1228
a1477da3
AG
1229 assert(isv);
1230
1231 if (iswrite) {
1232 val = hvf_get_reg(cpu, srt);
1233 address_space_write(&address_space_memory,
1234 hvf_exit->exception.physical_address,
1235 MEMTXATTRS_UNSPECIFIED, &val, len);
1236 } else {
1237 address_space_read(&address_space_memory,
1238 hvf_exit->exception.physical_address,
1239 MEMTXATTRS_UNSPECIFIED, &val, len);
1240 hvf_set_reg(cpu, srt, val);
1241 }
1242
1243 advance_pc = true;
1244 break;
1245 }
1246 case EC_SYSTEMREGISTERTRAP: {
1247 bool isread = (syndrome >> 0) & 1;
1248 uint32_t rt = (syndrome >> 5) & 0x1f;
1249 uint32_t reg = syndrome & SYSREG_MASK;
1250 uint64_t val;
1251 int ret = 0;
1252
1253 if (isread) {
1254 ret = hvf_sysreg_read(cpu, reg, rt);
1255 } else {
1256 val = hvf_get_reg(cpu, rt);
1257 ret = hvf_sysreg_write(cpu, reg, val);
1258 }
1259
1260 advance_pc = !ret;
1261 break;
1262 }
1263 case EC_WFX_TRAP:
1264 advance_pc = true;
219c101f
PC
1265 if (!(syndrome & WFX_IS_WFE)) {
1266 hvf_wfi(cpu);
1267 }
a1477da3
AG
1268 break;
1269 case EC_AA64_HVC:
1270 cpu_synchronize_state(cpu);
2c9c0bf9
AG
1271 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1272 if (!hvf_handle_psci_call(cpu)) {
1273 trace_hvf_unknown_hvc(env->xregs[0]);
1274 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1275 env->xregs[0] = -1;
1276 }
1277 } else {
1278 trace_hvf_unknown_hvc(env->xregs[0]);
1279 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1280 }
a1477da3
AG
1281 break;
1282 case EC_AA64_SMC:
1283 cpu_synchronize_state(cpu);
2c9c0bf9
AG
1284 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1285 advance_pc = true;
1286
1287 if (!hvf_handle_psci_call(cpu)) {
1288 trace_hvf_unknown_smc(env->xregs[0]);
1289 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1290 env->xregs[0] = -1;
1291 }
1292 } else {
1293 trace_hvf_unknown_smc(env->xregs[0]);
1294 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1295 }
a1477da3
AG
1296 break;
1297 default:
1298 cpu_synchronize_state(cpu);
1299 trace_hvf_exit(syndrome, ec, env->pc);
1300 error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1301 }
1302
1303 if (advance_pc) {
1304 uint64_t pc;
1305
1306 flush_cpu_state(cpu);
1307
1308 r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc);
1309 assert_hvf_ok(r);
1310 pc += 4;
1311 r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc);
1312 assert_hvf_ok(r);
1313 }
1314
1315 return 0;
1316}
1317
1318static const VMStateDescription vmstate_hvf_vtimer = {
1319 .name = "hvf-vtimer",
1320 .version_id = 1,
1321 .minimum_version_id = 1,
1322 .fields = (VMStateField[]) {
1323 VMSTATE_UINT64(vtimer_val, HVFVTimer),
1324 VMSTATE_END_OF_LIST()
1325 },
1326};
1327
1328static void hvf_vm_state_change(void *opaque, bool running, RunState state)
1329{
1330 HVFVTimer *s = opaque;
1331
1332 if (running) {
1333 /* Update vtimer offset on all CPUs */
1334 hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
1335 cpu_synchronize_all_states();
1336 } else {
1337 /* Remember vtimer value on every pause */
1338 s->vtimer_val = hvf_vtimer_val_raw();
1339 }
1340}
1341
1342int hvf_arch_init(void)
1343{
1344 hvf_state->vtimer_offset = mach_absolute_time();
1345 vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
1346 qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
1347 return 0;
1348}