]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/internals.h
target/arm: Improve gen_top_byte_ignore
[mirror_qemu.git] / target / arm / internals.h
CommitLineData
ccd38087
PM
1/*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
fcf5ef2a 21 * between different source files within target/arm/ but which are
ccd38087
PM
22 * private to it and not required by the rest of QEMU.
23 */
24
25#ifndef TARGET_ARM_INTERNALS_H
26#define TARGET_ARM_INTERNALS_H
27
abc24d86
MD
28#include "hw/registerfields.h"
29
99a99c1f
SB
30/* register banks for CPU modes */
31#define BANK_USRSYS 0
32#define BANK_SVC 1
33#define BANK_ABT 2
34#define BANK_UND 3
35#define BANK_IRQ 4
36#define BANK_FIQ 5
37#define BANK_HYP 6
38#define BANK_MON 7
39
d4a2dc67
PM
40static inline bool excp_is_internal(int excp)
41{
42 /* Return true if this exception number represents a QEMU-internal
43 * exception that will not be passed to the guest.
44 */
45 return excp == EXCP_INTERRUPT
46 || excp == EXCP_HLT
47 || excp == EXCP_DEBUG
48 || excp == EXCP_HALTED
49 || excp == EXCP_EXCEPTION_EXIT
50 || excp == EXCP_KERNEL_TRAP
05188cc7 51 || excp == EXCP_SEMIHOST;
d4a2dc67
PM
52}
53
ccd38087
PM
54/* Scale factor for generic timers, ie number of ns per tick.
55 * This gives a 62.5MHz timer.
56 */
57#define GTIMER_SCALE 16
58
abc24d86
MD
59/* Bit definitions for the v7M CONTROL register */
60FIELD(V7M_CONTROL, NPRIV, 0, 1)
61FIELD(V7M_CONTROL, SPSEL, 1, 1)
62FIELD(V7M_CONTROL, FPCA, 2, 1)
3e3fa230 63FIELD(V7M_CONTROL, SFPA, 3, 1)
abc24d86 64
4d1e7a47
PM
65/* Bit definitions for v7M exception return payload */
66FIELD(V7M_EXCRET, ES, 0, 1)
67FIELD(V7M_EXCRET, RES0, 1, 1)
68FIELD(V7M_EXCRET, SPSEL, 2, 1)
69FIELD(V7M_EXCRET, MODE, 3, 1)
70FIELD(V7M_EXCRET, FTYPE, 4, 1)
71FIELD(V7M_EXCRET, DCRS, 5, 1)
72FIELD(V7M_EXCRET, S, 6, 1)
73FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
74
d02a8698
PM
75/* Minimum value which is a magic number for exception return */
76#define EXC_RETURN_MIN_MAGIC 0xff000000
77/* Minimum number which is a magic number for function or exception return
78 * when using v8M security extension
79 */
80#define FNC_RETURN_MIN_MAGIC 0xfefffffe
81
35337cc3
PM
82/* We use a few fake FSR values for internal purposes in M profile.
83 * M profile cores don't have A/R format FSRs, but currently our
84 * get_phys_addr() code assumes A/R profile and reports failures via
85 * an A/R format FSR value. We then translate that into the proper
86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87 * Mostly the FSR values we use for this are those defined for v7PMSA,
88 * since we share some of that codepath. A few kinds of fault are
89 * only for M profile and have no A/R equivalent, though, so we have
90 * to pick a value from the reserved range (which we never otherwise
91 * generate) to use for these.
92 * These values will never be visible to the guest.
93 */
94#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
96
597610eb
PM
97/**
98 * raise_exception: Raise the specified exception.
99 * Raise a guest exception with the specified value, syndrome register
100 * and target exception level. This should be called from helper functions,
101 * and never returns because we will longjump back up to the CPU main loop.
102 */
103void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
104 uint32_t syndrome, uint32_t target_el);
105
7469f6c6
RH
106/*
107 * Similarly, but also use unwinding to restore cpu state.
108 */
109void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
110 uint32_t syndrome, uint32_t target_el,
111 uintptr_t ra);
112
2a923c4d
EI
113/*
114 * For AArch64, map a given EL to an index in the banked_spsr array.
7847f9ea
PM
115 * Note that this mapping and the AArch32 mapping defined in bank_number()
116 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
117 * mandated mapping between each other.
2a923c4d
EI
118 */
119static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
120{
121 static const unsigned int map[4] = {
99a99c1f
SB
122 [1] = BANK_SVC, /* EL1. */
123 [2] = BANK_HYP, /* EL2. */
124 [3] = BANK_MON, /* EL3. */
2a923c4d
EI
125 };
126 assert(el >= 1 && el <= 3);
127 return map[el];
128}
129
c766568d
PM
130/* Map CPU modes onto saved register banks. */
131static inline int bank_number(int mode)
132{
133 switch (mode) {
134 case ARM_CPU_MODE_USR:
135 case ARM_CPU_MODE_SYS:
136 return BANK_USRSYS;
137 case ARM_CPU_MODE_SVC:
138 return BANK_SVC;
139 case ARM_CPU_MODE_ABT:
140 return BANK_ABT;
141 case ARM_CPU_MODE_UND:
142 return BANK_UND;
143 case ARM_CPU_MODE_IRQ:
144 return BANK_IRQ;
145 case ARM_CPU_MODE_FIQ:
146 return BANK_FIQ;
147 case ARM_CPU_MODE_HYP:
148 return BANK_HYP;
149 case ARM_CPU_MODE_MON:
150 return BANK_MON;
151 }
152 g_assert_not_reached();
153}
154
593cfa2b
PM
155/**
156 * r14_bank_number: Map CPU mode onto register bank for r14
157 *
158 * Given an AArch32 CPU mode, return the index into the saved register
159 * banks to use for the R14 (LR) in that mode. This is the same as
160 * bank_number(), except for the special case of Hyp mode, where
161 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
162 * This should be used as the index into env->banked_r14[], and
163 * bank_number() used for the index into env->banked_r13[] and
164 * env->banked_spsr[].
165 */
166static inline int r14_bank_number(int mode)
167{
168 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
169}
170
ccd38087
PM
171void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
172void arm_translate_init(void);
173
78271684
CF
174#ifdef CONFIG_TCG
175void arm_cpu_synchronize_from_tb(CPUState *cs,
176 const struct TranslationBlock *tb);
177#endif /* CONFIG_TCG */
178
179
ccd38087
PM
180enum arm_fprounding {
181 FPROUNDING_TIEEVEN,
182 FPROUNDING_POSINF,
183 FPROUNDING_NEGINF,
184 FPROUNDING_ZERO,
185 FPROUNDING_TIEAWAY,
186 FPROUNDING_ODD
187};
188
189int arm_rmode_to_sf(int rmode);
190
9208b961
EI
191static inline void aarch64_save_sp(CPUARMState *env, int el)
192{
193 if (env->pstate & PSTATE_SP) {
194 env->sp_el[el] = env->xregs[31];
195 } else {
196 env->sp_el[0] = env->xregs[31];
197 }
198}
199
200static inline void aarch64_restore_sp(CPUARMState *env, int el)
201{
202 if (env->pstate & PSTATE_SP) {
203 env->xregs[31] = env->sp_el[el];
204 } else {
205 env->xregs[31] = env->sp_el[0];
206 }
207}
208
f502cfc2
PM
209static inline void update_spsel(CPUARMState *env, uint32_t imm)
210{
dcbff19b 211 unsigned int cur_el = arm_current_el(env);
f502cfc2
PM
212 /* Update PSTATE SPSel bit; this requires us to update the
213 * working stack pointer in xregs[31].
214 */
215 if (!((imm ^ env->pstate) & PSTATE_SP)) {
216 return;
217 }
9208b961 218 aarch64_save_sp(env, cur_el);
f502cfc2
PM
219 env->pstate = deposit32(env->pstate, 0, 1, imm);
220
61d4b215
EI
221 /* We rely on illegal updates to SPsel from EL0 to get trapped
222 * at translation time.
f502cfc2 223 */
61d4b215 224 assert(cur_el >= 1 && cur_el <= 3);
9208b961 225 aarch64_restore_sp(env, cur_el);
f502cfc2
PM
226}
227
1853d5a9
EI
228/*
229 * arm_pamax
230 * @cpu: ARMCPU
231 *
232 * Returns the implementation defined bit-width of physical addresses.
233 * The ARMv8 reference manuals refer to this as PAMax().
234 */
235static inline unsigned int arm_pamax(ARMCPU *cpu)
236{
237 static const unsigned int pamax_map[] = {
238 [0] = 32,
239 [1] = 36,
240 [2] = 40,
241 [3] = 42,
242 [4] = 44,
243 [5] = 48,
244 };
3dc91ddb
PM
245 unsigned int parange =
246 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1853d5a9
EI
247
248 /* id_aa64mmfr0 is a read-only register so values outside of the
249 * supported mappings can be considered an implementation error. */
250 assert(parange < ARRAY_SIZE(pamax_map));
251 return pamax_map[parange];
252}
253
73c5211b
PM
254/* Return true if extended addresses are enabled.
255 * This is always the case if our translation regime is 64 bit,
256 * but depends on TTBCR.EAE for 32 bit.
257 */
258static inline bool extended_addresses_enabled(CPUARMState *env)
259{
11f136ee
FA
260 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
261 return arm_el_is_aa64(env, 1) ||
262 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
73c5211b
PM
263}
264
8bcbf37c
PM
265/* Valid Syndrome Register EC field values */
266enum arm_exception_class {
267 EC_UNCATEGORIZED = 0x00,
268 EC_WFX_TRAP = 0x01,
269 EC_CP15RTTRAP = 0x03,
270 EC_CP15RRTTRAP = 0x04,
271 EC_CP14RTTRAP = 0x05,
272 EC_CP14DTTRAP = 0x06,
273 EC_ADVSIMDFPACCESSTRAP = 0x07,
274 EC_FPIDTRAP = 0x08,
0d43e1a2 275 EC_PACTRAP = 0x09,
8bcbf37c 276 EC_CP14RRTTRAP = 0x0c,
51bf0d7a 277 EC_BTITRAP = 0x0d,
8bcbf37c
PM
278 EC_ILLEGALSTATE = 0x0e,
279 EC_AA32_SVC = 0x11,
280 EC_AA32_HVC = 0x12,
281 EC_AA32_SMC = 0x13,
282 EC_AA64_SVC = 0x15,
283 EC_AA64_HVC = 0x16,
284 EC_AA64_SMC = 0x17,
285 EC_SYSTEMREGISTERTRAP = 0x18,
490aa7f1 286 EC_SVEACCESSTRAP = 0x19,
8bcbf37c
PM
287 EC_INSNABORT = 0x20,
288 EC_INSNABORT_SAME_EL = 0x21,
289 EC_PCALIGNMENT = 0x22,
290 EC_DATAABORT = 0x24,
291 EC_DATAABORT_SAME_EL = 0x25,
292 EC_SPALIGNMENT = 0x26,
293 EC_AA32_FPTRAP = 0x28,
294 EC_AA64_FPTRAP = 0x2c,
295 EC_SERROR = 0x2f,
296 EC_BREAKPOINT = 0x30,
297 EC_BREAKPOINT_SAME_EL = 0x31,
298 EC_SOFTWARESTEP = 0x32,
299 EC_SOFTWARESTEP_SAME_EL = 0x33,
300 EC_WATCHPOINT = 0x34,
301 EC_WATCHPOINT_SAME_EL = 0x35,
302 EC_AA32_BKPT = 0x38,
303 EC_VECTORCATCH = 0x3a,
304 EC_AA64_BKPT = 0x3c,
305};
306
307#define ARM_EL_EC_SHIFT 26
308#define ARM_EL_IL_SHIFT 25
094d028a 309#define ARM_EL_ISV_SHIFT 24
8bcbf37c 310#define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
094d028a 311#define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
8bcbf37c 312
64b91e3f
PM
313static inline uint32_t syn_get_ec(uint32_t syn)
314{
315 return syn >> ARM_EL_EC_SHIFT;
316}
317
8bcbf37c
PM
318/* Utility functions for constructing various kinds of syndrome value.
319 * Note that in general we follow the AArch64 syndrome values; in a
320 * few cases the value in HSR for exceptions taken to AArch32 Hyp
2ed08180
PM
321 * mode differs slightly, and we fix this up when populating HSR in
322 * arm_cpu_do_interrupt_aarch32_hyp().
4be42f40
PM
323 * The exception is FP/SIMD access traps -- these report extra information
324 * when taking an exception to AArch32. For those we include the extra coproc
325 * and TA fields, and mask them out when taking the exception to AArch64.
8bcbf37c
PM
326 */
327static inline uint32_t syn_uncategorized(void)
328{
329 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
330}
331
332static inline uint32_t syn_aa64_svc(uint32_t imm16)
333{
334 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
335}
336
35979d71
EI
337static inline uint32_t syn_aa64_hvc(uint32_t imm16)
338{
339 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
340}
341
e0d6e6a5
EI
342static inline uint32_t syn_aa64_smc(uint32_t imm16)
343{
344 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
345}
346
fc05f4a6 347static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
8bcbf37c
PM
348{
349 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
fc05f4a6 350 | (is_16bit ? 0 : ARM_EL_IL);
8bcbf37c
PM
351}
352
37e6456e
PM
353static inline uint32_t syn_aa32_hvc(uint32_t imm16)
354{
355 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
356}
357
358static inline uint32_t syn_aa32_smc(void)
359{
360 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
361}
362
8bcbf37c
PM
363static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
364{
365 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
366}
367
fc05f4a6 368static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
8bcbf37c
PM
369{
370 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
fc05f4a6 371 | (is_16bit ? 0 : ARM_EL_IL);
8bcbf37c
PM
372}
373
374static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
375 int crn, int crm, int rt,
376 int isread)
377{
378 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
379 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
380 | (crm << 1) | isread;
381}
382
383static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
384 int crn, int crm, int rt, int isread,
fc05f4a6 385 bool is_16bit)
8bcbf37c
PM
386{
387 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 388 | (is_16bit ? 0 : ARM_EL_IL)
8bcbf37c
PM
389 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
390 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
391}
392
393static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
394 int crn, int crm, int rt, int isread,
fc05f4a6 395 bool is_16bit)
8bcbf37c
PM
396{
397 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 398 | (is_16bit ? 0 : ARM_EL_IL)
8bcbf37c
PM
399 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
400 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
401}
402
403static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
404 int rt, int rt2, int isread,
fc05f4a6 405 bool is_16bit)
8bcbf37c
PM
406{
407 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 408 | (is_16bit ? 0 : ARM_EL_IL)
8bcbf37c
PM
409 | (cv << 24) | (cond << 20) | (opc1 << 16)
410 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
411}
412
413static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
414 int rt, int rt2, int isread,
fc05f4a6 415 bool is_16bit)
8bcbf37c
PM
416{
417 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 418 | (is_16bit ? 0 : ARM_EL_IL)
8bcbf37c
PM
419 | (cv << 24) | (cond << 20) | (opc1 << 16)
420 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
421}
422
fc05f4a6 423static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
8c6afa6a 424{
4be42f40 425 /* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */
8c6afa6a 426 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 427 | (is_16bit ? 0 : ARM_EL_IL)
4be42f40
PM
428 | (cv << 24) | (cond << 20) | 0xa;
429}
430
431static inline uint32_t syn_simd_access_trap(int cv, int cond, bool is_16bit)
432{
433 /* AArch32 SIMD trap: TA == 1 coproc == 0 */
434 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
435 | (is_16bit ? 0 : ARM_EL_IL)
436 | (cv << 24) | (cond << 20) | (1 << 5);
8c6afa6a
PM
437}
438
490aa7f1
RH
439static inline uint32_t syn_sve_access_trap(void)
440{
441 return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
442}
443
0d43e1a2
RH
444static inline uint32_t syn_pactrap(void)
445{
446 return EC_PACTRAP << ARM_EL_EC_SHIFT;
447}
448
51bf0d7a
RH
449static inline uint32_t syn_btitrap(int btype)
450{
451 return (EC_BTITRAP << ARM_EL_EC_SHIFT) | btype;
452}
453
00892383
RH
454static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
455{
456 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
04ce861e 457 | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
00892383
RH
458}
459
e24fd076 460static inline uint32_t syn_data_abort_no_iss(int same_el, int fnv,
094d028a
PM
461 int ea, int cm, int s1ptw,
462 int wnr, int fsc)
00892383
RH
463{
464 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
094d028a 465 | ARM_EL_IL
e24fd076
DG
466 | (fnv << 10) | (ea << 9) | (cm << 8) | (s1ptw << 7)
467 | (wnr << 6) | fsc;
094d028a
PM
468}
469
470static inline uint32_t syn_data_abort_with_iss(int same_el,
471 int sas, int sse, int srt,
472 int sf, int ar,
473 int ea, int cm, int s1ptw,
474 int wnr, int fsc,
475 bool is_16bit)
476{
477 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
478 | (is_16bit ? 0 : ARM_EL_IL)
479 | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
480 | (sf << 15) | (ar << 14)
481 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
00892383
RH
482}
483
7ea47fe7
PM
484static inline uint32_t syn_swstep(int same_el, int isv, int ex)
485{
486 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
04ce861e 487 | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
7ea47fe7
PM
488}
489
3ff6fc91
PM
490static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
491{
492 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
04ce861e 493 | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
3ff6fc91
PM
494}
495
0eacea70
PM
496static inline uint32_t syn_breakpoint(int same_el)
497{
498 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
499 | ARM_EL_IL | 0x22;
500}
501
58803318 502static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
06fbb2fd
GB
503{
504 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
58803318 505 (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
06fbb2fd
GB
506 (cv << 24) | (cond << 20) | ti;
507}
508
9ee98ce8
PM
509/* Update a QEMU watchpoint based on the information the guest has set in the
510 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
511 */
512void hw_watchpoint_update(ARMCPU *cpu, int n);
513/* Update the QEMU watchpoints for every guest watchpoint. This does a
514 * complete delete-and-reinstate of the QEMU watchpoint list and so is
515 * suitable for use after migration or on reset.
516 */
517void hw_watchpoint_update_all(ARMCPU *cpu);
46747d15
PM
518/* Update a QEMU breakpoint based on the information the guest has set in the
519 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
520 */
521void hw_breakpoint_update(ARMCPU *cpu, int n);
522/* Update the QEMU breakpoints for every guest breakpoint. This does a
523 * complete delete-and-reinstate of the QEMU breakpoint list and so is
524 * suitable for use after migration or on reset.
525 */
526void hw_breakpoint_update_all(ARMCPU *cpu);
9ee98ce8 527
3826121d
SF
528/* Callback function for checking if a watchpoint should trigger. */
529bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
530
40612000
JB
531/* Adjust addresses (in BE32 mode) before testing against watchpoint
532 * addresses.
533 */
534vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
535
3ff6fc91
PM
536/* Callback function for when a watchpoint or breakpoint triggers. */
537void arm_debug_excp_handler(CPUState *cs);
538
21fbea8c 539#if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
98128601
RH
540static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
541{
542 return false;
543}
21fbea8c
PMD
544static inline void arm_handle_psci_call(ARMCPU *cpu)
545{
546 g_assert_not_reached();
547}
98128601
RH
548#else
549/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
550bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
551/* Actually handle a PSCI call */
552void arm_handle_psci_call(ARMCPU *cpu);
553#endif
554
dc3c4c14
PM
555/**
556 * arm_clear_exclusive: clear the exclusive monitor
557 * @env: CPU env
558 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
559 */
560static inline void arm_clear_exclusive(CPUARMState *env)
561{
562 env->exclusive_addr = -1;
563}
564
1fa498fe
PM
565/**
566 * ARMFaultType: type of an ARM MMU fault
567 * This corresponds to the v8A pseudocode's Fault enumeration,
568 * with extensions for QEMU internal conditions.
569 */
570typedef enum ARMFaultType {
571 ARMFault_None,
572 ARMFault_AccessFlag,
573 ARMFault_Alignment,
574 ARMFault_Background,
575 ARMFault_Domain,
576 ARMFault_Permission,
577 ARMFault_Translation,
578 ARMFault_AddressSize,
579 ARMFault_SyncExternal,
580 ARMFault_SyncExternalOnWalk,
581 ARMFault_SyncParity,
582 ARMFault_SyncParityOnWalk,
583 ARMFault_AsyncParity,
584 ARMFault_AsyncExternal,
585 ARMFault_Debug,
586 ARMFault_TLBConflict,
587 ARMFault_Lockdown,
588 ARMFault_Exclusive,
589 ARMFault_ICacheMaint,
590 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
591 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
592} ARMFaultType;
593
e14b5a23
EI
594/**
595 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
1fa498fe
PM
596 * @type: Type of fault
597 * @level: Table walk level (for translation, access flag and permission faults)
598 * @domain: Domain of the fault address (for non-LPAE CPUs only)
e14b5a23
EI
599 * @s2addr: Address that caused a fault at stage 2
600 * @stage2: True if we faulted at stage 2
601 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
9861248f 602 * @s1ns: True if we faulted on a non-secure IPA while in secure state
c528af7a 603 * @ea: True if we should set the EA (external abort type) bit in syndrome
e14b5a23
EI
604 */
605typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
606struct ARMMMUFaultInfo {
1fa498fe 607 ARMFaultType type;
e14b5a23 608 target_ulong s2addr;
1fa498fe
PM
609 int level;
610 int domain;
e14b5a23
EI
611 bool stage2;
612 bool s1ptw;
9861248f 613 bool s1ns;
c528af7a 614 bool ea;
e14b5a23
EI
615};
616
1fa498fe
PM
617/**
618 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
619 * Compare pseudocode EncodeSDFSC(), though unlike that function
620 * we set up a whole FSR-format code including domain field and
621 * putting the high bit of the FSC into bit 10.
622 */
623static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
624{
625 uint32_t fsc;
626
627 switch (fi->type) {
628 case ARMFault_None:
629 return 0;
630 case ARMFault_AccessFlag:
631 fsc = fi->level == 1 ? 0x3 : 0x6;
632 break;
633 case ARMFault_Alignment:
634 fsc = 0x1;
635 break;
636 case ARMFault_Permission:
637 fsc = fi->level == 1 ? 0xd : 0xf;
638 break;
639 case ARMFault_Domain:
640 fsc = fi->level == 1 ? 0x9 : 0xb;
641 break;
642 case ARMFault_Translation:
643 fsc = fi->level == 1 ? 0x5 : 0x7;
644 break;
645 case ARMFault_SyncExternal:
646 fsc = 0x8 | (fi->ea << 12);
647 break;
648 case ARMFault_SyncExternalOnWalk:
649 fsc = fi->level == 1 ? 0xc : 0xe;
650 fsc |= (fi->ea << 12);
651 break;
652 case ARMFault_SyncParity:
653 fsc = 0x409;
654 break;
655 case ARMFault_SyncParityOnWalk:
656 fsc = fi->level == 1 ? 0x40c : 0x40e;
657 break;
658 case ARMFault_AsyncParity:
659 fsc = 0x408;
660 break;
661 case ARMFault_AsyncExternal:
662 fsc = 0x406 | (fi->ea << 12);
663 break;
664 case ARMFault_Debug:
665 fsc = 0x2;
666 break;
667 case ARMFault_TLBConflict:
668 fsc = 0x400;
669 break;
670 case ARMFault_Lockdown:
671 fsc = 0x404;
672 break;
673 case ARMFault_Exclusive:
674 fsc = 0x405;
675 break;
676 case ARMFault_ICacheMaint:
677 fsc = 0x4;
678 break;
679 case ARMFault_Background:
680 fsc = 0x0;
681 break;
682 case ARMFault_QEMU_NSCExec:
683 fsc = M_FAKE_FSR_NSC_EXEC;
684 break;
685 case ARMFault_QEMU_SFault:
686 fsc = M_FAKE_FSR_SFAULT;
687 break;
688 default:
689 /* Other faults can't occur in a context that requires a
690 * short-format status code.
691 */
692 g_assert_not_reached();
693 }
694
695 fsc |= (fi->domain << 4);
696 return fsc;
697}
698
699/**
700 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
701 * Compare pseudocode EncodeLDFSC(), though unlike that function
702 * we fill in also the LPAE bit 9 of a DFSR format.
703 */
704static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
705{
706 uint32_t fsc;
707
708 switch (fi->type) {
709 case ARMFault_None:
710 return 0;
711 case ARMFault_AddressSize:
712 fsc = fi->level & 3;
713 break;
714 case ARMFault_AccessFlag:
715 fsc = (fi->level & 3) | (0x2 << 2);
716 break;
717 case ARMFault_Permission:
718 fsc = (fi->level & 3) | (0x3 << 2);
719 break;
720 case ARMFault_Translation:
721 fsc = (fi->level & 3) | (0x1 << 2);
722 break;
723 case ARMFault_SyncExternal:
724 fsc = 0x10 | (fi->ea << 12);
725 break;
726 case ARMFault_SyncExternalOnWalk:
727 fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
728 break;
729 case ARMFault_SyncParity:
730 fsc = 0x18;
731 break;
732 case ARMFault_SyncParityOnWalk:
733 fsc = (fi->level & 3) | (0x7 << 2);
734 break;
735 case ARMFault_AsyncParity:
736 fsc = 0x19;
737 break;
738 case ARMFault_AsyncExternal:
739 fsc = 0x11 | (fi->ea << 12);
740 break;
741 case ARMFault_Alignment:
742 fsc = 0x21;
743 break;
744 case ARMFault_Debug:
745 fsc = 0x22;
746 break;
747 case ARMFault_TLBConflict:
748 fsc = 0x30;
749 break;
750 case ARMFault_Lockdown:
751 fsc = 0x34;
752 break;
753 case ARMFault_Exclusive:
754 fsc = 0x35;
755 break;
756 default:
757 /* Other faults can't occur in a context that requires a
758 * long-format status code.
759 */
760 g_assert_not_reached();
761 }
762
763 fsc |= 1 << 9;
764 return fsc;
765}
766
3b39d734
PM
767static inline bool arm_extabort_type(MemTxResult result)
768{
769 /* The EA bit in syndromes and fault status registers is an
770 * IMPDEF classification of external aborts. ARM implementations
771 * usually use this to indicate AXI bus Decode error (0) or
772 * Slave error (1); in QEMU we follow that.
773 */
774 return result != MEMTX_DECODE_ERROR;
775}
776
7350d553
RH
777bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
778 MMUAccessType access_type, int mmu_idx,
779 bool probe, uintptr_t retaddr);
780
b9f6033c
RH
781static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
782{
783 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
784}
785
786static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
787{
788 if (arm_feature(env, ARM_FEATURE_M)) {
789 return mmu_idx | ARM_MMU_IDX_M;
790 } else {
791 return mmu_idx | ARM_MMU_IDX_A;
792 }
793}
794
20dc67c9
RH
795static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
796{
797 /* AArch64 is always a-profile. */
798 return mmu_idx | ARM_MMU_IDX_A;
799}
800
b9f6033c
RH
801int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
802
803/*
804 * Return the MMU index for a v7M CPU with all relevant information
805 * manually specified.
806 */
807ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
808 bool secstate, bool priv, bool negpri);
809
810/*
811 * Return the MMU index for a v7M CPU in the specified security and
812 * privilege state.
813 */
814ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
815 bool secstate, bool priv);
816
817/* Return the MMU index for a v7M CPU in the specified security state */
818ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
819
deb2db99
AR
820/* Return true if the stage 1 translation regime is using LPAE format page
821 * tables */
822bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
30901475
AB
823
824/* Raise a data fault alignment exception for the specified virtual address */
b35399bb
SS
825void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
826 MMUAccessType access_type,
827 int mmu_idx, uintptr_t retaddr);
30901475 828
c79c0a31
PM
829/* arm_cpu_do_transaction_failed: handle a memory system error response
830 * (eg "no device/memory present at address") by raising an external abort
831 * exception
832 */
833void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
834 vaddr addr, unsigned size,
835 MMUAccessType access_type,
836 int mmu_idx, MemTxAttrs attrs,
837 MemTxResult response, uintptr_t retaddr);
838
08267487 839/* Call any registered EL change hooks */
b5c53d1b
AL
840static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
841{
842 ARMELChangeHook *hook, *next;
843 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
844 hook->hook(cpu, hook->opaque);
845 }
846}
bd7d00fc
PM
847static inline void arm_call_el_change_hook(ARMCPU *cpu)
848{
08267487
AL
849 ARMELChangeHook *hook, *next;
850 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
851 hook->hook(cpu, hook->opaque);
bd7d00fc
PM
852 }
853}
854
339370b9
RH
855/* Return true if this address translation regime has two ranges. */
856static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
857{
858 switch (mmu_idx) {
859 case ARMMMUIdx_Stage1_E0:
860 case ARMMMUIdx_Stage1_E1:
452ef8cb 861 case ARMMMUIdx_Stage1_E1_PAN:
b1a10c86
RDC
862 case ARMMMUIdx_Stage1_SE0:
863 case ARMMMUIdx_Stage1_SE1:
864 case ARMMMUIdx_Stage1_SE1_PAN:
339370b9
RH
865 case ARMMMUIdx_E10_0:
866 case ARMMMUIdx_E10_1:
452ef8cb 867 case ARMMMUIdx_E10_1_PAN:
339370b9
RH
868 case ARMMMUIdx_E20_0:
869 case ARMMMUIdx_E20_2:
452ef8cb 870 case ARMMMUIdx_E20_2_PAN:
339370b9
RH
871 case ARMMMUIdx_SE10_0:
872 case ARMMMUIdx_SE10_1:
452ef8cb 873 case ARMMMUIdx_SE10_1_PAN:
b6ad6062
RDC
874 case ARMMMUIdx_SE20_0:
875 case ARMMMUIdx_SE20_2:
876 case ARMMMUIdx_SE20_2_PAN:
339370b9
RH
877 return true;
878 default:
879 return false;
880 }
881}
882
61fcd69b
PM
883/* Return true if this address translation regime is secure */
884static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
885{
886 switch (mmu_idx) {
01b98b68
RH
887 case ARMMMUIdx_E10_0:
888 case ARMMMUIdx_E10_1:
452ef8cb 889 case ARMMMUIdx_E10_1_PAN:
b9f6033c
RH
890 case ARMMMUIdx_E20_0:
891 case ARMMMUIdx_E20_2:
452ef8cb 892 case ARMMMUIdx_E20_2_PAN:
2859d7b5
RH
893 case ARMMMUIdx_Stage1_E0:
894 case ARMMMUIdx_Stage1_E1:
452ef8cb 895 case ARMMMUIdx_Stage1_E1_PAN:
e013b741 896 case ARMMMUIdx_E2:
97fa9350 897 case ARMMMUIdx_Stage2:
62593718
PM
898 case ARMMMUIdx_MPrivNegPri:
899 case ARMMMUIdx_MUserNegPri:
61fcd69b 900 case ARMMMUIdx_MPriv:
61fcd69b
PM
901 case ARMMMUIdx_MUser:
902 return false;
127b2b08 903 case ARMMMUIdx_SE3:
fba37aed
RH
904 case ARMMMUIdx_SE10_0:
905 case ARMMMUIdx_SE10_1:
452ef8cb 906 case ARMMMUIdx_SE10_1_PAN:
b6ad6062
RDC
907 case ARMMMUIdx_SE20_0:
908 case ARMMMUIdx_SE20_2:
909 case ARMMMUIdx_SE20_2_PAN:
b1a10c86
RDC
910 case ARMMMUIdx_Stage1_SE0:
911 case ARMMMUIdx_Stage1_SE1:
912 case ARMMMUIdx_Stage1_SE1_PAN:
b6ad6062 913 case ARMMMUIdx_SE2:
b1a10c86 914 case ARMMMUIdx_Stage2_S:
62593718
PM
915 case ARMMMUIdx_MSPrivNegPri:
916 case ARMMMUIdx_MSUserNegPri:
61fcd69b 917 case ARMMMUIdx_MSPriv:
61fcd69b
PM
918 case ARMMMUIdx_MSUser:
919 return true;
920 default:
921 g_assert_not_reached();
922 }
923}
924
81636b70
RH
925static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
926{
927 switch (mmu_idx) {
928 case ARMMMUIdx_Stage1_E1_PAN:
b1a10c86 929 case ARMMMUIdx_Stage1_SE1_PAN:
81636b70
RH
930 case ARMMMUIdx_E10_1_PAN:
931 case ARMMMUIdx_E20_2_PAN:
932 case ARMMMUIdx_SE10_1_PAN:
b6ad6062 933 case ARMMMUIdx_SE20_2_PAN:
81636b70
RH
934 return true;
935 default:
936 return false;
937 }
938}
939
9c7ab8fc
RH
940/* Return the exception level which controls this address translation regime */
941static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
942{
943 switch (mmu_idx) {
b6ad6062
RDC
944 case ARMMMUIdx_SE20_0:
945 case ARMMMUIdx_SE20_2:
946 case ARMMMUIdx_SE20_2_PAN:
9c7ab8fc
RH
947 case ARMMMUIdx_E20_0:
948 case ARMMMUIdx_E20_2:
949 case ARMMMUIdx_E20_2_PAN:
950 case ARMMMUIdx_Stage2:
b1a10c86 951 case ARMMMUIdx_Stage2_S:
b6ad6062 952 case ARMMMUIdx_SE2:
9c7ab8fc
RH
953 case ARMMMUIdx_E2:
954 return 2;
955 case ARMMMUIdx_SE3:
956 return 3;
957 case ARMMMUIdx_SE10_0:
b1a10c86 958 case ARMMMUIdx_Stage1_SE0:
9c7ab8fc
RH
959 return arm_el_is_aa64(env, 3) ? 1 : 3;
960 case ARMMMUIdx_SE10_1:
961 case ARMMMUIdx_SE10_1_PAN:
962 case ARMMMUIdx_Stage1_E0:
963 case ARMMMUIdx_Stage1_E1:
964 case ARMMMUIdx_Stage1_E1_PAN:
b1a10c86
RDC
965 case ARMMMUIdx_Stage1_SE1:
966 case ARMMMUIdx_Stage1_SE1_PAN:
9c7ab8fc
RH
967 case ARMMMUIdx_E10_0:
968 case ARMMMUIdx_E10_1:
969 case ARMMMUIdx_E10_1_PAN:
970 case ARMMMUIdx_MPrivNegPri:
971 case ARMMMUIdx_MUserNegPri:
972 case ARMMMUIdx_MPriv:
973 case ARMMMUIdx_MUser:
974 case ARMMMUIdx_MSPrivNegPri:
975 case ARMMMUIdx_MSUserNegPri:
976 case ARMMMUIdx_MSPriv:
977 case ARMMMUIdx_MSUser:
978 return 1;
979 default:
980 g_assert_not_reached();
981 }
982}
983
38659d31
RH
984/* Return the TCR controlling this translation regime */
985static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
986{
987 if (mmu_idx == ARMMMUIdx_Stage2) {
988 return &env->cp15.vtcr_el2;
989 }
b1a10c86
RDC
990 if (mmu_idx == ARMMMUIdx_Stage2_S) {
991 /*
992 * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but
993 * those are not currently used by QEMU, so just return VSTCR_EL2.
994 */
995 return &env->cp15.vstcr_el2;
996 }
38659d31
RH
997 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
998}
999
81621d9a
PM
1000/* Return the FSR value for a debug exception (watchpoint, hardware
1001 * breakpoint or BKPT insn) targeting the specified exception level.
1002 */
1003static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
1004{
1005 ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
1006 int target_el = arm_debug_target_el(env);
1007 bool using_lpae = false;
1008
1009 if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
1010 using_lpae = true;
1011 } else {
1012 if (arm_feature(env, ARM_FEATURE_LPAE) &&
1013 (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
1014 using_lpae = true;
1015 }
1016 }
1017
1018 if (using_lpae) {
1019 return arm_fi_to_lfsc(&fi);
1020 } else {
1021 return arm_fi_to_sfsc(&fi);
1022 }
1023}
1024
88ce6c6e
PM
1025/**
1026 * arm_num_brps: Return number of implemented breakpoints.
1027 * Note that the ID register BRPS field is "number of bps - 1",
1028 * and we return the actual number of breakpoints.
1029 */
1030static inline int arm_num_brps(ARMCPU *cpu)
1031{
1032 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1033 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
1034 } else {
4426d361 1035 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
88ce6c6e
PM
1036 }
1037}
1038
1039/**
1040 * arm_num_wrps: Return number of implemented watchpoints.
1041 * Note that the ID register WRPS field is "number of wps - 1",
1042 * and we return the actual number of watchpoints.
1043 */
1044static inline int arm_num_wrps(ARMCPU *cpu)
1045{
1046 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1047 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
1048 } else {
4426d361 1049 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
88ce6c6e
PM
1050 }
1051}
1052
1053/**
1054 * arm_num_ctx_cmps: Return number of implemented context comparators.
1055 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
1056 * and we return the actual number of comparators.
1057 */
1058static inline int arm_num_ctx_cmps(ARMCPU *cpu)
1059{
1060 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1061 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
1062 } else {
4426d361 1063 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
88ce6c6e
PM
1064 }
1065}
1066
5529bf18
PM
1067/**
1068 * v7m_using_psp: Return true if using process stack pointer
1069 * Return true if the CPU is currently using the process stack
1070 * pointer, or false if it is using the main stack pointer.
1071 */
1072static inline bool v7m_using_psp(CPUARMState *env)
1073{
1074 /* Handler mode always uses the main stack; for thread mode
1075 * the CONTROL.SPSEL bit determines the answer.
1076 * Note that in v7M it is not possible to be in Handler mode with
1077 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
1078 */
1079 return !arm_v7m_is_handler_mode(env) &&
1080 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
1081}
1082
55203189
PM
1083/**
1084 * v7m_sp_limit: Return SP limit for current CPU state
1085 * Return the SP limit value for the current CPU security state
1086 * and stack pointer.
1087 */
1088static inline uint32_t v7m_sp_limit(CPUARMState *env)
1089{
1090 if (v7m_using_psp(env)) {
1091 return env->v7m.psplim[env->v7m.secure];
1092 } else {
1093 return env->v7m.msplim[env->v7m.secure];
1094 }
1095}
1096
787a7e76
PMD
1097/**
1098 * v7m_cpacr_pass:
1099 * Return true if the v7M CPACR permits access to the FPU for the specified
1100 * security state and privilege level.
1101 */
1102static inline bool v7m_cpacr_pass(CPUARMState *env,
1103 bool is_secure, bool is_priv)
1104{
1105 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
1106 case 0:
1107 case 2: /* UNPREDICTABLE: we treat like 0 */
1108 return false;
1109 case 1:
1110 return is_priv;
1111 case 3:
1112 return true;
1113 default:
1114 g_assert_not_reached();
1115 }
1116}
1117
81e37284
PM
1118/**
1119 * aarch32_mode_name(): Return name of the AArch32 CPU mode
1120 * @psr: Program Status Register indicating CPU mode
1121 *
1122 * Returns, for debug logging purposes, a printable representation
1123 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
1124 * the low bits of the specified PSR.
1125 */
1126static inline const char *aarch32_mode_name(uint32_t psr)
1127{
1128 static const char cpu_mode_names[16][4] = {
1129 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
1130 "???", "???", "hyp", "und", "???", "???", "???", "sys"
1131 };
1132
1133 return cpu_mode_names[psr & 0xf];
1134}
1135
89430fc6
PM
1136/**
1137 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
1138 *
1139 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
1140 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
1141 * Must be called with the iothread lock held.
1142 */
1143void arm_cpu_update_virq(ARMCPU *cpu);
1144
1145/**
1146 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
1147 *
1148 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
1149 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
1150 * Must be called with the iothread lock held.
1151 */
1152void arm_cpu_update_vfiq(ARMCPU *cpu);
1153
164690b2
RH
1154/**
1155 * arm_mmu_idx_el:
1156 * @env: The cpu environment
1157 * @el: The EL to use.
1158 *
1159 * Return the full ARMMMUIdx for the translation regime for EL.
1160 */
1161ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
1162
50494a27
RH
1163/**
1164 * arm_mmu_idx:
1165 * @env: The cpu environment
1166 *
1167 * Return the full ARMMMUIdx for the current translation regime.
1168 */
1169ARMMMUIdx arm_mmu_idx(CPUARMState *env);
1170
64be86ab
RH
1171/**
1172 * arm_stage1_mmu_idx:
1173 * @env: The cpu environment
1174 *
1175 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
1176 */
1177#ifdef CONFIG_USER_ONLY
1178static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
1179{
2859d7b5 1180 return ARMMMUIdx_Stage1_E0;
64be86ab
RH
1181}
1182#else
1183ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
1184#endif
1185
fee7aa46
RH
1186/**
1187 * arm_mmu_idx_is_stage1_of_2:
1188 * @mmu_idx: The ARMMMUIdx to test
1189 *
1190 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
1191 * first stage of a two stage regime.
1192 */
1193static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1194{
1195 switch (mmu_idx) {
1196 case ARMMMUIdx_Stage1_E0:
1197 case ARMMMUIdx_Stage1_E1:
452ef8cb 1198 case ARMMMUIdx_Stage1_E1_PAN:
b1a10c86
RDC
1199 case ARMMMUIdx_Stage1_SE0:
1200 case ARMMMUIdx_Stage1_SE1:
1201 case ARMMMUIdx_Stage1_SE1_PAN:
fee7aa46
RH
1202 return true;
1203 default:
1204 return false;
1205 }
1206}
1207
4f9584ed
RH
1208static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1209 const ARMISARegisters *id)
1210{
f062d144 1211 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
4f9584ed
RH
1212
1213 if ((features >> ARM_FEATURE_V4T) & 1) {
1214 valid |= CPSR_T;
1215 }
1216 if ((features >> ARM_FEATURE_V5) & 1) {
1217 valid |= CPSR_Q; /* V5TE in reality*/
1218 }
1219 if ((features >> ARM_FEATURE_V6) & 1) {
1220 valid |= CPSR_E | CPSR_GE;
1221 }
1222 if ((features >> ARM_FEATURE_THUMB2) & 1) {
1223 valid |= CPSR_IT;
1224 }
873b73c0 1225 if (isar_feature_aa32_jazelle(id)) {
f062d144
RH
1226 valid |= CPSR_J;
1227 }
220f508f
RH
1228 if (isar_feature_aa32_pan(id)) {
1229 valid |= CPSR_PAN;
1230 }
dc8b1853
RC
1231 if (isar_feature_aa32_dit(id)) {
1232 valid |= CPSR_DIT;
1233 }
4f9584ed
RH
1234
1235 return valid;
1236}
1237
14084511
RH
1238static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1239{
1240 uint32_t valid;
1241
1242 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1243 if (isar_feature_aa64_bti(id)) {
1244 valid |= PSTATE_BTYPE;
1245 }
220f508f
RH
1246 if (isar_feature_aa64_pan(id)) {
1247 valid |= PSTATE_PAN;
1248 }
9eeb7a1c
RH
1249 if (isar_feature_aa64_uao(id)) {
1250 valid |= PSTATE_UAO;
1251 }
dc8b1853
RC
1252 if (isar_feature_aa64_dit(id)) {
1253 valid |= PSTATE_DIT;
1254 }
4b779ceb
RH
1255 if (isar_feature_aa64_mte(id)) {
1256 valid |= PSTATE_TCO;
1257 }
14084511
RH
1258
1259 return valid;
1260}
1261
ba97be9f
RH
1262/*
1263 * Parameters of a given virtual address, as extracted from the
1264 * translation control register (TCR) for a given regime.
1265 */
1266typedef struct ARMVAParameters {
1267 unsigned tsz : 8;
1268 unsigned select : 1;
1269 bool tbi : 1;
1270 bool epd : 1;
1271 bool hpd : 1;
1272 bool using16k : 1;
1273 bool using64k : 1;
1274} ARMVAParameters;
1275
bf0be433
RH
1276ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1277 ARMMMUIdx mmu_idx, bool data);
bf0be433 1278
ff730e96
RH
1279static inline int exception_target_el(CPUARMState *env)
1280{
1281 int target_el = MAX(1, arm_current_el(env));
1282
1283 /*
1284 * No such thing as secure EL1 if EL3 is aarch32,
1285 * so update the target EL to EL3 in this case.
1286 */
1287 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
1288 target_el = 3;
1289 }
1290
1291 return target_el;
1292}
1293
81ae05fa
RH
1294/* Determine if allocation tags are available. */
1295static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1296 uint64_t sctlr)
1297{
1298 if (el < 3
1299 && arm_feature(env, ARM_FEATURE_EL3)
1300 && !(env->cp15.scr_el3 & SCR_ATA)) {
1301 return false;
1302 }
4301acd7
RH
1303 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
1304 uint64_t hcr = arm_hcr_el2_eff(env);
1305 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1306 return false;
1307 }
81ae05fa
RH
1308 }
1309 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1310 return sctlr != 0;
1311}
1312
ebae861f
PMD
1313#ifndef CONFIG_USER_ONLY
1314
787a7e76
PMD
1315/* Security attributes for an address, as returned by v8m_security_lookup. */
1316typedef struct V8M_SAttributes {
1317 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1318 bool ns;
1319 bool nsc;
1320 uint8_t sregion;
1321 bool srvalid;
1322 uint8_t iregion;
1323 bool irvalid;
1324} V8M_SAttributes;
1325
1326void v8m_security_lookup(CPUARMState *env, uint32_t address,
1327 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1328 V8M_SAttributes *sattrs);
1329
1330bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1331 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1332 hwaddr *phys_ptr, MemTxAttrs *txattrs,
1333 int *prot, bool *is_subpage,
1334 ARMMMUFaultInfo *fi, uint32_t *mregion);
1335
ebae861f
PMD
1336/* Cacheability and shareability attributes for a memory access */
1337typedef struct ARMCacheAttrs {
1338 unsigned int attrs:8; /* as in the MAIR register encoding */
1339 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1340} ARMCacheAttrs;
1341
1342bool get_phys_addr(CPUARMState *env, target_ulong address,
1343 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1344 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1345 target_ulong *page_size,
7e98e21c
RH
1346 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
1347 __attribute__((nonnull));
ebae861f 1348
b59f479b
PMD
1349void arm_log_exception(int idx);
1350
ebae861f
PMD
1351#endif /* !CONFIG_USER_ONLY */
1352
4b779ceb
RH
1353/*
1354 * The log2 of the words in the tag block, for GMID_EL1.BS.
1355 * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1356 */
1357#define GMID_EL1_BS 6
1358
efbc78ad
RH
1359/* We associate one allocation tag per 16 bytes, the minimum. */
1360#define LOG2_TAG_GRANULE 4
1361#define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
1362
b64ee454
RH
1363/*
1364 * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1365 * the same simd_desc() encoding due to restrictions on size.
1366 * Use these instead.
1367 */
1368FIELD(PREDDESC, OPRSZ, 0, 6)
1369FIELD(PREDDESC, ESZ, 6, 2)
1370FIELD(PREDDESC, DATA, 8, 24)
1371
206adacf
RH
1372/*
1373 * The SVE simd_data field, for memory ops, contains either
1374 * rd (5 bits) or a shift count (2 bits).
1375 */
1376#define SVE_MTEDESC_SHIFT 5
1377
0a405be2
RH
1378/* Bits within a descriptor passed to the helper_mte_check* functions. */
1379FIELD(MTEDESC, MIDX, 0, 4)
1380FIELD(MTEDESC, TBI, 4, 2)
1381FIELD(MTEDESC, TCMA, 6, 2)
1382FIELD(MTEDESC, WRITE, 8, 1)
1383FIELD(MTEDESC, ESIZE, 9, 5)
1384FIELD(MTEDESC, TSIZE, 14, 10) /* mte_checkN only */
1385
2e34ff45
RH
1386bool mte_probe1(CPUARMState *env, uint32_t desc, uint64_t ptr);
1387uint64_t mte_check1(CPUARMState *env, uint32_t desc,
1388 uint64_t ptr, uintptr_t ra);
5add8248
RH
1389uint64_t mte_checkN(CPUARMState *env, uint32_t desc,
1390 uint64_t ptr, uintptr_t ra);
2e34ff45 1391
efbc78ad
RH
1392static inline int allocation_tag_from_addr(uint64_t ptr)
1393{
1394 return extract64(ptr, 56, 4);
1395}
1396
da54941f
RH
1397static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1398{
1399 return deposit64(ptr, 56, 4, rtag);
1400}
1401
2e34ff45
RH
1402/* Return true if tbi bits mean that the access is checked. */
1403static inline bool tbi_check(uint32_t desc, int bit55)
1404{
1405 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1406}
1407
1408/* Return true if tcma bits mean that the access is unchecked. */
1409static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1410{
1411 /*
1412 * We had extracted bit55 and ptr_tag for other reasons, so fold
1413 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1414 */
1415 bool match = ((ptr_tag + bit55) & 0xf) == 0;
1416 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1417 return tcma && match;
1418}
1419
1420/*
1421 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
1422 * for the tag to be present in the FAR_ELx register. But for user-only
1423 * mode, we do not have a TLB with which to implement this, so we must
1424 * remove the top byte.
1425 */
1426static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1427{
1428 /* TBI is known to be enabled. */
1429#ifdef CONFIG_USER_ONLY
1430 ptr = sextract64(ptr, 0, 56);
1431#endif
1432 return ptr;
1433}
1434
1435static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1436{
1437#ifdef CONFIG_USER_ONLY
1438 int64_t clean_ptr = sextract64(ptr, 0, 56);
1439 if (tbi_check(desc, clean_ptr < 0)) {
1440 ptr = clean_ptr;
1441 }
1442#endif
1443 return ptr;
1444}
1445
ccd38087 1446#endif