]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/internals.h
target/arm: New utility function to extract EC from syndrome
[mirror_qemu.git] / target / arm / internals.h
CommitLineData
ccd38087
PM
1/*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
fcf5ef2a 21 * between different source files within target/arm/ but which are
ccd38087
PM
22 * private to it and not required by the rest of QEMU.
23 */
24
25#ifndef TARGET_ARM_INTERNALS_H
26#define TARGET_ARM_INTERNALS_H
27
abc24d86
MD
28#include "hw/registerfields.h"
29
99a99c1f
SB
30/* register banks for CPU modes */
31#define BANK_USRSYS 0
32#define BANK_SVC 1
33#define BANK_ABT 2
34#define BANK_UND 3
35#define BANK_IRQ 4
36#define BANK_FIQ 5
37#define BANK_HYP 6
38#define BANK_MON 7
39
d4a2dc67
PM
40static inline bool excp_is_internal(int excp)
41{
42 /* Return true if this exception number represents a QEMU-internal
43 * exception that will not be passed to the guest.
44 */
45 return excp == EXCP_INTERRUPT
46 || excp == EXCP_HLT
47 || excp == EXCP_DEBUG
48 || excp == EXCP_HALTED
49 || excp == EXCP_EXCEPTION_EXIT
50 || excp == EXCP_KERNEL_TRAP
05188cc7 51 || excp == EXCP_SEMIHOST;
d4a2dc67
PM
52}
53
ccd38087
PM
54/* Scale factor for generic timers, ie number of ns per tick.
55 * This gives a 62.5MHz timer.
56 */
57#define GTIMER_SCALE 16
58
abc24d86
MD
59/* Bit definitions for the v7M CONTROL register */
60FIELD(V7M_CONTROL, NPRIV, 0, 1)
61FIELD(V7M_CONTROL, SPSEL, 1, 1)
62FIELD(V7M_CONTROL, FPCA, 2, 1)
3e3fa230 63FIELD(V7M_CONTROL, SFPA, 3, 1)
abc24d86 64
4d1e7a47
PM
65/* Bit definitions for v7M exception return payload */
66FIELD(V7M_EXCRET, ES, 0, 1)
67FIELD(V7M_EXCRET, RES0, 1, 1)
68FIELD(V7M_EXCRET, SPSEL, 2, 1)
69FIELD(V7M_EXCRET, MODE, 3, 1)
70FIELD(V7M_EXCRET, FTYPE, 4, 1)
71FIELD(V7M_EXCRET, DCRS, 5, 1)
72FIELD(V7M_EXCRET, S, 6, 1)
73FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
74
d02a8698
PM
75/* Minimum value which is a magic number for exception return */
76#define EXC_RETURN_MIN_MAGIC 0xff000000
77/* Minimum number which is a magic number for function or exception return
78 * when using v8M security extension
79 */
80#define FNC_RETURN_MIN_MAGIC 0xfefffffe
81
35337cc3
PM
82/* We use a few fake FSR values for internal purposes in M profile.
83 * M profile cores don't have A/R format FSRs, but currently our
84 * get_phys_addr() code assumes A/R profile and reports failures via
85 * an A/R format FSR value. We then translate that into the proper
86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87 * Mostly the FSR values we use for this are those defined for v7PMSA,
88 * since we share some of that codepath. A few kinds of fault are
89 * only for M profile and have no A/R equivalent, though, so we have
90 * to pick a value from the reserved range (which we never otherwise
91 * generate) to use for these.
92 * These values will never be visible to the guest.
93 */
94#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
96
597610eb
PM
97/**
98 * raise_exception: Raise the specified exception.
99 * Raise a guest exception with the specified value, syndrome register
100 * and target exception level. This should be called from helper functions,
101 * and never returns because we will longjump back up to the CPU main loop.
102 */
103void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
104 uint32_t syndrome, uint32_t target_el);
105
2a923c4d
EI
106/*
107 * For AArch64, map a given EL to an index in the banked_spsr array.
7847f9ea
PM
108 * Note that this mapping and the AArch32 mapping defined in bank_number()
109 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
110 * mandated mapping between each other.
2a923c4d
EI
111 */
112static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
113{
114 static const unsigned int map[4] = {
99a99c1f
SB
115 [1] = BANK_SVC, /* EL1. */
116 [2] = BANK_HYP, /* EL2. */
117 [3] = BANK_MON, /* EL3. */
2a923c4d
EI
118 };
119 assert(el >= 1 && el <= 3);
120 return map[el];
121}
122
c766568d
PM
123/* Map CPU modes onto saved register banks. */
124static inline int bank_number(int mode)
125{
126 switch (mode) {
127 case ARM_CPU_MODE_USR:
128 case ARM_CPU_MODE_SYS:
129 return BANK_USRSYS;
130 case ARM_CPU_MODE_SVC:
131 return BANK_SVC;
132 case ARM_CPU_MODE_ABT:
133 return BANK_ABT;
134 case ARM_CPU_MODE_UND:
135 return BANK_UND;
136 case ARM_CPU_MODE_IRQ:
137 return BANK_IRQ;
138 case ARM_CPU_MODE_FIQ:
139 return BANK_FIQ;
140 case ARM_CPU_MODE_HYP:
141 return BANK_HYP;
142 case ARM_CPU_MODE_MON:
143 return BANK_MON;
144 }
145 g_assert_not_reached();
146}
147
ccd38087
PM
148void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
149void arm_translate_init(void);
150
151enum arm_fprounding {
152 FPROUNDING_TIEEVEN,
153 FPROUNDING_POSINF,
154 FPROUNDING_NEGINF,
155 FPROUNDING_ZERO,
156 FPROUNDING_TIEAWAY,
157 FPROUNDING_ODD
158};
159
160int arm_rmode_to_sf(int rmode);
161
9208b961
EI
162static inline void aarch64_save_sp(CPUARMState *env, int el)
163{
164 if (env->pstate & PSTATE_SP) {
165 env->sp_el[el] = env->xregs[31];
166 } else {
167 env->sp_el[0] = env->xregs[31];
168 }
169}
170
171static inline void aarch64_restore_sp(CPUARMState *env, int el)
172{
173 if (env->pstate & PSTATE_SP) {
174 env->xregs[31] = env->sp_el[el];
175 } else {
176 env->xregs[31] = env->sp_el[0];
177 }
178}
179
f502cfc2
PM
180static inline void update_spsel(CPUARMState *env, uint32_t imm)
181{
dcbff19b 182 unsigned int cur_el = arm_current_el(env);
f502cfc2
PM
183 /* Update PSTATE SPSel bit; this requires us to update the
184 * working stack pointer in xregs[31].
185 */
186 if (!((imm ^ env->pstate) & PSTATE_SP)) {
187 return;
188 }
9208b961 189 aarch64_save_sp(env, cur_el);
f502cfc2
PM
190 env->pstate = deposit32(env->pstate, 0, 1, imm);
191
61d4b215
EI
192 /* We rely on illegal updates to SPsel from EL0 to get trapped
193 * at translation time.
f502cfc2 194 */
61d4b215 195 assert(cur_el >= 1 && cur_el <= 3);
9208b961 196 aarch64_restore_sp(env, cur_el);
f502cfc2
PM
197}
198
1853d5a9
EI
199/*
200 * arm_pamax
201 * @cpu: ARMCPU
202 *
203 * Returns the implementation defined bit-width of physical addresses.
204 * The ARMv8 reference manuals refer to this as PAMax().
205 */
206static inline unsigned int arm_pamax(ARMCPU *cpu)
207{
208 static const unsigned int pamax_map[] = {
209 [0] = 32,
210 [1] = 36,
211 [2] = 40,
212 [3] = 42,
213 [4] = 44,
214 [5] = 48,
215 };
216 unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
217
218 /* id_aa64mmfr0 is a read-only register so values outside of the
219 * supported mappings can be considered an implementation error. */
220 assert(parange < ARRAY_SIZE(pamax_map));
221 return pamax_map[parange];
222}
223
73c5211b
PM
224/* Return true if extended addresses are enabled.
225 * This is always the case if our translation regime is 64 bit,
226 * but depends on TTBCR.EAE for 32 bit.
227 */
228static inline bool extended_addresses_enabled(CPUARMState *env)
229{
11f136ee
FA
230 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
231 return arm_el_is_aa64(env, 1) ||
232 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
73c5211b
PM
233}
234
8bcbf37c
PM
235/* Valid Syndrome Register EC field values */
236enum arm_exception_class {
237 EC_UNCATEGORIZED = 0x00,
238 EC_WFX_TRAP = 0x01,
239 EC_CP15RTTRAP = 0x03,
240 EC_CP15RRTTRAP = 0x04,
241 EC_CP14RTTRAP = 0x05,
242 EC_CP14DTTRAP = 0x06,
243 EC_ADVSIMDFPACCESSTRAP = 0x07,
244 EC_FPIDTRAP = 0x08,
245 EC_CP14RRTTRAP = 0x0c,
246 EC_ILLEGALSTATE = 0x0e,
247 EC_AA32_SVC = 0x11,
248 EC_AA32_HVC = 0x12,
249 EC_AA32_SMC = 0x13,
250 EC_AA64_SVC = 0x15,
251 EC_AA64_HVC = 0x16,
252 EC_AA64_SMC = 0x17,
253 EC_SYSTEMREGISTERTRAP = 0x18,
490aa7f1 254 EC_SVEACCESSTRAP = 0x19,
8bcbf37c
PM
255 EC_INSNABORT = 0x20,
256 EC_INSNABORT_SAME_EL = 0x21,
257 EC_PCALIGNMENT = 0x22,
258 EC_DATAABORT = 0x24,
259 EC_DATAABORT_SAME_EL = 0x25,
260 EC_SPALIGNMENT = 0x26,
261 EC_AA32_FPTRAP = 0x28,
262 EC_AA64_FPTRAP = 0x2c,
263 EC_SERROR = 0x2f,
264 EC_BREAKPOINT = 0x30,
265 EC_BREAKPOINT_SAME_EL = 0x31,
266 EC_SOFTWARESTEP = 0x32,
267 EC_SOFTWARESTEP_SAME_EL = 0x33,
268 EC_WATCHPOINT = 0x34,
269 EC_WATCHPOINT_SAME_EL = 0x35,
270 EC_AA32_BKPT = 0x38,
271 EC_VECTORCATCH = 0x3a,
272 EC_AA64_BKPT = 0x3c,
273};
274
275#define ARM_EL_EC_SHIFT 26
276#define ARM_EL_IL_SHIFT 25
094d028a 277#define ARM_EL_ISV_SHIFT 24
8bcbf37c 278#define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
094d028a 279#define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
8bcbf37c 280
64b91e3f
PM
281static inline uint32_t syn_get_ec(uint32_t syn)
282{
283 return syn >> ARM_EL_EC_SHIFT;
284}
285
8bcbf37c
PM
286/* Utility functions for constructing various kinds of syndrome value.
287 * Note that in general we follow the AArch64 syndrome values; in a
288 * few cases the value in HSR for exceptions taken to AArch32 Hyp
289 * mode differs slightly, so if we ever implemented Hyp mode then the
290 * syndrome value would need some massaging on exception entry.
291 * (One example of this is that AArch64 defaults to IL bit set for
292 * exceptions which don't specifically indicate information about the
293 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
294 */
295static inline uint32_t syn_uncategorized(void)
296{
297 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
298}
299
300static inline uint32_t syn_aa64_svc(uint32_t imm16)
301{
302 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
303}
304
35979d71
EI
305static inline uint32_t syn_aa64_hvc(uint32_t imm16)
306{
307 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
308}
309
e0d6e6a5
EI
310static inline uint32_t syn_aa64_smc(uint32_t imm16)
311{
312 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
313}
314
fc05f4a6 315static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
8bcbf37c
PM
316{
317 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
fc05f4a6 318 | (is_16bit ? 0 : ARM_EL_IL);
8bcbf37c
PM
319}
320
37e6456e
PM
321static inline uint32_t syn_aa32_hvc(uint32_t imm16)
322{
323 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
324}
325
326static inline uint32_t syn_aa32_smc(void)
327{
328 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
329}
330
8bcbf37c
PM
331static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
332{
333 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
334}
335
fc05f4a6 336static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
8bcbf37c
PM
337{
338 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
fc05f4a6 339 | (is_16bit ? 0 : ARM_EL_IL);
8bcbf37c
PM
340}
341
342static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
343 int crn, int crm, int rt,
344 int isread)
345{
346 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
347 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
348 | (crm << 1) | isread;
349}
350
351static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
352 int crn, int crm, int rt, int isread,
fc05f4a6 353 bool is_16bit)
8bcbf37c
PM
354{
355 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 356 | (is_16bit ? 0 : ARM_EL_IL)
8bcbf37c
PM
357 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
358 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
359}
360
361static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
362 int crn, int crm, int rt, int isread,
fc05f4a6 363 bool is_16bit)
8bcbf37c
PM
364{
365 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 366 | (is_16bit ? 0 : ARM_EL_IL)
8bcbf37c
PM
367 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
368 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
369}
370
371static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
372 int rt, int rt2, int isread,
fc05f4a6 373 bool is_16bit)
8bcbf37c
PM
374{
375 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 376 | (is_16bit ? 0 : ARM_EL_IL)
8bcbf37c
PM
377 | (cv << 24) | (cond << 20) | (opc1 << 16)
378 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
379}
380
381static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
382 int rt, int rt2, int isread,
fc05f4a6 383 bool is_16bit)
8bcbf37c
PM
384{
385 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 386 | (is_16bit ? 0 : ARM_EL_IL)
8bcbf37c
PM
387 | (cv << 24) | (cond << 20) | (opc1 << 16)
388 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
389}
390
fc05f4a6 391static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
8c6afa6a
PM
392{
393 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
fc05f4a6 394 | (is_16bit ? 0 : ARM_EL_IL)
8c6afa6a
PM
395 | (cv << 24) | (cond << 20);
396}
397
490aa7f1
RH
398static inline uint32_t syn_sve_access_trap(void)
399{
400 return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
401}
402
00892383
RH
403static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
404{
405 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
04ce861e 406 | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
00892383
RH
407}
408
094d028a
PM
409static inline uint32_t syn_data_abort_no_iss(int same_el,
410 int ea, int cm, int s1ptw,
411 int wnr, int fsc)
00892383
RH
412{
413 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
094d028a
PM
414 | ARM_EL_IL
415 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
416}
417
418static inline uint32_t syn_data_abort_with_iss(int same_el,
419 int sas, int sse, int srt,
420 int sf, int ar,
421 int ea, int cm, int s1ptw,
422 int wnr, int fsc,
423 bool is_16bit)
424{
425 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
426 | (is_16bit ? 0 : ARM_EL_IL)
427 | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
428 | (sf << 15) | (ar << 14)
429 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
00892383
RH
430}
431
7ea47fe7
PM
432static inline uint32_t syn_swstep(int same_el, int isv, int ex)
433{
434 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
04ce861e 435 | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
7ea47fe7
PM
436}
437
3ff6fc91
PM
438static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
439{
440 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
04ce861e 441 | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
3ff6fc91
PM
442}
443
0eacea70
PM
444static inline uint32_t syn_breakpoint(int same_el)
445{
446 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
447 | ARM_EL_IL | 0x22;
448}
449
58803318 450static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
06fbb2fd
GB
451{
452 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
58803318 453 (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
06fbb2fd
GB
454 (cv << 24) | (cond << 20) | ti;
455}
456
9ee98ce8
PM
457/* Update a QEMU watchpoint based on the information the guest has set in the
458 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
459 */
460void hw_watchpoint_update(ARMCPU *cpu, int n);
461/* Update the QEMU watchpoints for every guest watchpoint. This does a
462 * complete delete-and-reinstate of the QEMU watchpoint list and so is
463 * suitable for use after migration or on reset.
464 */
465void hw_watchpoint_update_all(ARMCPU *cpu);
46747d15
PM
466/* Update a QEMU breakpoint based on the information the guest has set in the
467 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
468 */
469void hw_breakpoint_update(ARMCPU *cpu, int n);
470/* Update the QEMU breakpoints for every guest breakpoint. This does a
471 * complete delete-and-reinstate of the QEMU breakpoint list and so is
472 * suitable for use after migration or on reset.
473 */
474void hw_breakpoint_update_all(ARMCPU *cpu);
9ee98ce8 475
3826121d
SF
476/* Callback function for checking if a watchpoint should trigger. */
477bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
478
40612000
JB
479/* Adjust addresses (in BE32 mode) before testing against watchpoint
480 * addresses.
481 */
482vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
483
3ff6fc91
PM
484/* Callback function for when a watchpoint or breakpoint triggers. */
485void arm_debug_excp_handler(CPUState *cs);
486
98128601
RH
487#ifdef CONFIG_USER_ONLY
488static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
489{
490 return false;
491}
492#else
493/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
494bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
495/* Actually handle a PSCI call */
496void arm_handle_psci_call(ARMCPU *cpu);
497#endif
498
dc3c4c14
PM
499/**
500 * arm_clear_exclusive: clear the exclusive monitor
501 * @env: CPU env
502 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
503 */
504static inline void arm_clear_exclusive(CPUARMState *env)
505{
506 env->exclusive_addr = -1;
507}
508
1fa498fe
PM
509/**
510 * ARMFaultType: type of an ARM MMU fault
511 * This corresponds to the v8A pseudocode's Fault enumeration,
512 * with extensions for QEMU internal conditions.
513 */
514typedef enum ARMFaultType {
515 ARMFault_None,
516 ARMFault_AccessFlag,
517 ARMFault_Alignment,
518 ARMFault_Background,
519 ARMFault_Domain,
520 ARMFault_Permission,
521 ARMFault_Translation,
522 ARMFault_AddressSize,
523 ARMFault_SyncExternal,
524 ARMFault_SyncExternalOnWalk,
525 ARMFault_SyncParity,
526 ARMFault_SyncParityOnWalk,
527 ARMFault_AsyncParity,
528 ARMFault_AsyncExternal,
529 ARMFault_Debug,
530 ARMFault_TLBConflict,
531 ARMFault_Lockdown,
532 ARMFault_Exclusive,
533 ARMFault_ICacheMaint,
534 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
535 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
536} ARMFaultType;
537
e14b5a23
EI
538/**
539 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
1fa498fe
PM
540 * @type: Type of fault
541 * @level: Table walk level (for translation, access flag and permission faults)
542 * @domain: Domain of the fault address (for non-LPAE CPUs only)
e14b5a23
EI
543 * @s2addr: Address that caused a fault at stage 2
544 * @stage2: True if we faulted at stage 2
545 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
c528af7a 546 * @ea: True if we should set the EA (external abort type) bit in syndrome
e14b5a23
EI
547 */
548typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
549struct ARMMMUFaultInfo {
1fa498fe 550 ARMFaultType type;
e14b5a23 551 target_ulong s2addr;
1fa498fe
PM
552 int level;
553 int domain;
e14b5a23
EI
554 bool stage2;
555 bool s1ptw;
c528af7a 556 bool ea;
e14b5a23
EI
557};
558
1fa498fe
PM
559/**
560 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
561 * Compare pseudocode EncodeSDFSC(), though unlike that function
562 * we set up a whole FSR-format code including domain field and
563 * putting the high bit of the FSC into bit 10.
564 */
565static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
566{
567 uint32_t fsc;
568
569 switch (fi->type) {
570 case ARMFault_None:
571 return 0;
572 case ARMFault_AccessFlag:
573 fsc = fi->level == 1 ? 0x3 : 0x6;
574 break;
575 case ARMFault_Alignment:
576 fsc = 0x1;
577 break;
578 case ARMFault_Permission:
579 fsc = fi->level == 1 ? 0xd : 0xf;
580 break;
581 case ARMFault_Domain:
582 fsc = fi->level == 1 ? 0x9 : 0xb;
583 break;
584 case ARMFault_Translation:
585 fsc = fi->level == 1 ? 0x5 : 0x7;
586 break;
587 case ARMFault_SyncExternal:
588 fsc = 0x8 | (fi->ea << 12);
589 break;
590 case ARMFault_SyncExternalOnWalk:
591 fsc = fi->level == 1 ? 0xc : 0xe;
592 fsc |= (fi->ea << 12);
593 break;
594 case ARMFault_SyncParity:
595 fsc = 0x409;
596 break;
597 case ARMFault_SyncParityOnWalk:
598 fsc = fi->level == 1 ? 0x40c : 0x40e;
599 break;
600 case ARMFault_AsyncParity:
601 fsc = 0x408;
602 break;
603 case ARMFault_AsyncExternal:
604 fsc = 0x406 | (fi->ea << 12);
605 break;
606 case ARMFault_Debug:
607 fsc = 0x2;
608 break;
609 case ARMFault_TLBConflict:
610 fsc = 0x400;
611 break;
612 case ARMFault_Lockdown:
613 fsc = 0x404;
614 break;
615 case ARMFault_Exclusive:
616 fsc = 0x405;
617 break;
618 case ARMFault_ICacheMaint:
619 fsc = 0x4;
620 break;
621 case ARMFault_Background:
622 fsc = 0x0;
623 break;
624 case ARMFault_QEMU_NSCExec:
625 fsc = M_FAKE_FSR_NSC_EXEC;
626 break;
627 case ARMFault_QEMU_SFault:
628 fsc = M_FAKE_FSR_SFAULT;
629 break;
630 default:
631 /* Other faults can't occur in a context that requires a
632 * short-format status code.
633 */
634 g_assert_not_reached();
635 }
636
637 fsc |= (fi->domain << 4);
638 return fsc;
639}
640
641/**
642 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
643 * Compare pseudocode EncodeLDFSC(), though unlike that function
644 * we fill in also the LPAE bit 9 of a DFSR format.
645 */
646static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
647{
648 uint32_t fsc;
649
650 switch (fi->type) {
651 case ARMFault_None:
652 return 0;
653 case ARMFault_AddressSize:
654 fsc = fi->level & 3;
655 break;
656 case ARMFault_AccessFlag:
657 fsc = (fi->level & 3) | (0x2 << 2);
658 break;
659 case ARMFault_Permission:
660 fsc = (fi->level & 3) | (0x3 << 2);
661 break;
662 case ARMFault_Translation:
663 fsc = (fi->level & 3) | (0x1 << 2);
664 break;
665 case ARMFault_SyncExternal:
666 fsc = 0x10 | (fi->ea << 12);
667 break;
668 case ARMFault_SyncExternalOnWalk:
669 fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
670 break;
671 case ARMFault_SyncParity:
672 fsc = 0x18;
673 break;
674 case ARMFault_SyncParityOnWalk:
675 fsc = (fi->level & 3) | (0x7 << 2);
676 break;
677 case ARMFault_AsyncParity:
678 fsc = 0x19;
679 break;
680 case ARMFault_AsyncExternal:
681 fsc = 0x11 | (fi->ea << 12);
682 break;
683 case ARMFault_Alignment:
684 fsc = 0x21;
685 break;
686 case ARMFault_Debug:
687 fsc = 0x22;
688 break;
689 case ARMFault_TLBConflict:
690 fsc = 0x30;
691 break;
692 case ARMFault_Lockdown:
693 fsc = 0x34;
694 break;
695 case ARMFault_Exclusive:
696 fsc = 0x35;
697 break;
698 default:
699 /* Other faults can't occur in a context that requires a
700 * long-format status code.
701 */
702 g_assert_not_reached();
703 }
704
705 fsc |= 1 << 9;
706 return fsc;
707}
708
3b39d734
PM
709static inline bool arm_extabort_type(MemTxResult result)
710{
711 /* The EA bit in syndromes and fault status registers is an
712 * IMPDEF classification of external aborts. ARM implementations
713 * usually use this to indicate AXI bus Decode error (0) or
714 * Slave error (1); in QEMU we follow that.
715 */
716 return result != MEMTX_DECODE_ERROR;
717}
718
8c6084bf 719/* Do a page table walk and add page to TLB if possible */
03ae85f8
PM
720bool arm_tlb_fill(CPUState *cpu, vaddr address,
721 MMUAccessType access_type, int mmu_idx,
bc52bfeb 722 ARMMMUFaultInfo *fi);
8c6084bf 723
deb2db99
AR
724/* Return true if the stage 1 translation regime is using LPAE format page
725 * tables */
726bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
30901475
AB
727
728/* Raise a data fault alignment exception for the specified virtual address */
b35399bb
SS
729void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
730 MMUAccessType access_type,
731 int mmu_idx, uintptr_t retaddr);
30901475 732
c79c0a31
PM
733/* arm_cpu_do_transaction_failed: handle a memory system error response
734 * (eg "no device/memory present at address") by raising an external abort
735 * exception
736 */
737void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
738 vaddr addr, unsigned size,
739 MMUAccessType access_type,
740 int mmu_idx, MemTxAttrs attrs,
741 MemTxResult response, uintptr_t retaddr);
742
08267487 743/* Call any registered EL change hooks */
b5c53d1b
AL
744static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
745{
746 ARMELChangeHook *hook, *next;
747 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
748 hook->hook(cpu, hook->opaque);
749 }
750}
bd7d00fc
PM
751static inline void arm_call_el_change_hook(ARMCPU *cpu)
752{
08267487
AL
753 ARMELChangeHook *hook, *next;
754 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
755 hook->hook(cpu, hook->opaque);
bd7d00fc
PM
756 }
757}
758
61fcd69b
PM
759/* Return true if this address translation regime is secure */
760static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
761{
762 switch (mmu_idx) {
763 case ARMMMUIdx_S12NSE0:
764 case ARMMMUIdx_S12NSE1:
765 case ARMMMUIdx_S1NSE0:
766 case ARMMMUIdx_S1NSE1:
767 case ARMMMUIdx_S1E2:
768 case ARMMMUIdx_S2NS:
62593718
PM
769 case ARMMMUIdx_MPrivNegPri:
770 case ARMMMUIdx_MUserNegPri:
61fcd69b 771 case ARMMMUIdx_MPriv:
61fcd69b
PM
772 case ARMMMUIdx_MUser:
773 return false;
774 case ARMMMUIdx_S1E3:
775 case ARMMMUIdx_S1SE0:
776 case ARMMMUIdx_S1SE1:
62593718
PM
777 case ARMMMUIdx_MSPrivNegPri:
778 case ARMMMUIdx_MSUserNegPri:
61fcd69b 779 case ARMMMUIdx_MSPriv:
61fcd69b
PM
780 case ARMMMUIdx_MSUser:
781 return true;
782 default:
783 g_assert_not_reached();
784 }
785}
786
81621d9a
PM
787/* Return the FSR value for a debug exception (watchpoint, hardware
788 * breakpoint or BKPT insn) targeting the specified exception level.
789 */
790static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
791{
792 ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
793 int target_el = arm_debug_target_el(env);
794 bool using_lpae = false;
795
796 if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
797 using_lpae = true;
798 } else {
799 if (arm_feature(env, ARM_FEATURE_LPAE) &&
800 (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
801 using_lpae = true;
802 }
803 }
804
805 if (using_lpae) {
806 return arm_fi_to_lfsc(&fi);
807 } else {
808 return arm_fi_to_sfsc(&fi);
809 }
810}
811
500d0484
RH
812/* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3.
813 * Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits.
814 */
815#define MEMOPIDX_SHIFT 8
816
5529bf18
PM
817/**
818 * v7m_using_psp: Return true if using process stack pointer
819 * Return true if the CPU is currently using the process stack
820 * pointer, or false if it is using the main stack pointer.
821 */
822static inline bool v7m_using_psp(CPUARMState *env)
823{
824 /* Handler mode always uses the main stack; for thread mode
825 * the CONTROL.SPSEL bit determines the answer.
826 * Note that in v7M it is not possible to be in Handler mode with
827 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
828 */
829 return !arm_v7m_is_handler_mode(env) &&
830 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
831}
832
55203189
PM
833/**
834 * v7m_sp_limit: Return SP limit for current CPU state
835 * Return the SP limit value for the current CPU security state
836 * and stack pointer.
837 */
838static inline uint32_t v7m_sp_limit(CPUARMState *env)
839{
840 if (v7m_using_psp(env)) {
841 return env->v7m.psplim[env->v7m.secure];
842 } else {
843 return env->v7m.msplim[env->v7m.secure];
844 }
845}
846
81e37284
PM
847/**
848 * aarch32_mode_name(): Return name of the AArch32 CPU mode
849 * @psr: Program Status Register indicating CPU mode
850 *
851 * Returns, for debug logging purposes, a printable representation
852 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
853 * the low bits of the specified PSR.
854 */
855static inline const char *aarch32_mode_name(uint32_t psr)
856{
857 static const char cpu_mode_names[16][4] = {
858 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
859 "???", "???", "hyp", "und", "???", "???", "???", "sys"
860 };
861
862 return cpu_mode_names[psr & 0xf];
863}
864
ccd38087 865#endif