]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/internals.h
target/arm: Move hflags code into the tcg directory
[mirror_qemu.git] / target / arm / internals.h
CommitLineData
ccd38087
PM
1/*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
fcf5ef2a 21 * between different source files within target/arm/ but which are
ccd38087
PM
22 * private to it and not required by the rest of QEMU.
23 */
24
25#ifndef TARGET_ARM_INTERNALS_H
26#define TARGET_ARM_INTERNALS_H
27
abc24d86 28#include "hw/registerfields.h"
28f32503 29#include "tcg/tcg-gvec-desc.h"
1fe27859 30#include "syndrome.h"
abc24d86 31
99a99c1f
SB
32/* register banks for CPU modes */
33#define BANK_USRSYS 0
34#define BANK_SVC 1
35#define BANK_ABT 2
36#define BANK_UND 3
37#define BANK_IRQ 4
38#define BANK_FIQ 5
39#define BANK_HYP 6
40#define BANK_MON 7
41
d4a2dc67
PM
42static inline bool excp_is_internal(int excp)
43{
44 /* Return true if this exception number represents a QEMU-internal
45 * exception that will not be passed to the guest.
46 */
47 return excp == EXCP_INTERRUPT
48 || excp == EXCP_HLT
49 || excp == EXCP_DEBUG
50 || excp == EXCP_HALTED
51 || excp == EXCP_EXCEPTION_EXIT
52 || excp == EXCP_KERNEL_TRAP
05188cc7 53 || excp == EXCP_SEMIHOST;
d4a2dc67
PM
54}
55
ccd38087
PM
56/* Scale factor for generic timers, ie number of ns per tick.
57 * This gives a 62.5MHz timer.
58 */
59#define GTIMER_SCALE 16
60
abc24d86
MD
61/* Bit definitions for the v7M CONTROL register */
62FIELD(V7M_CONTROL, NPRIV, 0, 1)
63FIELD(V7M_CONTROL, SPSEL, 1, 1)
64FIELD(V7M_CONTROL, FPCA, 2, 1)
3e3fa230 65FIELD(V7M_CONTROL, SFPA, 3, 1)
abc24d86 66
4d1e7a47
PM
67/* Bit definitions for v7M exception return payload */
68FIELD(V7M_EXCRET, ES, 0, 1)
69FIELD(V7M_EXCRET, RES0, 1, 1)
70FIELD(V7M_EXCRET, SPSEL, 2, 1)
71FIELD(V7M_EXCRET, MODE, 3, 1)
72FIELD(V7M_EXCRET, FTYPE, 4, 1)
73FIELD(V7M_EXCRET, DCRS, 5, 1)
74FIELD(V7M_EXCRET, S, 6, 1)
75FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76
d02a8698
PM
77/* Minimum value which is a magic number for exception return */
78#define EXC_RETURN_MIN_MAGIC 0xff000000
79/* Minimum number which is a magic number for function or exception return
80 * when using v8M security extension
81 */
82#define FNC_RETURN_MIN_MAGIC 0xfefffffe
83
8b7a5bbe
RH
84/* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
85FIELD(DBGWCR, E, 0, 1)
86FIELD(DBGWCR, PAC, 1, 2)
87FIELD(DBGWCR, LSC, 3, 2)
88FIELD(DBGWCR, BAS, 5, 8)
89FIELD(DBGWCR, HMC, 13, 1)
90FIELD(DBGWCR, SSC, 14, 2)
91FIELD(DBGWCR, LBN, 16, 4)
92FIELD(DBGWCR, WT, 20, 1)
93FIELD(DBGWCR, MASK, 24, 5)
94FIELD(DBGWCR, SSCE, 29, 1)
95
35337cc3
PM
96/* We use a few fake FSR values for internal purposes in M profile.
97 * M profile cores don't have A/R format FSRs, but currently our
98 * get_phys_addr() code assumes A/R profile and reports failures via
99 * an A/R format FSR value. We then translate that into the proper
100 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
101 * Mostly the FSR values we use for this are those defined for v7PMSA,
102 * since we share some of that codepath. A few kinds of fault are
103 * only for M profile and have no A/R equivalent, though, so we have
104 * to pick a value from the reserved range (which we never otherwise
105 * generate) to use for these.
106 * These values will never be visible to the guest.
107 */
108#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
109#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
110
597610eb
PM
111/**
112 * raise_exception: Raise the specified exception.
113 * Raise a guest exception with the specified value, syndrome register
114 * and target exception level. This should be called from helper functions,
115 * and never returns because we will longjump back up to the CPU main loop.
116 */
8905770b
MAL
117G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
118 uint32_t syndrome, uint32_t target_el);
597610eb 119
7469f6c6
RH
120/*
121 * Similarly, but also use unwinding to restore cpu state.
122 */
8905770b 123G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
7469f6c6
RH
124 uint32_t syndrome, uint32_t target_el,
125 uintptr_t ra);
126
2a923c4d
EI
127/*
128 * For AArch64, map a given EL to an index in the banked_spsr array.
7847f9ea
PM
129 * Note that this mapping and the AArch32 mapping defined in bank_number()
130 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
131 * mandated mapping between each other.
2a923c4d
EI
132 */
133static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
134{
135 static const unsigned int map[4] = {
99a99c1f
SB
136 [1] = BANK_SVC, /* EL1. */
137 [2] = BANK_HYP, /* EL2. */
138 [3] = BANK_MON, /* EL3. */
2a923c4d
EI
139 };
140 assert(el >= 1 && el <= 3);
141 return map[el];
142}
143
c766568d
PM
144/* Map CPU modes onto saved register banks. */
145static inline int bank_number(int mode)
146{
147 switch (mode) {
148 case ARM_CPU_MODE_USR:
149 case ARM_CPU_MODE_SYS:
150 return BANK_USRSYS;
151 case ARM_CPU_MODE_SVC:
152 return BANK_SVC;
153 case ARM_CPU_MODE_ABT:
154 return BANK_ABT;
155 case ARM_CPU_MODE_UND:
156 return BANK_UND;
157 case ARM_CPU_MODE_IRQ:
158 return BANK_IRQ;
159 case ARM_CPU_MODE_FIQ:
160 return BANK_FIQ;
161 case ARM_CPU_MODE_HYP:
162 return BANK_HYP;
163 case ARM_CPU_MODE_MON:
164 return BANK_MON;
165 }
166 g_assert_not_reached();
167}
168
593cfa2b
PM
169/**
170 * r14_bank_number: Map CPU mode onto register bank for r14
171 *
172 * Given an AArch32 CPU mode, return the index into the saved register
173 * banks to use for the R14 (LR) in that mode. This is the same as
174 * bank_number(), except for the special case of Hyp mode, where
175 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
176 * This should be used as the index into env->banked_r14[], and
177 * bank_number() used for the index into env->banked_r13[] and
178 * env->banked_spsr[].
179 */
180static inline int r14_bank_number(int mode)
181{
182 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
183}
184
ccd38087
PM
185void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
186void arm_translate_init(void);
187
475e56b6
EE
188void arm_restore_state_to_opc(CPUState *cs,
189 const TranslationBlock *tb,
190 const uint64_t *data);
191
78271684 192#ifdef CONFIG_TCG
8349d2ae 193void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
78271684
CF
194#endif /* CONFIG_TCG */
195
ccd38087
PM
196enum arm_fprounding {
197 FPROUNDING_TIEEVEN,
198 FPROUNDING_POSINF,
199 FPROUNDING_NEGINF,
200 FPROUNDING_ZERO,
201 FPROUNDING_TIEAWAY,
202 FPROUNDING_ODD
203};
204
205int arm_rmode_to_sf(int rmode);
206
9208b961
EI
207static inline void aarch64_save_sp(CPUARMState *env, int el)
208{
209 if (env->pstate & PSTATE_SP) {
210 env->sp_el[el] = env->xregs[31];
211 } else {
212 env->sp_el[0] = env->xregs[31];
213 }
214}
215
216static inline void aarch64_restore_sp(CPUARMState *env, int el)
217{
218 if (env->pstate & PSTATE_SP) {
219 env->xregs[31] = env->sp_el[el];
220 } else {
221 env->xregs[31] = env->sp_el[0];
222 }
223}
224
f502cfc2
PM
225static inline void update_spsel(CPUARMState *env, uint32_t imm)
226{
dcbff19b 227 unsigned int cur_el = arm_current_el(env);
f502cfc2
PM
228 /* Update PSTATE SPSel bit; this requires us to update the
229 * working stack pointer in xregs[31].
230 */
231 if (!((imm ^ env->pstate) & PSTATE_SP)) {
232 return;
233 }
9208b961 234 aarch64_save_sp(env, cur_el);
f502cfc2
PM
235 env->pstate = deposit32(env->pstate, 0, 1, imm);
236
61d4b215
EI
237 /* We rely on illegal updates to SPsel from EL0 to get trapped
238 * at translation time.
f502cfc2 239 */
61d4b215 240 assert(cur_el >= 1 && cur_el <= 3);
9208b961 241 aarch64_restore_sp(env, cur_el);
f502cfc2
PM
242}
243
1853d5a9
EI
244/*
245 * arm_pamax
246 * @cpu: ARMCPU
247 *
248 * Returns the implementation defined bit-width of physical addresses.
249 * The ARMv8 reference manuals refer to this as PAMax().
250 */
71a77257 251unsigned int arm_pamax(ARMCPU *cpu);
1853d5a9 252
73c5211b
PM
253/* Return true if extended addresses are enabled.
254 * This is always the case if our translation regime is 64 bit,
255 * but depends on TTBCR.EAE for 32 bit.
256 */
257static inline bool extended_addresses_enabled(CPUARMState *env)
258{
cb4a0a34 259 uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
452c67a4
TR
260 if (arm_feature(env, ARM_FEATURE_PMSA) &&
261 arm_feature(env, ARM_FEATURE_V8)) {
262 return true;
263 }
11f136ee 264 return arm_el_is_aa64(env, 1) ||
cb4a0a34 265 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
73c5211b
PM
266}
267
9ee98ce8
PM
268/* Update a QEMU watchpoint based on the information the guest has set in the
269 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
270 */
271void hw_watchpoint_update(ARMCPU *cpu, int n);
272/* Update the QEMU watchpoints for every guest watchpoint. This does a
273 * complete delete-and-reinstate of the QEMU watchpoint list and so is
274 * suitable for use after migration or on reset.
275 */
276void hw_watchpoint_update_all(ARMCPU *cpu);
46747d15
PM
277/* Update a QEMU breakpoint based on the information the guest has set in the
278 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
279 */
280void hw_breakpoint_update(ARMCPU *cpu, int n);
281/* Update the QEMU breakpoints for every guest breakpoint. This does a
282 * complete delete-and-reinstate of the QEMU breakpoint list and so is
283 * suitable for use after migration or on reset.
284 */
285void hw_breakpoint_update_all(ARMCPU *cpu);
9ee98ce8 286
b00d86bc
RH
287/* Callback function for checking if a breakpoint should trigger. */
288bool arm_debug_check_breakpoint(CPUState *cs);
289
3826121d
SF
290/* Callback function for checking if a watchpoint should trigger. */
291bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
292
40612000
JB
293/* Adjust addresses (in BE32 mode) before testing against watchpoint
294 * addresses.
295 */
296vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
297
3ff6fc91
PM
298/* Callback function for when a watchpoint or breakpoint triggers. */
299void arm_debug_excp_handler(CPUState *cs);
300
21fbea8c 301#if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
98128601
RH
302static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
303{
304 return false;
305}
21fbea8c
PMD
306static inline void arm_handle_psci_call(ARMCPU *cpu)
307{
308 g_assert_not_reached();
309}
98128601
RH
310#else
311/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
312bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
313/* Actually handle a PSCI call */
314void arm_handle_psci_call(ARMCPU *cpu);
315#endif
316
dc3c4c14
PM
317/**
318 * arm_clear_exclusive: clear the exclusive monitor
319 * @env: CPU env
320 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
321 */
322static inline void arm_clear_exclusive(CPUARMState *env)
323{
324 env->exclusive_addr = -1;
325}
326
1fa498fe
PM
327/**
328 * ARMFaultType: type of an ARM MMU fault
329 * This corresponds to the v8A pseudocode's Fault enumeration,
330 * with extensions for QEMU internal conditions.
331 */
332typedef enum ARMFaultType {
333 ARMFault_None,
334 ARMFault_AccessFlag,
335 ARMFault_Alignment,
336 ARMFault_Background,
337 ARMFault_Domain,
338 ARMFault_Permission,
339 ARMFault_Translation,
340 ARMFault_AddressSize,
341 ARMFault_SyncExternal,
342 ARMFault_SyncExternalOnWalk,
343 ARMFault_SyncParity,
344 ARMFault_SyncParityOnWalk,
345 ARMFault_AsyncParity,
346 ARMFault_AsyncExternal,
347 ARMFault_Debug,
348 ARMFault_TLBConflict,
f0a398a2 349 ARMFault_UnsuppAtomicUpdate,
1fa498fe
PM
350 ARMFault_Lockdown,
351 ARMFault_Exclusive,
352 ARMFault_ICacheMaint,
353 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
354 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
355} ARMFaultType;
356
e14b5a23
EI
357/**
358 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
1fa498fe
PM
359 * @type: Type of fault
360 * @level: Table walk level (for translation, access flag and permission faults)
361 * @domain: Domain of the fault address (for non-LPAE CPUs only)
e14b5a23
EI
362 * @s2addr: Address that caused a fault at stage 2
363 * @stage2: True if we faulted at stage 2
364 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
9861248f 365 * @s1ns: True if we faulted on a non-secure IPA while in secure state
c528af7a 366 * @ea: True if we should set the EA (external abort type) bit in syndrome
e14b5a23
EI
367 */
368typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
369struct ARMMMUFaultInfo {
1fa498fe 370 ARMFaultType type;
e14b5a23 371 target_ulong s2addr;
1fa498fe
PM
372 int level;
373 int domain;
e14b5a23
EI
374 bool stage2;
375 bool s1ptw;
9861248f 376 bool s1ns;
c528af7a 377 bool ea;
e14b5a23
EI
378};
379
1fa498fe
PM
380/**
381 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
382 * Compare pseudocode EncodeSDFSC(), though unlike that function
383 * we set up a whole FSR-format code including domain field and
384 * putting the high bit of the FSC into bit 10.
385 */
386static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
387{
388 uint32_t fsc;
389
390 switch (fi->type) {
391 case ARMFault_None:
392 return 0;
393 case ARMFault_AccessFlag:
394 fsc = fi->level == 1 ? 0x3 : 0x6;
395 break;
396 case ARMFault_Alignment:
397 fsc = 0x1;
398 break;
399 case ARMFault_Permission:
400 fsc = fi->level == 1 ? 0xd : 0xf;
401 break;
402 case ARMFault_Domain:
403 fsc = fi->level == 1 ? 0x9 : 0xb;
404 break;
405 case ARMFault_Translation:
406 fsc = fi->level == 1 ? 0x5 : 0x7;
407 break;
408 case ARMFault_SyncExternal:
409 fsc = 0x8 | (fi->ea << 12);
410 break;
411 case ARMFault_SyncExternalOnWalk:
412 fsc = fi->level == 1 ? 0xc : 0xe;
413 fsc |= (fi->ea << 12);
414 break;
415 case ARMFault_SyncParity:
416 fsc = 0x409;
417 break;
418 case ARMFault_SyncParityOnWalk:
419 fsc = fi->level == 1 ? 0x40c : 0x40e;
420 break;
421 case ARMFault_AsyncParity:
422 fsc = 0x408;
423 break;
424 case ARMFault_AsyncExternal:
425 fsc = 0x406 | (fi->ea << 12);
426 break;
427 case ARMFault_Debug:
428 fsc = 0x2;
429 break;
430 case ARMFault_TLBConflict:
431 fsc = 0x400;
432 break;
433 case ARMFault_Lockdown:
434 fsc = 0x404;
435 break;
436 case ARMFault_Exclusive:
437 fsc = 0x405;
438 break;
439 case ARMFault_ICacheMaint:
440 fsc = 0x4;
441 break;
442 case ARMFault_Background:
443 fsc = 0x0;
444 break;
445 case ARMFault_QEMU_NSCExec:
446 fsc = M_FAKE_FSR_NSC_EXEC;
447 break;
448 case ARMFault_QEMU_SFault:
449 fsc = M_FAKE_FSR_SFAULT;
450 break;
451 default:
452 /* Other faults can't occur in a context that requires a
453 * short-format status code.
454 */
455 g_assert_not_reached();
456 }
457
458 fsc |= (fi->domain << 4);
459 return fsc;
460}
461
462/**
463 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
464 * Compare pseudocode EncodeLDFSC(), though unlike that function
465 * we fill in also the LPAE bit 9 of a DFSR format.
466 */
467static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
468{
469 uint32_t fsc;
470
471 switch (fi->type) {
472 case ARMFault_None:
473 return 0;
474 case ARMFault_AddressSize:
13e481c9
RH
475 assert(fi->level >= -1 && fi->level <= 3);
476 if (fi->level < 0) {
477 fsc = 0b101001;
478 } else {
479 fsc = fi->level;
480 }
1fa498fe
PM
481 break;
482 case ARMFault_AccessFlag:
13e481c9
RH
483 assert(fi->level >= 0 && fi->level <= 3);
484 fsc = 0b001000 | fi->level;
1fa498fe
PM
485 break;
486 case ARMFault_Permission:
13e481c9
RH
487 assert(fi->level >= 0 && fi->level <= 3);
488 fsc = 0b001100 | fi->level;
1fa498fe
PM
489 break;
490 case ARMFault_Translation:
13e481c9
RH
491 assert(fi->level >= -1 && fi->level <= 3);
492 if (fi->level < 0) {
493 fsc = 0b101011;
494 } else {
495 fsc = 0b000100 | fi->level;
496 }
1fa498fe
PM
497 break;
498 case ARMFault_SyncExternal:
499 fsc = 0x10 | (fi->ea << 12);
500 break;
501 case ARMFault_SyncExternalOnWalk:
13e481c9
RH
502 assert(fi->level >= -1 && fi->level <= 3);
503 if (fi->level < 0) {
504 fsc = 0b010011;
505 } else {
506 fsc = 0b010100 | fi->level;
507 }
508 fsc |= fi->ea << 12;
1fa498fe
PM
509 break;
510 case ARMFault_SyncParity:
511 fsc = 0x18;
512 break;
513 case ARMFault_SyncParityOnWalk:
13e481c9
RH
514 assert(fi->level >= -1 && fi->level <= 3);
515 if (fi->level < 0) {
516 fsc = 0b011011;
517 } else {
518 fsc = 0b011100 | fi->level;
519 }
1fa498fe
PM
520 break;
521 case ARMFault_AsyncParity:
522 fsc = 0x19;
523 break;
524 case ARMFault_AsyncExternal:
525 fsc = 0x11 | (fi->ea << 12);
526 break;
527 case ARMFault_Alignment:
528 fsc = 0x21;
529 break;
530 case ARMFault_Debug:
531 fsc = 0x22;
532 break;
533 case ARMFault_TLBConflict:
534 fsc = 0x30;
535 break;
f0a398a2
RH
536 case ARMFault_UnsuppAtomicUpdate:
537 fsc = 0x31;
538 break;
1fa498fe
PM
539 case ARMFault_Lockdown:
540 fsc = 0x34;
541 break;
542 case ARMFault_Exclusive:
543 fsc = 0x35;
544 break;
545 default:
546 /* Other faults can't occur in a context that requires a
547 * long-format status code.
548 */
549 g_assert_not_reached();
550 }
551
552 fsc |= 1 << 9;
553 return fsc;
554}
555
3b39d734
PM
556static inline bool arm_extabort_type(MemTxResult result)
557{
558 /* The EA bit in syndromes and fault status registers is an
559 * IMPDEF classification of external aborts. ARM implementations
560 * usually use this to indicate AXI bus Decode error (0) or
561 * Slave error (1); in QEMU we follow that.
562 */
563 return result != MEMTX_DECODE_ERROR;
564}
565
9b12b6b4
RH
566#ifdef CONFIG_USER_ONLY
567void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
568 MMUAccessType access_type,
569 bool maperr, uintptr_t ra);
39a099ca
RH
570void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
571 MMUAccessType access_type, uintptr_t ra);
9b12b6b4 572#else
7350d553
RH
573bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
574 MMUAccessType access_type, int mmu_idx,
575 bool probe, uintptr_t retaddr);
9b12b6b4 576#endif
7350d553 577
b9f6033c
RH
578static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
579{
580 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
581}
582
583static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
584{
585 if (arm_feature(env, ARM_FEATURE_M)) {
586 return mmu_idx | ARM_MMU_IDX_M;
587 } else {
588 return mmu_idx | ARM_MMU_IDX_A;
589 }
590}
591
20dc67c9
RH
592static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
593{
594 /* AArch64 is always a-profile. */
595 return mmu_idx | ARM_MMU_IDX_A;
596}
597
b9f6033c
RH
598int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
599
b9f6033c
RH
600/* Return the MMU index for a v7M CPU in the specified security state */
601ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
602
8ae08860
RH
603/* Return true if the translation regime is using LPAE format page tables */
604bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
605
606/*
607 * Return true if the stage 1 translation regime is using LPAE
608 * format page tables
609 */
deb2db99 610bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
30901475
AB
611
612/* Raise a data fault alignment exception for the specified virtual address */
8905770b
MAL
613G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
614 MMUAccessType access_type,
615 int mmu_idx, uintptr_t retaddr);
30901475 616
c79c0a31
PM
617/* arm_cpu_do_transaction_failed: handle a memory system error response
618 * (eg "no device/memory present at address") by raising an external abort
619 * exception
620 */
621void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
622 vaddr addr, unsigned size,
623 MMUAccessType access_type,
624 int mmu_idx, MemTxAttrs attrs,
625 MemTxResult response, uintptr_t retaddr);
626
08267487 627/* Call any registered EL change hooks */
b5c53d1b
AL
628static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
629{
630 ARMELChangeHook *hook, *next;
631 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
632 hook->hook(cpu, hook->opaque);
633 }
634}
bd7d00fc
PM
635static inline void arm_call_el_change_hook(ARMCPU *cpu)
636{
08267487
AL
637 ARMELChangeHook *hook, *next;
638 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
639 hook->hook(cpu, hook->opaque);
bd7d00fc
PM
640 }
641}
642
339370b9
RH
643/* Return true if this address translation regime has two ranges. */
644static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
645{
646 switch (mmu_idx) {
647 case ARMMMUIdx_Stage1_E0:
648 case ARMMMUIdx_Stage1_E1:
452ef8cb 649 case ARMMMUIdx_Stage1_E1_PAN:
339370b9
RH
650 case ARMMMUIdx_E10_0:
651 case ARMMMUIdx_E10_1:
452ef8cb 652 case ARMMMUIdx_E10_1_PAN:
339370b9
RH
653 case ARMMMUIdx_E20_0:
654 case ARMMMUIdx_E20_2:
452ef8cb 655 case ARMMMUIdx_E20_2_PAN:
339370b9
RH
656 return true;
657 default:
658 return false;
659 }
660}
661
81636b70
RH
662static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
663{
664 switch (mmu_idx) {
665 case ARMMMUIdx_Stage1_E1_PAN:
666 case ARMMMUIdx_E10_1_PAN:
667 case ARMMMUIdx_E20_2_PAN:
81636b70
RH
668 return true;
669 default:
670 return false;
671 }
672}
673
edc05dd4
RH
674static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
675{
676 return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
677}
678
9c7ab8fc
RH
679/* Return the exception level which controls this address translation regime */
680static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
681{
682 switch (mmu_idx) {
683 case ARMMMUIdx_E20_0:
684 case ARMMMUIdx_E20_2:
685 case ARMMMUIdx_E20_2_PAN:
686 case ARMMMUIdx_Stage2:
b1a10c86 687 case ARMMMUIdx_Stage2_S:
9c7ab8fc
RH
688 case ARMMMUIdx_E2:
689 return 2;
d902ae75 690 case ARMMMUIdx_E3:
9c7ab8fc 691 return 3;
d902ae75 692 case ARMMMUIdx_E10_0:
9c7ab8fc 693 case ARMMMUIdx_Stage1_E0:
d902ae75 694 return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
9c7ab8fc
RH
695 case ARMMMUIdx_Stage1_E1:
696 case ARMMMUIdx_Stage1_E1_PAN:
9c7ab8fc
RH
697 case ARMMMUIdx_E10_1:
698 case ARMMMUIdx_E10_1_PAN:
699 case ARMMMUIdx_MPrivNegPri:
700 case ARMMMUIdx_MUserNegPri:
701 case ARMMMUIdx_MPriv:
702 case ARMMMUIdx_MUser:
703 case ARMMMUIdx_MSPrivNegPri:
704 case ARMMMUIdx_MSUserNegPri:
705 case ARMMMUIdx_MSPriv:
706 case ARMMMUIdx_MSUser:
707 return 1;
708 default:
709 g_assert_not_reached();
710 }
711}
712
e4c93e44
PM
713static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
714{
715 switch (mmu_idx) {
716 case ARMMMUIdx_E20_0:
717 case ARMMMUIdx_Stage1_E0:
718 case ARMMMUIdx_MUser:
719 case ARMMMUIdx_MSUser:
720 case ARMMMUIdx_MUserNegPri:
721 case ARMMMUIdx_MSUserNegPri:
722 return true;
723 default:
724 return false;
725 case ARMMMUIdx_E10_0:
726 case ARMMMUIdx_E10_1:
727 case ARMMMUIdx_E10_1_PAN:
728 g_assert_not_reached();
729 }
730}
731
8ae08860
RH
732/* Return the SCTLR value which controls this address translation regime */
733static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
734{
735 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
736}
737
f04383e7
PM
738/*
739 * These are the fields in VTCR_EL2 which affect both the Secure stage 2
740 * and the Non-Secure stage 2 translation regimes (and hence which are
741 * not present in VSTCR_EL2).
742 */
743#define VTCR_SHARED_FIELD_MASK \
744 (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
745 R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
746 R_VTCR_DS_MASK)
747
c1547bba
PM
748/* Return the value of the TCR controlling this translation regime */
749static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
38659d31
RH
750{
751 if (mmu_idx == ARMMMUIdx_Stage2) {
988cc190 752 return env->cp15.vtcr_el2;
38659d31 753 }
b1a10c86
RDC
754 if (mmu_idx == ARMMMUIdx_Stage2_S) {
755 /*
f04383e7
PM
756 * Secure stage 2 shares fields from VTCR_EL2. We merge those
757 * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
758 * value so the callers don't need to special case this.
759 *
760 * If a future architecture change defines bits in VSTCR_EL2 that
761 * overlap with these VTCR_EL2 fields we may need to revisit this.
b1a10c86 762 */
f04383e7
PM
763 uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
764 v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
765 return v;
b1a10c86 766 }
cb4a0a34 767 return env->cp15.tcr_el[regime_el(env, mmu_idx)];
dfce4aa8
PM
768}
769
88ce6c6e
PM
770/**
771 * arm_num_brps: Return number of implemented breakpoints.
772 * Note that the ID register BRPS field is "number of bps - 1",
773 * and we return the actual number of breakpoints.
774 */
775static inline int arm_num_brps(ARMCPU *cpu)
776{
777 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
778 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
779 } else {
4426d361 780 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
88ce6c6e
PM
781 }
782}
783
784/**
785 * arm_num_wrps: Return number of implemented watchpoints.
786 * Note that the ID register WRPS field is "number of wps - 1",
787 * and we return the actual number of watchpoints.
788 */
789static inline int arm_num_wrps(ARMCPU *cpu)
790{
791 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
792 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
793 } else {
4426d361 794 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
88ce6c6e
PM
795 }
796}
797
798/**
799 * arm_num_ctx_cmps: Return number of implemented context comparators.
800 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
801 * and we return the actual number of comparators.
802 */
803static inline int arm_num_ctx_cmps(ARMCPU *cpu)
804{
805 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
806 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
807 } else {
4426d361 808 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
88ce6c6e
PM
809 }
810}
811
5529bf18
PM
812/**
813 * v7m_using_psp: Return true if using process stack pointer
814 * Return true if the CPU is currently using the process stack
815 * pointer, or false if it is using the main stack pointer.
816 */
817static inline bool v7m_using_psp(CPUARMState *env)
818{
819 /* Handler mode always uses the main stack; for thread mode
820 * the CONTROL.SPSEL bit determines the answer.
821 * Note that in v7M it is not possible to be in Handler mode with
822 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
823 */
824 return !arm_v7m_is_handler_mode(env) &&
825 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
826}
827
55203189
PM
828/**
829 * v7m_sp_limit: Return SP limit for current CPU state
830 * Return the SP limit value for the current CPU security state
831 * and stack pointer.
832 */
833static inline uint32_t v7m_sp_limit(CPUARMState *env)
834{
835 if (v7m_using_psp(env)) {
836 return env->v7m.psplim[env->v7m.secure];
837 } else {
838 return env->v7m.msplim[env->v7m.secure];
839 }
840}
841
787a7e76
PMD
842/**
843 * v7m_cpacr_pass:
844 * Return true if the v7M CPACR permits access to the FPU for the specified
845 * security state and privilege level.
846 */
847static inline bool v7m_cpacr_pass(CPUARMState *env,
848 bool is_secure, bool is_priv)
849{
850 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
851 case 0:
852 case 2: /* UNPREDICTABLE: we treat like 0 */
853 return false;
854 case 1:
855 return is_priv;
856 case 3:
857 return true;
858 default:
859 g_assert_not_reached();
860 }
861}
862
81e37284
PM
863/**
864 * aarch32_mode_name(): Return name of the AArch32 CPU mode
865 * @psr: Program Status Register indicating CPU mode
866 *
867 * Returns, for debug logging purposes, a printable representation
868 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
869 * the low bits of the specified PSR.
870 */
871static inline const char *aarch32_mode_name(uint32_t psr)
872{
873 static const char cpu_mode_names[16][4] = {
874 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
875 "???", "???", "hyp", "und", "???", "???", "???", "sys"
876 };
877
878 return cpu_mode_names[psr & 0xf];
879}
880
89430fc6
PM
881/**
882 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
883 *
884 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
885 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
886 * Must be called with the iothread lock held.
887 */
888void arm_cpu_update_virq(ARMCPU *cpu);
889
890/**
891 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
892 *
893 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
894 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
895 * Must be called with the iothread lock held.
896 */
897void arm_cpu_update_vfiq(ARMCPU *cpu);
898
3c29632f
RH
899/**
900 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
901 *
902 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
903 * following a change to the HCR_EL2.VSE bit.
904 */
905void arm_cpu_update_vserr(ARMCPU *cpu);
906
164690b2
RH
907/**
908 * arm_mmu_idx_el:
909 * @env: The cpu environment
910 * @el: The EL to use.
911 *
912 * Return the full ARMMMUIdx for the translation regime for EL.
913 */
914ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
915
50494a27
RH
916/**
917 * arm_mmu_idx:
918 * @env: The cpu environment
919 *
920 * Return the full ARMMMUIdx for the current translation regime.
921 */
922ARMMMUIdx arm_mmu_idx(CPUARMState *env);
923
64be86ab
RH
924/**
925 * arm_stage1_mmu_idx:
926 * @env: The cpu environment
927 *
928 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
929 */
930#ifdef CONFIG_USER_ONLY
d8cca960
RH
931static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
932{
933 return ARMMMUIdx_Stage1_E0;
934}
64be86ab
RH
935static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
936{
2859d7b5 937 return ARMMMUIdx_Stage1_E0;
64be86ab
RH
938}
939#else
d8cca960 940ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
64be86ab
RH
941ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
942#endif
943
fee7aa46
RH
944/**
945 * arm_mmu_idx_is_stage1_of_2:
946 * @mmu_idx: The ARMMMUIdx to test
947 *
948 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
949 * first stage of a two stage regime.
950 */
951static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
952{
953 switch (mmu_idx) {
954 case ARMMMUIdx_Stage1_E0:
955 case ARMMMUIdx_Stage1_E1:
452ef8cb 956 case ARMMMUIdx_Stage1_E1_PAN:
fee7aa46
RH
957 return true;
958 default:
959 return false;
960 }
961}
962
4f9584ed
RH
963static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
964 const ARMISARegisters *id)
965{
f062d144 966 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
4f9584ed
RH
967
968 if ((features >> ARM_FEATURE_V4T) & 1) {
969 valid |= CPSR_T;
970 }
971 if ((features >> ARM_FEATURE_V5) & 1) {
972 valid |= CPSR_Q; /* V5TE in reality*/
973 }
974 if ((features >> ARM_FEATURE_V6) & 1) {
975 valid |= CPSR_E | CPSR_GE;
976 }
977 if ((features >> ARM_FEATURE_THUMB2) & 1) {
978 valid |= CPSR_IT;
979 }
873b73c0 980 if (isar_feature_aa32_jazelle(id)) {
f062d144
RH
981 valid |= CPSR_J;
982 }
220f508f
RH
983 if (isar_feature_aa32_pan(id)) {
984 valid |= CPSR_PAN;
985 }
dc8b1853
RC
986 if (isar_feature_aa32_dit(id)) {
987 valid |= CPSR_DIT;
988 }
f2f68a78
RC
989 if (isar_feature_aa32_ssbs(id)) {
990 valid |= CPSR_SSBS;
991 }
4f9584ed
RH
992
993 return valid;
994}
995
14084511
RH
996static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
997{
998 uint32_t valid;
999
1000 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1001 if (isar_feature_aa64_bti(id)) {
1002 valid |= PSTATE_BTYPE;
1003 }
220f508f
RH
1004 if (isar_feature_aa64_pan(id)) {
1005 valid |= PSTATE_PAN;
1006 }
9eeb7a1c
RH
1007 if (isar_feature_aa64_uao(id)) {
1008 valid |= PSTATE_UAO;
1009 }
dc8b1853
RC
1010 if (isar_feature_aa64_dit(id)) {
1011 valid |= PSTATE_DIT;
1012 }
f2f68a78
RC
1013 if (isar_feature_aa64_ssbs(id)) {
1014 valid |= PSTATE_SSBS;
1015 }
4b779ceb
RH
1016 if (isar_feature_aa64_mte(id)) {
1017 valid |= PSTATE_TCO;
1018 }
14084511
RH
1019
1020 return valid;
1021}
1022
104f703d
PM
1023/* Granule size (i.e. page size) */
1024typedef enum ARMGranuleSize {
1025 /* Same order as TG0 encoding */
1026 Gran4K,
1027 Gran64K,
1028 Gran16K,
1029 GranInvalid,
1030} ARMGranuleSize;
1031
3c003f70
PM
1032/**
1033 * arm_granule_bits: Return address size of the granule in bits
1034 *
1035 * Return the address size of the granule in bits. This corresponds
1036 * to the pseudocode TGxGranuleBits().
1037 */
1038static inline int arm_granule_bits(ARMGranuleSize gran)
1039{
1040 switch (gran) {
1041 case Gran64K:
1042 return 16;
1043 case Gran16K:
1044 return 14;
1045 case Gran4K:
1046 return 12;
1047 default:
1048 g_assert_not_reached();
1049 }
1050}
1051
ba97be9f
RH
1052/*
1053 * Parameters of a given virtual address, as extracted from the
1054 * translation control register (TCR) for a given regime.
1055 */
1056typedef struct ARMVAParameters {
1057 unsigned tsz : 8;
f4ecc015 1058 unsigned ps : 3;
ef56c242 1059 unsigned sh : 2;
ba97be9f
RH
1060 unsigned select : 1;
1061 bool tbi : 1;
1062 bool epd : 1;
1063 bool hpd : 1;
ebf93ce7 1064 bool tsz_oob : 1; /* tsz has been clamped to legal range */
ef56c242 1065 bool ds : 1;
89739227
RH
1066 bool ha : 1;
1067 bool hd : 1;
3c003f70 1068 ARMGranuleSize gran : 2;
ba97be9f
RH
1069} ARMVAParameters;
1070
bf0be433
RH
1071ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1072 ARMMMUIdx mmu_idx, bool data);
bf0be433 1073
8ae08860
RH
1074int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1075int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
671efad1 1076int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
8ae08860 1077
81ae05fa
RH
1078/* Determine if allocation tags are available. */
1079static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1080 uint64_t sctlr)
1081{
1082 if (el < 3
1083 && arm_feature(env, ARM_FEATURE_EL3)
1084 && !(env->cp15.scr_el3 & SCR_ATA)) {
1085 return false;
1086 }
0da067f2 1087 if (el < 2 && arm_is_el2_enabled(env)) {
4301acd7
RH
1088 uint64_t hcr = arm_hcr_el2_eff(env);
1089 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1090 return false;
1091 }
81ae05fa
RH
1092 }
1093 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1094 return sctlr != 0;
1095}
1096
ebae861f
PMD
1097#ifndef CONFIG_USER_ONLY
1098
787a7e76
PMD
1099/* Security attributes for an address, as returned by v8m_security_lookup. */
1100typedef struct V8M_SAttributes {
1101 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1102 bool ns;
1103 bool nsc;
1104 uint8_t sregion;
1105 bool srvalid;
1106 uint8_t iregion;
1107 bool irvalid;
1108} V8M_SAttributes;
1109
1110void v8m_security_lookup(CPUARMState *env, uint32_t address,
1111 MMUAccessType access_type, ARMMMUIdx mmu_idx,
dbf2a71a 1112 bool secure, V8M_SAttributes *sattrs);
787a7e76 1113
ebae861f
PMD
1114/* Cacheability and shareability attributes for a memory access */
1115typedef struct ARMCacheAttrs {
9f225e60
PM
1116 /*
1117 * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1118 * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1119 */
1120 unsigned int attrs:8;
ebae861f 1121 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
9f225e60 1122 bool is_s2_format:1;
937f2245 1123 bool guarded:1; /* guarded bit of the v8-64 PTE */
ebae861f
PMD
1124} ARMCacheAttrs;
1125
de05a709
RH
1126/* Fields that are valid upon success. */
1127typedef struct GetPhysAddrResult {
7fa7ea8f 1128 CPUTLBEntryFull f;
de05a709
RH
1129 ARMCacheAttrs cacheattrs;
1130} GetPhysAddrResult;
1131
def8aa5b
RH
1132/**
1133 * get_phys_addr_with_secure: get the physical address for a virtual address
1134 * @env: CPUARMState
1135 * @address: virtual address to get physical address for
1136 * @access_type: 0 for read, 1 for write, 2 for execute
1137 * @mmu_idx: MMU index indicating required translation regime
1138 * @is_secure: security state for the access
1139 * @result: set on translation success.
1140 * @fi: set to fault info if the translation fails
1141 *
1142 * Find the physical address corresponding to the given virtual address,
1143 * by doing a translation table walk on MMU based systems or using the
1144 * MPU state on MPU based systems.
1145 *
1146 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1147 * prot and page_size may not be filled in, and the populated fsr value provides
1148 * information on why the translation aborted, in the format of a
1149 * DFSR/IFSR fault register, with the following caveats:
1150 * * we honour the short vs long DFSR format differences.
1151 * * the WnR bit is never set (the caller must do this).
1152 * * for PSMAv5 based systems we don't bother to return a full FSR format
1153 * value.
1154 */
1155bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
1156 MMUAccessType access_type,
1157 ARMMMUIdx mmu_idx, bool is_secure,
1158 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1159 __attribute__((nonnull));
1160
1161/**
1162 * get_phys_addr: get the physical address for a virtual address
1163 * @env: CPUARMState
1164 * @address: virtual address to get physical address for
1165 * @access_type: 0 for read, 1 for write, 2 for execute
1166 * @mmu_idx: MMU index indicating required translation regime
1167 * @result: set on translation success.
1168 * @fi: set to fault info if the translation fails
1169 *
1170 * Similarly, but use the security regime of @mmu_idx.
1171 */
ebae861f
PMD
1172bool get_phys_addr(CPUARMState *env, target_ulong address,
1173 MMUAccessType access_type, ARMMMUIdx mmu_idx,
de05a709 1174 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
7e98e21c 1175 __attribute__((nonnull));
ebae861f 1176
d2c92e58
RH
1177bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1178 MMUAccessType access_type, ARMMMUIdx mmu_idx,
e9fb7090
RH
1179 bool is_secure, GetPhysAddrResult *result,
1180 ARMMMUFaultInfo *fi, uint32_t *mregion);
d2c92e58 1181
fc6177af 1182void arm_log_exception(CPUState *cs);
b59f479b 1183
ebae861f
PMD
1184#endif /* !CONFIG_USER_ONLY */
1185
4b779ceb
RH
1186/*
1187 * The log2 of the words in the tag block, for GMID_EL1.BS.
1188 * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1189 */
1190#define GMID_EL1_BS 6
1191
b64ee454
RH
1192/*
1193 * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1194 * the same simd_desc() encoding due to restrictions on size.
1195 * Use these instead.
1196 */
1197FIELD(PREDDESC, OPRSZ, 0, 6)
1198FIELD(PREDDESC, ESZ, 6, 2)
1199FIELD(PREDDESC, DATA, 8, 24)
1200
206adacf
RH
1201/*
1202 * The SVE simd_data field, for memory ops, contains either
1203 * rd (5 bits) or a shift count (2 bits).
1204 */
1205#define SVE_MTEDESC_SHIFT 5
1206
0a405be2
RH
1207/* Bits within a descriptor passed to the helper_mte_check* functions. */
1208FIELD(MTEDESC, MIDX, 0, 4)
1209FIELD(MTEDESC, TBI, 4, 2)
1210FIELD(MTEDESC, TCMA, 6, 2)
1211FIELD(MTEDESC, WRITE, 8, 1)
28f32503 1212FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9) /* size - 1 */
0a405be2 1213
d304d280 1214bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
bd47b61c 1215uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
2e34ff45 1216
efbc78ad
RH
1217static inline int allocation_tag_from_addr(uint64_t ptr)
1218{
1219 return extract64(ptr, 56, 4);
1220}
1221
da54941f
RH
1222static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1223{
1224 return deposit64(ptr, 56, 4, rtag);
1225}
1226
2e34ff45
RH
1227/* Return true if tbi bits mean that the access is checked. */
1228static inline bool tbi_check(uint32_t desc, int bit55)
1229{
1230 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1231}
1232
1233/* Return true if tcma bits mean that the access is unchecked. */
1234static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1235{
1236 /*
1237 * We had extracted bit55 and ptr_tag for other reasons, so fold
1238 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1239 */
1240 bool match = ((ptr_tag + bit55) & 0xf) == 0;
1241 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1242 return tcma && match;
1243}
1244
1245/*
1246 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
1247 * for the tag to be present in the FAR_ELx register. But for user-only
1248 * mode, we do not have a TLB with which to implement this, so we must
1249 * remove the top byte.
1250 */
1251static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1252{
2e34ff45 1253#ifdef CONFIG_USER_ONLY
16c84978
RH
1254 /* TBI0 is known to be enabled, while TBI1 is disabled. */
1255 ptr &= sextract64(ptr, 0, 56);
2e34ff45
RH
1256#endif
1257 return ptr;
1258}
1259
1260static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1261{
1262#ifdef CONFIG_USER_ONLY
1263 int64_t clean_ptr = sextract64(ptr, 0, 56);
1264 if (tbi_check(desc, clean_ptr < 0)) {
1265 ptr = clean_ptr;
1266 }
1267#endif
1268 return ptr;
1269}
1270
507b6a50
PM
1271/* Values for M-profile PSR.ECI for MVE insns */
1272enum MVEECIState {
1273 ECI_NONE = 0, /* No completed beats */
1274 ECI_A0 = 1, /* Completed: A0 */
1275 ECI_A0A1 = 2, /* Completed: A0, A1 */
1276 /* 3 is reserved */
1277 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1278 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1279 /* All other values reserved */
1280};
1281
0130895d
AG
1282/* Definitions for the PMU registers */
1283#define PMCRN_MASK 0xf800
1284#define PMCRN_SHIFT 11
47b385da 1285#define PMCRLP 0x80
0130895d
AG
1286#define PMCRLC 0x40
1287#define PMCRDP 0x20
1288#define PMCRX 0x10
1289#define PMCRD 0x8
1290#define PMCRC 0x4
1291#define PMCRP 0x2
1292#define PMCRE 0x1
1293/*
9323e79f 1294 * Mask of PMCR bits writable by guest (not including WO bits like C, P,
0130895d
AG
1295 * which can be written as 1 to trigger behaviour but which stay RAZ).
1296 */
47b385da 1297#define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
0130895d
AG
1298
1299#define PMXEVTYPER_P 0x80000000
1300#define PMXEVTYPER_U 0x40000000
1301#define PMXEVTYPER_NSK 0x20000000
1302#define PMXEVTYPER_NSU 0x10000000
1303#define PMXEVTYPER_NSH 0x08000000
1304#define PMXEVTYPER_M 0x04000000
1305#define PMXEVTYPER_MT 0x02000000
1306#define PMXEVTYPER_EVTCOUNT 0x0000ffff
1307#define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1308 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1309 PMXEVTYPER_M | PMXEVTYPER_MT | \
1310 PMXEVTYPER_EVTCOUNT)
1311
1312#define PMCCFILTR 0xf8000000
1313#define PMCCFILTR_M PMXEVTYPER_M
1314#define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1315
1316static inline uint32_t pmu_num_counters(CPUARMState *env)
1317{
24526bb9
PM
1318 ARMCPU *cpu = env_archcpu(env);
1319
1320 return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
0130895d
AG
1321}
1322
1323/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1324static inline uint64_t pmu_counter_mask(CPUARMState *env)
1325{
c117c064 1326 return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
0130895d
AG
1327}
1328
89f4f20e
PM
1329#ifdef TARGET_AARCH64
1330int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
1331int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
1332int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
1333int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
07301161 1334void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
e74c0976 1335void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
07301161
RH
1336void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1337void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
89f4f20e
PM
1338#endif
1339
7c1aaf98
RH
1340#ifdef CONFIG_USER_ONLY
1341static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
1342#else
1343void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
1344#endif
1345
19668718
RH
1346bool el_is_in_host(CPUARMState *env, int el);
1347
b6f8b358 1348void aa32_max_features(ARMCPU *cpu);
57287a6e 1349int exception_target_el(CPUARMState *env);
55ba15b7 1350bool arm_singlestep_active(CPUARMState *env);
31c8df53 1351bool arm_generate_debug_exceptions(CPUARMState *env);
b6f8b358 1352
f43ee493
PM
1353/* Add the cpreg definitions for debug related system registers */
1354void define_debug_regs(ARMCPU *cpu);
1355
1356/* Effective value of MDCR_EL2 */
1357static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1358{
1359 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1360}
1361
886902ec
RH
1362/* Powers of 2 for sve_vq_map et al. */
1363#define SVE_VQ_POW2_MAP \
1364 ((1 << (1 - 1)) | (1 << (2 - 1)) | \
1365 (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1366
361c33f6
PM
1367/*
1368 * Return true if it is possible to take a fine-grained-trap to EL2.
1369 */
1370static inline bool arm_fgt_active(CPUARMState *env, int el)
1371{
1372 /*
1373 * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1374 * that can affect EL0, but it is harmless to do the test also for
1375 * traps on registers that are only accessible at EL1 because if the test
1376 * returns true then we can't be executing at EL1 anyway.
1377 * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1378 * traps from AArch32 only happen for the EL0 is AArch32 case.
1379 */
1380 return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1381 el < 2 && arm_is_el2_enabled(env) &&
1382 arm_el_is_aa64(env, 1) &&
1383 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1384 (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1385}
1386
671efad1 1387void assert_hflags_rebuild_correctly(CPUARMState *env);
ccd38087 1388#endif