]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/internals.h
Merge tag 'hppa-boot-reboot-fixes-pull-request' of https://github.com/hdeller/qemu...
[mirror_qemu.git] / target / arm / internals.h
CommitLineData
ccd38087
PM
1/*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
fcf5ef2a 21 * between different source files within target/arm/ but which are
ccd38087
PM
22 * private to it and not required by the rest of QEMU.
23 */
24
25#ifndef TARGET_ARM_INTERNALS_H
26#define TARGET_ARM_INTERNALS_H
27
abc24d86 28#include "hw/registerfields.h"
28f32503 29#include "tcg/tcg-gvec-desc.h"
1fe27859 30#include "syndrome.h"
abc24d86 31
99a99c1f
SB
32/* register banks for CPU modes */
33#define BANK_USRSYS 0
34#define BANK_SVC 1
35#define BANK_ABT 2
36#define BANK_UND 3
37#define BANK_IRQ 4
38#define BANK_FIQ 5
39#define BANK_HYP 6
40#define BANK_MON 7
41
d4a2dc67
PM
42static inline bool excp_is_internal(int excp)
43{
44 /* Return true if this exception number represents a QEMU-internal
45 * exception that will not be passed to the guest.
46 */
47 return excp == EXCP_INTERRUPT
48 || excp == EXCP_HLT
49 || excp == EXCP_DEBUG
50 || excp == EXCP_HALTED
51 || excp == EXCP_EXCEPTION_EXIT
52 || excp == EXCP_KERNEL_TRAP
05188cc7 53 || excp == EXCP_SEMIHOST;
d4a2dc67
PM
54}
55
ccd38087
PM
56/* Scale factor for generic timers, ie number of ns per tick.
57 * This gives a 62.5MHz timer.
58 */
59#define GTIMER_SCALE 16
60
abc24d86
MD
61/* Bit definitions for the v7M CONTROL register */
62FIELD(V7M_CONTROL, NPRIV, 0, 1)
63FIELD(V7M_CONTROL, SPSEL, 1, 1)
64FIELD(V7M_CONTROL, FPCA, 2, 1)
3e3fa230 65FIELD(V7M_CONTROL, SFPA, 3, 1)
abc24d86 66
4d1e7a47
PM
67/* Bit definitions for v7M exception return payload */
68FIELD(V7M_EXCRET, ES, 0, 1)
69FIELD(V7M_EXCRET, RES0, 1, 1)
70FIELD(V7M_EXCRET, SPSEL, 2, 1)
71FIELD(V7M_EXCRET, MODE, 3, 1)
72FIELD(V7M_EXCRET, FTYPE, 4, 1)
73FIELD(V7M_EXCRET, DCRS, 5, 1)
74FIELD(V7M_EXCRET, S, 6, 1)
75FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76
d02a8698
PM
77/* Minimum value which is a magic number for exception return */
78#define EXC_RETURN_MIN_MAGIC 0xff000000
79/* Minimum number which is a magic number for function or exception return
80 * when using v8M security extension
81 */
82#define FNC_RETURN_MIN_MAGIC 0xfefffffe
83
8b7a5bbe
RH
84/* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
85FIELD(DBGWCR, E, 0, 1)
86FIELD(DBGWCR, PAC, 1, 2)
87FIELD(DBGWCR, LSC, 3, 2)
88FIELD(DBGWCR, BAS, 5, 8)
89FIELD(DBGWCR, HMC, 13, 1)
90FIELD(DBGWCR, SSC, 14, 2)
91FIELD(DBGWCR, LBN, 16, 4)
92FIELD(DBGWCR, WT, 20, 1)
93FIELD(DBGWCR, MASK, 24, 5)
94FIELD(DBGWCR, SSCE, 29, 1)
95
35337cc3
PM
96/* We use a few fake FSR values for internal purposes in M profile.
97 * M profile cores don't have A/R format FSRs, but currently our
98 * get_phys_addr() code assumes A/R profile and reports failures via
99 * an A/R format FSR value. We then translate that into the proper
100 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
101 * Mostly the FSR values we use for this are those defined for v7PMSA,
102 * since we share some of that codepath. A few kinds of fault are
103 * only for M profile and have no A/R equivalent, though, so we have
104 * to pick a value from the reserved range (which we never otherwise
105 * generate) to use for these.
106 * These values will never be visible to the guest.
107 */
108#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
109#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
110
597610eb
PM
111/**
112 * raise_exception: Raise the specified exception.
113 * Raise a guest exception with the specified value, syndrome register
114 * and target exception level. This should be called from helper functions,
115 * and never returns because we will longjump back up to the CPU main loop.
116 */
8905770b
MAL
117G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
118 uint32_t syndrome, uint32_t target_el);
597610eb 119
7469f6c6
RH
120/*
121 * Similarly, but also use unwinding to restore cpu state.
122 */
8905770b 123G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
7469f6c6
RH
124 uint32_t syndrome, uint32_t target_el,
125 uintptr_t ra);
126
2a923c4d
EI
127/*
128 * For AArch64, map a given EL to an index in the banked_spsr array.
7847f9ea
PM
129 * Note that this mapping and the AArch32 mapping defined in bank_number()
130 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
131 * mandated mapping between each other.
2a923c4d
EI
132 */
133static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
134{
135 static const unsigned int map[4] = {
99a99c1f
SB
136 [1] = BANK_SVC, /* EL1. */
137 [2] = BANK_HYP, /* EL2. */
138 [3] = BANK_MON, /* EL3. */
2a923c4d
EI
139 };
140 assert(el >= 1 && el <= 3);
141 return map[el];
142}
143
c766568d
PM
144/* Map CPU modes onto saved register banks. */
145static inline int bank_number(int mode)
146{
147 switch (mode) {
148 case ARM_CPU_MODE_USR:
149 case ARM_CPU_MODE_SYS:
150 return BANK_USRSYS;
151 case ARM_CPU_MODE_SVC:
152 return BANK_SVC;
153 case ARM_CPU_MODE_ABT:
154 return BANK_ABT;
155 case ARM_CPU_MODE_UND:
156 return BANK_UND;
157 case ARM_CPU_MODE_IRQ:
158 return BANK_IRQ;
159 case ARM_CPU_MODE_FIQ:
160 return BANK_FIQ;
161 case ARM_CPU_MODE_HYP:
162 return BANK_HYP;
163 case ARM_CPU_MODE_MON:
164 return BANK_MON;
165 }
166 g_assert_not_reached();
167}
168
593cfa2b
PM
169/**
170 * r14_bank_number: Map CPU mode onto register bank for r14
171 *
172 * Given an AArch32 CPU mode, return the index into the saved register
173 * banks to use for the R14 (LR) in that mode. This is the same as
174 * bank_number(), except for the special case of Hyp mode, where
175 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
176 * This should be used as the index into env->banked_r14[], and
177 * bank_number() used for the index into env->banked_r13[] and
178 * env->banked_spsr[].
179 */
180static inline int r14_bank_number(int mode)
181{
182 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
183}
184
ccd38087
PM
185void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
186void arm_translate_init(void);
187
475e56b6
EE
188void arm_restore_state_to_opc(CPUState *cs,
189 const TranslationBlock *tb,
190 const uint64_t *data);
191
78271684 192#ifdef CONFIG_TCG
8349d2ae 193void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
78271684
CF
194#endif /* CONFIG_TCG */
195
6ce21abd 196typedef enum ARMFPRounding {
ccd38087
PM
197 FPROUNDING_TIEEVEN,
198 FPROUNDING_POSINF,
199 FPROUNDING_NEGINF,
200 FPROUNDING_ZERO,
201 FPROUNDING_TIEAWAY,
202 FPROUNDING_ODD
6ce21abd 203} ARMFPRounding;
ccd38087 204
6ce21abd
RH
205extern const FloatRoundMode arm_rmode_to_sf_map[6];
206
207static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
208{
209 assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
210 return arm_rmode_to_sf_map[rmode];
211}
ccd38087 212
9208b961
EI
213static inline void aarch64_save_sp(CPUARMState *env, int el)
214{
215 if (env->pstate & PSTATE_SP) {
216 env->sp_el[el] = env->xregs[31];
217 } else {
218 env->sp_el[0] = env->xregs[31];
219 }
220}
221
222static inline void aarch64_restore_sp(CPUARMState *env, int el)
223{
224 if (env->pstate & PSTATE_SP) {
225 env->xregs[31] = env->sp_el[el];
226 } else {
227 env->xregs[31] = env->sp_el[0];
228 }
229}
230
f502cfc2
PM
231static inline void update_spsel(CPUARMState *env, uint32_t imm)
232{
dcbff19b 233 unsigned int cur_el = arm_current_el(env);
f502cfc2
PM
234 /* Update PSTATE SPSel bit; this requires us to update the
235 * working stack pointer in xregs[31].
236 */
237 if (!((imm ^ env->pstate) & PSTATE_SP)) {
238 return;
239 }
9208b961 240 aarch64_save_sp(env, cur_el);
f502cfc2
PM
241 env->pstate = deposit32(env->pstate, 0, 1, imm);
242
61d4b215
EI
243 /* We rely on illegal updates to SPsel from EL0 to get trapped
244 * at translation time.
f502cfc2 245 */
61d4b215 246 assert(cur_el >= 1 && cur_el <= 3);
9208b961 247 aarch64_restore_sp(env, cur_el);
f502cfc2
PM
248}
249
1853d5a9
EI
250/*
251 * arm_pamax
252 * @cpu: ARMCPU
253 *
254 * Returns the implementation defined bit-width of physical addresses.
255 * The ARMv8 reference manuals refer to this as PAMax().
256 */
71a77257 257unsigned int arm_pamax(ARMCPU *cpu);
1853d5a9 258
73c5211b
PM
259/* Return true if extended addresses are enabled.
260 * This is always the case if our translation regime is 64 bit,
261 * but depends on TTBCR.EAE for 32 bit.
262 */
263static inline bool extended_addresses_enabled(CPUARMState *env)
264{
cb4a0a34 265 uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
452c67a4
TR
266 if (arm_feature(env, ARM_FEATURE_PMSA) &&
267 arm_feature(env, ARM_FEATURE_V8)) {
268 return true;
269 }
11f136ee 270 return arm_el_is_aa64(env, 1) ||
cb4a0a34 271 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
73c5211b
PM
272}
273
9ee98ce8
PM
274/* Update a QEMU watchpoint based on the information the guest has set in the
275 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
276 */
277void hw_watchpoint_update(ARMCPU *cpu, int n);
278/* Update the QEMU watchpoints for every guest watchpoint. This does a
279 * complete delete-and-reinstate of the QEMU watchpoint list and so is
280 * suitable for use after migration or on reset.
281 */
282void hw_watchpoint_update_all(ARMCPU *cpu);
46747d15
PM
283/* Update a QEMU breakpoint based on the information the guest has set in the
284 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
285 */
286void hw_breakpoint_update(ARMCPU *cpu, int n);
287/* Update the QEMU breakpoints for every guest breakpoint. This does a
288 * complete delete-and-reinstate of the QEMU breakpoint list and so is
289 * suitable for use after migration or on reset.
290 */
291void hw_breakpoint_update_all(ARMCPU *cpu);
9ee98ce8 292
b00d86bc
RH
293/* Callback function for checking if a breakpoint should trigger. */
294bool arm_debug_check_breakpoint(CPUState *cs);
295
3826121d
SF
296/* Callback function for checking if a watchpoint should trigger. */
297bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
298
40612000
JB
299/* Adjust addresses (in BE32 mode) before testing against watchpoint
300 * addresses.
301 */
302vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
303
3ff6fc91
PM
304/* Callback function for when a watchpoint or breakpoint triggers. */
305void arm_debug_excp_handler(CPUState *cs);
306
21fbea8c 307#if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
98128601
RH
308static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
309{
310 return false;
311}
21fbea8c
PMD
312static inline void arm_handle_psci_call(ARMCPU *cpu)
313{
314 g_assert_not_reached();
315}
98128601
RH
316#else
317/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
318bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
319/* Actually handle a PSCI call */
320void arm_handle_psci_call(ARMCPU *cpu);
321#endif
322
dc3c4c14
PM
323/**
324 * arm_clear_exclusive: clear the exclusive monitor
325 * @env: CPU env
326 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
327 */
328static inline void arm_clear_exclusive(CPUARMState *env)
329{
330 env->exclusive_addr = -1;
331}
332
1fa498fe
PM
333/**
334 * ARMFaultType: type of an ARM MMU fault
335 * This corresponds to the v8A pseudocode's Fault enumeration,
336 * with extensions for QEMU internal conditions.
337 */
338typedef enum ARMFaultType {
339 ARMFault_None,
340 ARMFault_AccessFlag,
341 ARMFault_Alignment,
342 ARMFault_Background,
343 ARMFault_Domain,
344 ARMFault_Permission,
345 ARMFault_Translation,
346 ARMFault_AddressSize,
347 ARMFault_SyncExternal,
348 ARMFault_SyncExternalOnWalk,
349 ARMFault_SyncParity,
350 ARMFault_SyncParityOnWalk,
351 ARMFault_AsyncParity,
352 ARMFault_AsyncExternal,
353 ARMFault_Debug,
354 ARMFault_TLBConflict,
f0a398a2 355 ARMFault_UnsuppAtomicUpdate,
1fa498fe
PM
356 ARMFault_Lockdown,
357 ARMFault_Exclusive,
358 ARMFault_ICacheMaint,
359 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
360 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
11b76fda
RH
361 ARMFault_GPCFOnWalk,
362 ARMFault_GPCFOnOutput,
1fa498fe
PM
363} ARMFaultType;
364
11b76fda
RH
365typedef enum ARMGPCF {
366 GPCF_None,
367 GPCF_AddressSize,
368 GPCF_Walk,
369 GPCF_EABT,
370 GPCF_Fail,
371} ARMGPCF;
372
e14b5a23
EI
373/**
374 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
1fa498fe 375 * @type: Type of fault
11b76fda 376 * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
1fa498fe
PM
377 * @level: Table walk level (for translation, access flag and permission faults)
378 * @domain: Domain of the fault address (for non-LPAE CPUs only)
e14b5a23 379 * @s2addr: Address that caused a fault at stage 2
11b76fda
RH
380 * @paddr: physical address that caused a fault for gpc
381 * @paddr_space: physical address space that caused a fault for gpc
e14b5a23
EI
382 * @stage2: True if we faulted at stage 2
383 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
9861248f 384 * @s1ns: True if we faulted on a non-secure IPA while in secure state
c528af7a 385 * @ea: True if we should set the EA (external abort type) bit in syndrome
e14b5a23
EI
386 */
387typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
388struct ARMMMUFaultInfo {
1fa498fe 389 ARMFaultType type;
11b76fda 390 ARMGPCF gpcf;
e14b5a23 391 target_ulong s2addr;
11b76fda
RH
392 target_ulong paddr;
393 ARMSecuritySpace paddr_space;
1fa498fe
PM
394 int level;
395 int domain;
e14b5a23
EI
396 bool stage2;
397 bool s1ptw;
9861248f 398 bool s1ns;
c528af7a 399 bool ea;
e14b5a23
EI
400};
401
1fa498fe
PM
402/**
403 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
404 * Compare pseudocode EncodeSDFSC(), though unlike that function
405 * we set up a whole FSR-format code including domain field and
406 * putting the high bit of the FSC into bit 10.
407 */
408static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
409{
410 uint32_t fsc;
411
412 switch (fi->type) {
413 case ARMFault_None:
414 return 0;
415 case ARMFault_AccessFlag:
416 fsc = fi->level == 1 ? 0x3 : 0x6;
417 break;
418 case ARMFault_Alignment:
419 fsc = 0x1;
420 break;
421 case ARMFault_Permission:
422 fsc = fi->level == 1 ? 0xd : 0xf;
423 break;
424 case ARMFault_Domain:
425 fsc = fi->level == 1 ? 0x9 : 0xb;
426 break;
427 case ARMFault_Translation:
428 fsc = fi->level == 1 ? 0x5 : 0x7;
429 break;
430 case ARMFault_SyncExternal:
431 fsc = 0x8 | (fi->ea << 12);
432 break;
433 case ARMFault_SyncExternalOnWalk:
434 fsc = fi->level == 1 ? 0xc : 0xe;
435 fsc |= (fi->ea << 12);
436 break;
437 case ARMFault_SyncParity:
438 fsc = 0x409;
439 break;
440 case ARMFault_SyncParityOnWalk:
441 fsc = fi->level == 1 ? 0x40c : 0x40e;
442 break;
443 case ARMFault_AsyncParity:
444 fsc = 0x408;
445 break;
446 case ARMFault_AsyncExternal:
447 fsc = 0x406 | (fi->ea << 12);
448 break;
449 case ARMFault_Debug:
450 fsc = 0x2;
451 break;
452 case ARMFault_TLBConflict:
453 fsc = 0x400;
454 break;
455 case ARMFault_Lockdown:
456 fsc = 0x404;
457 break;
458 case ARMFault_Exclusive:
459 fsc = 0x405;
460 break;
461 case ARMFault_ICacheMaint:
462 fsc = 0x4;
463 break;
464 case ARMFault_Background:
465 fsc = 0x0;
466 break;
467 case ARMFault_QEMU_NSCExec:
468 fsc = M_FAKE_FSR_NSC_EXEC;
469 break;
470 case ARMFault_QEMU_SFault:
471 fsc = M_FAKE_FSR_SFAULT;
472 break;
473 default:
474 /* Other faults can't occur in a context that requires a
475 * short-format status code.
476 */
477 g_assert_not_reached();
478 }
479
480 fsc |= (fi->domain << 4);
481 return fsc;
482}
483
484/**
485 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
486 * Compare pseudocode EncodeLDFSC(), though unlike that function
487 * we fill in also the LPAE bit 9 of a DFSR format.
488 */
489static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
490{
491 uint32_t fsc;
492
493 switch (fi->type) {
494 case ARMFault_None:
495 return 0;
496 case ARMFault_AddressSize:
13e481c9
RH
497 assert(fi->level >= -1 && fi->level <= 3);
498 if (fi->level < 0) {
499 fsc = 0b101001;
500 } else {
501 fsc = fi->level;
502 }
1fa498fe
PM
503 break;
504 case ARMFault_AccessFlag:
13e481c9
RH
505 assert(fi->level >= 0 && fi->level <= 3);
506 fsc = 0b001000 | fi->level;
1fa498fe
PM
507 break;
508 case ARMFault_Permission:
13e481c9
RH
509 assert(fi->level >= 0 && fi->level <= 3);
510 fsc = 0b001100 | fi->level;
1fa498fe
PM
511 break;
512 case ARMFault_Translation:
13e481c9
RH
513 assert(fi->level >= -1 && fi->level <= 3);
514 if (fi->level < 0) {
515 fsc = 0b101011;
516 } else {
517 fsc = 0b000100 | fi->level;
518 }
1fa498fe
PM
519 break;
520 case ARMFault_SyncExternal:
521 fsc = 0x10 | (fi->ea << 12);
522 break;
523 case ARMFault_SyncExternalOnWalk:
13e481c9
RH
524 assert(fi->level >= -1 && fi->level <= 3);
525 if (fi->level < 0) {
526 fsc = 0b010011;
527 } else {
528 fsc = 0b010100 | fi->level;
529 }
530 fsc |= fi->ea << 12;
1fa498fe
PM
531 break;
532 case ARMFault_SyncParity:
533 fsc = 0x18;
534 break;
535 case ARMFault_SyncParityOnWalk:
13e481c9
RH
536 assert(fi->level >= -1 && fi->level <= 3);
537 if (fi->level < 0) {
538 fsc = 0b011011;
539 } else {
540 fsc = 0b011100 | fi->level;
541 }
1fa498fe
PM
542 break;
543 case ARMFault_AsyncParity:
544 fsc = 0x19;
545 break;
546 case ARMFault_AsyncExternal:
547 fsc = 0x11 | (fi->ea << 12);
548 break;
549 case ARMFault_Alignment:
550 fsc = 0x21;
551 break;
552 case ARMFault_Debug:
553 fsc = 0x22;
554 break;
555 case ARMFault_TLBConflict:
556 fsc = 0x30;
557 break;
f0a398a2
RH
558 case ARMFault_UnsuppAtomicUpdate:
559 fsc = 0x31;
560 break;
1fa498fe
PM
561 case ARMFault_Lockdown:
562 fsc = 0x34;
563 break;
564 case ARMFault_Exclusive:
565 fsc = 0x35;
566 break;
11b76fda
RH
567 case ARMFault_GPCFOnWalk:
568 assert(fi->level >= -1 && fi->level <= 3);
569 if (fi->level < 0) {
570 fsc = 0b100011;
571 } else {
572 fsc = 0b100100 | fi->level;
573 }
574 break;
575 case ARMFault_GPCFOnOutput:
576 fsc = 0b101000;
577 break;
1fa498fe
PM
578 default:
579 /* Other faults can't occur in a context that requires a
580 * long-format status code.
581 */
582 g_assert_not_reached();
583 }
584
585 fsc |= 1 << 9;
586 return fsc;
587}
588
3b39d734
PM
589static inline bool arm_extabort_type(MemTxResult result)
590{
591 /* The EA bit in syndromes and fault status registers is an
592 * IMPDEF classification of external aborts. ARM implementations
593 * usually use this to indicate AXI bus Decode error (0) or
594 * Slave error (1); in QEMU we follow that.
595 */
596 return result != MEMTX_DECODE_ERROR;
597}
598
9b12b6b4
RH
599#ifdef CONFIG_USER_ONLY
600void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
601 MMUAccessType access_type,
602 bool maperr, uintptr_t ra);
39a099ca
RH
603void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
604 MMUAccessType access_type, uintptr_t ra);
9b12b6b4 605#else
7350d553
RH
606bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
607 MMUAccessType access_type, int mmu_idx,
608 bool probe, uintptr_t retaddr);
9b12b6b4 609#endif
7350d553 610
b9f6033c
RH
611static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
612{
613 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
614}
615
616static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
617{
618 if (arm_feature(env, ARM_FEATURE_M)) {
619 return mmu_idx | ARM_MMU_IDX_M;
620 } else {
621 return mmu_idx | ARM_MMU_IDX_A;
622 }
623}
624
20dc67c9
RH
625static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
626{
627 /* AArch64 is always a-profile. */
628 return mmu_idx | ARM_MMU_IDX_A;
629}
630
b9f6033c
RH
631int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
632
b9f6033c
RH
633/* Return the MMU index for a v7M CPU in the specified security state */
634ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
635
8ae08860
RH
636/*
637 * Return true if the stage 1 translation regime is using LPAE
638 * format page tables
639 */
deb2db99 640bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
30901475
AB
641
642/* Raise a data fault alignment exception for the specified virtual address */
8905770b
MAL
643G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
644 MMUAccessType access_type,
645 int mmu_idx, uintptr_t retaddr);
30901475 646
d90ebc47 647#ifndef CONFIG_USER_ONLY
c79c0a31
PM
648/* arm_cpu_do_transaction_failed: handle a memory system error response
649 * (eg "no device/memory present at address") by raising an external abort
650 * exception
651 */
652void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
653 vaddr addr, unsigned size,
654 MMUAccessType access_type,
655 int mmu_idx, MemTxAttrs attrs,
656 MemTxResult response, uintptr_t retaddr);
d90ebc47 657#endif
c79c0a31 658
08267487 659/* Call any registered EL change hooks */
b5c53d1b
AL
660static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
661{
662 ARMELChangeHook *hook, *next;
663 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
664 hook->hook(cpu, hook->opaque);
665 }
666}
bd7d00fc
PM
667static inline void arm_call_el_change_hook(ARMCPU *cpu)
668{
08267487
AL
669 ARMELChangeHook *hook, *next;
670 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
671 hook->hook(cpu, hook->opaque);
bd7d00fc
PM
672 }
673}
674
339370b9
RH
675/* Return true if this address translation regime has two ranges. */
676static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
677{
678 switch (mmu_idx) {
679 case ARMMMUIdx_Stage1_E0:
680 case ARMMMUIdx_Stage1_E1:
452ef8cb 681 case ARMMMUIdx_Stage1_E1_PAN:
339370b9
RH
682 case ARMMMUIdx_E10_0:
683 case ARMMMUIdx_E10_1:
452ef8cb 684 case ARMMMUIdx_E10_1_PAN:
339370b9
RH
685 case ARMMMUIdx_E20_0:
686 case ARMMMUIdx_E20_2:
452ef8cb 687 case ARMMMUIdx_E20_2_PAN:
339370b9
RH
688 return true;
689 default:
690 return false;
691 }
692}
693
81636b70
RH
694static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
695{
696 switch (mmu_idx) {
697 case ARMMMUIdx_Stage1_E1_PAN:
698 case ARMMMUIdx_E10_1_PAN:
699 case ARMMMUIdx_E20_2_PAN:
81636b70
RH
700 return true;
701 default:
702 return false;
703 }
704}
705
edc05dd4
RH
706static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
707{
708 return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
709}
710
9c7ab8fc
RH
711/* Return the exception level which controls this address translation regime */
712static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
713{
714 switch (mmu_idx) {
715 case ARMMMUIdx_E20_0:
716 case ARMMMUIdx_E20_2:
717 case ARMMMUIdx_E20_2_PAN:
718 case ARMMMUIdx_Stage2:
b1a10c86 719 case ARMMMUIdx_Stage2_S:
9c7ab8fc
RH
720 case ARMMMUIdx_E2:
721 return 2;
d902ae75 722 case ARMMMUIdx_E3:
9c7ab8fc 723 return 3;
d902ae75 724 case ARMMMUIdx_E10_0:
9c7ab8fc 725 case ARMMMUIdx_Stage1_E0:
d902ae75 726 return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
9c7ab8fc
RH
727 case ARMMMUIdx_Stage1_E1:
728 case ARMMMUIdx_Stage1_E1_PAN:
9c7ab8fc
RH
729 case ARMMMUIdx_E10_1:
730 case ARMMMUIdx_E10_1_PAN:
731 case ARMMMUIdx_MPrivNegPri:
732 case ARMMMUIdx_MUserNegPri:
733 case ARMMMUIdx_MPriv:
734 case ARMMMUIdx_MUser:
735 case ARMMMUIdx_MSPrivNegPri:
736 case ARMMMUIdx_MSUserNegPri:
737 case ARMMMUIdx_MSPriv:
738 case ARMMMUIdx_MSUser:
739 return 1;
740 default:
741 g_assert_not_reached();
742 }
743}
744
e4c93e44
PM
745static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
746{
747 switch (mmu_idx) {
748 case ARMMMUIdx_E20_0:
749 case ARMMMUIdx_Stage1_E0:
750 case ARMMMUIdx_MUser:
751 case ARMMMUIdx_MSUser:
752 case ARMMMUIdx_MUserNegPri:
753 case ARMMMUIdx_MSUserNegPri:
754 return true;
755 default:
756 return false;
757 case ARMMMUIdx_E10_0:
758 case ARMMMUIdx_E10_1:
759 case ARMMMUIdx_E10_1_PAN:
760 g_assert_not_reached();
761 }
762}
763
8ae08860
RH
764/* Return the SCTLR value which controls this address translation regime */
765static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
766{
767 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
768}
769
f04383e7
PM
770/*
771 * These are the fields in VTCR_EL2 which affect both the Secure stage 2
772 * and the Non-Secure stage 2 translation regimes (and hence which are
773 * not present in VSTCR_EL2).
774 */
775#define VTCR_SHARED_FIELD_MASK \
776 (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
777 R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
778 R_VTCR_DS_MASK)
779
c1547bba
PM
780/* Return the value of the TCR controlling this translation regime */
781static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
38659d31
RH
782{
783 if (mmu_idx == ARMMMUIdx_Stage2) {
988cc190 784 return env->cp15.vtcr_el2;
38659d31 785 }
b1a10c86
RDC
786 if (mmu_idx == ARMMMUIdx_Stage2_S) {
787 /*
f04383e7
PM
788 * Secure stage 2 shares fields from VTCR_EL2. We merge those
789 * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
790 * value so the callers don't need to special case this.
791 *
792 * If a future architecture change defines bits in VSTCR_EL2 that
793 * overlap with these VTCR_EL2 fields we may need to revisit this.
b1a10c86 794 */
f04383e7
PM
795 uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
796 v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
797 return v;
b1a10c86 798 }
cb4a0a34 799 return env->cp15.tcr_el[regime_el(env, mmu_idx)];
dfce4aa8
PM
800}
801
2ea2998f
FR
802/* Return true if the translation regime is using LPAE format page tables */
803static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
804{
805 int el = regime_el(env, mmu_idx);
806 if (el == 2 || arm_el_is_aa64(env, el)) {
807 return true;
808 }
809 if (arm_feature(env, ARM_FEATURE_PMSA) &&
810 arm_feature(env, ARM_FEATURE_V8)) {
811 return true;
812 }
813 if (arm_feature(env, ARM_FEATURE_LPAE)
814 && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
815 return true;
816 }
817 return false;
818}
819
88ce6c6e
PM
820/**
821 * arm_num_brps: Return number of implemented breakpoints.
822 * Note that the ID register BRPS field is "number of bps - 1",
823 * and we return the actual number of breakpoints.
824 */
825static inline int arm_num_brps(ARMCPU *cpu)
826{
827 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
828 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
829 } else {
4426d361 830 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
88ce6c6e
PM
831 }
832}
833
834/**
835 * arm_num_wrps: Return number of implemented watchpoints.
836 * Note that the ID register WRPS field is "number of wps - 1",
837 * and we return the actual number of watchpoints.
838 */
839static inline int arm_num_wrps(ARMCPU *cpu)
840{
841 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
842 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
843 } else {
4426d361 844 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
88ce6c6e
PM
845 }
846}
847
848/**
849 * arm_num_ctx_cmps: Return number of implemented context comparators.
850 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
851 * and we return the actual number of comparators.
852 */
853static inline int arm_num_ctx_cmps(ARMCPU *cpu)
854{
855 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
856 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
857 } else {
4426d361 858 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
88ce6c6e
PM
859 }
860}
861
5529bf18
PM
862/**
863 * v7m_using_psp: Return true if using process stack pointer
864 * Return true if the CPU is currently using the process stack
865 * pointer, or false if it is using the main stack pointer.
866 */
867static inline bool v7m_using_psp(CPUARMState *env)
868{
869 /* Handler mode always uses the main stack; for thread mode
870 * the CONTROL.SPSEL bit determines the answer.
871 * Note that in v7M it is not possible to be in Handler mode with
872 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
873 */
874 return !arm_v7m_is_handler_mode(env) &&
875 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
876}
877
55203189
PM
878/**
879 * v7m_sp_limit: Return SP limit for current CPU state
880 * Return the SP limit value for the current CPU security state
881 * and stack pointer.
882 */
883static inline uint32_t v7m_sp_limit(CPUARMState *env)
884{
885 if (v7m_using_psp(env)) {
886 return env->v7m.psplim[env->v7m.secure];
887 } else {
888 return env->v7m.msplim[env->v7m.secure];
889 }
890}
891
787a7e76
PMD
892/**
893 * v7m_cpacr_pass:
894 * Return true if the v7M CPACR permits access to the FPU for the specified
895 * security state and privilege level.
896 */
897static inline bool v7m_cpacr_pass(CPUARMState *env,
898 bool is_secure, bool is_priv)
899{
900 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
901 case 0:
902 case 2: /* UNPREDICTABLE: we treat like 0 */
903 return false;
904 case 1:
905 return is_priv;
906 case 3:
907 return true;
908 default:
909 g_assert_not_reached();
910 }
911}
912
81e37284
PM
913/**
914 * aarch32_mode_name(): Return name of the AArch32 CPU mode
915 * @psr: Program Status Register indicating CPU mode
916 *
917 * Returns, for debug logging purposes, a printable representation
918 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
919 * the low bits of the specified PSR.
920 */
921static inline const char *aarch32_mode_name(uint32_t psr)
922{
923 static const char cpu_mode_names[16][4] = {
924 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
925 "???", "???", "hyp", "und", "???", "???", "???", "sys"
926 };
927
928 return cpu_mode_names[psr & 0xf];
929}
930
89430fc6
PM
931/**
932 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
933 *
934 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
935 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
936 * Must be called with the iothread lock held.
937 */
938void arm_cpu_update_virq(ARMCPU *cpu);
939
940/**
941 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
942 *
943 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
944 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
945 * Must be called with the iothread lock held.
946 */
947void arm_cpu_update_vfiq(ARMCPU *cpu);
948
3c29632f
RH
949/**
950 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
951 *
952 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
953 * following a change to the HCR_EL2.VSE bit.
954 */
955void arm_cpu_update_vserr(ARMCPU *cpu);
956
164690b2
RH
957/**
958 * arm_mmu_idx_el:
959 * @env: The cpu environment
960 * @el: The EL to use.
961 *
962 * Return the full ARMMMUIdx for the translation regime for EL.
963 */
964ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
965
50494a27
RH
966/**
967 * arm_mmu_idx:
968 * @env: The cpu environment
969 *
970 * Return the full ARMMMUIdx for the current translation regime.
971 */
972ARMMMUIdx arm_mmu_idx(CPUARMState *env);
973
64be86ab
RH
974/**
975 * arm_stage1_mmu_idx:
976 * @env: The cpu environment
977 *
978 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
979 */
980#ifdef CONFIG_USER_ONLY
d8cca960
RH
981static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
982{
983 return ARMMMUIdx_Stage1_E0;
984}
64be86ab
RH
985static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
986{
2859d7b5 987 return ARMMMUIdx_Stage1_E0;
64be86ab
RH
988}
989#else
d8cca960 990ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
64be86ab
RH
991ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
992#endif
993
fee7aa46
RH
994/**
995 * arm_mmu_idx_is_stage1_of_2:
996 * @mmu_idx: The ARMMMUIdx to test
997 *
998 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
999 * first stage of a two stage regime.
1000 */
1001static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1002{
1003 switch (mmu_idx) {
1004 case ARMMMUIdx_Stage1_E0:
1005 case ARMMMUIdx_Stage1_E1:
452ef8cb 1006 case ARMMMUIdx_Stage1_E1_PAN:
fee7aa46
RH
1007 return true;
1008 default:
1009 return false;
1010 }
1011}
1012
4f9584ed
RH
1013static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1014 const ARMISARegisters *id)
1015{
f062d144 1016 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
4f9584ed
RH
1017
1018 if ((features >> ARM_FEATURE_V4T) & 1) {
1019 valid |= CPSR_T;
1020 }
1021 if ((features >> ARM_FEATURE_V5) & 1) {
1022 valid |= CPSR_Q; /* V5TE in reality*/
1023 }
1024 if ((features >> ARM_FEATURE_V6) & 1) {
1025 valid |= CPSR_E | CPSR_GE;
1026 }
1027 if ((features >> ARM_FEATURE_THUMB2) & 1) {
1028 valid |= CPSR_IT;
1029 }
873b73c0 1030 if (isar_feature_aa32_jazelle(id)) {
f062d144
RH
1031 valid |= CPSR_J;
1032 }
220f508f
RH
1033 if (isar_feature_aa32_pan(id)) {
1034 valid |= CPSR_PAN;
1035 }
dc8b1853
RC
1036 if (isar_feature_aa32_dit(id)) {
1037 valid |= CPSR_DIT;
1038 }
f2f68a78
RC
1039 if (isar_feature_aa32_ssbs(id)) {
1040 valid |= CPSR_SSBS;
1041 }
4f9584ed
RH
1042
1043 return valid;
1044}
1045
14084511
RH
1046static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1047{
1048 uint32_t valid;
1049
1050 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1051 if (isar_feature_aa64_bti(id)) {
1052 valid |= PSTATE_BTYPE;
1053 }
220f508f
RH
1054 if (isar_feature_aa64_pan(id)) {
1055 valid |= PSTATE_PAN;
1056 }
9eeb7a1c
RH
1057 if (isar_feature_aa64_uao(id)) {
1058 valid |= PSTATE_UAO;
1059 }
dc8b1853
RC
1060 if (isar_feature_aa64_dit(id)) {
1061 valid |= PSTATE_DIT;
1062 }
f2f68a78
RC
1063 if (isar_feature_aa64_ssbs(id)) {
1064 valid |= PSTATE_SSBS;
1065 }
4b779ceb
RH
1066 if (isar_feature_aa64_mte(id)) {
1067 valid |= PSTATE_TCO;
1068 }
14084511
RH
1069
1070 return valid;
1071}
1072
104f703d
PM
1073/* Granule size (i.e. page size) */
1074typedef enum ARMGranuleSize {
1075 /* Same order as TG0 encoding */
1076 Gran4K,
1077 Gran64K,
1078 Gran16K,
1079 GranInvalid,
1080} ARMGranuleSize;
1081
3c003f70
PM
1082/**
1083 * arm_granule_bits: Return address size of the granule in bits
1084 *
1085 * Return the address size of the granule in bits. This corresponds
1086 * to the pseudocode TGxGranuleBits().
1087 */
1088static inline int arm_granule_bits(ARMGranuleSize gran)
1089{
1090 switch (gran) {
1091 case Gran64K:
1092 return 16;
1093 case Gran16K:
1094 return 14;
1095 case Gran4K:
1096 return 12;
1097 default:
1098 g_assert_not_reached();
1099 }
1100}
1101
ba97be9f
RH
1102/*
1103 * Parameters of a given virtual address, as extracted from the
1104 * translation control register (TCR) for a given regime.
1105 */
1106typedef struct ARMVAParameters {
1107 unsigned tsz : 8;
f4ecc015 1108 unsigned ps : 3;
ef56c242 1109 unsigned sh : 2;
ba97be9f
RH
1110 unsigned select : 1;
1111 bool tbi : 1;
1112 bool epd : 1;
1113 bool hpd : 1;
ebf93ce7 1114 bool tsz_oob : 1; /* tsz has been clamped to legal range */
ef56c242 1115 bool ds : 1;
89739227
RH
1116 bool ha : 1;
1117 bool hd : 1;
3c003f70 1118 ARMGranuleSize gran : 2;
ba97be9f
RH
1119} ARMVAParameters;
1120
478dccbb
PM
1121/**
1122 * aa64_va_parameters: Return parameters for an AArch64 virtual address
1123 * @env: CPU
1124 * @va: virtual address to look up
1125 * @mmu_idx: determines translation regime to use
1126 * @data: true if this is a data access
1127 * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
1128 * (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
1129 */
bf0be433 1130ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
478dccbb
PM
1131 ARMMMUIdx mmu_idx, bool data,
1132 bool el1_is_aa32);
bf0be433 1133
8ae08860
RH
1134int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1135int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
671efad1 1136int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
8ae08860 1137
81ae05fa
RH
1138/* Determine if allocation tags are available. */
1139static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1140 uint64_t sctlr)
1141{
1142 if (el < 3
1143 && arm_feature(env, ARM_FEATURE_EL3)
1144 && !(env->cp15.scr_el3 & SCR_ATA)) {
1145 return false;
1146 }
0da067f2 1147 if (el < 2 && arm_is_el2_enabled(env)) {
4301acd7
RH
1148 uint64_t hcr = arm_hcr_el2_eff(env);
1149 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1150 return false;
1151 }
81ae05fa
RH
1152 }
1153 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1154 return sctlr != 0;
1155}
1156
ebae861f
PMD
1157#ifndef CONFIG_USER_ONLY
1158
787a7e76
PMD
1159/* Security attributes for an address, as returned by v8m_security_lookup. */
1160typedef struct V8M_SAttributes {
1161 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1162 bool ns;
1163 bool nsc;
1164 uint8_t sregion;
1165 bool srvalid;
1166 uint8_t iregion;
1167 bool irvalid;
1168} V8M_SAttributes;
1169
1170void v8m_security_lookup(CPUARMState *env, uint32_t address,
1171 MMUAccessType access_type, ARMMMUIdx mmu_idx,
dbf2a71a 1172 bool secure, V8M_SAttributes *sattrs);
787a7e76 1173
ebae861f
PMD
1174/* Cacheability and shareability attributes for a memory access */
1175typedef struct ARMCacheAttrs {
9f225e60
PM
1176 /*
1177 * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1178 * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1179 */
1180 unsigned int attrs:8;
ebae861f 1181 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
9f225e60 1182 bool is_s2_format:1;
937f2245 1183 bool guarded:1; /* guarded bit of the v8-64 PTE */
ebae861f
PMD
1184} ARMCacheAttrs;
1185
de05a709
RH
1186/* Fields that are valid upon success. */
1187typedef struct GetPhysAddrResult {
7fa7ea8f 1188 CPUTLBEntryFull f;
de05a709
RH
1189 ARMCacheAttrs cacheattrs;
1190} GetPhysAddrResult;
1191
def8aa5b
RH
1192/**
1193 * get_phys_addr_with_secure: get the physical address for a virtual address
1194 * @env: CPUARMState
1195 * @address: virtual address to get physical address for
1196 * @access_type: 0 for read, 1 for write, 2 for execute
1197 * @mmu_idx: MMU index indicating required translation regime
1198 * @is_secure: security state for the access
1199 * @result: set on translation success.
1200 * @fi: set to fault info if the translation fails
1201 *
1202 * Find the physical address corresponding to the given virtual address,
1203 * by doing a translation table walk on MMU based systems or using the
1204 * MPU state on MPU based systems.
1205 *
1206 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1207 * prot and page_size may not be filled in, and the populated fsr value provides
1208 * information on why the translation aborted, in the format of a
1209 * DFSR/IFSR fault register, with the following caveats:
1210 * * we honour the short vs long DFSR format differences.
1211 * * the WnR bit is never set (the caller must do this).
1212 * * for PSMAv5 based systems we don't bother to return a full FSR format
1213 * value.
1214 */
1215bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
1216 MMUAccessType access_type,
1217 ARMMMUIdx mmu_idx, bool is_secure,
1218 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1219 __attribute__((nonnull));
1220
1221/**
1222 * get_phys_addr: get the physical address for a virtual address
1223 * @env: CPUARMState
1224 * @address: virtual address to get physical address for
1225 * @access_type: 0 for read, 1 for write, 2 for execute
1226 * @mmu_idx: MMU index indicating required translation regime
1227 * @result: set on translation success.
1228 * @fi: set to fault info if the translation fails
1229 *
1230 * Similarly, but use the security regime of @mmu_idx.
1231 */
ebae861f
PMD
1232bool get_phys_addr(CPUARMState *env, target_ulong address,
1233 MMUAccessType access_type, ARMMMUIdx mmu_idx,
de05a709 1234 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
7e98e21c 1235 __attribute__((nonnull));
ebae861f 1236
d2c92e58
RH
1237bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1238 MMUAccessType access_type, ARMMMUIdx mmu_idx,
e9fb7090
RH
1239 bool is_secure, GetPhysAddrResult *result,
1240 ARMMMUFaultInfo *fi, uint32_t *mregion);
d2c92e58 1241
fc6177af 1242void arm_log_exception(CPUState *cs);
b59f479b 1243
ebae861f
PMD
1244#endif /* !CONFIG_USER_ONLY */
1245
4b779ceb
RH
1246/*
1247 * The log2 of the words in the tag block, for GMID_EL1.BS.
1248 * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1249 */
1250#define GMID_EL1_BS 6
1251
b64ee454
RH
1252/*
1253 * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1254 * the same simd_desc() encoding due to restrictions on size.
1255 * Use these instead.
1256 */
1257FIELD(PREDDESC, OPRSZ, 0, 6)
1258FIELD(PREDDESC, ESZ, 6, 2)
1259FIELD(PREDDESC, DATA, 8, 24)
1260
206adacf
RH
1261/*
1262 * The SVE simd_data field, for memory ops, contains either
1263 * rd (5 bits) or a shift count (2 bits).
1264 */
1265#define SVE_MTEDESC_SHIFT 5
1266
0a405be2
RH
1267/* Bits within a descriptor passed to the helper_mte_check* functions. */
1268FIELD(MTEDESC, MIDX, 0, 4)
1269FIELD(MTEDESC, TBI, 4, 2)
1270FIELD(MTEDESC, TCMA, 6, 2)
1271FIELD(MTEDESC, WRITE, 8, 1)
523da6b9
RH
1272FIELD(MTEDESC, ALIGN, 9, 3)
1273FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - 12) /* size - 1 */
0a405be2 1274
d304d280 1275bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
bd47b61c 1276uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
2e34ff45 1277
efbc78ad
RH
1278static inline int allocation_tag_from_addr(uint64_t ptr)
1279{
1280 return extract64(ptr, 56, 4);
1281}
1282
da54941f
RH
1283static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1284{
1285 return deposit64(ptr, 56, 4, rtag);
1286}
1287
2e34ff45
RH
1288/* Return true if tbi bits mean that the access is checked. */
1289static inline bool tbi_check(uint32_t desc, int bit55)
1290{
1291 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1292}
1293
1294/* Return true if tcma bits mean that the access is unchecked. */
1295static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1296{
1297 /*
1298 * We had extracted bit55 and ptr_tag for other reasons, so fold
1299 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1300 */
1301 bool match = ((ptr_tag + bit55) & 0xf) == 0;
1302 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1303 return tcma && match;
1304}
1305
1306/*
1307 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
1308 * for the tag to be present in the FAR_ELx register. But for user-only
1309 * mode, we do not have a TLB with which to implement this, so we must
1310 * remove the top byte.
1311 */
1312static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1313{
2e34ff45 1314#ifdef CONFIG_USER_ONLY
16c84978
RH
1315 /* TBI0 is known to be enabled, while TBI1 is disabled. */
1316 ptr &= sextract64(ptr, 0, 56);
2e34ff45
RH
1317#endif
1318 return ptr;
1319}
1320
1321static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1322{
1323#ifdef CONFIG_USER_ONLY
1324 int64_t clean_ptr = sextract64(ptr, 0, 56);
1325 if (tbi_check(desc, clean_ptr < 0)) {
1326 ptr = clean_ptr;
1327 }
1328#endif
1329 return ptr;
1330}
1331
507b6a50
PM
1332/* Values for M-profile PSR.ECI for MVE insns */
1333enum MVEECIState {
1334 ECI_NONE = 0, /* No completed beats */
1335 ECI_A0 = 1, /* Completed: A0 */
1336 ECI_A0A1 = 2, /* Completed: A0, A1 */
1337 /* 3 is reserved */
1338 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1339 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1340 /* All other values reserved */
1341};
1342
0130895d
AG
1343/* Definitions for the PMU registers */
1344#define PMCRN_MASK 0xf800
1345#define PMCRN_SHIFT 11
47b385da 1346#define PMCRLP 0x80
0130895d
AG
1347#define PMCRLC 0x40
1348#define PMCRDP 0x20
1349#define PMCRX 0x10
1350#define PMCRD 0x8
1351#define PMCRC 0x4
1352#define PMCRP 0x2
1353#define PMCRE 0x1
1354/*
9323e79f 1355 * Mask of PMCR bits writable by guest (not including WO bits like C, P,
0130895d
AG
1356 * which can be written as 1 to trigger behaviour but which stay RAZ).
1357 */
47b385da 1358#define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
0130895d
AG
1359
1360#define PMXEVTYPER_P 0x80000000
1361#define PMXEVTYPER_U 0x40000000
1362#define PMXEVTYPER_NSK 0x20000000
1363#define PMXEVTYPER_NSU 0x10000000
1364#define PMXEVTYPER_NSH 0x08000000
1365#define PMXEVTYPER_M 0x04000000
1366#define PMXEVTYPER_MT 0x02000000
1367#define PMXEVTYPER_EVTCOUNT 0x0000ffff
1368#define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1369 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1370 PMXEVTYPER_M | PMXEVTYPER_MT | \
1371 PMXEVTYPER_EVTCOUNT)
1372
1373#define PMCCFILTR 0xf8000000
1374#define PMCCFILTR_M PMXEVTYPER_M
1375#define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1376
1377static inline uint32_t pmu_num_counters(CPUARMState *env)
1378{
24526bb9
PM
1379 ARMCPU *cpu = env_archcpu(env);
1380
1381 return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
0130895d
AG
1382}
1383
1384/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1385static inline uint64_t pmu_counter_mask(CPUARMState *env)
1386{
c117c064 1387 return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
0130895d
AG
1388}
1389
89f4f20e 1390#ifdef TARGET_AARCH64
e03aba88 1391int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
963a6b91
RH
1392int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg);
1393int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg);
1394int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg);
1395int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg);
e995d5cc
RH
1396int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg);
1397int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg);
07301161 1398void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
e74c0976 1399void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
07301161
RH
1400void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1401void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
39920a04
FR
1402void aarch64_max_tcg_initfn(Object *obj);
1403void aarch64_add_pauth_properties(Object *obj);
1404void aarch64_add_sve_properties(Object *obj);
1405void aarch64_add_sme_properties(Object *obj);
89f4f20e
PM
1406#endif
1407
48688c94
DR
1408/* Read the CONTROL register as the MRS instruction would. */
1409uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
1410
6c867651
DR
1411/*
1412 * Return a pointer to the location where we currently store the
1413 * stack pointer for the requested security state and thread mode.
1414 * This pointer will become invalid if the CPU state is updated
1415 * such that the stack pointers are switched around (eg changing
1416 * the SPSEL control bit).
1417 */
1418uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
1419 bool threadmode, bool spsel);
1420
19668718
RH
1421bool el_is_in_host(CPUARMState *env, int el);
1422
b6f8b358 1423void aa32_max_features(ARMCPU *cpu);
57287a6e 1424int exception_target_el(CPUARMState *env);
55ba15b7 1425bool arm_singlestep_active(CPUARMState *env);
31c8df53 1426bool arm_generate_debug_exceptions(CPUARMState *env);
b6f8b358 1427
abf1f1b0
RH
1428/**
1429 * pauth_ptr_mask:
b15bdc96 1430 * @param: parameters defining the MMU setup
abf1f1b0 1431 *
b15bdc96
PMD
1432 * Return a mask of the address bits that contain the authentication code,
1433 * given the MMU config defined by @param.
abf1f1b0 1434 */
b15bdc96
PMD
1435static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
1436{
1437 int bot_pac_bit = 64 - param.tsz;
1438 int top_pac_bit = 64 - 8 * param.tbi;
1439
1440 return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
1441}
abf1f1b0 1442
f43ee493
PM
1443/* Add the cpreg definitions for debug related system registers */
1444void define_debug_regs(ARMCPU *cpu);
1445
1446/* Effective value of MDCR_EL2 */
1447static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1448{
1449 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1450}
1451
886902ec
RH
1452/* Powers of 2 for sve_vq_map et al. */
1453#define SVE_VQ_POW2_MAP \
1454 ((1 << (1 - 1)) | (1 << (2 - 1)) | \
1455 (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1456
361c33f6
PM
1457/*
1458 * Return true if it is possible to take a fine-grained-trap to EL2.
1459 */
1460static inline bool arm_fgt_active(CPUARMState *env, int el)
1461{
1462 /*
1463 * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1464 * that can affect EL0, but it is harmless to do the test also for
1465 * traps on registers that are only accessible at EL1 because if the test
1466 * returns true then we can't be executing at EL1 anyway.
1467 * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1468 * traps from AArch32 only happen for the EL0 is AArch32 case.
1469 */
1470 return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1471 el < 2 && arm_is_el2_enabled(env) &&
1472 arm_el_is_aa64(env, 1) &&
1473 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1474 (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1475}
1476
671efad1 1477void assert_hflags_rebuild_correctly(CPUARMState *env);
0ca52a5f
FC
1478
1479/*
1480 * Although the ARM implementation of hardware assisted debugging
1481 * allows for different breakpoints per-core, the current GDB
1482 * interface treats them as a global pool of registers (which seems to
1483 * be the case for x86, ppc and s390). As a result we store one copy
1484 * of registers which is used for all active cores.
1485 *
1486 * Write access is serialised by virtue of the GDB protocol which
1487 * updates things. Read access (i.e. when the values are copied to the
1488 * vCPU) is also gated by GDB's run control.
1489 *
1490 * This is not unreasonable as most of the time debugging kernels you
1491 * never know which core will eventually execute your function.
1492 */
1493
1494typedef struct {
1495 uint64_t bcr;
1496 uint64_t bvr;
1497} HWBreakpoint;
1498
1499/*
1500 * The watchpoint registers can cover more area than the requested
1501 * watchpoint so we need to store the additional information
1502 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
1503 * when the watchpoint is hit.
1504 */
1505typedef struct {
1506 uint64_t wcr;
1507 uint64_t wvr;
1508 CPUWatchpoint details;
1509} HWWatchpoint;
1510
1511/* Maximum and current break/watch point counts */
1512extern int max_hw_bps, max_hw_wps;
1513extern GArray *hw_breakpoints, *hw_watchpoints;
1514
1515#define cur_hw_wps (hw_watchpoints->len)
1516#define cur_hw_bps (hw_breakpoints->len)
1517#define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
1518#define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
1519
1520bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
1521int insert_hw_breakpoint(target_ulong pc);
1522int delete_hw_breakpoint(target_ulong pc);
1523
1524bool check_watchpoint_in_range(int i, target_ulong addr);
1525CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
1526int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1527int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
ccd38087 1528#endif