]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/kvm64.c
hw/arm/virt: allow pmu instantiation with userspace irqchip
[mirror_qemu.git] / target / arm / kvm64.c
CommitLineData
26861c7c
MH
1/*
2 * ARM implementation of KVM hooks, 64 bit specific code
3 *
4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
e4482ab7 5 * Copyright Alex Bennée 2014, Linaro
26861c7c
MH
6 *
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
9 *
10 */
11
74c21bd0 12#include "qemu/osdep.h"
26861c7c 13#include <sys/ioctl.h>
e4482ab7 14#include <sys/ptrace.h>
26861c7c 15
e4482ab7 16#include <linux/elf.h>
26861c7c
MH
17#include <linux/kvm.h>
18
19#include "qemu-common.h"
33c11879 20#include "cpu.h"
26861c7c 21#include "qemu/timer.h"
2ecb2027 22#include "qemu/error-report.h"
e4482ab7
AB
23#include "qemu/host-utils.h"
24#include "exec/gdbstub.h"
26861c7c
MH
25#include "sysemu/sysemu.h"
26#include "sysemu/kvm.h"
27#include "kvm_arm.h"
9208b961 28#include "internals.h"
26861c7c
MH
29#include "hw/arm/arm.h"
30
29eb3d9a
AB
31static bool have_guest_debug;
32
e4482ab7
AB
33/*
34 * Although the ARM implementation of hardware assisted debugging
35 * allows for different breakpoints per-core, the current GDB
36 * interface treats them as a global pool of registers (which seems to
37 * be the case for x86, ppc and s390). As a result we store one copy
38 * of registers which is used for all active cores.
39 *
40 * Write access is serialised by virtue of the GDB protocol which
41 * updates things. Read access (i.e. when the values are copied to the
42 * vCPU) is also gated by GDB's run control.
43 *
44 * This is not unreasonable as most of the time debugging kernels you
45 * never know which core will eventually execute your function.
46 */
47
48typedef struct {
49 uint64_t bcr;
50 uint64_t bvr;
51} HWBreakpoint;
52
53/* The watchpoint registers can cover more area than the requested
54 * watchpoint so we need to store the additional information
55 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
56 * when the watchpoint is hit.
57 */
58typedef struct {
59 uint64_t wcr;
60 uint64_t wvr;
61 CPUWatchpoint details;
62} HWWatchpoint;
63
64/* Maximum and current break/watch point counts */
65int max_hw_bps, max_hw_wps;
66GArray *hw_breakpoints, *hw_watchpoints;
67
68#define cur_hw_wps (hw_watchpoints->len)
69#define cur_hw_bps (hw_breakpoints->len)
70#define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
71#define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
72
29eb3d9a 73/**
e4482ab7 74 * kvm_arm_init_debug() - check for guest debug capabilities
29eb3d9a
AB
75 * @cs: CPUState
76 *
e4482ab7
AB
77 * kvm_check_extension returns the number of debug registers we have
78 * or 0 if we have none.
29eb3d9a
AB
79 *
80 */
81static void kvm_arm_init_debug(CPUState *cs)
82{
83 have_guest_debug = kvm_check_extension(cs->kvm_state,
84 KVM_CAP_SET_GUEST_DEBUG);
e4482ab7
AB
85
86 max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
87 hw_watchpoints = g_array_sized_new(true, true,
88 sizeof(HWWatchpoint), max_hw_wps);
89
90 max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
91 hw_breakpoints = g_array_sized_new(true, true,
92 sizeof(HWBreakpoint), max_hw_bps);
29eb3d9a
AB
93 return;
94}
95
e4482ab7
AB
96/**
97 * insert_hw_breakpoint()
98 * @addr: address of breakpoint
99 *
100 * See ARM ARM D2.9.1 for details but here we are only going to create
101 * simple un-linked breakpoints (i.e. we don't chain breakpoints
102 * together to match address and context or vmid). The hardware is
103 * capable of fancier matching but that will require exposing that
104 * fanciness to GDB's interface
105 *
106 * D7.3.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers
107 *
108 * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
109 * +------+------+-------+-----+----+------+-----+------+-----+---+
110 * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
111 * +------+------+-------+-----+----+------+-----+------+-----+---+
112 *
113 * BT: Breakpoint type (0 = unlinked address match)
114 * LBN: Linked BP number (0 = unused)
115 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
116 * BAS: Byte Address Select (RES1 for AArch64)
117 * E: Enable bit
118 */
119static int insert_hw_breakpoint(target_ulong addr)
120{
121 HWBreakpoint brk = {
122 .bcr = 0x1, /* BCR E=1, enable */
123 .bvr = addr
124 };
125
126 if (cur_hw_bps >= max_hw_bps) {
127 return -ENOBUFS;
128 }
129
130 brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */
131 brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */
132
133 g_array_append_val(hw_breakpoints, brk);
134
135 return 0;
136}
137
138/**
139 * delete_hw_breakpoint()
140 * @pc: address of breakpoint
141 *
142 * Delete a breakpoint and shuffle any above down
143 */
144
145static int delete_hw_breakpoint(target_ulong pc)
146{
147 int i;
148 for (i = 0; i < hw_breakpoints->len; i++) {
149 HWBreakpoint *brk = get_hw_bp(i);
150 if (brk->bvr == pc) {
151 g_array_remove_index(hw_breakpoints, i);
152 return 0;
153 }
154 }
155 return -ENOENT;
156}
157
158/**
159 * insert_hw_watchpoint()
160 * @addr: address of watch point
161 * @len: size of area
162 * @type: type of watch point
163 *
164 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
165 * stuff if we want to. The watch points can be linked with the break
166 * points above to make them context aware. However for simplicity
167 * currently we only deal with simple read/write watch points.
168 *
169 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
170 *
171 * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
172 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
173 * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
174 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
175 *
176 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
177 * WT: 0 - unlinked, 1 - linked (not currently used)
178 * LBN: Linked BP number (not currently used)
179 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
180 * BAS: Byte Address Select
181 * LSC: Load/Store control (01: load, 10: store, 11: both)
182 * E: Enable
183 *
184 * The bottom 2 bits of the value register are masked. Therefore to
185 * break on any sizes smaller than an unaligned word you need to set
186 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
187 * need to ensure you mask the address as required and set BAS=0xff
188 */
189
190static int insert_hw_watchpoint(target_ulong addr,
191 target_ulong len, int type)
192{
193 HWWatchpoint wp = {
194 .wcr = 1, /* E=1, enable */
195 .wvr = addr & (~0x7ULL),
196 .details = { .vaddr = addr, .len = len }
197 };
198
199 if (cur_hw_wps >= max_hw_wps) {
200 return -ENOBUFS;
201 }
202
203 /*
204 * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
205 * valid whether EL3 is implemented or not
206 */
207 wp.wcr = deposit32(wp.wcr, 1, 2, 3);
208
209 switch (type) {
210 case GDB_WATCHPOINT_READ:
211 wp.wcr = deposit32(wp.wcr, 3, 2, 1);
212 wp.details.flags = BP_MEM_READ;
213 break;
214 case GDB_WATCHPOINT_WRITE:
215 wp.wcr = deposit32(wp.wcr, 3, 2, 2);
216 wp.details.flags = BP_MEM_WRITE;
217 break;
218 case GDB_WATCHPOINT_ACCESS:
219 wp.wcr = deposit32(wp.wcr, 3, 2, 3);
220 wp.details.flags = BP_MEM_ACCESS;
221 break;
222 default:
223 g_assert_not_reached();
224 break;
225 }
226 if (len <= 8) {
227 /* we align the address and set the bits in BAS */
228 int off = addr & 0x7;
229 int bas = (1 << len) - 1;
230
231 wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
232 } else {
233 /* For ranges above 8 bytes we need to be a power of 2 */
234 if (is_power_of_2(len)) {
235 int bits = ctz64(len);
236
237 wp.wvr &= ~((1 << bits) - 1);
238 wp.wcr = deposit32(wp.wcr, 24, 4, bits);
239 wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
240 } else {
241 return -ENOBUFS;
242 }
243 }
244
245 g_array_append_val(hw_watchpoints, wp);
246 return 0;
247}
248
249
250static bool check_watchpoint_in_range(int i, target_ulong addr)
251{
252 HWWatchpoint *wp = get_hw_wp(i);
253 uint64_t addr_top, addr_bottom = wp->wvr;
254 int bas = extract32(wp->wcr, 5, 8);
255 int mask = extract32(wp->wcr, 24, 4);
256
257 if (mask) {
258 addr_top = addr_bottom + (1 << mask);
259 } else {
260 /* BAS must be contiguous but can offset against the base
261 * address in DBGWVR */
262 addr_bottom = addr_bottom + ctz32(bas);
263 addr_top = addr_bottom + clo32(bas);
264 }
265
266 if (addr >= addr_bottom && addr <= addr_top) {
267 return true;
268 }
269
270 return false;
271}
272
273/**
274 * delete_hw_watchpoint()
275 * @addr: address of breakpoint
276 *
277 * Delete a breakpoint and shuffle any above down
278 */
279
280static int delete_hw_watchpoint(target_ulong addr,
281 target_ulong len, int type)
282{
283 int i;
284 for (i = 0; i < cur_hw_wps; i++) {
285 if (check_watchpoint_in_range(i, addr)) {
286 g_array_remove_index(hw_watchpoints, i);
287 return 0;
288 }
289 }
290 return -ENOENT;
291}
292
293
294int kvm_arch_insert_hw_breakpoint(target_ulong addr,
295 target_ulong len, int type)
296{
297 switch (type) {
298 case GDB_BREAKPOINT_HW:
299 return insert_hw_breakpoint(addr);
300 break;
301 case GDB_WATCHPOINT_READ:
302 case GDB_WATCHPOINT_WRITE:
303 case GDB_WATCHPOINT_ACCESS:
304 return insert_hw_watchpoint(addr, len, type);
305 default:
306 return -ENOSYS;
307 }
308}
309
310int kvm_arch_remove_hw_breakpoint(target_ulong addr,
311 target_ulong len, int type)
312{
313 switch (type) {
314 case GDB_BREAKPOINT_HW:
315 return delete_hw_breakpoint(addr);
316 break;
317 case GDB_WATCHPOINT_READ:
318 case GDB_WATCHPOINT_WRITE:
319 case GDB_WATCHPOINT_ACCESS:
320 return delete_hw_watchpoint(addr, len, type);
321 default:
322 return -ENOSYS;
323 }
324}
325
326
327void kvm_arch_remove_all_hw_breakpoints(void)
328{
329 if (cur_hw_wps > 0) {
330 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
331 }
332 if (cur_hw_bps > 0) {
333 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
334 }
335}
336
337void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
338{
339 int i;
340 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
341
342 for (i = 0; i < max_hw_wps; i++) {
343 HWWatchpoint *wp = get_hw_wp(i);
344 ptr->dbg_wcr[i] = wp->wcr;
345 ptr->dbg_wvr[i] = wp->wvr;
346 }
347 for (i = 0; i < max_hw_bps; i++) {
348 HWBreakpoint *bp = get_hw_bp(i);
349 ptr->dbg_bcr[i] = bp->bcr;
350 ptr->dbg_bvr[i] = bp->bvr;
351 }
352}
353
354bool kvm_arm_hw_debug_active(CPUState *cs)
355{
356 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
357}
358
359static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
360{
361 int i;
362
363 for (i = 0; i < cur_hw_bps; i++) {
364 HWBreakpoint *bp = get_hw_bp(i);
365 if (bp->bvr == pc) {
366 return true;
367 }
368 }
369 return false;
370}
371
372static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
373{
374 int i;
375
376 for (i = 0; i < cur_hw_wps; i++) {
377 if (check_watchpoint_in_range(i, addr)) {
378 return &get_hw_wp(i)->details;
379 }
380 }
381 return NULL;
382}
383
3f07cb2a 384static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr)
01fe6b60
SZ
385{
386 int err;
387
3f07cb2a
AJ
388 err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
389 if (err != 0) {
390 return false;
01fe6b60
SZ
391 }
392
3f07cb2a 393 err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
01fe6b60
SZ
394 if (err < 0) {
395 fprintf(stderr, "KVM_SET_DEVICE_ATTR failed: %s\n",
396 strerror(-err));
397 abort();
398 }
399
3f07cb2a
AJ
400 return true;
401}
01fe6b60 402
3f07cb2a
AJ
403int kvm_arm_pmu_init(CPUState *cs)
404{
405 struct kvm_device_attr attr = {
406 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
407 .attr = KVM_ARM_VCPU_PMU_V3_INIT,
408 };
409
410 return kvm_arm_pmu_set_attr(cs, &attr);
411}
412
413int kvm_arm_pmu_set_irq(CPUState *cs, int irq)
414{
415 struct kvm_device_attr attr = {
416 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
417 .addr = (intptr_t)&irq,
418 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
419 };
01fe6b60 420
3f07cb2a 421 return kvm_arm_pmu_set_attr(cs, &attr);
01fe6b60 422}
e4482ab7 423
26861c7c
MH
424static inline void set_feature(uint64_t *features, int feature)
425{
426 *features |= 1ULL << feature;
427}
428
929e754d
WH
429static inline void unset_feature(uint64_t *features, int feature)
430{
431 *features &= ~(1ULL << feature);
432}
433
26861c7c
MH
434bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
435{
436 /* Identify the feature bits corresponding to the host CPU, and
437 * fill out the ARMHostCPUClass fields accordingly. To do this
438 * we have to create a scratch VM, create a single CPU inside it,
439 * and then query that CPU for the relevant ID registers.
440 * For AArch64 we currently don't care about ID registers at
441 * all; we just want to know the CPU type.
442 */
443 int fdarray[3];
444 uint64_t features = 0;
445 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
446 * we know these will only support creating one kind of guest CPU,
447 * which is its preferred CPU type. Fortunately these old kernels
448 * support only a very limited number of CPUs.
449 */
450 static const uint32_t cpus_to_try[] = {
451 KVM_ARM_TARGET_AEM_V8,
452 KVM_ARM_TARGET_FOUNDATION_V8,
453 KVM_ARM_TARGET_CORTEX_A57,
454 QEMU_KVM_ARM_TARGET_NONE
455 };
456 struct kvm_vcpu_init init;
457
458 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
459 return false;
460 }
461
462 ahcc->target = init.target;
463 ahcc->dtb_compatible = "arm,arm-v8";
464
465 kvm_arm_destroy_scratch_host_vcpu(fdarray);
466
467 /* We can assume any KVM supporting CPU is at least a v8
468 * with VFPv4+Neon; this in turn implies most of the other
469 * feature bits.
470 */
471 set_feature(&features, ARM_FEATURE_V8);
472 set_feature(&features, ARM_FEATURE_VFP4);
473 set_feature(&features, ARM_FEATURE_NEON);
474 set_feature(&features, ARM_FEATURE_AARCH64);
929e754d 475 set_feature(&features, ARM_FEATURE_PMU);
26861c7c
MH
476
477 ahcc->features = features;
478
479 return true;
480}
481
eb5e1d3c
PF
482#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
483
26861c7c
MH
484int kvm_arch_init_vcpu(CPUState *cs)
485{
26861c7c 486 int ret;
eb5e1d3c 487 uint64_t mpidr;
228d5e04 488 ARMCPU *cpu = ARM_CPU(cs);
929e754d 489 CPUARMState *env = &cpu->env;
26861c7c
MH
490
491 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
56073970 492 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
26861c7c
MH
493 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
494 return -EINVAL;
495 }
496
228d5e04
PS
497 /* Determine init features for this CPU */
498 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
26861c7c 499 if (cpu->start_powered_off) {
228d5e04
PS
500 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
501 }
7cd62e53 502 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
dd032e34 503 cpu->psci_version = 2;
7cd62e53
PS
504 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
505 }
56073970
GB
506 if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
507 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
508 }
b1659527 509 if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
929e754d
WH
510 cpu->has_pmu = false;
511 }
512 if (cpu->has_pmu) {
5c0a3819 513 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
929e754d
WH
514 } else {
515 unset_feature(&env->features, ARM_FEATURE_PMU);
5c0a3819 516 }
228d5e04
PS
517
518 /* Do KVM_ARM_VCPU_INIT ioctl */
519 ret = kvm_arm_vcpu_init(cs);
520 if (ret) {
521 return ret;
26861c7c 522 }
26861c7c 523
eb5e1d3c
PF
524 /*
525 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
526 * Currently KVM has its own idea about MPIDR assignment, so we
527 * override our defaults with what we get from KVM.
528 */
529 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
530 if (ret) {
531 return ret;
532 }
0f4a9e45 533 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
eb5e1d3c 534
29eb3d9a
AB
535 kvm_arm_init_debug(cs);
536
38df27c8
AB
537 return kvm_arm_init_cpreg_list(cpu);
538}
26861c7c 539
38df27c8
AB
540bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
541{
542 /* Return true if the regidx is a register we should synchronize
543 * via the cpreg_tuples array (ie is not a core reg we sync by
544 * hand in kvm_arch_get/put_registers())
545 */
546 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
547 case KVM_REG_ARM_CORE:
548 return false;
549 default:
550 return true;
551 }
26861c7c
MH
552}
553
4b7a6bf4
CD
554typedef struct CPRegStateLevel {
555 uint64_t regidx;
556 int level;
557} CPRegStateLevel;
558
559/* All system registers not listed in the following table are assumed to be
560 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
561 * often, you must add it to this table with a state of either
562 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
563 */
564static const CPRegStateLevel non_runtime_cpregs[] = {
565 { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
566};
567
568int kvm_arm_cpreg_level(uint64_t regidx)
569{
570 int i;
571
572 for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
573 const CPRegStateLevel *l = &non_runtime_cpregs[i];
574 if (l->regidx == regidx) {
575 return l->level;
576 }
577 }
578
579 return KVM_PUT_RUNTIME_STATE;
580}
581
26861c7c
MH
582#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
583 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
584
0e4b5869
AB
585#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
586 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
587
588#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
589 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
590
26861c7c
MH
591int kvm_arch_put_registers(CPUState *cs, int level)
592{
593 struct kvm_one_reg reg;
0e4b5869 594 uint32_t fpr;
26861c7c
MH
595 uint64_t val;
596 int i;
597 int ret;
25b9fb10 598 unsigned int el;
26861c7c
MH
599
600 ARMCPU *cpu = ARM_CPU(cs);
601 CPUARMState *env = &cpu->env;
602
56073970
GB
603 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
604 * AArch64 registers before pushing them out to 64-bit KVM.
605 */
606 if (!is_a64(env)) {
607 aarch64_sync_32_to_64(env);
608 }
609
26861c7c
MH
610 for (i = 0; i < 31; i++) {
611 reg.id = AARCH64_CORE_REG(regs.regs[i]);
612 reg.addr = (uintptr_t) &env->xregs[i];
613 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
614 if (ret) {
615 return ret;
616 }
617 }
618
f502cfc2
PM
619 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
620 * QEMU side we keep the current SP in xregs[31] as well.
621 */
9208b961 622 aarch64_save_sp(env, 1);
f502cfc2 623
26861c7c 624 reg.id = AARCH64_CORE_REG(regs.sp);
f502cfc2
PM
625 reg.addr = (uintptr_t) &env->sp_el[0];
626 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
627 if (ret) {
628 return ret;
629 }
630
631 reg.id = AARCH64_CORE_REG(sp_el1);
632 reg.addr = (uintptr_t) &env->sp_el[1];
26861c7c
MH
633 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
634 if (ret) {
635 return ret;
636 }
637
638 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
56073970
GB
639 if (is_a64(env)) {
640 val = pstate_read(env);
641 } else {
642 val = cpsr_read(env);
643 }
26861c7c
MH
644 reg.id = AARCH64_CORE_REG(regs.pstate);
645 reg.addr = (uintptr_t) &val;
646 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
647 if (ret) {
648 return ret;
649 }
650
651 reg.id = AARCH64_CORE_REG(regs.pc);
652 reg.addr = (uintptr_t) &env->pc;
653 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
654 if (ret) {
655 return ret;
656 }
657
a0618a19 658 reg.id = AARCH64_CORE_REG(elr_el1);
6947f059 659 reg.addr = (uintptr_t) &env->elr_el[1];
a0618a19
PM
660 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
661 if (ret) {
662 return ret;
663 }
664
25b9fb10
AB
665 /* Saved Program State Registers
666 *
667 * Before we restore from the banked_spsr[] array we need to
668 * ensure that any modifications to env->spsr are correctly
669 * reflected in the banks.
670 */
671 el = arm_current_el(env);
672 if (el > 0 && !is_a64(env)) {
673 i = bank_number(env->uncached_cpsr & CPSR_M);
674 env->banked_spsr[i] = env->spsr;
675 }
676
677 /* KVM 0-4 map to QEMU banks 1-5 */
a65f1de9
PM
678 for (i = 0; i < KVM_NR_SPSR; i++) {
679 reg.id = AARCH64_CORE_REG(spsr[i]);
25b9fb10 680 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
a65f1de9
PM
681 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
682 if (ret) {
683 return ret;
684 }
685 }
686
0e4b5869
AB
687 /* Advanced SIMD and FP registers
688 * We map Qn = regs[2n+1]:regs[2n]
689 */
690 for (i = 0; i < 32; i++) {
691 int rd = i << 1;
692 uint64_t fp_val[2];
693#ifdef HOST_WORDS_BIGENDIAN
694 fp_val[0] = env->vfp.regs[rd + 1];
695 fp_val[1] = env->vfp.regs[rd];
696#else
697 fp_val[1] = env->vfp.regs[rd + 1];
698 fp_val[0] = env->vfp.regs[rd];
699#endif
700 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
701 reg.addr = (uintptr_t)(&fp_val);
702 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
703 if (ret) {
704 return ret;
705 }
706 }
707
708 reg.addr = (uintptr_t)(&fpr);
709 fpr = vfp_get_fpsr(env);
710 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
711 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
712 if (ret) {
713 return ret;
714 }
715
716 fpr = vfp_get_fpcr(env);
717 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
718 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
719 if (ret) {
720 return ret;
721 }
722
4b7a6bf4 723 if (!write_list_to_kvmstate(cpu, level)) {
568bab1f
PS
724 return EINVAL;
725 }
726
1a1753f7
AB
727 kvm_arm_sync_mpstate_to_kvm(cpu);
728
26861c7c
MH
729 return ret;
730}
731
732int kvm_arch_get_registers(CPUState *cs)
733{
734 struct kvm_one_reg reg;
735 uint64_t val;
0e4b5869 736 uint32_t fpr;
25b9fb10 737 unsigned int el;
26861c7c
MH
738 int i;
739 int ret;
740
741 ARMCPU *cpu = ARM_CPU(cs);
742 CPUARMState *env = &cpu->env;
743
744 for (i = 0; i < 31; i++) {
745 reg.id = AARCH64_CORE_REG(regs.regs[i]);
746 reg.addr = (uintptr_t) &env->xregs[i];
747 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
748 if (ret) {
749 return ret;
750 }
751 }
752
753 reg.id = AARCH64_CORE_REG(regs.sp);
f502cfc2
PM
754 reg.addr = (uintptr_t) &env->sp_el[0];
755 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
756 if (ret) {
757 return ret;
758 }
759
760 reg.id = AARCH64_CORE_REG(sp_el1);
761 reg.addr = (uintptr_t) &env->sp_el[1];
26861c7c
MH
762 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
763 if (ret) {
764 return ret;
765 }
766
767 reg.id = AARCH64_CORE_REG(regs.pstate);
768 reg.addr = (uintptr_t) &val;
769 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
770 if (ret) {
771 return ret;
772 }
56073970
GB
773
774 env->aarch64 = ((val & PSTATE_nRW) == 0);
775 if (is_a64(env)) {
776 pstate_write(env, val);
777 } else {
50866ba5 778 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
56073970 779 }
26861c7c 780
f502cfc2
PM
781 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
782 * QEMU side we keep the current SP in xregs[31] as well.
783 */
9208b961 784 aarch64_restore_sp(env, 1);
f502cfc2 785
26861c7c
MH
786 reg.id = AARCH64_CORE_REG(regs.pc);
787 reg.addr = (uintptr_t) &env->pc;
788 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
789 if (ret) {
790 return ret;
791 }
792
56073970
GB
793 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
794 * incoming AArch64 regs received from 64-bit KVM.
795 * We must perform this after all of the registers have been acquired from
796 * the kernel.
797 */
798 if (!is_a64(env)) {
799 aarch64_sync_64_to_32(env);
800 }
801
a0618a19 802 reg.id = AARCH64_CORE_REG(elr_el1);
6947f059 803 reg.addr = (uintptr_t) &env->elr_el[1];
a0618a19
PM
804 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
805 if (ret) {
806 return ret;
807 }
808
25b9fb10
AB
809 /* Fetch the SPSR registers
810 *
811 * KVM SPSRs 0-4 map to QEMU banks 1-5
812 */
a65f1de9
PM
813 for (i = 0; i < KVM_NR_SPSR; i++) {
814 reg.id = AARCH64_CORE_REG(spsr[i]);
25b9fb10 815 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
a65f1de9
PM
816 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
817 if (ret) {
818 return ret;
819 }
820 }
821
25b9fb10
AB
822 el = arm_current_el(env);
823 if (el > 0 && !is_a64(env)) {
824 i = bank_number(env->uncached_cpsr & CPSR_M);
825 env->spsr = env->banked_spsr[i];
826 }
827
0e4b5869
AB
828 /* Advanced SIMD and FP registers
829 * We map Qn = regs[2n+1]:regs[2n]
830 */
831 for (i = 0; i < 32; i++) {
832 uint64_t fp_val[2];
833 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
834 reg.addr = (uintptr_t)(&fp_val);
835 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
836 if (ret) {
837 return ret;
838 } else {
839 int rd = i << 1;
840#ifdef HOST_WORDS_BIGENDIAN
841 env->vfp.regs[rd + 1] = fp_val[0];
842 env->vfp.regs[rd] = fp_val[1];
843#else
844 env->vfp.regs[rd + 1] = fp_val[1];
845 env->vfp.regs[rd] = fp_val[0];
846#endif
847 }
848 }
849
850 reg.addr = (uintptr_t)(&fpr);
851 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
852 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
853 if (ret) {
854 return ret;
855 }
856 vfp_set_fpsr(env, fpr);
857
858 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
859 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
860 if (ret) {
861 return ret;
862 }
863 vfp_set_fpcr(env, fpr);
864
568bab1f
PS
865 if (!write_kvmstate_to_list(cpu)) {
866 return EINVAL;
867 }
868 /* Note that it's OK to have registers which aren't in CPUState,
869 * so we can ignore a failure return here.
870 */
871 write_list_to_cpustate(cpu);
872
1a1753f7
AB
873 kvm_arm_sync_mpstate_to_qemu(cpu);
874
26861c7c
MH
875 /* TODO: other registers */
876 return ret;
877}
2ecb2027
AB
878
879/* C6.6.29 BRK instruction */
880static const uint32_t brk_insn = 0xd4200000;
881
882int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
883{
884 if (have_guest_debug) {
885 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
886 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
887 return -EINVAL;
888 }
889 return 0;
890 } else {
891 error_report("guest debug not supported on this kernel");
892 return -EINVAL;
893 }
894}
895
896int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
897{
898 static uint32_t brk;
899
900 if (have_guest_debug) {
901 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
902 brk != brk_insn ||
903 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
904 return -EINVAL;
905 }
906 return 0;
907 } else {
908 error_report("guest debug not supported on this kernel");
909 return -EINVAL;
910 }
911}
912
913/* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
914 *
915 * To minimise translating between kernel and user-space the kernel
916 * ABI just provides user-space with the full exception syndrome
917 * register value to be decoded in QEMU.
918 */
919
920bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
921{
922 int hsr_ec = debug_exit->hsr >> ARM_EL_EC_SHIFT;
923 ARMCPU *cpu = ARM_CPU(cs);
34c45d53 924 CPUClass *cc = CPU_GET_CLASS(cs);
2ecb2027
AB
925 CPUARMState *env = &cpu->env;
926
927 /* Ensure PC is synchronised */
928 kvm_cpu_synchronize_state(cs);
929
930 switch (hsr_ec) {
26ae5934
AB
931 case EC_SOFTWARESTEP:
932 if (cs->singlestep_enabled) {
933 return true;
934 } else {
34c45d53
AB
935 /*
936 * The kernel should have suppressed the guest's ability to
937 * single step at this point so something has gone wrong.
938 */
939 error_report("%s: guest single-step while debugging unsupported"
dffc5851 940 " (%"PRIx64", %"PRIx32")",
34c45d53
AB
941 __func__, env->pc, debug_exit->hsr);
942 return false;
26ae5934
AB
943 }
944 break;
2ecb2027
AB
945 case EC_AA64_BKPT:
946 if (kvm_find_sw_breakpoint(cs, env->pc)) {
947 return true;
948 }
949 break;
e4482ab7
AB
950 case EC_BREAKPOINT:
951 if (find_hw_breakpoint(cs, env->pc)) {
952 return true;
953 }
954 break;
955 case EC_WATCHPOINT:
956 {
957 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
958 if (wp) {
959 cs->watchpoint_hit = wp;
960 return true;
961 }
962 break;
963 }
2ecb2027 964 default:
dffc5851 965 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
2ecb2027
AB
966 __func__, debug_exit->hsr, env->pc);
967 }
968
34c45d53
AB
969 /* If we are not handling the debug exception it must belong to
970 * the guest. Let's re-use the existing TCG interrupt code to set
971 * everything up properly.
972 */
973 cs->exception_index = EXCP_BKPT;
974 env->exception.syndrome = debug_exit->hsr;
975 env->exception.vaddress = debug_exit->far;
976 cc->do_interrupt(cs);
2ecb2027
AB
977
978 return false;
979}