]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/mte_helper.c
target/arm: Fix mte page crossing test
[mirror_qemu.git] / target / arm / mte_helper.c
CommitLineData
da54941f
RH
1/*
2 * ARM v8.5-MemTag Operations
3 *
4 * Copyright (c) 2020 Linaro, Ltd.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
21#include "cpu.h"
22#include "internals.h"
23#include "exec/exec-all.h"
e4d5bf4f 24#include "exec/ram_addr.h"
da54941f
RH
25#include "exec/cpu_ldst.h"
26#include "exec/helper-proto.h"
d4f6dda1
RH
27#include "qapi/error.h"
28#include "qemu/guest-random.h"
da54941f
RH
29
30
31static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
32{
33 if (exclude == 0xffff) {
34 return 0;
35 }
36 if (offset == 0) {
37 while (exclude & (1 << tag)) {
38 tag = (tag + 1) & 15;
39 }
40 } else {
41 do {
42 do {
43 tag = (tag + 1) & 15;
44 } while (exclude & (1 << tag));
45 } while (--offset > 0);
46 }
47 return tag;
48}
49
c15294c1
RH
50/**
51 * allocation_tag_mem:
52 * @env: the cpu environment
53 * @ptr_mmu_idx: the addressing regime to use for the virtual address
54 * @ptr: the virtual address for which to look up tag memory
55 * @ptr_access: the access to use for the virtual address
56 * @ptr_size: the number of bytes in the normal memory access
57 * @tag_access: the access to use for the tag memory
58 * @tag_size: the number of bytes in the tag memory access
59 * @ra: the return address for exception handling
60 *
61 * Our tag memory is formatted as a sequence of little-endian nibbles.
62 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
63 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
64 * for the higher addr.
65 *
66 * Here, resolve the physical address from the virtual address, and return
67 * a pointer to the corresponding tag byte. Exit with exception if the
68 * virtual address is not accessible for @ptr_access.
69 *
70 * The @ptr_size and @tag_size values may not have an obvious relation
71 * due to the alignment of @ptr, and the number of tag checks required.
72 *
73 * If there is no tag storage corresponding to @ptr, return NULL.
74 */
75static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
76 uint64_t ptr, MMUAccessType ptr_access,
77 int ptr_size, MMUAccessType tag_access,
78 int tag_size, uintptr_t ra)
79{
e4d5bf4f 80#ifdef CONFIG_USER_ONLY
a11d3830
RH
81 uint64_t clean_ptr = useronly_clean_ptr(ptr);
82 int flags = page_get_flags(clean_ptr);
83 uint8_t *tags;
84 uintptr_t index;
85
ff38bca7 86 if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) {
a11d3830
RH
87 /* SIGSEGV */
88 arm_cpu_tlb_fill(env_cpu(env), ptr, ptr_size, ptr_access,
89 ptr_mmu_idx, false, ra);
90 g_assert_not_reached();
91 }
92
93 /* Require both MAP_ANON and PROT_MTE for the page. */
94 if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
95 return NULL;
96 }
97
98 tags = page_get_target_data(clean_ptr);
99 if (tags == NULL) {
100 size_t alloc_size = TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1);
101 tags = page_alloc_target_data(clean_ptr, alloc_size);
102 assert(tags != NULL);
103 }
104
105 index = extract32(ptr, LOG2_TAG_GRANULE + 1,
106 TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
107 return tags + index;
e4d5bf4f
RH
108#else
109 uintptr_t index;
110 CPUIOTLBEntry *iotlbentry;
111 int in_page, flags;
112 ram_addr_t ptr_ra;
113 hwaddr ptr_paddr, tag_paddr, xlat;
114 MemoryRegion *mr;
115 ARMASIdx tag_asi;
116 AddressSpace *tag_as;
117 void *host;
118
119 /*
120 * Probe the first byte of the virtual address. This raises an
121 * exception for inaccessible pages, and resolves the virtual address
122 * into the softmmu tlb.
123 *
d304d280 124 * When RA == 0, this is for mte_probe. The page is expected to be
e4d5bf4f
RH
125 * valid. Indicate to probe_access_flags no-fault, then assert that
126 * we received a valid page.
127 */
128 flags = probe_access_flags(env, ptr, ptr_access, ptr_mmu_idx,
129 ra == 0, &host, ra);
130 assert(!(flags & TLB_INVALID_MASK));
131
132 /*
133 * Find the iotlbentry for ptr. This *must* be present in the TLB
134 * because we just found the mapping.
135 * TODO: Perhaps there should be a cputlb helper that returns a
136 * matching tlb entry + iotlb entry.
137 */
138 index = tlb_index(env, ptr_mmu_idx, ptr);
139# ifdef CONFIG_DEBUG_TCG
140 {
141 CPUTLBEntry *entry = tlb_entry(env, ptr_mmu_idx, ptr);
142 target_ulong comparator = (ptr_access == MMU_DATA_LOAD
143 ? entry->addr_read
144 : tlb_addr_write(entry));
145 g_assert(tlb_hit(comparator, ptr));
146 }
147# endif
148 iotlbentry = &env_tlb(env)->d[ptr_mmu_idx].iotlb[index];
149
150 /* If the virtual page MemAttr != Tagged, access unchecked. */
151 if (!arm_tlb_mte_tagged(&iotlbentry->attrs)) {
152 return NULL;
153 }
154
155 /*
156 * If not backed by host ram, there is no tag storage: access unchecked.
157 * This is probably a guest os bug though, so log it.
158 */
159 if (unlikely(flags & TLB_MMIO)) {
160 qemu_log_mask(LOG_GUEST_ERROR,
161 "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
162 "but is not backed by host ram\n", ptr);
163 return NULL;
164 }
165
166 /*
167 * The Normal memory access can extend to the next page. E.g. a single
168 * 8-byte access to the last byte of a page will check only the last
169 * tag on the first page.
170 * Any page access exception has priority over tag check exception.
171 */
172 in_page = -(ptr | TARGET_PAGE_MASK);
173 if (unlikely(ptr_size > in_page)) {
174 void *ignore;
175 flags |= probe_access_flags(env, ptr + in_page, ptr_access,
176 ptr_mmu_idx, ra == 0, &ignore, ra);
177 assert(!(flags & TLB_INVALID_MASK));
178 }
179
180 /* Any debug exception has priority over a tag check exception. */
181 if (unlikely(flags & TLB_WATCHPOINT)) {
182 int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
183 assert(ra != 0);
184 cpu_check_watchpoint(env_cpu(env), ptr, ptr_size,
185 iotlbentry->attrs, wp, ra);
186 }
187
188 /*
189 * Find the physical address within the normal mem space.
190 * The memory region lookup must succeed because TLB_MMIO was
191 * not set in the cputlb lookup above.
192 */
193 mr = memory_region_from_host(host, &ptr_ra);
194 tcg_debug_assert(mr != NULL);
195 tcg_debug_assert(memory_region_is_ram(mr));
196 ptr_paddr = ptr_ra;
197 do {
198 ptr_paddr += mr->addr;
199 mr = mr->container;
200 } while (mr);
201
202 /* Convert to the physical address in tag space. */
203 tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
204
205 /* Look up the address in tag space. */
206 tag_asi = iotlbentry->attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
207 tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
208 mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
209 tag_access == MMU_DATA_STORE,
210 iotlbentry->attrs);
211
212 /*
213 * Note that @mr will never be NULL. If there is nothing in the address
214 * space at @tag_paddr, the translation will return the unallocated memory
215 * region. For our purposes, the result must be ram.
216 */
217 if (unlikely(!memory_region_is_ram(mr))) {
218 /* ??? Failure is a board configuration error. */
219 qemu_log_mask(LOG_UNIMP,
220 "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
221 "Normal Memory @ 0x%" HWADDR_PRIx "\n",
222 tag_paddr, ptr_paddr);
223 return NULL;
224 }
225
226 /*
227 * Ensure the tag memory is dirty on write, for migration.
228 * Tag memory can never contain code or display memory (vga).
229 */
230 if (tag_access == MMU_DATA_STORE) {
231 ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
232 cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
233 }
234
235 return memory_region_get_ram_ptr(mr) + xlat;
236#endif
c15294c1
RH
237}
238
da54941f
RH
239uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
240{
da54941f 241 uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
d4f6dda1 242 int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
da54941f
RH
243 int start = extract32(env->cp15.rgsr_el1, 0, 4);
244 int seed = extract32(env->cp15.rgsr_el1, 8, 16);
d4f6dda1
RH
245 int offset, i, rtag;
246
247 /*
248 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
249 * deterministic algorithm. Except that with RRND==1 the kernel is
250 * not required to have set RGSR_EL1.SEED != 0, which is required for
251 * the deterministic algorithm to function. So we force a non-zero
252 * SEED for that case.
253 */
254 if (unlikely(seed == 0) && rrnd) {
255 do {
256 Error *err = NULL;
257 uint16_t two;
258
259 if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
260 /*
261 * Failed, for unknown reasons in the crypto subsystem.
262 * Best we can do is log the reason and use a constant seed.
263 */
264 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
265 error_get_pretty(err));
266 error_free(err);
267 two = 1;
268 }
269 seed = two;
270 } while (seed == 0);
271 }
da54941f
RH
272
273 /* RandomTag */
274 for (i = offset = 0; i < 4; ++i) {
275 /* NextRandomTagBit */
276 int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
277 extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
278 seed = (top << 15) | (seed >> 1);
279 offset |= top << i;
280 }
281 rtag = choose_nonexcluded_tag(start, offset, exclude);
282 env->cp15.rgsr_el1 = rtag | (seed << 8);
283
284 return address_with_allocation_tag(rn, rtag);
285}
efbc78ad
RH
286
287uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
288 int32_t offset, uint32_t tag_offset)
289{
290 int start_tag = allocation_tag_from_addr(ptr);
291 uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
292 int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
293
294 return address_with_allocation_tag(ptr + offset, rtag);
295}
c15294c1
RH
296
297static int load_tag1(uint64_t ptr, uint8_t *mem)
298{
299 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
300 return extract32(*mem, ofs, 4);
301}
302
303uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
304{
305 int mmu_idx = cpu_mmu_index(env, false);
306 uint8_t *mem;
307 int rtag = 0;
308
309 /* Trap if accessing an invalid page. */
310 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
311 MMU_DATA_LOAD, 1, GETPC());
312
313 /* Load if page supports tags. */
314 if (mem) {
315 rtag = load_tag1(ptr, mem);
316 }
317
318 return address_with_allocation_tag(xt, rtag);
319}
320
321static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
322{
323 if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
324 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
325 cpu_mmu_index(env, false), ra);
326 g_assert_not_reached();
327 }
328}
329
330/* For use in a non-parallel context, store to the given nibble. */
331static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
332{
333 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
334 *mem = deposit32(*mem, ofs, 4, tag);
335}
336
337/* For use in a parallel context, atomically store to the given nibble. */
338static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
339{
340 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
d73415a3 341 uint8_t old = qatomic_read(mem);
c15294c1
RH
342
343 while (1) {
344 uint8_t new = deposit32(old, ofs, 4, tag);
d73415a3 345 uint8_t cmp = qatomic_cmpxchg(mem, old, new);
c15294c1
RH
346 if (likely(cmp == old)) {
347 return;
348 }
349 old = cmp;
350 }
351}
352
353typedef void stg_store1(uint64_t, uint8_t *, int);
354
355static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
356 uintptr_t ra, stg_store1 store1)
357{
358 int mmu_idx = cpu_mmu_index(env, false);
359 uint8_t *mem;
360
361 check_tag_aligned(env, ptr, ra);
362
363 /* Trap if accessing an invalid page. */
364 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
365 MMU_DATA_STORE, 1, ra);
366
367 /* Store if page supports tags. */
368 if (mem) {
369 store1(ptr, mem, allocation_tag_from_addr(xt));
370 }
371}
372
373void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
374{
375 do_stg(env, ptr, xt, GETPC(), store_tag1);
376}
377
378void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
379{
380 do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
381}
382
383void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
384{
385 int mmu_idx = cpu_mmu_index(env, false);
386 uintptr_t ra = GETPC();
387
388 check_tag_aligned(env, ptr, ra);
389 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
390}
391
392static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
393 uintptr_t ra, stg_store1 store1)
394{
395 int mmu_idx = cpu_mmu_index(env, false);
396 int tag = allocation_tag_from_addr(xt);
397 uint8_t *mem1, *mem2;
398
399 check_tag_aligned(env, ptr, ra);
400
401 /*
402 * Trap if accessing an invalid page(s).
403 * This takes priority over !allocation_tag_access_enabled.
404 */
405 if (ptr & TAG_GRANULE) {
406 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
407 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
408 TAG_GRANULE, MMU_DATA_STORE, 1, ra);
409 mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
410 MMU_DATA_STORE, TAG_GRANULE,
411 MMU_DATA_STORE, 1, ra);
412
413 /* Store if page(s) support tags. */
414 if (mem1) {
415 store1(TAG_GRANULE, mem1, tag);
416 }
417 if (mem2) {
418 store1(0, mem2, tag);
419 }
420 } else {
421 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
422 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
423 2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra);
424 if (mem1) {
425 tag |= tag << 4;
d73415a3 426 qatomic_set(mem1, tag);
c15294c1
RH
427 }
428 }
429}
430
431void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
432{
433 do_st2g(env, ptr, xt, GETPC(), store_tag1);
434}
435
436void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
437{
438 do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
439}
440
441void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
442{
443 int mmu_idx = cpu_mmu_index(env, false);
444 uintptr_t ra = GETPC();
445 int in_page = -(ptr | TARGET_PAGE_MASK);
446
447 check_tag_aligned(env, ptr, ra);
448
449 if (likely(in_page >= 2 * TAG_GRANULE)) {
450 probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
451 } else {
452 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
453 probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
454 }
455}
5f716a82
RH
456
457#define LDGM_STGM_SIZE (4 << GMID_EL1_BS)
458
459uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
460{
461 int mmu_idx = cpu_mmu_index(env, false);
462 uintptr_t ra = GETPC();
463 void *tag_mem;
464
465 ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
466
467 /* Trap if accessing an invalid page. */
468 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
469 LDGM_STGM_SIZE, MMU_DATA_LOAD,
470 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
471
472 /* The tag is squashed to zero if the page does not support tags. */
473 if (!tag_mem) {
474 return 0;
475 }
476
477 QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
478 /*
479 * We are loading 64-bits worth of tags. The ordering of elements
480 * within the word corresponds to a 64-bit little-endian operation.
481 */
482 return ldq_le_p(tag_mem);
483}
484
485void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
486{
487 int mmu_idx = cpu_mmu_index(env, false);
488 uintptr_t ra = GETPC();
489 void *tag_mem;
490
491 ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
492
493 /* Trap if accessing an invalid page. */
494 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
495 LDGM_STGM_SIZE, MMU_DATA_LOAD,
496 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
497
498 /*
499 * Tag store only happens if the page support tags,
500 * and if the OS has enabled access to the tags.
501 */
502 if (!tag_mem) {
503 return;
504 }
505
506 QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
507 /*
508 * We are storing 64-bits worth of tags. The ordering of elements
509 * within the word corresponds to a 64-bit little-endian operation.
510 */
511 stq_le_p(tag_mem, val);
512}
513
514void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
515{
516 uintptr_t ra = GETPC();
517 int mmu_idx = cpu_mmu_index(env, false);
518 int log2_dcz_bytes, log2_tag_bytes;
519 intptr_t dcz_bytes, tag_bytes;
520 uint8_t *mem;
521
522 /*
523 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
524 * i.e. 32 bytes, which is an unreasonably small dcz anyway,
525 * to make sure that we can access one complete tag byte here.
526 */
527 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
528 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
529 dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
530 tag_bytes = (intptr_t)1 << log2_tag_bytes;
531 ptr &= -dcz_bytes;
532
533 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
534 MMU_DATA_STORE, tag_bytes, ra);
535 if (mem) {
536 int tag_pair = (val & 0xf) * 0x11;
537 memset(mem, tag_pair, tag_bytes);
538 }
539}
0a405be2 540
2e34ff45 541/* Record a tag check failure. */
dbf8c321 542static void mte_check_fail(CPUARMState *env, uint32_t desc,
2e34ff45
RH
543 uint64_t dirty_ptr, uintptr_t ra)
544{
dbf8c321 545 int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
2e34ff45 546 ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
9a4670be 547 int el, reg_el, tcf, select, is_write, syn;
2e34ff45
RH
548 uint64_t sctlr;
549
550 reg_el = regime_el(env, arm_mmu_idx);
551 sctlr = env->cp15.sctlr_el[reg_el];
552
2d928adf
PC
553 switch (arm_mmu_idx) {
554 case ARMMMUIdx_E10_0:
555 case ARMMMUIdx_E20_0:
556 el = 0;
2e34ff45 557 tcf = extract64(sctlr, 38, 2);
2d928adf
PC
558 break;
559 default:
560 el = reg_el;
2e34ff45
RH
561 tcf = extract64(sctlr, 40, 2);
562 }
563
564 switch (tcf) {
565 case 1:
5bf100c3 566 /* Tag check fail causes a synchronous exception. */
2e34ff45 567 env->exception.vaddress = dirty_ptr;
9a4670be
RH
568
569 is_write = FIELD_EX32(desc, MTEDESC, WRITE);
2d928adf
PC
570 syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0,
571 is_write, 0x11);
5bf100c3
JI
572 raise_exception_ra(env, EXCP_DATA_ABORT, syn,
573 exception_target_el(env), ra);
2e34ff45
RH
574 /* noreturn, but fall through to the assert anyway */
575
576 case 0:
577 /*
578 * Tag check fail does not affect the PE.
579 * We eliminate this case by not setting MTE_ACTIVE
580 * in tb_flags, so that we never make this runtime call.
581 */
582 g_assert_not_reached();
583
584 case 2:
585 /* Tag check fail causes asynchronous flag set. */
4aedfc0f 586 if (regime_has_2_ranges(arm_mmu_idx)) {
2e34ff45
RH
587 select = extract64(dirty_ptr, 55, 1);
588 } else {
589 select = 0;
590 }
591 env->cp15.tfsr_el[el] |= 1 << select;
5d70c351
RH
592#ifdef CONFIG_USER_ONLY
593 /*
594 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
595 * which then sends a SIGSEGV when the thread is next scheduled.
596 * This cpu will return to the main loop at the end of the TB,
597 * which is rather sooner than "normal". But the alternative
598 * is waiting until the next syscall.
599 */
600 qemu_cpu_kick(env_cpu(env));
601#endif
2e34ff45
RH
602 break;
603
604 default:
605 /* Case 3: Reserved. */
606 qemu_log_mask(LOG_GUEST_ERROR,
607 "Tag check failure with SCTLR_EL%d.TCF%s "
608 "set to reserved value %d\n",
609 reg_el, el ? "" : "0", tcf);
610 break;
611 }
612}
613
5add8248
RH
614/**
615 * checkN:
616 * @tag: tag memory to test
617 * @odd: true to begin testing at tags at odd nibble
618 * @cmp: the tag to compare against
619 * @count: number of tags to test
620 *
621 * Return the number of successful tests.
622 * Thus a return value < @count indicates a failure.
623 *
624 * A note about sizes: count is expected to be small.
625 *
626 * The most common use will be LDP/STP of two integer registers,
627 * which means 16 bytes of memory touching at most 2 tags, but
628 * often the access is aligned and thus just 1 tag.
629 *
630 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
631 * touching at most 5 tags. SVE LDR/STR (vector) with the default
632 * vector length is also 64 bytes; the maximum architectural length
633 * is 256 bytes touching at most 9 tags.
634 *
635 * The loop below uses 7 logical operations and 1 memory operation
636 * per tag pair. An implementation that loads an aligned word and
637 * uses masking to ignore adjacent tags requires 18 logical operations
638 * and thus does not begin to pay off until 6 tags.
639 * Which, according to the survey above, is unlikely to be common.
640 */
641static int checkN(uint8_t *mem, int odd, int cmp, int count)
642{
643 int n = 0, diff;
644
645 /* Replicate the test tag and compare. */
646 cmp *= 0x11;
647 diff = *mem++ ^ cmp;
648
649 if (odd) {
650 goto start_odd;
651 }
652
653 while (1) {
654 /* Test even tag. */
655 if (unlikely((diff) & 0x0f)) {
656 break;
657 }
658 if (++n == count) {
659 break;
660 }
661
662 start_odd:
663 /* Test odd tag. */
664 if (unlikely((diff) & 0xf0)) {
665 break;
666 }
667 if (++n == count) {
668 break;
669 }
670
671 diff = *mem++ ^ cmp;
672 }
673 return n;
674}
675
f8c8a860
RH
676/**
677 * mte_probe_int() - helper for mte_probe and mte_check
678 * @env: CPU environment
679 * @desc: MTEDESC descriptor
680 * @ptr: virtual address of the base of the access
681 * @fault: return virtual address of the first check failure
682 *
683 * Internal routine for both mte_probe and mte_check.
684 * Return zero on failure, filling in *fault.
685 * Return negative on trivial success for tbi disabled.
686 * Return positive on success with tbi enabled.
687 */
688static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
28f32503 689 uintptr_t ra, uint64_t *fault)
5add8248
RH
690{
691 int mmu_idx, ptr_tag, bit55;
98f96050
RH
692 uint64_t ptr_last, prev_page, next_page;
693 uint64_t tag_first, tag_last;
694 uint64_t tag_byte_first, tag_byte_last;
28f32503 695 uint32_t sizem1, tag_count, tag_size, n, c;
5add8248
RH
696 uint8_t *mem1, *mem2;
697 MMUAccessType type;
698
699 bit55 = extract64(ptr, 55, 1);
f8c8a860 700 *fault = ptr;
5add8248
RH
701
702 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
703 if (unlikely(!tbi_check(desc, bit55))) {
f8c8a860 704 return -1;
5add8248
RH
705 }
706
707 ptr_tag = allocation_tag_from_addr(ptr);
708
709 if (tcma_check(desc, bit55, ptr_tag)) {
f8c8a860 710 return 1;
5add8248
RH
711 }
712
713 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
714 type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
28f32503 715 sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1);
5add8248 716
98f96050 717 /* Find the addr of the end of the access */
28f32503 718 ptr_last = ptr + sizem1;
5add8248
RH
719
720 /* Round the bounds to the tag granule, and compute the number of tags. */
721 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
98f96050
RH
722 tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
723 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
5add8248
RH
724
725 /* Round the bounds to twice the tag granule, and compute the bytes. */
726 tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE);
98f96050 727 tag_byte_last = QEMU_ALIGN_DOWN(ptr_last, 2 * TAG_GRANULE);
5add8248
RH
728
729 /* Locate the page boundaries. */
730 prev_page = ptr & TARGET_PAGE_MASK;
731 next_page = prev_page + TARGET_PAGE_SIZE;
732
d3327a38 733 if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) {
5add8248 734 /* Memory access stays on one page. */
98f96050 735 tag_size = ((tag_byte_last - tag_byte_first) / (2 * TAG_GRANULE)) + 1;
28f32503 736 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1,
5add8248
RH
737 MMU_DATA_LOAD, tag_size, ra);
738 if (!mem1) {
f8c8a860 739 return 1;
5add8248
RH
740 }
741 /* Perform all of the comparisons. */
742 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
743 } else {
744 /* Memory access crosses to next page. */
745 tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE);
746 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
747 MMU_DATA_LOAD, tag_size, ra);
748
98f96050 749 tag_size = ((tag_byte_last - next_page) / (2 * TAG_GRANULE)) + 1;
5add8248 750 mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
98f96050 751 ptr_last - next_page + 1,
5add8248
RH
752 MMU_DATA_LOAD, tag_size, ra);
753
754 /*
755 * Perform all of the comparisons.
756 * Note the possible but unlikely case of the operation spanning
757 * two pages that do not both have tagging enabled.
758 */
759 n = c = (next_page - tag_first) / TAG_GRANULE;
760 if (mem1) {
761 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
762 }
763 if (n == c) {
764 if (!mem2) {
f8c8a860 765 return 1;
5add8248
RH
766 }
767 n += checkN(mem2, 0, ptr_tag, tag_count - c);
768 }
769 }
770
f8c8a860
RH
771 if (likely(n == tag_count)) {
772 return 1;
773 }
774
5add8248 775 /*
98f96050
RH
776 * If we failed, we know which granule. For the first granule, the
777 * failure address is @ptr, the first byte accessed. Otherwise the
778 * failure address is the first byte of the nth granule.
5add8248 779 */
f8c8a860
RH
780 if (n > 0) {
781 *fault = tag_first + n * TAG_GRANULE;
5add8248 782 }
f8c8a860
RH
783 return 0;
784}
785
bd47b61c 786uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra)
f8c8a860
RH
787{
788 uint64_t fault;
28f32503 789 int ret = mte_probe_int(env, desc, ptr, ra, &fault);
5add8248 790
f8c8a860
RH
791 if (unlikely(ret == 0)) {
792 mte_check_fail(env, desc, fault, ra);
793 } else if (ret < 0) {
794 return ptr;
795 }
5add8248
RH
796 return useronly_clean_ptr(ptr);
797}
798
bd47b61c 799uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr)
73ceeb00 800{
bd47b61c 801 return mte_check(env, desc, ptr, GETPC());
4a09a213
RH
802}
803
804/*
d304d280 805 * No-fault version of mte_check, to be used by SVE for MemSingleNF.
4a09a213
RH
806 * Returns false if the access is Checked and the check failed. This
807 * is only intended to probe the tag -- the validity of the page must
808 * be checked beforehand.
809 */
d304d280 810bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr)
4a09a213
RH
811{
812 uint64_t fault;
28f32503 813 int ret = mte_probe_int(env, desc, ptr, 0, &fault);
4a09a213
RH
814
815 return ret != 0;
816}
817
46dc1bc0
RH
818/*
819 * Perform an MTE checked access for DC_ZVA.
820 */
821uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
822{
823 uintptr_t ra = GETPC();
824 int log2_dcz_bytes, log2_tag_bytes;
825 int mmu_idx, bit55;
826 intptr_t dcz_bytes, tag_bytes, i;
827 void *mem;
828 uint64_t ptr_tag, mem_tag, align_ptr;
829
830 bit55 = extract64(ptr, 55, 1);
831
832 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
833 if (unlikely(!tbi_check(desc, bit55))) {
834 return ptr;
835 }
836
837 ptr_tag = allocation_tag_from_addr(ptr);
838
839 if (tcma_check(desc, bit55, ptr_tag)) {
840 goto done;
841 }
842
843 /*
844 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
845 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
846 * sure that we can access one complete tag byte here.
847 */
848 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
849 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
850 dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
851 tag_bytes = (intptr_t)1 << log2_tag_bytes;
852 align_ptr = ptr & -dcz_bytes;
853
854 /*
855 * Trap if accessing an invalid page. DC_ZVA requires that we supply
856 * the original pointer for an invalid page. But watchpoints require
857 * that we probe the actual space. So do both.
858 */
859 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
860 (void) probe_write(env, ptr, 1, mmu_idx, ra);
861 mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
862 dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra);
863 if (!mem) {
864 goto done;
865 }
866
867 /*
868 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
869 * it is quite easy to perform all of the comparisons at once without
870 * any extra masking.
871 *
872 * The most common zva block size is 64; some of the thunderx cpus use
873 * a block size of 128. For user-only, aarch64_max_initfn will set the
874 * block size to 512. Fill out the other cases for future-proofing.
875 *
876 * In order to be able to find the first miscompare later, we want the
877 * tag bytes to be in little-endian order.
878 */
879 switch (log2_tag_bytes) {
880 case 0: /* zva_blocksize 32 */
881 mem_tag = *(uint8_t *)mem;
882 ptr_tag *= 0x11u;
883 break;
884 case 1: /* zva_blocksize 64 */
885 mem_tag = cpu_to_le16(*(uint16_t *)mem);
886 ptr_tag *= 0x1111u;
887 break;
888 case 2: /* zva_blocksize 128 */
889 mem_tag = cpu_to_le32(*(uint32_t *)mem);
890 ptr_tag *= 0x11111111u;
891 break;
892 case 3: /* zva_blocksize 256 */
893 mem_tag = cpu_to_le64(*(uint64_t *)mem);
894 ptr_tag *= 0x1111111111111111ull;
895 break;
896
897 default: /* zva_blocksize 512, 1024, 2048 */
898 ptr_tag *= 0x1111111111111111ull;
899 i = 0;
900 do {
901 mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
902 if (unlikely(mem_tag != ptr_tag)) {
903 goto fail;
904 }
905 i += 8;
906 align_ptr += 16 * TAG_GRANULE;
907 } while (i < tag_bytes);
908 goto done;
909 }
910
911 if (likely(mem_tag == ptr_tag)) {
912 goto done;
913 }
914
915 fail:
916 /* Locate the first nibble that differs. */
917 i = ctz64(mem_tag ^ ptr_tag) >> 4;
dbf8c321 918 mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
46dc1bc0
RH
919
920 done:
921 return useronly_clean_ptr(ptr);
922}