]>
Commit | Line | Data |
---|---|---|
b7bcbe95 FB |
1 | /* |
2 | * ARM helper routines | |
5fafdf24 | 3 | * |
9ee6e8bb | 4 | * Copyright (c) 2005-2007 CodeSourcery, LLC |
b7bcbe95 FB |
5 | * |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
b7bcbe95 | 18 | */ |
74c21bd0 | 19 | #include "qemu/osdep.h" |
c9b61d9a | 20 | #include "qemu/log.h" |
8d04fb55 | 21 | #include "qemu/main-loop.h" |
3e457172 | 22 | #include "cpu.h" |
2ef6175a | 23 | #include "exec/helper-proto.h" |
ccd38087 | 24 | #include "internals.h" |
63c91552 | 25 | #include "exec/exec-all.h" |
f08b6170 | 26 | #include "exec/cpu_ldst.h" |
b7bcbe95 | 27 | |
ad69471c PB |
28 | #define SIGNBIT (uint32_t)0x80000000 |
29 | #define SIGNBIT64 ((uint64_t)1 << 63) | |
30 | ||
c6328599 PM |
31 | static void raise_exception(CPUARMState *env, uint32_t excp, |
32 | uint32_t syndrome, uint32_t target_el) | |
b7bcbe95 | 33 | { |
c6328599 | 34 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
27103424 | 35 | |
c6328599 PM |
36 | assert(!excp_is_internal(excp)); |
37 | cs->exception_index = excp; | |
38 | env->exception.syndrome = syndrome; | |
39 | env->exception.target_el = target_el; | |
5638d180 | 40 | cpu_loop_exit(cs); |
b7bcbe95 FB |
41 | } |
42 | ||
e3b1d480 GB |
43 | static int exception_target_el(CPUARMState *env) |
44 | { | |
45 | int target_el = MAX(1, arm_current_el(env)); | |
46 | ||
47 | /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL | |
48 | * to EL3 in this case. | |
49 | */ | |
50 | if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) { | |
51 | target_el = 3; | |
52 | } | |
53 | ||
54 | return target_el; | |
55 | } | |
56 | ||
e7c06c4e RH |
57 | uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, void *vn, |
58 | uint32_t maxindex) | |
9ee6e8bb | 59 | { |
e7c06c4e RH |
60 | uint32_t val, shift; |
61 | uint64_t *table = vn; | |
62 | ||
9ee6e8bb | 63 | val = 0; |
9ee6e8bb | 64 | for (shift = 0; shift < 32; shift += 8) { |
e7c06c4e | 65 | uint32_t index = (ireg >> shift) & 0xff; |
8f8e3aa4 | 66 | if (index < maxindex) { |
e7c06c4e | 67 | uint32_t tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff; |
9ee6e8bb PB |
68 | val |= tmp << shift; |
69 | } else { | |
8f8e3aa4 | 70 | val |= def & (0xff << shift); |
9ee6e8bb PB |
71 | } |
72 | } | |
8f8e3aa4 | 73 | return val; |
9ee6e8bb PB |
74 | } |
75 | ||
b5ff1b31 FB |
76 | #if !defined(CONFIG_USER_ONLY) |
77 | ||
aaa1f954 EI |
78 | static inline uint32_t merge_syn_data_abort(uint32_t template_syn, |
79 | unsigned int target_el, | |
c528af7a | 80 | bool same_el, bool ea, |
b35399bb | 81 | bool s1ptw, bool is_write, |
aaa1f954 EI |
82 | int fsc) |
83 | { | |
84 | uint32_t syn; | |
85 | ||
86 | /* ISV is only set for data aborts routed to EL2 and | |
87 | * never for stage-1 page table walks faulting on stage 2. | |
88 | * | |
89 | * Furthermore, ISV is only set for certain kinds of load/stores. | |
90 | * If the template syndrome does not have ISV set, we should leave | |
91 | * it cleared. | |
92 | * | |
93 | * See ARMv8 specs, D7-1974: | |
94 | * ISS encoding for an exception from a Data Abort, the | |
95 | * ISV field. | |
96 | */ | |
97 | if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) { | |
98 | syn = syn_data_abort_no_iss(same_el, | |
c528af7a | 99 | ea, 0, s1ptw, is_write, fsc); |
aaa1f954 EI |
100 | } else { |
101 | /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template | |
102 | * syndrome created at translation time. | |
103 | * Now we create the runtime syndrome with the remaining fields. | |
104 | */ | |
105 | syn = syn_data_abort_with_iss(same_el, | |
106 | 0, 0, 0, 0, 0, | |
c528af7a | 107 | ea, 0, s1ptw, is_write, fsc, |
aaa1f954 EI |
108 | false); |
109 | /* Merge the runtime syndrome with the template syndrome. */ | |
110 | syn |= template_syn; | |
111 | } | |
112 | return syn; | |
113 | } | |
114 | ||
aac43da1 | 115 | static void deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type, |
681f9a89 | 116 | int mmu_idx, ARMMMUFaultInfo *fi) |
aac43da1 PM |
117 | { |
118 | CPUARMState *env = &cpu->env; | |
119 | int target_el; | |
120 | bool same_el; | |
681f9a89 PM |
121 | uint32_t syn, exc, fsr, fsc; |
122 | ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx); | |
aac43da1 PM |
123 | |
124 | target_el = exception_target_el(env); | |
125 | if (fi->stage2) { | |
126 | target_el = 2; | |
127 | env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4; | |
128 | } | |
129 | same_el = (arm_current_el(env) == target_el); | |
130 | ||
681f9a89 PM |
131 | if (target_el == 2 || arm_el_is_aa64(env, target_el) || |
132 | arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) { | |
133 | /* LPAE format fault status register : bottom 6 bits are | |
134 | * status code in the same form as needed for syndrome | |
135 | */ | |
136 | fsr = arm_fi_to_lfsc(fi); | |
137 | fsc = extract32(fsr, 0, 6); | |
138 | } else { | |
139 | fsr = arm_fi_to_sfsc(fi); | |
140 | /* Short format FSR : this fault will never actually be reported | |
141 | * to an EL that uses a syndrome register. Use a (currently) | |
142 | * reserved FSR code in case the constructed syndrome does leak | |
143 | * into the guest somehow. | |
aac43da1 | 144 | */ |
681f9a89 | 145 | fsc = 0x3f; |
aac43da1 PM |
146 | } |
147 | ||
148 | if (access_type == MMU_INST_FETCH) { | |
c528af7a | 149 | syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc); |
aac43da1 PM |
150 | exc = EXCP_PREFETCH_ABORT; |
151 | } else { | |
152 | syn = merge_syn_data_abort(env->exception.syndrome, target_el, | |
c528af7a | 153 | same_el, fi->ea, fi->s1ptw, |
aac43da1 PM |
154 | access_type == MMU_DATA_STORE, |
155 | fsc); | |
156 | if (access_type == MMU_DATA_STORE | |
157 | && arm_feature(env, ARM_FEATURE_V6)) { | |
158 | fsr |= (1 << 11); | |
159 | } | |
160 | exc = EXCP_DATA_ABORT; | |
161 | } | |
162 | ||
163 | env->exception.vaddress = addr; | |
164 | env->exception.fsr = fsr; | |
165 | raise_exception(env, exc, syn, target_el); | |
166 | } | |
167 | ||
b5ff1b31 | 168 | /* try to fill the TLB and return an exception if error. If retaddr is |
d5a11fef AF |
169 | * NULL, it means that the function was called in C code (i.e. not |
170 | * from generated code or from helper.c) | |
171 | */ | |
b35399bb SS |
172 | void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type, |
173 | int mmu_idx, uintptr_t retaddr) | |
b5ff1b31 | 174 | { |
b7cc4e82 | 175 | bool ret; |
e14b5a23 | 176 | ARMMMUFaultInfo fi = {}; |
b5ff1b31 | 177 | |
bc52bfeb | 178 | ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fi); |
551bd27f | 179 | if (unlikely(ret)) { |
d5a11fef | 180 | ARMCPU *cpu = ARM_CPU(cs); |
d5a11fef | 181 | |
65255e8e AB |
182 | /* now we have a real cpu fault */ |
183 | cpu_restore_state(cs, retaddr); | |
8c6084bf | 184 | |
681f9a89 | 185 | deliver_fault(cpu, addr, access_type, mmu_idx, &fi); |
b5ff1b31 | 186 | } |
b5ff1b31 | 187 | } |
30901475 AB |
188 | |
189 | /* Raise a data fault alignment exception for the specified virtual address */ | |
b35399bb SS |
190 | void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, |
191 | MMUAccessType access_type, | |
192 | int mmu_idx, uintptr_t retaddr) | |
30901475 AB |
193 | { |
194 | ARMCPU *cpu = ARM_CPU(cs); | |
aac43da1 | 195 | ARMMMUFaultInfo fi = {}; |
30901475 | 196 | |
65255e8e AB |
197 | /* now we have a real cpu fault */ |
198 | cpu_restore_state(cs, retaddr); | |
30901475 | 199 | |
681f9a89 PM |
200 | fi.type = ARMFault_Alignment; |
201 | deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi); | |
30901475 AB |
202 | } |
203 | ||
c79c0a31 PM |
204 | /* arm_cpu_do_transaction_failed: handle a memory system error response |
205 | * (eg "no device/memory present at address") by raising an external abort | |
206 | * exception | |
207 | */ | |
208 | void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, | |
209 | vaddr addr, unsigned size, | |
210 | MMUAccessType access_type, | |
211 | int mmu_idx, MemTxAttrs attrs, | |
212 | MemTxResult response, uintptr_t retaddr) | |
213 | { | |
214 | ARMCPU *cpu = ARM_CPU(cs); | |
c79c0a31 | 215 | ARMMMUFaultInfo fi = {}; |
c79c0a31 | 216 | |
65255e8e AB |
217 | /* now we have a real cpu fault */ |
218 | cpu_restore_state(cs, retaddr); | |
c79c0a31 | 219 | |
3b39d734 | 220 | fi.ea = arm_extabort_type(response); |
681f9a89 PM |
221 | fi.type = ARMFault_SyncExternal; |
222 | deliver_fault(cpu, addr, access_type, mmu_idx, &fi); | |
c79c0a31 PM |
223 | } |
224 | ||
30901475 | 225 | #endif /* !defined(CONFIG_USER_ONLY) */ |
1497c961 | 226 | |
9ef39277 | 227 | uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
228 | { |
229 | uint32_t res = a + b; | |
230 | if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) | |
231 | env->QF = 1; | |
232 | return res; | |
233 | } | |
234 | ||
9ef39277 | 235 | uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
236 | { |
237 | uint32_t res = a + b; | |
238 | if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { | |
239 | env->QF = 1; | |
240 | res = ~(((int32_t)a >> 31) ^ SIGNBIT); | |
241 | } | |
242 | return res; | |
243 | } | |
244 | ||
9ef39277 | 245 | uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
246 | { |
247 | uint32_t res = a - b; | |
248 | if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { | |
249 | env->QF = 1; | |
250 | res = ~(((int32_t)a >> 31) ^ SIGNBIT); | |
251 | } | |
252 | return res; | |
253 | } | |
254 | ||
9ef39277 | 255 | uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val) |
1497c961 PB |
256 | { |
257 | uint32_t res; | |
258 | if (val >= 0x40000000) { | |
259 | res = ~SIGNBIT; | |
260 | env->QF = 1; | |
261 | } else if (val <= (int32_t)0xc0000000) { | |
262 | res = SIGNBIT; | |
263 | env->QF = 1; | |
264 | } else { | |
265 | res = val << 1; | |
266 | } | |
267 | return res; | |
268 | } | |
269 | ||
9ef39277 | 270 | uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
271 | { |
272 | uint32_t res = a + b; | |
273 | if (res < a) { | |
274 | env->QF = 1; | |
275 | res = ~0; | |
276 | } | |
277 | return res; | |
278 | } | |
279 | ||
9ef39277 | 280 | uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) |
1497c961 PB |
281 | { |
282 | uint32_t res = a - b; | |
283 | if (res > a) { | |
284 | env->QF = 1; | |
285 | res = 0; | |
286 | } | |
287 | return res; | |
288 | } | |
289 | ||
6ddbc6e4 | 290 | /* Signed saturation. */ |
9ef39277 | 291 | static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift) |
6ddbc6e4 PB |
292 | { |
293 | int32_t top; | |
294 | uint32_t mask; | |
295 | ||
6ddbc6e4 PB |
296 | top = val >> shift; |
297 | mask = (1u << shift) - 1; | |
298 | if (top > 0) { | |
299 | env->QF = 1; | |
300 | return mask; | |
301 | } else if (top < -1) { | |
302 | env->QF = 1; | |
303 | return ~mask; | |
304 | } | |
305 | return val; | |
306 | } | |
307 | ||
308 | /* Unsigned saturation. */ | |
9ef39277 | 309 | static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift) |
6ddbc6e4 PB |
310 | { |
311 | uint32_t max; | |
312 | ||
6ddbc6e4 PB |
313 | max = (1u << shift) - 1; |
314 | if (val < 0) { | |
315 | env->QF = 1; | |
316 | return 0; | |
317 | } else if (val > max) { | |
318 | env->QF = 1; | |
319 | return max; | |
320 | } | |
321 | return val; | |
322 | } | |
323 | ||
324 | /* Signed saturate. */ | |
9ef39277 | 325 | uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift) |
6ddbc6e4 | 326 | { |
9ef39277 | 327 | return do_ssat(env, x, shift); |
6ddbc6e4 PB |
328 | } |
329 | ||
330 | /* Dual halfword signed saturate. */ | |
9ef39277 | 331 | uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift) |
6ddbc6e4 PB |
332 | { |
333 | uint32_t res; | |
334 | ||
9ef39277 BS |
335 | res = (uint16_t)do_ssat(env, (int16_t)x, shift); |
336 | res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16; | |
6ddbc6e4 PB |
337 | return res; |
338 | } | |
339 | ||
340 | /* Unsigned saturate. */ | |
9ef39277 | 341 | uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift) |
6ddbc6e4 | 342 | { |
9ef39277 | 343 | return do_usat(env, x, shift); |
6ddbc6e4 PB |
344 | } |
345 | ||
346 | /* Dual halfword unsigned saturate. */ | |
9ef39277 | 347 | uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift) |
6ddbc6e4 PB |
348 | { |
349 | uint32_t res; | |
350 | ||
9ef39277 BS |
351 | res = (uint16_t)do_usat(env, (int16_t)x, shift); |
352 | res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16; | |
6ddbc6e4 PB |
353 | return res; |
354 | } | |
d9ba4830 | 355 | |
9886ecdf PB |
356 | void HELPER(setend)(CPUARMState *env) |
357 | { | |
358 | env->uncached_cpsr ^= CPSR_E; | |
359 | } | |
360 | ||
b1eced71 GB |
361 | /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped. |
362 | * The function returns the target EL (1-3) if the instruction is to be trapped; | |
363 | * otherwise it returns 0 indicating it is not trapped. | |
364 | */ | |
365 | static inline int check_wfx_trap(CPUARMState *env, bool is_wfe) | |
366 | { | |
367 | int cur_el = arm_current_el(env); | |
368 | uint64_t mask; | |
369 | ||
0e284568 PM |
370 | if (arm_feature(env, ARM_FEATURE_M)) { |
371 | /* M profile cores can never trap WFI/WFE. */ | |
372 | return 0; | |
373 | } | |
374 | ||
b1eced71 GB |
375 | /* If we are currently in EL0 then we need to check if SCTLR is set up for |
376 | * WFx instructions being trapped to EL1. These trap bits don't exist in v7. | |
377 | */ | |
378 | if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) { | |
379 | int target_el; | |
380 | ||
381 | mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI; | |
382 | if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) { | |
383 | /* Secure EL0 and Secure PL1 is at EL3 */ | |
384 | target_el = 3; | |
385 | } else { | |
386 | target_el = 1; | |
387 | } | |
388 | ||
389 | if (!(env->cp15.sctlr_el[target_el] & mask)) { | |
390 | return target_el; | |
391 | } | |
392 | } | |
393 | ||
394 | /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it | |
395 | * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the | |
396 | * bits will be zero indicating no trap. | |
397 | */ | |
398 | if (cur_el < 2 && !arm_is_secure(env)) { | |
399 | mask = (is_wfe) ? HCR_TWE : HCR_TWI; | |
400 | if (env->cp15.hcr_el2 & mask) { | |
401 | return 2; | |
402 | } | |
403 | } | |
404 | ||
405 | /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */ | |
406 | if (cur_el < 3) { | |
407 | mask = (is_wfe) ? SCR_TWE : SCR_TWI; | |
408 | if (env->cp15.scr_el3 & mask) { | |
409 | return 3; | |
410 | } | |
411 | } | |
412 | ||
413 | return 0; | |
414 | } | |
415 | ||
58803318 | 416 | void HELPER(wfi)(CPUARMState *env, uint32_t insn_len) |
d9ba4830 | 417 | { |
259186a7 | 418 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
b1eced71 | 419 | int target_el = check_wfx_trap(env, false); |
259186a7 | 420 | |
84549b6d PM |
421 | if (cpu_has_work(cs)) { |
422 | /* Don't bother to go into our "low power state" if | |
423 | * we would just wake up immediately. | |
424 | */ | |
425 | return; | |
426 | } | |
427 | ||
b1eced71 | 428 | if (target_el) { |
58803318 SS |
429 | env->pc -= insn_len; |
430 | raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2), | |
431 | target_el); | |
b1eced71 GB |
432 | } |
433 | ||
27103424 | 434 | cs->exception_index = EXCP_HLT; |
259186a7 | 435 | cs->halted = 1; |
5638d180 | 436 | cpu_loop_exit(cs); |
d9ba4830 PB |
437 | } |
438 | ||
72c1d3af PM |
439 | void HELPER(wfe)(CPUARMState *env) |
440 | { | |
049e24a1 PM |
441 | /* This is a hint instruction that is semantically different |
442 | * from YIELD even though we currently implement it identically. | |
443 | * Don't actually halt the CPU, just yield back to top | |
b1eced71 GB |
444 | * level loop. This is not going into a "low power state" |
445 | * (ie halting until some event occurs), so we never take | |
446 | * a configurable trap to a different exception level. | |
72c1d3af | 447 | */ |
049e24a1 PM |
448 | HELPER(yield)(env); |
449 | } | |
450 | ||
451 | void HELPER(yield)(CPUARMState *env) | |
452 | { | |
453 | ARMCPU *cpu = arm_env_get_cpu(env); | |
454 | CPUState *cs = CPU(cpu); | |
455 | ||
456 | /* This is a non-trappable hint instruction that generally indicates | |
457 | * that the guest is currently busy-looping. Yield control back to the | |
458 | * top level loop so that a more deserving VCPU has a chance to run. | |
459 | */ | |
27103424 | 460 | cs->exception_index = EXCP_YIELD; |
5638d180 | 461 | cpu_loop_exit(cs); |
72c1d3af PM |
462 | } |
463 | ||
d4a2dc67 PM |
464 | /* Raise an internal-to-QEMU exception. This is limited to only |
465 | * those EXCP values which are special cases for QEMU to interrupt | |
466 | * execution and not to be used for exceptions which are passed to | |
467 | * the guest (those must all have syndrome information and thus should | |
468 | * use exception_with_syndrome). | |
469 | */ | |
470 | void HELPER(exception_internal)(CPUARMState *env, uint32_t excp) | |
471 | { | |
472 | CPUState *cs = CPU(arm_env_get_cpu(env)); | |
473 | ||
474 | assert(excp_is_internal(excp)); | |
475 | cs->exception_index = excp; | |
476 | cpu_loop_exit(cs); | |
477 | } | |
478 | ||
479 | /* Raise an exception with the specified syndrome register value */ | |
480 | void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp, | |
73710361 | 481 | uint32_t syndrome, uint32_t target_el) |
d9ba4830 | 482 | { |
c6328599 | 483 | raise_exception(env, excp, syndrome, target_el); |
d9ba4830 PB |
484 | } |
485 | ||
9ef39277 | 486 | uint32_t HELPER(cpsr_read)(CPUARMState *env) |
d9ba4830 | 487 | { |
4051e12c | 488 | return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED); |
d9ba4830 PB |
489 | } |
490 | ||
1ce94f81 | 491 | void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask) |
d9ba4830 | 492 | { |
50866ba5 | 493 | cpsr_write(env, val, mask, CPSRWriteByInstr); |
d9ba4830 | 494 | } |
b0109805 | 495 | |
235ea1f5 PM |
496 | /* Write the CPSR for a 32-bit exception return */ |
497 | void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val) | |
498 | { | |
50866ba5 | 499 | cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn); |
bd7d00fc | 500 | |
fb0e8e79 PM |
501 | /* Generated code has already stored the new PC value, but |
502 | * without masking out its low bits, because which bits need | |
503 | * masking depends on whether we're returning to Thumb or ARM | |
504 | * state. Do the masking now. | |
505 | */ | |
506 | env->regs[15] &= (env->thumb ? ~1 : ~3); | |
507 | ||
8d04fb55 | 508 | qemu_mutex_lock_iothread(); |
bd7d00fc | 509 | arm_call_el_change_hook(arm_env_get_cpu(env)); |
8d04fb55 | 510 | qemu_mutex_unlock_iothread(); |
235ea1f5 PM |
511 | } |
512 | ||
b0109805 | 513 | /* Access to user mode registers from privileged modes. */ |
9ef39277 | 514 | uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno) |
b0109805 PB |
515 | { |
516 | uint32_t val; | |
517 | ||
518 | if (regno == 13) { | |
99a99c1f | 519 | val = env->banked_r13[BANK_USRSYS]; |
b0109805 | 520 | } else if (regno == 14) { |
99a99c1f | 521 | val = env->banked_r14[BANK_USRSYS]; |
b0109805 PB |
522 | } else if (regno >= 8 |
523 | && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { | |
524 | val = env->usr_regs[regno - 8]; | |
525 | } else { | |
526 | val = env->regs[regno]; | |
527 | } | |
528 | return val; | |
529 | } | |
530 | ||
1ce94f81 | 531 | void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val) |
b0109805 PB |
532 | { |
533 | if (regno == 13) { | |
99a99c1f | 534 | env->banked_r13[BANK_USRSYS] = val; |
b0109805 | 535 | } else if (regno == 14) { |
99a99c1f | 536 | env->banked_r14[BANK_USRSYS] = val; |
b0109805 PB |
537 | } else if (regno >= 8 |
538 | && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { | |
539 | env->usr_regs[regno - 8] = val; | |
540 | } else { | |
541 | env->regs[regno] = val; | |
542 | } | |
543 | } | |
4b6a83fb | 544 | |
72309cee PM |
545 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
546 | { | |
547 | if ((env->uncached_cpsr & CPSR_M) == mode) { | |
548 | env->regs[13] = val; | |
549 | } else { | |
550 | env->banked_r13[bank_number(mode)] = val; | |
551 | } | |
552 | } | |
553 | ||
554 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) | |
555 | { | |
f01377f5 PM |
556 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) { |
557 | /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF. | |
558 | * Other UNPREDICTABLE and UNDEF cases were caught at translate time. | |
559 | */ | |
560 | raise_exception(env, EXCP_UDEF, syn_uncategorized(), | |
561 | exception_target_el(env)); | |
562 | } | |
563 | ||
72309cee PM |
564 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
565 | return env->regs[13]; | |
566 | } else { | |
567 | return env->banked_r13[bank_number(mode)]; | |
568 | } | |
569 | } | |
72309cee | 570 | |
8bfd0550 PM |
571 | static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode, |
572 | uint32_t regno) | |
573 | { | |
574 | /* Raise an exception if the requested access is one of the UNPREDICTABLE | |
575 | * cases; otherwise return. This broadly corresponds to the pseudocode | |
576 | * BankedRegisterAccessValid() and SPSRAccessValid(), | |
577 | * except that we have already handled some cases at translate time. | |
578 | */ | |
579 | int curmode = env->uncached_cpsr & CPSR_M; | |
580 | ||
581 | if (curmode == tgtmode) { | |
582 | goto undef; | |
583 | } | |
584 | ||
585 | if (tgtmode == ARM_CPU_MODE_USR) { | |
586 | switch (regno) { | |
587 | case 8 ... 12: | |
588 | if (curmode != ARM_CPU_MODE_FIQ) { | |
589 | goto undef; | |
590 | } | |
591 | break; | |
592 | case 13: | |
593 | if (curmode == ARM_CPU_MODE_SYS) { | |
594 | goto undef; | |
595 | } | |
596 | break; | |
597 | case 14: | |
598 | if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) { | |
599 | goto undef; | |
600 | } | |
601 | break; | |
602 | default: | |
603 | break; | |
604 | } | |
605 | } | |
606 | ||
607 | if (tgtmode == ARM_CPU_MODE_HYP) { | |
608 | switch (regno) { | |
609 | case 17: /* ELR_Hyp */ | |
610 | if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) { | |
611 | goto undef; | |
612 | } | |
613 | break; | |
614 | default: | |
615 | if (curmode != ARM_CPU_MODE_MON) { | |
616 | goto undef; | |
617 | } | |
618 | break; | |
619 | } | |
620 | } | |
621 | ||
622 | return; | |
623 | ||
624 | undef: | |
625 | raise_exception(env, EXCP_UDEF, syn_uncategorized(), | |
626 | exception_target_el(env)); | |
627 | } | |
628 | ||
629 | void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode, | |
630 | uint32_t regno) | |
631 | { | |
632 | msr_mrs_banked_exc_checks(env, tgtmode, regno); | |
633 | ||
634 | switch (regno) { | |
635 | case 16: /* SPSRs */ | |
636 | env->banked_spsr[bank_number(tgtmode)] = value; | |
637 | break; | |
638 | case 17: /* ELR_Hyp */ | |
639 | env->elr_el[2] = value; | |
640 | break; | |
641 | case 13: | |
642 | env->banked_r13[bank_number(tgtmode)] = value; | |
643 | break; | |
644 | case 14: | |
645 | env->banked_r14[bank_number(tgtmode)] = value; | |
646 | break; | |
647 | case 8 ... 12: | |
648 | switch (tgtmode) { | |
649 | case ARM_CPU_MODE_USR: | |
650 | env->usr_regs[regno - 8] = value; | |
651 | break; | |
652 | case ARM_CPU_MODE_FIQ: | |
653 | env->fiq_regs[regno - 8] = value; | |
654 | break; | |
655 | default: | |
656 | g_assert_not_reached(); | |
657 | } | |
658 | break; | |
659 | default: | |
660 | g_assert_not_reached(); | |
661 | } | |
662 | } | |
663 | ||
664 | uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno) | |
665 | { | |
666 | msr_mrs_banked_exc_checks(env, tgtmode, regno); | |
667 | ||
668 | switch (regno) { | |
669 | case 16: /* SPSRs */ | |
670 | return env->banked_spsr[bank_number(tgtmode)]; | |
671 | case 17: /* ELR_Hyp */ | |
672 | return env->elr_el[2]; | |
673 | case 13: | |
674 | return env->banked_r13[bank_number(tgtmode)]; | |
675 | case 14: | |
676 | return env->banked_r14[bank_number(tgtmode)]; | |
677 | case 8 ... 12: | |
678 | switch (tgtmode) { | |
679 | case ARM_CPU_MODE_USR: | |
680 | return env->usr_regs[regno - 8]; | |
681 | case ARM_CPU_MODE_FIQ: | |
682 | return env->fiq_regs[regno - 8]; | |
683 | default: | |
684 | g_assert_not_reached(); | |
685 | } | |
686 | default: | |
687 | g_assert_not_reached(); | |
688 | } | |
689 | } | |
690 | ||
3f208fd7 PM |
691 | void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome, |
692 | uint32_t isread) | |
f59df3f2 PM |
693 | { |
694 | const ARMCPRegInfo *ri = rip; | |
38836a2c | 695 | int target_el; |
c0f4af17 PM |
696 | |
697 | if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14 | |
698 | && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) { | |
c6328599 | 699 | raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env)); |
c0f4af17 PM |
700 | } |
701 | ||
702 | if (!ri->accessfn) { | |
703 | return; | |
704 | } | |
705 | ||
3f208fd7 | 706 | switch (ri->accessfn(env, ri, isread)) { |
f59df3f2 PM |
707 | case CP_ACCESS_OK: |
708 | return; | |
709 | case CP_ACCESS_TRAP: | |
38836a2c PM |
710 | target_el = exception_target_el(env); |
711 | break; | |
712 | case CP_ACCESS_TRAP_EL2: | |
713 | /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is | |
714 | * a bug in the access function. | |
715 | */ | |
3fc827d5 | 716 | assert(!arm_is_secure(env) && arm_current_el(env) != 3); |
38836a2c PM |
717 | target_el = 2; |
718 | break; | |
719 | case CP_ACCESS_TRAP_EL3: | |
720 | target_el = 3; | |
8bcbf37c | 721 | break; |
f59df3f2 | 722 | case CP_ACCESS_TRAP_UNCATEGORIZED: |
38836a2c | 723 | target_el = exception_target_el(env); |
c6328599 | 724 | syndrome = syn_uncategorized(); |
f59df3f2 | 725 | break; |
e7615726 PM |
726 | case CP_ACCESS_TRAP_UNCATEGORIZED_EL2: |
727 | target_el = 2; | |
728 | syndrome = syn_uncategorized(); | |
729 | break; | |
730 | case CP_ACCESS_TRAP_UNCATEGORIZED_EL3: | |
731 | target_el = 3; | |
732 | syndrome = syn_uncategorized(); | |
733 | break; | |
f2cae609 PM |
734 | case CP_ACCESS_TRAP_FP_EL2: |
735 | target_el = 2; | |
736 | /* Since we are an implementation that takes exceptions on a trapped | |
737 | * conditional insn only if the insn has passed its condition code | |
738 | * check, we take the IMPDEF choice to always report CV=1 COND=0xe | |
739 | * (which is also the required value for AArch64 traps). | |
740 | */ | |
741 | syndrome = syn_fp_access_trap(1, 0xe, false); | |
742 | break; | |
743 | case CP_ACCESS_TRAP_FP_EL3: | |
744 | target_el = 3; | |
745 | syndrome = syn_fp_access_trap(1, 0xe, false); | |
746 | break; | |
f59df3f2 PM |
747 | default: |
748 | g_assert_not_reached(); | |
749 | } | |
c6328599 | 750 | |
38836a2c | 751 | raise_exception(env, EXCP_UDEF, syndrome, target_el); |
f59df3f2 PM |
752 | } |
753 | ||
4b6a83fb PM |
754 | void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value) |
755 | { | |
756 | const ARMCPRegInfo *ri = rip; | |
c4241c7d | 757 | |
8d04fb55 JK |
758 | if (ri->type & ARM_CP_IO) { |
759 | qemu_mutex_lock_iothread(); | |
760 | ri->writefn(env, ri, value); | |
761 | qemu_mutex_unlock_iothread(); | |
762 | } else { | |
763 | ri->writefn(env, ri, value); | |
764 | } | |
4b6a83fb PM |
765 | } |
766 | ||
767 | uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip) | |
768 | { | |
769 | const ARMCPRegInfo *ri = rip; | |
8d04fb55 | 770 | uint32_t res; |
c4241c7d | 771 | |
8d04fb55 JK |
772 | if (ri->type & ARM_CP_IO) { |
773 | qemu_mutex_lock_iothread(); | |
774 | res = ri->readfn(env, ri); | |
775 | qemu_mutex_unlock_iothread(); | |
776 | } else { | |
777 | res = ri->readfn(env, ri); | |
778 | } | |
779 | ||
780 | return res; | |
4b6a83fb PM |
781 | } |
782 | ||
783 | void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value) | |
784 | { | |
785 | const ARMCPRegInfo *ri = rip; | |
c4241c7d | 786 | |
8d04fb55 JK |
787 | if (ri->type & ARM_CP_IO) { |
788 | qemu_mutex_lock_iothread(); | |
789 | ri->writefn(env, ri, value); | |
790 | qemu_mutex_unlock_iothread(); | |
791 | } else { | |
792 | ri->writefn(env, ri, value); | |
793 | } | |
4b6a83fb PM |
794 | } |
795 | ||
796 | uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip) | |
797 | { | |
798 | const ARMCPRegInfo *ri = rip; | |
8d04fb55 JK |
799 | uint64_t res; |
800 | ||
801 | if (ri->type & ARM_CP_IO) { | |
802 | qemu_mutex_lock_iothread(); | |
803 | res = ri->readfn(env, ri); | |
804 | qemu_mutex_unlock_iothread(); | |
805 | } else { | |
806 | res = ri->readfn(env, ri); | |
807 | } | |
c4241c7d | 808 | |
8d04fb55 | 809 | return res; |
4b6a83fb | 810 | } |
b0109805 | 811 | |
9cfa0b4e PM |
812 | void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm) |
813 | { | |
814 | /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set. | |
815 | * Note that SPSel is never OK from EL0; we rely on handle_msr_i() | |
816 | * to catch that case at translate time. | |
817 | */ | |
137feaa9 | 818 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
c6328599 PM |
819 | uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3), |
820 | extract32(op, 3, 3), 4, | |
821 | imm, 0x1f, 0); | |
822 | raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env)); | |
9cfa0b4e PM |
823 | } |
824 | ||
825 | switch (op) { | |
826 | case 0x05: /* SPSel */ | |
f502cfc2 | 827 | update_spsel(env, imm); |
9cfa0b4e PM |
828 | break; |
829 | case 0x1e: /* DAIFSet */ | |
830 | env->daif |= (imm << 6) & PSTATE_DAIF; | |
831 | break; | |
832 | case 0x1f: /* DAIFClear */ | |
833 | env->daif &= ~((imm << 6) & PSTATE_DAIF); | |
834 | break; | |
835 | default: | |
836 | g_assert_not_reached(); | |
837 | } | |
838 | } | |
839 | ||
7ea47fe7 PM |
840 | void HELPER(clear_pstate_ss)(CPUARMState *env) |
841 | { | |
842 | env->pstate &= ~PSTATE_SS; | |
843 | } | |
844 | ||
35979d71 EI |
845 | void HELPER(pre_hvc)(CPUARMState *env) |
846 | { | |
98128601 | 847 | ARMCPU *cpu = arm_env_get_cpu(env); |
dcbff19b | 848 | int cur_el = arm_current_el(env); |
35979d71 EI |
849 | /* FIXME: Use actual secure state. */ |
850 | bool secure = false; | |
851 | bool undef; | |
852 | ||
98128601 RH |
853 | if (arm_is_psci_call(cpu, EXCP_HVC)) { |
854 | /* If PSCI is enabled and this looks like a valid PSCI call then | |
855 | * that overrides the architecturally mandated HVC behaviour. | |
856 | */ | |
857 | return; | |
858 | } | |
859 | ||
39404338 PM |
860 | if (!arm_feature(env, ARM_FEATURE_EL2)) { |
861 | /* If EL2 doesn't exist, HVC always UNDEFs */ | |
862 | undef = true; | |
863 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
864 | /* EL3.HCE has priority over EL2.HCD. */ | |
35979d71 EI |
865 | undef = !(env->cp15.scr_el3 & SCR_HCE); |
866 | } else { | |
867 | undef = env->cp15.hcr_el2 & HCR_HCD; | |
868 | } | |
869 | ||
870 | /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state. | |
871 | * For ARMv8/AArch64, HVC is allowed in EL3. | |
872 | * Note that we've already trapped HVC from EL0 at translation | |
873 | * time. | |
874 | */ | |
875 | if (secure && (!is_a64(env) || cur_el == 1)) { | |
876 | undef = true; | |
877 | } | |
878 | ||
879 | if (undef) { | |
c6328599 PM |
880 | raise_exception(env, EXCP_UDEF, syn_uncategorized(), |
881 | exception_target_el(env)); | |
35979d71 EI |
882 | } |
883 | } | |
884 | ||
e0d6e6a5 EI |
885 | void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome) |
886 | { | |
98128601 | 887 | ARMCPU *cpu = arm_env_get_cpu(env); |
dcbff19b | 888 | int cur_el = arm_current_el(env); |
dbe9d163 | 889 | bool secure = arm_is_secure(env); |
e0d6e6a5 | 890 | bool smd = env->cp15.scr_el3 & SCR_SMD; |
f096e92b PM |
891 | /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state. |
892 | * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization | |
893 | * extensions, SMD only applies to NS state. | |
894 | * On ARMv7 without the Virtualization extensions, the SMD bit | |
895 | * doesn't exist, but we forbid the guest to set it to 1 in scr_write(), | |
896 | * so we need not special case this here. | |
e0d6e6a5 | 897 | */ |
f096e92b | 898 | bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure; |
e0d6e6a5 | 899 | |
77077a83 JK |
900 | if (!arm_feature(env, ARM_FEATURE_EL3) && |
901 | cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { | |
902 | /* If we have no EL3 then SMC always UNDEFs and can't be | |
903 | * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3 | |
904 | * firmware within QEMU, and we want an EL2 guest to be able | |
905 | * to forbid its EL1 from making PSCI calls into QEMU's | |
906 | * "firmware" via HCR.TSC, so for these purposes treat | |
907 | * PSCI-via-SMC as implying an EL3. | |
98128601 | 908 | */ |
39404338 PM |
909 | undef = true; |
910 | } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) { | |
77077a83 JK |
911 | /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. |
912 | * We also want an EL2 guest to be able to forbid its EL1 from | |
913 | * making PSCI calls into QEMU's "firmware" via HCR.TSC. | |
914 | */ | |
c6328599 | 915 | raise_exception(env, EXCP_HYP_TRAP, syndrome, 2); |
e0d6e6a5 EI |
916 | } |
917 | ||
77077a83 JK |
918 | /* If PSCI is enabled and this looks like a valid PSCI call then |
919 | * suppress the UNDEF -- we'll catch the SMC exception and | |
920 | * implement the PSCI call behaviour there. | |
921 | */ | |
922 | if (undef && !arm_is_psci_call(cpu, EXCP_SMC)) { | |
c6328599 PM |
923 | raise_exception(env, EXCP_UDEF, syn_uncategorized(), |
924 | exception_target_el(env)); | |
e0d6e6a5 EI |
925 | } |
926 | } | |
927 | ||
3809951b PM |
928 | static int el_from_spsr(uint32_t spsr) |
929 | { | |
930 | /* Return the exception level that this SPSR is requesting a return to, | |
931 | * or -1 if it is invalid (an illegal return) | |
932 | */ | |
933 | if (spsr & PSTATE_nRW) { | |
934 | switch (spsr & CPSR_M) { | |
935 | case ARM_CPU_MODE_USR: | |
936 | return 0; | |
937 | case ARM_CPU_MODE_HYP: | |
938 | return 2; | |
939 | case ARM_CPU_MODE_FIQ: | |
940 | case ARM_CPU_MODE_IRQ: | |
941 | case ARM_CPU_MODE_SVC: | |
942 | case ARM_CPU_MODE_ABT: | |
943 | case ARM_CPU_MODE_UND: | |
944 | case ARM_CPU_MODE_SYS: | |
945 | return 1; | |
946 | case ARM_CPU_MODE_MON: | |
947 | /* Returning to Mon from AArch64 is never possible, | |
948 | * so this is an illegal return. | |
949 | */ | |
950 | default: | |
951 | return -1; | |
952 | } | |
953 | } else { | |
954 | if (extract32(spsr, 1, 1)) { | |
955 | /* Return with reserved M[1] bit set */ | |
956 | return -1; | |
957 | } | |
958 | if (extract32(spsr, 0, 4) == 1) { | |
959 | /* return to EL0 with M[0] bit set */ | |
960 | return -1; | |
961 | } | |
962 | return extract32(spsr, 2, 2); | |
963 | } | |
964 | } | |
965 | ||
52e60cdd RH |
966 | void HELPER(exception_return)(CPUARMState *env) |
967 | { | |
dcbff19b | 968 | int cur_el = arm_current_el(env); |
db6c3cd0 | 969 | unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el); |
2a923c4d | 970 | uint32_t spsr = env->banked_spsr[spsr_idx]; |
ce02049d | 971 | int new_el; |
3809951b | 972 | bool return_to_aa64 = (spsr & PSTATE_nRW) == 0; |
52e60cdd | 973 | |
9208b961 | 974 | aarch64_save_sp(env, cur_el); |
52e60cdd | 975 | |
dc3c4c14 | 976 | arm_clear_exclusive(env); |
52e60cdd | 977 | |
3a298203 PM |
978 | /* We must squash the PSTATE.SS bit to zero unless both of the |
979 | * following hold: | |
980 | * 1. debug exceptions are currently disabled | |
981 | * 2. singlestep will be active in the EL we return to | |
982 | * We check 1 here and 2 after we've done the pstate/cpsr write() to | |
983 | * transition to the EL we're going to. | |
984 | */ | |
985 | if (arm_generate_debug_exceptions(env)) { | |
986 | spsr &= ~PSTATE_SS; | |
987 | } | |
988 | ||
3809951b PM |
989 | new_el = el_from_spsr(spsr); |
990 | if (new_el == -1) { | |
991 | goto illegal_return; | |
992 | } | |
993 | if (new_el > cur_el | |
994 | || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) { | |
995 | /* Disallow return to an EL which is unimplemented or higher | |
996 | * than the current one. | |
997 | */ | |
998 | goto illegal_return; | |
999 | } | |
1000 | ||
1001 | if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) { | |
1002 | /* Return to an EL which is configured for a different register width */ | |
1003 | goto illegal_return; | |
1004 | } | |
1005 | ||
e393f339 PM |
1006 | if (new_el == 2 && arm_is_secure_below_el3(env)) { |
1007 | /* Return to the non-existent secure-EL2 */ | |
1008 | goto illegal_return; | |
1009 | } | |
1010 | ||
1011 | if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE) | |
1012 | && !arm_is_secure_below_el3(env)) { | |
1013 | goto illegal_return; | |
1014 | } | |
1015 | ||
3809951b | 1016 | if (!return_to_aa64) { |
52e60cdd | 1017 | env->aarch64 = 0; |
f8c88bbc PM |
1018 | /* We do a raw CPSR write because aarch64_sync_64_to_32() |
1019 | * will sort the register banks out for us, and we've already | |
1020 | * caught all the bad-mode cases in el_from_spsr(). | |
1021 | */ | |
50866ba5 | 1022 | cpsr_write(env, spsr, ~0, CPSRWriteRaw); |
3a298203 PM |
1023 | if (!arm_singlestep_active(env)) { |
1024 | env->uncached_cpsr &= ~PSTATE_SS; | |
1025 | } | |
ce02049d | 1026 | aarch64_sync_64_to_32(env); |
52e60cdd | 1027 | |
c1e03714 PM |
1028 | if (spsr & CPSR_T) { |
1029 | env->regs[15] = env->elr_el[cur_el] & ~0x1; | |
1030 | } else { | |
1031 | env->regs[15] = env->elr_el[cur_el] & ~0x3; | |
1032 | } | |
c9b61d9a PM |
1033 | qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to " |
1034 | "AArch32 EL%d PC 0x%" PRIx32 "\n", | |
1035 | cur_el, new_el, env->regs[15]); | |
52e60cdd | 1036 | } else { |
52e60cdd RH |
1037 | env->aarch64 = 1; |
1038 | pstate_write(env, spsr); | |
3a298203 PM |
1039 | if (!arm_singlestep_active(env)) { |
1040 | env->pstate &= ~PSTATE_SS; | |
1041 | } | |
98ea5615 | 1042 | aarch64_restore_sp(env, new_el); |
db6c3cd0 | 1043 | env->pc = env->elr_el[cur_el]; |
c9b61d9a PM |
1044 | qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to " |
1045 | "AArch64 EL%d PC 0x%" PRIx64 "\n", | |
1046 | cur_el, new_el, env->pc); | |
52e60cdd RH |
1047 | } |
1048 | ||
8d04fb55 | 1049 | qemu_mutex_lock_iothread(); |
bd7d00fc | 1050 | arm_call_el_change_hook(arm_env_get_cpu(env)); |
8d04fb55 | 1051 | qemu_mutex_unlock_iothread(); |
bd7d00fc | 1052 | |
52e60cdd RH |
1053 | return; |
1054 | ||
1055 | illegal_return: | |
1056 | /* Illegal return events of various kinds have architecturally | |
1057 | * mandated behaviour: | |
1058 | * restore NZCV and DAIF from SPSR_ELx | |
1059 | * set PSTATE.IL | |
1060 | * restore PC from ELR_ELx | |
1061 | * no change to exception level, execution state or stack pointer | |
1062 | */ | |
1063 | env->pstate |= PSTATE_IL; | |
db6c3cd0 | 1064 | env->pc = env->elr_el[cur_el]; |
52e60cdd RH |
1065 | spsr &= PSTATE_NZCV | PSTATE_DAIF; |
1066 | spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF); | |
1067 | pstate_write(env, spsr); | |
3a298203 PM |
1068 | if (!arm_singlestep_active(env)) { |
1069 | env->pstate &= ~PSTATE_SS; | |
1070 | } | |
c9b61d9a PM |
1071 | qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: " |
1072 | "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc); | |
52e60cdd RH |
1073 | } |
1074 | ||
3ff6fc91 PM |
1075 | /* Return true if the linked breakpoint entry lbn passes its checks */ |
1076 | static bool linked_bp_matches(ARMCPU *cpu, int lbn) | |
1077 | { | |
1078 | CPUARMState *env = &cpu->env; | |
1079 | uint64_t bcr = env->cp15.dbgbcr[lbn]; | |
1080 | int brps = extract32(cpu->dbgdidr, 24, 4); | |
1081 | int ctx_cmps = extract32(cpu->dbgdidr, 20, 4); | |
1082 | int bt; | |
1083 | uint32_t contextidr; | |
1084 | ||
1085 | /* Links to unimplemented or non-context aware breakpoints are | |
1086 | * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or | |
1087 | * as if linked to an UNKNOWN context-aware breakpoint (in which | |
1088 | * case DBGWCR<n>_EL1.LBN must indicate that breakpoint). | |
1089 | * We choose the former. | |
1090 | */ | |
1091 | if (lbn > brps || lbn < (brps - ctx_cmps)) { | |
1092 | return false; | |
1093 | } | |
1094 | ||
1095 | bcr = env->cp15.dbgbcr[lbn]; | |
1096 | ||
1097 | if (extract64(bcr, 0, 1) == 0) { | |
1098 | /* Linked breakpoint disabled : generate no events */ | |
1099 | return false; | |
1100 | } | |
1101 | ||
1102 | bt = extract64(bcr, 20, 4); | |
1103 | ||
1104 | /* We match the whole register even if this is AArch32 using the | |
1105 | * short descriptor format (in which case it holds both PROCID and ASID), | |
1106 | * since we don't implement the optional v7 context ID masking. | |
1107 | */ | |
54bf36ed | 1108 | contextidr = extract64(env->cp15.contextidr_el[1], 0, 32); |
3ff6fc91 PM |
1109 | |
1110 | switch (bt) { | |
1111 | case 3: /* linked context ID match */ | |
dcbff19b | 1112 | if (arm_current_el(env) > 1) { |
3ff6fc91 PM |
1113 | /* Context matches never fire in EL2 or (AArch64) EL3 */ |
1114 | return false; | |
1115 | } | |
1116 | return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32)); | |
1117 | case 5: /* linked address mismatch (reserved in AArch64) */ | |
1118 | case 9: /* linked VMID match (reserved if no EL2) */ | |
1119 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
1120 | default: | |
1121 | /* Links to Unlinked context breakpoints must generate no | |
1122 | * events; we choose to do the same for reserved values too. | |
1123 | */ | |
1124 | return false; | |
1125 | } | |
1126 | ||
1127 | return false; | |
1128 | } | |
1129 | ||
0eacea70 | 1130 | static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp) |
3ff6fc91 PM |
1131 | { |
1132 | CPUARMState *env = &cpu->env; | |
0eacea70 | 1133 | uint64_t cr; |
3ff6fc91 | 1134 | int pac, hmc, ssc, wt, lbn; |
ef7bab8d PM |
1135 | /* Note that for watchpoints the check is against the CPU security |
1136 | * state, not the S/NS attribute on the offending data access. | |
1137 | */ | |
1138 | bool is_secure = arm_is_secure(env); | |
9e1fc5bd | 1139 | int access_el = arm_current_el(env); |
3ff6fc91 | 1140 | |
0eacea70 | 1141 | if (is_wp) { |
9e1fc5bd PM |
1142 | CPUWatchpoint *wp = env->cpu_watchpoint[n]; |
1143 | ||
1144 | if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) { | |
0eacea70 PM |
1145 | return false; |
1146 | } | |
1147 | cr = env->cp15.dbgwcr[n]; | |
9e1fc5bd PM |
1148 | if (wp->hitattrs.user) { |
1149 | /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should | |
1150 | * match watchpoints as if they were accesses done at EL0, even if | |
1151 | * the CPU is at EL1 or higher. | |
1152 | */ | |
1153 | access_el = 0; | |
1154 | } | |
0eacea70 PM |
1155 | } else { |
1156 | uint64_t pc = is_a64(env) ? env->pc : env->regs[15]; | |
3ff6fc91 | 1157 | |
0eacea70 PM |
1158 | if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) { |
1159 | return false; | |
1160 | } | |
1161 | cr = env->cp15.dbgbcr[n]; | |
1162 | } | |
3ff6fc91 | 1163 | /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is |
0eacea70 PM |
1164 | * enabled and that the address and access type match; for breakpoints |
1165 | * we know the address matched; check the remaining fields, including | |
1166 | * linked breakpoints. We rely on WCR and BCR having the same layout | |
1167 | * for the LBN, SSC, HMC, PAC/PMC and is-linked fields. | |
1168 | * Note that some combinations of {PAC, HMC, SSC} are reserved and | |
3ff6fc91 PM |
1169 | * must act either like some valid combination or as if the watchpoint |
1170 | * were disabled. We choose the former, and use this together with | |
1171 | * the fact that EL3 must always be Secure and EL2 must always be | |
1172 | * Non-Secure to simplify the code slightly compared to the full | |
1173 | * table in the ARM ARM. | |
1174 | */ | |
0eacea70 PM |
1175 | pac = extract64(cr, 1, 2); |
1176 | hmc = extract64(cr, 13, 1); | |
1177 | ssc = extract64(cr, 14, 2); | |
3ff6fc91 PM |
1178 | |
1179 | switch (ssc) { | |
1180 | case 0: | |
1181 | break; | |
1182 | case 1: | |
1183 | case 3: | |
1184 | if (is_secure) { | |
1185 | return false; | |
1186 | } | |
1187 | break; | |
1188 | case 2: | |
1189 | if (!is_secure) { | |
1190 | return false; | |
1191 | } | |
1192 | break; | |
1193 | } | |
1194 | ||
9e1fc5bd | 1195 | switch (access_el) { |
3ff6fc91 PM |
1196 | case 3: |
1197 | case 2: | |
1198 | if (!hmc) { | |
1199 | return false; | |
1200 | } | |
1201 | break; | |
1202 | case 1: | |
1203 | if (extract32(pac, 0, 1) == 0) { | |
1204 | return false; | |
1205 | } | |
1206 | break; | |
1207 | case 0: | |
1208 | if (extract32(pac, 1, 1) == 0) { | |
1209 | return false; | |
1210 | } | |
1211 | break; | |
1212 | default: | |
1213 | g_assert_not_reached(); | |
1214 | } | |
1215 | ||
0eacea70 PM |
1216 | wt = extract64(cr, 20, 1); |
1217 | lbn = extract64(cr, 16, 4); | |
3ff6fc91 PM |
1218 | |
1219 | if (wt && !linked_bp_matches(cpu, lbn)) { | |
1220 | return false; | |
1221 | } | |
1222 | ||
1223 | return true; | |
1224 | } | |
1225 | ||
1226 | static bool check_watchpoints(ARMCPU *cpu) | |
1227 | { | |
1228 | CPUARMState *env = &cpu->env; | |
1229 | int n; | |
1230 | ||
1231 | /* If watchpoints are disabled globally or we can't take debug | |
1232 | * exceptions here then watchpoint firings are ignored. | |
1233 | */ | |
1234 | if (extract32(env->cp15.mdscr_el1, 15, 1) == 0 | |
1235 | || !arm_generate_debug_exceptions(env)) { | |
1236 | return false; | |
1237 | } | |
1238 | ||
1239 | for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) { | |
0eacea70 PM |
1240 | if (bp_wp_matches(cpu, n, true)) { |
1241 | return true; | |
1242 | } | |
1243 | } | |
1244 | return false; | |
1245 | } | |
1246 | ||
1247 | static bool check_breakpoints(ARMCPU *cpu) | |
1248 | { | |
1249 | CPUARMState *env = &cpu->env; | |
1250 | int n; | |
1251 | ||
1252 | /* If breakpoints are disabled globally or we can't take debug | |
1253 | * exceptions here then breakpoint firings are ignored. | |
1254 | */ | |
1255 | if (extract32(env->cp15.mdscr_el1, 15, 1) == 0 | |
1256 | || !arm_generate_debug_exceptions(env)) { | |
1257 | return false; | |
1258 | } | |
1259 | ||
1260 | for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) { | |
1261 | if (bp_wp_matches(cpu, n, false)) { | |
3ff6fc91 PM |
1262 | return true; |
1263 | } | |
1264 | } | |
1265 | return false; | |
1266 | } | |
1267 | ||
5d98bf8f SF |
1268 | void HELPER(check_breakpoints)(CPUARMState *env) |
1269 | { | |
1270 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1271 | ||
1272 | if (check_breakpoints(cpu)) { | |
1273 | HELPER(exception_internal(env, EXCP_DEBUG)); | |
1274 | } | |
1275 | } | |
1276 | ||
3826121d SF |
1277 | bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp) |
1278 | { | |
1279 | /* Called by core code when a CPU watchpoint fires; need to check if this | |
1280 | * is also an architectural watchpoint match. | |
1281 | */ | |
1282 | ARMCPU *cpu = ARM_CPU(cs); | |
1283 | ||
1284 | return check_watchpoints(cpu); | |
1285 | } | |
1286 | ||
40612000 JB |
1287 | vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len) |
1288 | { | |
1289 | ARMCPU *cpu = ARM_CPU(cs); | |
1290 | CPUARMState *env = &cpu->env; | |
1291 | ||
1292 | /* In BE32 system mode, target memory is stored byteswapped (on a | |
1293 | * little-endian host system), and by the time we reach here (via an | |
1294 | * opcode helper) the addresses of subword accesses have been adjusted | |
1295 | * to account for that, which means that watchpoints will not match. | |
1296 | * Undo the adjustment here. | |
1297 | */ | |
1298 | if (arm_sctlr_b(env)) { | |
1299 | if (len == 1) { | |
1300 | addr ^= 3; | |
1301 | } else if (len == 2) { | |
1302 | addr ^= 2; | |
1303 | } | |
1304 | } | |
1305 | ||
1306 | return addr; | |
1307 | } | |
1308 | ||
3ff6fc91 PM |
1309 | void arm_debug_excp_handler(CPUState *cs) |
1310 | { | |
1311 | /* Called by core code when a watchpoint or breakpoint fires; | |
1312 | * need to check which one and raise the appropriate exception. | |
1313 | */ | |
1314 | ARMCPU *cpu = ARM_CPU(cs); | |
1315 | CPUARMState *env = &cpu->env; | |
1316 | CPUWatchpoint *wp_hit = cs->watchpoint_hit; | |
1317 | ||
1318 | if (wp_hit) { | |
1319 | if (wp_hit->flags & BP_CPU) { | |
3826121d SF |
1320 | bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0; |
1321 | bool same_el = arm_debug_target_el(env) == arm_current_el(env); | |
1322 | ||
3ff6fc91 | 1323 | cs->watchpoint_hit = NULL; |
3826121d SF |
1324 | |
1325 | if (extended_addresses_enabled(env)) { | |
1326 | env->exception.fsr = (1 << 9) | 0x22; | |
3ff6fc91 | 1327 | } else { |
3826121d | 1328 | env->exception.fsr = 0x2; |
3ff6fc91 | 1329 | } |
3826121d SF |
1330 | env->exception.vaddress = wp_hit->hitaddr; |
1331 | raise_exception(env, EXCP_DATA_ABORT, | |
1332 | syn_watchpoint(same_el, 0, wnr), | |
1333 | arm_debug_target_el(env)); | |
3ff6fc91 | 1334 | } |
0eacea70 | 1335 | } else { |
e63a2d4d | 1336 | uint64_t pc = is_a64(env) ? env->pc : env->regs[15]; |
5d98bf8f | 1337 | bool same_el = (arm_debug_target_el(env) == arm_current_el(env)); |
e63a2d4d | 1338 | |
5c629f4f SF |
1339 | /* (1) GDB breakpoints should be handled first. |
1340 | * (2) Do not raise a CPU exception if no CPU breakpoint has fired, | |
1341 | * since singlestep is also done by generating a debug internal | |
1342 | * exception. | |
1343 | */ | |
1344 | if (cpu_breakpoint_test(cs, pc, BP_GDB) | |
1345 | || !cpu_breakpoint_test(cs, pc, BP_CPU)) { | |
e63a2d4d SF |
1346 | return; |
1347 | } | |
1348 | ||
5d98bf8f SF |
1349 | if (extended_addresses_enabled(env)) { |
1350 | env->exception.fsr = (1 << 9) | 0x22; | |
1351 | } else { | |
1352 | env->exception.fsr = 0x2; | |
0eacea70 | 1353 | } |
5d98bf8f SF |
1354 | /* FAR is UNKNOWN, so doesn't need setting */ |
1355 | raise_exception(env, EXCP_PREFETCH_ABORT, | |
1356 | syn_breakpoint(same_el), | |
1357 | arm_debug_target_el(env)); | |
3ff6fc91 PM |
1358 | } |
1359 | } | |
1360 | ||
8984bd2e PB |
1361 | /* ??? Flag setting arithmetic is awkward because we need to do comparisons. |
1362 | The only way to do that in TCG is a conditional branch, which clobbers | |
1363 | all our temporaries. For now implement these as helper functions. */ | |
1364 | ||
8984bd2e PB |
1365 | /* Similarly for variable shift instructions. */ |
1366 | ||
9ef39277 | 1367 | uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
8984bd2e PB |
1368 | { |
1369 | int shift = i & 0xff; | |
1370 | if (shift >= 32) { | |
1371 | if (shift == 32) | |
1372 | env->CF = x & 1; | |
1373 | else | |
1374 | env->CF = 0; | |
1375 | return 0; | |
1376 | } else if (shift != 0) { | |
1377 | env->CF = (x >> (32 - shift)) & 1; | |
1378 | return x << shift; | |
1379 | } | |
1380 | return x; | |
1381 | } | |
1382 | ||
9ef39277 | 1383 | uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
8984bd2e PB |
1384 | { |
1385 | int shift = i & 0xff; | |
1386 | if (shift >= 32) { | |
1387 | if (shift == 32) | |
1388 | env->CF = (x >> 31) & 1; | |
1389 | else | |
1390 | env->CF = 0; | |
1391 | return 0; | |
1392 | } else if (shift != 0) { | |
1393 | env->CF = (x >> (shift - 1)) & 1; | |
1394 | return x >> shift; | |
1395 | } | |
1396 | return x; | |
1397 | } | |
1398 | ||
9ef39277 | 1399 | uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
8984bd2e PB |
1400 | { |
1401 | int shift = i & 0xff; | |
1402 | if (shift >= 32) { | |
1403 | env->CF = (x >> 31) & 1; | |
1404 | return (int32_t)x >> 31; | |
1405 | } else if (shift != 0) { | |
1406 | env->CF = (x >> (shift - 1)) & 1; | |
1407 | return (int32_t)x >> shift; | |
1408 | } | |
1409 | return x; | |
1410 | } | |
1411 | ||
9ef39277 | 1412 | uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
8984bd2e PB |
1413 | { |
1414 | int shift1, shift; | |
1415 | shift1 = i & 0xff; | |
1416 | shift = shift1 & 0x1f; | |
1417 | if (shift == 0) { | |
1418 | if (shift1 != 0) | |
1419 | env->CF = (x >> 31) & 1; | |
1420 | return x; | |
1421 | } else { | |
1422 | env->CF = (x >> (shift - 1)) & 1; | |
1423 | return ((uint32_t)x >> shift) | (x << (32 - shift)); | |
1424 | } | |
1425 | } |