]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/ptw.c
softmmu: Use memmove in flatview_write_continue
[mirror_qemu.git] / target / arm / ptw.c
CommitLineData
8ae08860
RH
1/*
2 * ARM page table walking.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9#include "qemu/osdep.h"
10#include "qemu/log.h"
1f2e87e5 11#include "qemu/range.h"
71943a1e 12#include "qemu/main-loop.h"
f3639a64 13#include "exec/exec-all.h"
8ae08860
RH
14#include "cpu.h"
15#include "internals.h"
2c1f429d 16#include "idau.h"
8ae08860
RH
17
18
6d2654ff
RH
19typedef struct S1Translate {
20 ARMMMUIdx in_mmu_idx;
48da29e4 21 ARMMMUIdx in_ptw_idx;
6d2654ff 22 bool in_secure;
4a358556 23 bool in_debug;
6d2654ff 24 bool out_secure;
71943a1e 25 bool out_rw;
4e7a2c98 26 bool out_be;
71943a1e 27 hwaddr out_virt;
6d2654ff 28 hwaddr out_phys;
f3639a64 29 void *out_host;
6d2654ff
RH
30} S1Translate;
31
32static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
33 uint64_t address,
34 MMUAccessType access_type, bool s1_is_el0,
c23f08a5 35 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
11552bb0
RH
36 __attribute__((nonnull));
37
3f5a74c5
RH
38static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
39 target_ulong address,
40 MMUAccessType access_type,
41 GetPhysAddrResult *result,
42 ARMMMUFaultInfo *fi)
43 __attribute__((nonnull));
44
1c73d848
RH
45/* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
46static const uint8_t pamax_map[] = {
47 [0] = 32,
48 [1] = 36,
49 [2] = 40,
50 [3] = 42,
51 [4] = 44,
52 [5] = 48,
53 [6] = 52,
54};
55
56/* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
57unsigned int arm_pamax(ARMCPU *cpu)
58{
22536b13
RH
59 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
60 unsigned int parange =
61 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1c73d848 62
22536b13
RH
63 /*
64 * id_aa64mmfr0 is a read-only register so values outside of the
65 * supported mappings can be considered an implementation error.
66 */
67 assert(parange < ARRAY_SIZE(pamax_map));
68 return pamax_map[parange];
69 }
59e1b8a2
RH
70
71 /*
72 * In machvirt_init, we call arm_pamax on a cpu that is not fully
73 * initialized, so we can't rely on the propagation done in realize.
74 */
75 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
76 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
22536b13
RH
77 /* v7 with LPAE */
78 return 40;
79 }
80 /* Anything else */
81 return 32;
1c73d848
RH
82}
83
1d261255
RH
84/*
85 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
86 */
87ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
88{
89 switch (mmu_idx) {
1d261255
RH
90 case ARMMMUIdx_E10_0:
91 return ARMMMUIdx_Stage1_E0;
92 case ARMMMUIdx_E10_1:
93 return ARMMMUIdx_Stage1_E1;
94 case ARMMMUIdx_E10_1_PAN:
95 return ARMMMUIdx_Stage1_E1_PAN;
96 default:
97 return mmu_idx;
98 }
99}
100
101ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
102{
103 return stage_1_mmu_idx(arm_mmu_idx(env));
104}
105
11552bb0
RH
106static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
107{
108 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
109}
110
3b318aae
RH
111/* Return the TTBR associated with this translation regime */
112static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
113{
114 if (mmu_idx == ARMMMUIdx_Stage2) {
115 return env->cp15.vttbr_el2;
116 }
117 if (mmu_idx == ARMMMUIdx_Stage2_S) {
118 return env->cp15.vsttbr_el2;
119 }
120 if (ttbrn == 0) {
121 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
122 } else {
123 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
124 }
125}
126
8db1a3a0 127/* Return true if the specified stage of address translation is disabled */
7e80c0a4
RH
128static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
129 bool is_secure)
8db1a3a0
RH
130{
131 uint64_t hcr_el2;
132
133 if (arm_feature(env, ARM_FEATURE_M)) {
7e80c0a4 134 switch (env->v7m.mpu_ctrl[is_secure] &
8db1a3a0
RH
135 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
136 case R_V7M_MPU_CTRL_ENABLE_MASK:
137 /* Enabled, but not for HardFault and NMI */
138 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
139 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
140 /* Enabled for all cases */
141 return false;
142 case 0:
143 default:
144 /*
145 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
146 * we warned about that in armv7m_nvic.c when the guest set it.
147 */
148 return true;
149 }
150 }
151
2189c798 152 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
8db1a3a0 153
3b2af993
RH
154 switch (mmu_idx) {
155 case ARMMMUIdx_Stage2:
156 case ARMMMUIdx_Stage2_S:
8db1a3a0
RH
157 /* HCR.DC means HCR.VM behaves as 1 */
158 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
8db1a3a0 159
3b2af993
RH
160 case ARMMMUIdx_E10_0:
161 case ARMMMUIdx_E10_1:
162 case ARMMMUIdx_E10_1_PAN:
fdf12933
RH
163 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
164 if (hcr_el2 & HCR_TGE) {
8db1a3a0
RH
165 return true;
166 }
3b2af993 167 break;
8db1a3a0 168
3b2af993
RH
169 case ARMMMUIdx_Stage1_E0:
170 case ARMMMUIdx_Stage1_E1:
171 case ARMMMUIdx_Stage1_E1_PAN:
8db1a3a0 172 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
3b2af993
RH
173 if (hcr_el2 & HCR_DC) {
174 return true;
175 }
176 break;
177
178 case ARMMMUIdx_E20_0:
179 case ARMMMUIdx_E20_2:
180 case ARMMMUIdx_E20_2_PAN:
181 case ARMMMUIdx_E2:
182 case ARMMMUIdx_E3:
183 break;
184
a1ce3084
RH
185 case ARMMMUIdx_Phys_NS:
186 case ARMMMUIdx_Phys_S:
187 /* No translation for physical address spaces. */
188 return true;
189
3b2af993
RH
190 default:
191 g_assert_not_reached();
8db1a3a0
RH
192 }
193
194 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
195}
196
f3639a64 197static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
11552bb0
RH
198{
199 /*
200 * For an S1 page table walk, the stage 1 attributes are always
201 * some form of "this is Normal memory". The combined S1+S2
202 * attributes are therefore only Device if stage 2 specifies Device.
203 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
204 * ie when cacheattrs.attrs bits [3:2] are 0b00.
205 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
206 * when cacheattrs.attrs bit [2] is 0.
207 */
ac76c2e5 208 if (hcr & HCR_FWB) {
f3639a64 209 return (attrs & 0x4) == 0;
11552bb0 210 } else {
f3639a64 211 return (attrs & 0xc) == 0;
11552bb0
RH
212 }
213}
214
215/* Translate a S1 pagetable walk through S2 if needed. */
6d2654ff
RH
216static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
217 hwaddr addr, ARMMMUFaultInfo *fi)
11552bb0 218{
6d2654ff 219 bool is_secure = ptw->in_secure;
f3639a64 220 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
48da29e4 221 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
f3639a64
RH
222 uint8_t pte_attrs;
223 bool pte_secure;
224
71943a1e
RH
225 ptw->out_virt = addr;
226
f3639a64
RH
227 if (unlikely(ptw->in_debug)) {
228 /*
229 * From gdbstub, do not use softmmu so that we don't modify the
230 * state of the cpu at all, including softmmu tlb contents.
231 */
48da29e4 232 if (regime_is_stage2(s2_mmu_idx)) {
f3639a64
RH
233 S1Translate s2ptw = {
234 .in_mmu_idx = s2_mmu_idx,
48da29e4 235 .in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS,
f3639a64
RH
236 .in_secure = is_secure,
237 .in_debug = true,
238 };
239 GetPhysAddrResult s2 = { };
48da29e4 240
4a1103af
RH
241 if (get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
242 false, &s2, fi)) {
f3639a64
RH
243 goto fail;
244 }
245 ptw->out_phys = s2.f.phys_addr;
246 pte_attrs = s2.cacheattrs.attrs;
247 pte_secure = s2.f.attrs.secure;
48da29e4
RH
248 } else {
249 /* Regime is physical. */
250 ptw->out_phys = addr;
251 pte_attrs = 0;
252 pte_secure = is_secure;
11552bb0 253 }
f3639a64 254 ptw->out_host = NULL;
71943a1e 255 ptw->out_rw = false;
f3639a64 256 } else {
0d3de77a 257#ifdef CONFIG_TCG
f3639a64
RH
258 CPUTLBEntryFull *full;
259 int flags;
260
261 env->tlb_fi = fi;
262 flags = probe_access_full(env, addr, MMU_DATA_LOAD,
263 arm_to_core_mmu_idx(s2_mmu_idx),
264 true, &ptw->out_host, &full, 0);
265 env->tlb_fi = NULL;
266
267 if (unlikely(flags & TLB_INVALID_MASK)) {
268 goto fail;
269 }
9d2617ac 270 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
71943a1e 271 ptw->out_rw = full->prot & PAGE_WRITE;
f3639a64
RH
272 pte_attrs = full->pte_attrs;
273 pte_secure = full->attrs.secure;
0d3de77a
FR
274#else
275 g_assert_not_reached();
276#endif
f3639a64 277 }
ac76c2e5 278
48da29e4 279 if (regime_is_stage2(s2_mmu_idx)) {
f3639a64
RH
280 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
281
282 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
11552bb0
RH
283 /*
284 * PTW set and S1 walk touched S2 Device memory:
285 * generate Permission fault.
286 */
287 fi->type = ARMFault_Permission;
288 fi->s2addr = addr;
289 fi->stage2 = true;
290 fi->s1ptw = true;
ab1f7885 291 fi->s1ns = !is_secure;
6d2654ff 292 return false;
11552bb0 293 }
11552bb0 294 }
6d2654ff 295
f3639a64
RH
296 /* Check if page table walk is to secure or non-secure PA space. */
297 ptw->out_secure = (is_secure
298 && !(pte_secure
299 ? env->cp15.vstcr_el2 & VSTCR_SW
300 : env->cp15.vtcr_el2 & VTCR_NSW));
301 ptw->out_be = regime_translation_big_endian(env, mmu_idx);
6d2654ff 302 return true;
f3639a64
RH
303
304 fail:
305 assert(fi->type != ARMFault_None);
306 fi->s2addr = addr;
307 fi->stage2 = true;
308 fi->s1ptw = true;
309 fi->s1ns = !is_secure;
310 return false;
11552bb0
RH
311}
312
313/* All loads done in the course of a page table walk go through here. */
93e5b3a6 314static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
6d2654ff 315 ARMMMUFaultInfo *fi)
11552bb0 316{
5e79887b 317 CPUState *cs = env_cpu(env);
71943a1e 318 void *host = ptw->out_host;
11552bb0
RH
319 uint32_t data;
320
71943a1e 321 if (likely(host)) {
f3639a64 322 /* Page tables are in RAM, and we have the host address. */
71943a1e 323 data = qatomic_read((uint32_t *)host);
f3639a64 324 if (ptw->out_be) {
71943a1e 325 data = be32_to_cpu(data);
f3639a64 326 } else {
71943a1e 327 data = le32_to_cpu(data);
f3639a64 328 }
11552bb0 329 } else {
f3639a64
RH
330 /* Page tables are in MMIO. */
331 MemTxAttrs attrs = { .secure = ptw->out_secure };
332 AddressSpace *as = arm_addressspace(cs, attrs);
333 MemTxResult result = MEMTX_OK;
334
335 if (ptw->out_be) {
336 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
337 } else {
338 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
339 }
340 if (unlikely(result != MEMTX_OK)) {
341 fi->type = ARMFault_SyncExternalOnWalk;
342 fi->ea = arm_extabort_type(result);
343 return 0;
344 }
11552bb0 345 }
f3639a64 346 return data;
11552bb0
RH
347}
348
93e5b3a6 349static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
6d2654ff 350 ARMMMUFaultInfo *fi)
11552bb0 351{
5e79887b 352 CPUState *cs = env_cpu(env);
71943a1e 353 void *host = ptw->out_host;
11552bb0
RH
354 uint64_t data;
355
71943a1e 356 if (likely(host)) {
f3639a64 357 /* Page tables are in RAM, and we have the host address. */
71943a1e
RH
358#ifdef CONFIG_ATOMIC64
359 data = qatomic_read__nocheck((uint64_t *)host);
360 if (ptw->out_be) {
361 data = be64_to_cpu(data);
362 } else {
363 data = le64_to_cpu(data);
364 }
365#else
f3639a64 366 if (ptw->out_be) {
71943a1e 367 data = ldq_be_p(host);
f3639a64 368 } else {
71943a1e 369 data = ldq_le_p(host);
f3639a64 370 }
71943a1e 371#endif
11552bb0 372 } else {
f3639a64
RH
373 /* Page tables are in MMIO. */
374 MemTxAttrs attrs = { .secure = ptw->out_secure };
375 AddressSpace *as = arm_addressspace(cs, attrs);
376 MemTxResult result = MEMTX_OK;
377
378 if (ptw->out_be) {
379 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
380 } else {
381 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
382 }
383 if (unlikely(result != MEMTX_OK)) {
384 fi->type = ARMFault_SyncExternalOnWalk;
385 fi->ea = arm_extabort_type(result);
386 return 0;
387 }
11552bb0 388 }
f3639a64 389 return data;
11552bb0
RH
390}
391
71943a1e
RH
392static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
393 uint64_t new_val, S1Translate *ptw,
394 ARMMMUFaultInfo *fi)
395{
396 uint64_t cur_val;
397 void *host = ptw->out_host;
398
399 if (unlikely(!host)) {
400 fi->type = ARMFault_UnsuppAtomicUpdate;
401 fi->s1ptw = true;
402 return 0;
403 }
404
405 /*
406 * Raising a stage2 Protection fault for an atomic update to a read-only
407 * page is delayed until it is certain that there is a change to make.
408 */
409 if (unlikely(!ptw->out_rw)) {
410 int flags;
411 void *discard;
412
413 env->tlb_fi = fi;
414 flags = probe_access_flags(env, ptw->out_virt, MMU_DATA_STORE,
415 arm_to_core_mmu_idx(ptw->in_ptw_idx),
416 true, &discard, 0);
417 env->tlb_fi = NULL;
418
419 if (unlikely(flags & TLB_INVALID_MASK)) {
420 assert(fi->type != ARMFault_None);
421 fi->s2addr = ptw->out_virt;
422 fi->stage2 = true;
423 fi->s1ptw = true;
424 fi->s1ns = !ptw->in_secure;
425 return 0;
426 }
427
428 /* In case CAS mismatches and we loop, remember writability. */
429 ptw->out_rw = true;
430 }
431
432#ifdef CONFIG_ATOMIC64
433 if (ptw->out_be) {
434 old_val = cpu_to_be64(old_val);
435 new_val = cpu_to_be64(new_val);
436 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
437 cur_val = be64_to_cpu(cur_val);
438 } else {
439 old_val = cpu_to_le64(old_val);
440 new_val = cpu_to_le64(new_val);
441 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
442 cur_val = le64_to_cpu(cur_val);
443 }
444#else
445 /*
446 * We can't support the full 64-bit atomic cmpxchg on the host.
447 * Because this is only used for FEAT_HAFDBS, which is only for AA64,
448 * we know that TCG_OVERSIZED_GUEST is set, which means that we are
449 * running in round-robin mode and could only race with dma i/o.
450 */
451#ifndef TCG_OVERSIZED_GUEST
452# error "Unexpected configuration"
453#endif
454 bool locked = qemu_mutex_iothread_locked();
455 if (!locked) {
456 qemu_mutex_lock_iothread();
457 }
458 if (ptw->out_be) {
459 cur_val = ldq_be_p(host);
460 if (cur_val == old_val) {
461 stq_be_p(host, new_val);
462 }
463 } else {
464 cur_val = ldq_le_p(host);
465 if (cur_val == old_val) {
466 stq_le_p(host, new_val);
467 }
468 }
469 if (!locked) {
470 qemu_mutex_unlock_iothread();
471 }
472#endif
473
474 return cur_val;
475}
476
4c74ab15
RH
477static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
478 uint32_t *table, uint32_t address)
479{
480 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
c1547bba 481 uint64_t tcr = regime_tcr(env, mmu_idx);
9e70e26c
PM
482 int maskshift = extract32(tcr, 0, 3);
483 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
484 uint32_t base_mask;
4c74ab15 485
9e70e26c
PM
486 if (address & mask) {
487 if (tcr & TTBCR_PD1) {
4c74ab15
RH
488 /* Translation table walk disabled for TTBR1 */
489 return false;
490 }
491 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
492 } else {
9e70e26c 493 if (tcr & TTBCR_PD0) {
4c74ab15
RH
494 /* Translation table walk disabled for TTBR0 */
495 return false;
496 }
9e70e26c
PM
497 base_mask = ~((uint32_t)0x3fffu >> maskshift);
498 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
4c74ab15
RH
499 }
500 *table |= (address >> 18) & 0x3ffc;
501 return true;
502}
503
4845d3be
RH
504/*
505 * Translate section/page access permissions to page R/W protection flags
506 * @env: CPUARMState
507 * @mmu_idx: MMU index indicating required translation regime
508 * @ap: The 3-bit access permissions (AP[2:0])
509 * @domain_prot: The 2-bit domain access permissions
6f2d9d74 510 * @is_user: TRUE if accessing from PL0
4845d3be 511 */
6f2d9d74
TK
512static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
513 int ap, int domain_prot, bool is_user)
4845d3be 514{
4845d3be
RH
515 if (domain_prot == 3) {
516 return PAGE_READ | PAGE_WRITE;
517 }
518
519 switch (ap) {
520 case 0:
521 if (arm_feature(env, ARM_FEATURE_V7)) {
522 return 0;
523 }
524 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
525 case SCTLR_S:
526 return is_user ? 0 : PAGE_READ;
527 case SCTLR_R:
528 return PAGE_READ;
529 default:
530 return 0;
531 }
532 case 1:
533 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
534 case 2:
535 if (is_user) {
536 return PAGE_READ;
537 } else {
538 return PAGE_READ | PAGE_WRITE;
539 }
540 case 3:
541 return PAGE_READ | PAGE_WRITE;
542 case 4: /* Reserved. */
543 return 0;
544 case 5:
545 return is_user ? 0 : PAGE_READ;
546 case 6:
547 return PAGE_READ;
548 case 7:
549 if (!arm_feature(env, ARM_FEATURE_V6K)) {
550 return 0;
551 }
552 return PAGE_READ;
553 default:
554 g_assert_not_reached();
555 }
556}
557
6f2d9d74
TK
558/*
559 * Translate section/page access permissions to page R/W protection flags
560 * @env: CPUARMState
561 * @mmu_idx: MMU index indicating required translation regime
562 * @ap: The 3-bit access permissions (AP[2:0])
563 * @domain_prot: The 2-bit domain access permissions
564 */
565static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
566 int ap, int domain_prot)
567{
568 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
569 regime_is_user(env, mmu_idx));
570}
571
4845d3be
RH
572/*
573 * Translate section/page access permissions to page R/W protection flags.
574 * @ap: The 2-bit simple AP (AP[2:1])
575 * @is_user: TRUE if accessing from PL0
576 */
577static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
578{
579 switch (ap) {
580 case 0:
581 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
582 case 1:
583 return PAGE_READ | PAGE_WRITE;
584 case 2:
585 return is_user ? 0 : PAGE_READ;
586 case 3:
587 return PAGE_READ;
588 default:
589 g_assert_not_reached();
590 }
591}
592
593static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
594{
595 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
596}
597
6d2654ff
RH
598static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
599 uint32_t address, MMUAccessType access_type,
600 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
f2d2f5ce 601{
f2d2f5ce
RH
602 int level = 1;
603 uint32_t table;
604 uint32_t desc;
605 int type;
606 int ap;
607 int domain = 0;
608 int domain_prot;
609 hwaddr phys_addr;
610 uint32_t dacr;
611
612 /* Pagetable walk. */
613 /* Lookup l1 descriptor. */
6d2654ff 614 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
f2d2f5ce
RH
615 /* Section translation fault if page walk is disabled by PD0 or PD1 */
616 fi->type = ARMFault_Translation;
617 goto do_fault;
618 }
93e5b3a6
RH
619 if (!S1_ptw_translate(env, ptw, table, fi)) {
620 goto do_fault;
621 }
622 desc = arm_ldl_ptw(env, ptw, fi);
f2d2f5ce
RH
623 if (fi->type != ARMFault_None) {
624 goto do_fault;
625 }
626 type = (desc & 3);
627 domain = (desc >> 5) & 0x0f;
6d2654ff 628 if (regime_el(env, ptw->in_mmu_idx) == 1) {
f2d2f5ce
RH
629 dacr = env->cp15.dacr_ns;
630 } else {
631 dacr = env->cp15.dacr_s;
632 }
633 domain_prot = (dacr >> (domain * 2)) & 3;
634 if (type == 0) {
635 /* Section translation fault. */
636 fi->type = ARMFault_Translation;
637 goto do_fault;
638 }
639 if (type != 2) {
640 level = 2;
641 }
642 if (domain_prot == 0 || domain_prot == 2) {
643 fi->type = ARMFault_Domain;
644 goto do_fault;
645 }
646 if (type == 2) {
647 /* 1Mb section. */
648 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
649 ap = (desc >> 10) & 3;
7fa7ea8f 650 result->f.lg_page_size = 20; /* 1MB */
f2d2f5ce
RH
651 } else {
652 /* Lookup l2 entry. */
653 if (type == 1) {
654 /* Coarse pagetable. */
655 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
656 } else {
657 /* Fine pagetable. */
658 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
659 }
93e5b3a6
RH
660 if (!S1_ptw_translate(env, ptw, table, fi)) {
661 goto do_fault;
662 }
663 desc = arm_ldl_ptw(env, ptw, fi);
f2d2f5ce
RH
664 if (fi->type != ARMFault_None) {
665 goto do_fault;
666 }
667 switch (desc & 3) {
668 case 0: /* Page translation fault. */
669 fi->type = ARMFault_Translation;
670 goto do_fault;
671 case 1: /* 64k page. */
672 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
673 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
7fa7ea8f 674 result->f.lg_page_size = 16;
f2d2f5ce
RH
675 break;
676 case 2: /* 4k page. */
677 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
678 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
7fa7ea8f 679 result->f.lg_page_size = 12;
f2d2f5ce
RH
680 break;
681 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
682 if (type == 1) {
683 /* ARMv6/XScale extended small page format */
684 if (arm_feature(env, ARM_FEATURE_XSCALE)
685 || arm_feature(env, ARM_FEATURE_V6)) {
686 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7fa7ea8f 687 result->f.lg_page_size = 12;
f2d2f5ce
RH
688 } else {
689 /*
690 * UNPREDICTABLE in ARMv5; we choose to take a
691 * page translation fault.
692 */
693 fi->type = ARMFault_Translation;
694 goto do_fault;
695 }
696 } else {
697 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
7fa7ea8f 698 result->f.lg_page_size = 10;
f2d2f5ce
RH
699 }
700 ap = (desc >> 4) & 3;
701 break;
702 default:
703 /* Never happens, but compiler isn't smart enough to tell. */
704 g_assert_not_reached();
705 }
706 }
6d2654ff 707 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
7fa7ea8f
RH
708 result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
709 if (!(result->f.prot & (1 << access_type))) {
f2d2f5ce
RH
710 /* Access permission fault. */
711 fi->type = ARMFault_Permission;
712 goto do_fault;
713 }
7fa7ea8f 714 result->f.phys_addr = phys_addr;
f2d2f5ce 715 return false;
53c038ef
RH
716do_fault:
717 fi->domain = domain;
718 fi->level = level;
719 return true;
720}
721
6d2654ff
RH
722static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
723 uint32_t address, MMUAccessType access_type,
724 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
53c038ef 725{
53c038ef 726 ARMCPU *cpu = env_archcpu(env);
6d2654ff 727 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
53c038ef
RH
728 int level = 1;
729 uint32_t table;
730 uint32_t desc;
731 uint32_t xn;
732 uint32_t pxn = 0;
733 int type;
734 int ap;
735 int domain = 0;
736 int domain_prot;
737 hwaddr phys_addr;
738 uint32_t dacr;
739 bool ns;
6f2d9d74 740 int user_prot;
53c038ef
RH
741
742 /* Pagetable walk. */
743 /* Lookup l1 descriptor. */
744 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
745 /* Section translation fault if page walk is disabled by PD0 or PD1 */
746 fi->type = ARMFault_Translation;
747 goto do_fault;
748 }
93e5b3a6
RH
749 if (!S1_ptw_translate(env, ptw, table, fi)) {
750 goto do_fault;
751 }
752 desc = arm_ldl_ptw(env, ptw, fi);
53c038ef
RH
753 if (fi->type != ARMFault_None) {
754 goto do_fault;
755 }
756 type = (desc & 3);
757 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
758 /* Section translation fault, or attempt to use the encoding
759 * which is Reserved on implementations without PXN.
760 */
761 fi->type = ARMFault_Translation;
762 goto do_fault;
763 }
764 if ((type == 1) || !(desc & (1 << 18))) {
765 /* Page or Section. */
766 domain = (desc >> 5) & 0x0f;
767 }
768 if (regime_el(env, mmu_idx) == 1) {
769 dacr = env->cp15.dacr_ns;
770 } else {
771 dacr = env->cp15.dacr_s;
772 }
773 if (type == 1) {
774 level = 2;
775 }
776 domain_prot = (dacr >> (domain * 2)) & 3;
777 if (domain_prot == 0 || domain_prot == 2) {
778 /* Section or Page domain fault */
779 fi->type = ARMFault_Domain;
780 goto do_fault;
781 }
782 if (type != 1) {
783 if (desc & (1 << 18)) {
784 /* Supersection. */
785 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
786 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
787 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
7fa7ea8f 788 result->f.lg_page_size = 24; /* 16MB */
53c038ef
RH
789 } else {
790 /* Section. */
791 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7fa7ea8f 792 result->f.lg_page_size = 20; /* 1MB */
53c038ef
RH
793 }
794 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
795 xn = desc & (1 << 4);
796 pxn = desc & 1;
797 ns = extract32(desc, 19, 1);
798 } else {
799 if (cpu_isar_feature(aa32_pxn, cpu)) {
800 pxn = (desc >> 2) & 1;
801 }
802 ns = extract32(desc, 3, 1);
803 /* Lookup l2 entry. */
804 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
93e5b3a6
RH
805 if (!S1_ptw_translate(env, ptw, table, fi)) {
806 goto do_fault;
807 }
808 desc = arm_ldl_ptw(env, ptw, fi);
53c038ef
RH
809 if (fi->type != ARMFault_None) {
810 goto do_fault;
811 }
812 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
813 switch (desc & 3) {
814 case 0: /* Page translation fault. */
815 fi->type = ARMFault_Translation;
816 goto do_fault;
817 case 1: /* 64k page. */
818 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
819 xn = desc & (1 << 15);
7fa7ea8f 820 result->f.lg_page_size = 16;
53c038ef
RH
821 break;
822 case 2: case 3: /* 4k page. */
823 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
824 xn = desc & 1;
7fa7ea8f 825 result->f.lg_page_size = 12;
53c038ef
RH
826 break;
827 default:
828 /* Never happens, but compiler isn't smart enough to tell. */
829 g_assert_not_reached();
830 }
831 }
832 if (domain_prot == 3) {
7fa7ea8f 833 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
53c038ef
RH
834 } else {
835 if (pxn && !regime_is_user(env, mmu_idx)) {
836 xn = 1;
837 }
838 if (xn && access_type == MMU_INST_FETCH) {
839 fi->type = ARMFault_Permission;
840 goto do_fault;
841 }
842
843 if (arm_feature(env, ARM_FEATURE_V6K) &&
844 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
845 /* The simplified model uses AP[0] as an access control bit. */
846 if ((ap & 1) == 0) {
847 /* Access flag fault. */
848 fi->type = ARMFault_AccessFlag;
849 goto do_fault;
850 }
7fa7ea8f 851 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
6f2d9d74 852 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
53c038ef 853 } else {
7fa7ea8f 854 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
6f2d9d74 855 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
53c038ef 856 }
7fa7ea8f
RH
857 if (result->f.prot && !xn) {
858 result->f.prot |= PAGE_EXEC;
53c038ef 859 }
7fa7ea8f 860 if (!(result->f.prot & (1 << access_type))) {
53c038ef
RH
861 /* Access permission fault. */
862 fi->type = ARMFault_Permission;
863 goto do_fault;
864 }
6f2d9d74
TK
865 if (regime_is_pan(env, mmu_idx) &&
866 !regime_is_user(env, mmu_idx) &&
867 user_prot &&
868 access_type != MMU_INST_FETCH) {
869 /* Privileged Access Never fault */
870 fi->type = ARMFault_Permission;
871 goto do_fault;
872 }
53c038ef
RH
873 }
874 if (ns) {
875 /* The NS bit will (as required by the architecture) have no effect if
876 * the CPU doesn't support TZ or this is a non-secure translation
877 * regime, because the attribute will already be non-secure.
878 */
7fa7ea8f 879 result->f.attrs.secure = false;
53c038ef 880 }
7fa7ea8f 881 result->f.phys_addr = phys_addr;
53c038ef 882 return false;
f2d2f5ce
RH
883do_fault:
884 fi->domain = domain;
885 fi->level = level;
886 return true;
887}
888
f8526edc
RH
889/*
890 * Translate S2 section/page access permissions to protection flags
891 * @env: CPUARMState
892 * @s2ap: The 2-bit stage2 access permissions (S2AP)
893 * @xn: XN (execute-never) bits
894 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
895 */
896static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
897{
898 int prot = 0;
899
900 if (s2ap & 1) {
901 prot |= PAGE_READ;
902 }
903 if (s2ap & 2) {
904 prot |= PAGE_WRITE;
905 }
906
907 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
908 switch (xn) {
909 case 0:
910 prot |= PAGE_EXEC;
911 break;
912 case 1:
913 if (s1_is_el0) {
914 prot |= PAGE_EXEC;
915 }
916 break;
917 case 2:
918 break;
919 case 3:
920 if (!s1_is_el0) {
921 prot |= PAGE_EXEC;
922 }
923 break;
924 default:
925 g_assert_not_reached();
926 }
927 } else {
928 if (!extract32(xn, 1, 1)) {
929 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
930 prot |= PAGE_EXEC;
931 }
932 }
933 }
934 return prot;
935}
936
937/*
938 * Translate section/page access permissions to protection flags
939 * @env: CPUARMState
940 * @mmu_idx: MMU index indicating required translation regime
941 * @is_aa64: TRUE if AArch64
942 * @ap: The 2-bit simple AP (AP[2:1])
943 * @ns: NS (non-secure) bit
944 * @xn: XN (execute-never) bit
945 * @pxn: PXN (privileged execute-never) bit
946 */
947static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
948 int ap, int ns, int xn, int pxn)
949{
950 bool is_user = regime_is_user(env, mmu_idx);
951 int prot_rw, user_rw;
952 bool have_wxn;
953 int wxn = 0;
954
edc05dd4 955 assert(!regime_is_stage2(mmu_idx));
f8526edc
RH
956
957 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
958 if (is_user) {
959 prot_rw = user_rw;
960 } else {
961 if (user_rw && regime_is_pan(env, mmu_idx)) {
962 /* PAN forbids data accesses but doesn't affect insn fetch */
963 prot_rw = 0;
964 } else {
965 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
966 }
967 }
968
969 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
970 return prot_rw;
971 }
972
973 /* TODO have_wxn should be replaced with
974 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
975 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
976 * compatible processors have EL2, which is required for [U]WXN.
977 */
978 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
979
980 if (have_wxn) {
981 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
982 }
983
984 if (is_aa64) {
985 if (regime_has_2_ranges(mmu_idx) && !is_user) {
986 xn = pxn || (user_rw & PAGE_WRITE);
987 }
988 } else if (arm_feature(env, ARM_FEATURE_V7)) {
989 switch (regime_el(env, mmu_idx)) {
990 case 1:
991 case 3:
992 if (is_user) {
993 xn = xn || !(user_rw & PAGE_READ);
994 } else {
995 int uwxn = 0;
996 if (have_wxn) {
997 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
998 }
999 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1000 (uwxn && (user_rw & PAGE_WRITE));
1001 }
1002 break;
1003 case 2:
1004 break;
1005 }
1006 } else {
1007 xn = wxn = 0;
1008 }
1009
1010 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1011 return prot_rw;
1012 }
1013 return prot_rw | PAGE_EXEC;
1014}
1015
2f0ec92e
RH
1016static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1017 ARMMMUIdx mmu_idx)
1018{
c1547bba 1019 uint64_t tcr = regime_tcr(env, mmu_idx);
2f0ec92e
RH
1020 uint32_t el = regime_el(env, mmu_idx);
1021 int select, tsz;
1022 bool epd, hpd;
1023
1024 assert(mmu_idx != ARMMMUIdx_Stage2_S);
1025
1026 if (mmu_idx == ARMMMUIdx_Stage2) {
1027 /* VTCR */
1028 bool sext = extract32(tcr, 4, 1);
1029 bool sign = extract32(tcr, 3, 1);
1030
1031 /*
1032 * If the sign-extend bit is not the same as t0sz[3], the result
1033 * is unpredictable. Flag this as a guest error.
1034 */
1035 if (sign != sext) {
1036 qemu_log_mask(LOG_GUEST_ERROR,
1037 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1038 }
1039 tsz = sextract32(tcr, 0, 4) + 8;
1040 select = 0;
1041 hpd = false;
1042 epd = false;
1043 } else if (el == 2) {
1044 /* HTCR */
1045 tsz = extract32(tcr, 0, 3);
1046 select = 0;
1047 hpd = extract64(tcr, 24, 1);
1048 epd = false;
1049 } else {
1050 int t0sz = extract32(tcr, 0, 3);
1051 int t1sz = extract32(tcr, 16, 3);
1052
1053 if (t1sz == 0) {
1054 select = va > (0xffffffffu >> t0sz);
1055 } else {
1056 /* Note that we will detect errors later. */
1057 select = va >= ~(0xffffffffu >> t1sz);
1058 }
1059 if (!select) {
1060 tsz = t0sz;
1061 epd = extract32(tcr, 7, 1);
1062 hpd = extract64(tcr, 41, 1);
1063 } else {
1064 tsz = t1sz;
1065 epd = extract32(tcr, 23, 1);
1066 hpd = extract64(tcr, 42, 1);
1067 }
1068 /* For aarch32, hpd0 is not enabled without t2e as well. */
1069 hpd &= extract32(tcr, 6, 1);
1070 }
1071
1072 return (ARMVAParameters) {
1073 .tsz = tsz,
1074 .select = select,
1075 .epd = epd,
1076 .hpd = hpd,
1077 };
1078}
1079
c5168785
RH
1080/*
1081 * check_s2_mmu_setup
1082 * @cpu: ARMCPU
1083 * @is_aa64: True if the translation regime is in AArch64 state
1084 * @startlevel: Suggested starting level
1085 * @inputsize: Bitsize of IPAs
1086 * @stride: Page-table stride (See the ARM ARM)
1087 *
1088 * Returns true if the suggested S2 translation parameters are OK and
1089 * false otherwise.
1090 */
1091static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
1092 int inputsize, int stride, int outputsize)
1093{
1094 const int grainsize = stride + 3;
1095 int startsizecheck;
1096
1097 /*
1098 * Negative levels are usually not allowed...
1099 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
1100 * begins with level -1. Note that previous feature tests will have
1101 * eliminated this combination if it is not enabled.
1102 */
1103 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
1104 return false;
1105 }
1106
1107 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
1108 if (startsizecheck < 1 || startsizecheck > stride + 4) {
1109 return false;
1110 }
1111
1112 if (is_aa64) {
1113 switch (stride) {
1114 case 13: /* 64KB Pages. */
1115 if (level == 0 || (level == 1 && outputsize <= 42)) {
1116 return false;
1117 }
1118 break;
1119 case 11: /* 16KB Pages. */
1120 if (level == 0 || (level == 1 && outputsize <= 40)) {
1121 return false;
1122 }
1123 break;
1124 case 9: /* 4KB Pages. */
1125 if (level == 0 && outputsize <= 42) {
1126 return false;
1127 }
1128 break;
1129 default:
1130 g_assert_not_reached();
1131 }
1132
1133 /* Inputsize checks. */
1134 if (inputsize > outputsize &&
1135 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
1136 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
1137 return false;
1138 }
1139 } else {
1140 /* AArch32 only supports 4KB pages. Assert on that. */
1141 assert(stride == 9);
1142
1143 if (level == 0) {
1144 return false;
1145 }
1146 }
1147 return true;
1148}
1149
3283222a
RH
1150/**
1151 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1152 *
1153 * Returns false if the translation was successful. Otherwise, phys_ptr,
1154 * attrs, prot and page_size may not be filled in, and the populated fsr
1155 * value provides information on why the translation aborted, in the format
1156 * of a long-format DFSR/IFSR fault register, with the following caveat:
1157 * the WnR bit is never set (the caller must do this).
1158 *
1159 * @env: CPUARMState
6d2654ff 1160 * @ptw: Current and next stage parameters for the walk.
3283222a
RH
1161 * @address: virtual address to get physical address for
1162 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
6d2654ff
RH
1163 * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2
1164 * (so this is a stage 2 page table walk),
1165 * must be true if this is stage 2 of a stage 1+2
3283222a
RH
1166 * walk for an EL0 access. If @mmu_idx is anything else,
1167 * @s1_is_el0 is ignored.
03ee9bbe 1168 * @result: set on translation success,
3283222a 1169 * @fi: set to fault info if the translation fails
3283222a 1170 */
6d2654ff
RH
1171static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1172 uint64_t address,
1173 MMUAccessType access_type, bool s1_is_el0,
c23f08a5 1174 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3283222a
RH
1175{
1176 ARMCPU *cpu = env_archcpu(env);
6d2654ff
RH
1177 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1178 bool is_secure = ptw->in_secure;
15f8f467 1179 int32_t level;
3283222a
RH
1180 ARMVAParameters param;
1181 uint64_t ttbr;
1182 hwaddr descaddr, indexmask, indexmask_grainsize;
1183 uint32_t tableattrs;
1184 target_ulong page_size;
45666091 1185 uint64_t attrs;
3283222a
RH
1186 int32_t stride;
1187 int addrsize, inputsize, outputsize;
c1547bba 1188 uint64_t tcr = regime_tcr(env, mmu_idx);
3283222a
RH
1189 int ap, ns, xn, pxn;
1190 uint32_t el = regime_el(env, mmu_idx);
1191 uint64_t descaddrmask;
1192 bool aarch64 = arm_el_is_aa64(env, el);
71943a1e 1193 uint64_t descriptor, new_descriptor;
fe4ddc15 1194 bool nstable;
3283222a
RH
1195
1196 /* TODO: This code does not support shareability levels. */
1197 if (aarch64) {
1198 int ps;
1199
1200 param = aa64_va_parameters(env, address, mmu_idx,
1201 access_type != MMU_INST_FETCH);
1202 level = 0;
1203
1204 /*
1205 * If TxSZ is programmed to a value larger than the maximum,
1206 * or smaller than the effective minimum, it is IMPLEMENTATION
1207 * DEFINED whether we behave as if the field were programmed
1208 * within bounds, or if a level 0 Translation fault is generated.
1209 *
1210 * With FEAT_LVA, fault on less than minimum becomes required,
1211 * so our choice is to always raise the fault.
1212 */
1213 if (param.tsz_oob) {
27c1b81d 1214 goto do_translation_fault;
3283222a
RH
1215 }
1216
1217 addrsize = 64 - 8 * param.tbi;
1218 inputsize = 64 - param.tsz;
1219
1220 /*
1221 * Bound PS by PARANGE to find the effective output address size.
1222 * ID_AA64MMFR0 is a read-only register so values outside of the
1223 * supported mappings can be considered an implementation error.
1224 */
1225 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1226 ps = MIN(ps, param.ps);
1227 assert(ps < ARRAY_SIZE(pamax_map));
1228 outputsize = pamax_map[ps];
312b71ab
AB
1229
1230 /*
1231 * With LPA2, the effective output address (OA) size is at most 48 bits
1232 * unless TCR.DS == 1
1233 */
1234 if (!param.ds && param.gran != Gran64K) {
1235 outputsize = MIN(outputsize, 48);
1236 }
3283222a
RH
1237 } else {
1238 param = aa32_va_parameters(env, address, mmu_idx);
1239 level = 1;
1240 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1241 inputsize = addrsize - param.tsz;
1242 outputsize = 40;
1243 }
1244
1245 /*
1246 * We determined the region when collecting the parameters, but we
1247 * have not yet validated that the address is valid for the region.
1248 * Extract the top bits and verify that they all match select.
1249 *
1250 * For aa32, if inputsize == addrsize, then we have selected the
1251 * region by exclusion in aa32_va_parameters and there is no more
1252 * validation to do here.
1253 */
1254 if (inputsize < addrsize) {
1255 target_ulong top_bits = sextract64(address, inputsize,
1256 addrsize - inputsize);
1257 if (-top_bits != param.select) {
1258 /* The gap between the two regions is a Translation fault */
27c1b81d 1259 goto do_translation_fault;
3283222a
RH
1260 }
1261 }
1262
3c003f70 1263 stride = arm_granule_bits(param.gran) - 3;
3283222a
RH
1264
1265 /*
1266 * Note that QEMU ignores shareability and cacheability attributes,
1267 * so we don't need to do anything with the SH, ORGN, IRGN fields
1268 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1269 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1270 * implement any ASID-like capability so we can ignore it (instead
1271 * we will always flush the TLB any time the ASID is changed).
1272 */
1273 ttbr = regime_ttbr(env, mmu_idx, param.select);
1274
1275 /*
1276 * Here we should have set up all the parameters for the translation:
1277 * inputsize, ttbr, epd, stride, tbi
1278 */
1279
1280 if (param.epd) {
1281 /*
1282 * Translation table walk disabled => Translation fault on TLB miss
1283 * Note: This is always 0 on 64-bit EL2 and EL3.
1284 */
27c1b81d 1285 goto do_translation_fault;
3283222a
RH
1286 }
1287
edc05dd4 1288 if (!regime_is_stage2(mmu_idx)) {
3283222a
RH
1289 /*
1290 * The starting level depends on the virtual address size (which can
1291 * be up to 48 bits) and the translation granule size. It indicates
1292 * the number of strides (stride bits at a time) needed to
1293 * consume the bits of the input address. In the pseudocode this is:
1294 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1295 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1296 * our 'stride + 3' and 'stride' is our 'stride'.
1297 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1298 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1299 * = 4 - (inputsize - 4) / stride;
1300 */
1301 level = 4 - (inputsize - 4) / stride;
1302 } else {
1303 /*
1304 * For stage 2 translations the starting level is specified by the
1305 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
1306 */
dfce4aa8
PM
1307 uint32_t sl0 = extract32(tcr, 6, 2);
1308 uint32_t sl2 = extract64(tcr, 33, 1);
15f8f467 1309 int32_t startlevel;
3283222a
RH
1310 bool ok;
1311
1312 /* SL2 is RES0 unless DS=1 & 4kb granule. */
1313 if (param.ds && stride == 9 && sl2) {
1314 if (sl0 != 0) {
1315 level = 0;
27c1b81d 1316 goto do_translation_fault;
3283222a
RH
1317 }
1318 startlevel = -1;
1319 } else if (!aarch64 || stride == 9) {
1320 /* AArch32 or 4KB pages */
1321 startlevel = 2 - sl0;
1322
1323 if (cpu_isar_feature(aa64_st, cpu)) {
1324 startlevel &= 3;
1325 }
1326 } else {
1327 /* 16KB or 64KB pages */
1328 startlevel = 3 - sl0;
1329 }
1330
1331 /* Check that the starting level is valid. */
1332 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1333 inputsize, stride, outputsize);
1334 if (!ok) {
27c1b81d 1335 goto do_translation_fault;
3283222a
RH
1336 }
1337 level = startlevel;
1338 }
1339
1340 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1341 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1342
1343 /* Now we can extract the actual base address from the TTBR */
1344 descaddr = extract64(ttbr, 0, 48);
1345
1346 /*
1347 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1348 *
1349 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1350 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1351 * but we've just cleared the bits above 47, so simplify the test.
1352 */
1353 if (outputsize > 48) {
1354 descaddr |= extract64(ttbr, 2, 4) << 48;
1355 } else if (descaddr >> outputsize) {
1356 level = 0;
27c1b81d 1357 fi->type = ARMFault_AddressSize;
3283222a
RH
1358 goto do_fault;
1359 }
1360
1361 /*
1362 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1363 * and also to mask out CnP (bit 0) which could validly be non-zero.
1364 */
1365 descaddr &= ~indexmask;
1366
1367 /*
1368 * For AArch32, the address field in the descriptor goes up to bit 39
1369 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1370 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1371 * bits as part of the address, which will be checked via outputsize.
1372 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1373 * the highest bits of a 52-bit output are placed elsewhere.
1374 */
1375 if (param.ds) {
1376 descaddrmask = MAKE_64BIT_MASK(0, 50);
1377 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1378 descaddrmask = MAKE_64BIT_MASK(0, 48);
1379 } else {
1380 descaddrmask = MAKE_64BIT_MASK(0, 40);
1381 }
1382 descaddrmask &= ~indexmask_grainsize;
1383
1384 /*
1385 * Secure accesses start with the page table in secure memory and
1386 * can be downgraded to non-secure at any step. Non-secure accesses
1387 * remain non-secure. We implement this by just ORing in the NSTable/NS
1388 * bits at each step.
1389 */
c23f08a5 1390 tableattrs = is_secure ? 0 : (1 << 4);
3283222a 1391
fe4ddc15
RH
1392 next_level:
1393 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1394 descaddr &= ~7ULL;
1395 nstable = extract32(tableattrs, 4, 1);
cead7fa4 1396 if (nstable) {
3283222a 1397 /*
fe4ddc15
RH
1398 * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1399 * Assert that the non-secure idx are even, and relative order.
3283222a 1400 */
fe4ddc15
RH
1401 QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0);
1402 QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0);
1403 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S);
1404 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S);
1405 ptw->in_ptw_idx &= ~1;
1406 ptw->in_secure = false;
1407 }
1408 if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1409 goto do_fault;
1410 }
1411 descriptor = arm_ldq_ptw(env, ptw, fi);
1412 if (fi->type != ARMFault_None) {
1413 goto do_fault;
1414 }
71943a1e 1415 new_descriptor = descriptor;
3283222a 1416
71943a1e 1417 restart_atomic_update:
fe4ddc15
RH
1418 if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) {
1419 /* Invalid, or the Reserved level 3 encoding */
27c1b81d 1420 goto do_translation_fault;
fe4ddc15
RH
1421 }
1422
1423 descaddr = descriptor & descaddrmask;
1424
1425 /*
1426 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1427 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1428 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1429 * raise AddressSizeFault.
1430 */
1431 if (outputsize > 48) {
1432 if (param.ds) {
1433 descaddr |= extract64(descriptor, 8, 2) << 50;
1434 } else {
1435 descaddr |= extract64(descriptor, 12, 4) << 48;
3283222a 1436 }
fe4ddc15 1437 } else if (descaddr >> outputsize) {
27c1b81d 1438 fi->type = ARMFault_AddressSize;
fe4ddc15
RH
1439 goto do_fault;
1440 }
1441
1442 if ((descriptor & 2) && (level < 3)) {
3283222a 1443 /*
fe4ddc15
RH
1444 * Table entry. The top five bits are attributes which may
1445 * propagate down through lower levels of the table (and
1446 * which are all arranged so that 0 means "no effect", so
1447 * we can gather them up by ORing in the bits at each level).
3283222a 1448 */
fe4ddc15
RH
1449 tableattrs |= extract64(descriptor, 59, 5);
1450 level++;
1451 indexmask = indexmask_grainsize;
1452 goto next_level;
3283222a 1453 }
fe4ddc15
RH
1454
1455 /*
1456 * Block entry at level 1 or 2, or page entry at level 3.
1457 * These are basically the same thing, although the number
1458 * of bits we pull in from the vaddr varies. Note that although
1459 * descaddrmask masks enough of the low bits of the descriptor
1460 * to give a correct page or table address, the address field
1461 * in a block descriptor is smaller; so we need to explicitly
1462 * clear the lower bits here before ORing in the low vaddr bits.
71943a1e
RH
1463 *
1464 * Afterward, descaddr is the final physical address.
fe4ddc15
RH
1465 */
1466 page_size = (1ULL << ((stride * (4 - level)) + 3));
1467 descaddr &= ~(hwaddr)(page_size - 1);
1468 descaddr |= (address & (page_size - 1));
fe4ddc15 1469
71943a1e
RH
1470 if (likely(!ptw->in_debug)) {
1471 /*
1472 * Access flag.
1473 * If HA is enabled, prepare to update the descriptor below.
1474 * Otherwise, pass the access fault on to software.
1475 */
1476 if (!(descriptor & (1 << 10))) {
1477 if (param.ha) {
1478 new_descriptor |= 1 << 10; /* AF */
1479 } else {
1480 fi->type = ARMFault_AccessFlag;
1481 goto do_fault;
1482 }
1483 }
65c123fd
RH
1484
1485 /*
1486 * Dirty Bit.
1487 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1488 * bit for writeback. The actual write protection test may still be
1489 * overridden by tableattrs, to be merged below.
1490 */
1491 if (param.hd
1492 && extract64(descriptor, 51, 1) /* DBM */
1493 && access_type == MMU_DATA_STORE) {
1494 if (regime_is_stage2(mmu_idx)) {
1495 new_descriptor |= 1ull << 7; /* set S2AP[1] */
1496 } else {
1497 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1498 }
1499 }
71943a1e
RH
1500 }
1501
fe4ddc15 1502 /*
71943a1e
RH
1503 * Extract attributes from the (modified) descriptor, and apply
1504 * table descriptors. Stage 2 table descriptors do not include
1505 * any attribute fields. HPD disables all the table attributes
1506 * except NSTable.
fe4ddc15 1507 */
71943a1e 1508 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
34a57fae
RH
1509 if (!regime_is_stage2(mmu_idx)) {
1510 attrs |= nstable << 5; /* NS */
1511 if (!param.hpd) {
1512 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */
1513 /*
1514 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1515 * means "force PL1 access only", which means forcing AP[1] to 0.
1516 */
1517 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1518 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */
1519 }
1520 }
fe4ddc15 1521
45666091 1522 ap = extract32(attrs, 6, 2);
edc05dd4 1523 if (regime_is_stage2(mmu_idx)) {
3283222a 1524 ns = mmu_idx == ARMMMUIdx_Stage2;
45666091 1525 xn = extract64(attrs, 53, 2);
7fa7ea8f 1526 result->f.prot = get_S2prot(env, ap, xn, s1_is_el0);
3283222a 1527 } else {
45666091
RH
1528 ns = extract32(attrs, 5, 1);
1529 xn = extract64(attrs, 54, 1);
1530 pxn = extract64(attrs, 53, 1);
7fa7ea8f 1531 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
3283222a
RH
1532 }
1533
7fa7ea8f 1534 if (!(result->f.prot & (1 << access_type))) {
27c1b81d 1535 fi->type = ARMFault_Permission;
3283222a
RH
1536 goto do_fault;
1537 }
1538
71943a1e
RH
1539 /* If FEAT_HAFDBS has made changes, update the PTE. */
1540 if (new_descriptor != descriptor) {
1541 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
1542 if (fi->type != ARMFault_None) {
1543 goto do_fault;
1544 }
1545 /*
1546 * I_YZSVV says that if the in-memory descriptor has changed,
1547 * then we must use the information in that new value
1548 * (which might include a different output address, different
1549 * attributes, or generate a fault).
1550 * Restart the handling of the descriptor value from scratch.
1551 */
1552 if (new_descriptor != descriptor) {
1553 descriptor = new_descriptor;
1554 goto restart_atomic_update;
1555 }
1556 }
1557
3283222a
RH
1558 if (ns) {
1559 /*
1560 * The NS bit will (as required by the architecture) have no effect if
1561 * the CPU doesn't support TZ or this is a non-secure translation
1562 * regime, because the attribute will already be non-secure.
1563 */
7fa7ea8f 1564 result->f.attrs.secure = false;
3283222a 1565 }
937f2245
RH
1566
1567 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
1568 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
0e8df0fe 1569 result->f.guarded = extract64(attrs, 50, 1); /* GP */
3283222a
RH
1570 }
1571
edc05dd4 1572 if (regime_is_stage2(mmu_idx)) {
03ee9bbe 1573 result->cacheattrs.is_s2_format = true;
45666091 1574 result->cacheattrs.attrs = extract32(attrs, 2, 4);
3283222a
RH
1575 } else {
1576 /* Index into MAIR registers for cache attributes */
45666091 1577 uint8_t attrindx = extract32(attrs, 2, 3);
3283222a
RH
1578 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1579 assert(attrindx <= 7);
03ee9bbe
RH
1580 result->cacheattrs.is_s2_format = false;
1581 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
3283222a
RH
1582 }
1583
1584 /*
1585 * For FEAT_LPA2 and effective DS, the SH field in the attributes
1586 * was re-purposed for output address bits. The SH attribute in
1587 * that case comes from TCR_ELx, which we extracted earlier.
1588 */
1589 if (param.ds) {
03ee9bbe 1590 result->cacheattrs.shareability = param.sh;
3283222a 1591 } else {
45666091 1592 result->cacheattrs.shareability = extract32(attrs, 8, 2);
3283222a
RH
1593 }
1594
7fa7ea8f
RH
1595 result->f.phys_addr = descaddr;
1596 result->f.lg_page_size = ctz64(page_size);
3283222a
RH
1597 return false;
1598
27c1b81d
RH
1599 do_translation_fault:
1600 fi->type = ARMFault_Translation;
1601 do_fault:
3283222a
RH
1602 fi->level = level;
1603 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
edc05dd4 1604 fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx);
3283222a
RH
1605 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1606 return true;
1607}
1608
9a12fb36
RH
1609static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1610 MMUAccessType access_type, ARMMMUIdx mmu_idx,
a5b5092f 1611 bool is_secure, GetPhysAddrResult *result,
9a12fb36
RH
1612 ARMMMUFaultInfo *fi)
1613{
1614 int n;
1615 uint32_t mask;
1616 uint32_t base;
1617 bool is_user = regime_is_user(env, mmu_idx);
1618
7e80c0a4 1619 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
9a12fb36 1620 /* MPU disabled. */
7fa7ea8f
RH
1621 result->f.phys_addr = address;
1622 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9a12fb36
RH
1623 return false;
1624 }
1625
7fa7ea8f 1626 result->f.phys_addr = address;
9a12fb36
RH
1627 for (n = 7; n >= 0; n--) {
1628 base = env->cp15.c6_region[n];
1629 if ((base & 1) == 0) {
1630 continue;
1631 }
1632 mask = 1 << ((base >> 1) & 0x1f);
1633 /* Keep this shift separate from the above to avoid an
1634 (undefined) << 32. */
1635 mask = (mask << 1) - 1;
1636 if (((base ^ address) & ~mask) == 0) {
1637 break;
1638 }
1639 }
1640 if (n < 0) {
1641 fi->type = ARMFault_Background;
1642 return true;
1643 }
1644
1645 if (access_type == MMU_INST_FETCH) {
1646 mask = env->cp15.pmsav5_insn_ap;
1647 } else {
1648 mask = env->cp15.pmsav5_data_ap;
1649 }
1650 mask = (mask >> (n * 4)) & 0xf;
1651 switch (mask) {
1652 case 0:
1653 fi->type = ARMFault_Permission;
1654 fi->level = 1;
1655 return true;
1656 case 1:
1657 if (is_user) {
1658 fi->type = ARMFault_Permission;
1659 fi->level = 1;
1660 return true;
1661 }
7fa7ea8f 1662 result->f.prot = PAGE_READ | PAGE_WRITE;
9a12fb36
RH
1663 break;
1664 case 2:
7fa7ea8f 1665 result->f.prot = PAGE_READ;
9a12fb36 1666 if (!is_user) {
7fa7ea8f 1667 result->f.prot |= PAGE_WRITE;
9a12fb36
RH
1668 }
1669 break;
1670 case 3:
7fa7ea8f 1671 result->f.prot = PAGE_READ | PAGE_WRITE;
9a12fb36
RH
1672 break;
1673 case 5:
1674 if (is_user) {
1675 fi->type = ARMFault_Permission;
1676 fi->level = 1;
1677 return true;
1678 }
7fa7ea8f 1679 result->f.prot = PAGE_READ;
9a12fb36
RH
1680 break;
1681 case 6:
7fa7ea8f 1682 result->f.prot = PAGE_READ;
9a12fb36
RH
1683 break;
1684 default:
1685 /* Bad permission. */
1686 fi->type = ARMFault_Permission;
1687 fi->level = 1;
1688 return true;
1689 }
7fa7ea8f 1690 result->f.prot |= PAGE_EXEC;
9a12fb36
RH
1691 return false;
1692}
1693
fedbaa05 1694static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
7fa7ea8f 1695 int32_t address, uint8_t *prot)
7d2e08c9
RH
1696{
1697 if (!arm_feature(env, ARM_FEATURE_M)) {
1698 *prot = PAGE_READ | PAGE_WRITE;
1699 switch (address) {
1700 case 0xF0000000 ... 0xFFFFFFFF:
1701 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1702 /* hivecs execing is ok */
1703 *prot |= PAGE_EXEC;
1704 }
1705 break;
1706 case 0x00000000 ... 0x7FFFFFFF:
1707 *prot |= PAGE_EXEC;
1708 break;
1709 }
1710 } else {
1711 /* Default system address map for M profile cores.
1712 * The architecture specifies which regions are execute-never;
1713 * at the MPU level no other checks are defined.
1714 */
1715 switch (address) {
1716 case 0x00000000 ... 0x1fffffff: /* ROM */
1717 case 0x20000000 ... 0x3fffffff: /* SRAM */
1718 case 0x60000000 ... 0x7fffffff: /* RAM */
1719 case 0x80000000 ... 0x9fffffff: /* RAM */
1720 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1721 break;
1722 case 0x40000000 ... 0x5fffffff: /* Peripheral */
1723 case 0xa0000000 ... 0xbfffffff: /* Device */
1724 case 0xc0000000 ... 0xdfffffff: /* Device */
1725 case 0xe0000000 ... 0xffffffff: /* System */
1726 *prot = PAGE_READ | PAGE_WRITE;
1727 break;
1728 default:
1729 g_assert_not_reached();
1730 }
1731 }
1732}
1733
47ff5ba9
RH
1734static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1735{
1736 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1737 return arm_feature(env, ARM_FEATURE_M) &&
1738 extract32(address, 20, 12) == 0xe00;
1739}
1740
1741static bool m_is_system_region(CPUARMState *env, uint32_t address)
1742{
1743 /*
1744 * True if address is in the M profile system region
1745 * 0xe0000000 - 0xffffffff
1746 */
1747 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1748}
1749
c8e436c9 1750static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1a469cf7 1751 bool is_secure, bool is_user)
c8e436c9
RH
1752{
1753 /*
1754 * Return true if we should use the default memory map as a
1755 * "background" region if there are no hits against any MPU regions.
1756 */
1757 CPUARMState *env = &cpu->env;
1758
1759 if (is_user) {
1760 return false;
1761 }
1762
1763 if (arm_feature(env, ARM_FEATURE_M)) {
1a469cf7 1764 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
c8e436c9 1765 }
fca45e34
TR
1766
1767 if (mmu_idx == ARMMMUIdx_Stage2) {
1768 return false;
1769 }
1770
1771 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
c8e436c9
RH
1772}
1773
1f2e87e5
RH
1774static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1775 MMUAccessType access_type, ARMMMUIdx mmu_idx,
957a0bb7 1776 bool secure, GetPhysAddrResult *result,
1f2e87e5
RH
1777 ARMMMUFaultInfo *fi)
1778{
1779 ARMCPU *cpu = env_archcpu(env);
1780 int n;
1781 bool is_user = regime_is_user(env, mmu_idx);
1782
7fa7ea8f
RH
1783 result->f.phys_addr = address;
1784 result->f.lg_page_size = TARGET_PAGE_BITS;
1785 result->f.prot = 0;
1f2e87e5 1786
7e80c0a4 1787 if (regime_translation_disabled(env, mmu_idx, secure) ||
1f2e87e5
RH
1788 m_is_ppb_region(env, address)) {
1789 /*
1790 * MPU disabled or M profile PPB access: use default memory map.
1791 * The other case which uses the default memory map in the
1792 * v7M ARM ARM pseudocode is exception vector reads from the vector
1793 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1794 * which always does a direct read using address_space_ldl(), rather
1795 * than going via this function, so we don't need to check that here.
1796 */
7fa7ea8f 1797 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
1f2e87e5
RH
1798 } else { /* MPU enabled */
1799 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1800 /* region search */
1801 uint32_t base = env->pmsav7.drbar[n];
1802 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1803 uint32_t rmask;
1804 bool srdis = false;
1805
1806 if (!(env->pmsav7.drsr[n] & 0x1)) {
1807 continue;
1808 }
1809
1810 if (!rsize) {
1811 qemu_log_mask(LOG_GUEST_ERROR,
1812 "DRSR[%d]: Rsize field cannot be 0\n", n);
1813 continue;
1814 }
1815 rsize++;
1816 rmask = (1ull << rsize) - 1;
1817
1818 if (base & rmask) {
1819 qemu_log_mask(LOG_GUEST_ERROR,
1820 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1821 "to DRSR region size, mask = 0x%" PRIx32 "\n",
1822 n, base, rmask);
1823 continue;
1824 }
1825
1826 if (address < base || address > base + rmask) {
1827 /*
1828 * Address not in this region. We must check whether the
1829 * region covers addresses in the same page as our address.
1830 * In that case we must not report a size that covers the
1831 * whole page for a subsequent hit against a different MPU
1832 * region or the background region, because it would result in
1833 * incorrect TLB hits for subsequent accesses to addresses that
1834 * are in this MPU region.
1835 */
1836 if (ranges_overlap(base, rmask,
1837 address & TARGET_PAGE_MASK,
1838 TARGET_PAGE_SIZE)) {
7fa7ea8f 1839 result->f.lg_page_size = 0;
1f2e87e5
RH
1840 }
1841 continue;
1842 }
1843
1844 /* Region matched */
1845
1846 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1847 int i, snd;
1848 uint32_t srdis_mask;
1849
1850 rsize -= 3; /* sub region size (power of 2) */
1851 snd = ((address - base) >> rsize) & 0x7;
1852 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1853
1854 srdis_mask = srdis ? 0x3 : 0x0;
1855 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1856 /*
1857 * This will check in groups of 2, 4 and then 8, whether
1858 * the subregion bits are consistent. rsize is incremented
1859 * back up to give the region size, considering consistent
1860 * adjacent subregions as one region. Stop testing if rsize
1861 * is already big enough for an entire QEMU page.
1862 */
1863 int snd_rounded = snd & ~(i - 1);
1864 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1865 snd_rounded + 8, i);
1866 if (srdis_mask ^ srdis_multi) {
1867 break;
1868 }
1869 srdis_mask = (srdis_mask << i) | srdis_mask;
1870 rsize++;
1871 }
1872 }
1873 if (srdis) {
1874 continue;
1875 }
1876 if (rsize < TARGET_PAGE_BITS) {
7fa7ea8f 1877 result->f.lg_page_size = rsize;
1f2e87e5
RH
1878 }
1879 break;
1880 }
1881
1882 if (n == -1) { /* no hits */
1a469cf7 1883 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1f2e87e5
RH
1884 /* background fault */
1885 fi->type = ARMFault_Background;
1886 return true;
1887 }
7fa7ea8f
RH
1888 get_phys_addr_pmsav7_default(env, mmu_idx, address,
1889 &result->f.prot);
1f2e87e5
RH
1890 } else { /* a MPU hit! */
1891 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1892 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1893
1894 if (m_is_system_region(env, address)) {
1895 /* System space is always execute never */
1896 xn = 1;
1897 }
1898
1899 if (is_user) { /* User mode AP bit decoding */
1900 switch (ap) {
1901 case 0:
1902 case 1:
1903 case 5:
1904 break; /* no access */
1905 case 3:
7fa7ea8f 1906 result->f.prot |= PAGE_WRITE;
1f2e87e5
RH
1907 /* fall through */
1908 case 2:
1909 case 6:
7fa7ea8f 1910 result->f.prot |= PAGE_READ | PAGE_EXEC;
1f2e87e5
RH
1911 break;
1912 case 7:
1913 /* for v7M, same as 6; for R profile a reserved value */
1914 if (arm_feature(env, ARM_FEATURE_M)) {
7fa7ea8f 1915 result->f.prot |= PAGE_READ | PAGE_EXEC;
1f2e87e5
RH
1916 break;
1917 }
1918 /* fall through */
1919 default:
1920 qemu_log_mask(LOG_GUEST_ERROR,
1921 "DRACR[%d]: Bad value for AP bits: 0x%"
1922 PRIx32 "\n", n, ap);
1923 }
1924 } else { /* Priv. mode AP bits decoding */
1925 switch (ap) {
1926 case 0:
1927 break; /* no access */
1928 case 1:
1929 case 2:
1930 case 3:
7fa7ea8f 1931 result->f.prot |= PAGE_WRITE;
1f2e87e5
RH
1932 /* fall through */
1933 case 5:
1934 case 6:
7fa7ea8f 1935 result->f.prot |= PAGE_READ | PAGE_EXEC;
1f2e87e5
RH
1936 break;
1937 case 7:
1938 /* for v7M, same as 6; for R profile a reserved value */
1939 if (arm_feature(env, ARM_FEATURE_M)) {
7fa7ea8f 1940 result->f.prot |= PAGE_READ | PAGE_EXEC;
1f2e87e5
RH
1941 break;
1942 }
1943 /* fall through */
1944 default:
1945 qemu_log_mask(LOG_GUEST_ERROR,
1946 "DRACR[%d]: Bad value for AP bits: 0x%"
1947 PRIx32 "\n", n, ap);
1948 }
1949 }
1950
1951 /* execute never */
1952 if (xn) {
7fa7ea8f 1953 result->f.prot &= ~PAGE_EXEC;
1f2e87e5
RH
1954 }
1955 }
1956 }
1957
1958 fi->type = ARMFault_Permission;
1959 fi->level = 1;
7fa7ea8f 1960 return !(result->f.prot & (1 << access_type));
1f2e87e5
RH
1961}
1962
fca45e34
TR
1963static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
1964 uint32_t secure)
1965{
1966 if (regime_el(env, mmu_idx) == 2) {
1967 return env->pmsav8.hprbar;
1968 } else {
1969 return env->pmsav8.rbar[secure];
1970 }
1971}
1972
1973static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
1974 uint32_t secure)
1975{
1976 if (regime_el(env, mmu_idx) == 2) {
1977 return env->pmsav8.hprlar;
1978 } else {
1979 return env->pmsav8.rlar[secure];
1980 }
1981}
1982
fedbaa05
RH
1983bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1984 MMUAccessType access_type, ARMMMUIdx mmu_idx,
e9fb7090
RH
1985 bool secure, GetPhysAddrResult *result,
1986 ARMMMUFaultInfo *fi, uint32_t *mregion)
fedbaa05
RH
1987{
1988 /*
1989 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
1990 * that a full phys-to-virt translation does).
1991 * mregion is (if not NULL) set to the region number which matched,
1992 * or -1 if no region number is returned (MPU off, address did not
1993 * hit a region, address hit in multiple regions).
652c750e
RH
1994 * If the region hit doesn't cover the entire TARGET_PAGE the address
1995 * is within, then we set the result page_size to 1 to force the
1996 * memory system to use a subpage.
fedbaa05
RH
1997 */
1998 ARMCPU *cpu = env_archcpu(env);
1999 bool is_user = regime_is_user(env, mmu_idx);
fedbaa05
RH
2000 int n;
2001 int matchregion = -1;
2002 bool hit = false;
2003 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2004 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
fca45e34
TR
2005 int region_counter;
2006
2007 if (regime_el(env, mmu_idx) == 2) {
2008 region_counter = cpu->pmsav8r_hdregion;
2009 } else {
2010 region_counter = cpu->pmsav7_dregion;
2011 }
fedbaa05 2012
7fa7ea8f
RH
2013 result->f.lg_page_size = TARGET_PAGE_BITS;
2014 result->f.phys_addr = address;
2015 result->f.prot = 0;
fedbaa05
RH
2016 if (mregion) {
2017 *mregion = -1;
2018 }
2019
fca45e34
TR
2020 if (mmu_idx == ARMMMUIdx_Stage2) {
2021 fi->stage2 = true;
2022 }
2023
fedbaa05
RH
2024 /*
2025 * Unlike the ARM ARM pseudocode, we don't need to check whether this
2026 * was an exception vector read from the vector table (which is always
2027 * done using the default system address map), because those accesses
2028 * are done in arm_v7m_load_vector(), which always does a direct
2029 * read using address_space_ldl(), rather than going via this function.
2030 */
7e80c0a4 2031 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
fedbaa05
RH
2032 hit = true;
2033 } else if (m_is_ppb_region(env, address)) {
2034 hit = true;
2035 } else {
1a469cf7 2036 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
fedbaa05
RH
2037 hit = true;
2038 }
2039
fca45e34
TR
2040 uint32_t bitmask;
2041 if (arm_feature(env, ARM_FEATURE_M)) {
2042 bitmask = 0x1f;
2043 } else {
2044 bitmask = 0x3f;
2045 fi->level = 0;
2046 }
2047
2048 for (n = region_counter - 1; n >= 0; n--) {
fedbaa05
RH
2049 /* region search */
2050 /*
fca45e34
TR
2051 * Note that the base address is bits [31:x] from the register
2052 * with bits [x-1:0] all zeroes, but the limit address is bits
2053 * [31:x] from the register with bits [x:0] all ones. Where x is
2054 * 5 for Cortex-M and 6 for Cortex-R
fedbaa05 2055 */
fca45e34
TR
2056 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2057 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
fedbaa05 2058
fca45e34 2059 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
fedbaa05
RH
2060 /* Region disabled */
2061 continue;
2062 }
2063
2064 if (address < base || address > limit) {
2065 /*
2066 * Address not in this region. We must check whether the
2067 * region covers addresses in the same page as our address.
2068 * In that case we must not report a size that covers the
2069 * whole page for a subsequent hit against a different MPU
2070 * region or the background region, because it would result in
2071 * incorrect TLB hits for subsequent accesses to addresses that
2072 * are in this MPU region.
2073 */
2074 if (limit >= base &&
2075 ranges_overlap(base, limit - base + 1,
2076 addr_page_base,
2077 TARGET_PAGE_SIZE)) {
7fa7ea8f 2078 result->f.lg_page_size = 0;
fedbaa05
RH
2079 }
2080 continue;
2081 }
2082
2083 if (base > addr_page_base || limit < addr_page_limit) {
7fa7ea8f 2084 result->f.lg_page_size = 0;
fedbaa05
RH
2085 }
2086
2087 if (matchregion != -1) {
2088 /*
2089 * Multiple regions match -- always a failure (unlike
2090 * PMSAv7 where highest-numbered-region wins)
2091 */
2092 fi->type = ARMFault_Permission;
fca45e34
TR
2093 if (arm_feature(env, ARM_FEATURE_M)) {
2094 fi->level = 1;
2095 }
fedbaa05
RH
2096 return true;
2097 }
2098
2099 matchregion = n;
2100 hit = true;
2101 }
2102 }
2103
2104 if (!hit) {
fca45e34
TR
2105 if (arm_feature(env, ARM_FEATURE_M)) {
2106 fi->type = ARMFault_Background;
2107 } else {
2108 fi->type = ARMFault_Permission;
2109 }
fedbaa05
RH
2110 return true;
2111 }
2112
2113 if (matchregion == -1) {
2114 /* hit using the background region */
7fa7ea8f 2115 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
fedbaa05 2116 } else {
fca45e34
TR
2117 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2118 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2119 uint32_t ap = extract32(matched_rbar, 1, 2);
2120 uint32_t xn = extract32(matched_rbar, 0, 1);
fedbaa05
RH
2121 bool pxn = false;
2122
2123 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
fca45e34 2124 pxn = extract32(matched_rlar, 4, 1);
fedbaa05
RH
2125 }
2126
2127 if (m_is_system_region(env, address)) {
2128 /* System space is always execute never */
2129 xn = 1;
2130 }
2131
fca45e34
TR
2132 if (regime_el(env, mmu_idx) == 2) {
2133 result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2134 mmu_idx != ARMMMUIdx_E2);
2135 } else {
2136 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2137 }
2138
2139 if (!arm_feature(env, ARM_FEATURE_M)) {
2140 uint8_t attrindx = extract32(matched_rlar, 1, 3);
2141 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2142 uint8_t sh = extract32(matched_rlar, 3, 2);
2143
2144 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2145 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2146 xn = 0x1;
2147 }
2148
2149 if ((regime_el(env, mmu_idx) == 1) &&
2150 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2151 pxn = 0x1;
2152 }
2153
2154 result->cacheattrs.is_s2_format = false;
2155 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2156 result->cacheattrs.shareability = sh;
2157 }
2158
7fa7ea8f
RH
2159 if (result->f.prot && !xn && !(pxn && !is_user)) {
2160 result->f.prot |= PAGE_EXEC;
fedbaa05 2161 }
fca45e34 2162
fedbaa05
RH
2163 if (mregion) {
2164 *mregion = matchregion;
2165 }
2166 }
2167
2168 fi->type = ARMFault_Permission;
fca45e34
TR
2169 if (arm_feature(env, ARM_FEATURE_M)) {
2170 fi->level = 1;
2171 }
7fa7ea8f 2172 return !(result->f.prot & (1 << access_type));
fedbaa05
RH
2173}
2174
2c1f429d
RH
2175static bool v8m_is_sau_exempt(CPUARMState *env,
2176 uint32_t address, MMUAccessType access_type)
2177{
2178 /*
2179 * The architecture specifies that certain address ranges are
2180 * exempt from v8M SAU/IDAU checks.
2181 */
2182 return
2183 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2184 (address >= 0xe0000000 && address <= 0xe0002fff) ||
2185 (address >= 0xe000e000 && address <= 0xe000efff) ||
2186 (address >= 0xe002e000 && address <= 0xe002efff) ||
2187 (address >= 0xe0040000 && address <= 0xe0041fff) ||
2188 (address >= 0xe00ff000 && address <= 0xe00fffff);
2189}
2190
2191void v8m_security_lookup(CPUARMState *env, uint32_t address,
dbf2a71a
RH
2192 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2193 bool is_secure, V8M_SAttributes *sattrs)
2c1f429d
RH
2194{
2195 /*
2196 * Look up the security attributes for this address. Compare the
2197 * pseudocode SecurityCheck() function.
2198 * We assume the caller has zero-initialized *sattrs.
2199 */
2200 ARMCPU *cpu = env_archcpu(env);
2201 int r;
2202 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2203 int idau_region = IREGION_NOTVALID;
2204 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2205 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2206
2207 if (cpu->idau) {
2208 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2209 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2210
2211 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2212 &idau_nsc);
2213 }
2214
2215 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2216 /* 0xf0000000..0xffffffff is always S for insn fetches */
2217 return;
2218 }
2219
2220 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
dbf2a71a 2221 sattrs->ns = !is_secure;
2c1f429d
RH
2222 return;
2223 }
2224
2225 if (idau_region != IREGION_NOTVALID) {
2226 sattrs->irvalid = true;
2227 sattrs->iregion = idau_region;
2228 }
2229
2230 switch (env->sau.ctrl & 3) {
2231 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2232 break;
2233 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2234 sattrs->ns = true;
2235 break;
2236 default: /* SAU.ENABLE == 1 */
2237 for (r = 0; r < cpu->sau_sregion; r++) {
2238 if (env->sau.rlar[r] & 1) {
2239 uint32_t base = env->sau.rbar[r] & ~0x1f;
2240 uint32_t limit = env->sau.rlar[r] | 0x1f;
2241
2242 if (base <= address && limit >= address) {
2243 if (base > addr_page_base || limit < addr_page_limit) {
2244 sattrs->subpage = true;
2245 }
2246 if (sattrs->srvalid) {
2247 /*
2248 * If we hit in more than one region then we must report
2249 * as Secure, not NS-Callable, with no valid region
2250 * number info.
2251 */
2252 sattrs->ns = false;
2253 sattrs->nsc = false;
2254 sattrs->sregion = 0;
2255 sattrs->srvalid = false;
2256 break;
2257 } else {
2258 if (env->sau.rlar[r] & 2) {
2259 sattrs->nsc = true;
2260 } else {
2261 sattrs->ns = true;
2262 }
2263 sattrs->srvalid = true;
2264 sattrs->sregion = r;
2265 }
2266 } else {
2267 /*
2268 * Address not in this region. We must check whether the
2269 * region covers addresses in the same page as our address.
2270 * In that case we must not report a size that covers the
2271 * whole page for a subsequent hit against a different MPU
2272 * region or the background region, because it would result
2273 * in incorrect TLB hits for subsequent accesses to
2274 * addresses that are in this MPU region.
2275 */
2276 if (limit >= base &&
2277 ranges_overlap(base, limit - base + 1,
2278 addr_page_base,
2279 TARGET_PAGE_SIZE)) {
2280 sattrs->subpage = true;
2281 }
2282 }
2283 }
2284 }
2285 break;
2286 }
2287
2288 /*
2289 * The IDAU will override the SAU lookup results if it specifies
2290 * higher security than the SAU does.
2291 */
2292 if (!idau_ns) {
2293 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2294 sattrs->ns = false;
2295 sattrs->nsc = idau_nsc;
2296 }
2297 }
2298}
2299
730d5c31
RH
2300static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
2301 MMUAccessType access_type, ARMMMUIdx mmu_idx,
be0ca948 2302 bool secure, GetPhysAddrResult *result,
730d5c31
RH
2303 ARMMMUFaultInfo *fi)
2304{
730d5c31
RH
2305 V8M_SAttributes sattrs = {};
2306 bool ret;
730d5c31
RH
2307
2308 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
dbf2a71a
RH
2309 v8m_security_lookup(env, address, access_type, mmu_idx,
2310 secure, &sattrs);
730d5c31
RH
2311 if (access_type == MMU_INST_FETCH) {
2312 /*
2313 * Instruction fetches always use the MMU bank and the
2314 * transaction attribute determined by the fetch address,
2315 * regardless of CPU state. This is painful for QEMU
2316 * to handle, because it would mean we need to encode
2317 * into the mmu_idx not just the (user, negpri) information
2318 * for the current security state but also that for the
2319 * other security state, which would balloon the number
2320 * of mmu_idx values needed alarmingly.
2321 * Fortunately we can avoid this because it's not actually
2322 * possible to arbitrarily execute code from memory with
2323 * the wrong security attribute: it will always generate
2324 * an exception of some kind or another, apart from the
2325 * special case of an NS CPU executing an SG instruction
2326 * in S&NSC memory. So we always just fail the translation
2327 * here and sort things out in the exception handler
2328 * (including possibly emulating an SG instruction).
2329 */
2330 if (sattrs.ns != !secure) {
2331 if (sattrs.nsc) {
2332 fi->type = ARMFault_QEMU_NSCExec;
2333 } else {
2334 fi->type = ARMFault_QEMU_SFault;
2335 }
7fa7ea8f
RH
2336 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2337 result->f.phys_addr = address;
2338 result->f.prot = 0;
730d5c31
RH
2339 return true;
2340 }
2341 } else {
2342 /*
2343 * For data accesses we always use the MMU bank indicated
2344 * by the current CPU state, but the security attributes
2345 * might downgrade a secure access to nonsecure.
2346 */
2347 if (sattrs.ns) {
7fa7ea8f 2348 result->f.attrs.secure = false;
730d5c31
RH
2349 } else if (!secure) {
2350 /*
2351 * NS access to S memory must fault.
2352 * Architecturally we should first check whether the
2353 * MPU information for this address indicates that we
2354 * are doing an unaligned access to Device memory, which
2355 * should generate a UsageFault instead. QEMU does not
2356 * currently check for that kind of unaligned access though.
2357 * If we added it we would need to do so as a special case
2358 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2359 */
2360 fi->type = ARMFault_QEMU_SFault;
7fa7ea8f
RH
2361 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2362 result->f.phys_addr = address;
2363 result->f.prot = 0;
730d5c31
RH
2364 return true;
2365 }
2366 }
2367 }
2368
e9fb7090 2369 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
652c750e
RH
2370 result, fi, NULL);
2371 if (sattrs.subpage) {
7fa7ea8f 2372 result->f.lg_page_size = 0;
652c750e 2373 }
730d5c31
RH
2374 return ret;
2375}
2376
966f4bb7
RH
2377/*
2378 * Translate from the 4-bit stage 2 representation of
2379 * memory attributes (without cache-allocation hints) to
2380 * the 8-bit representation of the stage 1 MAIR registers
2381 * (which includes allocation hints).
2382 *
2383 * ref: shared/translation/attrs/S2AttrDecode()
2384 * .../S2ConvertAttrsHints()
2385 */
ac76c2e5 2386static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
966f4bb7
RH
2387{
2388 uint8_t hiattr = extract32(s2attrs, 2, 2);
2389 uint8_t loattr = extract32(s2attrs, 0, 2);
2390 uint8_t hihint = 0, lohint = 0;
2391
2392 if (hiattr != 0) { /* normal memory */
ac76c2e5 2393 if (hcr & HCR_CD) { /* cache disabled */
966f4bb7
RH
2394 hiattr = loattr = 1; /* non-cacheable */
2395 } else {
2396 if (hiattr != 1) { /* Write-through or write-back */
2397 hihint = 3; /* RW allocate */
2398 }
2399 if (loattr != 1) { /* Write-through or write-back */
2400 lohint = 3; /* RW allocate */
2401 }
2402 }
2403 }
2404
2405 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2406}
2407
2408/*
2409 * Combine either inner or outer cacheability attributes for normal
2410 * memory, according to table D4-42 and pseudocode procedure
2411 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2412 *
2413 * NB: only stage 1 includes allocation hints (RW bits), leading to
2414 * some asymmetry.
2415 */
2416static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2417{
2418 if (s1 == 4 || s2 == 4) {
2419 /* non-cacheable has precedence */
2420 return 4;
2421 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2422 /* stage 1 write-through takes precedence */
2423 return s1;
2424 } else if (extract32(s2, 2, 2) == 2) {
2425 /* stage 2 write-through takes precedence, but the allocation hint
2426 * is still taken from stage 1
2427 */
2428 return (2 << 2) | extract32(s1, 0, 2);
2429 } else { /* write-back */
2430 return s1;
2431 }
2432}
2433
2434/*
2435 * Combine the memory type and cacheability attributes of
2436 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2437 * combined attributes in MAIR_EL1 format.
2438 */
ac76c2e5 2439static uint8_t combined_attrs_nofwb(uint64_t hcr,
966f4bb7
RH
2440 ARMCacheAttrs s1, ARMCacheAttrs s2)
2441{
2442 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2443
faa1451e
TR
2444 if (s2.is_s2_format) {
2445 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2446 } else {
2447 s2_mair_attrs = s2.attrs;
2448 }
966f4bb7
RH
2449
2450 s1lo = extract32(s1.attrs, 0, 4);
2451 s2lo = extract32(s2_mair_attrs, 0, 4);
2452 s1hi = extract32(s1.attrs, 4, 4);
2453 s2hi = extract32(s2_mair_attrs, 4, 4);
2454
2455 /* Combine memory type and cacheability attributes */
2456 if (s1hi == 0 || s2hi == 0) {
2457 /* Device has precedence over normal */
2458 if (s1lo == 0 || s2lo == 0) {
2459 /* nGnRnE has precedence over anything */
2460 ret_attrs = 0;
2461 } else if (s1lo == 4 || s2lo == 4) {
2462 /* non-Reordering has precedence over Reordering */
2463 ret_attrs = 4; /* nGnRE */
2464 } else if (s1lo == 8 || s2lo == 8) {
2465 /* non-Gathering has precedence over Gathering */
2466 ret_attrs = 8; /* nGRE */
2467 } else {
2468 ret_attrs = 0xc; /* GRE */
2469 }
2470 } else { /* Normal memory */
2471 /* Outer/inner cacheability combine independently */
2472 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2473 | combine_cacheattr_nibble(s1lo, s2lo);
2474 }
2475 return ret_attrs;
2476}
2477
2478static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2479{
2480 /*
2481 * Given the 4 bits specifying the outer or inner cacheability
2482 * in MAIR format, return a value specifying Normal Write-Back,
2483 * with the allocation and transient hints taken from the input
2484 * if the input specified some kind of cacheable attribute.
2485 */
2486 if (attr == 0 || attr == 4) {
2487 /*
2488 * 0 == an UNPREDICTABLE encoding
2489 * 4 == Non-cacheable
2490 * Either way, force Write-Back RW allocate non-transient
2491 */
2492 return 0xf;
2493 }
2494 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2495 return attr | 4;
2496}
2497
2498/*
2499 * Combine the memory type and cacheability attributes of
2500 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2501 * combined attributes in MAIR_EL1 format.
2502 */
72cef09c 2503static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
966f4bb7 2504{
faa1451e
TR
2505 assert(s2.is_s2_format && !s1.is_s2_format);
2506
966f4bb7
RH
2507 switch (s2.attrs) {
2508 case 7:
2509 /* Use stage 1 attributes */
2510 return s1.attrs;
2511 case 6:
2512 /*
2513 * Force Normal Write-Back. Note that if S1 is Normal cacheable
2514 * then we take the allocation hints from it; otherwise it is
2515 * RW allocate, non-transient.
2516 */
2517 if ((s1.attrs & 0xf0) == 0) {
2518 /* S1 is Device */
2519 return 0xff;
2520 }
2521 /* Need to check the Inner and Outer nibbles separately */
2522 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2523 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2524 case 5:
2525 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2526 if ((s1.attrs & 0xf0) == 0) {
2527 return s1.attrs;
2528 }
2529 return 0x44;
2530 case 0 ... 3:
2531 /* Force Device, of subtype specified by S2 */
2532 return s2.attrs << 2;
2533 default:
2534 /*
2535 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2536 * arbitrarily force Device.
2537 */
2538 return 0;
2539 }
2540}
2541
2542/*
2543 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2544 * and CombineS1S2Desc()
2545 *
2546 * @env: CPUARMState
2547 * @s1: Attributes from stage 1 walk
2548 * @s2: Attributes from stage 2 walk
2549 */
ac76c2e5 2550static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
966f4bb7
RH
2551 ARMCacheAttrs s1, ARMCacheAttrs s2)
2552{
2553 ARMCacheAttrs ret;
2554 bool tagged = false;
2555
faa1451e 2556 assert(!s1.is_s2_format);
966f4bb7
RH
2557 ret.is_s2_format = false;
2558
2559 if (s1.attrs == 0xf0) {
2560 tagged = true;
2561 s1.attrs = 0xff;
2562 }
2563
2564 /* Combine shareability attributes (table D4-43) */
2565 if (s1.shareability == 2 || s2.shareability == 2) {
2566 /* if either are outer-shareable, the result is outer-shareable */
2567 ret.shareability = 2;
2568 } else if (s1.shareability == 3 || s2.shareability == 3) {
2569 /* if either are inner-shareable, the result is inner-shareable */
2570 ret.shareability = 3;
2571 } else {
2572 /* both non-shareable */
2573 ret.shareability = 0;
2574 }
2575
2576 /* Combine memory type and cacheability attributes */
ac76c2e5 2577 if (hcr & HCR_FWB) {
72cef09c 2578 ret.attrs = combined_attrs_fwb(s1, s2);
966f4bb7 2579 } else {
ac76c2e5 2580 ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
966f4bb7
RH
2581 }
2582
2583 /*
2584 * Any location for which the resultant memory type is any
2585 * type of Device memory is always treated as Outer Shareable.
2586 * Any location for which the resultant memory type is Normal
2587 * Inner Non-cacheable, Outer Non-cacheable is always treated
2588 * as Outer Shareable.
2589 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2590 */
2591 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2592 ret.shareability = 2;
2593 }
2594
2595 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2596 if (tagged && ret.attrs == 0xff) {
2597 ret.attrs = 0xf0;
2598 }
2599
2600 return ret;
2601}
2602
448e42fd
RH
2603/*
2604 * MMU disabled. S1 addresses within aa64 translation regimes are
2605 * still checked for bounds -- see AArch64.S1DisabledOutput().
2606 */
2607static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
2608 MMUAccessType access_type,
2609 ARMMMUIdx mmu_idx, bool is_secure,
2610 GetPhysAddrResult *result,
2611 ARMMMUFaultInfo *fi)
2612{
5b74f9b4
RH
2613 uint8_t memattr = 0x00; /* Device nGnRnE */
2614 uint8_t shareability = 0; /* non-sharable */
a1ce3084 2615 int r_el;
448e42fd 2616
a1ce3084
RH
2617 switch (mmu_idx) {
2618 case ARMMMUIdx_Stage2:
2619 case ARMMMUIdx_Stage2_S:
2620 case ARMMMUIdx_Phys_NS:
2621 case ARMMMUIdx_Phys_S:
2622 break;
5b74f9b4 2623
a1ce3084
RH
2624 default:
2625 r_el = regime_el(env, mmu_idx);
448e42fd
RH
2626 if (arm_el_is_aa64(env, r_el)) {
2627 int pamax = arm_pamax(env_archcpu(env));
2628 uint64_t tcr = env->cp15.tcr_el[r_el];
2629 int addrtop, tbi;
2630
2631 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2632 if (access_type == MMU_INST_FETCH) {
2633 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2634 }
2635 tbi = (tbi >> extract64(address, 55, 1)) & 1;
2636 addrtop = (tbi ? 55 : 63);
2637
2638 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2639 fi->type = ARMFault_AddressSize;
2640 fi->level = 0;
2641 fi->stage2 = false;
2642 return 1;
2643 }
2644
2645 /*
2646 * When TBI is disabled, we've just validated that all of the
2647 * bits above PAMax are zero, so logically we only need to
2648 * clear the top byte for TBI. But it's clearer to follow
2649 * the pseudocode set of addrdesc.paddress.
2650 */
2651 address = extract64(address, 0, 52);
2652 }
5b74f9b4
RH
2653
2654 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2655 if (r_el == 1) {
2656 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2657 if (hcr & HCR_DC) {
2658 if (hcr & HCR_DCT) {
2659 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
2660 } else {
2661 memattr = 0xff; /* Normal, WB, RWA */
2662 }
2663 }
2664 }
2665 if (memattr == 0 && access_type == MMU_INST_FETCH) {
2666 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2667 memattr = 0xee; /* Normal, WT, RA, NT */
2668 } else {
2669 memattr = 0x44; /* Normal, NC, No */
2670 }
2671 shareability = 2; /* outer sharable */
2672 }
2673 result->cacheattrs.is_s2_format = false;
a1ce3084 2674 break;
448e42fd
RH
2675 }
2676
7fa7ea8f
RH
2677 result->f.phys_addr = address;
2678 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2679 result->f.lg_page_size = TARGET_PAGE_BITS;
5b74f9b4 2680 result->cacheattrs.shareability = shareability;
448e42fd 2681 result->cacheattrs.attrs = memattr;
6b72c542 2682 return false;
448e42fd
RH
2683}
2684
3f5a74c5
RH
2685static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
2686 target_ulong address,
2687 MMUAccessType access_type,
2688 GetPhysAddrResult *result,
2689 ARMMMUFaultInfo *fi)
2690{
2691 hwaddr ipa;
c8d6c286 2692 int s1_prot, s1_lgpgsz;
3f5a74c5 2693 bool is_secure = ptw->in_secure;
6b72c542 2694 bool ret, ipa_secure, s2walk_secure;
3f5a74c5
RH
2695 ARMCacheAttrs cacheattrs1;
2696 bool is_el0;
2697 uint64_t hcr;
2698
2699 ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi);
2700
26ba00cf
PM
2701 /* If S1 fails, return early. */
2702 if (ret) {
3f5a74c5
RH
2703 return ret;
2704 }
2705
2706 ipa = result->f.phys_addr;
2707 ipa_secure = result->f.attrs.secure;
2708 if (is_secure) {
2709 /* Select TCR based on the NS bit from the S1 walk. */
2710 s2walk_secure = !(ipa_secure
2711 ? env->cp15.vstcr_el2 & VSTCR_SW
2712 : env->cp15.vtcr_el2 & VTCR_NSW);
2713 } else {
2714 assert(!ipa_secure);
2715 s2walk_secure = false;
2716 }
2717
2718 is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
2719 ptw->in_mmu_idx = s2walk_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
48da29e4 2720 ptw->in_ptw_idx = s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
3f5a74c5
RH
2721 ptw->in_secure = s2walk_secure;
2722
2723 /*
2724 * S1 is done, now do S2 translation.
2725 * Save the stage1 results so that we may merge prot and cacheattrs later.
2726 */
2727 s1_prot = result->f.prot;
c8d6c286 2728 s1_lgpgsz = result->f.lg_page_size;
3f5a74c5
RH
2729 cacheattrs1 = result->cacheattrs;
2730 memset(result, 0, sizeof(*result));
2731
fca45e34
TR
2732 if (arm_feature(env, ARM_FEATURE_PMSA)) {
2733 ret = get_phys_addr_pmsav8(env, ipa, access_type,
2734 ptw->in_mmu_idx, is_secure, result, fi);
2735 } else {
2736 ret = get_phys_addr_lpae(env, ptw, ipa, access_type,
2737 is_el0, result, fi);
2738 }
3f5a74c5
RH
2739 fi->s2addr = ipa;
2740
2741 /* Combine the S1 and S2 perms. */
2742 result->f.prot &= s1_prot;
2743
2744 /* If S2 fails, return early. */
2745 if (ret) {
2746 return ret;
2747 }
2748
c8d6c286 2749 /*
9e65f4e6
PM
2750 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
2751 * this means "don't put this in the TLB"; in this case, return a
2752 * result with lg_page_size == 0 to achieve that. Otherwise,
2753 * use the maximum of the S1 & S2 page size, so that invalidation
2754 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
2755 * we know the combined result permissions etc only cover the minimum
2756 * of the S1 and S2 page size, because we know that the common TLB code
2757 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
2758 * and passing a larger page size value only affects invalidations.)
c8d6c286 2759 */
9e65f4e6
PM
2760 if (result->f.lg_page_size < TARGET_PAGE_BITS ||
2761 s1_lgpgsz < TARGET_PAGE_BITS) {
2762 result->f.lg_page_size = 0;
2763 } else if (result->f.lg_page_size < s1_lgpgsz) {
c8d6c286
RH
2764 result->f.lg_page_size = s1_lgpgsz;
2765 }
2766
3f5a74c5
RH
2767 /* Combine the S1 and S2 cache attributes. */
2768 hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2769 if (hcr & HCR_DC) {
2770 /*
2771 * HCR.DC forces the first stage attributes to
2772 * Normal Non-Shareable,
2773 * Inner Write-Back Read-Allocate Write-Allocate,
2774 * Outer Write-Back Read-Allocate Write-Allocate.
2775 * Do not overwrite Tagged within attrs.
2776 */
2777 if (cacheattrs1.attrs != 0xf0) {
2778 cacheattrs1.attrs = 0xff;
2779 }
2780 cacheattrs1.shareability = 0;
2781 }
2782 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
2783 result->cacheattrs);
2784
2785 /*
2786 * Check if IPA translates to secure or non-secure PA space.
2787 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
2788 */
2789 result->f.attrs.secure =
2790 (is_secure
2791 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
2792 && (ipa_secure
2793 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))));
2794
6b72c542 2795 return false;
3f5a74c5
RH
2796}
2797
4a358556
RH
2798static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
2799 target_ulong address,
2800 MMUAccessType access_type,
2801 GetPhysAddrResult *result,
2802 ARMMMUFaultInfo *fi)
8ae08860 2803{
4a358556 2804 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
4a358556 2805 bool is_secure = ptw->in_secure;
48da29e4 2806 ARMMMUIdx s1_mmu_idx;
8ae08860 2807
cead7fa4
RH
2808 /*
2809 * The page table entries may downgrade secure to non-secure, but
2810 * cannot upgrade an non-secure translation regime's attributes
2811 * to secure.
2812 */
2813 result->f.attrs.secure = is_secure;
2814
48da29e4
RH
2815 switch (mmu_idx) {
2816 case ARMMMUIdx_Phys_S:
2817 case ARMMMUIdx_Phys_NS:
2818 /* Checking Phys early avoids special casing later vs regime_el. */
2819 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2820 is_secure, result, fi);
2821
2822 case ARMMMUIdx_Stage1_E0:
2823 case ARMMMUIdx_Stage1_E1:
2824 case ARMMMUIdx_Stage1_E1_PAN:
2825 /* First stage lookup uses second stage for ptw. */
2826 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2827 break;
2828
2829 case ARMMMUIdx_E10_0:
2830 s1_mmu_idx = ARMMMUIdx_Stage1_E0;
2831 goto do_twostage;
2832 case ARMMMUIdx_E10_1:
2833 s1_mmu_idx = ARMMMUIdx_Stage1_E1;
2834 goto do_twostage;
2835 case ARMMMUIdx_E10_1_PAN:
2836 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
2837 do_twostage:
8ae08860
RH
2838 /*
2839 * Call ourselves recursively to do the stage 1 and then stage 2
3f5a74c5
RH
2840 * translations if mmu_idx is a two-stage regime, and EL2 present.
2841 * Otherwise, a stage1+stage2 translation is just stage 1.
8ae08860 2842 */
3f5a74c5 2843 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
26ba00cf
PM
2844 if (arm_feature(env, ARM_FEATURE_EL2) &&
2845 !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) {
3f5a74c5
RH
2846 return get_phys_addr_twostage(env, ptw, address, access_type,
2847 result, fi);
8ae08860 2848 }
48da29e4
RH
2849 /* fall through */
2850
2851 default:
2852 /* Single stage and second stage uses physical for ptw. */
2853 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2854 break;
8ae08860
RH
2855 }
2856
7fa7ea8f 2857 result->f.attrs.user = regime_is_user(env, mmu_idx);
8ae08860
RH
2858
2859 /*
2860 * Fast Context Switch Extension. This doesn't exist at all in v8.
2861 * In v7 and earlier it affects all stage 1 translations.
2862 */
2863 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2864 && !arm_feature(env, ARM_FEATURE_V8)) {
2865 if (regime_el(env, mmu_idx) == 3) {
2866 address += env->cp15.fcseidr_s;
2867 } else {
2868 address += env->cp15.fcseidr_ns;
2869 }
2870 }
2871
2872 if (arm_feature(env, ARM_FEATURE_PMSA)) {
2873 bool ret;
7fa7ea8f 2874 result->f.lg_page_size = TARGET_PAGE_BITS;
8ae08860
RH
2875
2876 if (arm_feature(env, ARM_FEATURE_V8)) {
2877 /* PMSAv8 */
2878 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
be0ca948 2879 is_secure, result, fi);
8ae08860
RH
2880 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2881 /* PMSAv7 */
2882 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
957a0bb7 2883 is_secure, result, fi);
8ae08860
RH
2884 } else {
2885 /* Pre-v7 MPU */
2886 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
a5b5092f 2887 is_secure, result, fi);
8ae08860
RH
2888 }
2889 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2890 " mmu_idx %u -> %s (prot %c%c%c)\n",
2891 access_type == MMU_DATA_LOAD ? "reading" :
2892 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2893 (uint32_t)address, mmu_idx,
2894 ret ? "Miss" : "Hit",
7fa7ea8f
RH
2895 result->f.prot & PAGE_READ ? 'r' : '-',
2896 result->f.prot & PAGE_WRITE ? 'w' : '-',
2897 result->f.prot & PAGE_EXEC ? 'x' : '-');
8ae08860
RH
2898
2899 return ret;
2900 }
2901
2902 /* Definitely a real MMU, not an MPU */
2903
7e80c0a4 2904 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
448e42fd
RH
2905 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2906 is_secure, result, fi);
8ae08860 2907 }
6d2654ff 2908
8ae08860 2909 if (regime_using_lpae_format(env, mmu_idx)) {
4a358556 2910 return get_phys_addr_lpae(env, ptw, address, access_type, false,
6d2654ff 2911 result, fi);
6f2d9d74
TK
2912 } else if (arm_feature(env, ARM_FEATURE_V7) ||
2913 regime_sctlr(env, mmu_idx) & SCTLR_XP) {
4a358556 2914 return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
8ae08860 2915 } else {
4a358556 2916 return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
8ae08860
RH
2917 }
2918}
23971205 2919
4a358556
RH
2920bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
2921 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2922 bool is_secure, GetPhysAddrResult *result,
2923 ARMMMUFaultInfo *fi)
2924{
2925 S1Translate ptw = {
2926 .in_mmu_idx = mmu_idx,
2927 .in_secure = is_secure,
2928 };
2929 return get_phys_addr_with_struct(env, &ptw, address, access_type,
2930 result, fi);
2931}
2932
def8aa5b
RH
2933bool get_phys_addr(CPUARMState *env, target_ulong address,
2934 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2935 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
2936{
03bea66e
RH
2937 bool is_secure;
2938
2939 switch (mmu_idx) {
2940 case ARMMMUIdx_E10_0:
2941 case ARMMMUIdx_E10_1:
2942 case ARMMMUIdx_E10_1_PAN:
2943 case ARMMMUIdx_E20_0:
2944 case ARMMMUIdx_E20_2:
2945 case ARMMMUIdx_E20_2_PAN:
2946 case ARMMMUIdx_Stage1_E0:
2947 case ARMMMUIdx_Stage1_E1:
2948 case ARMMMUIdx_Stage1_E1_PAN:
2949 case ARMMMUIdx_E2:
d902ae75
RH
2950 is_secure = arm_is_secure_below_el3(env);
2951 break;
03bea66e 2952 case ARMMMUIdx_Stage2:
a1ce3084 2953 case ARMMMUIdx_Phys_NS:
03bea66e
RH
2954 case ARMMMUIdx_MPrivNegPri:
2955 case ARMMMUIdx_MUserNegPri:
2956 case ARMMMUIdx_MPriv:
2957 case ARMMMUIdx_MUser:
2958 is_secure = false;
2959 break;
d902ae75 2960 case ARMMMUIdx_E3:
03bea66e 2961 case ARMMMUIdx_Stage2_S:
a1ce3084 2962 case ARMMMUIdx_Phys_S:
03bea66e
RH
2963 case ARMMMUIdx_MSPrivNegPri:
2964 case ARMMMUIdx_MSUserNegPri:
2965 case ARMMMUIdx_MSPriv:
2966 case ARMMMUIdx_MSUser:
2967 is_secure = true;
2968 break;
2969 default:
2970 g_assert_not_reached();
2971 }
def8aa5b 2972 return get_phys_addr_with_secure(env, address, access_type, mmu_idx,
03bea66e 2973 is_secure, result, fi);
def8aa5b
RH
2974}
2975
23971205
RH
2976hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
2977 MemTxAttrs *attrs)
2978{
2979 ARMCPU *cpu = ARM_CPU(cs);
2980 CPUARMState *env = &cpu->env;
4a358556
RH
2981 S1Translate ptw = {
2982 .in_mmu_idx = arm_mmu_idx(env),
2983 .in_secure = arm_is_secure(env),
2984 .in_debug = true,
2985 };
de05a709 2986 GetPhysAddrResult res = {};
23971205 2987 ARMMMUFaultInfo fi = {};
de05a709 2988 bool ret;
23971205 2989
4a358556 2990 ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
7fa7ea8f 2991 *attrs = res.f.attrs;
23971205
RH
2992
2993 if (ret) {
2994 return -1;
2995 }
7fa7ea8f 2996 return res.f.phys_addr;
23971205 2997}