]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/translate-sve.c
target/arm: Implement SVE Integer Arithmetic - Unary Predicated Group
[mirror_qemu.git] / target / arm / translate-sve.c
CommitLineData
38388f7e
RH
1/*
2 * AArch64 SVE translation
3 *
4 * Copyright (c) 2018 Linaro, Ltd
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
21#include "cpu.h"
22#include "exec/exec-all.h"
23#include "tcg-op.h"
24#include "tcg-op-gvec.h"
028e2a7b 25#include "tcg-gvec-desc.h"
38388f7e
RH
26#include "qemu/log.h"
27#include "arm_ldst.h"
28#include "translate.h"
29#include "internals.h"
30#include "exec/helper-proto.h"
31#include "exec/helper-gen.h"
32#include "exec/log.h"
33#include "trace-tcg.h"
34#include "translate-a64.h"
35
ccd841c3
RH
36/*
37 * Helpers for extracting complex instruction fields.
38 */
39
40/* See e.g. ASR (immediate, predicated).
41 * Returns -1 for unallocated encoding; diagnose later.
42 */
43static int tszimm_esz(int x)
44{
45 x >>= 3; /* discard imm3 */
46 return 31 - clz32(x);
47}
48
49static int tszimm_shr(int x)
50{
51 return (16 << tszimm_esz(x)) - x;
52}
53
54/* See e.g. LSL (immediate, predicated). */
55static int tszimm_shl(int x)
56{
57 return x - (8 << tszimm_esz(x));
58}
59
38388f7e
RH
60/*
61 * Include the generated decoder.
62 */
63
64#include "decode-sve.inc.c"
65
66/*
67 * Implement all of the translator functions referenced by the decoder.
68 */
69
d1822297
RH
70/* Return the offset info CPUARMState of the predicate vector register Pn.
71 * Note for this purpose, FFR is P16.
72 */
73static inline int pred_full_reg_offset(DisasContext *s, int regno)
74{
75 return offsetof(CPUARMState, vfp.pregs[regno]);
76}
77
78/* Return the byte size of the whole predicate register, VL / 64. */
79static inline int pred_full_reg_size(DisasContext *s)
80{
81 return s->sve_len >> 3;
82}
83
516e246a
RH
84/* Round up the size of a register to a size allowed by
85 * the tcg vector infrastructure. Any operation which uses this
86 * size may assume that the bits above pred_full_reg_size are zero,
87 * and must leave them the same way.
88 *
89 * Note that this is not needed for the vector registers as they
90 * are always properly sized for tcg vectors.
91 */
92static int size_for_gvec(int size)
93{
94 if (size <= 8) {
95 return 8;
96 } else {
97 return QEMU_ALIGN_UP(size, 16);
98 }
99}
100
101static int pred_gvec_reg_size(DisasContext *s)
102{
103 return size_for_gvec(pred_full_reg_size(s));
104}
105
39eea561
RH
106/* Invoke a vector expander on two Zregs. */
107static bool do_vector2_z(DisasContext *s, GVecGen2Fn *gvec_fn,
108 int esz, int rd, int rn)
38388f7e 109{
39eea561
RH
110 if (sve_access_check(s)) {
111 unsigned vsz = vec_full_reg_size(s);
112 gvec_fn(esz, vec_full_reg_offset(s, rd),
113 vec_full_reg_offset(s, rn), vsz, vsz);
114 }
115 return true;
38388f7e
RH
116}
117
39eea561
RH
118/* Invoke a vector expander on three Zregs. */
119static bool do_vector3_z(DisasContext *s, GVecGen3Fn *gvec_fn,
120 int esz, int rd, int rn, int rm)
38388f7e 121{
39eea561
RH
122 if (sve_access_check(s)) {
123 unsigned vsz = vec_full_reg_size(s);
124 gvec_fn(esz, vec_full_reg_offset(s, rd),
125 vec_full_reg_offset(s, rn),
126 vec_full_reg_offset(s, rm), vsz, vsz);
127 }
128 return true;
38388f7e
RH
129}
130
39eea561
RH
131/* Invoke a vector move on two Zregs. */
132static bool do_mov_z(DisasContext *s, int rd, int rn)
38388f7e 133{
39eea561 134 return do_vector2_z(s, tcg_gen_gvec_mov, 0, rd, rn);
38388f7e
RH
135}
136
516e246a
RH
137/* Invoke a vector expander on two Pregs. */
138static bool do_vector2_p(DisasContext *s, GVecGen2Fn *gvec_fn,
139 int esz, int rd, int rn)
140{
141 if (sve_access_check(s)) {
142 unsigned psz = pred_gvec_reg_size(s);
143 gvec_fn(esz, pred_full_reg_offset(s, rd),
144 pred_full_reg_offset(s, rn), psz, psz);
145 }
146 return true;
147}
148
149/* Invoke a vector expander on three Pregs. */
150static bool do_vector3_p(DisasContext *s, GVecGen3Fn *gvec_fn,
151 int esz, int rd, int rn, int rm)
152{
153 if (sve_access_check(s)) {
154 unsigned psz = pred_gvec_reg_size(s);
155 gvec_fn(esz, pred_full_reg_offset(s, rd),
156 pred_full_reg_offset(s, rn),
157 pred_full_reg_offset(s, rm), psz, psz);
158 }
159 return true;
160}
161
162/* Invoke a vector operation on four Pregs. */
163static bool do_vecop4_p(DisasContext *s, const GVecGen4 *gvec_op,
164 int rd, int rn, int rm, int rg)
165{
166 if (sve_access_check(s)) {
167 unsigned psz = pred_gvec_reg_size(s);
168 tcg_gen_gvec_4(pred_full_reg_offset(s, rd),
169 pred_full_reg_offset(s, rn),
170 pred_full_reg_offset(s, rm),
171 pred_full_reg_offset(s, rg),
172 psz, psz, gvec_op);
173 }
174 return true;
175}
176
177/* Invoke a vector move on two Pregs. */
178static bool do_mov_p(DisasContext *s, int rd, int rn)
179{
180 return do_vector2_p(s, tcg_gen_gvec_mov, 0, rd, rn);
181}
182
9e18d7a6
RH
183/* Set the cpu flags as per a return from an SVE helper. */
184static void do_pred_flags(TCGv_i32 t)
185{
186 tcg_gen_mov_i32(cpu_NF, t);
187 tcg_gen_andi_i32(cpu_ZF, t, 2);
188 tcg_gen_andi_i32(cpu_CF, t, 1);
189 tcg_gen_movi_i32(cpu_VF, 0);
190}
191
192/* Subroutines computing the ARM PredTest psuedofunction. */
193static void do_predtest1(TCGv_i64 d, TCGv_i64 g)
194{
195 TCGv_i32 t = tcg_temp_new_i32();
196
197 gen_helper_sve_predtest1(t, d, g);
198 do_pred_flags(t);
199 tcg_temp_free_i32(t);
200}
201
202static void do_predtest(DisasContext *s, int dofs, int gofs, int words)
203{
204 TCGv_ptr dptr = tcg_temp_new_ptr();
205 TCGv_ptr gptr = tcg_temp_new_ptr();
206 TCGv_i32 t;
207
208 tcg_gen_addi_ptr(dptr, cpu_env, dofs);
209 tcg_gen_addi_ptr(gptr, cpu_env, gofs);
210 t = tcg_const_i32(words);
211
212 gen_helper_sve_predtest(t, dptr, gptr, t);
213 tcg_temp_free_ptr(dptr);
214 tcg_temp_free_ptr(gptr);
215
216 do_pred_flags(t);
217 tcg_temp_free_i32(t);
218}
219
028e2a7b
RH
220/* For each element size, the bits within a predicate word that are active. */
221const uint64_t pred_esz_masks[4] = {
222 0xffffffffffffffffull, 0x5555555555555555ull,
223 0x1111111111111111ull, 0x0101010101010101ull
224};
225
39eea561
RH
226/*
227 *** SVE Logical - Unpredicated Group
228 */
229
230static bool trans_AND_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
231{
232 return do_vector3_z(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->rm);
233}
234
235static bool trans_ORR_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
236{
237 if (a->rn == a->rm) { /* MOV */
238 return do_mov_z(s, a->rd, a->rn);
239 } else {
240 return do_vector3_z(s, tcg_gen_gvec_or, 0, a->rd, a->rn, a->rm);
241 }
242}
243
244static bool trans_EOR_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
245{
246 return do_vector3_z(s, tcg_gen_gvec_xor, 0, a->rd, a->rn, a->rm);
247}
248
249static bool trans_BIC_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
38388f7e 250{
39eea561 251 return do_vector3_z(s, tcg_gen_gvec_andc, 0, a->rd, a->rn, a->rm);
38388f7e 252}
d1822297 253
f97cfd59
RH
254/*
255 *** SVE Integer Arithmetic - Binary Predicated Group
256 */
257
258static bool do_zpzz_ool(DisasContext *s, arg_rprr_esz *a, gen_helper_gvec_4 *fn)
259{
260 unsigned vsz = vec_full_reg_size(s);
261 if (fn == NULL) {
262 return false;
263 }
264 if (sve_access_check(s)) {
265 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
266 vec_full_reg_offset(s, a->rn),
267 vec_full_reg_offset(s, a->rm),
268 pred_full_reg_offset(s, a->pg),
269 vsz, vsz, 0, fn);
270 }
271 return true;
272}
273
274#define DO_ZPZZ(NAME, name) \
275static bool trans_##NAME##_zpzz(DisasContext *s, arg_rprr_esz *a, \
276 uint32_t insn) \
277{ \
278 static gen_helper_gvec_4 * const fns[4] = { \
279 gen_helper_sve_##name##_zpzz_b, gen_helper_sve_##name##_zpzz_h, \
280 gen_helper_sve_##name##_zpzz_s, gen_helper_sve_##name##_zpzz_d, \
281 }; \
282 return do_zpzz_ool(s, a, fns[a->esz]); \
283}
284
285DO_ZPZZ(AND, and)
286DO_ZPZZ(EOR, eor)
287DO_ZPZZ(ORR, orr)
288DO_ZPZZ(BIC, bic)
289
290DO_ZPZZ(ADD, add)
291DO_ZPZZ(SUB, sub)
292
293DO_ZPZZ(SMAX, smax)
294DO_ZPZZ(UMAX, umax)
295DO_ZPZZ(SMIN, smin)
296DO_ZPZZ(UMIN, umin)
297DO_ZPZZ(SABD, sabd)
298DO_ZPZZ(UABD, uabd)
299
300DO_ZPZZ(MUL, mul)
301DO_ZPZZ(SMULH, smulh)
302DO_ZPZZ(UMULH, umulh)
303
27721dbb
RH
304DO_ZPZZ(ASR, asr)
305DO_ZPZZ(LSR, lsr)
306DO_ZPZZ(LSL, lsl)
307
f97cfd59
RH
308static bool trans_SDIV_zpzz(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
309{
310 static gen_helper_gvec_4 * const fns[4] = {
311 NULL, NULL, gen_helper_sve_sdiv_zpzz_s, gen_helper_sve_sdiv_zpzz_d
312 };
313 return do_zpzz_ool(s, a, fns[a->esz]);
314}
315
316static bool trans_UDIV_zpzz(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
317{
318 static gen_helper_gvec_4 * const fns[4] = {
319 NULL, NULL, gen_helper_sve_udiv_zpzz_s, gen_helper_sve_udiv_zpzz_d
320 };
321 return do_zpzz_ool(s, a, fns[a->esz]);
322}
323
324#undef DO_ZPZZ
325
afac6d04
RH
326/*
327 *** SVE Integer Arithmetic - Unary Predicated Group
328 */
329
330static bool do_zpz_ool(DisasContext *s, arg_rpr_esz *a, gen_helper_gvec_3 *fn)
331{
332 if (fn == NULL) {
333 return false;
334 }
335 if (sve_access_check(s)) {
336 unsigned vsz = vec_full_reg_size(s);
337 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
338 vec_full_reg_offset(s, a->rn),
339 pred_full_reg_offset(s, a->pg),
340 vsz, vsz, 0, fn);
341 }
342 return true;
343}
344
345#define DO_ZPZ(NAME, name) \
346static bool trans_##NAME(DisasContext *s, arg_rpr_esz *a, uint32_t insn) \
347{ \
348 static gen_helper_gvec_3 * const fns[4] = { \
349 gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \
350 gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \
351 }; \
352 return do_zpz_ool(s, a, fns[a->esz]); \
353}
354
355DO_ZPZ(CLS, cls)
356DO_ZPZ(CLZ, clz)
357DO_ZPZ(CNT_zpz, cnt_zpz)
358DO_ZPZ(CNOT, cnot)
359DO_ZPZ(NOT_zpz, not_zpz)
360DO_ZPZ(ABS, abs)
361DO_ZPZ(NEG, neg)
362
363static bool trans_FABS(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
364{
365 static gen_helper_gvec_3 * const fns[4] = {
366 NULL,
367 gen_helper_sve_fabs_h,
368 gen_helper_sve_fabs_s,
369 gen_helper_sve_fabs_d
370 };
371 return do_zpz_ool(s, a, fns[a->esz]);
372}
373
374static bool trans_FNEG(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
375{
376 static gen_helper_gvec_3 * const fns[4] = {
377 NULL,
378 gen_helper_sve_fneg_h,
379 gen_helper_sve_fneg_s,
380 gen_helper_sve_fneg_d
381 };
382 return do_zpz_ool(s, a, fns[a->esz]);
383}
384
385static bool trans_SXTB(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
386{
387 static gen_helper_gvec_3 * const fns[4] = {
388 NULL,
389 gen_helper_sve_sxtb_h,
390 gen_helper_sve_sxtb_s,
391 gen_helper_sve_sxtb_d
392 };
393 return do_zpz_ool(s, a, fns[a->esz]);
394}
395
396static bool trans_UXTB(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
397{
398 static gen_helper_gvec_3 * const fns[4] = {
399 NULL,
400 gen_helper_sve_uxtb_h,
401 gen_helper_sve_uxtb_s,
402 gen_helper_sve_uxtb_d
403 };
404 return do_zpz_ool(s, a, fns[a->esz]);
405}
406
407static bool trans_SXTH(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
408{
409 static gen_helper_gvec_3 * const fns[4] = {
410 NULL, NULL,
411 gen_helper_sve_sxth_s,
412 gen_helper_sve_sxth_d
413 };
414 return do_zpz_ool(s, a, fns[a->esz]);
415}
416
417static bool trans_UXTH(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
418{
419 static gen_helper_gvec_3 * const fns[4] = {
420 NULL, NULL,
421 gen_helper_sve_uxth_s,
422 gen_helper_sve_uxth_d
423 };
424 return do_zpz_ool(s, a, fns[a->esz]);
425}
426
427static bool trans_SXTW(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
428{
429 return do_zpz_ool(s, a, a->esz == 3 ? gen_helper_sve_sxtw_d : NULL);
430}
431
432static bool trans_UXTW(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
433{
434 return do_zpz_ool(s, a, a->esz == 3 ? gen_helper_sve_uxtw_d : NULL);
435}
436
437#undef DO_ZPZ
438
047cec97
RH
439/*
440 *** SVE Integer Reduction Group
441 */
442
443typedef void gen_helper_gvec_reduc(TCGv_i64, TCGv_ptr, TCGv_ptr, TCGv_i32);
444static bool do_vpz_ool(DisasContext *s, arg_rpr_esz *a,
445 gen_helper_gvec_reduc *fn)
446{
447 unsigned vsz = vec_full_reg_size(s);
448 TCGv_ptr t_zn, t_pg;
449 TCGv_i32 desc;
450 TCGv_i64 temp;
451
452 if (fn == NULL) {
453 return false;
454 }
455 if (!sve_access_check(s)) {
456 return true;
457 }
458
459 desc = tcg_const_i32(simd_desc(vsz, vsz, 0));
460 temp = tcg_temp_new_i64();
461 t_zn = tcg_temp_new_ptr();
462 t_pg = tcg_temp_new_ptr();
463
464 tcg_gen_addi_ptr(t_zn, cpu_env, vec_full_reg_offset(s, a->rn));
465 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, a->pg));
466 fn(temp, t_zn, t_pg, desc);
467 tcg_temp_free_ptr(t_zn);
468 tcg_temp_free_ptr(t_pg);
469 tcg_temp_free_i32(desc);
470
471 write_fp_dreg(s, a->rd, temp);
472 tcg_temp_free_i64(temp);
473 return true;
474}
475
476#define DO_VPZ(NAME, name) \
477static bool trans_##NAME(DisasContext *s, arg_rpr_esz *a, uint32_t insn) \
478{ \
479 static gen_helper_gvec_reduc * const fns[4] = { \
480 gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \
481 gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \
482 }; \
483 return do_vpz_ool(s, a, fns[a->esz]); \
484}
485
486DO_VPZ(ORV, orv)
487DO_VPZ(ANDV, andv)
488DO_VPZ(EORV, eorv)
489
490DO_VPZ(UADDV, uaddv)
491DO_VPZ(SMAXV, smaxv)
492DO_VPZ(UMAXV, umaxv)
493DO_VPZ(SMINV, sminv)
494DO_VPZ(UMINV, uminv)
495
496static bool trans_SADDV(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
497{
498 static gen_helper_gvec_reduc * const fns[4] = {
499 gen_helper_sve_saddv_b, gen_helper_sve_saddv_h,
500 gen_helper_sve_saddv_s, NULL
501 };
502 return do_vpz_ool(s, a, fns[a->esz]);
503}
504
505#undef DO_VPZ
506
ccd841c3
RH
507/*
508 *** SVE Shift by Immediate - Predicated Group
509 */
510
511/* Store zero into every active element of Zd. We will use this for two
512 * and three-operand predicated instructions for which logic dictates a
513 * zero result.
514 */
515static bool do_clr_zp(DisasContext *s, int rd, int pg, int esz)
516{
517 static gen_helper_gvec_2 * const fns[4] = {
518 gen_helper_sve_clr_b, gen_helper_sve_clr_h,
519 gen_helper_sve_clr_s, gen_helper_sve_clr_d,
520 };
521 if (sve_access_check(s)) {
522 unsigned vsz = vec_full_reg_size(s);
523 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
524 pred_full_reg_offset(s, pg),
525 vsz, vsz, 0, fns[esz]);
526 }
527 return true;
528}
529
530static bool do_zpzi_ool(DisasContext *s, arg_rpri_esz *a,
531 gen_helper_gvec_3 *fn)
532{
533 if (sve_access_check(s)) {
534 unsigned vsz = vec_full_reg_size(s);
535 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
536 vec_full_reg_offset(s, a->rn),
537 pred_full_reg_offset(s, a->pg),
538 vsz, vsz, a->imm, fn);
539 }
540 return true;
541}
542
543static bool trans_ASR_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
544{
545 static gen_helper_gvec_3 * const fns[4] = {
546 gen_helper_sve_asr_zpzi_b, gen_helper_sve_asr_zpzi_h,
547 gen_helper_sve_asr_zpzi_s, gen_helper_sve_asr_zpzi_d,
548 };
549 if (a->esz < 0) {
550 /* Invalid tsz encoding -- see tszimm_esz. */
551 return false;
552 }
553 /* Shift by element size is architecturally valid. For
554 arithmetic right-shift, it's the same as by one less. */
555 a->imm = MIN(a->imm, (8 << a->esz) - 1);
556 return do_zpzi_ool(s, a, fns[a->esz]);
557}
558
559static bool trans_LSR_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
560{
561 static gen_helper_gvec_3 * const fns[4] = {
562 gen_helper_sve_lsr_zpzi_b, gen_helper_sve_lsr_zpzi_h,
563 gen_helper_sve_lsr_zpzi_s, gen_helper_sve_lsr_zpzi_d,
564 };
565 if (a->esz < 0) {
566 return false;
567 }
568 /* Shift by element size is architecturally valid.
569 For logical shifts, it is a zeroing operation. */
570 if (a->imm >= (8 << a->esz)) {
571 return do_clr_zp(s, a->rd, a->pg, a->esz);
572 } else {
573 return do_zpzi_ool(s, a, fns[a->esz]);
574 }
575}
576
577static bool trans_LSL_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
578{
579 static gen_helper_gvec_3 * const fns[4] = {
580 gen_helper_sve_lsl_zpzi_b, gen_helper_sve_lsl_zpzi_h,
581 gen_helper_sve_lsl_zpzi_s, gen_helper_sve_lsl_zpzi_d,
582 };
583 if (a->esz < 0) {
584 return false;
585 }
586 /* Shift by element size is architecturally valid.
587 For logical shifts, it is a zeroing operation. */
588 if (a->imm >= (8 << a->esz)) {
589 return do_clr_zp(s, a->rd, a->pg, a->esz);
590 } else {
591 return do_zpzi_ool(s, a, fns[a->esz]);
592 }
593}
594
595static bool trans_ASRD(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
596{
597 static gen_helper_gvec_3 * const fns[4] = {
598 gen_helper_sve_asrd_b, gen_helper_sve_asrd_h,
599 gen_helper_sve_asrd_s, gen_helper_sve_asrd_d,
600 };
601 if (a->esz < 0) {
602 return false;
603 }
604 /* Shift by element size is architecturally valid. For arithmetic
605 right shift for division, it is a zeroing operation. */
606 if (a->imm >= (8 << a->esz)) {
607 return do_clr_zp(s, a->rd, a->pg, a->esz);
608 } else {
609 return do_zpzi_ool(s, a, fns[a->esz]);
610 }
611}
612
fe7f8dfb
RH
613/*
614 *** SVE Bitwise Shift - Predicated Group
615 */
616
617#define DO_ZPZW(NAME, name) \
618static bool trans_##NAME##_zpzw(DisasContext *s, arg_rprr_esz *a, \
619 uint32_t insn) \
620{ \
621 static gen_helper_gvec_4 * const fns[3] = { \
622 gen_helper_sve_##name##_zpzw_b, gen_helper_sve_##name##_zpzw_h, \
623 gen_helper_sve_##name##_zpzw_s, \
624 }; \
625 if (a->esz < 0 || a->esz >= 3) { \
626 return false; \
627 } \
628 return do_zpzz_ool(s, a, fns[a->esz]); \
629}
630
631DO_ZPZW(ASR, asr)
632DO_ZPZW(LSR, lsr)
633DO_ZPZW(LSL, lsl)
634
635#undef DO_ZPZW
636
516e246a
RH
637/*
638 *** SVE Predicate Logical Operations Group
639 */
640
641static bool do_pppp_flags(DisasContext *s, arg_rprr_s *a,
642 const GVecGen4 *gvec_op)
643{
644 if (!sve_access_check(s)) {
645 return true;
646 }
647
648 unsigned psz = pred_gvec_reg_size(s);
649 int dofs = pred_full_reg_offset(s, a->rd);
650 int nofs = pred_full_reg_offset(s, a->rn);
651 int mofs = pred_full_reg_offset(s, a->rm);
652 int gofs = pred_full_reg_offset(s, a->pg);
653
654 if (psz == 8) {
655 /* Do the operation and the flags generation in temps. */
656 TCGv_i64 pd = tcg_temp_new_i64();
657 TCGv_i64 pn = tcg_temp_new_i64();
658 TCGv_i64 pm = tcg_temp_new_i64();
659 TCGv_i64 pg = tcg_temp_new_i64();
660
661 tcg_gen_ld_i64(pn, cpu_env, nofs);
662 tcg_gen_ld_i64(pm, cpu_env, mofs);
663 tcg_gen_ld_i64(pg, cpu_env, gofs);
664
665 gvec_op->fni8(pd, pn, pm, pg);
666 tcg_gen_st_i64(pd, cpu_env, dofs);
667
668 do_predtest1(pd, pg);
669
670 tcg_temp_free_i64(pd);
671 tcg_temp_free_i64(pn);
672 tcg_temp_free_i64(pm);
673 tcg_temp_free_i64(pg);
674 } else {
675 /* The operation and flags generation is large. The computation
676 * of the flags depends on the original contents of the guarding
677 * predicate. If the destination overwrites the guarding predicate,
678 * then the easiest way to get this right is to save a copy.
679 */
680 int tofs = gofs;
681 if (a->rd == a->pg) {
682 tofs = offsetof(CPUARMState, vfp.preg_tmp);
683 tcg_gen_gvec_mov(0, tofs, gofs, psz, psz);
684 }
685
686 tcg_gen_gvec_4(dofs, nofs, mofs, gofs, psz, psz, gvec_op);
687 do_predtest(s, dofs, tofs, psz / 8);
688 }
689 return true;
690}
691
692static void gen_and_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
693{
694 tcg_gen_and_i64(pd, pn, pm);
695 tcg_gen_and_i64(pd, pd, pg);
696}
697
698static void gen_and_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
699 TCGv_vec pm, TCGv_vec pg)
700{
701 tcg_gen_and_vec(vece, pd, pn, pm);
702 tcg_gen_and_vec(vece, pd, pd, pg);
703}
704
705static bool trans_AND_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
706{
707 static const GVecGen4 op = {
708 .fni8 = gen_and_pg_i64,
709 .fniv = gen_and_pg_vec,
710 .fno = gen_helper_sve_and_pppp,
711 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
712 };
713 if (a->s) {
714 return do_pppp_flags(s, a, &op);
715 } else if (a->rn == a->rm) {
716 if (a->pg == a->rn) {
717 return do_mov_p(s, a->rd, a->rn);
718 } else {
719 return do_vector3_p(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->pg);
720 }
721 } else if (a->pg == a->rn || a->pg == a->rm) {
722 return do_vector3_p(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->rm);
723 } else {
724 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
725 }
726}
727
728static void gen_bic_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
729{
730 tcg_gen_andc_i64(pd, pn, pm);
731 tcg_gen_and_i64(pd, pd, pg);
732}
733
734static void gen_bic_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
735 TCGv_vec pm, TCGv_vec pg)
736{
737 tcg_gen_andc_vec(vece, pd, pn, pm);
738 tcg_gen_and_vec(vece, pd, pd, pg);
739}
740
741static bool trans_BIC_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
742{
743 static const GVecGen4 op = {
744 .fni8 = gen_bic_pg_i64,
745 .fniv = gen_bic_pg_vec,
746 .fno = gen_helper_sve_bic_pppp,
747 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
748 };
749 if (a->s) {
750 return do_pppp_flags(s, a, &op);
751 } else if (a->pg == a->rn) {
752 return do_vector3_p(s, tcg_gen_gvec_andc, 0, a->rd, a->rn, a->rm);
753 } else {
754 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
755 }
756}
757
758static void gen_eor_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
759{
760 tcg_gen_xor_i64(pd, pn, pm);
761 tcg_gen_and_i64(pd, pd, pg);
762}
763
764static void gen_eor_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
765 TCGv_vec pm, TCGv_vec pg)
766{
767 tcg_gen_xor_vec(vece, pd, pn, pm);
768 tcg_gen_and_vec(vece, pd, pd, pg);
769}
770
771static bool trans_EOR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
772{
773 static const GVecGen4 op = {
774 .fni8 = gen_eor_pg_i64,
775 .fniv = gen_eor_pg_vec,
776 .fno = gen_helper_sve_eor_pppp,
777 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
778 };
779 if (a->s) {
780 return do_pppp_flags(s, a, &op);
781 } else {
782 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
783 }
784}
785
786static void gen_sel_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
787{
788 tcg_gen_and_i64(pn, pn, pg);
789 tcg_gen_andc_i64(pm, pm, pg);
790 tcg_gen_or_i64(pd, pn, pm);
791}
792
793static void gen_sel_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
794 TCGv_vec pm, TCGv_vec pg)
795{
796 tcg_gen_and_vec(vece, pn, pn, pg);
797 tcg_gen_andc_vec(vece, pm, pm, pg);
798 tcg_gen_or_vec(vece, pd, pn, pm);
799}
800
801static bool trans_SEL_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
802{
803 static const GVecGen4 op = {
804 .fni8 = gen_sel_pg_i64,
805 .fniv = gen_sel_pg_vec,
806 .fno = gen_helper_sve_sel_pppp,
807 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
808 };
809 if (a->s) {
810 return false;
811 } else {
812 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
813 }
814}
815
816static void gen_orr_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
817{
818 tcg_gen_or_i64(pd, pn, pm);
819 tcg_gen_and_i64(pd, pd, pg);
820}
821
822static void gen_orr_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
823 TCGv_vec pm, TCGv_vec pg)
824{
825 tcg_gen_or_vec(vece, pd, pn, pm);
826 tcg_gen_and_vec(vece, pd, pd, pg);
827}
828
829static bool trans_ORR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
830{
831 static const GVecGen4 op = {
832 .fni8 = gen_orr_pg_i64,
833 .fniv = gen_orr_pg_vec,
834 .fno = gen_helper_sve_orr_pppp,
835 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
836 };
837 if (a->s) {
838 return do_pppp_flags(s, a, &op);
839 } else if (a->pg == a->rn && a->rn == a->rm) {
840 return do_mov_p(s, a->rd, a->rn);
841 } else {
842 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
843 }
844}
845
846static void gen_orn_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
847{
848 tcg_gen_orc_i64(pd, pn, pm);
849 tcg_gen_and_i64(pd, pd, pg);
850}
851
852static void gen_orn_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
853 TCGv_vec pm, TCGv_vec pg)
854{
855 tcg_gen_orc_vec(vece, pd, pn, pm);
856 tcg_gen_and_vec(vece, pd, pd, pg);
857}
858
859static bool trans_ORN_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
860{
861 static const GVecGen4 op = {
862 .fni8 = gen_orn_pg_i64,
863 .fniv = gen_orn_pg_vec,
864 .fno = gen_helper_sve_orn_pppp,
865 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
866 };
867 if (a->s) {
868 return do_pppp_flags(s, a, &op);
869 } else {
870 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
871 }
872}
873
874static void gen_nor_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
875{
876 tcg_gen_or_i64(pd, pn, pm);
877 tcg_gen_andc_i64(pd, pg, pd);
878}
879
880static void gen_nor_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
881 TCGv_vec pm, TCGv_vec pg)
882{
883 tcg_gen_or_vec(vece, pd, pn, pm);
884 tcg_gen_andc_vec(vece, pd, pg, pd);
885}
886
887static bool trans_NOR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
888{
889 static const GVecGen4 op = {
890 .fni8 = gen_nor_pg_i64,
891 .fniv = gen_nor_pg_vec,
892 .fno = gen_helper_sve_nor_pppp,
893 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
894 };
895 if (a->s) {
896 return do_pppp_flags(s, a, &op);
897 } else {
898 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
899 }
900}
901
902static void gen_nand_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
903{
904 tcg_gen_and_i64(pd, pn, pm);
905 tcg_gen_andc_i64(pd, pg, pd);
906}
907
908static void gen_nand_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
909 TCGv_vec pm, TCGv_vec pg)
910{
911 tcg_gen_and_vec(vece, pd, pn, pm);
912 tcg_gen_andc_vec(vece, pd, pg, pd);
913}
914
915static bool trans_NAND_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
916{
917 static const GVecGen4 op = {
918 .fni8 = gen_nand_pg_i64,
919 .fniv = gen_nand_pg_vec,
920 .fno = gen_helper_sve_nand_pppp,
921 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
922 };
923 if (a->s) {
924 return do_pppp_flags(s, a, &op);
925 } else {
926 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
927 }
928}
929
9e18d7a6
RH
930/*
931 *** SVE Predicate Misc Group
932 */
933
934static bool trans_PTEST(DisasContext *s, arg_PTEST *a, uint32_t insn)
935{
936 if (sve_access_check(s)) {
937 int nofs = pred_full_reg_offset(s, a->rn);
938 int gofs = pred_full_reg_offset(s, a->pg);
939 int words = DIV_ROUND_UP(pred_full_reg_size(s), 8);
940
941 if (words == 1) {
942 TCGv_i64 pn = tcg_temp_new_i64();
943 TCGv_i64 pg = tcg_temp_new_i64();
944
945 tcg_gen_ld_i64(pn, cpu_env, nofs);
946 tcg_gen_ld_i64(pg, cpu_env, gofs);
947 do_predtest1(pn, pg);
948
949 tcg_temp_free_i64(pn);
950 tcg_temp_free_i64(pg);
951 } else {
952 do_predtest(s, nofs, gofs, words);
953 }
954 }
955 return true;
956}
957
028e2a7b
RH
958/* See the ARM pseudocode DecodePredCount. */
959static unsigned decode_pred_count(unsigned fullsz, int pattern, int esz)
960{
961 unsigned elements = fullsz >> esz;
962 unsigned bound;
963
964 switch (pattern) {
965 case 0x0: /* POW2 */
966 return pow2floor(elements);
967 case 0x1: /* VL1 */
968 case 0x2: /* VL2 */
969 case 0x3: /* VL3 */
970 case 0x4: /* VL4 */
971 case 0x5: /* VL5 */
972 case 0x6: /* VL6 */
973 case 0x7: /* VL7 */
974 case 0x8: /* VL8 */
975 bound = pattern;
976 break;
977 case 0x9: /* VL16 */
978 case 0xa: /* VL32 */
979 case 0xb: /* VL64 */
980 case 0xc: /* VL128 */
981 case 0xd: /* VL256 */
982 bound = 16 << (pattern - 9);
983 break;
984 case 0x1d: /* MUL4 */
985 return elements - elements % 4;
986 case 0x1e: /* MUL3 */
987 return elements - elements % 3;
988 case 0x1f: /* ALL */
989 return elements;
990 default: /* #uimm5 */
991 return 0;
992 }
993 return elements >= bound ? bound : 0;
994}
995
996/* This handles all of the predicate initialization instructions,
997 * PTRUE, PFALSE, SETFFR. For PFALSE, we will have set PAT == 32
998 * so that decode_pred_count returns 0. For SETFFR, we will have
999 * set RD == 16 == FFR.
1000 */
1001static bool do_predset(DisasContext *s, int esz, int rd, int pat, bool setflag)
1002{
1003 if (!sve_access_check(s)) {
1004 return true;
1005 }
1006
1007 unsigned fullsz = vec_full_reg_size(s);
1008 unsigned ofs = pred_full_reg_offset(s, rd);
1009 unsigned numelem, setsz, i;
1010 uint64_t word, lastword;
1011 TCGv_i64 t;
1012
1013 numelem = decode_pred_count(fullsz, pat, esz);
1014
1015 /* Determine what we must store into each bit, and how many. */
1016 if (numelem == 0) {
1017 lastword = word = 0;
1018 setsz = fullsz;
1019 } else {
1020 setsz = numelem << esz;
1021 lastword = word = pred_esz_masks[esz];
1022 if (setsz % 64) {
1023 lastword &= ~(-1ull << (setsz % 64));
1024 }
1025 }
1026
1027 t = tcg_temp_new_i64();
1028 if (fullsz <= 64) {
1029 tcg_gen_movi_i64(t, lastword);
1030 tcg_gen_st_i64(t, cpu_env, ofs);
1031 goto done;
1032 }
1033
1034 if (word == lastword) {
1035 unsigned maxsz = size_for_gvec(fullsz / 8);
1036 unsigned oprsz = size_for_gvec(setsz / 8);
1037
1038 if (oprsz * 8 == setsz) {
1039 tcg_gen_gvec_dup64i(ofs, oprsz, maxsz, word);
1040 goto done;
1041 }
1042 if (oprsz * 8 == setsz + 8) {
1043 tcg_gen_gvec_dup64i(ofs, oprsz, maxsz, word);
1044 tcg_gen_movi_i64(t, 0);
1045 tcg_gen_st_i64(t, cpu_env, ofs + oprsz - 8);
1046 goto done;
1047 }
1048 }
1049
1050 setsz /= 8;
1051 fullsz /= 8;
1052
1053 tcg_gen_movi_i64(t, word);
1054 for (i = 0; i < setsz; i += 8) {
1055 tcg_gen_st_i64(t, cpu_env, ofs + i);
1056 }
1057 if (lastword != word) {
1058 tcg_gen_movi_i64(t, lastword);
1059 tcg_gen_st_i64(t, cpu_env, ofs + i);
1060 i += 8;
1061 }
1062 if (i < fullsz) {
1063 tcg_gen_movi_i64(t, 0);
1064 for (; i < fullsz; i += 8) {
1065 tcg_gen_st_i64(t, cpu_env, ofs + i);
1066 }
1067 }
1068
1069 done:
1070 tcg_temp_free_i64(t);
1071
1072 /* PTRUES */
1073 if (setflag) {
1074 tcg_gen_movi_i32(cpu_NF, -(word != 0));
1075 tcg_gen_movi_i32(cpu_CF, word == 0);
1076 tcg_gen_movi_i32(cpu_VF, 0);
1077 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
1078 }
1079 return true;
1080}
1081
1082static bool trans_PTRUE(DisasContext *s, arg_PTRUE *a, uint32_t insn)
1083{
1084 return do_predset(s, a->esz, a->rd, a->pat, a->s);
1085}
1086
1087static bool trans_SETFFR(DisasContext *s, arg_SETFFR *a, uint32_t insn)
1088{
1089 /* Note pat == 31 is #all, to set all elements. */
1090 return do_predset(s, 0, FFR_PRED_NUM, 31, false);
1091}
1092
1093static bool trans_PFALSE(DisasContext *s, arg_PFALSE *a, uint32_t insn)
1094{
1095 /* Note pat == 32 is #unimp, to set no elements. */
1096 return do_predset(s, 0, a->rd, 32, false);
1097}
1098
1099static bool trans_RDFFR_p(DisasContext *s, arg_RDFFR_p *a, uint32_t insn)
1100{
1101 /* The path through do_pppp_flags is complicated enough to want to avoid
1102 * duplication. Frob the arguments into the form of a predicated AND.
1103 */
1104 arg_rprr_s alt_a = {
1105 .rd = a->rd, .pg = a->pg, .s = a->s,
1106 .rn = FFR_PRED_NUM, .rm = FFR_PRED_NUM,
1107 };
1108 return trans_AND_pppp(s, &alt_a, insn);
1109}
1110
1111static bool trans_RDFFR(DisasContext *s, arg_RDFFR *a, uint32_t insn)
1112{
1113 return do_mov_p(s, a->rd, FFR_PRED_NUM);
1114}
1115
1116static bool trans_WRFFR(DisasContext *s, arg_WRFFR *a, uint32_t insn)
1117{
1118 return do_mov_p(s, FFR_PRED_NUM, a->rn);
1119}
1120
1121static bool do_pfirst_pnext(DisasContext *s, arg_rr_esz *a,
1122 void (*gen_fn)(TCGv_i32, TCGv_ptr,
1123 TCGv_ptr, TCGv_i32))
1124{
1125 if (!sve_access_check(s)) {
1126 return true;
1127 }
1128
1129 TCGv_ptr t_pd = tcg_temp_new_ptr();
1130 TCGv_ptr t_pg = tcg_temp_new_ptr();
1131 TCGv_i32 t;
1132 unsigned desc;
1133
1134 desc = DIV_ROUND_UP(pred_full_reg_size(s), 8);
1135 desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz);
1136
1137 tcg_gen_addi_ptr(t_pd, cpu_env, pred_full_reg_offset(s, a->rd));
1138 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, a->rn));
1139 t = tcg_const_i32(desc);
1140
1141 gen_fn(t, t_pd, t_pg, t);
1142 tcg_temp_free_ptr(t_pd);
1143 tcg_temp_free_ptr(t_pg);
1144
1145 do_pred_flags(t);
1146 tcg_temp_free_i32(t);
1147 return true;
1148}
1149
1150static bool trans_PFIRST(DisasContext *s, arg_rr_esz *a, uint32_t insn)
1151{
1152 return do_pfirst_pnext(s, a, gen_helper_sve_pfirst);
1153}
1154
1155static bool trans_PNEXT(DisasContext *s, arg_rr_esz *a, uint32_t insn)
1156{
1157 return do_pfirst_pnext(s, a, gen_helper_sve_pnext);
1158}
1159
d1822297
RH
1160/*
1161 *** SVE Memory - 32-bit Gather and Unsized Contiguous Group
1162 */
1163
1164/* Subroutine loading a vector register at VOFS of LEN bytes.
1165 * The load should begin at the address Rn + IMM.
1166 */
1167
1168static void do_ldr(DisasContext *s, uint32_t vofs, uint32_t len,
1169 int rn, int imm)
1170{
1171 uint32_t len_align = QEMU_ALIGN_DOWN(len, 8);
1172 uint32_t len_remain = len % 8;
1173 uint32_t nparts = len / 8 + ctpop8(len_remain);
1174 int midx = get_mem_index(s);
1175 TCGv_i64 addr, t0, t1;
1176
1177 addr = tcg_temp_new_i64();
1178 t0 = tcg_temp_new_i64();
1179
1180 /* Note that unpredicated load/store of vector/predicate registers
1181 * are defined as a stream of bytes, which equates to little-endian
1182 * operations on larger quantities. There is no nice way to force
1183 * a little-endian load for aarch64_be-linux-user out of line.
1184 *
1185 * Attempt to keep code expansion to a minimum by limiting the
1186 * amount of unrolling done.
1187 */
1188 if (nparts <= 4) {
1189 int i;
1190
1191 for (i = 0; i < len_align; i += 8) {
1192 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + i);
1193 tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEQ);
1194 tcg_gen_st_i64(t0, cpu_env, vofs + i);
1195 }
1196 } else {
1197 TCGLabel *loop = gen_new_label();
1198 TCGv_ptr tp, i = tcg_const_local_ptr(0);
1199
1200 gen_set_label(loop);
1201
1202 /* Minimize the number of local temps that must be re-read from
1203 * the stack each iteration. Instead, re-compute values other
1204 * than the loop counter.
1205 */
1206 tp = tcg_temp_new_ptr();
1207 tcg_gen_addi_ptr(tp, i, imm);
1208 tcg_gen_extu_ptr_i64(addr, tp);
1209 tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, rn));
1210
1211 tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEQ);
1212
1213 tcg_gen_add_ptr(tp, cpu_env, i);
1214 tcg_gen_addi_ptr(i, i, 8);
1215 tcg_gen_st_i64(t0, tp, vofs);
1216 tcg_temp_free_ptr(tp);
1217
1218 tcg_gen_brcondi_ptr(TCG_COND_LTU, i, len_align, loop);
1219 tcg_temp_free_ptr(i);
1220 }
1221
1222 /* Predicate register loads can be any multiple of 2.
1223 * Note that we still store the entire 64-bit unit into cpu_env.
1224 */
1225 if (len_remain) {
1226 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + len_align);
1227
1228 switch (len_remain) {
1229 case 2:
1230 case 4:
1231 case 8:
1232 tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LE | ctz32(len_remain));
1233 break;
1234
1235 case 6:
1236 t1 = tcg_temp_new_i64();
1237 tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEUL);
1238 tcg_gen_addi_i64(addr, addr, 4);
1239 tcg_gen_qemu_ld_i64(t1, addr, midx, MO_LEUW);
1240 tcg_gen_deposit_i64(t0, t0, t1, 32, 32);
1241 tcg_temp_free_i64(t1);
1242 break;
1243
1244 default:
1245 g_assert_not_reached();
1246 }
1247 tcg_gen_st_i64(t0, cpu_env, vofs + len_align);
1248 }
1249 tcg_temp_free_i64(addr);
1250 tcg_temp_free_i64(t0);
1251}
1252
1253static bool trans_LDR_zri(DisasContext *s, arg_rri *a, uint32_t insn)
1254{
1255 if (sve_access_check(s)) {
1256 int size = vec_full_reg_size(s);
1257 int off = vec_full_reg_offset(s, a->rd);
1258 do_ldr(s, off, size, a->rn, a->imm * size);
1259 }
1260 return true;
1261}
1262
1263static bool trans_LDR_pri(DisasContext *s, arg_rri *a, uint32_t insn)
1264{
1265 if (sve_access_check(s)) {
1266 int size = pred_full_reg_size(s);
1267 int off = pred_full_reg_offset(s, a->rd);
1268 do_ldr(s, off, size, a->rn, a->imm * size);
1269 }
1270 return true;
1271}