]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/vfp_helper.c
migration: Centralize BH creation and dispatch
[mirror_qemu.git] / target / arm / vfp_helper.c
CommitLineData
37356079
RH
1/*
2 * ARM VFP floating-point operations
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
37356079
RH
21#include "cpu.h"
22#include "exec/helper-proto.h"
37356079 23#include "internals.h"
5a534314 24#include "cpu-features.h"
4a15527c
PMD
25#ifdef CONFIG_TCG
26#include "qemu/log.h"
27#include "fpu/softfloat.h"
28#endif
37356079
RH
29
30/* VFP support. We follow the convention used for VFP instructions:
31 Single precision routines have a "s" suffix, double precision a
32 "d" suffix. */
33
4a15527c
PMD
34#ifdef CONFIG_TCG
35
37356079
RH
36/* Convert host exception flags to vfp form. */
37static inline int vfp_exceptbits_from_host(int host_bits)
38{
39 int target_bits = 0;
40
9798ac71 41 if (host_bits & float_flag_invalid) {
37356079 42 target_bits |= 1;
9798ac71
PMD
43 }
44 if (host_bits & float_flag_divbyzero) {
37356079 45 target_bits |= 2;
9798ac71
PMD
46 }
47 if (host_bits & float_flag_overflow) {
37356079 48 target_bits |= 4;
9798ac71
PMD
49 }
50 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
37356079 51 target_bits |= 8;
9798ac71
PMD
52 }
53 if (host_bits & float_flag_inexact) {
37356079 54 target_bits |= 0x10;
9798ac71
PMD
55 }
56 if (host_bits & float_flag_input_denormal) {
37356079 57 target_bits |= 0x80;
9798ac71 58 }
37356079
RH
59 return target_bits;
60}
61
37356079
RH
62/* Convert vfp exception flags to target form. */
63static inline int vfp_exceptbits_to_host(int target_bits)
64{
65 int host_bits = 0;
66
9798ac71 67 if (target_bits & 1) {
37356079 68 host_bits |= float_flag_invalid;
9798ac71
PMD
69 }
70 if (target_bits & 2) {
37356079 71 host_bits |= float_flag_divbyzero;
9798ac71
PMD
72 }
73 if (target_bits & 4) {
37356079 74 host_bits |= float_flag_overflow;
9798ac71
PMD
75 }
76 if (target_bits & 8) {
37356079 77 host_bits |= float_flag_underflow;
9798ac71
PMD
78 }
79 if (target_bits & 0x10) {
37356079 80 host_bits |= float_flag_inexact;
9798ac71
PMD
81 }
82 if (target_bits & 0x80) {
37356079 83 host_bits |= float_flag_input_denormal;
9798ac71 84 }
37356079
RH
85 return host_bits;
86}
87
0c6ad948
PMD
88static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
89{
90 uint32_t i;
91
92 i = get_float_exception_flags(&env->vfp.fp_status);
93 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
94 /* FZ16 does not generate an input denormal exception. */
95 i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
96 & ~float_flag_input_denormal);
aaae563b
PM
97 i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16)
98 & ~float_flag_input_denormal);
0c6ad948
PMD
99 return vfp_exceptbits_from_host(i);
100}
101
e9d65282
PMD
102static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
103{
104 int i;
105 uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
106
107 changed ^= val;
108 if (changed & (3 << 22)) {
109 i = (val >> 22) & 3;
110 switch (i) {
111 case FPROUNDING_TIEEVEN:
112 i = float_round_nearest_even;
113 break;
114 case FPROUNDING_POSINF:
115 i = float_round_up;
116 break;
117 case FPROUNDING_NEGINF:
118 i = float_round_down;
119 break;
120 case FPROUNDING_ZERO:
121 i = float_round_to_zero;
122 break;
123 }
124 set_float_rounding_mode(i, &env->vfp.fp_status);
125 set_float_rounding_mode(i, &env->vfp.fp_status_f16);
126 }
127 if (changed & FPCR_FZ16) {
128 bool ftz_enabled = val & FPCR_FZ16;
129 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
aaae563b 130 set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
e9d65282 131 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
aaae563b 132 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
e9d65282
PMD
133 }
134 if (changed & FPCR_FZ) {
135 bool ftz_enabled = val & FPCR_FZ;
136 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
137 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
138 }
139 if (changed & FPCR_DN) {
140 bool dnan_enabled = val & FPCR_DN;
141 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
142 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
143 }
144
145 /*
146 * The exception flags are ORed together when we read fpscr so we
147 * only need to preserve the current state in one of our
148 * float_status values.
149 */
150 i = vfp_exceptbits_to_host(val);
151 set_float_exception_flags(i, &env->vfp.fp_status);
152 set_float_exception_flags(0, &env->vfp.fp_status_f16);
153 set_float_exception_flags(0, &env->vfp.standard_fp_status);
aaae563b 154 set_float_exception_flags(0, &env->vfp.standard_fp_status_f16);
e9d65282
PMD
155}
156
4a15527c
PMD
157#else
158
159static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
160{
161 return 0;
162}
163
164static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
165{
166}
167
168#endif
169
20e62dd8
PMD
170uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
171{
172 uint32_t i, fpscr;
173
174 fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
175 | (env->vfp.vec_len << 16)
176 | (env->vfp.vec_stride << 20);
177
8128c8e8
PM
178 /*
179 * M-profile LTPSIZE overlaps A-profile Stride; whichever of the
180 * two is not applicable to this CPU will always be zero.
181 */
182 fpscr |= env->v7m.ltpsize << 16;
183
0c6ad948 184 fpscr |= vfp_get_fpscr_from_host(env);
20e62dd8
PMD
185
186 i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
187 fpscr |= i ? FPCR_QC : 0;
188
189 return fpscr;
190}
191
192uint32_t vfp_get_fpscr(CPUARMState *env)
193{
194 return HELPER(vfp_get_fpscr)(env);
195}
196
37356079
RH
197void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
198{
b26b5629
PM
199 ARMCPU *cpu = env_archcpu(env);
200
37356079 201 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
b26b5629 202 if (!cpu_isar_feature(any_fp16, cpu)) {
37356079
RH
203 val &= ~FPCR_FZ16;
204 }
205
d31e2ce6
PM
206 vfp_set_fpscr_to_host(env, val);
207
208 if (!arm_feature(env, ARM_FEATURE_M)) {
5bcf8ed9 209 /*
d31e2ce6
PM
210 * Short-vector length and stride; on M-profile these bits
211 * are used for different purposes.
212 * We can't make this conditional be "if MVFR0.FPShVec != 0",
213 * because in v7A no-short-vector-support cores still had to
214 * allow Stride/Len to be written with the only effect that
215 * some insns are required to UNDEF if the guest sets them.
5bcf8ed9 216 */
d31e2ce6
PM
217 env->vfp.vec_len = extract32(val, 16, 3);
218 env->vfp.vec_stride = extract32(val, 20, 2);
b26b5629
PM
219 } else if (cpu_isar_feature(aa32_mve, cpu)) {
220 env->v7m.ltpsize = extract32(val, FPCR_LTPSIZE_SHIFT,
221 FPCR_LTPSIZE_LENGTH);
5bcf8ed9
PM
222 }
223
c485ce2c
PM
224 if (arm_feature(env, ARM_FEATURE_NEON) ||
225 cpu_isar_feature(aa32_mve, cpu)) {
d31e2ce6
PM
226 /*
227 * The bit we set within fpscr_q is arbitrary; the register as a
228 * whole being zero/non-zero is what counts.
229 * TODO: M-profile MVE also has a QC bit.
230 */
231 env->vfp.qc[0] = val & FPCR_QC;
232 env->vfp.qc[1] = 0;
233 env->vfp.qc[2] = 0;
234 env->vfp.qc[3] = 0;
235 }
85795187 236
37356079
RH
237 /*
238 * We don't implement trapped exception handling, so the
239 * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
240 *
d31e2ce6
PM
241 * The exception flags IOC|DZC|OFC|UFC|IXC|IDC are stored in
242 * fp_status; QC, Len and Stride are stored separately earlier.
243 * Clear out all of those and the RES0 bits: only NZCV, AHP, DN,
244 * FZ, RMode and FZ16 are kept in vfp.xregs[FPSCR].
37356079
RH
245 */
246 env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
37356079
RH
247}
248
249void vfp_set_fpscr(CPUARMState *env, uint32_t val)
250{
251 HELPER(vfp_set_fpscr)(env, val);
252}
253
4a15527c
PMD
254#ifdef CONFIG_TCG
255
37356079
RH
256#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
257
258#define VFP_BINOP(name) \
120a0eb3
PM
259dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, void *fpstp) \
260{ \
261 float_status *fpst = fpstp; \
262 return float16_ ## name(a, b, fpst); \
263} \
37356079
RH
264float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
265{ \
266 float_status *fpst = fpstp; \
267 return float32_ ## name(a, b, fpst); \
268} \
269float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
270{ \
271 float_status *fpst = fpstp; \
272 return float64_ ## name(a, b, fpst); \
273}
274VFP_BINOP(add)
275VFP_BINOP(sub)
276VFP_BINOP(mul)
277VFP_BINOP(div)
278VFP_BINOP(min)
279VFP_BINOP(max)
280VFP_BINOP(minnum)
281VFP_BINOP(maxnum)
282#undef VFP_BINOP
283
e7cb0ded
PM
284dh_ctype_f16 VFP_HELPER(neg, h)(dh_ctype_f16 a)
285{
286 return float16_chs(a);
287}
288
37356079
RH
289float32 VFP_HELPER(neg, s)(float32 a)
290{
291 return float32_chs(a);
292}
293
294float64 VFP_HELPER(neg, d)(float64 a)
295{
296 return float64_chs(a);
297}
298
ce2d65a5
PM
299dh_ctype_f16 VFP_HELPER(abs, h)(dh_ctype_f16 a)
300{
301 return float16_abs(a);
302}
303
37356079
RH
304float32 VFP_HELPER(abs, s)(float32 a)
305{
306 return float32_abs(a);
307}
308
309float64 VFP_HELPER(abs, d)(float64 a)
310{
311 return float64_abs(a);
312}
313
ce2d65a5
PM
314dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, CPUARMState *env)
315{
316 return float16_sqrt(a, &env->vfp.fp_status_f16);
317}
318
37356079
RH
319float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
320{
321 return float32_sqrt(a, &env->vfp.fp_status);
322}
323
324float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
325{
326 return float64_sqrt(a, &env->vfp.fp_status);
327}
328
71bfd65c 329static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
37356079
RH
330{
331 uint32_t flags;
332 switch (cmp) {
333 case float_relation_equal:
334 flags = 0x6;
335 break;
336 case float_relation_less:
337 flags = 0x8;
338 break;
339 case float_relation_greater:
340 flags = 0x2;
341 break;
342 case float_relation_unordered:
343 flags = 0x3;
344 break;
345 default:
346 g_assert_not_reached();
347 }
348 env->vfp.xregs[ARM_VFP_FPSCR] =
349 deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
350}
351
352/* XXX: check quiet/signaling case */
1b88b054
PM
353#define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \
354void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
37356079
RH
355{ \
356 softfloat_to_vfp_compare(env, \
1b88b054 357 FLOATTYPE ## _compare_quiet(a, b, &env->vfp.FPST)); \
37356079 358} \
1b88b054 359void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
37356079
RH
360{ \
361 softfloat_to_vfp_compare(env, \
1b88b054 362 FLOATTYPE ## _compare(a, b, &env->vfp.FPST)); \
37356079 363}
1b88b054
PM
364DO_VFP_cmp(h, float16, dh_ctype_f16, fp_status_f16)
365DO_VFP_cmp(s, float32, float32, fp_status)
366DO_VFP_cmp(d, float64, float64, fp_status)
37356079
RH
367#undef DO_VFP_cmp
368
369/* Integer to float and float to integer conversions */
370
371#define CONV_ITOF(name, ftype, fsz, sign) \
372ftype HELPER(name)(uint32_t x, void *fpstp) \
373{ \
374 float_status *fpst = fpstp; \
375 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
376}
377
378#define CONV_FTOI(name, ftype, fsz, sign, round) \
379sign##int32_t HELPER(name)(ftype x, void *fpstp) \
380{ \
381 float_status *fpst = fpstp; \
382 if (float##fsz##_is_any_nan(x)) { \
383 float_raise(float_flag_invalid, fpst); \
384 return 0; \
385 } \
386 return float##fsz##_to_##sign##int32##round(x, fpst); \
387}
388
389#define FLOAT_CONVS(name, p, ftype, fsz, sign) \
390 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
391 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
392 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
393
394FLOAT_CONVS(si, h, uint32_t, 16, )
395FLOAT_CONVS(si, s, float32, 32, )
396FLOAT_CONVS(si, d, float64, 64, )
397FLOAT_CONVS(ui, h, uint32_t, 16, u)
398FLOAT_CONVS(ui, s, float32, 32, u)
399FLOAT_CONVS(ui, d, float64, 64, u)
400
401#undef CONV_ITOF
402#undef CONV_FTOI
403#undef FLOAT_CONVS
404
405/* floating point conversion */
406float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
407{
408 return float32_to_float64(x, &env->vfp.fp_status);
409}
410
411float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
412{
413 return float64_to_float32(x, &env->vfp.fp_status);
414}
415
3a98ac40
RH
416uint32_t HELPER(bfcvt)(float32 x, void *status)
417{
418 return float32_to_bfloat16(x, status);
419}
420
d29b17ca
RH
421uint32_t HELPER(bfcvt_pair)(uint64_t pair, void *status)
422{
423 bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status);
424 bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status);
425 return deposit32(lo, 16, 16, hi);
426}
427
61db12d9
PM
428/*
429 * VFP3 fixed point conversion. The AArch32 versions of fix-to-float
430 * must always round-to-nearest; the AArch64 ones honour the FPSCR
431 * rounding mode. (For AArch32 Neon the standard-FPSCR is set to
432 * round-to-nearest so either helper will work.) AArch32 float-to-fix
433 * must round-to-zero.
434 */
5366f6ad
PM
435#define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
436ftype HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
37356079
RH
437 void *fpstp) \
438{ return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
439
61db12d9
PM
440#define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \
441 ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t x, \
442 uint32_t shift, \
443 void *fpstp) \
444 { \
445 ftype ret; \
446 float_status *fpst = fpstp; \
447 FloatRoundMode oldmode = fpst->float_rounding_mode; \
448 fpst->float_rounding_mode = float_round_nearest_even; \
449 ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); \
450 fpst->float_rounding_mode = oldmode; \
451 return ret; \
452 }
453
5366f6ad
PM
454#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \
455uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift, \
37356079
RH
456 void *fpst) \
457{ \
458 if (unlikely(float##fsz##_is_any_nan(x))) { \
459 float_raise(float_flag_invalid, fpst); \
460 return 0; \
461 } \
462 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
463}
464
5366f6ad
PM
465#define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype) \
466VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
61db12d9 467VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \
5366f6ad 468VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
37356079 469 float_round_to_zero, _round_to_zero) \
5366f6ad 470VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
37356079
RH
471 get_float_rounding_mode(fpst), )
472
5366f6ad
PM
473#define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype) \
474VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
475VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
37356079
RH
476 get_float_rounding_mode(fpst), )
477
5366f6ad
PM
478VFP_CONV_FIX(sh, d, 64, float64, 64, int16)
479VFP_CONV_FIX(sl, d, 64, float64, 64, int32)
480VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64)
481VFP_CONV_FIX(uh, d, 64, float64, 64, uint16)
482VFP_CONV_FIX(ul, d, 64, float64, 64, uint32)
483VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64)
484VFP_CONV_FIX(sh, s, 32, float32, 32, int16)
485VFP_CONV_FIX(sl, s, 32, float32, 32, int32)
486VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64)
487VFP_CONV_FIX(uh, s, 32, float32, 32, uint16)
488VFP_CONV_FIX(ul, s, 32, float32, 32, uint32)
489VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64)
414ba270
PM
490VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16)
491VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32)
492VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64)
493VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16)
494VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32)
495VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64)
37356079
RH
496
497#undef VFP_CONV_FIX
498#undef VFP_CONV_FIX_FLOAT
499#undef VFP_CONV_FLOAT_FIX_ROUND
500#undef VFP_CONV_FIX_A64
501
37356079
RH
502/* Set the current fp rounding mode and return the old one.
503 * The argument is a softfloat float_round_ value.
504 */
505uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
506{
507 float_status *fp_status = fpstp;
508
509 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
510 set_float_rounding_mode(rmode, fp_status);
511
512 return prev_rmode;
513}
514
37356079
RH
515/* Half precision conversions. */
516float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
517{
518 /* Squash FZ16 to 0 for the duration of conversion. In this case,
519 * it would affect flushing input denormals.
520 */
521 float_status *fpst = fpstp;
c120391c 522 bool save = get_flush_inputs_to_zero(fpst);
37356079
RH
523 set_flush_inputs_to_zero(false, fpst);
524 float32 r = float16_to_float32(a, !ahp_mode, fpst);
525 set_flush_inputs_to_zero(save, fpst);
526 return r;
527}
528
529uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
530{
531 /* Squash FZ16 to 0 for the duration of conversion. In this case,
532 * it would affect flushing output denormals.
533 */
534 float_status *fpst = fpstp;
c120391c 535 bool save = get_flush_to_zero(fpst);
37356079
RH
536 set_flush_to_zero(false, fpst);
537 float16 r = float32_to_float16(a, !ahp_mode, fpst);
538 set_flush_to_zero(save, fpst);
539 return r;
540}
541
542float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
543{
544 /* Squash FZ16 to 0 for the duration of conversion. In this case,
545 * it would affect flushing input denormals.
546 */
547 float_status *fpst = fpstp;
c120391c 548 bool save = get_flush_inputs_to_zero(fpst);
37356079
RH
549 set_flush_inputs_to_zero(false, fpst);
550 float64 r = float16_to_float64(a, !ahp_mode, fpst);
551 set_flush_inputs_to_zero(save, fpst);
552 return r;
553}
554
555uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
556{
557 /* Squash FZ16 to 0 for the duration of conversion. In this case,
558 * it would affect flushing output denormals.
559 */
560 float_status *fpst = fpstp;
c120391c 561 bool save = get_flush_to_zero(fpst);
37356079
RH
562 set_flush_to_zero(false, fpst);
563 float16 r = float64_to_float16(a, !ahp_mode, fpst);
564 set_flush_to_zero(save, fpst);
565 return r;
566}
567
37356079
RH
568/* NEON helpers. */
569
570/* Constants 256 and 512 are used in some helpers; we avoid relying on
571 * int->float conversions at run-time. */
572#define float64_256 make_float64(0x4070000000000000LL)
573#define float64_512 make_float64(0x4080000000000000LL)
574#define float16_maxnorm make_float16(0x7bff)
575#define float32_maxnorm make_float32(0x7f7fffff)
576#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
577
578/* Reciprocal functions
579 *
580 * The algorithm that must be used to calculate the estimate
581 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
582 */
583
584/* See RecipEstimate()
585 *
586 * input is a 9 bit fixed point number
587 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
588 * result range 256 .. 511 for a number from 1.0 to 511/256.
589 */
590
591static int recip_estimate(int input)
592{
593 int a, b, r;
594 assert(256 <= input && input < 512);
595 a = (input * 2) + 1;
596 b = (1 << 19) / a;
597 r = (b + 1) >> 1;
598 assert(256 <= r && r < 512);
599 return r;
600}
601
602/*
603 * Common wrapper to call recip_estimate
604 *
605 * The parameters are exponent and 64 bit fraction (without implicit
606 * bit) where the binary point is nominally at bit 52. Returns a
607 * float64 which can then be rounded to the appropriate size by the
608 * callee.
609 */
610
611static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
612{
613 uint32_t scaled, estimate;
614 uint64_t result_frac;
615 int result_exp;
616
617 /* Handle sub-normals */
618 if (*exp == 0) {
619 if (extract64(frac, 51, 1) == 0) {
620 *exp = -1;
621 frac <<= 2;
622 } else {
623 frac <<= 1;
624 }
625 }
626
627 /* scaled = UInt('1':fraction<51:44>) */
628 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
629 estimate = recip_estimate(scaled);
630
631 result_exp = exp_off - *exp;
632 result_frac = deposit64(0, 44, 8, estimate);
633 if (result_exp == 0) {
634 result_frac = deposit64(result_frac >> 1, 51, 1, 1);
635 } else if (result_exp == -1) {
636 result_frac = deposit64(result_frac >> 2, 50, 2, 1);
637 result_exp = 0;
638 }
639
640 *exp = result_exp;
641
642 return result_frac;
643}
644
645static bool round_to_inf(float_status *fpst, bool sign_bit)
646{
647 switch (fpst->float_rounding_mode) {
648 case float_round_nearest_even: /* Round to Nearest */
649 return true;
650 case float_round_up: /* Round to +Inf */
651 return !sign_bit;
652 case float_round_down: /* Round to -Inf */
653 return sign_bit;
654 case float_round_to_zero: /* Round to Zero */
655 return false;
3dede407
RH
656 default:
657 g_assert_not_reached();
37356079 658 }
37356079
RH
659}
660
661uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
662{
663 float_status *fpst = fpstp;
664 float16 f16 = float16_squash_input_denormal(input, fpst);
665 uint32_t f16_val = float16_val(f16);
666 uint32_t f16_sign = float16_is_neg(f16);
667 int f16_exp = extract32(f16_val, 10, 5);
668 uint32_t f16_frac = extract32(f16_val, 0, 10);
669 uint64_t f64_frac;
670
671 if (float16_is_any_nan(f16)) {
672 float16 nan = f16;
673 if (float16_is_signaling_nan(f16, fpst)) {
674 float_raise(float_flag_invalid, fpst);
103e7579
JK
675 if (!fpst->default_nan_mode) {
676 nan = float16_silence_nan(f16, fpst);
677 }
37356079
RH
678 }
679 if (fpst->default_nan_mode) {
680 nan = float16_default_nan(fpst);
681 }
682 return nan;
683 } else if (float16_is_infinity(f16)) {
684 return float16_set_sign(float16_zero, float16_is_neg(f16));
685 } else if (float16_is_zero(f16)) {
686 float_raise(float_flag_divbyzero, fpst);
687 return float16_set_sign(float16_infinity, float16_is_neg(f16));
688 } else if (float16_abs(f16) < (1 << 8)) {
689 /* Abs(value) < 2.0^-16 */
690 float_raise(float_flag_overflow | float_flag_inexact, fpst);
691 if (round_to_inf(fpst, f16_sign)) {
692 return float16_set_sign(float16_infinity, f16_sign);
693 } else {
694 return float16_set_sign(float16_maxnorm, f16_sign);
695 }
696 } else if (f16_exp >= 29 && fpst->flush_to_zero) {
697 float_raise(float_flag_underflow, fpst);
698 return float16_set_sign(float16_zero, float16_is_neg(f16));
699 }
700
701 f64_frac = call_recip_estimate(&f16_exp, 29,
702 ((uint64_t) f16_frac) << (52 - 10));
703
704 /* result = sign : result_exp<4:0> : fraction<51:42> */
705 f16_val = deposit32(0, 15, 1, f16_sign);
706 f16_val = deposit32(f16_val, 10, 5, f16_exp);
707 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
708 return make_float16(f16_val);
709}
710
711float32 HELPER(recpe_f32)(float32 input, void *fpstp)
712{
713 float_status *fpst = fpstp;
714 float32 f32 = float32_squash_input_denormal(input, fpst);
715 uint32_t f32_val = float32_val(f32);
716 bool f32_sign = float32_is_neg(f32);
717 int f32_exp = extract32(f32_val, 23, 8);
718 uint32_t f32_frac = extract32(f32_val, 0, 23);
719 uint64_t f64_frac;
720
721 if (float32_is_any_nan(f32)) {
722 float32 nan = f32;
723 if (float32_is_signaling_nan(f32, fpst)) {
724 float_raise(float_flag_invalid, fpst);
103e7579
JK
725 if (!fpst->default_nan_mode) {
726 nan = float32_silence_nan(f32, fpst);
727 }
37356079
RH
728 }
729 if (fpst->default_nan_mode) {
730 nan = float32_default_nan(fpst);
731 }
732 return nan;
733 } else if (float32_is_infinity(f32)) {
734 return float32_set_sign(float32_zero, float32_is_neg(f32));
735 } else if (float32_is_zero(f32)) {
736 float_raise(float_flag_divbyzero, fpst);
737 return float32_set_sign(float32_infinity, float32_is_neg(f32));
738 } else if (float32_abs(f32) < (1ULL << 21)) {
739 /* Abs(value) < 2.0^-128 */
740 float_raise(float_flag_overflow | float_flag_inexact, fpst);
741 if (round_to_inf(fpst, f32_sign)) {
742 return float32_set_sign(float32_infinity, f32_sign);
743 } else {
744 return float32_set_sign(float32_maxnorm, f32_sign);
745 }
746 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
747 float_raise(float_flag_underflow, fpst);
748 return float32_set_sign(float32_zero, float32_is_neg(f32));
749 }
750
751 f64_frac = call_recip_estimate(&f32_exp, 253,
752 ((uint64_t) f32_frac) << (52 - 23));
753
754 /* result = sign : result_exp<7:0> : fraction<51:29> */
755 f32_val = deposit32(0, 31, 1, f32_sign);
756 f32_val = deposit32(f32_val, 23, 8, f32_exp);
757 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
758 return make_float32(f32_val);
759}
760
761float64 HELPER(recpe_f64)(float64 input, void *fpstp)
762{
763 float_status *fpst = fpstp;
764 float64 f64 = float64_squash_input_denormal(input, fpst);
765 uint64_t f64_val = float64_val(f64);
766 bool f64_sign = float64_is_neg(f64);
767 int f64_exp = extract64(f64_val, 52, 11);
768 uint64_t f64_frac = extract64(f64_val, 0, 52);
769
770 /* Deal with any special cases */
771 if (float64_is_any_nan(f64)) {
772 float64 nan = f64;
773 if (float64_is_signaling_nan(f64, fpst)) {
774 float_raise(float_flag_invalid, fpst);
103e7579
JK
775 if (!fpst->default_nan_mode) {
776 nan = float64_silence_nan(f64, fpst);
777 }
37356079
RH
778 }
779 if (fpst->default_nan_mode) {
780 nan = float64_default_nan(fpst);
781 }
782 return nan;
783 } else if (float64_is_infinity(f64)) {
784 return float64_set_sign(float64_zero, float64_is_neg(f64));
785 } else if (float64_is_zero(f64)) {
786 float_raise(float_flag_divbyzero, fpst);
787 return float64_set_sign(float64_infinity, float64_is_neg(f64));
788 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
789 /* Abs(value) < 2.0^-1024 */
790 float_raise(float_flag_overflow | float_flag_inexact, fpst);
791 if (round_to_inf(fpst, f64_sign)) {
792 return float64_set_sign(float64_infinity, f64_sign);
793 } else {
794 return float64_set_sign(float64_maxnorm, f64_sign);
795 }
796 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
797 float_raise(float_flag_underflow, fpst);
798 return float64_set_sign(float64_zero, float64_is_neg(f64));
799 }
800
801 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
802
803 /* result = sign : result_exp<10:0> : fraction<51:0>; */
804 f64_val = deposit64(0, 63, 1, f64_sign);
805 f64_val = deposit64(f64_val, 52, 11, f64_exp);
806 f64_val = deposit64(f64_val, 0, 52, f64_frac);
807 return make_float64(f64_val);
808}
809
810/* The algorithm that must be used to calculate the estimate
811 * is specified by the ARM ARM.
812 */
813
814static int do_recip_sqrt_estimate(int a)
815{
816 int b, estimate;
817
818 assert(128 <= a && a < 512);
819 if (a < 256) {
820 a = a * 2 + 1;
821 } else {
822 a = (a >> 1) << 1;
823 a = (a + 1) * 2;
824 }
825 b = 512;
826 while (a * (b + 1) * (b + 1) < (1 << 28)) {
827 b += 1;
828 }
829 estimate = (b + 1) / 2;
830 assert(256 <= estimate && estimate < 512);
831
832 return estimate;
833}
834
835
836static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
837{
838 int estimate;
839 uint32_t scaled;
840
841 if (*exp == 0) {
842 while (extract64(frac, 51, 1) == 0) {
843 frac = frac << 1;
844 *exp -= 1;
845 }
846 frac = extract64(frac, 0, 51) << 1;
847 }
848
849 if (*exp & 1) {
850 /* scaled = UInt('01':fraction<51:45>) */
851 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
852 } else {
853 /* scaled = UInt('1':fraction<51:44>) */
854 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
855 }
856 estimate = do_recip_sqrt_estimate(scaled);
857
858 *exp = (exp_off - *exp) / 2;
859 return extract64(estimate, 0, 8) << 44;
860}
861
862uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
863{
864 float_status *s = fpstp;
865 float16 f16 = float16_squash_input_denormal(input, s);
866 uint16_t val = float16_val(f16);
867 bool f16_sign = float16_is_neg(f16);
868 int f16_exp = extract32(val, 10, 5);
869 uint16_t f16_frac = extract32(val, 0, 10);
870 uint64_t f64_frac;
871
872 if (float16_is_any_nan(f16)) {
873 float16 nan = f16;
874 if (float16_is_signaling_nan(f16, s)) {
875 float_raise(float_flag_invalid, s);
103e7579
JK
876 if (!s->default_nan_mode) {
877 nan = float16_silence_nan(f16, fpstp);
878 }
37356079
RH
879 }
880 if (s->default_nan_mode) {
881 nan = float16_default_nan(s);
882 }
883 return nan;
884 } else if (float16_is_zero(f16)) {
885 float_raise(float_flag_divbyzero, s);
886 return float16_set_sign(float16_infinity, f16_sign);
887 } else if (f16_sign) {
888 float_raise(float_flag_invalid, s);
889 return float16_default_nan(s);
890 } else if (float16_is_infinity(f16)) {
891 return float16_zero;
892 }
893
894 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
895 * preserving the parity of the exponent. */
896
897 f64_frac = ((uint64_t) f16_frac) << (52 - 10);
898
899 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
900
901 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
902 val = deposit32(0, 15, 1, f16_sign);
903 val = deposit32(val, 10, 5, f16_exp);
904 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
905 return make_float16(val);
906}
907
908float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
909{
910 float_status *s = fpstp;
911 float32 f32 = float32_squash_input_denormal(input, s);
912 uint32_t val = float32_val(f32);
913 uint32_t f32_sign = float32_is_neg(f32);
914 int f32_exp = extract32(val, 23, 8);
915 uint32_t f32_frac = extract32(val, 0, 23);
916 uint64_t f64_frac;
917
918 if (float32_is_any_nan(f32)) {
919 float32 nan = f32;
920 if (float32_is_signaling_nan(f32, s)) {
921 float_raise(float_flag_invalid, s);
103e7579
JK
922 if (!s->default_nan_mode) {
923 nan = float32_silence_nan(f32, fpstp);
924 }
37356079
RH
925 }
926 if (s->default_nan_mode) {
927 nan = float32_default_nan(s);
928 }
929 return nan;
930 } else if (float32_is_zero(f32)) {
931 float_raise(float_flag_divbyzero, s);
932 return float32_set_sign(float32_infinity, float32_is_neg(f32));
933 } else if (float32_is_neg(f32)) {
934 float_raise(float_flag_invalid, s);
935 return float32_default_nan(s);
936 } else if (float32_is_infinity(f32)) {
937 return float32_zero;
938 }
939
940 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
941 * preserving the parity of the exponent. */
942
943 f64_frac = ((uint64_t) f32_frac) << 29;
944
945 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
946
947 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
948 val = deposit32(0, 31, 1, f32_sign);
949 val = deposit32(val, 23, 8, f32_exp);
950 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
951 return make_float32(val);
952}
953
954float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
955{
956 float_status *s = fpstp;
957 float64 f64 = float64_squash_input_denormal(input, s);
958 uint64_t val = float64_val(f64);
959 bool f64_sign = float64_is_neg(f64);
960 int f64_exp = extract64(val, 52, 11);
961 uint64_t f64_frac = extract64(val, 0, 52);
962
963 if (float64_is_any_nan(f64)) {
964 float64 nan = f64;
965 if (float64_is_signaling_nan(f64, s)) {
966 float_raise(float_flag_invalid, s);
103e7579
JK
967 if (!s->default_nan_mode) {
968 nan = float64_silence_nan(f64, fpstp);
969 }
37356079
RH
970 }
971 if (s->default_nan_mode) {
972 nan = float64_default_nan(s);
973 }
974 return nan;
975 } else if (float64_is_zero(f64)) {
976 float_raise(float_flag_divbyzero, s);
977 return float64_set_sign(float64_infinity, float64_is_neg(f64));
978 } else if (float64_is_neg(f64)) {
979 float_raise(float_flag_invalid, s);
980 return float64_default_nan(s);
981 } else if (float64_is_infinity(f64)) {
982 return float64_zero;
983 }
984
985 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
986
987 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
988 val = deposit64(0, 61, 1, f64_sign);
989 val = deposit64(val, 52, 11, f64_exp);
990 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
991 return make_float64(val);
992}
993
fe6fb4be 994uint32_t HELPER(recpe_u32)(uint32_t a)
37356079 995{
37356079
RH
996 int input, estimate;
997
998 if ((a & 0x80000000) == 0) {
999 return 0xffffffff;
1000 }
1001
1002 input = extract32(a, 23, 9);
1003 estimate = recip_estimate(input);
1004
1005 return deposit32(0, (32 - 9), 9, estimate);
1006}
1007
fe6fb4be 1008uint32_t HELPER(rsqrte_u32)(uint32_t a)
37356079
RH
1009{
1010 int estimate;
1011
1012 if ((a & 0xc0000000) == 0) {
1013 return 0xffffffff;
1014 }
1015
1016 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
1017
1018 return deposit32(0, 23, 9, estimate);
1019}
1020
1021/* VFPv4 fused multiply-accumulate */
9886fe28
PM
1022dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b,
1023 dh_ctype_f16 c, void *fpstp)
1024{
1025 float_status *fpst = fpstp;
1026 return float16_muladd(a, b, c, 0, fpst);
1027}
1028
37356079
RH
1029float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
1030{
1031 float_status *fpst = fpstp;
1032 return float32_muladd(a, b, c, 0, fpst);
1033}
1034
1035float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
1036{
1037 float_status *fpst = fpstp;
1038 return float64_muladd(a, b, c, 0, fpst);
1039}
1040
1041/* ARMv8 round to integral */
0a6f4b4c
PM
1042dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, void *fp_status)
1043{
1044 return float16_round_to_int(x, fp_status);
1045}
1046
37356079
RH
1047float32 HELPER(rints_exact)(float32 x, void *fp_status)
1048{
1049 return float32_round_to_int(x, fp_status);
1050}
1051
1052float64 HELPER(rintd_exact)(float64 x, void *fp_status)
1053{
1054 return float64_round_to_int(x, fp_status);
1055}
1056
0a6f4b4c
PM
1057dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, void *fp_status)
1058{
1059 int old_flags = get_float_exception_flags(fp_status), new_flags;
1060 float16 ret;
1061
1062 ret = float16_round_to_int(x, fp_status);
1063
1064 /* Suppress any inexact exceptions the conversion produced */
1065 if (!(old_flags & float_flag_inexact)) {
1066 new_flags = get_float_exception_flags(fp_status);
1067 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1068 }
1069
1070 return ret;
1071}
1072
37356079
RH
1073float32 HELPER(rints)(float32 x, void *fp_status)
1074{
1075 int old_flags = get_float_exception_flags(fp_status), new_flags;
1076 float32 ret;
1077
1078 ret = float32_round_to_int(x, fp_status);
1079
1080 /* Suppress any inexact exceptions the conversion produced */
1081 if (!(old_flags & float_flag_inexact)) {
1082 new_flags = get_float_exception_flags(fp_status);
1083 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1084 }
1085
1086 return ret;
1087}
1088
1089float64 HELPER(rintd)(float64 x, void *fp_status)
1090{
1091 int old_flags = get_float_exception_flags(fp_status), new_flags;
1092 float64 ret;
1093
1094 ret = float64_round_to_int(x, fp_status);
1095
1096 new_flags = get_float_exception_flags(fp_status);
1097
1098 /* Suppress any inexact exceptions the conversion produced */
1099 if (!(old_flags & float_flag_inexact)) {
1100 new_flags = get_float_exception_flags(fp_status);
1101 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1102 }
1103
1104 return ret;
1105}
1106
1107/* Convert ARM rounding mode to softfloat */
6ce21abd
RH
1108const FloatRoundMode arm_rmode_to_sf_map[] = {
1109 [FPROUNDING_TIEEVEN] = float_round_nearest_even,
1110 [FPROUNDING_POSINF] = float_round_up,
1111 [FPROUNDING_NEGINF] = float_round_down,
1112 [FPROUNDING_ZERO] = float_round_to_zero,
1113 [FPROUNDING_TIEAWAY] = float_round_ties_away,
1114 [FPROUNDING_ODD] = float_round_to_odd,
1115};
6c1f6f27
RH
1116
1117/*
1118 * Implement float64 to int32_t conversion without saturation;
1119 * the result is supplied modulo 2^32.
1120 */
1121uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
1122{
1123 float_status *status = vstatus;
34d03ad9
RH
1124 uint32_t inexact, frac;
1125 uint32_t e_old, e_new;
1126
1127 e_old = get_float_exception_flags(status);
1128 set_float_exception_flags(0, status);
1129 frac = float64_to_int32_modulo(value, float_round_to_zero, status);
1130 e_new = get_float_exception_flags(status);
1131 set_float_exception_flags(e_old | e_new, status);
1132
1133 if (value == float64_chs(float64_zero)) {
1134 /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */
1135 inexact = 1;
6c1f6f27 1136 } else {
34d03ad9
RH
1137 /* Normal inexact or overflow or NaN */
1138 inexact = e_new & (float_flag_inexact | float_flag_invalid);
6c1f6f27
RH
1139 }
1140
1141 /* Pack the result and the env->ZF representation of Z together. */
1142 return deposit64(frac, 32, 32, inexact);
1143}
1144
1145uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1146{
1147 uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
1148 uint32_t result = pair;
1149 uint32_t z = (pair >> 32) == 0;
1150
1151 /* Store Z, clear NCV, in FPSCR.NZCV. */
1152 env->vfp.xregs[ARM_VFP_FPSCR]
1153 = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z);
1154
1155 return result;
1156}
6bea2563
RH
1157
1158/* Round a float32 to an integer that fits in int32_t or int64_t. */
1159static float32 frint_s(float32 f, float_status *fpst, int intsize)
1160{
1161 int old_flags = get_float_exception_flags(fpst);
1162 uint32_t exp = extract32(f, 23, 8);
1163
1164 if (unlikely(exp == 0xff)) {
1165 /* NaN or Inf. */
1166 goto overflow;
1167 }
1168
1169 /* Round and re-extract the exponent. */
1170 f = float32_round_to_int(f, fpst);
1171 exp = extract32(f, 23, 8);
1172
1173 /* Validate the range of the result. */
1174 if (exp < 126 + intsize) {
1175 /* abs(F) <= INT{N}_MAX */
1176 return f;
1177 }
1178 if (exp == 126 + intsize) {
1179 uint32_t sign = extract32(f, 31, 1);
1180 uint32_t frac = extract32(f, 0, 23);
1181 if (sign && frac == 0) {
1182 /* F == INT{N}_MIN */
1183 return f;
1184 }
1185 }
1186
1187 overflow:
1188 /*
1189 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1190 * inexact exception float32_round_to_int may have raised.
1191 */
1192 set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1193 return (0x100u + 126u + intsize) << 23;
1194}
1195
1196float32 HELPER(frint32_s)(float32 f, void *fpst)
1197{
1198 return frint_s(f, fpst, 32);
1199}
1200
1201float32 HELPER(frint64_s)(float32 f, void *fpst)
1202{
1203 return frint_s(f, fpst, 64);
1204}
1205
1206/* Round a float64 to an integer that fits in int32_t or int64_t. */
1207static float64 frint_d(float64 f, float_status *fpst, int intsize)
1208{
1209 int old_flags = get_float_exception_flags(fpst);
1210 uint32_t exp = extract64(f, 52, 11);
1211
1212 if (unlikely(exp == 0x7ff)) {
1213 /* NaN or Inf. */
1214 goto overflow;
1215 }
1216
1217 /* Round and re-extract the exponent. */
1218 f = float64_round_to_int(f, fpst);
1219 exp = extract64(f, 52, 11);
1220
1221 /* Validate the range of the result. */
1222 if (exp < 1022 + intsize) {
1223 /* abs(F) <= INT{N}_MAX */
1224 return f;
1225 }
1226 if (exp == 1022 + intsize) {
1227 uint64_t sign = extract64(f, 63, 1);
1228 uint64_t frac = extract64(f, 0, 52);
1229 if (sign && frac == 0) {
1230 /* F == INT{N}_MIN */
1231 return f;
1232 }
1233 }
1234
1235 overflow:
1236 /*
1237 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1238 * inexact exception float64_round_to_int may have raised.
1239 */
1240 set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1241 return (uint64_t)(0x800 + 1022 + intsize) << 52;
1242}
1243
1244float64 HELPER(frint32_d)(float64 f, void *fpst)
1245{
1246 return frint_d(f, fpst, 32);
1247}
1248
1249float64 HELPER(frint64_d)(float64 f, void *fpst)
1250{
1251 return frint_d(f, fpst, 64);
1252}
4a15527c 1253
9ca1d776
MZ
1254void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
1255{
1256 uint32_t syndrome;
1257
1258 switch (reg) {
1259 case ARM_VFP_MVFR0:
1260 case ARM_VFP_MVFR1:
1261 case ARM_VFP_MVFR2:
1262 if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
1263 return;
1264 }
1265 break;
1266 case ARM_VFP_FPSID:
1267 if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
1268 return;
1269 }
1270 break;
1271 default:
1272 g_assert_not_reached();
1273 }
1274
1275 syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
1276 | ARM_EL_IL
1277 | (1 << 24) | (0xe << 20) | (7 << 14)
1278 | (reg << 10) | (rt << 5) | 1);
1279
1280 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1281}
1282
4a15527c 1283#endif