]> git.proxmox.com Git - mirror_qemu.git/blame - target/avr/cpu.h
target: Move ArchCPUClass definition to 'cpu.h'
[mirror_qemu.git] / target / avr / cpu.h
CommitLineData
c8c0d267
MR
1/*
2 * QEMU AVR CPU
3 *
4 * Copyright (c) 2016-2020 Michael Rolnik
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see
18 * <http://www.gnu.org/licenses/lgpl-2.1.html>
19 */
20
21#ifndef QEMU_AVR_CPU_H
22#define QEMU_AVR_CPU_H
23
f1c671f9 24#include "cpu-qom.h"
c8c0d267
MR
25#include "exec/cpu-defs.h"
26
f1c671f9
MR
27#ifdef CONFIG_USER_ONLY
28#error "AVR 8-bit does not support user mode"
29#endif
30
f1c671f9
MR
31#define CPU_RESOLVING_TYPE TYPE_AVR_CPU
32
c8c0d267
MR
33#define TCG_GUEST_DEFAULT_MO 0
34
35/*
36 * AVR has two memory spaces, data & code.
37 * e.g. both have 0 address
38 * ST/LD instructions access data space
39 * LPM/SPM and instruction fetching access code memory space
40 */
41#define MMU_CODE_IDX 0
42#define MMU_DATA_IDX 1
43
44#define EXCP_RESET 1
45#define EXCP_INT(n) (EXCP_RESET + (n) + 1)
46
47/* Number of CPU registers */
48#define NUMBER_OF_CPU_REGISTERS 32
49/* Number of IO registers accessible by ld/st/in/out */
50#define NUMBER_OF_IO_REGISTERS 64
51
52/*
53 * Offsets of AVR memory regions in host memory space.
54 *
55 * This is needed because the AVR has separate code and data address
56 * spaces that both have start from zero but have to go somewhere in
57 * host memory.
58 *
59 * It's also useful to know where some things are, like the IO registers.
60 */
61/* Flash program memory */
62#define OFFSET_CODE 0x00000000
63/* CPU registers, IO registers, and SRAM */
64#define OFFSET_DATA 0x00800000
65/* CPU registers specifically, these are mapped at the start of data */
66#define OFFSET_CPU_REGISTERS OFFSET_DATA
67/*
68 * IO registers, including status register, stack pointer, and memory
69 * mapped peripherals, mapped just after CPU registers
70 */
71#define OFFSET_IO_REGISTERS (OFFSET_DATA + NUMBER_OF_CPU_REGISTERS)
72
25a08409
MR
73typedef enum AVRFeature {
74 AVR_FEATURE_SRAM,
75
76 AVR_FEATURE_1_BYTE_PC,
77 AVR_FEATURE_2_BYTE_PC,
78 AVR_FEATURE_3_BYTE_PC,
79
80 AVR_FEATURE_1_BYTE_SP,
81 AVR_FEATURE_2_BYTE_SP,
82
83 AVR_FEATURE_BREAK,
84 AVR_FEATURE_DES,
85 AVR_FEATURE_RMW, /* Read Modify Write - XCH LAC LAS LAT */
86
87 AVR_FEATURE_EIJMP_EICALL,
88 AVR_FEATURE_IJMP_ICALL,
89 AVR_FEATURE_JMP_CALL,
90
91 AVR_FEATURE_ADIW_SBIW,
92
93 AVR_FEATURE_SPM,
94 AVR_FEATURE_SPMX,
95
96 AVR_FEATURE_ELPMX,
97 AVR_FEATURE_ELPM,
98 AVR_FEATURE_LPMX,
99 AVR_FEATURE_LPM,
100
101 AVR_FEATURE_MOVW,
102 AVR_FEATURE_MUL,
103 AVR_FEATURE_RAMPD,
104 AVR_FEATURE_RAMPX,
105 AVR_FEATURE_RAMPY,
106 AVR_FEATURE_RAMPZ,
107} AVRFeature;
108
1ea4a06a 109typedef struct CPUArchState {
f1c671f9
MR
110 uint32_t pc_w; /* 0x003fffff up to 22 bits */
111
112 uint32_t sregC; /* 0x00000001 1 bit */
113 uint32_t sregZ; /* 0x00000001 1 bit */
114 uint32_t sregN; /* 0x00000001 1 bit */
115 uint32_t sregV; /* 0x00000001 1 bit */
116 uint32_t sregS; /* 0x00000001 1 bit */
117 uint32_t sregH; /* 0x00000001 1 bit */
118 uint32_t sregT; /* 0x00000001 1 bit */
119 uint32_t sregI; /* 0x00000001 1 bit */
120
121 uint32_t rampD; /* 0x00ff0000 8 bits */
122 uint32_t rampX; /* 0x00ff0000 8 bits */
123 uint32_t rampY; /* 0x00ff0000 8 bits */
124 uint32_t rampZ; /* 0x00ff0000 8 bits */
125 uint32_t eind; /* 0x00ff0000 8 bits */
126
127 uint32_t r[NUMBER_OF_CPU_REGISTERS]; /* 8 bits each */
128 uint32_t sp; /* 16 bits */
129
130 uint32_t skip; /* if set skip instruction */
131
132 uint64_t intsrc; /* interrupt sources */
133 bool fullacc; /* CPU/MEM if true MEM only otherwise */
134
135 uint64_t features;
1ea4a06a 136} CPUAVRState;
f1c671f9
MR
137
138/**
139 * AVRCPU:
140 * @env: #CPUAVRState
141 *
142 * A AVR CPU.
143 */
b36e239e 144struct ArchCPU {
f1c671f9 145 CPUState parent_obj;
f1c671f9 146
f1c671f9 147 CPUAVRState env;
9295b1aa 148};
f1c671f9 149
9348028e
PMD
150/**
151 * AVRCPUClass:
152 * @parent_realize: The parent class' realize handler.
153 * @parent_phases: The parent class' reset phase handlers.
154 *
155 * A AVR CPU model.
156 */
157struct AVRCPUClass {
158 CPUClass parent_class;
159
160 DeviceRealize parent_realize;
161 ResettablePhases parent_phases;
162};
163
3fa28dd6
MR
164extern const struct VMStateDescription vms_avr_cpu;
165
f1c671f9
MR
166void avr_cpu_do_interrupt(CPUState *cpu);
167bool avr_cpu_exec_interrupt(CPUState *cpu, int int_req);
168hwaddr avr_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
12b35405
MR
169int avr_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
170int avr_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
9d8caa67 171int avr_print_insn(bfd_vma addr, disassemble_info *info);
e64cb6c2 172vaddr avr_cpu_gdb_adjust_breakpoint(CPUState *cpu, vaddr addr);
f1c671f9 173
25a08409
MR
174static inline int avr_feature(CPUAVRState *env, AVRFeature feature)
175{
176 return (env->features & (1U << feature)) != 0;
177}
178
179static inline void set_avr_feature(CPUAVRState *env, int feature)
180{
181 env->features |= (1U << feature);
182}
183
f1c671f9 184#define cpu_list avr_cpu_list
f1c671f9
MR
185#define cpu_mmu_index avr_cpu_mmu_index
186
187static inline int avr_cpu_mmu_index(CPUAVRState *env, bool ifetch)
188{
189 return ifetch ? MMU_CODE_IDX : MMU_DATA_IDX;
190}
191
192void avr_cpu_tcg_init(void);
193
194void avr_cpu_list(void);
195int cpu_avr_exec(CPUState *cpu);
f1c671f9
MR
196
197enum {
198 TB_FLAGS_FULL_ACCESS = 1,
199 TB_FLAGS_SKIP = 2,
200};
201
bb5de525
AJ
202static inline void cpu_get_tb_cpu_state(CPUAVRState *env, vaddr *pc,
203 uint64_t *cs_base, uint32_t *pflags)
f1c671f9
MR
204{
205 uint32_t flags = 0;
206
207 *pc = env->pc_w * 2;
208 *cs_base = 0;
209
210 if (env->fullacc) {
211 flags |= TB_FLAGS_FULL_ACCESS;
212 }
213 if (env->skip) {
214 flags |= TB_FLAGS_SKIP;
215 }
216
217 *pflags = flags;
218}
219
220static inline int cpu_interrupts_enabled(CPUAVRState *env)
221{
222 return env->sregI != 0;
223}
224
225static inline uint8_t cpu_get_sreg(CPUAVRState *env)
226{
66997c42 227 return (env->sregC) << 0
f1c671f9
MR
228 | (env->sregZ) << 1
229 | (env->sregN) << 2
230 | (env->sregV) << 3
231 | (env->sregS) << 4
232 | (env->sregH) << 5
233 | (env->sregT) << 6
234 | (env->sregI) << 7;
f1c671f9
MR
235}
236
237static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg)
238{
239 env->sregC = (sreg >> 0) & 0x01;
240 env->sregZ = (sreg >> 1) & 0x01;
241 env->sregN = (sreg >> 2) & 0x01;
242 env->sregV = (sreg >> 3) & 0x01;
243 env->sregS = (sreg >> 4) & 0x01;
244 env->sregH = (sreg >> 5) & 0x01;
245 env->sregT = (sreg >> 6) & 0x01;
246 env->sregI = (sreg >> 7) & 0x01;
247}
248
249bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
250 MMUAccessType access_type, int mmu_idx,
251 bool probe, uintptr_t retaddr);
252
f1c671f9
MR
253#include "exec/cpu-all.h"
254
ea9cea93 255#endif /* QEMU_AVR_CPU_H */