]> git.proxmox.com Git - mirror_qemu.git/blame - target/hexagon/cpu.c
Hexagon (target/hexagon) instruction classes
[mirror_qemu.git] / target / hexagon / cpu.c
CommitLineData
45183ccd
TS
1/*
2 * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17
18#include "qemu/osdep.h"
19#include "qemu/log.h"
20#include "qemu/qemu-print.h"
21#include "cpu.h"
22#include "internal.h"
23#include "exec/exec-all.h"
24#include "qapi/error.h"
25#include "hw/qdev-properties.h"
26
27static void hexagon_v67_cpu_init(Object *obj)
28{
29}
30
31static ObjectClass *hexagon_cpu_class_by_name(const char *cpu_model)
32{
33 ObjectClass *oc;
34 char *typename;
35 char **cpuname;
36
37 cpuname = g_strsplit(cpu_model, ",", 1);
38 typename = g_strdup_printf(HEXAGON_CPU_TYPE_NAME("%s"), cpuname[0]);
39 oc = object_class_by_name(typename);
40 g_strfreev(cpuname);
41 g_free(typename);
42 if (!oc || !object_class_dynamic_cast(oc, TYPE_HEXAGON_CPU) ||
43 object_class_is_abstract(oc)) {
44 return NULL;
45 }
46 return oc;
47}
48
49static Property hexagon_lldb_compat_property =
50 DEFINE_PROP_BOOL("lldb-compat", HexagonCPU, lldb_compat, false);
51static Property hexagon_lldb_stack_adjust_property =
52 DEFINE_PROP_UNSIGNED("lldb-stack-adjust", HexagonCPU, lldb_stack_adjust,
53 0, qdev_prop_uint32, target_ulong);
54
55const char * const hexagon_regnames[TOTAL_PER_THREAD_REGS] = {
56 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
57 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
58 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
59 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
60 "sa0", "lc0", "sa1", "lc1", "p3_0", "c5", "m0", "m1",
61 "usr", "pc", "ugp", "gp", "cs0", "cs1", "c14", "c15",
62 "c16", "c17", "c18", "c19", "pkt_cnt", "insn_cnt", "c22", "c23",
63 "c24", "c25", "c26", "c27", "c28", "c29", "c30", "c31",
64};
65
66/*
67 * One of the main debugging techniques is to use "-d cpu" and compare against
68 * LLDB output when single stepping. However, the target and qemu put the
69 * stacks at different locations. This is used to compensate so the diff is
70 * cleaner.
71 */
72static inline target_ulong adjust_stack_ptrs(CPUHexagonState *env,
73 target_ulong addr)
74{
75 HexagonCPU *cpu = container_of(env, HexagonCPU, env);
76 target_ulong stack_adjust = cpu->lldb_stack_adjust;
77 target_ulong stack_start = env->stack_start;
78 target_ulong stack_size = 0x10000;
79
80 if (stack_adjust == 0) {
81 return addr;
82 }
83
84 if (stack_start + 0x1000 >= addr && addr >= (stack_start - stack_size)) {
85 return addr - stack_adjust;
86 }
87 return addr;
88}
89
90/* HEX_REG_P3_0 (aka C4) is an alias for the predicate registers */
91static inline target_ulong read_p3_0(CPUHexagonState *env)
92{
93 int32_t control_reg = 0;
94 int i;
95 for (i = NUM_PREGS - 1; i >= 0; i--) {
96 control_reg <<= 8;
97 control_reg |= env->pred[i] & 0xff;
98 }
99 return control_reg;
100}
101
102static void print_reg(FILE *f, CPUHexagonState *env, int regnum)
103{
104 target_ulong value;
105
106 if (regnum == HEX_REG_P3_0) {
107 value = read_p3_0(env);
108 } else {
109 value = regnum < 32 ? adjust_stack_ptrs(env, env->gpr[regnum])
110 : env->gpr[regnum];
111 }
112
113 qemu_fprintf(f, " %s = 0x" TARGET_FMT_lx "\n",
114 hexagon_regnames[regnum], value);
115}
116
117static void hexagon_dump(CPUHexagonState *env, FILE *f)
118{
119 HexagonCPU *cpu = container_of(env, HexagonCPU, env);
120
121 if (cpu->lldb_compat) {
122 /*
123 * When comparing with LLDB, it doesn't step through single-cycle
124 * hardware loops the same way. So, we just skip them here
125 */
126 if (env->gpr[HEX_REG_PC] == env->last_pc_dumped) {
127 return;
128 }
129 env->last_pc_dumped = env->gpr[HEX_REG_PC];
130 }
131
132 qemu_fprintf(f, "General Purpose Registers = {\n");
133 for (int i = 0; i < 32; i++) {
134 print_reg(f, env, i);
135 }
136 print_reg(f, env, HEX_REG_SA0);
137 print_reg(f, env, HEX_REG_LC0);
138 print_reg(f, env, HEX_REG_SA1);
139 print_reg(f, env, HEX_REG_LC1);
140 print_reg(f, env, HEX_REG_M0);
141 print_reg(f, env, HEX_REG_M1);
142 print_reg(f, env, HEX_REG_USR);
143 print_reg(f, env, HEX_REG_P3_0);
144 print_reg(f, env, HEX_REG_GP);
145 print_reg(f, env, HEX_REG_UGP);
146 print_reg(f, env, HEX_REG_PC);
147#ifdef CONFIG_USER_ONLY
148 /*
149 * Not modelled in user mode, print junk to minimize the diff's
150 * with LLDB output
151 */
152 qemu_fprintf(f, " cause = 0x000000db\n");
153 qemu_fprintf(f, " badva = 0x00000000\n");
154 qemu_fprintf(f, " cs0 = 0x00000000\n");
155 qemu_fprintf(f, " cs1 = 0x00000000\n");
156#else
157 print_reg(f, env, HEX_REG_CAUSE);
158 print_reg(f, env, HEX_REG_BADVA);
159 print_reg(f, env, HEX_REG_CS0);
160 print_reg(f, env, HEX_REG_CS1);
161#endif
162 qemu_fprintf(f, "}\n");
163}
164
165static void hexagon_dump_state(CPUState *cs, FILE *f, int flags)
166{
167 HexagonCPU *cpu = HEXAGON_CPU(cs);
168 CPUHexagonState *env = &cpu->env;
169
170 hexagon_dump(env, f);
171}
172
173void hexagon_debug(CPUHexagonState *env)
174{
175 hexagon_dump(env, stdout);
176}
177
178static void hexagon_cpu_set_pc(CPUState *cs, vaddr value)
179{
180 HexagonCPU *cpu = HEXAGON_CPU(cs);
181 CPUHexagonState *env = &cpu->env;
182 env->gpr[HEX_REG_PC] = value;
183}
184
185static void hexagon_cpu_synchronize_from_tb(CPUState *cs,
186 const TranslationBlock *tb)
187{
188 HexagonCPU *cpu = HEXAGON_CPU(cs);
189 CPUHexagonState *env = &cpu->env;
190 env->gpr[HEX_REG_PC] = tb->pc;
191}
192
193static bool hexagon_cpu_has_work(CPUState *cs)
194{
195 return true;
196}
197
198void restore_state_to_opc(CPUHexagonState *env, TranslationBlock *tb,
199 target_ulong *data)
200{
201 env->gpr[HEX_REG_PC] = data[0];
202}
203
204static void hexagon_cpu_reset(DeviceState *dev)
205{
206 CPUState *cs = CPU(dev);
207 HexagonCPU *cpu = HEXAGON_CPU(cs);
208 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(cpu);
209
210 mcc->parent_reset(dev);
211}
212
213static void hexagon_cpu_disas_set_info(CPUState *s, disassemble_info *info)
214{
215 info->print_insn = print_insn_hexagon;
216}
217
218static void hexagon_cpu_realize(DeviceState *dev, Error **errp)
219{
220 CPUState *cs = CPU(dev);
221 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(dev);
222 Error *local_err = NULL;
223
224 cpu_exec_realizefn(cs, &local_err);
225 if (local_err != NULL) {
226 error_propagate(errp, local_err);
227 return;
228 }
229
230 qemu_init_vcpu(cs);
231 cpu_reset(cs);
232
233 mcc->parent_realize(dev, errp);
234}
235
236static void hexagon_cpu_init(Object *obj)
237{
238 HexagonCPU *cpu = HEXAGON_CPU(obj);
239
240 cpu_set_cpustate_pointers(cpu);
241 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_compat_property);
242 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_stack_adjust_property);
243}
244
245static bool hexagon_tlb_fill(CPUState *cs, vaddr address, int size,
246 MMUAccessType access_type, int mmu_idx,
247 bool probe, uintptr_t retaddr)
248{
249#ifdef CONFIG_USER_ONLY
250 switch (access_type) {
251 case MMU_INST_FETCH:
252 cs->exception_index = HEX_EXCP_FETCH_NO_UPAGE;
253 break;
254 case MMU_DATA_LOAD:
255 cs->exception_index = HEX_EXCP_PRIV_NO_UREAD;
256 break;
257 case MMU_DATA_STORE:
258 cs->exception_index = HEX_EXCP_PRIV_NO_UWRITE;
259 break;
260 }
261 cpu_loop_exit_restore(cs, retaddr);
262#else
263#error System mode not implemented for Hexagon
264#endif
265}
266
267#include "hw/core/tcg-cpu-ops.h"
268
269static struct TCGCPUOps hexagon_tcg_ops = {
270 .initialize = hexagon_translate_init,
271 .synchronize_from_tb = hexagon_cpu_synchronize_from_tb,
272 .tlb_fill = hexagon_tlb_fill,
273};
274
275static void hexagon_cpu_class_init(ObjectClass *c, void *data)
276{
277 HexagonCPUClass *mcc = HEXAGON_CPU_CLASS(c);
278 CPUClass *cc = CPU_CLASS(c);
279 DeviceClass *dc = DEVICE_CLASS(c);
280
281 device_class_set_parent_realize(dc, hexagon_cpu_realize,
282 &mcc->parent_realize);
283
284 device_class_set_parent_reset(dc, hexagon_cpu_reset, &mcc->parent_reset);
285
286 cc->class_by_name = hexagon_cpu_class_by_name;
287 cc->has_work = hexagon_cpu_has_work;
288 cc->dump_state = hexagon_dump_state;
289 cc->set_pc = hexagon_cpu_set_pc;
290 cc->gdb_read_register = hexagon_gdb_read_register;
291 cc->gdb_write_register = hexagon_gdb_write_register;
292 cc->gdb_num_core_regs = TOTAL_PER_THREAD_REGS;
293 cc->gdb_stop_before_watchpoint = true;
294 cc->disas_set_info = hexagon_cpu_disas_set_info;
295 cc->tcg_ops = &hexagon_tcg_ops;
296}
297
298#define DEFINE_CPU(type_name, initfn) \
299 { \
300 .name = type_name, \
301 .parent = TYPE_HEXAGON_CPU, \
302 .instance_init = initfn \
303 }
304
305static const TypeInfo hexagon_cpu_type_infos[] = {
306 {
307 .name = TYPE_HEXAGON_CPU,
308 .parent = TYPE_CPU,
309 .instance_size = sizeof(HexagonCPU),
310 .instance_init = hexagon_cpu_init,
311 .abstract = true,
312 .class_size = sizeof(HexagonCPUClass),
313 .class_init = hexagon_cpu_class_init,
314 },
315 DEFINE_CPU(TYPE_HEXAGON_CPU_V67, hexagon_v67_cpu_init),
316};
317
318DEFINE_TYPES(hexagon_cpu_type_infos)