]> git.proxmox.com Git - mirror_qemu.git/blame - target/hexagon/macros.h
Hexagon (target/hexagon) Add overrides for jumpr31 instructions
[mirror_qemu.git] / target / hexagon / macros.h
CommitLineData
a646e99c 1/*
5b0043c6 2 * Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
a646e99c
TS
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17
18#ifndef HEXAGON_MACROS_H
19#define HEXAGON_MACROS_H
20
21#include "cpu.h"
22#include "hex_regs.h"
23#include "reg_fields.h"
24
25#ifdef QEMU_GENERATE
26#define READ_REG(dest, NUM) gen_read_reg(dest, NUM)
a646e99c
TS
27#else
28#define READ_REG(NUM) (env->gpr[(NUM)])
29#define READ_PREG(NUM) (env->pred[NUM])
30
31#define WRITE_RREG(NUM, VAL) log_reg_write(env, NUM, VAL, slot)
32#define WRITE_PREG(NUM, VAL) log_pred_write(env, NUM, VAL)
33#endif
34
35#define PCALIGN 4
36#define PCALIGN_MASK (PCALIGN - 1)
37
38#define GET_FIELD(FIELD, REGIN) \
39 fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
40 reg_field_info[FIELD].offset)
41
42#ifdef QEMU_GENERATE
43#define GET_USR_FIELD(FIELD, DST) \
44 tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
45 reg_field_info[FIELD].offset, \
46 reg_field_info[FIELD].width)
47
48#define TYPE_INT(X) __builtin_types_compatible_p(typeof(X), int)
49#define TYPE_TCGV(X) __builtin_types_compatible_p(typeof(X), TCGv)
50#define TYPE_TCGV_I64(X) __builtin_types_compatible_p(typeof(X), TCGv_i64)
51
52#define SET_USR_FIELD_FUNC(X) \
53 __builtin_choose_expr(TYPE_INT(X), \
54 gen_set_usr_fieldi, \
55 __builtin_choose_expr(TYPE_TCGV(X), \
56 gen_set_usr_field, (void)0))
57#define SET_USR_FIELD(FIELD, VAL) \
58 SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
59#else
60#define GET_USR_FIELD(FIELD) \
61 fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
62 reg_field_info[FIELD].offset)
63
64#define SET_USR_FIELD(FIELD, VAL) \
b9dd6ff9 65 fINSERT_BITS(env->new_value[HEX_REG_USR], reg_field_info[FIELD].width, \
a646e99c
TS
66 reg_field_info[FIELD].offset, (VAL))
67#endif
68
69#ifdef QEMU_GENERATE
70/*
71 * Section 5.5 of the Hexagon V67 Programmer's Reference Manual
72 *
73 * Slot 1 store with slot 0 load
74 * A slot 1 store operation with a slot 0 load operation can appear in a packet.
75 * The packet attribute :mem_noshuf inhibits the instruction reordering that
76 * would otherwise be done by the assembler. For example:
77 * {
78 * memw(R5) = R2 // slot 1 store
79 * R3 = memh(R6) // slot 0 load
80 * }:mem_noshuf
81 * Unlike most packetized operations, these memory operations are not executed
82 * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
83 * effectively executes first, followed by the load instruction in Slot 0. If
84 * the addresses of the two operations are overlapping, the load will receive
85 * the newly stored data. This feature is supported in processor versions
86 * V65 or greater.
87 *
88 *
89 * For qemu, we look for a load in slot 0 when there is a store in slot 1
15fc6bad
TS
90 * in the same packet. When we see this, we call a helper that probes the
91 * load to make sure it doesn't fault. Then, we process the store ahead of
92 * the actual load.
93
a646e99c 94 */
15fc6bad 95#define CHECK_NOSHUF(VA, SIZE) \
a646e99c 96 do { \
1e536334 97 if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
15fc6bad 98 probe_noshuf_load(VA, SIZE, ctx->mem_idx); \
1e536334 99 process_store(ctx, 1); \
15fc6bad
TS
100 } \
101 } while (0)
102
103#define CHECK_NOSHUF_PRED(GET_EA, SIZE, PRED) \
104 do { \
105 TCGLabel *label = gen_new_label(); \
106 tcg_gen_brcondi_tl(TCG_COND_EQ, PRED, 0, label); \
107 GET_EA; \
1e536334 108 if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
15fc6bad
TS
109 probe_noshuf_load(EA, SIZE, ctx->mem_idx); \
110 } \
111 gen_set_label(label); \
1e536334
TS
112 if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
113 process_store(ctx, 1); \
a646e99c
TS
114 } \
115 } while (0)
116
117#define MEM_LOAD1s(DST, VA) \
118 do { \
15fc6bad 119 CHECK_NOSHUF(VA, 1); \
a646e99c
TS
120 tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \
121 } while (0)
122#define MEM_LOAD1u(DST, VA) \
123 do { \
15fc6bad 124 CHECK_NOSHUF(VA, 1); \
a646e99c
TS
125 tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \
126 } while (0)
127#define MEM_LOAD2s(DST, VA) \
128 do { \
15fc6bad 129 CHECK_NOSHUF(VA, 2); \
a646e99c
TS
130 tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \
131 } while (0)
132#define MEM_LOAD2u(DST, VA) \
133 do { \
15fc6bad 134 CHECK_NOSHUF(VA, 2); \
a646e99c
TS
135 tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \
136 } while (0)
137#define MEM_LOAD4s(DST, VA) \
138 do { \
15fc6bad 139 CHECK_NOSHUF(VA, 4); \
a646e99c
TS
140 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
141 } while (0)
142#define MEM_LOAD4u(DST, VA) \
143 do { \
15fc6bad 144 CHECK_NOSHUF(VA, 4); \
a646e99c
TS
145 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
146 } while (0)
147#define MEM_LOAD8u(DST, VA) \
148 do { \
15fc6bad 149 CHECK_NOSHUF(VA, 8); \
a646e99c
TS
150 tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \
151 } while (0)
46ef47e2
TS
152
153#define MEM_STORE1_FUNC(X) \
154 __builtin_choose_expr(TYPE_INT(X), \
155 gen_store1i, \
156 __builtin_choose_expr(TYPE_TCGV(X), \
157 gen_store1, (void)0))
158#define MEM_STORE1(VA, DATA, SLOT) \
661ad999 159 MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
46ef47e2
TS
160
161#define MEM_STORE2_FUNC(X) \
162 __builtin_choose_expr(TYPE_INT(X), \
163 gen_store2i, \
164 __builtin_choose_expr(TYPE_TCGV(X), \
165 gen_store2, (void)0))
166#define MEM_STORE2(VA, DATA, SLOT) \
661ad999 167 MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
46ef47e2
TS
168
169#define MEM_STORE4_FUNC(X) \
170 __builtin_choose_expr(TYPE_INT(X), \
171 gen_store4i, \
172 __builtin_choose_expr(TYPE_TCGV(X), \
173 gen_store4, (void)0))
174#define MEM_STORE4(VA, DATA, SLOT) \
661ad999 175 MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
46ef47e2
TS
176
177#define MEM_STORE8_FUNC(X) \
178 __builtin_choose_expr(TYPE_INT(X), \
179 gen_store8i, \
180 __builtin_choose_expr(TYPE_TCGV_I64(X), \
181 gen_store8, (void)0))
182#define MEM_STORE8(VA, DATA, SLOT) \
661ad999 183 MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
a646e99c
TS
184#else
185#define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
186#define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
187#define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
188#define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
189#define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
190#define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
191#define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
192#define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
193
194#define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
195#define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
196#define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
197#define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
198#endif
199
42659e04
NI
200#ifdef QEMU_GENERATE
201static inline void gen_cancel(uint32_t slot)
202{
203 tcg_gen_ori_tl(hex_slot_cancelled, hex_slot_cancelled, 1 << slot);
204}
205
206#define CANCEL gen_cancel(slot);
207#else
a646e99c 208#define CANCEL cancel_slot(env, slot)
42659e04 209#endif
a646e99c
TS
210
211#define LOAD_CANCEL(EA) do { CANCEL; } while (0)
212
213#ifdef QEMU_GENERATE
d909808e 214static inline void gen_pred_cancel(TCGv pred, uint32_t slot_num)
a646e99c 215 {
f448397a 216 TCGv slot_mask = tcg_temp_new();
a646e99c 217 TCGv tmp = tcg_temp_new();
23803bbe 218 TCGv zero = tcg_constant_tl(0);
f448397a 219 tcg_gen_ori_tl(slot_mask, hex_slot_cancelled, 1 << slot_num);
a646e99c
TS
220 tcg_gen_andi_tl(tmp, pred, 1);
221 tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
222 slot_mask, hex_slot_cancelled);
a646e99c
TS
223}
224#define PRED_LOAD_CANCEL(PRED, EA) \
225 gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
226#endif
227
228#define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
229
230#define fMAX(A, B) (((A) > (B)) ? (A) : (B))
231
232#define fMIN(A, B) (((A) < (B)) ? (A) : (B))
233
234#define fABS(A) (((A) < 0) ? (-(A)) : (A))
235#define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
236 REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
237#define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
238 ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
239#define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
240 (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
241#define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
242 (((HIBIT) - (LOWBIT) + 1) ? \
243 extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
244 0LL)
e628c015
TS
245#define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
246 do { \
247 int width = ((HIBIT) - (LOWBIT) + 1); \
248 INREG = (width >= 0 ? \
249 deposit64((INREG), (LOWBIT), width, (INVAL)) : \
250 INREG); \
251 } while (0)
a646e99c
TS
252
253#define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
254
255#ifdef QEMU_GENERATE
256#define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
257#else
258#define fLSBOLD(VAL) ((VAL) & 1)
259#endif
260
261#ifdef QEMU_GENERATE
07c0f653
TS
262#define fLSBNEW(PVAL) tcg_gen_andi_tl(LSB, (PVAL), 1)
263#define fLSBNEW0 tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1)
264#define fLSBNEW1 tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1)
a646e99c 265#else
07c0f653
TS
266#define fLSBNEW(PVAL) ((PVAL) & 1)
267#define fLSBNEW0 (env->new_pred_value[0] & 1)
268#define fLSBNEW1 (env->new_pred_value[1] & 1)
a646e99c
TS
269#endif
270
271#ifdef QEMU_GENERATE
a646e99c
TS
272#define fLSBOLDNOT(VAL) \
273 do { \
274 tcg_gen_andi_tl(LSB, (VAL), 1); \
275 tcg_gen_xori_tl(LSB, LSB, 1); \
276 } while (0)
277#define fLSBNEWNOT(PNUM) \
07c0f653
TS
278 do { \
279 tcg_gen_andi_tl(LSB, (PNUM), 1); \
280 tcg_gen_xori_tl(LSB, LSB, 1); \
281 } while (0)
a646e99c
TS
282#else
283#define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
284#define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
285#define fLSBNEW0NOT (!fLSBNEW0)
286#define fLSBNEW1NOT (!fLSBNEW1)
287#endif
288
289#define fNEWREG(VAL) ((int32_t)(VAL))
290
291#define fNEWREG_ST(VAL) (VAL)
292
64458f48
TS
293#define fVSATUVALN(N, VAL) \
294 ({ \
5b0043c6 295 (((int64_t)(VAL)) < 0) ? 0 : ((1LL << (N)) - 1); \
64458f48 296 })
a646e99c
TS
297#define fSATUVALN(N, VAL) \
298 ({ \
299 fSET_OVERFLOW(); \
300 ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
301 })
302#define fSATVALN(N, VAL) \
303 ({ \
304 fSET_OVERFLOW(); \
305 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
306 })
64458f48
TS
307#define fVSATVALN(N, VAL) \
308 ({ \
309 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
310 })
a646e99c
TS
311#define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
312#define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
313#define fSATN(N, VAL) \
314 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
64458f48
TS
315#define fVSATN(N, VAL) \
316 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATVALN(N, VAL))
a646e99c
TS
317#define fADDSAT64(DST, A, B) \
318 do { \
319 uint64_t __a = fCAST8u(A); \
320 uint64_t __b = fCAST8u(B); \
321 uint64_t __sum = __a + __b; \
322 uint64_t __xor = __a ^ __b; \
323 const uint64_t __mask = 0x8000000000000000ULL; \
324 if (__xor & __mask) { \
325 DST = __sum; \
326 } \
327 else if ((__a ^ __sum) & __mask) { \
328 if (__sum & __mask) { \
329 DST = 0x7FFFFFFFFFFFFFFFLL; \
330 fSET_OVERFLOW(); \
331 } else { \
332 DST = 0x8000000000000000LL; \
333 fSET_OVERFLOW(); \
334 } \
335 } else { \
336 DST = __sum; \
337 } \
338 } while (0)
64458f48
TS
339#define fVSATUN(N, VAL) \
340 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATUVALN(N, VAL))
a646e99c
TS
341#define fSATUN(N, VAL) \
342 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
343#define fSATH(VAL) (fSATN(16, VAL))
344#define fSATUH(VAL) (fSATUN(16, VAL))
64458f48
TS
345#define fVSATH(VAL) (fVSATN(16, VAL))
346#define fVSATUH(VAL) (fVSATUN(16, VAL))
a646e99c
TS
347#define fSATUB(VAL) (fSATUN(8, VAL))
348#define fSATB(VAL) (fSATN(8, VAL))
64458f48
TS
349#define fVSATUB(VAL) (fVSATUN(8, VAL))
350#define fVSATB(VAL) (fVSATN(8, VAL))
a646e99c
TS
351#define fIMMEXT(IMM) (IMM = IMM)
352#define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
353
354#define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
355
46ef47e2
TS
356#ifdef QEMU_GENERATE
357static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
358{
359 /*
360 * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
361 *
362 * The "I" value from a modifier register is divided into two pieces
363 * LSB bits 23:17
364 * MSB bits 31:28
365 * The value is signed
366 *
367 * At the end we shift the result according to the shift argument
368 */
369 TCGv msb = tcg_temp_new();
370 TCGv lsb = tcg_temp_new();
371
372 tcg_gen_extract_tl(lsb, val, 17, 7);
373 tcg_gen_sari_tl(msb, val, 21);
374 tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
375
376 tcg_gen_shli_tl(result, result, shift);
46ef47e2
TS
377 return result;
378}
379#define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT))
380#else
381#define fREAD_IREG(VAL) \
382 (fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f)))
383#endif
384
a646e99c
TS
385#define fREAD_LR() (READ_REG(HEX_REG_LR))
386
387#define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
388#define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
389#define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
390
391#define fREAD_SP() (READ_REG(HEX_REG_SP))
392#define fREAD_LC0 (READ_REG(HEX_REG_LC0))
393#define fREAD_LC1 (READ_REG(HEX_REG_LC1))
394#define fREAD_SA0 (READ_REG(HEX_REG_SA0))
395#define fREAD_SA1 (READ_REG(HEX_REG_SA1))
396#define fREAD_FP() (READ_REG(HEX_REG_FP))
397#ifdef FIXME
398/* Figure out how to get insn->extension_valid to helper */
399#define fREAD_GP() \
400 (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP))
401#else
402#define fREAD_GP() READ_REG(HEX_REG_GP)
403#endif
40085901 404#define fREAD_PC() (PC)
a646e99c 405
613653e5 406#define fREAD_NPC() (next_PC & (0xfffffffe))
a646e99c
TS
407
408#define fREAD_P0() (READ_PREG(0))
409#define fREAD_P3() (READ_PREG(3))
410
411#define fCHECK_PCALIGN(A)
412
fb67c2bf 413#define fWRITE_NPC(A) write_new_pc(env, pkt_has_multi_cof != 0, A)
a646e99c
TS
414
415#define fBRANCH(LOC, TYPE) fWRITE_NPC(LOC)
416#define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
417#define fHINTJR(TARGET) { /* Not modelled in qemu */}
418#define fCALL(A) \
419 do { \
420 fWRITE_LR(fREAD_NPC()); \
421 fBRANCH(A, COF_TYPE_CALL); \
422 } while (0)
423#define fCALLR(A) \
424 do { \
425 fWRITE_LR(fREAD_NPC()); \
426 fBRANCH(A, COF_TYPE_CALLR); \
427 } while (0)
428#define fWRITE_LOOP_REGS0(START, COUNT) \
429 do { \
430 WRITE_RREG(HEX_REG_LC0, COUNT); \
431 WRITE_RREG(HEX_REG_SA0, START); \
432 } while (0)
433#define fWRITE_LOOP_REGS1(START, COUNT) \
434 do { \
435 WRITE_RREG(HEX_REG_LC1, COUNT); \
436 WRITE_RREG(HEX_REG_SA1, START);\
437 } while (0)
438#define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
439#define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
440
a646e99c
TS
441#define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
442#define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
443#define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
444#define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
445#define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
446#define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
447#define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
448#define fPART1(WORK) if (part1) { WORK; return; }
449#define fCAST4u(A) ((uint32_t)(A))
450#define fCAST4s(A) ((int32_t)(A))
451#define fCAST8u(A) ((uint64_t)(A))
452#define fCAST8s(A) ((int64_t)(A))
64458f48
TS
453#define fCAST2_2s(A) ((int16_t)(A))
454#define fCAST2_2u(A) ((uint16_t)(A))
a646e99c
TS
455#define fCAST4_4s(A) ((int32_t)(A))
456#define fCAST4_4u(A) ((uint32_t)(A))
457#define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
458#define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
459#define fCAST8_8s(A) ((int64_t)(A))
460#define fCAST8_8u(A) ((uint64_t)(A))
461#define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
462#define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
463#define fZE8_16(A) ((int16_t)((uint8_t)(A)))
464#define fSE8_16(A) ((int16_t)((int8_t)(A)))
465#define fSE16_32(A) ((int32_t)((int16_t)(A)))
466#define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
467#define fSE32_64(A) ((int64_t)((int32_t)(A)))
468#define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
469#define fSE8_32(A) ((int32_t)((int8_t)(A)))
470#define fZE8_32(A) ((int32_t)((uint8_t)(A)))
471#define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
472#define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
473#define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
474#define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
475#define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
476#define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
477#define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
478#define fMPY16US(A, B) fMPY16SU(B, A)
479#define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
480#define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
481#define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
482#define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
483#define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
484#define fROUND(A) (A + 0x8000)
485#define fCLIP(DST, SRC, U) \
486 do { \
487 int32_t maxv = (1 << U) - 1; \
488 int32_t minv = -(1 << U); \
489 DST = fMIN(maxv, fMAX(SRC, minv)); \
490 } while (0)
491#define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
492#define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
493#define fCRNDN(A, N) (conv_round(A, N))
494#define fADD128(A, B) (int128_add(A, B))
495#define fSUB128(A, B) (int128_sub(A, B))
496#define fSHIFTR128(A, B) (int128_rshift(A, B))
497#define fSHIFTL128(A, B) (int128_lshift(A, B))
498#define fAND128(A, B) (int128_and(A, B))
499#define fCAST8S_16S(A) (int128_exts64(A))
500#define fCAST16S_8S(A) (int128_getlo(A))
501
0d0b91a8
TS
502#ifdef QEMU_GENERATE
503#define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
504#define fEA_RRs(REG, REG2, SCALE) \
505 do { \
506 TCGv tmp = tcg_temp_new(); \
507 tcg_gen_shli_tl(tmp, REG2, SCALE); \
508 tcg_gen_add_tl(EA, REG, tmp); \
0d0b91a8
TS
509 } while (0)
510#define fEA_IRs(IMM, REG, SCALE) \
511 do { \
512 tcg_gen_shli_tl(EA, REG, SCALE); \
513 tcg_gen_addi_tl(EA, EA, IMM); \
514 } while (0)
515#else
a646e99c
TS
516#define fEA_RI(REG, IMM) \
517 do { \
518 EA = REG + IMM; \
519 } while (0)
520#define fEA_RRs(REG, REG2, SCALE) \
521 do { \
522 EA = REG + (REG2 << SCALE); \
523 } while (0)
524#define fEA_IRs(IMM, REG, SCALE) \
525 do { \
526 EA = IMM + (REG << SCALE); \
527 } while (0)
0d0b91a8 528#endif
a646e99c
TS
529
530#ifdef QEMU_GENERATE
531#define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
532#define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
af7f1821 533#define fEA_BREVR(REG) gen_helper_fbrev(EA, REG)
a646e99c
TS
534#define fPM_I(REG, IMM) tcg_gen_addi_tl(REG, REG, IMM)
535#define fPM_M(REG, MVAL) tcg_gen_add_tl(REG, REG, MVAL)
46ef47e2
TS
536#define fPM_CIRI(REG, IMM, MVAL) \
537 do { \
f448397a 538 TCGv tcgv_siV = tcg_constant_tl(siV); \
46ef47e2
TS
539 gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
540 hex_gpr[HEX_REG_CS0 + MuN]); \
46ef47e2 541 } while (0)
a646e99c
TS
542#else
543#define fEA_IMM(IMM) do { EA = (IMM); } while (0)
544#define fEA_REG(REG) do { EA = (REG); } while (0)
545#define fEA_GPI(IMM) do { EA = (fREAD_GP() + (IMM)); } while (0)
546#define fPM_I(REG, IMM) do { REG = REG + (IMM); } while (0)
547#define fPM_M(REG, MVAL) do { REG = REG + (MVAL); } while (0)
548#endif
549#define fSCALE(N, A) (((int64_t)(A)) << N)
64458f48 550#define fVSATW(A) fVSATN(32, ((long long)A))
a646e99c 551#define fSATW(A) fSATN(32, ((long long)A))
64458f48 552#define fVSAT(A) fVSATN(32, (A))
a646e99c
TS
553#define fSAT(A) fSATN(32, (A))
554#define fSAT_ORIG_SHL(A, ORIG_REG) \
555 ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
556 ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
557 : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
558 : fSAT(A)))
559#define fPASS(A) A
560#define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
561 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
562 : (fCAST##REGSTYPE(SRC) << (SHAMT)))
563#define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
564 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
565#define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
566 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
567#define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
568 (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
569 : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
570#define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
571 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
572 : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
573#define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
574 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
575#define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
576 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
577#define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
578 (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
579 << ((-(SHAMT)) - 1)) << 1, (SRC)) \
580 : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
581#define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
582#define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
66a1807b 583 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
a646e99c
TS
584#define fROTL(SRC, SHAMT, REGSTYPE) \
585 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
586 ((fCAST##REGSTYPE##u(SRC) >> \
587 ((sizeof(SRC) * 8) - (SHAMT))))))
588#define fROTR(SRC, SHAMT, REGSTYPE) \
589 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
590 ((fCAST##REGSTYPE##u(SRC) << \
591 ((sizeof(SRC) * 8) - (SHAMT))))))
592#define fASHIFTL(SRC, SHAMT, REGSTYPE) \
66a1807b 593 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
a646e99c
TS
594
595#ifdef QEMU_GENERATE
596#define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
597#else
598#define fLOAD(NUM, SIZE, SIGN, EA, DST) \
599 DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
600#endif
601
602#define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
603
604#define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
605#define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
606#define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
607
608#ifdef CONFIG_USER_ONLY
609#define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
610#else
611/* System mode not implemented yet */
612#define fFRAMECHECK(ADDR, EA) g_assert_not_reached();
613#endif
614
615#ifdef QEMU_GENERATE
616#define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
617 gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
618#endif
619
46ef47e2
TS
620#ifdef QEMU_GENERATE
621#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
622#else
a646e99c 623#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
46ef47e2 624#endif
a646e99c
TS
625
626#ifdef QEMU_GENERATE
627#define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
88725336 628 gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
a646e99c
TS
629#endif
630
46ef47e2
TS
631#ifdef QEMU_GENERATE
632#define GETBYTE_FUNC(X) \
633 __builtin_choose_expr(TYPE_TCGV(X), \
634 gen_get_byte, \
635 __builtin_choose_expr(TYPE_TCGV_I64(X), \
636 gen_get_byte_i64, (void)0))
637#define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
638#define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
639#else
a646e99c
TS
640#define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
641#define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
46ef47e2 642#endif
a646e99c
TS
643
644#define fSETBYTE(N, DST, VAL) \
645 do { \
646 DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
647 (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
648 } while (0)
46ef47e2
TS
649
650#ifdef QEMU_GENERATE
651#define fGETHALF(N, SRC) gen_get_half(HALF, N, SRC, true)
652#define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
653#else
a646e99c
TS
654#define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
655#define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
46ef47e2 656#endif
a646e99c
TS
657#define fSETHALF(N, DST, VAL) \
658 do { \
659 DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
660 (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
661 } while (0)
662#define fSETHALFw fSETHALF
663#define fSETHALFd fSETHALF
664
665#define fGETWORD(N, SRC) \
666 ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
667#define fGETUWORD(N, SRC) \
668 ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
669
670#define fSETWORD(N, DST, VAL) \
671 do { \
672 DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
673 (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
674 } while (0)
675
676#define fSETBIT(N, DST, VAL) \
677 do { \
678 DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
679 } while (0)
680
681#define fGETBIT(N, SRC) (((SRC) >> N) & 1)
682#define fSETBITS(HI, LO, DST, VAL) \
683 do { \
684 int j; \
685 for (j = LO; j <= HI; j++) { \
686 fSETBIT(j, DST, VAL); \
687 } \
688 } while (0)
64458f48 689#define fCOUNTONES_2(VAL) ctpop16(VAL)
a646e99c
TS
690#define fCOUNTONES_4(VAL) ctpop32(VAL)
691#define fCOUNTONES_8(VAL) ctpop64(VAL)
692#define fBREV_8(VAL) revbit64(VAL)
693#define fBREV_4(VAL) revbit32(VAL)
694#define fCL1_8(VAL) clo64(VAL)
695#define fCL1_4(VAL) clo32(VAL)
64458f48 696#define fCL1_2(VAL) (clz32(~(uint16_t)(VAL) & 0xffff) - 16)
a646e99c
TS
697#define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
698#define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
699#define fHIDE(A) A
700#define fCONSTLL(A) A##LL
701#define fECHO(A) (A)
702
703#define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
704#define fPAUSE(IMM)
705
706#define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
707 ((VAL) << reg_field_info[FIELD].offset)
708#define fGET_REG_FIELD_MASK(FIELD) \
709 (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
710#define fREAD_REG_FIELD(REG, FIELD) \
711 fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
712 reg_field_info[FIELD].width, \
713 reg_field_info[FIELD].offset)
714#define fGET_FIELD(VAL, FIELD)
715#define fSET_FIELD(VAL, FIELD, NEWVAL)
716#define fBARRIER()
717#define fSYNCH()
718#define fISYNC()
719#define fDCFETCH(REG) \
720 do { (void)REG; } while (0) /* Nothing to do in qemu */
721#define fICINVA(REG) \
722 do { (void)REG; } while (0) /* Nothing to do in qemu */
723#define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
724#define fDCCLEANA(REG) \
725 do { (void)REG; } while (0) /* Nothing to do in qemu */
726#define fDCCLEANINVA(REG) \
727 do { (void)REG; } while (0) /* Nothing to do in qemu */
728
729#define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0)
730
731#define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
732 STRBITNUM) /* Nothing */
733
734
735#endif