]> git.proxmox.com Git - mirror_qemu.git/blame - target/hexagon/macros.h
Hexagon (target/hexagon) CABAC decode bin
[mirror_qemu.git] / target / hexagon / macros.h
CommitLineData
a646e99c
TS
1/*
2 * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17
18#ifndef HEXAGON_MACROS_H
19#define HEXAGON_MACROS_H
20
21#include "cpu.h"
22#include "hex_regs.h"
23#include "reg_fields.h"
24
25#ifdef QEMU_GENERATE
26#define READ_REG(dest, NUM) gen_read_reg(dest, NUM)
27#define READ_PREG(dest, NUM) gen_read_preg(dest, (NUM))
28#else
29#define READ_REG(NUM) (env->gpr[(NUM)])
30#define READ_PREG(NUM) (env->pred[NUM])
31
32#define WRITE_RREG(NUM, VAL) log_reg_write(env, NUM, VAL, slot)
33#define WRITE_PREG(NUM, VAL) log_pred_write(env, NUM, VAL)
34#endif
35
36#define PCALIGN 4
37#define PCALIGN_MASK (PCALIGN - 1)
38
39#define GET_FIELD(FIELD, REGIN) \
40 fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
41 reg_field_info[FIELD].offset)
42
43#ifdef QEMU_GENERATE
44#define GET_USR_FIELD(FIELD, DST) \
45 tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
46 reg_field_info[FIELD].offset, \
47 reg_field_info[FIELD].width)
48
49#define TYPE_INT(X) __builtin_types_compatible_p(typeof(X), int)
50#define TYPE_TCGV(X) __builtin_types_compatible_p(typeof(X), TCGv)
51#define TYPE_TCGV_I64(X) __builtin_types_compatible_p(typeof(X), TCGv_i64)
52
53#define SET_USR_FIELD_FUNC(X) \
54 __builtin_choose_expr(TYPE_INT(X), \
55 gen_set_usr_fieldi, \
56 __builtin_choose_expr(TYPE_TCGV(X), \
57 gen_set_usr_field, (void)0))
58#define SET_USR_FIELD(FIELD, VAL) \
59 SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
60#else
61#define GET_USR_FIELD(FIELD) \
62 fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
63 reg_field_info[FIELD].offset)
64
65#define SET_USR_FIELD(FIELD, VAL) \
66 fINSERT_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
67 reg_field_info[FIELD].offset, (VAL))
68#endif
69
70#ifdef QEMU_GENERATE
71/*
72 * Section 5.5 of the Hexagon V67 Programmer's Reference Manual
73 *
74 * Slot 1 store with slot 0 load
75 * A slot 1 store operation with a slot 0 load operation can appear in a packet.
76 * The packet attribute :mem_noshuf inhibits the instruction reordering that
77 * would otherwise be done by the assembler. For example:
78 * {
79 * memw(R5) = R2 // slot 1 store
80 * R3 = memh(R6) // slot 0 load
81 * }:mem_noshuf
82 * Unlike most packetized operations, these memory operations are not executed
83 * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
84 * effectively executes first, followed by the load instruction in Slot 0. If
85 * the addresses of the two operations are overlapping, the load will receive
86 * the newly stored data. This feature is supported in processor versions
87 * V65 or greater.
88 *
89 *
90 * For qemu, we look for a load in slot 0 when there is a store in slot 1
91 * in the same packet. When we see this, we call a helper that merges the
92 * bytes from the store buffer with the value loaded from memory.
93 */
94#define CHECK_NOSHUF \
95 do { \
96 if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
97 process_store(ctx, pkt, 1); \
98 } \
99 } while (0)
100
101#define MEM_LOAD1s(DST, VA) \
102 do { \
103 CHECK_NOSHUF; \
104 tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \
105 } while (0)
106#define MEM_LOAD1u(DST, VA) \
107 do { \
108 CHECK_NOSHUF; \
109 tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \
110 } while (0)
111#define MEM_LOAD2s(DST, VA) \
112 do { \
113 CHECK_NOSHUF; \
114 tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \
115 } while (0)
116#define MEM_LOAD2u(DST, VA) \
117 do { \
118 CHECK_NOSHUF; \
119 tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \
120 } while (0)
121#define MEM_LOAD4s(DST, VA) \
122 do { \
123 CHECK_NOSHUF; \
124 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
125 } while (0)
126#define MEM_LOAD4u(DST, VA) \
127 do { \
128 CHECK_NOSHUF; \
129 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
130 } while (0)
131#define MEM_LOAD8u(DST, VA) \
132 do { \
133 CHECK_NOSHUF; \
134 tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \
135 } while (0)
46ef47e2
TS
136
137#define MEM_STORE1_FUNC(X) \
138 __builtin_choose_expr(TYPE_INT(X), \
139 gen_store1i, \
140 __builtin_choose_expr(TYPE_TCGV(X), \
141 gen_store1, (void)0))
142#define MEM_STORE1(VA, DATA, SLOT) \
143 MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
144
145#define MEM_STORE2_FUNC(X) \
146 __builtin_choose_expr(TYPE_INT(X), \
147 gen_store2i, \
148 __builtin_choose_expr(TYPE_TCGV(X), \
149 gen_store2, (void)0))
150#define MEM_STORE2(VA, DATA, SLOT) \
151 MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
152
153#define MEM_STORE4_FUNC(X) \
154 __builtin_choose_expr(TYPE_INT(X), \
155 gen_store4i, \
156 __builtin_choose_expr(TYPE_TCGV(X), \
157 gen_store4, (void)0))
158#define MEM_STORE4(VA, DATA, SLOT) \
159 MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
160
161#define MEM_STORE8_FUNC(X) \
162 __builtin_choose_expr(TYPE_INT(X), \
163 gen_store8i, \
164 __builtin_choose_expr(TYPE_TCGV_I64(X), \
165 gen_store8, (void)0))
166#define MEM_STORE8(VA, DATA, SLOT) \
167 MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
a646e99c
TS
168#else
169#define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
170#define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
171#define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
172#define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
173#define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
174#define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
175#define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
176#define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
177
178#define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
179#define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
180#define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
181#define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
182#endif
183
184#define CANCEL cancel_slot(env, slot)
185
186#define LOAD_CANCEL(EA) do { CANCEL; } while (0)
187
188#ifdef QEMU_GENERATE
189static inline void gen_pred_cancel(TCGv pred, int slot_num)
190 {
191 TCGv slot_mask = tcg_const_tl(1 << slot_num);
192 TCGv tmp = tcg_temp_new();
193 TCGv zero = tcg_const_tl(0);
194 TCGv one = tcg_const_tl(1);
195 tcg_gen_or_tl(slot_mask, hex_slot_cancelled, slot_mask);
196 tcg_gen_andi_tl(tmp, pred, 1);
197 tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
198 slot_mask, hex_slot_cancelled);
199 tcg_temp_free(slot_mask);
200 tcg_temp_free(tmp);
201 tcg_temp_free(zero);
202 tcg_temp_free(one);
203}
204#define PRED_LOAD_CANCEL(PRED, EA) \
205 gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
206#endif
207
208#define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
209
210#define fMAX(A, B) (((A) > (B)) ? (A) : (B))
211
212#define fMIN(A, B) (((A) < (B)) ? (A) : (B))
213
214#define fABS(A) (((A) < 0) ? (-(A)) : (A))
215#define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
216 REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
217#define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
218 ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
219#define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
220 (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
221#define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
222 (((HIBIT) - (LOWBIT) + 1) ? \
223 extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
224 0LL)
e628c015
TS
225#define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
226 do { \
227 int width = ((HIBIT) - (LOWBIT) + 1); \
228 INREG = (width >= 0 ? \
229 deposit64((INREG), (LOWBIT), width, (INVAL)) : \
230 INREG); \
231 } while (0)
a646e99c
TS
232
233#define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
234
235#ifdef QEMU_GENERATE
236#define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
237#else
238#define fLSBOLD(VAL) ((VAL) & 1)
239#endif
240
241#ifdef QEMU_GENERATE
242#define fLSBNEW(PVAL) tcg_gen_mov_tl(LSB, (PVAL))
243#define fLSBNEW0 tcg_gen_mov_tl(LSB, hex_new_pred_value[0])
244#define fLSBNEW1 tcg_gen_mov_tl(LSB, hex_new_pred_value[1])
245#else
246#define fLSBNEW(PVAL) (PVAL)
247#define fLSBNEW0 new_pred_value(env, 0)
248#define fLSBNEW1 new_pred_value(env, 1)
249#endif
250
251#ifdef QEMU_GENERATE
252static inline void gen_logical_not(TCGv dest, TCGv src)
253{
254 TCGv one = tcg_const_tl(1);
255 TCGv zero = tcg_const_tl(0);
256
257 tcg_gen_movcond_tl(TCG_COND_NE, dest, src, zero, zero, one);
258
259 tcg_temp_free(one);
260 tcg_temp_free(zero);
261}
262#define fLSBOLDNOT(VAL) \
263 do { \
264 tcg_gen_andi_tl(LSB, (VAL), 1); \
265 tcg_gen_xori_tl(LSB, LSB, 1); \
266 } while (0)
267#define fLSBNEWNOT(PNUM) \
268 gen_logical_not(LSB, (PNUM))
269#else
270#define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
271#define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
272#define fLSBNEW0NOT (!fLSBNEW0)
273#define fLSBNEW1NOT (!fLSBNEW1)
274#endif
275
276#define fNEWREG(VAL) ((int32_t)(VAL))
277
278#define fNEWREG_ST(VAL) (VAL)
279
280#define fSATUVALN(N, VAL) \
281 ({ \
282 fSET_OVERFLOW(); \
283 ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
284 })
285#define fSATVALN(N, VAL) \
286 ({ \
287 fSET_OVERFLOW(); \
288 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
289 })
290#define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
291#define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
292#define fSATN(N, VAL) \
293 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
294#define fADDSAT64(DST, A, B) \
295 do { \
296 uint64_t __a = fCAST8u(A); \
297 uint64_t __b = fCAST8u(B); \
298 uint64_t __sum = __a + __b; \
299 uint64_t __xor = __a ^ __b; \
300 const uint64_t __mask = 0x8000000000000000ULL; \
301 if (__xor & __mask) { \
302 DST = __sum; \
303 } \
304 else if ((__a ^ __sum) & __mask) { \
305 if (__sum & __mask) { \
306 DST = 0x7FFFFFFFFFFFFFFFLL; \
307 fSET_OVERFLOW(); \
308 } else { \
309 DST = 0x8000000000000000LL; \
310 fSET_OVERFLOW(); \
311 } \
312 } else { \
313 DST = __sum; \
314 } \
315 } while (0)
316#define fSATUN(N, VAL) \
317 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
318#define fSATH(VAL) (fSATN(16, VAL))
319#define fSATUH(VAL) (fSATUN(16, VAL))
320#define fSATUB(VAL) (fSATUN(8, VAL))
321#define fSATB(VAL) (fSATN(8, VAL))
322#define fIMMEXT(IMM) (IMM = IMM)
323#define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
324
325#define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
326
46ef47e2
TS
327#ifdef QEMU_GENERATE
328static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
329{
330 /*
331 * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
332 *
333 * The "I" value from a modifier register is divided into two pieces
334 * LSB bits 23:17
335 * MSB bits 31:28
336 * The value is signed
337 *
338 * At the end we shift the result according to the shift argument
339 */
340 TCGv msb = tcg_temp_new();
341 TCGv lsb = tcg_temp_new();
342
343 tcg_gen_extract_tl(lsb, val, 17, 7);
344 tcg_gen_sari_tl(msb, val, 21);
345 tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
346
347 tcg_gen_shli_tl(result, result, shift);
348
349 tcg_temp_free(msb);
350 tcg_temp_free(lsb);
351
352 return result;
353}
354#define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT))
355#else
356#define fREAD_IREG(VAL) \
357 (fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f)))
358#endif
359
a646e99c
TS
360#define fREAD_LR() (READ_REG(HEX_REG_LR))
361
362#define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
363#define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
364#define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
365
366#define fREAD_SP() (READ_REG(HEX_REG_SP))
367#define fREAD_LC0 (READ_REG(HEX_REG_LC0))
368#define fREAD_LC1 (READ_REG(HEX_REG_LC1))
369#define fREAD_SA0 (READ_REG(HEX_REG_SA0))
370#define fREAD_SA1 (READ_REG(HEX_REG_SA1))
371#define fREAD_FP() (READ_REG(HEX_REG_FP))
372#ifdef FIXME
373/* Figure out how to get insn->extension_valid to helper */
374#define fREAD_GP() \
375 (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP))
376#else
377#define fREAD_GP() READ_REG(HEX_REG_GP)
378#endif
379#define fREAD_PC() (READ_REG(HEX_REG_PC))
380
381#define fREAD_NPC() (env->next_PC & (0xfffffffe))
382
383#define fREAD_P0() (READ_PREG(0))
384#define fREAD_P3() (READ_PREG(3))
385
386#define fCHECK_PCALIGN(A)
387
388#define fWRITE_NPC(A) write_new_pc(env, A)
389
390#define fBRANCH(LOC, TYPE) fWRITE_NPC(LOC)
391#define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
392#define fHINTJR(TARGET) { /* Not modelled in qemu */}
393#define fCALL(A) \
394 do { \
395 fWRITE_LR(fREAD_NPC()); \
396 fBRANCH(A, COF_TYPE_CALL); \
397 } while (0)
398#define fCALLR(A) \
399 do { \
400 fWRITE_LR(fREAD_NPC()); \
401 fBRANCH(A, COF_TYPE_CALLR); \
402 } while (0)
403#define fWRITE_LOOP_REGS0(START, COUNT) \
404 do { \
405 WRITE_RREG(HEX_REG_LC0, COUNT); \
406 WRITE_RREG(HEX_REG_SA0, START); \
407 } while (0)
408#define fWRITE_LOOP_REGS1(START, COUNT) \
409 do { \
410 WRITE_RREG(HEX_REG_LC1, COUNT); \
411 WRITE_RREG(HEX_REG_SA1, START);\
412 } while (0)
413#define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
414#define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
415
a646e99c
TS
416#define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
417#define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
418#define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
419#define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
420#define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
421#define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
422#define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
423#define fPART1(WORK) if (part1) { WORK; return; }
424#define fCAST4u(A) ((uint32_t)(A))
425#define fCAST4s(A) ((int32_t)(A))
426#define fCAST8u(A) ((uint64_t)(A))
427#define fCAST8s(A) ((int64_t)(A))
428#define fCAST4_4s(A) ((int32_t)(A))
429#define fCAST4_4u(A) ((uint32_t)(A))
430#define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
431#define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
432#define fCAST8_8s(A) ((int64_t)(A))
433#define fCAST8_8u(A) ((uint64_t)(A))
434#define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
435#define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
436#define fZE8_16(A) ((int16_t)((uint8_t)(A)))
437#define fSE8_16(A) ((int16_t)((int8_t)(A)))
438#define fSE16_32(A) ((int32_t)((int16_t)(A)))
439#define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
440#define fSE32_64(A) ((int64_t)((int32_t)(A)))
441#define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
442#define fSE8_32(A) ((int32_t)((int8_t)(A)))
443#define fZE8_32(A) ((int32_t)((uint8_t)(A)))
444#define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
445#define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
446#define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
447#define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
448#define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
449#define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
450#define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
451#define fMPY16US(A, B) fMPY16SU(B, A)
452#define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
453#define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
454#define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
455#define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
456#define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
457#define fROUND(A) (A + 0x8000)
458#define fCLIP(DST, SRC, U) \
459 do { \
460 int32_t maxv = (1 << U) - 1; \
461 int32_t minv = -(1 << U); \
462 DST = fMIN(maxv, fMAX(SRC, minv)); \
463 } while (0)
464#define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
465#define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
466#define fCRNDN(A, N) (conv_round(A, N))
467#define fADD128(A, B) (int128_add(A, B))
468#define fSUB128(A, B) (int128_sub(A, B))
469#define fSHIFTR128(A, B) (int128_rshift(A, B))
470#define fSHIFTL128(A, B) (int128_lshift(A, B))
471#define fAND128(A, B) (int128_and(A, B))
472#define fCAST8S_16S(A) (int128_exts64(A))
473#define fCAST16S_8S(A) (int128_getlo(A))
474
0d0b91a8
TS
475#ifdef QEMU_GENERATE
476#define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
477#define fEA_RRs(REG, REG2, SCALE) \
478 do { \
479 TCGv tmp = tcg_temp_new(); \
480 tcg_gen_shli_tl(tmp, REG2, SCALE); \
481 tcg_gen_add_tl(EA, REG, tmp); \
482 tcg_temp_free(tmp); \
483 } while (0)
484#define fEA_IRs(IMM, REG, SCALE) \
485 do { \
486 tcg_gen_shli_tl(EA, REG, SCALE); \
487 tcg_gen_addi_tl(EA, EA, IMM); \
488 } while (0)
489#else
a646e99c
TS
490#define fEA_RI(REG, IMM) \
491 do { \
492 EA = REG + IMM; \
493 } while (0)
494#define fEA_RRs(REG, REG2, SCALE) \
495 do { \
496 EA = REG + (REG2 << SCALE); \
497 } while (0)
498#define fEA_IRs(IMM, REG, SCALE) \
499 do { \
500 EA = IMM + (REG << SCALE); \
501 } while (0)
0d0b91a8 502#endif
a646e99c
TS
503
504#ifdef QEMU_GENERATE
505#define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
506#define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
af7f1821 507#define fEA_BREVR(REG) gen_helper_fbrev(EA, REG)
a646e99c
TS
508#define fPM_I(REG, IMM) tcg_gen_addi_tl(REG, REG, IMM)
509#define fPM_M(REG, MVAL) tcg_gen_add_tl(REG, REG, MVAL)
46ef47e2
TS
510#define fPM_CIRI(REG, IMM, MVAL) \
511 do { \
512 TCGv tcgv_siV = tcg_const_tl(siV); \
513 gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
514 hex_gpr[HEX_REG_CS0 + MuN]); \
515 tcg_temp_free(tcgv_siV); \
516 } while (0)
a646e99c
TS
517#else
518#define fEA_IMM(IMM) do { EA = (IMM); } while (0)
519#define fEA_REG(REG) do { EA = (REG); } while (0)
520#define fEA_GPI(IMM) do { EA = (fREAD_GP() + (IMM)); } while (0)
521#define fPM_I(REG, IMM) do { REG = REG + (IMM); } while (0)
522#define fPM_M(REG, MVAL) do { REG = REG + (MVAL); } while (0)
523#endif
524#define fSCALE(N, A) (((int64_t)(A)) << N)
525#define fSATW(A) fSATN(32, ((long long)A))
526#define fSAT(A) fSATN(32, (A))
527#define fSAT_ORIG_SHL(A, ORIG_REG) \
528 ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
529 ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
530 : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
531 : fSAT(A)))
532#define fPASS(A) A
533#define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
534 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
535 : (fCAST##REGSTYPE(SRC) << (SHAMT)))
536#define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
537 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
538#define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
539 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
540#define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
541 (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
542 : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
543#define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
544 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
545 : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
546#define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
547 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
548#define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
549 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
550#define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
551 (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
552 << ((-(SHAMT)) - 1)) << 1, (SRC)) \
553 : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
554#define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
555#define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
66a1807b 556 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
a646e99c
TS
557#define fROTL(SRC, SHAMT, REGSTYPE) \
558 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
559 ((fCAST##REGSTYPE##u(SRC) >> \
560 ((sizeof(SRC) * 8) - (SHAMT))))))
561#define fROTR(SRC, SHAMT, REGSTYPE) \
562 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
563 ((fCAST##REGSTYPE##u(SRC) << \
564 ((sizeof(SRC) * 8) - (SHAMT))))))
565#define fASHIFTL(SRC, SHAMT, REGSTYPE) \
66a1807b 566 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
a646e99c
TS
567
568#ifdef QEMU_GENERATE
569#define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
570#else
571#define fLOAD(NUM, SIZE, SIGN, EA, DST) \
572 DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
573#endif
574
575#define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
576
577#define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
578#define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
579#define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
580
581#ifdef CONFIG_USER_ONLY
582#define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
583#else
584/* System mode not implemented yet */
585#define fFRAMECHECK(ADDR, EA) g_assert_not_reached();
586#endif
587
588#ifdef QEMU_GENERATE
589#define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
590 gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
591#endif
592
46ef47e2
TS
593#ifdef QEMU_GENERATE
594#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
595#else
a646e99c 596#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
46ef47e2 597#endif
a646e99c
TS
598
599#ifdef QEMU_GENERATE
600#define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
601 gen_store_conditional##SIZE(env, ctx, PdN, PRED, EA, SRC);
602#endif
603
46ef47e2
TS
604#ifdef QEMU_GENERATE
605#define GETBYTE_FUNC(X) \
606 __builtin_choose_expr(TYPE_TCGV(X), \
607 gen_get_byte, \
608 __builtin_choose_expr(TYPE_TCGV_I64(X), \
609 gen_get_byte_i64, (void)0))
610#define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
611#define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
612#else
a646e99c
TS
613#define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
614#define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
46ef47e2 615#endif
a646e99c
TS
616
617#define fSETBYTE(N, DST, VAL) \
618 do { \
619 DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
620 (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
621 } while (0)
46ef47e2
TS
622
623#ifdef QEMU_GENERATE
624#define fGETHALF(N, SRC) gen_get_half(HALF, N, SRC, true)
625#define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
626#else
a646e99c
TS
627#define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
628#define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
46ef47e2 629#endif
a646e99c
TS
630#define fSETHALF(N, DST, VAL) \
631 do { \
632 DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
633 (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
634 } while (0)
635#define fSETHALFw fSETHALF
636#define fSETHALFd fSETHALF
637
638#define fGETWORD(N, SRC) \
639 ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
640#define fGETUWORD(N, SRC) \
641 ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
642
643#define fSETWORD(N, DST, VAL) \
644 do { \
645 DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
646 (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
647 } while (0)
648
649#define fSETBIT(N, DST, VAL) \
650 do { \
651 DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
652 } while (0)
653
654#define fGETBIT(N, SRC) (((SRC) >> N) & 1)
655#define fSETBITS(HI, LO, DST, VAL) \
656 do { \
657 int j; \
658 for (j = LO; j <= HI; j++) { \
659 fSETBIT(j, DST, VAL); \
660 } \
661 } while (0)
662#define fCOUNTONES_4(VAL) ctpop32(VAL)
663#define fCOUNTONES_8(VAL) ctpop64(VAL)
664#define fBREV_8(VAL) revbit64(VAL)
665#define fBREV_4(VAL) revbit32(VAL)
666#define fCL1_8(VAL) clo64(VAL)
667#define fCL1_4(VAL) clo32(VAL)
668#define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
669#define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
670#define fHIDE(A) A
671#define fCONSTLL(A) A##LL
672#define fECHO(A) (A)
673
674#define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
675#define fPAUSE(IMM)
676
677#define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
678 ((VAL) << reg_field_info[FIELD].offset)
679#define fGET_REG_FIELD_MASK(FIELD) \
680 (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
681#define fREAD_REG_FIELD(REG, FIELD) \
682 fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
683 reg_field_info[FIELD].width, \
684 reg_field_info[FIELD].offset)
685#define fGET_FIELD(VAL, FIELD)
686#define fSET_FIELD(VAL, FIELD, NEWVAL)
687#define fBARRIER()
688#define fSYNCH()
689#define fISYNC()
690#define fDCFETCH(REG) \
691 do { (void)REG; } while (0) /* Nothing to do in qemu */
692#define fICINVA(REG) \
693 do { (void)REG; } while (0) /* Nothing to do in qemu */
694#define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
695#define fDCCLEANA(REG) \
696 do { (void)REG; } while (0) /* Nothing to do in qemu */
697#define fDCCLEANINVA(REG) \
698 do { (void)REG; } while (0) /* Nothing to do in qemu */
699
700#define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0)
701
702#define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
703 STRBITNUM) /* Nothing */
704
705
706#endif