]> git.proxmox.com Git - mirror_qemu.git/blame - target/hexagon/macros.h
Hexagon (target/hexagon) more tcg_constant_*
[mirror_qemu.git] / target / hexagon / macros.h
CommitLineData
a646e99c
TS
1/*
2 * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17
18#ifndef HEXAGON_MACROS_H
19#define HEXAGON_MACROS_H
20
21#include "cpu.h"
22#include "hex_regs.h"
23#include "reg_fields.h"
24
25#ifdef QEMU_GENERATE
26#define READ_REG(dest, NUM) gen_read_reg(dest, NUM)
a646e99c
TS
27#else
28#define READ_REG(NUM) (env->gpr[(NUM)])
29#define READ_PREG(NUM) (env->pred[NUM])
30
31#define WRITE_RREG(NUM, VAL) log_reg_write(env, NUM, VAL, slot)
32#define WRITE_PREG(NUM, VAL) log_pred_write(env, NUM, VAL)
33#endif
34
35#define PCALIGN 4
36#define PCALIGN_MASK (PCALIGN - 1)
37
38#define GET_FIELD(FIELD, REGIN) \
39 fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
40 reg_field_info[FIELD].offset)
41
42#ifdef QEMU_GENERATE
43#define GET_USR_FIELD(FIELD, DST) \
44 tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
45 reg_field_info[FIELD].offset, \
46 reg_field_info[FIELD].width)
47
48#define TYPE_INT(X) __builtin_types_compatible_p(typeof(X), int)
49#define TYPE_TCGV(X) __builtin_types_compatible_p(typeof(X), TCGv)
50#define TYPE_TCGV_I64(X) __builtin_types_compatible_p(typeof(X), TCGv_i64)
51
52#define SET_USR_FIELD_FUNC(X) \
53 __builtin_choose_expr(TYPE_INT(X), \
54 gen_set_usr_fieldi, \
55 __builtin_choose_expr(TYPE_TCGV(X), \
56 gen_set_usr_field, (void)0))
57#define SET_USR_FIELD(FIELD, VAL) \
58 SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
59#else
60#define GET_USR_FIELD(FIELD) \
61 fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
62 reg_field_info[FIELD].offset)
63
64#define SET_USR_FIELD(FIELD, VAL) \
65 fINSERT_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
66 reg_field_info[FIELD].offset, (VAL))
67#endif
68
69#ifdef QEMU_GENERATE
70/*
71 * Section 5.5 of the Hexagon V67 Programmer's Reference Manual
72 *
73 * Slot 1 store with slot 0 load
74 * A slot 1 store operation with a slot 0 load operation can appear in a packet.
75 * The packet attribute :mem_noshuf inhibits the instruction reordering that
76 * would otherwise be done by the assembler. For example:
77 * {
78 * memw(R5) = R2 // slot 1 store
79 * R3 = memh(R6) // slot 0 load
80 * }:mem_noshuf
81 * Unlike most packetized operations, these memory operations are not executed
82 * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
83 * effectively executes first, followed by the load instruction in Slot 0. If
84 * the addresses of the two operations are overlapping, the load will receive
85 * the newly stored data. This feature is supported in processor versions
86 * V65 or greater.
87 *
88 *
89 * For qemu, we look for a load in slot 0 when there is a store in slot 1
90 * in the same packet. When we see this, we call a helper that merges the
91 * bytes from the store buffer with the value loaded from memory.
92 */
93#define CHECK_NOSHUF \
94 do { \
95 if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
96 process_store(ctx, pkt, 1); \
97 } \
98 } while (0)
99
100#define MEM_LOAD1s(DST, VA) \
101 do { \
102 CHECK_NOSHUF; \
103 tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \
104 } while (0)
105#define MEM_LOAD1u(DST, VA) \
106 do { \
107 CHECK_NOSHUF; \
108 tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \
109 } while (0)
110#define MEM_LOAD2s(DST, VA) \
111 do { \
112 CHECK_NOSHUF; \
113 tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \
114 } while (0)
115#define MEM_LOAD2u(DST, VA) \
116 do { \
117 CHECK_NOSHUF; \
118 tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \
119 } while (0)
120#define MEM_LOAD4s(DST, VA) \
121 do { \
122 CHECK_NOSHUF; \
123 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
124 } while (0)
125#define MEM_LOAD4u(DST, VA) \
126 do { \
127 CHECK_NOSHUF; \
128 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
129 } while (0)
130#define MEM_LOAD8u(DST, VA) \
131 do { \
132 CHECK_NOSHUF; \
133 tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \
134 } while (0)
46ef47e2
TS
135
136#define MEM_STORE1_FUNC(X) \
137 __builtin_choose_expr(TYPE_INT(X), \
138 gen_store1i, \
139 __builtin_choose_expr(TYPE_TCGV(X), \
140 gen_store1, (void)0))
141#define MEM_STORE1(VA, DATA, SLOT) \
142 MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
143
144#define MEM_STORE2_FUNC(X) \
145 __builtin_choose_expr(TYPE_INT(X), \
146 gen_store2i, \
147 __builtin_choose_expr(TYPE_TCGV(X), \
148 gen_store2, (void)0))
149#define MEM_STORE2(VA, DATA, SLOT) \
150 MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
151
152#define MEM_STORE4_FUNC(X) \
153 __builtin_choose_expr(TYPE_INT(X), \
154 gen_store4i, \
155 __builtin_choose_expr(TYPE_TCGV(X), \
156 gen_store4, (void)0))
157#define MEM_STORE4(VA, DATA, SLOT) \
158 MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
159
160#define MEM_STORE8_FUNC(X) \
161 __builtin_choose_expr(TYPE_INT(X), \
162 gen_store8i, \
163 __builtin_choose_expr(TYPE_TCGV_I64(X), \
164 gen_store8, (void)0))
165#define MEM_STORE8(VA, DATA, SLOT) \
166 MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
a646e99c
TS
167#else
168#define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
169#define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
170#define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
171#define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
172#define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
173#define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
174#define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
175#define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
176
177#define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
178#define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
179#define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
180#define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
181#endif
182
183#define CANCEL cancel_slot(env, slot)
184
185#define LOAD_CANCEL(EA) do { CANCEL; } while (0)
186
187#ifdef QEMU_GENERATE
188static inline void gen_pred_cancel(TCGv pred, int slot_num)
189 {
f448397a 190 TCGv slot_mask = tcg_temp_new();
a646e99c 191 TCGv tmp = tcg_temp_new();
23803bbe 192 TCGv zero = tcg_constant_tl(0);
f448397a 193 tcg_gen_ori_tl(slot_mask, hex_slot_cancelled, 1 << slot_num);
a646e99c
TS
194 tcg_gen_andi_tl(tmp, pred, 1);
195 tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
196 slot_mask, hex_slot_cancelled);
197 tcg_temp_free(slot_mask);
198 tcg_temp_free(tmp);
a646e99c
TS
199}
200#define PRED_LOAD_CANCEL(PRED, EA) \
201 gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
202#endif
203
204#define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
205
206#define fMAX(A, B) (((A) > (B)) ? (A) : (B))
207
208#define fMIN(A, B) (((A) < (B)) ? (A) : (B))
209
210#define fABS(A) (((A) < 0) ? (-(A)) : (A))
211#define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
212 REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
213#define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
214 ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
215#define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
216 (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
217#define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
218 (((HIBIT) - (LOWBIT) + 1) ? \
219 extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
220 0LL)
e628c015
TS
221#define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
222 do { \
223 int width = ((HIBIT) - (LOWBIT) + 1); \
224 INREG = (width >= 0 ? \
225 deposit64((INREG), (LOWBIT), width, (INVAL)) : \
226 INREG); \
227 } while (0)
a646e99c
TS
228
229#define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
230
231#ifdef QEMU_GENERATE
232#define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
233#else
234#define fLSBOLD(VAL) ((VAL) & 1)
235#endif
236
237#ifdef QEMU_GENERATE
07c0f653
TS
238#define fLSBNEW(PVAL) tcg_gen_andi_tl(LSB, (PVAL), 1)
239#define fLSBNEW0 tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1)
240#define fLSBNEW1 tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1)
a646e99c 241#else
07c0f653
TS
242#define fLSBNEW(PVAL) ((PVAL) & 1)
243#define fLSBNEW0 (env->new_pred_value[0] & 1)
244#define fLSBNEW1 (env->new_pred_value[1] & 1)
a646e99c
TS
245#endif
246
247#ifdef QEMU_GENERATE
a646e99c
TS
248#define fLSBOLDNOT(VAL) \
249 do { \
250 tcg_gen_andi_tl(LSB, (VAL), 1); \
251 tcg_gen_xori_tl(LSB, LSB, 1); \
252 } while (0)
253#define fLSBNEWNOT(PNUM) \
07c0f653
TS
254 do { \
255 tcg_gen_andi_tl(LSB, (PNUM), 1); \
256 tcg_gen_xori_tl(LSB, LSB, 1); \
257 } while (0)
a646e99c
TS
258#else
259#define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
260#define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
261#define fLSBNEW0NOT (!fLSBNEW0)
262#define fLSBNEW1NOT (!fLSBNEW1)
263#endif
264
265#define fNEWREG(VAL) ((int32_t)(VAL))
266
267#define fNEWREG_ST(VAL) (VAL)
268
269#define fSATUVALN(N, VAL) \
270 ({ \
271 fSET_OVERFLOW(); \
272 ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
273 })
274#define fSATVALN(N, VAL) \
275 ({ \
276 fSET_OVERFLOW(); \
277 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
278 })
279#define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
280#define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
281#define fSATN(N, VAL) \
282 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
283#define fADDSAT64(DST, A, B) \
284 do { \
285 uint64_t __a = fCAST8u(A); \
286 uint64_t __b = fCAST8u(B); \
287 uint64_t __sum = __a + __b; \
288 uint64_t __xor = __a ^ __b; \
289 const uint64_t __mask = 0x8000000000000000ULL; \
290 if (__xor & __mask) { \
291 DST = __sum; \
292 } \
293 else if ((__a ^ __sum) & __mask) { \
294 if (__sum & __mask) { \
295 DST = 0x7FFFFFFFFFFFFFFFLL; \
296 fSET_OVERFLOW(); \
297 } else { \
298 DST = 0x8000000000000000LL; \
299 fSET_OVERFLOW(); \
300 } \
301 } else { \
302 DST = __sum; \
303 } \
304 } while (0)
305#define fSATUN(N, VAL) \
306 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
307#define fSATH(VAL) (fSATN(16, VAL))
308#define fSATUH(VAL) (fSATUN(16, VAL))
309#define fSATUB(VAL) (fSATUN(8, VAL))
310#define fSATB(VAL) (fSATN(8, VAL))
311#define fIMMEXT(IMM) (IMM = IMM)
312#define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
313
314#define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
315
46ef47e2
TS
316#ifdef QEMU_GENERATE
317static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
318{
319 /*
320 * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
321 *
322 * The "I" value from a modifier register is divided into two pieces
323 * LSB bits 23:17
324 * MSB bits 31:28
325 * The value is signed
326 *
327 * At the end we shift the result according to the shift argument
328 */
329 TCGv msb = tcg_temp_new();
330 TCGv lsb = tcg_temp_new();
331
332 tcg_gen_extract_tl(lsb, val, 17, 7);
333 tcg_gen_sari_tl(msb, val, 21);
334 tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
335
336 tcg_gen_shli_tl(result, result, shift);
337
338 tcg_temp_free(msb);
339 tcg_temp_free(lsb);
340
341 return result;
342}
343#define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT))
344#else
345#define fREAD_IREG(VAL) \
346 (fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f)))
347#endif
348
a646e99c
TS
349#define fREAD_LR() (READ_REG(HEX_REG_LR))
350
351#define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
352#define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
353#define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
354
355#define fREAD_SP() (READ_REG(HEX_REG_SP))
356#define fREAD_LC0 (READ_REG(HEX_REG_LC0))
357#define fREAD_LC1 (READ_REG(HEX_REG_LC1))
358#define fREAD_SA0 (READ_REG(HEX_REG_SA0))
359#define fREAD_SA1 (READ_REG(HEX_REG_SA1))
360#define fREAD_FP() (READ_REG(HEX_REG_FP))
361#ifdef FIXME
362/* Figure out how to get insn->extension_valid to helper */
363#define fREAD_GP() \
364 (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP))
365#else
366#define fREAD_GP() READ_REG(HEX_REG_GP)
367#endif
368#define fREAD_PC() (READ_REG(HEX_REG_PC))
369
370#define fREAD_NPC() (env->next_PC & (0xfffffffe))
371
372#define fREAD_P0() (READ_PREG(0))
373#define fREAD_P3() (READ_PREG(3))
374
375#define fCHECK_PCALIGN(A)
376
377#define fWRITE_NPC(A) write_new_pc(env, A)
378
379#define fBRANCH(LOC, TYPE) fWRITE_NPC(LOC)
380#define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
381#define fHINTJR(TARGET) { /* Not modelled in qemu */}
382#define fCALL(A) \
383 do { \
384 fWRITE_LR(fREAD_NPC()); \
385 fBRANCH(A, COF_TYPE_CALL); \
386 } while (0)
387#define fCALLR(A) \
388 do { \
389 fWRITE_LR(fREAD_NPC()); \
390 fBRANCH(A, COF_TYPE_CALLR); \
391 } while (0)
392#define fWRITE_LOOP_REGS0(START, COUNT) \
393 do { \
394 WRITE_RREG(HEX_REG_LC0, COUNT); \
395 WRITE_RREG(HEX_REG_SA0, START); \
396 } while (0)
397#define fWRITE_LOOP_REGS1(START, COUNT) \
398 do { \
399 WRITE_RREG(HEX_REG_LC1, COUNT); \
400 WRITE_RREG(HEX_REG_SA1, START);\
401 } while (0)
402#define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
403#define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
404
a646e99c
TS
405#define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
406#define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
407#define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
408#define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
409#define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
410#define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
411#define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
412#define fPART1(WORK) if (part1) { WORK; return; }
413#define fCAST4u(A) ((uint32_t)(A))
414#define fCAST4s(A) ((int32_t)(A))
415#define fCAST8u(A) ((uint64_t)(A))
416#define fCAST8s(A) ((int64_t)(A))
417#define fCAST4_4s(A) ((int32_t)(A))
418#define fCAST4_4u(A) ((uint32_t)(A))
419#define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
420#define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
421#define fCAST8_8s(A) ((int64_t)(A))
422#define fCAST8_8u(A) ((uint64_t)(A))
423#define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
424#define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
425#define fZE8_16(A) ((int16_t)((uint8_t)(A)))
426#define fSE8_16(A) ((int16_t)((int8_t)(A)))
427#define fSE16_32(A) ((int32_t)((int16_t)(A)))
428#define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
429#define fSE32_64(A) ((int64_t)((int32_t)(A)))
430#define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
431#define fSE8_32(A) ((int32_t)((int8_t)(A)))
432#define fZE8_32(A) ((int32_t)((uint8_t)(A)))
433#define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
434#define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
435#define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
436#define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
437#define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
438#define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
439#define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
440#define fMPY16US(A, B) fMPY16SU(B, A)
441#define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
442#define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
443#define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
444#define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
445#define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
446#define fROUND(A) (A + 0x8000)
447#define fCLIP(DST, SRC, U) \
448 do { \
449 int32_t maxv = (1 << U) - 1; \
450 int32_t minv = -(1 << U); \
451 DST = fMIN(maxv, fMAX(SRC, minv)); \
452 } while (0)
453#define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
454#define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
455#define fCRNDN(A, N) (conv_round(A, N))
456#define fADD128(A, B) (int128_add(A, B))
457#define fSUB128(A, B) (int128_sub(A, B))
458#define fSHIFTR128(A, B) (int128_rshift(A, B))
459#define fSHIFTL128(A, B) (int128_lshift(A, B))
460#define fAND128(A, B) (int128_and(A, B))
461#define fCAST8S_16S(A) (int128_exts64(A))
462#define fCAST16S_8S(A) (int128_getlo(A))
463
0d0b91a8
TS
464#ifdef QEMU_GENERATE
465#define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
466#define fEA_RRs(REG, REG2, SCALE) \
467 do { \
468 TCGv tmp = tcg_temp_new(); \
469 tcg_gen_shli_tl(tmp, REG2, SCALE); \
470 tcg_gen_add_tl(EA, REG, tmp); \
471 tcg_temp_free(tmp); \
472 } while (0)
473#define fEA_IRs(IMM, REG, SCALE) \
474 do { \
475 tcg_gen_shli_tl(EA, REG, SCALE); \
476 tcg_gen_addi_tl(EA, EA, IMM); \
477 } while (0)
478#else
a646e99c
TS
479#define fEA_RI(REG, IMM) \
480 do { \
481 EA = REG + IMM; \
482 } while (0)
483#define fEA_RRs(REG, REG2, SCALE) \
484 do { \
485 EA = REG + (REG2 << SCALE); \
486 } while (0)
487#define fEA_IRs(IMM, REG, SCALE) \
488 do { \
489 EA = IMM + (REG << SCALE); \
490 } while (0)
0d0b91a8 491#endif
a646e99c
TS
492
493#ifdef QEMU_GENERATE
494#define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
495#define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
af7f1821 496#define fEA_BREVR(REG) gen_helper_fbrev(EA, REG)
a646e99c
TS
497#define fPM_I(REG, IMM) tcg_gen_addi_tl(REG, REG, IMM)
498#define fPM_M(REG, MVAL) tcg_gen_add_tl(REG, REG, MVAL)
46ef47e2
TS
499#define fPM_CIRI(REG, IMM, MVAL) \
500 do { \
f448397a 501 TCGv tcgv_siV = tcg_constant_tl(siV); \
46ef47e2
TS
502 gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
503 hex_gpr[HEX_REG_CS0 + MuN]); \
46ef47e2 504 } while (0)
a646e99c
TS
505#else
506#define fEA_IMM(IMM) do { EA = (IMM); } while (0)
507#define fEA_REG(REG) do { EA = (REG); } while (0)
508#define fEA_GPI(IMM) do { EA = (fREAD_GP() + (IMM)); } while (0)
509#define fPM_I(REG, IMM) do { REG = REG + (IMM); } while (0)
510#define fPM_M(REG, MVAL) do { REG = REG + (MVAL); } while (0)
511#endif
512#define fSCALE(N, A) (((int64_t)(A)) << N)
513#define fSATW(A) fSATN(32, ((long long)A))
514#define fSAT(A) fSATN(32, (A))
515#define fSAT_ORIG_SHL(A, ORIG_REG) \
516 ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
517 ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
518 : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
519 : fSAT(A)))
520#define fPASS(A) A
521#define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
522 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
523 : (fCAST##REGSTYPE(SRC) << (SHAMT)))
524#define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
525 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
526#define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
527 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
528#define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
529 (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
530 : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
531#define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
532 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
533 : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
534#define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
535 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
536#define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
537 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
538#define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
539 (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
540 << ((-(SHAMT)) - 1)) << 1, (SRC)) \
541 : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
542#define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
543#define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
66a1807b 544 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
a646e99c
TS
545#define fROTL(SRC, SHAMT, REGSTYPE) \
546 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
547 ((fCAST##REGSTYPE##u(SRC) >> \
548 ((sizeof(SRC) * 8) - (SHAMT))))))
549#define fROTR(SRC, SHAMT, REGSTYPE) \
550 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
551 ((fCAST##REGSTYPE##u(SRC) << \
552 ((sizeof(SRC) * 8) - (SHAMT))))))
553#define fASHIFTL(SRC, SHAMT, REGSTYPE) \
66a1807b 554 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
a646e99c
TS
555
556#ifdef QEMU_GENERATE
557#define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
558#else
559#define fLOAD(NUM, SIZE, SIGN, EA, DST) \
560 DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
561#endif
562
563#define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
564
565#define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
566#define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
567#define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
568
569#ifdef CONFIG_USER_ONLY
570#define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
571#else
572/* System mode not implemented yet */
573#define fFRAMECHECK(ADDR, EA) g_assert_not_reached();
574#endif
575
576#ifdef QEMU_GENERATE
577#define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
578 gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
579#endif
580
46ef47e2
TS
581#ifdef QEMU_GENERATE
582#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
583#else
a646e99c 584#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
46ef47e2 585#endif
a646e99c
TS
586
587#ifdef QEMU_GENERATE
588#define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
88725336 589 gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
a646e99c
TS
590#endif
591
46ef47e2
TS
592#ifdef QEMU_GENERATE
593#define GETBYTE_FUNC(X) \
594 __builtin_choose_expr(TYPE_TCGV(X), \
595 gen_get_byte, \
596 __builtin_choose_expr(TYPE_TCGV_I64(X), \
597 gen_get_byte_i64, (void)0))
598#define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
599#define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
600#else
a646e99c
TS
601#define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
602#define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
46ef47e2 603#endif
a646e99c
TS
604
605#define fSETBYTE(N, DST, VAL) \
606 do { \
607 DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
608 (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
609 } while (0)
46ef47e2
TS
610
611#ifdef QEMU_GENERATE
612#define fGETHALF(N, SRC) gen_get_half(HALF, N, SRC, true)
613#define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
614#else
a646e99c
TS
615#define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
616#define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
46ef47e2 617#endif
a646e99c
TS
618#define fSETHALF(N, DST, VAL) \
619 do { \
620 DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
621 (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
622 } while (0)
623#define fSETHALFw fSETHALF
624#define fSETHALFd fSETHALF
625
626#define fGETWORD(N, SRC) \
627 ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
628#define fGETUWORD(N, SRC) \
629 ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
630
631#define fSETWORD(N, DST, VAL) \
632 do { \
633 DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
634 (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
635 } while (0)
636
637#define fSETBIT(N, DST, VAL) \
638 do { \
639 DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
640 } while (0)
641
642#define fGETBIT(N, SRC) (((SRC) >> N) & 1)
643#define fSETBITS(HI, LO, DST, VAL) \
644 do { \
645 int j; \
646 for (j = LO; j <= HI; j++) { \
647 fSETBIT(j, DST, VAL); \
648 } \
649 } while (0)
650#define fCOUNTONES_4(VAL) ctpop32(VAL)
651#define fCOUNTONES_8(VAL) ctpop64(VAL)
652#define fBREV_8(VAL) revbit64(VAL)
653#define fBREV_4(VAL) revbit32(VAL)
654#define fCL1_8(VAL) clo64(VAL)
655#define fCL1_4(VAL) clo32(VAL)
656#define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
657#define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
658#define fHIDE(A) A
659#define fCONSTLL(A) A##LL
660#define fECHO(A) (A)
661
662#define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
663#define fPAUSE(IMM)
664
665#define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
666 ((VAL) << reg_field_info[FIELD].offset)
667#define fGET_REG_FIELD_MASK(FIELD) \
668 (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
669#define fREAD_REG_FIELD(REG, FIELD) \
670 fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
671 reg_field_info[FIELD].width, \
672 reg_field_info[FIELD].offset)
673#define fGET_FIELD(VAL, FIELD)
674#define fSET_FIELD(VAL, FIELD, NEWVAL)
675#define fBARRIER()
676#define fSYNCH()
677#define fISYNC()
678#define fDCFETCH(REG) \
679 do { (void)REG; } while (0) /* Nothing to do in qemu */
680#define fICINVA(REG) \
681 do { (void)REG; } while (0) /* Nothing to do in qemu */
682#define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
683#define fDCCLEANA(REG) \
684 do { (void)REG; } while (0) /* Nothing to do in qemu */
685#define fDCCLEANINVA(REG) \
686 do { (void)REG; } while (0) /* Nothing to do in qemu */
687
688#define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0)
689
690#define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
691 STRBITNUM) /* Nothing */
692
693
694#endif