]> git.proxmox.com Git - mirror_qemu.git/blame - target/i386/hvf/hvf.c
i386: Compile CPUX86State xsave_buf only when support KVM or HVF
[mirror_qemu.git] / target / i386 / hvf / hvf.c
CommitLineData
c97d6d2c
SAGDR
1/* Copyright 2008 IBM Corporation
2 * 2008 Red Hat, Inc.
3 * Copyright 2011 Intel Corporation
4 * Copyright 2016 Veertu, Inc.
5 * Copyright 2017 The Android Open Source Project
6 *
7 * QEMU Hypervisor.framework support
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of version 2 of the GNU General Public
11 * License as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
d781e24d
IE
20 *
21 * This file contain code under public domain from the hvdos project:
22 * https://github.com/mist64/hvdos
4d98a8e5
PB
23 *
24 * Parts Copyright (c) 2011 NetApp, Inc.
25 * All rights reserved.
26 *
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
30 * 1. Redistributions of source code must retain the above copyright
31 * notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 * notice, this list of conditions and the following disclaimer in the
34 * documentation and/or other materials provided with the distribution.
35 *
36 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46 * SUCH DAMAGE.
c97d6d2c
SAGDR
47 */
48#include "qemu/osdep.h"
49#include "qemu-common.h"
50#include "qemu/error-report.h"
51
52#include "sysemu/hvf.h"
53#include "hvf-i386.h"
69e0a03c
PB
54#include "vmcs.h"
55#include "vmx.h"
56#include "x86.h"
57#include "x86_descr.h"
58#include "x86_mmu.h"
59#include "x86_decode.h"
60#include "x86_emu.h"
61#include "x86_task.h"
62#include "x86hvf.h"
c97d6d2c
SAGDR
63
64#include <Hypervisor/hv.h>
65#include <Hypervisor/hv_vmx.h>
66
67#include "exec/address-spaces.h"
c97d6d2c
SAGDR
68#include "hw/i386/apic_internal.h"
69#include "hw/boards.h"
70#include "qemu/main-loop.h"
c97d6d2c
SAGDR
71#include "sysemu/accel.h"
72#include "sysemu/sysemu.h"
73#include "target/i386/cpu.h"
74
75pthread_rwlock_t mem_lock = PTHREAD_RWLOCK_INITIALIZER;
76HVFState *hvf_state;
77int hvf_disabled = 1;
78
79static void assert_hvf_ok(hv_return_t ret)
80{
81 if (ret == HV_SUCCESS) {
82 return;
83 }
84
85 switch (ret) {
86 case HV_ERROR:
2d9178d9 87 error_report("Error: HV_ERROR");
c97d6d2c
SAGDR
88 break;
89 case HV_BUSY:
2d9178d9 90 error_report("Error: HV_BUSY");
c97d6d2c
SAGDR
91 break;
92 case HV_BAD_ARGUMENT:
2d9178d9 93 error_report("Error: HV_BAD_ARGUMENT");
c97d6d2c
SAGDR
94 break;
95 case HV_NO_RESOURCES:
2d9178d9 96 error_report("Error: HV_NO_RESOURCES");
c97d6d2c
SAGDR
97 break;
98 case HV_NO_DEVICE:
2d9178d9 99 error_report("Error: HV_NO_DEVICE");
c97d6d2c
SAGDR
100 break;
101 case HV_UNSUPPORTED:
2d9178d9 102 error_report("Error: HV_UNSUPPORTED");
c97d6d2c
SAGDR
103 break;
104 default:
2d9178d9 105 error_report("Unknown Error");
c97d6d2c
SAGDR
106 }
107
108 abort();
109}
110
111/* Memory slots */
112hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t end)
113{
114 hvf_slot *slot;
115 int x;
116 for (x = 0; x < hvf_state->num_slots; ++x) {
117 slot = &hvf_state->slots[x];
118 if (slot->size && start < (slot->start + slot->size) &&
119 end > slot->start) {
120 return slot;
121 }
122 }
123 return NULL;
124}
125
126struct mac_slot {
127 int present;
128 uint64_t size;
129 uint64_t gpa_start;
130 uint64_t gva;
131};
132
133struct mac_slot mac_slots[32];
134#define ALIGN(x, y) (((x) + (y) - 1) & ~((y) - 1))
135
136static int do_hvf_set_memory(hvf_slot *slot)
137{
138 struct mac_slot *macslot;
139 hv_memory_flags_t flags;
140 hv_return_t ret;
141
142 macslot = &mac_slots[slot->slot_id];
143
144 if (macslot->present) {
145 if (macslot->size != slot->size) {
146 macslot->present = 0;
147 ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
148 assert_hvf_ok(ret);
149 }
150 }
151
152 if (!slot->size) {
153 return 0;
154 }
155
156 flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
157
158 macslot->present = 1;
159 macslot->gpa_start = slot->start;
160 macslot->size = slot->size;
161 ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags);
162 assert_hvf_ok(ret);
163 return 0;
164}
165
166void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
167{
168 hvf_slot *mem;
169 MemoryRegion *area = section->mr;
170
171 if (!memory_region_is_ram(area)) {
172 return;
173 }
174
175 mem = hvf_find_overlap_slot(
176 section->offset_within_address_space,
177 section->offset_within_address_space + int128_get64(section->size));
178
179 if (mem && add) {
180 if (mem->size == int128_get64(section->size) &&
181 mem->start == section->offset_within_address_space &&
182 mem->mem == (memory_region_get_ram_ptr(area) +
183 section->offset_within_region)) {
184 return; /* Same region was attempted to register, go away. */
185 }
186 }
187
188 /* Region needs to be reset. set the size to 0 and remap it. */
189 if (mem) {
190 mem->size = 0;
191 if (do_hvf_set_memory(mem)) {
2d9178d9 192 error_report("Failed to reset overlapping slot");
c97d6d2c
SAGDR
193 abort();
194 }
195 }
196
197 if (!add) {
198 return;
199 }
200
201 /* Now make a new slot. */
202 int x;
203
204 for (x = 0; x < hvf_state->num_slots; ++x) {
205 mem = &hvf_state->slots[x];
206 if (!mem->size) {
207 break;
208 }
209 }
210
211 if (x == hvf_state->num_slots) {
2d9178d9 212 error_report("No free slots");
c97d6d2c
SAGDR
213 abort();
214 }
215
216 mem->size = int128_get64(section->size);
217 mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
218 mem->start = section->offset_within_address_space;
babfa20c 219 mem->region = area;
c97d6d2c
SAGDR
220
221 if (do_hvf_set_memory(mem)) {
2d9178d9 222 error_report("Error registering new memory slot");
c97d6d2c
SAGDR
223 abort();
224 }
225}
226
227void vmx_update_tpr(CPUState *cpu)
228{
229 /* TODO: need integrate APIC handling */
230 X86CPU *x86_cpu = X86_CPU(cpu);
231 int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
232 int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
233
234 wreg(cpu->hvf_fd, HV_X86_TPR, tpr);
235 if (irr == -1) {
236 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
237 } else {
238 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
239 irr >> 4);
240 }
241}
242
243void update_apic_tpr(CPUState *cpu)
244{
245 X86CPU *x86_cpu = X86_CPU(cpu);
246 int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4;
247 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
248}
249
250#define VECTORING_INFO_VECTOR_MASK 0xff
251
c97d6d2c
SAGDR
252static void hvf_handle_interrupt(CPUState * cpu, int mask)
253{
254 cpu->interrupt_request |= mask;
255 if (!qemu_cpu_is_self(cpu)) {
256 qemu_cpu_kick(cpu);
257 }
258}
259
260void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
261 int direction, int size, int count)
262{
263 int i;
264 uint8_t *ptr = buffer;
265
266 for (i = 0; i < count; i++) {
267 address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
268 ptr, size,
269 direction);
270 ptr += size;
271 }
272}
273
274/* TODO: synchronize vcpu state */
275static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
276{
277 CPUState *cpu_state = cpu;
278 if (cpu_state->vcpu_dirty == 0) {
279 hvf_get_registers(cpu_state);
280 }
281
282 cpu_state->vcpu_dirty = 1;
283}
284
285void hvf_cpu_synchronize_state(CPUState *cpu_state)
286{
287 if (cpu_state->vcpu_dirty == 0) {
288 run_on_cpu(cpu_state, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
289 }
290}
291
292static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
293{
294 CPUState *cpu_state = cpu;
295 hvf_put_registers(cpu_state);
296 cpu_state->vcpu_dirty = false;
297}
298
299void hvf_cpu_synchronize_post_reset(CPUState *cpu_state)
300{
301 run_on_cpu(cpu_state, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
302}
303
304void _hvf_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
305{
306 CPUState *cpu_state = cpu;
307 hvf_put_registers(cpu_state);
308 cpu_state->vcpu_dirty = false;
309}
310
311void hvf_cpu_synchronize_post_init(CPUState *cpu_state)
312{
313 run_on_cpu(cpu_state, _hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
314}
315
ff2de166 316static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
c97d6d2c
SAGDR
317{
318 int read, write;
319
320 /* EPT fault on an instruction fetch doesn't make sense here */
321 if (ept_qual & EPT_VIOLATION_INST_FETCH) {
322 return false;
323 }
324
325 /* EPT fault must be a read fault or a write fault */
326 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
327 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
328 if ((read | write) == 0) {
329 return false;
330 }
331
babfa20c
SAGDR
332 if (write && slot) {
333 if (slot->flags & HVF_SLOT_LOG) {
334 memory_region_set_dirty(slot->region, gpa - slot->start, 1);
335 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
336 HV_MEMORY_READ | HV_MEMORY_WRITE);
337 }
338 }
339
c97d6d2c
SAGDR
340 /*
341 * The EPT violation must have been caused by accessing a
342 * guest-physical address that is a translation of a guest-linear
343 * address.
344 */
345 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
346 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
347 return false;
348 }
349
babfa20c
SAGDR
350 return !slot;
351}
352
353static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
354{
355 hvf_slot *slot;
356
357 slot = hvf_find_overlap_slot(
358 section->offset_within_address_space,
359 section->offset_within_address_space + int128_get64(section->size));
360
361 /* protect region against writes; begin tracking it */
362 if (on) {
363 slot->flags |= HVF_SLOT_LOG;
364 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
365 HV_MEMORY_READ);
366 /* stop tracking region*/
367 } else {
368 slot->flags &= ~HVF_SLOT_LOG;
369 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
370 HV_MEMORY_READ | HV_MEMORY_WRITE);
371 }
372}
373
374static void hvf_log_start(MemoryListener *listener,
375 MemoryRegionSection *section, int old, int new)
376{
377 if (old != 0) {
378 return;
379 }
380
381 hvf_set_dirty_tracking(section, 1);
382}
383
384static void hvf_log_stop(MemoryListener *listener,
385 MemoryRegionSection *section, int old, int new)
386{
387 if (new != 0) {
388 return;
389 }
390
391 hvf_set_dirty_tracking(section, 0);
392}
393
394static void hvf_log_sync(MemoryListener *listener,
395 MemoryRegionSection *section)
396{
397 /*
398 * sync of dirty pages is handled elsewhere; just make sure we keep
399 * tracking the region.
400 */
401 hvf_set_dirty_tracking(section, 1);
c97d6d2c
SAGDR
402}
403
404static void hvf_region_add(MemoryListener *listener,
405 MemoryRegionSection *section)
406{
407 hvf_set_phys_mem(section, true);
408}
409
410static void hvf_region_del(MemoryListener *listener,
411 MemoryRegionSection *section)
412{
413 hvf_set_phys_mem(section, false);
414}
415
416static MemoryListener hvf_memory_listener = {
417 .priority = 10,
418 .region_add = hvf_region_add,
419 .region_del = hvf_region_del,
babfa20c
SAGDR
420 .log_start = hvf_log_start,
421 .log_stop = hvf_log_stop,
422 .log_sync = hvf_log_sync,
c97d6d2c
SAGDR
423};
424
425void hvf_reset_vcpu(CPUState *cpu) {
426
427 /* TODO: this shouldn't be needed; there is already a call to
428 * cpu_synchronize_all_post_reset in vl.c
429 */
430 wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, 0);
431 wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, 0);
432 macvm_set_cr0(cpu->hvf_fd, 0x60000010);
433
434 wvmcs(cpu->hvf_fd, VMCS_CR4_MASK, CR4_VMXE_MASK);
435 wvmcs(cpu->hvf_fd, VMCS_CR4_SHADOW, 0x0);
436 wvmcs(cpu->hvf_fd, VMCS_GUEST_CR4, CR4_VMXE_MASK);
437
438 /* set VMCS guest state fields */
439 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_SELECTOR, 0xf000);
440 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_LIMIT, 0xffff);
441 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_ACCESS_RIGHTS, 0x9b);
442 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_BASE, 0xffff0000);
443
444 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_SELECTOR, 0);
445 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_LIMIT, 0xffff);
446 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_ACCESS_RIGHTS, 0x93);
447 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_BASE, 0);
448
449 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_SELECTOR, 0);
450 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_LIMIT, 0xffff);
451 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_ACCESS_RIGHTS, 0x93);
452 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_BASE, 0);
453
454 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_SELECTOR, 0);
455 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_LIMIT, 0xffff);
456 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_ACCESS_RIGHTS, 0x93);
457 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, 0);
458
459 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_SELECTOR, 0);
460 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_LIMIT, 0xffff);
461 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_ACCESS_RIGHTS, 0x93);
462 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, 0);
463
464 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_SELECTOR, 0);
465 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_LIMIT, 0xffff);
466 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_ACCESS_RIGHTS, 0x93);
467 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_BASE, 0);
468
469 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_SELECTOR, 0);
470 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT, 0);
471 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_ACCESS_RIGHTS, 0x10000);
472 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE, 0);
473
474 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_SELECTOR, 0);
475 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_LIMIT, 0);
476 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_ACCESS_RIGHTS, 0x83);
477 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_BASE, 0);
478
479 wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT, 0);
480 wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE, 0);
481
482 wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_LIMIT, 0);
483 wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_BASE, 0);
484
485 /*wvmcs(cpu->hvf_fd, VMCS_GUEST_CR2, 0x0);*/
486 wvmcs(cpu->hvf_fd, VMCS_GUEST_CR3, 0x0);
487
488 wreg(cpu->hvf_fd, HV_X86_RIP, 0xfff0);
489 wreg(cpu->hvf_fd, HV_X86_RDX, 0x623);
490 wreg(cpu->hvf_fd, HV_X86_RFLAGS, 0x2);
491 wreg(cpu->hvf_fd, HV_X86_RSP, 0x0);
492 wreg(cpu->hvf_fd, HV_X86_RAX, 0x0);
493 wreg(cpu->hvf_fd, HV_X86_RBX, 0x0);
494 wreg(cpu->hvf_fd, HV_X86_RCX, 0x0);
495 wreg(cpu->hvf_fd, HV_X86_RSI, 0x0);
496 wreg(cpu->hvf_fd, HV_X86_RDI, 0x0);
497 wreg(cpu->hvf_fd, HV_X86_RBP, 0x0);
498
499 for (int i = 0; i < 8; i++) {
500 wreg(cpu->hvf_fd, HV_X86_R8 + i, 0x0);
501 }
502
503 hv_vm_sync_tsc(0);
504 cpu->halted = 0;
505 hv_vcpu_invalidate_tlb(cpu->hvf_fd);
506 hv_vcpu_flush(cpu->hvf_fd);
507}
508
509void hvf_vcpu_destroy(CPUState *cpu)
510{
511 hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd);
512 assert_hvf_ok(ret);
513}
514
515static void dummy_signal(int sig)
516{
517}
518
519int hvf_init_vcpu(CPUState *cpu)
520{
521
522 X86CPU *x86cpu = X86_CPU(cpu);
523 CPUX86State *env = &x86cpu->env;
524 int r;
525
526 /* init cpu signals */
527 sigset_t set;
528 struct sigaction sigact;
529
530 memset(&sigact, 0, sizeof(sigact));
531 sigact.sa_handler = dummy_signal;
532 sigaction(SIG_IPI, &sigact, NULL);
533
534 pthread_sigmask(SIG_BLOCK, NULL, &set);
535 sigdelset(&set, SIG_IPI);
536
537 init_emu();
538 init_decoder();
539
540 hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
541 env->hvf_emul = g_new0(HVFX86EmulatorState, 1);
542
543 r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT);
544 cpu->vcpu_dirty = 1;
545 assert_hvf_ok(r);
546
547 if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
548 &hvf_state->hvf_caps->vmx_cap_pinbased)) {
549 abort();
550 }
551 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
552 &hvf_state->hvf_caps->vmx_cap_procbased)) {
553 abort();
554 }
555 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
556 &hvf_state->hvf_caps->vmx_cap_procbased2)) {
557 abort();
558 }
559 if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
560 &hvf_state->hvf_caps->vmx_cap_entry)) {
561 abort();
562 }
563
564 /* set VMCS control fields */
565 wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS,
566 cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
567 VMCS_PIN_BASED_CTLS_EXTINT |
568 VMCS_PIN_BASED_CTLS_NMI |
569 VMCS_PIN_BASED_CTLS_VNMI));
570 wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS,
571 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
572 VMCS_PRI_PROC_BASED_CTLS_HLT |
573 VMCS_PRI_PROC_BASED_CTLS_MWAIT |
574 VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
575 VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
576 VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
577 wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS,
578 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
579 VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
580
581 wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
582 0));
583 wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
584
585 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
586
587 hvf_reset_vcpu(cpu);
588
589 x86cpu = X86_CPU(cpu);
5b8063c4 590 x86cpu->env.xsave_buf = qemu_memalign(4096, 4096);
c97d6d2c
SAGDR
591
592 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1);
593 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1);
594 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1);
595 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1);
596 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1);
597 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1);
598 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1);
599 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1);
600 /*hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1);*/
601 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1);
602 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1);
603 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1);
604
605 return 0;
606}
607
608void hvf_disable(int shouldDisable)
609{
610 hvf_disabled = shouldDisable;
611}
612
b7394c83
SAGDR
613static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
614{
615 X86CPU *x86_cpu = X86_CPU(cpu);
616 CPUX86State *env = &x86_cpu->env;
617
618 env->exception_injected = -1;
619 env->interrupt_injected = -1;
620 env->nmi_injected = false;
621 if (idtvec_info & VMCS_IDT_VEC_VALID) {
622 switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
623 case VMCS_IDT_VEC_HWINTR:
624 case VMCS_IDT_VEC_SWINTR:
625 env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
626 break;
627 case VMCS_IDT_VEC_NMI:
628 env->nmi_injected = true;
629 break;
630 case VMCS_IDT_VEC_HWEXCEPTION:
631 case VMCS_IDT_VEC_SWEXCEPTION:
632 env->exception_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
633 break;
634 case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
635 default:
636 abort();
637 }
638 if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
639 (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
640 env->ins_len = ins_len;
641 }
642 if (idtvec_info & VMCS_INTR_DEL_ERRCODE) {
643 env->has_error_code = true;
644 env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR);
645 }
646 }
647 if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
648 VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
649 env->hflags2 |= HF2_NMI_MASK;
650 } else {
651 env->hflags2 &= ~HF2_NMI_MASK;
652 }
653 if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
654 (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
655 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
656 env->hflags |= HF_INHIBIT_IRQ_MASK;
657 } else {
658 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
659 }
660}
661
c97d6d2c
SAGDR
662int hvf_vcpu_exec(CPUState *cpu)
663{
664 X86CPU *x86_cpu = X86_CPU(cpu);
665 CPUX86State *env = &x86_cpu->env;
666 int ret = 0;
667 uint64_t rip = 0;
668
669 cpu->halted = 0;
670
671 if (hvf_process_events(cpu)) {
672 return EXCP_HLT;
673 }
674
675 do {
676 if (cpu->vcpu_dirty) {
677 hvf_put_registers(cpu);
678 cpu->vcpu_dirty = false;
679 }
680
b7394c83
SAGDR
681 if (hvf_inject_interrupts(cpu)) {
682 return EXCP_INTERRUPT;
683 }
c97d6d2c
SAGDR
684 vmx_update_tpr(cpu);
685
686 qemu_mutex_unlock_iothread();
687 if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
688 qemu_mutex_lock_iothread();
689 return EXCP_HLT;
690 }
691
692 hv_return_t r = hv_vcpu_run(cpu->hvf_fd);
693 assert_hvf_ok(r);
694
695 /* handle VMEXIT */
696 uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON);
697 uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION);
698 uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd,
699 VMCS_EXIT_INSTRUCTION_LENGTH);
b7394c83 700
c97d6d2c 701 uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
b7394c83
SAGDR
702
703 hvf_store_events(cpu, ins_len, idtvec_info);
c97d6d2c
SAGDR
704 rip = rreg(cpu->hvf_fd, HV_X86_RIP);
705 RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
706 env->eflags = RFLAGS(env);
707
708 qemu_mutex_lock_iothread();
709
710 update_apic_tpr(cpu);
711 current_cpu = cpu;
712
713 ret = 0;
714 switch (exit_reason) {
715 case EXIT_REASON_HLT: {
716 macvm_set_rip(cpu, rip + ins_len);
717 if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
718 (EFLAGS(env) & IF_MASK))
719 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
720 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
721 cpu->halted = 1;
722 ret = EXCP_HLT;
723 }
724 ret = EXCP_INTERRUPT;
725 break;
726 }
727 case EXIT_REASON_MWAIT: {
728 ret = EXCP_INTERRUPT;
729 break;
730 }
731 /* Need to check if MMIO or unmmaped fault */
732 case EXIT_REASON_EPT_FAULT:
733 {
734 hvf_slot *slot;
ff2de166 735 uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS);
c97d6d2c
SAGDR
736
737 if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
738 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
739 vmx_set_nmi_blocking(cpu);
740 }
741
742 slot = hvf_find_overlap_slot(gpa, gpa);
743 /* mmio */
babfa20c 744 if (ept_emulation_fault(slot, gpa, exit_qual)) {
c97d6d2c
SAGDR
745 struct x86_decode decode;
746
747 load_regs(cpu);
748 env->hvf_emul->fetch_rip = rip;
749
750 decode_instruction(env, &decode);
751 exec_instruction(env, &decode);
752 store_regs(cpu);
753 break;
754 }
c97d6d2c
SAGDR
755 break;
756 }
757 case EXIT_REASON_INOUT:
758 {
759 uint32_t in = (exit_qual & 8) != 0;
760 uint32_t size = (exit_qual & 7) + 1;
761 uint32_t string = (exit_qual & 16) != 0;
762 uint32_t port = exit_qual >> 16;
763 /*uint32_t rep = (exit_qual & 0x20) != 0;*/
764
c97d6d2c
SAGDR
765 if (!string && in) {
766 uint64_t val = 0;
767 load_regs(cpu);
768 hvf_handle_io(env, port, &val, 0, size, 1);
769 if (size == 1) {
770 AL(env) = val;
771 } else if (size == 2) {
772 AX(env) = val;
773 } else if (size == 4) {
774 RAX(env) = (uint32_t)val;
775 } else {
da20f5cd 776 RAX(env) = (uint64_t)val;
c97d6d2c
SAGDR
777 }
778 RIP(env) += ins_len;
779 store_regs(cpu);
780 break;
781 } else if (!string && !in) {
782 RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX);
783 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
784 macvm_set_rip(cpu, rip + ins_len);
785 break;
786 }
c97d6d2c
SAGDR
787 struct x86_decode decode;
788
789 load_regs(cpu);
790 env->hvf_emul->fetch_rip = rip;
791
792 decode_instruction(env, &decode);
e62963bf 793 assert(ins_len == decode.len);
c97d6d2c
SAGDR
794 exec_instruction(env, &decode);
795 store_regs(cpu);
796
797 break;
798 }
799 case EXIT_REASON_CPUID: {
800 uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
801 uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX);
802 uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
803 uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
804
805 cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
806
807 wreg(cpu->hvf_fd, HV_X86_RAX, rax);
808 wreg(cpu->hvf_fd, HV_X86_RBX, rbx);
809 wreg(cpu->hvf_fd, HV_X86_RCX, rcx);
810 wreg(cpu->hvf_fd, HV_X86_RDX, rdx);
811
812 macvm_set_rip(cpu, rip + ins_len);
813 break;
814 }
815 case EXIT_REASON_XSETBV: {
816 X86CPU *x86_cpu = X86_CPU(cpu);
817 CPUX86State *env = &x86_cpu->env;
818 uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
819 uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
820 uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
821
822 if (ecx) {
823 macvm_set_rip(cpu, rip + ins_len);
824 break;
825 }
826 env->xcr0 = ((uint64_t)edx << 32) | eax;
827 wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1);
828 macvm_set_rip(cpu, rip + ins_len);
829 break;
830 }
831 case EXIT_REASON_INTR_WINDOW:
832 vmx_clear_int_window_exiting(cpu);
833 ret = EXCP_INTERRUPT;
834 break;
835 case EXIT_REASON_NMI_WINDOW:
836 vmx_clear_nmi_window_exiting(cpu);
837 ret = EXCP_INTERRUPT;
838 break;
839 case EXIT_REASON_EXT_INTR:
840 /* force exit and allow io handling */
841 ret = EXCP_INTERRUPT;
842 break;
843 case EXIT_REASON_RDMSR:
844 case EXIT_REASON_WRMSR:
845 {
846 load_regs(cpu);
847 if (exit_reason == EXIT_REASON_RDMSR) {
848 simulate_rdmsr(cpu);
849 } else {
850 simulate_wrmsr(cpu);
851 }
852 RIP(env) += rvmcs(cpu->hvf_fd, VMCS_EXIT_INSTRUCTION_LENGTH);
853 store_regs(cpu);
854 break;
855 }
856 case EXIT_REASON_CR_ACCESS: {
857 int cr;
858 int reg;
859
860 load_regs(cpu);
861 cr = exit_qual & 15;
862 reg = (exit_qual >> 8) & 15;
863
864 switch (cr) {
865 case 0x0: {
866 macvm_set_cr0(cpu->hvf_fd, RRX(env, reg));
867 break;
868 }
869 case 4: {
870 macvm_set_cr4(cpu->hvf_fd, RRX(env, reg));
871 break;
872 }
873 case 8: {
874 X86CPU *x86_cpu = X86_CPU(cpu);
875 if (exit_qual & 0x10) {
876 RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
877 } else {
878 int tpr = RRX(env, reg);
879 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
880 ret = EXCP_INTERRUPT;
881 }
882 break;
883 }
884 default:
2d9178d9 885 error_report("Unrecognized CR %d", cr);
c97d6d2c
SAGDR
886 abort();
887 }
888 RIP(env) += ins_len;
889 store_regs(cpu);
890 break;
891 }
892 case EXIT_REASON_APIC_ACCESS: { /* TODO */
893 struct x86_decode decode;
894
895 load_regs(cpu);
896 env->hvf_emul->fetch_rip = rip;
897
898 decode_instruction(env, &decode);
899 exec_instruction(env, &decode);
900 store_regs(cpu);
901 break;
902 }
903 case EXIT_REASON_TPR: {
904 ret = 1;
905 break;
906 }
907 case EXIT_REASON_TASK_SWITCH: {
908 uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
909 x68_segment_selector sel = {.sel = exit_qual & 0xffff};
910 vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
911 vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
912 & VMCS_INTR_T_MASK);
913 break;
914 }
915 case EXIT_REASON_TRIPLE_FAULT: {
916 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
917 ret = EXCP_INTERRUPT;
918 break;
919 }
920 case EXIT_REASON_RDPMC:
921 wreg(cpu->hvf_fd, HV_X86_RAX, 0);
922 wreg(cpu->hvf_fd, HV_X86_RDX, 0);
923 macvm_set_rip(cpu, rip + ins_len);
924 break;
925 case VMX_REASON_VMCALL:
3010460f
SAGDR
926 env->exception_injected = EXCP0D_GPF;
927 env->has_error_code = true;
928 env->error_code = 0;
c97d6d2c
SAGDR
929 break;
930 default:
2d9178d9 931 error_report("%llx: unhandled exit %llx", rip, exit_reason);
c97d6d2c
SAGDR
932 }
933 } while (ret == 0);
934
935 return ret;
936}
937
938static bool hvf_allowed;
939
940static int hvf_accel_init(MachineState *ms)
941{
942 int x;
943 hv_return_t ret;
944 HVFState *s;
945
946 hvf_disable(0);
947 ret = hv_vm_create(HV_VM_DEFAULT);
948 assert_hvf_ok(ret);
949
950 s = g_new0(HVFState, 1);
951
952 s->num_slots = 32;
953 for (x = 0; x < s->num_slots; ++x) {
954 s->slots[x].size = 0;
955 s->slots[x].slot_id = x;
956 }
957
958 hvf_state = s;
959 cpu_interrupt_handler = hvf_handle_interrupt;
960 memory_listener_register(&hvf_memory_listener, &address_space_memory);
961 return 0;
962}
963
964static void hvf_accel_class_init(ObjectClass *oc, void *data)
965{
966 AccelClass *ac = ACCEL_CLASS(oc);
967 ac->name = "HVF";
968 ac->init_machine = hvf_accel_init;
969 ac->allowed = &hvf_allowed;
970}
971
972static const TypeInfo hvf_accel_type = {
973 .name = TYPE_HVF_ACCEL,
974 .parent = TYPE_ACCEL,
975 .class_init = hvf_accel_class_init,
976};
977
978static void hvf_type_init(void)
979{
980 type_register_static(&hvf_accel_type);
981}
982
983type_init(hvf_type_init);