]> git.proxmox.com Git - mirror_qemu.git/blame - target/ppc/kvm.c
hw/ppc: e500: Add missing #address-cells and #size-cells in the eTSEC node
[mirror_qemu.git] / target / ppc / kvm.c
CommitLineData
d76d1650
AJ
1/*
2 * PowerPC implementation of KVM hooks
3 *
4 * Copyright IBM Corp. 2007
90dc8812 5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
d76d1650
AJ
6 *
7 * Authors:
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
14 *
15 */
16
0d75590d 17#include "qemu/osdep.h"
eadaada1 18#include <dirent.h>
d76d1650 19#include <sys/ioctl.h>
4656e1f0 20#include <sys/vfs.h>
d76d1650
AJ
21
22#include <linux/kvm.h>
23
24#include "qemu-common.h"
30f4b05b 25#include "qapi/error.h"
072ed5f2 26#include "qemu/error-report.h"
33c11879 27#include "cpu.h"
715d4b96 28#include "cpu-models.h"
1de7afc9 29#include "qemu/timer.h"
b3946626 30#include "sysemu/hw_accel.h"
d76d1650 31#include "kvm_ppc.h"
9c17d615
PB
32#include "sysemu/cpus.h"
33#include "sysemu/device_tree.h"
d5aea6f3 34#include "mmu-hash64.h"
d76d1650 35
f61b4bed 36#include "hw/sysbus.h"
0d09e41a 37#include "hw/ppc/spapr.h"
7ebaf795 38#include "hw/ppc/spapr_cpu_core.h"
650d103d 39#include "hw/hw.h"
98a8b524 40#include "hw/ppc/ppc.h"
ca77ee28 41#include "migration/qemu-file-types.h"
31f2cb8f 42#include "sysemu/watchdog.h"
b36f100e 43#include "trace.h"
88365d17 44#include "exec/gdbstub.h"
4c663752 45#include "exec/memattrs.h"
9c607668 46#include "exec/ram_addr.h"
2d103aae 47#include "sysemu/hostmem.h"
f348b6d1 48#include "qemu/cutils.h"
db725815 49#include "qemu/main-loop.h"
9c607668 50#include "qemu/mmap-alloc.h"
f3d9f303 51#include "elf.h"
c64abd1f 52#include "sysemu/kvm_int.h"
f61b4bed 53
eadaada1
AG
54#define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
55
6e0552a3
FR
56#define DEBUG_RETURN_GUEST 0
57#define DEBUG_RETURN_GDB 1
58
94a8d39a
JK
59const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
60 KVM_CAP_LAST_INFO
61};
62
c995e942 63static int cap_interrupt_unset;
90dc8812 64static int cap_segstate;
90dc8812 65static int cap_booke_sregs;
e97c3636 66static int cap_ppc_smt;
fa98fbfc 67static int cap_ppc_smt_possible;
0f5cb298 68static int cap_spapr_tce;
d6ee2a7c 69static int cap_spapr_tce_64;
da95324e 70static int cap_spapr_multitce;
9bb62a07 71static int cap_spapr_vfio;
f1af19d7 72static int cap_hior;
d67d40ea 73static int cap_one_reg;
3b961124 74static int cap_epr;
31f2cb8f 75static int cap_ppc_watchdog;
9b00ea49 76static int cap_papr;
e68cb8b4 77static int cap_htab_fd;
87a91de6 78static int cap_fixup_hcalls;
bac3bf28 79static int cap_htm; /* Hardware transactional memory support */
cf1c4cce
SB
80static int cap_mmu_radix;
81static int cap_mmu_hash_v3;
38afd772 82static int cap_xive;
b55d295e 83static int cap_resize_hpt;
c363a37a 84static int cap_ppc_pvr_compat;
8acc2ae5
SJS
85static int cap_ppc_safe_cache;
86static int cap_ppc_safe_bounds_check;
87static int cap_ppc_safe_indirect_branch;
8ff43ee4 88static int cap_ppc_count_cache_flush_assist;
b9a477b7 89static int cap_ppc_nested_kvm_hv;
7d050527 90static int cap_large_decr;
ec010c00 91static int cap_fwnmi;
fc87e185 92
3c902d44
BB
93static uint32_t debug_inst_opcode;
94
c995e942
DG
95/*
96 * Check whether we are running with KVM-PR (instead of KVM-HV). This
96c9cff0
TH
97 * should only be used for fallback tests - generally we should use
98 * explicit capabilities for the features we want, rather than
c995e942
DG
99 * assuming what is/isn't available depending on the KVM variant.
100 */
96c9cff0
TH
101static bool kvmppc_is_pr(KVMState *ks)
102{
103 /* Assume KVM-PR if the GET_PVINFO capability is available */
70a0c19e 104 return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
96c9cff0
TH
105}
106
165dc3ed 107static int kvm_ppc_register_host_cpu_type(void);
8acc2ae5 108static void kvmppc_get_cpu_characteristics(KVMState *s);
7d050527 109static int kvmppc_get_dec_bits(void);
5ba4576b 110
b16565b3 111int kvm_arch_init(MachineState *ms, KVMState *s)
d76d1650 112{
fc87e185 113 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
90dc8812 114 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
90dc8812 115 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
6977afda 116 cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
0f5cb298 117 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
d6ee2a7c 118 cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
da95324e 119 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
9ded780c 120 cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
d67d40ea 121 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
f1af19d7 122 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
3b961124 123 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
31f2cb8f 124 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
c995e942
DG
125 /*
126 * Note: we don't set cap_papr here, because this capability is
127 * only activated after this by kvmppc_set_papr()
128 */
6977afda 129 cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
87a91de6 130 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
fa98fbfc 131 cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
bac3bf28 132 cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
cf1c4cce
SB
133 cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
134 cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
38afd772 135 cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
b55d295e 136 cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
8acc2ae5 137 kvmppc_get_cpu_characteristics(s);
b9a477b7 138 cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
7d050527 139 cap_large_decr = kvmppc_get_dec_bits();
ec010c00 140 cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
c363a37a
DHB
141 /*
142 * Note: setting it to false because there is not such capability
143 * in KVM at this moment.
144 *
145 * TODO: call kvm_vm_check_extension() with the right capability
c995e942
DG
146 * after the kernel starts implementing it.
147 */
c363a37a 148 cap_ppc_pvr_compat = false;
fc87e185 149
1e8f51e8
SB
150 if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
151 error_report("KVM: Host kernel doesn't have level irq capability");
152 exit(1);
fc87e185
AG
153 }
154
165dc3ed 155 kvm_ppc_register_host_cpu_type();
5ba4576b 156
d76d1650
AJ
157 return 0;
158}
159
4376c40d 160int kvm_arch_irqchip_create(KVMState *s)
d525ffab
PB
161{
162 return 0;
163}
164
1bc22652 165static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
d76d1650 166{
1bc22652
AF
167 CPUPPCState *cenv = &cpu->env;
168 CPUState *cs = CPU(cpu);
861bbc80 169 struct kvm_sregs sregs;
5666ca4a
SW
170 int ret;
171
172 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
c995e942
DG
173 /*
174 * What we're really trying to say is "if we're on BookE, we
175 * use the native PVR for now". This is the only sane way to
176 * check it though, so we potentially confuse users that they
177 * can run BookE guests on BookS. Let's hope nobody dares
178 * enough :)
179 */
5666ca4a
SW
180 return 0;
181 } else {
90dc8812 182 if (!cap_segstate) {
64e07be5
AG
183 fprintf(stderr, "kvm error: missing PVR setting capability\n");
184 return -ENOSYS;
5666ca4a 185 }
5666ca4a
SW
186 }
187
1bc22652 188 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
5666ca4a
SW
189 if (ret) {
190 return ret;
191 }
861bbc80
AG
192
193 sregs.pvr = cenv->spr[SPR_PVR];
1bc22652 194 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
5666ca4a
SW
195}
196
93dd5e85 197/* Set up a shared TLB array with KVM */
1bc22652 198static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
93dd5e85 199{
1bc22652
AF
200 CPUPPCState *env = &cpu->env;
201 CPUState *cs = CPU(cpu);
93dd5e85
SW
202 struct kvm_book3e_206_tlb_params params = {};
203 struct kvm_config_tlb cfg = {};
93dd5e85
SW
204 unsigned int entries = 0;
205 int ret, i;
206
207 if (!kvm_enabled() ||
a60f24b5 208 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
93dd5e85
SW
209 return 0;
210 }
211
212 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
213
214 for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
215 params.tlb_sizes[i] = booke206_tlb_size(env, i);
216 params.tlb_ways[i] = booke206_tlb_ways(env, i);
217 entries += params.tlb_sizes[i];
218 }
219
220 assert(entries == env->nb_tlb);
221 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
222
223 env->tlb_dirty = true;
224
225 cfg.array = (uintptr_t)env->tlb.tlbm;
226 cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
227 cfg.params = (uintptr_t)&params;
228 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
229
48add816 230 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
93dd5e85
SW
231 if (ret < 0) {
232 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
233 __func__, strerror(-ret));
234 return ret;
235 }
236
237 env->kvm_sw_tlb = true;
238 return 0;
239}
240
4656e1f0
BH
241
242#if defined(TARGET_PPC64)
ab256960 243static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
4656e1f0 244{
71d0f1ea 245 int ret;
a60f24b5 246
ab256960
GK
247 assert(kvm_state != NULL);
248
249 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
71d0f1ea
GK
250 error_setg(errp, "KVM doesn't expose the MMU features it supports");
251 error_append_hint(errp, "Consider switching to a newer KVM\n");
252 return;
4656e1f0 253 }
4656e1f0 254
ab256960 255 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
71d0f1ea
GK
256 if (ret == 0) {
257 return;
4656e1f0
BH
258 }
259
71d0f1ea
GK
260 error_setg_errno(errp, -ret,
261 "KVM failed to provide the MMU features it supports");
4656e1f0
BH
262}
263
c64abd1f
SB
264struct ppc_radix_page_info *kvm_get_radix_page_info(void)
265{
4f7f5893 266 KVMState *s = KVM_STATE(current_accel());
c64abd1f
SB
267 struct ppc_radix_page_info *radix_page_info;
268 struct kvm_ppc_rmmu_info rmmu_info;
269 int i;
270
271 if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
272 return NULL;
273 }
274 if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
275 return NULL;
276 }
277 radix_page_info = g_malloc0(sizeof(*radix_page_info));
278 radix_page_info->count = 0;
279 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
280 if (rmmu_info.ap_encodings[i]) {
281 radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
282 radix_page_info->count++;
283 }
284 }
285 return radix_page_info;
286}
287
b4db5413
SJS
288target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
289 bool radix, bool gtse,
290 uint64_t proc_tbl)
291{
292 CPUState *cs = CPU(cpu);
293 int ret;
294 uint64_t flags = 0;
295 struct kvm_ppc_mmuv3_cfg cfg = {
296 .process_table = proc_tbl,
297 };
298
299 if (radix) {
300 flags |= KVM_PPC_MMUV3_RADIX;
301 }
302 if (gtse) {
303 flags |= KVM_PPC_MMUV3_GTSE;
304 }
305 cfg.flags = flags;
306 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
307 switch (ret) {
308 case 0:
309 return H_SUCCESS;
310 case -EINVAL:
311 return H_PARAMETER;
312 case -ENODEV:
313 return H_NOT_AVAILABLE;
314 default:
315 return H_HARDWARE;
316 }
317}
318
24c6863c
DG
319bool kvmppc_hpt_needs_host_contiguous_pages(void)
320{
24c6863c
DG
321 static struct kvm_ppc_smmu_info smmu_info;
322
323 if (!kvm_enabled()) {
324 return false;
325 }
326
ab256960 327 kvm_get_smmu_info(&smmu_info, &error_fatal);
24c6863c
DG
328 return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
329}
330
e5ca28ec 331void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
4656e1f0 332{
e5ca28ec 333 struct kvm_ppc_smmu_info smmu_info;
4656e1f0 334 int iq, ik, jq, jk;
71d0f1ea 335 Error *local_err = NULL;
4656e1f0 336
e5ca28ec
DG
337 /* For now, we only have anything to check on hash64 MMUs */
338 if (!cpu->hash64_opts || !kvm_enabled()) {
4656e1f0
BH
339 return;
340 }
341
ab256960 342 kvm_get_smmu_info(&smmu_info, &local_err);
71d0f1ea
GK
343 if (local_err) {
344 error_propagate(errp, local_err);
345 return;
346 }
4656e1f0 347
e5ca28ec
DG
348 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
349 && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
350 error_setg(errp,
351 "KVM does not support 1TiB segments which guest expects");
352 return;
df587133 353 }
4656e1f0 354
e5ca28ec
DG
355 if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
356 error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
357 smmu_info.slb_size, cpu->hash64_opts->slb_size);
358 return;
90da0d5a
BH
359 }
360
08215d8f 361 /*
e5ca28ec
DG
362 * Verify that every pagesize supported by the cpu model is
363 * supported by KVM with the same encodings
08215d8f 364 */
e5ca28ec 365 for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
b07c59f7 366 PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
e5ca28ec 367 struct kvm_ppc_one_seg_page_size *ksps;
4656e1f0 368
e5ca28ec
DG
369 for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
370 if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
4656e1f0
BH
371 break;
372 }
373 }
e5ca28ec
DG
374 if (ik >= ARRAY_SIZE(smmu_info.sps)) {
375 error_setg(errp, "KVM doesn't support for base page shift %u",
376 qsps->page_shift);
377 return;
378 }
379
380 ksps = &smmu_info.sps[ik];
381 if (ksps->slb_enc != qsps->slb_enc) {
382 error_setg(errp,
383"KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
384 ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
385 return;
386 }
387
388 for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
389 for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
390 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
391 break;
392 }
393 }
394
395 if (jk >= ARRAY_SIZE(ksps->enc)) {
396 error_setg(errp, "KVM doesn't support page shift %u/%u",
397 qsps->enc[jq].page_shift, qsps->page_shift);
398 return;
399 }
400 if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
401 error_setg(errp,
402"KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
403 ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
404 qsps->page_shift, qsps->enc[jq].pte_enc);
405 return;
406 }
4656e1f0
BH
407 }
408 }
4656e1f0 409
e5ca28ec 410 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
c995e942
DG
411 /*
412 * Mostly what guest pagesizes we can use are related to the
e5ca28ec
DG
413 * host pages used to map guest RAM, which is handled in the
414 * platform code. Cache-Inhibited largepages (64k) however are
415 * used for I/O, so if they're mapped to the host at all it
416 * will be a normal mapping, not a special hugepage one used
c995e942
DG
417 * for RAM.
418 */
038adc2f 419 if (qemu_real_host_page_size < 0x10000) {
e5ca28ec
DG
420 error_setg(errp,
421 "KVM can't supply 64kiB CI pages, which guest expects");
422 }
423 }
4656e1f0 424}
4656e1f0
BH
425#endif /* !defined (TARGET_PPC64) */
426
b164e48e
EH
427unsigned long kvm_arch_vcpu_id(CPUState *cpu)
428{
2e886fb3 429 return POWERPC_CPU(cpu)->vcpu_id;
b164e48e
EH
430}
431
c995e942
DG
432/*
433 * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports
434 * only 1 watchpoint, so array size of 4 is sufficient for now.
88365d17
BB
435 */
436#define MAX_HW_BKPTS 4
437
438static struct HWBreakpoint {
439 target_ulong addr;
440 int type;
441} hw_debug_points[MAX_HW_BKPTS];
442
443static CPUWatchpoint hw_watchpoint;
444
445/* Default there is no breakpoint and watchpoint supported */
446static int max_hw_breakpoint;
447static int max_hw_watchpoint;
448static int nb_hw_breakpoint;
449static int nb_hw_watchpoint;
450
451static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
452{
453 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
454 max_hw_breakpoint = 2;
455 max_hw_watchpoint = 2;
456 }
457
458 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
459 fprintf(stderr, "Error initializing h/w breakpoints\n");
460 return;
461 }
462}
463
20d695a9 464int kvm_arch_init_vcpu(CPUState *cs)
5666ca4a 465{
20d695a9
AF
466 PowerPCCPU *cpu = POWERPC_CPU(cs);
467 CPUPPCState *cenv = &cpu->env;
5666ca4a
SW
468 int ret;
469
4656e1f0 470 /* Synchronize sregs with kvm */
1bc22652 471 ret = kvm_arch_sync_sregs(cpu);
5666ca4a 472 if (ret) {
388e47c7
TH
473 if (ret == -EINVAL) {
474 error_report("Register sync failed... If you're using kvm-hv.ko,"
475 " only \"-cpu host\" is possible");
476 }
5666ca4a
SW
477 return ret;
478 }
861bbc80 479
93dd5e85
SW
480 switch (cenv->mmu_model) {
481 case POWERPC_MMU_BOOKE206:
7f516c96 482 /* This target supports access to KVM's guest TLB */
1bc22652 483 ret = kvm_booke206_tlb_init(cpu);
93dd5e85 484 break;
7f516c96
TH
485 case POWERPC_MMU_2_07:
486 if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
c995e942
DG
487 /*
488 * KVM-HV has transactional memory on POWER8 also without
489 * the KVM_CAP_PPC_HTM extension, so enable it here
136fbf65 490 * instead as long as it's available to userspace on the
c995e942
DG
491 * host.
492 */
f3d9f303
SB
493 if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
494 cap_htm = true;
495 }
7f516c96
TH
496 }
497 break;
93dd5e85
SW
498 default:
499 break;
500 }
501
3c902d44 502 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
88365d17 503 kvmppc_hw_debug_points_init(cenv);
3c902d44 504
861bbc80 505 return ret;
d76d1650
AJ
506}
507
b1115c99
LA
508int kvm_arch_destroy_vcpu(CPUState *cs)
509{
510 return 0;
511}
512
1bc22652 513static void kvm_sw_tlb_put(PowerPCCPU *cpu)
93dd5e85 514{
1bc22652
AF
515 CPUPPCState *env = &cpu->env;
516 CPUState *cs = CPU(cpu);
93dd5e85
SW
517 struct kvm_dirty_tlb dirty_tlb;
518 unsigned char *bitmap;
519 int ret;
520
521 if (!env->kvm_sw_tlb) {
522 return;
523 }
524
525 bitmap = g_malloc((env->nb_tlb + 7) / 8);
526 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
527
528 dirty_tlb.bitmap = (uintptr_t)bitmap;
529 dirty_tlb.num_dirty = env->nb_tlb;
530
1bc22652 531 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
93dd5e85
SW
532 if (ret) {
533 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
534 __func__, strerror(-ret));
535 }
536
537 g_free(bitmap);
538}
539
d67d40ea
DG
540static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
541{
542 PowerPCCPU *cpu = POWERPC_CPU(cs);
543 CPUPPCState *env = &cpu->env;
544 union {
545 uint32_t u32;
546 uint64_t u64;
547 } val;
548 struct kvm_one_reg reg = {
549 .id = id,
550 .addr = (uintptr_t) &val,
551 };
552 int ret;
553
554 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
555 if (ret != 0) {
b36f100e 556 trace_kvm_failed_spr_get(spr, strerror(errno));
d67d40ea
DG
557 } else {
558 switch (id & KVM_REG_SIZE_MASK) {
559 case KVM_REG_SIZE_U32:
560 env->spr[spr] = val.u32;
561 break;
562
563 case KVM_REG_SIZE_U64:
564 env->spr[spr] = val.u64;
565 break;
566
567 default:
568 /* Don't handle this size yet */
569 abort();
570 }
571 }
572}
573
574static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
575{
576 PowerPCCPU *cpu = POWERPC_CPU(cs);
577 CPUPPCState *env = &cpu->env;
578 union {
579 uint32_t u32;
580 uint64_t u64;
581 } val;
582 struct kvm_one_reg reg = {
583 .id = id,
584 .addr = (uintptr_t) &val,
585 };
586 int ret;
587
588 switch (id & KVM_REG_SIZE_MASK) {
589 case KVM_REG_SIZE_U32:
590 val.u32 = env->spr[spr];
591 break;
592
593 case KVM_REG_SIZE_U64:
594 val.u64 = env->spr[spr];
595 break;
596
597 default:
598 /* Don't handle this size yet */
599 abort();
600 }
601
602 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
603 if (ret != 0) {
b36f100e 604 trace_kvm_failed_spr_set(spr, strerror(errno));
d67d40ea
DG
605 }
606}
607
70b79849
DG
608static int kvm_put_fp(CPUState *cs)
609{
610 PowerPCCPU *cpu = POWERPC_CPU(cs);
611 CPUPPCState *env = &cpu->env;
612 struct kvm_one_reg reg;
613 int i;
614 int ret;
615
616 if (env->insns_flags & PPC_FLOAT) {
617 uint64_t fpscr = env->fpscr;
618 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
619
620 reg.id = KVM_REG_PPC_FPSCR;
621 reg.addr = (uintptr_t)&fpscr;
622 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
623 if (ret < 0) {
8d83cbf1 624 trace_kvm_failed_fpscr_set(strerror(errno));
70b79849
DG
625 return ret;
626 }
627
628 for (i = 0; i < 32; i++) {
629 uint64_t vsr[2];
ef96e3ae
MCA
630 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
631 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
70b79849 632
3a4b791b 633#ifdef HOST_WORDS_BIGENDIAN
ef96e3ae
MCA
634 vsr[0] = float64_val(*fpr);
635 vsr[1] = *vsrl;
3a4b791b 636#else
ef96e3ae
MCA
637 vsr[0] = *vsrl;
638 vsr[1] = float64_val(*fpr);
3a4b791b 639#endif
70b79849
DG
640 reg.addr = (uintptr_t) &vsr;
641 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
642
643 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
644 if (ret < 0) {
8d83cbf1
GK
645 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
646 strerror(errno));
70b79849
DG
647 return ret;
648 }
649 }
650 }
651
652 if (env->insns_flags & PPC_ALTIVEC) {
653 reg.id = KVM_REG_PPC_VSCR;
654 reg.addr = (uintptr_t)&env->vscr;
655 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
656 if (ret < 0) {
8d83cbf1 657 trace_kvm_failed_vscr_set(strerror(errno));
70b79849
DG
658 return ret;
659 }
660
661 for (i = 0; i < 32; i++) {
662 reg.id = KVM_REG_PPC_VR(i);
ef96e3ae 663 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
70b79849
DG
664 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
665 if (ret < 0) {
8d83cbf1 666 trace_kvm_failed_vr_set(i, strerror(errno));
70b79849
DG
667 return ret;
668 }
669 }
670 }
671
672 return 0;
673}
674
675static int kvm_get_fp(CPUState *cs)
676{
677 PowerPCCPU *cpu = POWERPC_CPU(cs);
678 CPUPPCState *env = &cpu->env;
679 struct kvm_one_reg reg;
680 int i;
681 int ret;
682
683 if (env->insns_flags & PPC_FLOAT) {
684 uint64_t fpscr;
685 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
686
687 reg.id = KVM_REG_PPC_FPSCR;
688 reg.addr = (uintptr_t)&fpscr;
689 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
690 if (ret < 0) {
8d83cbf1 691 trace_kvm_failed_fpscr_get(strerror(errno));
70b79849
DG
692 return ret;
693 } else {
694 env->fpscr = fpscr;
695 }
696
697 for (i = 0; i < 32; i++) {
698 uint64_t vsr[2];
ef96e3ae
MCA
699 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
700 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
70b79849
DG
701
702 reg.addr = (uintptr_t) &vsr;
703 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
704
705 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
706 if (ret < 0) {
8d83cbf1
GK
707 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
708 strerror(errno));
70b79849
DG
709 return ret;
710 } else {
3a4b791b 711#ifdef HOST_WORDS_BIGENDIAN
ef96e3ae 712 *fpr = vsr[0];
70b79849 713 if (vsx) {
ef96e3ae 714 *vsrl = vsr[1];
70b79849 715 }
3a4b791b 716#else
ef96e3ae 717 *fpr = vsr[1];
3a4b791b 718 if (vsx) {
ef96e3ae 719 *vsrl = vsr[0];
3a4b791b
GK
720 }
721#endif
70b79849
DG
722 }
723 }
724 }
725
726 if (env->insns_flags & PPC_ALTIVEC) {
727 reg.id = KVM_REG_PPC_VSCR;
728 reg.addr = (uintptr_t)&env->vscr;
729 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
730 if (ret < 0) {
8d83cbf1 731 trace_kvm_failed_vscr_get(strerror(errno));
70b79849
DG
732 return ret;
733 }
734
735 for (i = 0; i < 32; i++) {
736 reg.id = KVM_REG_PPC_VR(i);
ef96e3ae 737 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
70b79849
DG
738 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
739 if (ret < 0) {
8d83cbf1 740 trace_kvm_failed_vr_get(i, strerror(errno));
70b79849
DG
741 return ret;
742 }
743 }
744 }
745
746 return 0;
747}
748
9b00ea49
DG
749#if defined(TARGET_PPC64)
750static int kvm_get_vpa(CPUState *cs)
751{
752 PowerPCCPU *cpu = POWERPC_CPU(cs);
ce2918cb 753 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
9b00ea49
DG
754 struct kvm_one_reg reg;
755 int ret;
756
757 reg.id = KVM_REG_PPC_VPA_ADDR;
7388efaf 758 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
9b00ea49
DG
759 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
760 if (ret < 0) {
8d83cbf1 761 trace_kvm_failed_vpa_addr_get(strerror(errno));
9b00ea49
DG
762 return ret;
763 }
764
7388efaf
DG
765 assert((uintptr_t)&spapr_cpu->slb_shadow_size
766 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
9b00ea49 767 reg.id = KVM_REG_PPC_VPA_SLB;
7388efaf 768 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
9b00ea49
DG
769 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
770 if (ret < 0) {
8d83cbf1 771 trace_kvm_failed_slb_get(strerror(errno));
9b00ea49
DG
772 return ret;
773 }
774
7388efaf
DG
775 assert((uintptr_t)&spapr_cpu->dtl_size
776 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
9b00ea49 777 reg.id = KVM_REG_PPC_VPA_DTL;
7388efaf 778 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
9b00ea49
DG
779 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
780 if (ret < 0) {
8d83cbf1 781 trace_kvm_failed_dtl_get(strerror(errno));
9b00ea49
DG
782 return ret;
783 }
784
785 return 0;
786}
787
788static int kvm_put_vpa(CPUState *cs)
789{
790 PowerPCCPU *cpu = POWERPC_CPU(cs);
ce2918cb 791 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
9b00ea49
DG
792 struct kvm_one_reg reg;
793 int ret;
794
c995e942
DG
795 /*
796 * SLB shadow or DTL can't be registered unless a master VPA is
9b00ea49
DG
797 * registered. That means when restoring state, if a VPA *is*
798 * registered, we need to set that up first. If not, we need to
c995e942
DG
799 * deregister the others before deregistering the master VPA
800 */
7388efaf
DG
801 assert(spapr_cpu->vpa_addr
802 || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
9b00ea49 803
7388efaf 804 if (spapr_cpu->vpa_addr) {
9b00ea49 805 reg.id = KVM_REG_PPC_VPA_ADDR;
7388efaf 806 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
9b00ea49
DG
807 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
808 if (ret < 0) {
8d83cbf1 809 trace_kvm_failed_vpa_addr_set(strerror(errno));
9b00ea49
DG
810 return ret;
811 }
812 }
813
7388efaf
DG
814 assert((uintptr_t)&spapr_cpu->slb_shadow_size
815 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
9b00ea49 816 reg.id = KVM_REG_PPC_VPA_SLB;
7388efaf 817 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
9b00ea49
DG
818 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
819 if (ret < 0) {
8d83cbf1 820 trace_kvm_failed_slb_set(strerror(errno));
9b00ea49
DG
821 return ret;
822 }
823
7388efaf
DG
824 assert((uintptr_t)&spapr_cpu->dtl_size
825 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
9b00ea49 826 reg.id = KVM_REG_PPC_VPA_DTL;
7388efaf 827 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
9b00ea49
DG
828 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
829 if (ret < 0) {
8d83cbf1 830 trace_kvm_failed_dtl_set(strerror(errno));
9b00ea49
DG
831 return ret;
832 }
833
7388efaf 834 if (!spapr_cpu->vpa_addr) {
9b00ea49 835 reg.id = KVM_REG_PPC_VPA_ADDR;
7388efaf 836 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
9b00ea49
DG
837 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
838 if (ret < 0) {
8d83cbf1 839 trace_kvm_failed_null_vpa_addr_set(strerror(errno));
9b00ea49
DG
840 return ret;
841 }
842 }
843
844 return 0;
845}
846#endif /* TARGET_PPC64 */
847
e5c0d3ce 848int kvmppc_put_books_sregs(PowerPCCPU *cpu)
a7a00a72
DG
849{
850 CPUPPCState *env = &cpu->env;
851 struct kvm_sregs sregs;
852 int i;
853
854 sregs.pvr = env->spr[SPR_PVR];
855
1ec26c75
GK
856 if (cpu->vhyp) {
857 PPCVirtualHypervisorClass *vhc =
858 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
859 sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
860 } else {
861 sregs.u.s.sdr1 = env->spr[SPR_SDR1];
862 }
a7a00a72
DG
863
864 /* Sync SLB */
865#ifdef TARGET_PPC64
866 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
867 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
868 if (env->slb[i].esid & SLB_ESID_V) {
869 sregs.u.s.ppc64.slb[i].slbe |= i;
870 }
871 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
872 }
873#endif
874
875 /* Sync SRs */
876 for (i = 0; i < 16; i++) {
877 sregs.u.s.ppc32.sr[i] = env->sr[i];
878 }
879
880 /* Sync BATs */
881 for (i = 0; i < 8; i++) {
882 /* Beware. We have to swap upper and lower bits here */
883 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
884 | env->DBAT[1][i];
885 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
886 | env->IBAT[1][i];
887 }
888
889 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
890}
891
20d695a9 892int kvm_arch_put_registers(CPUState *cs, int level)
d76d1650 893{
20d695a9
AF
894 PowerPCCPU *cpu = POWERPC_CPU(cs);
895 CPUPPCState *env = &cpu->env;
d76d1650
AJ
896 struct kvm_regs regs;
897 int ret;
898 int i;
899
1bc22652
AF
900 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
901 if (ret < 0) {
d76d1650 902 return ret;
1bc22652 903 }
d76d1650
AJ
904
905 regs.ctr = env->ctr;
906 regs.lr = env->lr;
da91a00f 907 regs.xer = cpu_read_xer(env);
d76d1650
AJ
908 regs.msr = env->msr;
909 regs.pc = env->nip;
910
911 regs.srr0 = env->spr[SPR_SRR0];
912 regs.srr1 = env->spr[SPR_SRR1];
913
914 regs.sprg0 = env->spr[SPR_SPRG0];
915 regs.sprg1 = env->spr[SPR_SPRG1];
916 regs.sprg2 = env->spr[SPR_SPRG2];
917 regs.sprg3 = env->spr[SPR_SPRG3];
918 regs.sprg4 = env->spr[SPR_SPRG4];
919 regs.sprg5 = env->spr[SPR_SPRG5];
920 regs.sprg6 = env->spr[SPR_SPRG6];
921 regs.sprg7 = env->spr[SPR_SPRG7];
922
90dc8812
SW
923 regs.pid = env->spr[SPR_BOOKE_PID];
924
c995e942 925 for (i = 0; i < 32; i++) {
d76d1650 926 regs.gpr[i] = env->gpr[i];
c995e942 927 }
d76d1650 928
4bddaf55
AK
929 regs.cr = 0;
930 for (i = 0; i < 8; i++) {
931 regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
932 }
933
1bc22652 934 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
c995e942 935 if (ret < 0) {
d76d1650 936 return ret;
c995e942 937 }
d76d1650 938
70b79849
DG
939 kvm_put_fp(cs);
940
93dd5e85 941 if (env->tlb_dirty) {
1bc22652 942 kvm_sw_tlb_put(cpu);
93dd5e85
SW
943 env->tlb_dirty = false;
944 }
945
f1af19d7 946 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
a7a00a72
DG
947 ret = kvmppc_put_books_sregs(cpu);
948 if (ret < 0) {
f1af19d7
DG
949 return ret;
950 }
951 }
952
953 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
d67d40ea
DG
954 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
955 }
f1af19d7 956
d67d40ea
DG
957 if (cap_one_reg) {
958 int i;
959
c995e942
DG
960 /*
961 * We deliberately ignore errors here, for kernels which have
d67d40ea
DG
962 * the ONE_REG calls, but don't support the specific
963 * registers, there's a reasonable chance things will still
c995e942
DG
964 * work, at least until we try to migrate.
965 */
d67d40ea
DG
966 for (i = 0; i < 1024; i++) {
967 uint64_t id = env->spr_cb[i].one_reg_id;
968
969 if (id != 0) {
970 kvm_put_one_spr(cs, id, i);
971 }
f1af19d7 972 }
9b00ea49
DG
973
974#ifdef TARGET_PPC64
80b3f79b
AK
975 if (msr_ts) {
976 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
977 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
978 }
979 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
980 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
981 }
982 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
983 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
984 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
985 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
986 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
987 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
988 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
989 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
990 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
991 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
992 }
993
9b00ea49
DG
994 if (cap_papr) {
995 if (kvm_put_vpa(cs) < 0) {
8d83cbf1 996 trace_kvm_failed_put_vpa();
9b00ea49
DG
997 }
998 }
98a8b524
AK
999
1000 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
972bd576
AK
1001
1002 if (level > KVM_PUT_RUNTIME_STATE) {
1003 kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1004 }
9b00ea49 1005#endif /* TARGET_PPC64 */
f1af19d7
DG
1006 }
1007
d76d1650
AJ
1008 return ret;
1009}
1010
c371c2e3
BB
1011static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1012{
1013 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1014}
1015
a7a00a72
DG
1016static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1017{
1018 CPUPPCState *env = &cpu->env;
1019 struct kvm_sregs sregs;
1020 int ret;
1021
1022 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1023 if (ret < 0) {
1024 return ret;
1025 }
1026
1027 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1028 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1029 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1030 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1031 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1032 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1033 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1034 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1035 env->spr[SPR_DECR] = sregs.u.e.dec;
1036 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1037 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1038 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1039 }
1040
1041 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1042 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1043 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1044 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1045 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1046 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1047 }
1048
1049 if (sregs.u.e.features & KVM_SREGS_E_64) {
1050 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1051 }
1052
1053 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1054 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1055 }
1056
1057 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1058 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1059 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0);
1060 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1061 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1);
1062 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1063 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2);
1064 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1065 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3);
1066 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1067 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4);
1068 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1069 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5);
1070 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1071 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6);
1072 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1073 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7);
1074 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1075 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8);
1076 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1077 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9);
1078 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1079 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10);
1080 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1081 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11);
1082 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1083 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12);
1084 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1085 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13);
1086 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1087 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14);
1088 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1089 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15);
1090
1091 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1092 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1093 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32);
1094 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1095 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33);
1096 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1097 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34);
1098 }
1099
1100 if (sregs.u.e.features & KVM_SREGS_E_PM) {
1101 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1102 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35);
1103 }
1104
1105 if (sregs.u.e.features & KVM_SREGS_E_PC) {
1106 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1107 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36);
1108 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1109 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1110 }
1111 }
1112
1113 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1114 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1115 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1116 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1117 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1118 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1119 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1120 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1121 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1122 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1123 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1124 }
1125
1126 if (sregs.u.e.features & KVM_SREGS_EXP) {
1127 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1128 }
1129
1130 if (sregs.u.e.features & KVM_SREGS_E_PD) {
1131 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1132 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1133 }
1134
1135 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1136 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1137 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1138 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1139
1140 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1141 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1142 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1143 }
1144 }
1145
1146 return 0;
1147}
1148
1149static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1150{
1151 CPUPPCState *env = &cpu->env;
1152 struct kvm_sregs sregs;
1153 int ret;
1154 int i;
1155
1156 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1157 if (ret < 0) {
1158 return ret;
1159 }
1160
e57ca75c 1161 if (!cpu->vhyp) {
a7a00a72
DG
1162 ppc_store_sdr1(env, sregs.u.s.sdr1);
1163 }
1164
1165 /* Sync SLB */
1166#ifdef TARGET_PPC64
1167 /*
1168 * The packed SLB array we get from KVM_GET_SREGS only contains
1169 * information about valid entries. So we flush our internal copy
1170 * to get rid of stale ones, then put all valid SLB entries back
1171 * in.
1172 */
1173 memset(env->slb, 0, sizeof(env->slb));
1174 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1175 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1176 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1177 /*
1178 * Only restore valid entries
1179 */
1180 if (rb & SLB_ESID_V) {
1181 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1182 }
1183 }
1184#endif
1185
1186 /* Sync SRs */
1187 for (i = 0; i < 16; i++) {
1188 env->sr[i] = sregs.u.s.ppc32.sr[i];
1189 }
1190
1191 /* Sync BATs */
1192 for (i = 0; i < 8; i++) {
1193 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1194 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1195 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1196 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1197 }
1198
1199 return 0;
1200}
1201
20d695a9 1202int kvm_arch_get_registers(CPUState *cs)
d76d1650 1203{
20d695a9
AF
1204 PowerPCCPU *cpu = POWERPC_CPU(cs);
1205 CPUPPCState *env = &cpu->env;
d76d1650 1206 struct kvm_regs regs;
90dc8812 1207 uint32_t cr;
138b38b6 1208 int i, ret;
d76d1650 1209
1bc22652 1210 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
c995e942 1211 if (ret < 0) {
d76d1650 1212 return ret;
c995e942 1213 }
d76d1650 1214
90dc8812
SW
1215 cr = regs.cr;
1216 for (i = 7; i >= 0; i--) {
1217 env->crf[i] = cr & 15;
1218 cr >>= 4;
1219 }
ba5e5090 1220
d76d1650
AJ
1221 env->ctr = regs.ctr;
1222 env->lr = regs.lr;
da91a00f 1223 cpu_write_xer(env, regs.xer);
d76d1650
AJ
1224 env->msr = regs.msr;
1225 env->nip = regs.pc;
1226
1227 env->spr[SPR_SRR0] = regs.srr0;
1228 env->spr[SPR_SRR1] = regs.srr1;
1229
1230 env->spr[SPR_SPRG0] = regs.sprg0;
1231 env->spr[SPR_SPRG1] = regs.sprg1;
1232 env->spr[SPR_SPRG2] = regs.sprg2;
1233 env->spr[SPR_SPRG3] = regs.sprg3;
1234 env->spr[SPR_SPRG4] = regs.sprg4;
1235 env->spr[SPR_SPRG5] = regs.sprg5;
1236 env->spr[SPR_SPRG6] = regs.sprg6;
1237 env->spr[SPR_SPRG7] = regs.sprg7;
1238
90dc8812
SW
1239 env->spr[SPR_BOOKE_PID] = regs.pid;
1240
c995e942 1241 for (i = 0; i < 32; i++) {
d76d1650 1242 env->gpr[i] = regs.gpr[i];
c995e942 1243 }
d76d1650 1244
70b79849
DG
1245 kvm_get_fp(cs);
1246
90dc8812 1247 if (cap_booke_sregs) {
a7a00a72 1248 ret = kvmppc_get_booke_sregs(cpu);
90dc8812
SW
1249 if (ret < 0) {
1250 return ret;
1251 }
fafc0b6a 1252 }
90dc8812 1253
90dc8812 1254 if (cap_segstate) {
a7a00a72 1255 ret = kvmppc_get_books_sregs(cpu);
90dc8812
SW
1256 if (ret < 0) {
1257 return ret;
1258 }
fafc0b6a 1259 }
ba5e5090 1260
d67d40ea
DG
1261 if (cap_hior) {
1262 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1263 }
1264
1265 if (cap_one_reg) {
1266 int i;
1267
c995e942
DG
1268 /*
1269 * We deliberately ignore errors here, for kernels which have
d67d40ea
DG
1270 * the ONE_REG calls, but don't support the specific
1271 * registers, there's a reasonable chance things will still
c995e942
DG
1272 * work, at least until we try to migrate.
1273 */
d67d40ea
DG
1274 for (i = 0; i < 1024; i++) {
1275 uint64_t id = env->spr_cb[i].one_reg_id;
1276
1277 if (id != 0) {
1278 kvm_get_one_spr(cs, id, i);
1279 }
1280 }
9b00ea49
DG
1281
1282#ifdef TARGET_PPC64
80b3f79b
AK
1283 if (msr_ts) {
1284 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1285 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1286 }
1287 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1288 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1289 }
1290 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1291 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1292 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1293 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1294 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1295 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1296 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1297 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1298 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1299 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1300 }
1301
9b00ea49
DG
1302 if (cap_papr) {
1303 if (kvm_get_vpa(cs) < 0) {
8d83cbf1 1304 trace_kvm_failed_get_vpa();
9b00ea49
DG
1305 }
1306 }
98a8b524
AK
1307
1308 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
972bd576 1309 kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
9b00ea49 1310#endif
d67d40ea
DG
1311 }
1312
d76d1650
AJ
1313 return 0;
1314}
1315
1bc22652 1316int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
fc87e185
AG
1317{
1318 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1319
1320 if (irq != PPC_INTERRUPT_EXT) {
1321 return 0;
1322 }
1323
1e8f51e8 1324 if (!kvm_enabled() || !cap_interrupt_unset) {
fc87e185
AG
1325 return 0;
1326 }
1327
1bc22652 1328 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
fc87e185
AG
1329
1330 return 0;
1331}
1332
20d695a9 1333void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
d76d1650 1334{
1e8f51e8 1335 return;
d76d1650
AJ
1336}
1337
4c663752 1338MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
d76d1650 1339{
4c663752 1340 return MEMTXATTRS_UNSPECIFIED;
d76d1650
AJ
1341}
1342
20d695a9 1343int kvm_arch_process_async_events(CPUState *cs)
0af691d7 1344{
259186a7 1345 return cs->halted;
0af691d7
MT
1346}
1347
259186a7 1348static int kvmppc_handle_halt(PowerPCCPU *cpu)
d76d1650 1349{
259186a7
AF
1350 CPUState *cs = CPU(cpu);
1351 CPUPPCState *env = &cpu->env;
1352
1353 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
1354 cs->halted = 1;
27103424 1355 cs->exception_index = EXCP_HLT;
d76d1650
AJ
1356 }
1357
bb4ea393 1358 return 0;
d76d1650
AJ
1359}
1360
1361/* map dcr access to existing qemu dcr emulation */
c995e942
DG
1362static int kvmppc_handle_dcr_read(CPUPPCState *env,
1363 uint32_t dcrn, uint32_t *data)
d76d1650 1364{
c995e942 1365 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
d76d1650 1366 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
c995e942 1367 }
d76d1650 1368
bb4ea393 1369 return 0;
d76d1650
AJ
1370}
1371
c995e942
DG
1372static int kvmppc_handle_dcr_write(CPUPPCState *env,
1373 uint32_t dcrn, uint32_t data)
d76d1650 1374{
c995e942 1375 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
d76d1650 1376 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
c995e942 1377 }
d76d1650 1378
bb4ea393 1379 return 0;
d76d1650
AJ
1380}
1381
8a0548f9
BB
1382int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1383{
1384 /* Mixed endian case is not handled */
1385 uint32_t sc = debug_inst_opcode;
1386
1387 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1388 sizeof(sc), 0) ||
1389 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1390 return -EINVAL;
1391 }
1392
1393 return 0;
1394}
1395
1396int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1397{
1398 uint32_t sc;
1399
1400 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1401 sc != debug_inst_opcode ||
1402 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1403 sizeof(sc), 1)) {
1404 return -EINVAL;
1405 }
1406
1407 return 0;
1408}
1409
88365d17
BB
1410static int find_hw_breakpoint(target_ulong addr, int type)
1411{
1412 int n;
1413
1414 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1415 <= ARRAY_SIZE(hw_debug_points));
1416
1417 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1418 if (hw_debug_points[n].addr == addr &&
1419 hw_debug_points[n].type == type) {
1420 return n;
1421 }
1422 }
1423
1424 return -1;
1425}
1426
1427static int find_hw_watchpoint(target_ulong addr, int *flag)
1428{
1429 int n;
1430
1431 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1432 if (n >= 0) {
1433 *flag = BP_MEM_ACCESS;
1434 return n;
1435 }
1436
1437 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1438 if (n >= 0) {
1439 *flag = BP_MEM_WRITE;
1440 return n;
1441 }
1442
1443 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1444 if (n >= 0) {
1445 *flag = BP_MEM_READ;
1446 return n;
1447 }
1448
1449 return -1;
1450}
1451
1452int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1453 target_ulong len, int type)
1454{
1455 if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1456 return -ENOBUFS;
1457 }
1458
1459 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1460 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1461
1462 switch (type) {
1463 case GDB_BREAKPOINT_HW:
1464 if (nb_hw_breakpoint >= max_hw_breakpoint) {
1465 return -ENOBUFS;
1466 }
1467
1468 if (find_hw_breakpoint(addr, type) >= 0) {
1469 return -EEXIST;
1470 }
1471
1472 nb_hw_breakpoint++;
1473 break;
1474
1475 case GDB_WATCHPOINT_WRITE:
1476 case GDB_WATCHPOINT_READ:
1477 case GDB_WATCHPOINT_ACCESS:
1478 if (nb_hw_watchpoint >= max_hw_watchpoint) {
1479 return -ENOBUFS;
1480 }
1481
1482 if (find_hw_breakpoint(addr, type) >= 0) {
1483 return -EEXIST;
1484 }
1485
1486 nb_hw_watchpoint++;
1487 break;
1488
1489 default:
1490 return -ENOSYS;
1491 }
1492
1493 return 0;
1494}
1495
1496int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1497 target_ulong len, int type)
1498{
1499 int n;
1500
1501 n = find_hw_breakpoint(addr, type);
1502 if (n < 0) {
1503 return -ENOENT;
1504 }
1505
1506 switch (type) {
1507 case GDB_BREAKPOINT_HW:
1508 nb_hw_breakpoint--;
1509 break;
1510
1511 case GDB_WATCHPOINT_WRITE:
1512 case GDB_WATCHPOINT_READ:
1513 case GDB_WATCHPOINT_ACCESS:
1514 nb_hw_watchpoint--;
1515 break;
1516
1517 default:
1518 return -ENOSYS;
1519 }
1520 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1521
1522 return 0;
1523}
1524
1525void kvm_arch_remove_all_hw_breakpoints(void)
1526{
1527 nb_hw_breakpoint = nb_hw_watchpoint = 0;
1528}
1529
8a0548f9
BB
1530void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1531{
88365d17
BB
1532 int n;
1533
8a0548f9
BB
1534 /* Software Breakpoint updates */
1535 if (kvm_sw_breakpoints_active(cs)) {
1536 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1537 }
88365d17
BB
1538
1539 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1540 <= ARRAY_SIZE(hw_debug_points));
1541 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1542
1543 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1544 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1545 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1546 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1547 switch (hw_debug_points[n].type) {
1548 case GDB_BREAKPOINT_HW:
1549 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1550 break;
1551 case GDB_WATCHPOINT_WRITE:
1552 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1553 break;
1554 case GDB_WATCHPOINT_READ:
1555 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1556 break;
1557 case GDB_WATCHPOINT_ACCESS:
1558 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1559 KVMPPC_DEBUG_WATCH_READ;
1560 break;
1561 default:
1562 cpu_abort(cs, "Unsupported breakpoint type\n");
1563 }
1564 dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1565 }
1566 }
8a0548f9
BB
1567}
1568
2cbd1581
FR
1569static int kvm_handle_hw_breakpoint(CPUState *cs,
1570 struct kvm_debug_exit_arch *arch_info)
1571{
6e0552a3 1572 int handle = DEBUG_RETURN_GUEST;
2cbd1581
FR
1573 int n;
1574 int flag = 0;
1575
1576 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1577 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1578 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1579 if (n >= 0) {
6e0552a3 1580 handle = DEBUG_RETURN_GDB;
2cbd1581
FR
1581 }
1582 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1583 KVMPPC_DEBUG_WATCH_WRITE)) {
1584 n = find_hw_watchpoint(arch_info->address, &flag);
1585 if (n >= 0) {
6e0552a3 1586 handle = DEBUG_RETURN_GDB;
2cbd1581
FR
1587 cs->watchpoint_hit = &hw_watchpoint;
1588 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1589 hw_watchpoint.flags = flag;
1590 }
1591 }
1592 }
1593 return handle;
1594}
1595
468e3a1a
FR
1596static int kvm_handle_singlestep(void)
1597{
6e0552a3 1598 return DEBUG_RETURN_GDB;
468e3a1a
FR
1599}
1600
1601static int kvm_handle_sw_breakpoint(void)
1602{
6e0552a3 1603 return DEBUG_RETURN_GDB;
468e3a1a
FR
1604}
1605
8a0548f9
BB
1606static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1607{
1608 CPUState *cs = CPU(cpu);
1609 CPUPPCState *env = &cpu->env;
1610 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
8a0548f9 1611
88365d17 1612 if (cs->singlestep_enabled) {
468e3a1a
FR
1613 return kvm_handle_singlestep();
1614 }
8a0548f9 1615
468e3a1a
FR
1616 if (arch_info->status) {
1617 return kvm_handle_hw_breakpoint(cs, arch_info);
8a0548f9
BB
1618 }
1619
468e3a1a
FR
1620 if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1621 return kvm_handle_sw_breakpoint();
1622 }
1623
1624 /*
1625 * QEMU is not able to handle debug exception, so inject
1626 * program exception to guest;
1627 * Yes program exception NOT debug exception !!
1628 * When QEMU is using debug resources then debug exception must
1629 * be always set. To achieve this we set MSR_DE and also set
1630 * MSRP_DEP so guest cannot change MSR_DE.
1631 * When emulating debug resource for guest we want guest
1632 * to control MSR_DE (enable/disable debug interrupt on need).
1633 * Supporting both configurations are NOT possible.
1634 * So the result is that we cannot share debug resources
1635 * between QEMU and Guest on BOOKE architecture.
1636 * In the current design QEMU gets the priority over guest,
1637 * this means that if QEMU is using debug resources then guest
1638 * cannot use them;
1639 * For software breakpoint QEMU uses a privileged instruction;
1640 * So there cannot be any reason that we are here for guest
1641 * set debug exception, only possibility is guest executed a
1642 * privileged / illegal instruction and that's why we are
1643 * injecting a program interrupt.
1644 */
1645 cpu_synchronize_state(cs);
1646 /*
1647 * env->nip is PC, so increment this by 4 to use
1648 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1649 */
1650 env->nip += 4;
1651 cs->exception_index = POWERPC_EXCP_PROGRAM;
1652 env->error_code = POWERPC_EXCP_INVAL;
1653 ppc_cpu_do_interrupt(cs);
1654
6e0552a3 1655 return DEBUG_RETURN_GUEST;
8a0548f9
BB
1656}
1657
20d695a9 1658int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
d76d1650 1659{
20d695a9
AF
1660 PowerPCCPU *cpu = POWERPC_CPU(cs);
1661 CPUPPCState *env = &cpu->env;
bb4ea393 1662 int ret;
d76d1650 1663
4b8523ee
JK
1664 qemu_mutex_lock_iothread();
1665
d76d1650
AJ
1666 switch (run->exit_reason) {
1667 case KVM_EXIT_DCR:
1668 if (run->dcr.is_write) {
8d83cbf1 1669 trace_kvm_handle_dcr_write();
d76d1650
AJ
1670 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1671 } else {
228152c2 1672 trace_kvm_handle_dcr_read();
d76d1650
AJ
1673 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1674 }
1675 break;
1676 case KVM_EXIT_HLT:
8d83cbf1 1677 trace_kvm_handle_halt();
259186a7 1678 ret = kvmppc_handle_halt(cpu);
d76d1650 1679 break;
c6304a4a 1680#if defined(TARGET_PPC64)
f61b4bed 1681 case KVM_EXIT_PAPR_HCALL:
8d83cbf1 1682 trace_kvm_handle_papr_hcall();
20d695a9 1683 run->papr_hcall.ret = spapr_hypercall(cpu,
aa100fa4 1684 run->papr_hcall.nr,
f61b4bed 1685 run->papr_hcall.args);
78e8fde2 1686 ret = 0;
f61b4bed
AG
1687 break;
1688#endif
5b95b8b9 1689 case KVM_EXIT_EPR:
8d83cbf1 1690 trace_kvm_handle_epr();
933b19ea 1691 run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
5b95b8b9
AG
1692 ret = 0;
1693 break;
31f2cb8f 1694 case KVM_EXIT_WATCHDOG:
8d83cbf1 1695 trace_kvm_handle_watchdog_expiry();
31f2cb8f
BB
1696 watchdog_perform_action();
1697 ret = 0;
1698 break;
1699
8a0548f9 1700 case KVM_EXIT_DEBUG:
8d83cbf1 1701 trace_kvm_handle_debug_exception();
8a0548f9
BB
1702 if (kvm_handle_debug(cpu, run)) {
1703 ret = EXCP_DEBUG;
1704 break;
1705 }
1706 /* re-enter, this exception was guest-internal */
1707 ret = 0;
1708 break;
1709
9ac703ac
AP
1710#if defined(TARGET_PPC64)
1711 case KVM_EXIT_NMI:
1712 trace_kvm_handle_nmi_exception();
1713 ret = kvm_handle_nmi(cpu, run);
1714 break;
1715#endif
1716
73aaec4a
JK
1717 default:
1718 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1719 ret = -1;
1720 break;
d76d1650
AJ
1721 }
1722
4b8523ee 1723 qemu_mutex_unlock_iothread();
d76d1650
AJ
1724 return ret;
1725}
1726
31f2cb8f
BB
1727int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1728{
1729 CPUState *cs = CPU(cpu);
1730 uint32_t bits = tsr_bits;
1731 struct kvm_one_reg reg = {
1732 .id = KVM_REG_PPC_OR_TSR,
1733 .addr = (uintptr_t) &bits,
1734 };
1735
1736 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1737}
1738
1739int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1740{
1741
1742 CPUState *cs = CPU(cpu);
1743 uint32_t bits = tsr_bits;
1744 struct kvm_one_reg reg = {
1745 .id = KVM_REG_PPC_CLEAR_TSR,
1746 .addr = (uintptr_t) &bits,
1747 };
1748
1749 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1750}
1751
1752int kvmppc_set_tcr(PowerPCCPU *cpu)
1753{
1754 CPUState *cs = CPU(cpu);
1755 CPUPPCState *env = &cpu->env;
1756 uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1757
1758 struct kvm_one_reg reg = {
1759 .id = KVM_REG_PPC_TCR,
1760 .addr = (uintptr_t) &tcr,
1761 };
1762
1763 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1764}
1765
1766int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1767{
1768 CPUState *cs = CPU(cpu);
31f2cb8f
BB
1769 int ret;
1770
1771 if (!kvm_enabled()) {
1772 return -1;
1773 }
1774
1775 if (!cap_ppc_watchdog) {
1776 printf("warning: KVM does not support watchdog");
1777 return -1;
1778 }
1779
48add816 1780 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
31f2cb8f
BB
1781 if (ret < 0) {
1782 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1783 __func__, strerror(-ret));
1784 return ret;
1785 }
1786
1787 return ret;
1788}
1789
dc333cd6
AG
1790static int read_cpuinfo(const char *field, char *value, int len)
1791{
1792 FILE *f;
1793 int ret = -1;
1794 int field_len = strlen(field);
1795 char line[512];
1796
1797 f = fopen("/proc/cpuinfo", "r");
1798 if (!f) {
1799 return -1;
1800 }
1801
1802 do {
ef951443 1803 if (!fgets(line, sizeof(line), f)) {
dc333cd6
AG
1804 break;
1805 }
1806 if (!strncmp(line, field, field_len)) {
ae215068 1807 pstrcpy(value, len, line);
dc333cd6
AG
1808 ret = 0;
1809 break;
1810 }
c995e942 1811 } while (*line);
dc333cd6
AG
1812
1813 fclose(f);
1814
1815 return ret;
1816}
1817
1818uint32_t kvmppc_get_tbfreq(void)
1819{
1820 char line[512];
1821 char *ns;
73bcb24d 1822 uint32_t retval = NANOSECONDS_PER_SECOND;
dc333cd6
AG
1823
1824 if (read_cpuinfo("timebase", line, sizeof(line))) {
1825 return retval;
1826 }
1827
c995e942
DG
1828 ns = strchr(line, ':');
1829 if (!ns) {
dc333cd6
AG
1830 return retval;
1831 }
1832
1833 ns++;
1834
f9b8e7f6 1835 return atoi(ns);
dc333cd6 1836}
4513d923 1837
ef951443
ND
1838bool kvmppc_get_host_serial(char **value)
1839{
1840 return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1841 NULL);
1842}
1843
1844bool kvmppc_get_host_model(char **value)
1845{
1846 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1847}
1848
eadaada1
AG
1849/* Try to find a device tree node for a CPU with clock-frequency property */
1850static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1851{
1852 struct dirent *dirp;
1853 DIR *dp;
1854
c995e942
DG
1855 dp = opendir(PROC_DEVTREE_CPU);
1856 if (!dp) {
eadaada1
AG
1857 printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1858 return -1;
1859 }
1860
1861 buf[0] = '\0';
1862 while ((dirp = readdir(dp)) != NULL) {
1863 FILE *f;
1864 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1865 dirp->d_name);
1866 f = fopen(buf, "r");
1867 if (f) {
1868 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1869 fclose(f);
1870 break;
1871 }
1872 buf[0] = '\0';
1873 }
1874 closedir(dp);
1875 if (buf[0] == '\0') {
1876 printf("Unknown host!\n");
1877 return -1;
1878 }
1879
1880 return 0;
1881}
1882
7d94a30b 1883static uint64_t kvmppc_read_int_dt(const char *filename)
eadaada1 1884{
9bc884b7
DG
1885 union {
1886 uint32_t v32;
1887 uint64_t v64;
1888 } u;
eadaada1
AG
1889 FILE *f;
1890 int len;
1891
7d94a30b 1892 f = fopen(filename, "rb");
eadaada1
AG
1893 if (!f) {
1894 return -1;
1895 }
1896
9bc884b7 1897 len = fread(&u, 1, sizeof(u), f);
eadaada1
AG
1898 fclose(f);
1899 switch (len) {
9bc884b7
DG
1900 case 4:
1901 /* property is a 32-bit quantity */
1902 return be32_to_cpu(u.v32);
1903 case 8:
1904 return be64_to_cpu(u.v64);
eadaada1
AG
1905 }
1906
1907 return 0;
1908}
1909
c995e942
DG
1910/*
1911 * Read a CPU node property from the host device tree that's a single
7d94a30b 1912 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
c995e942
DG
1913 * (can't find or open the property, or doesn't understand the format)
1914 */
7d94a30b
SB
1915static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1916{
1917 char buf[PATH_MAX], *tmp;
1918 uint64_t val;
1919
1920 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1921 return -1;
1922 }
1923
1924 tmp = g_strdup_printf("%s/%s", buf, propname);
1925 val = kvmppc_read_int_dt(tmp);
1926 g_free(tmp);
1927
1928 return val;
1929}
1930
9bc884b7
DG
1931uint64_t kvmppc_get_clockfreq(void)
1932{
1933 return kvmppc_read_int_cpu_dt("clock-frequency");
1934}
1935
7d050527
SJS
1936static int kvmppc_get_dec_bits(void)
1937{
1938 int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1939
1940 if (nr_bits > 0) {
1941 return nr_bits;
1942 }
1943 return 0;
1944}
1945
1a61a9ae 1946static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
db70b311
RH
1947{
1948 CPUState *cs = env_cpu(env);
1a61a9ae 1949
6fd33a75 1950 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1a61a9ae
SY
1951 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1952 return 0;
1953 }
1954
1955 return 1;
1956}
1957
1958int kvmppc_get_hasidle(CPUPPCState *env)
1959{
1960 struct kvm_ppc_pvinfo pvinfo;
1961
1962 if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1963 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1964 return 1;
1965 }
1966
1967 return 0;
1968}
1969
1328c2bf 1970int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
45024f09 1971{
c995e942 1972 uint32_t *hc = (uint32_t *)buf;
45024f09
AG
1973 struct kvm_ppc_pvinfo pvinfo;
1974
1a61a9ae 1975 if (!kvmppc_get_pvinfo(env, &pvinfo)) {
45024f09 1976 memcpy(buf, pvinfo.hcall, buf_len);
45024f09
AG
1977 return 0;
1978 }
45024f09
AG
1979
1980 /*
d13fc32e 1981 * Fallback to always fail hypercalls regardless of endianness:
45024f09 1982 *
d13fc32e 1983 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
45024f09 1984 * li r3, -1
d13fc32e
AG
1985 * b .+8 (becomes nop in wrong endian)
1986 * bswap32(li r3, -1)
45024f09
AG
1987 */
1988
d13fc32e
AG
1989 hc[0] = cpu_to_be32(0x08000048);
1990 hc[1] = cpu_to_be32(0x3860ffff);
1991 hc[2] = cpu_to_be32(0x48000008);
1992 hc[3] = cpu_to_be32(bswap32(0x3860ffff));
45024f09 1993
0ddbd053 1994 return 1;
45024f09
AG
1995}
1996
026bfd89
DG
1997static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
1998{
1999 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2000}
2001
2002void kvmppc_enable_logical_ci_hcalls(void)
2003{
2004 /*
2005 * FIXME: it would be nice if we could detect the cases where
2006 * we're using a device which requires the in kernel
2007 * implementation of these hcalls, but the kernel lacks them and
2008 * produce a warning.
2009 */
2010 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2011 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2012}
2013
ef9971dd
AK
2014void kvmppc_enable_set_mode_hcall(void)
2015{
2016 kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2017}
2018
5145ad4f
NW
2019void kvmppc_enable_clear_ref_mod_hcalls(void)
2020{
2021 kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2022 kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2023}
2024
68f9f708
SJS
2025void kvmppc_enable_h_page_init(void)
2026{
2027 kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2028}
2029
1bc22652 2030void kvmppc_set_papr(PowerPCCPU *cpu)
f61b4bed 2031{
1bc22652 2032 CPUState *cs = CPU(cpu);
f61b4bed
AG
2033 int ret;
2034
da20aed1
DG
2035 if (!kvm_enabled()) {
2036 return;
2037 }
2038
48add816 2039 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
f61b4bed 2040 if (ret) {
072ed5f2
TH
2041 error_report("This vCPU type or KVM version does not support PAPR");
2042 exit(1);
94135e81 2043 }
9b00ea49 2044
c995e942
DG
2045 /*
2046 * Update the capability flag so we sync the right information
2047 * with kvm
2048 */
9b00ea49 2049 cap_papr = 1;
f61b4bed
AG
2050}
2051
d6e166c0 2052int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
6db5bb0f 2053{
d6e166c0 2054 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
6db5bb0f
AK
2055}
2056
5b95b8b9
AG
2057void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2058{
5b95b8b9 2059 CPUState *cs = CPU(cpu);
5b95b8b9
AG
2060 int ret;
2061
48add816 2062 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
5b95b8b9 2063 if (ret && mpic_proxy) {
072ed5f2
TH
2064 error_report("This KVM version does not support EPR");
2065 exit(1);
5b95b8b9
AG
2066 }
2067}
2068
ec010c00
NP
2069bool kvmppc_get_fwnmi(void)
2070{
2071 return cap_fwnmi;
2072}
2073
aef92d87 2074int kvmppc_set_fwnmi(PowerPCCPU *cpu)
9d953ce4 2075{
9d953ce4
AP
2076 CPUState *cs = CPU(cpu);
2077
2078 return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
2079}
2080
e97c3636
DG
2081int kvmppc_smt_threads(void)
2082{
2083 return cap_ppc_smt ? cap_ppc_smt : 1;
2084}
2085
fa98fbfc
SB
2086int kvmppc_set_smt_threads(int smt)
2087{
2088 int ret;
2089
2090 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2091 if (!ret) {
2092 cap_ppc_smt = smt;
2093 }
2094 return ret;
2095}
2096
0c115681 2097void kvmppc_error_append_smt_possible_hint(Error *const *errp)
fa98fbfc
SB
2098{
2099 int i;
2100 GString *g;
2101 char *s;
2102
2103 assert(kvm_enabled());
2104 if (cap_ppc_smt_possible) {
2105 g = g_string_new("Available VSMT modes:");
2106 for (i = 63; i >= 0; i--) {
2107 if ((1UL << i) & cap_ppc_smt_possible) {
2108 g_string_append_printf(g, " %lu", (1UL << i));
2109 }
2110 }
2111 s = g_string_free(g, false);
1a639fdf 2112 error_append_hint(errp, "%s.\n", s);
fa98fbfc
SB
2113 g_free(s);
2114 } else {
1a639fdf 2115 error_append_hint(errp,
fa98fbfc
SB
2116 "This KVM seems to be too old to support VSMT.\n");
2117 }
2118}
2119
2120
7f763a5d 2121#ifdef TARGET_PPC64
6a84737c 2122uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
7f763a5d 2123{
f36951c1
DG
2124 struct kvm_ppc_smmu_info info;
2125 long rampagesize, best_page_shift;
2126 int i;
2127
c995e942
DG
2128 /*
2129 * Find the largest hardware supported page size that's less than
2130 * or equal to the (logical) backing page size of guest RAM
2131 */
ab256960 2132 kvm_get_smmu_info(&info, &error_fatal);
905b7ee4 2133 rampagesize = qemu_minrampagesize();
f36951c1
DG
2134 best_page_shift = 0;
2135
2136 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2137 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2138
2139 if (!sps->page_shift) {
2140 continue;
2141 }
2142
2143 if ((sps->page_shift > best_page_shift)
2144 && ((1UL << sps->page_shift) <= rampagesize)) {
2145 best_page_shift = sps->page_shift;
2146 }
2147 }
2148
6a84737c 2149 return 1ULL << (best_page_shift + hash_shift - 7);
7f763a5d
DG
2150}
2151#endif
2152
da95324e
AK
2153bool kvmppc_spapr_use_multitce(void)
2154{
2155 return cap_spapr_multitce;
2156}
2157
3dc410ae
AK
2158int kvmppc_spapr_enable_inkernel_multitce(void)
2159{
2160 int ret;
2161
2162 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2163 H_PUT_TCE_INDIRECT, 1);
2164 if (!ret) {
2165 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2166 H_STUFF_TCE, 1);
2167 }
2168
2169 return ret;
2170}
2171
d6ee2a7c
AK
2172void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2173 uint64_t bus_offset, uint32_t nb_table,
2174 int *pfd, bool need_vfio)
0f5cb298 2175{
0f5cb298
DG
2176 long len;
2177 int fd;
2178 void *table;
2179
c995e942
DG
2180 /*
2181 * Must set fd to -1 so we don't try to munmap when called for
b5aec396
DG
2182 * destroying the table, which the upper layers -will- do
2183 */
2184 *pfd = -1;
6a81dd17 2185 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
0f5cb298
DG
2186 return NULL;
2187 }
2188
d6ee2a7c
AK
2189 if (cap_spapr_tce_64) {
2190 struct kvm_create_spapr_tce_64 args = {
2191 .liobn = liobn,
2192 .page_shift = page_shift,
2193 .offset = bus_offset >> page_shift,
2194 .size = nb_table,
2195 .flags = 0
2196 };
2197 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2198 if (fd < 0) {
2199 fprintf(stderr,
2200 "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2201 liobn);
2202 return NULL;
2203 }
2204 } else if (cap_spapr_tce) {
2205 uint64_t window_size = (uint64_t) nb_table << page_shift;
2206 struct kvm_create_spapr_tce args = {
2207 .liobn = liobn,
2208 .window_size = window_size,
2209 };
2210 if ((window_size != args.window_size) || bus_offset) {
2211 return NULL;
2212 }
2213 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2214 if (fd < 0) {
2215 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2216 liobn);
2217 return NULL;
2218 }
2219 } else {
0f5cb298
DG
2220 return NULL;
2221 }
2222
d6ee2a7c 2223 len = nb_table * sizeof(uint64_t);
0f5cb298
DG
2224 /* FIXME: round this up to page size */
2225
c995e942 2226 table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
0f5cb298 2227 if (table == MAP_FAILED) {
b5aec396
DG
2228 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2229 liobn);
0f5cb298
DG
2230 close(fd);
2231 return NULL;
2232 }
2233
2234 *pfd = fd;
2235 return table;
2236}
2237
523e7b8a 2238int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
0f5cb298
DG
2239{
2240 long len;
2241
2242 if (fd < 0) {
2243 return -1;
2244 }
2245
523e7b8a 2246 len = nb_table * sizeof(uint64_t);
0f5cb298
DG
2247 if ((munmap(table, len) < 0) ||
2248 (close(fd) < 0)) {
b5aec396
DG
2249 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2250 strerror(errno));
0f5cb298
DG
2251 /* Leak the table */
2252 }
2253
2254 return 0;
2255}
2256
7f763a5d
DG
2257int kvmppc_reset_htab(int shift_hint)
2258{
2259 uint32_t shift = shift_hint;
2260
ace9a2cb
DG
2261 if (!kvm_enabled()) {
2262 /* Full emulation, tell caller to allocate htab itself */
2263 return 0;
2264 }
6977afda 2265 if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
7f763a5d
DG
2266 int ret;
2267 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
ace9a2cb 2268 if (ret == -ENOTTY) {
c995e942
DG
2269 /*
2270 * At least some versions of PR KVM advertise the
ace9a2cb
DG
2271 * capability, but don't implement the ioctl(). Oops.
2272 * Return 0 so that we allocate the htab in qemu, as is
c995e942
DG
2273 * correct for PR.
2274 */
ace9a2cb
DG
2275 return 0;
2276 } else if (ret < 0) {
7f763a5d
DG
2277 return ret;
2278 }
2279 return shift;
2280 }
2281
c995e942
DG
2282 /*
2283 * We have a kernel that predates the htab reset calls. For PR
ace9a2cb 2284 * KVM, we need to allocate the htab ourselves, for an HV KVM of
c995e942
DG
2285 * this era, it has allocated a 16MB fixed size hash table
2286 * already.
2287 */
96c9cff0 2288 if (kvmppc_is_pr(kvm_state)) {
ace9a2cb
DG
2289 /* PR - tell caller to allocate htab */
2290 return 0;
2291 } else {
2292 /* HV - assume 16MB kernel allocated htab */
2293 return 24;
2294 }
7f763a5d
DG
2295}
2296
a1e98583
DG
2297static inline uint32_t mfpvr(void)
2298{
2299 uint32_t pvr;
2300
2301 asm ("mfpvr %0"
2302 : "=r"(pvr));
2303 return pvr;
2304}
2305
a7342588
DG
2306static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2307{
2308 if (on) {
2309 *word |= flags;
2310 } else {
2311 *word &= ~flags;
2312 }
2313}
2314
2985b86b
AF
2315static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2316{
2317 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
0cbad81f
DG
2318 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2319 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
a1e98583 2320
cfe34f44 2321 /* Now fix up the class with information we can query from the host */
3bc9ccc0 2322 pcc->pvr = mfpvr();
a7342588 2323
3f2ca480
DG
2324 alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2325 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2326 alter_insns(&pcc->insns_flags2, PPC2_VSX,
2327 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2328 alter_insns(&pcc->insns_flags2, PPC2_DFP,
2329 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
0cbad81f
DG
2330
2331 if (dcache_size != -1) {
2332 pcc->l1_dcache_size = dcache_size;
2333 }
2334
2335 if (icache_size != -1) {
2336 pcc->l1_icache_size = icache_size;
2337 }
c64abd1f
SB
2338
2339#if defined(TARGET_PPC64)
2340 pcc->radix_page_info = kvm_get_radix_page_info();
5f3066d8
DG
2341
2342 if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2343 /*
2344 * POWER9 DD1 has some bugs which make it not really ISA 3.00
2345 * compliant. More importantly, advertising ISA 3.00
2346 * architected mode may prevent guests from activating
2347 * necessary DD1 workarounds.
2348 */
2349 pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2350 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2351 }
c64abd1f 2352#endif /* defined(TARGET_PPC64) */
a1e98583
DG
2353}
2354
3b961124
SY
2355bool kvmppc_has_cap_epr(void)
2356{
2357 return cap_epr;
2358}
2359
87a91de6
AG
2360bool kvmppc_has_cap_fixup_hcalls(void)
2361{
2362 return cap_fixup_hcalls;
2363}
2364
bac3bf28
TH
2365bool kvmppc_has_cap_htm(void)
2366{
2367 return cap_htm;
2368}
2369
cf1c4cce
SB
2370bool kvmppc_has_cap_mmu_radix(void)
2371{
2372 return cap_mmu_radix;
2373}
2374
2375bool kvmppc_has_cap_mmu_hash_v3(void)
2376{
2377 return cap_mmu_hash_v3;
2378}
2379
072f416a
SJS
2380static bool kvmppc_power8_host(void)
2381{
2382 bool ret = false;
2383#ifdef TARGET_PPC64
2384 {
2385 uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2386 ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2387 (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2388 (base_pvr == CPU_POWERPC_POWER8_BASE);
2389 }
2390#endif /* TARGET_PPC64 */
2391 return ret;
2392}
2393
8fea7044
SJS
2394static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2395{
072f416a
SJS
2396 bool l1d_thread_priv_req = !kvmppc_power8_host();
2397
8fea7044
SJS
2398 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2399 return 2;
072f416a
SJS
2400 } else if ((!l1d_thread_priv_req ||
2401 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
8fea7044
SJS
2402 (c.character & c.character_mask
2403 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2404 return 1;
2405 }
2406
2407 return 0;
2408}
2409
2410static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2411{
2412 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2413 return 2;
2414 } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2415 return 1;
2416 }
2417
2418 return 0;
2419}
2420
2421static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2422{
399b2896
SJS
2423 if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2424 (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2425 (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2426 return SPAPR_CAP_FIXED_NA;
2427 } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2428 return SPAPR_CAP_WORKAROUND;
2429 } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
8fea7044
SJS
2430 return SPAPR_CAP_FIXED_CCD;
2431 } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2432 return SPAPR_CAP_FIXED_IBS;
2433 }
2434
2435 return 0;
2436}
2437
8ff43ee4
SJS
2438static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2439{
2440 if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2441 return 1;
2442 }
2443 return 0;
2444}
2445
38afd772
CLG
2446bool kvmppc_has_cap_xive(void)
2447{
2448 return cap_xive;
2449}
2450
8acc2ae5
SJS
2451static void kvmppc_get_cpu_characteristics(KVMState *s)
2452{
2453 struct kvm_ppc_cpu_char c;
2454 int ret;
2455
2456 /* Assume broken */
2457 cap_ppc_safe_cache = 0;
2458 cap_ppc_safe_bounds_check = 0;
2459 cap_ppc_safe_indirect_branch = 0;
2460
2461 ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2462 if (!ret) {
2463 return;
2464 }
2465 ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2466 if (ret < 0) {
2467 return;
2468 }
8fea7044
SJS
2469
2470 cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2471 cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2472 cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
8ff43ee4
SJS
2473 cap_ppc_count_cache_flush_assist =
2474 parse_cap_ppc_count_cache_flush_assist(c);
8acc2ae5
SJS
2475}
2476
2477int kvmppc_get_cap_safe_cache(void)
2478{
2479 return cap_ppc_safe_cache;
2480}
2481
2482int kvmppc_get_cap_safe_bounds_check(void)
2483{
2484 return cap_ppc_safe_bounds_check;
2485}
2486
2487int kvmppc_get_cap_safe_indirect_branch(void)
2488{
2489 return cap_ppc_safe_indirect_branch;
2490}
2491
8ff43ee4
SJS
2492int kvmppc_get_cap_count_cache_flush_assist(void)
2493{
2494 return cap_ppc_count_cache_flush_assist;
2495}
2496
b9a477b7
SJS
2497bool kvmppc_has_cap_nested_kvm_hv(void)
2498{
2499 return !!cap_ppc_nested_kvm_hv;
2500}
2501
2502int kvmppc_set_cap_nested_kvm_hv(int enable)
2503{
2504 return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2505}
2506
9ded780c
AK
2507bool kvmppc_has_cap_spapr_vfio(void)
2508{
2509 return cap_spapr_vfio;
2510}
2511
7d050527
SJS
2512int kvmppc_get_cap_large_decr(void)
2513{
2514 return cap_large_decr;
2515}
2516
2517int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2518{
2519 CPUState *cs = CPU(cpu);
2520 uint64_t lpcr;
2521
2522 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2523 /* Do we need to modify the LPCR? */
2524 if (!!(lpcr & LPCR_LD) != !!enable) {
2525 if (enable) {
2526 lpcr |= LPCR_LD;
2527 } else {
2528 lpcr &= ~LPCR_LD;
2529 }
2530 kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2531 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2532
2533 if (!!(lpcr & LPCR_LD) != !!enable) {
2534 return -1;
2535 }
2536 }
2537
2538 return 0;
2539}
2540
52b2519c
TH
2541PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2542{
2543 uint32_t host_pvr = mfpvr();
2544 PowerPCCPUClass *pvr_pcc;
2545
2546 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2547 if (pvr_pcc == NULL) {
2548 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2549 }
2550
2551 return pvr_pcc;
2552}
2553
165dc3ed
DG
2554static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2555{
2556 MachineClass *mc = MACHINE_CLASS(oc);
2557
2558 mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2559}
2560
2561static int kvm_ppc_register_host_cpu_type(void)
5ba4576b
AF
2562{
2563 TypeInfo type_info = {
2564 .name = TYPE_HOST_POWERPC_CPU,
5ba4576b
AF
2565 .class_init = kvmppc_host_cpu_class_init,
2566 };
5ba4576b 2567 PowerPCCPUClass *pvr_pcc;
92e926e1 2568 ObjectClass *oc;
5b79b1ca 2569 DeviceClass *dc;
715d4b96 2570 int i;
5ba4576b 2571
52b2519c 2572 pvr_pcc = kvm_ppc_get_host_cpu_class();
5ba4576b
AF
2573 if (pvr_pcc == NULL) {
2574 return -1;
2575 }
2576 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2577 type_register(&type_info);
165dc3ed
DG
2578 /* override TCG default cpu type with 'host' cpu model */
2579 object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2580 false, NULL);
5b79b1ca 2581
92e926e1
GK
2582 oc = object_class_by_name(type_info.name);
2583 g_assert(oc);
2584
715d4b96
TH
2585 /*
2586 * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2587 * we want "POWER8" to be a "family" alias that points to the current
2588 * host CPU type, too)
2589 */
2590 dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2591 for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
c5354f54 2592 if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
715d4b96
TH
2593 char *suffix;
2594
2595 ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
c9137065 2596 suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
715d4b96
TH
2597 if (suffix) {
2598 *suffix = 0;
2599 }
715d4b96
TH
2600 break;
2601 }
2602 }
2603
5ba4576b
AF
2604 return 0;
2605}
2606
feaa64c4
DG
2607int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2608{
2609 struct kvm_rtas_token_args args = {
2610 .token = token,
2611 };
2612
2613 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2614 return -ENOENT;
2615 }
2616
7701aeed 2617 strncpy(args.name, function, sizeof(args.name) - 1);
feaa64c4
DG
2618
2619 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2620}
12b1143b 2621
14b0d748 2622int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
e68cb8b4
AK
2623{
2624 struct kvm_get_htab_fd s = {
2625 .flags = write ? KVM_GET_HTAB_WRITE : 0,
14b0d748 2626 .start_index = index,
e68cb8b4 2627 };
82be8e73 2628 int ret;
e68cb8b4
AK
2629
2630 if (!cap_htab_fd) {
14b0d748
GK
2631 error_setg(errp, "KVM version doesn't support %s the HPT",
2632 write ? "writing" : "reading");
82be8e73
GK
2633 return -ENOTSUP;
2634 }
2635
2636 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2637 if (ret < 0) {
14b0d748
GK
2638 error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2639 write ? "writing" : "reading", write ? "to" : "from",
2640 strerror(errno));
82be8e73 2641 return -errno;
e68cb8b4
AK
2642 }
2643
82be8e73 2644 return ret;
e68cb8b4
AK
2645}
2646
2647int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2648{
bc72ad67 2649 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
e68cb8b4
AK
2650 uint8_t buf[bufsize];
2651 ssize_t rc;
2652
2653 do {
2654 rc = read(fd, buf, bufsize);
2655 if (rc < 0) {
2656 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2657 strerror(errno));
2658 return rc;
2659 } else if (rc) {
e094c4c1
CLG
2660 uint8_t *buffer = buf;
2661 ssize_t n = rc;
2662 while (n) {
2663 struct kvm_get_htab_header *head =
2664 (struct kvm_get_htab_header *) buffer;
2665 size_t chunksize = sizeof(*head) +
2666 HASH_PTE_SIZE_64 * head->n_valid;
2667
2668 qemu_put_be32(f, head->index);
2669 qemu_put_be16(f, head->n_valid);
2670 qemu_put_be16(f, head->n_invalid);
2671 qemu_put_buffer(f, (void *)(head + 1),
2672 HASH_PTE_SIZE_64 * head->n_valid);
2673
2674 buffer += chunksize;
2675 n -= chunksize;
2676 }
e68cb8b4
AK
2677 }
2678 } while ((rc != 0)
c995e942
DG
2679 && ((max_ns < 0) ||
2680 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
e68cb8b4
AK
2681
2682 return (rc == 0) ? 1 : 0;
2683}
2684
2685int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
0a06e4d6 2686 uint16_t n_valid, uint16_t n_invalid, Error **errp)
e68cb8b4
AK
2687{
2688 struct kvm_get_htab_header *buf;
c995e942 2689 size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
e68cb8b4
AK
2690 ssize_t rc;
2691
2692 buf = alloca(chunksize);
e68cb8b4
AK
2693 buf->index = index;
2694 buf->n_valid = n_valid;
2695 buf->n_invalid = n_invalid;
2696
c995e942 2697 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
e68cb8b4
AK
2698
2699 rc = write(fd, buf, chunksize);
2700 if (rc < 0) {
0a06e4d6
GK
2701 error_setg_errno(errp, errno, "Error writing the KVM hash table");
2702 return -errno;
e68cb8b4
AK
2703 }
2704 if (rc != chunksize) {
2705 /* We should never get a short write on a single chunk */
0a06e4d6
GK
2706 error_setg(errp, "Short write while restoring the KVM hash table");
2707 return -ENOSPC;
e68cb8b4
AK
2708 }
2709 return 0;
2710}
2711
20d695a9 2712bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
4513d923
GN
2713{
2714 return true;
2715}
a1b87fe0 2716
82169660
SW
2717void kvm_arch_init_irq_routing(KVMState *s)
2718{
2719}
c65f9a07 2720
1ad9f0a4 2721void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
7c43bca0 2722{
1ad9f0a4
DG
2723 int fd, rc;
2724 int i;
7c43bca0 2725
14b0d748 2726 fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
7c43bca0 2727
1ad9f0a4
DG
2728 i = 0;
2729 while (i < n) {
2730 struct kvm_get_htab_header *hdr;
2731 int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2732 char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
7c43bca0 2733
1ad9f0a4
DG
2734 rc = read(fd, buf, sizeof(buf));
2735 if (rc < 0) {
2736 hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2737 }
7c43bca0 2738
1ad9f0a4
DG
2739 hdr = (struct kvm_get_htab_header *)buf;
2740 while ((i < n) && ((char *)hdr < (buf + rc))) {
a36593e1 2741 int invalid = hdr->n_invalid, valid = hdr->n_valid;
7c43bca0 2742
1ad9f0a4
DG
2743 if (hdr->index != (ptex + i)) {
2744 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2745 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2746 }
2747
a36593e1
AK
2748 if (n - i < valid) {
2749 valid = n - i;
2750 }
2751 memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2752 i += valid;
7c43bca0 2753
1ad9f0a4
DG
2754 if ((n - i) < invalid) {
2755 invalid = n - i;
2756 }
2757 memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
a36593e1 2758 i += invalid;
1ad9f0a4
DG
2759
2760 hdr = (struct kvm_get_htab_header *)
2761 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2762 }
2763 }
2764
2765 close(fd);
7c43bca0 2766}
c1385933 2767
1ad9f0a4 2768void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
c1385933 2769{
1ad9f0a4 2770 int fd, rc;
1ad9f0a4
DG
2771 struct {
2772 struct kvm_get_htab_header hdr;
2773 uint64_t pte0;
2774 uint64_t pte1;
2775 } buf;
c1385933 2776
14b0d748 2777 fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
c1385933 2778
1ad9f0a4
DG
2779 buf.hdr.n_valid = 1;
2780 buf.hdr.n_invalid = 0;
2781 buf.hdr.index = ptex;
2782 buf.pte0 = cpu_to_be64(pte0);
2783 buf.pte1 = cpu_to_be64(pte1);
c1385933 2784
1ad9f0a4
DG
2785 rc = write(fd, &buf, sizeof(buf));
2786 if (rc != sizeof(buf)) {
2787 hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2788 }
2789 close(fd);
c1385933 2790}
9e03a040
FB
2791
2792int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 2793 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040
FB
2794{
2795 return 0;
2796}
1850b6b7 2797
38d87493
PX
2798int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2799 int vector, PCIDevice *dev)
2800{
2801 return 0;
2802}
2803
2804int kvm_arch_release_virq_post(int virq)
2805{
2806 return 0;
2807}
2808
1850b6b7
EA
2809int kvm_arch_msi_data_to_gsi(uint32_t data)
2810{
2811 return data & 0xffff;
2812}
4d9392be 2813
9ac703ac
AP
2814#if defined(TARGET_PPC64)
2815int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
2816{
211a7784 2817 uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
81fe70e4 2818
9ac703ac
AP
2819 cpu_synchronize_state(CPU(cpu));
2820
211a7784 2821 spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
9ac703ac
AP
2822
2823 return 0;
2824}
2825#endif
2826
4d9392be
TH
2827int kvmppc_enable_hwrng(void)
2828{
2829 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2830 return -1;
2831 }
2832
2833 return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2834}
30f4b05b
DG
2835
2836void kvmppc_check_papr_resize_hpt(Error **errp)
2837{
2838 if (!kvm_enabled()) {
b55d295e
DG
2839 return; /* No KVM, we're good */
2840 }
2841
2842 if (cap_resize_hpt) {
2843 return; /* Kernel has explicit support, we're good */
30f4b05b
DG
2844 }
2845
b55d295e
DG
2846 /* Otherwise fallback on looking for PR KVM */
2847 if (kvmppc_is_pr(kvm_state)) {
2848 return;
2849 }
30f4b05b
DG
2850
2851 error_setg(errp,
2852 "Hash page table resizing not available with this KVM version");
2853}
b55d295e
DG
2854
2855int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2856{
2857 CPUState *cs = CPU(cpu);
2858 struct kvm_ppc_resize_hpt rhpt = {
2859 .flags = flags,
2860 .shift = shift,
2861 };
2862
2863 if (!cap_resize_hpt) {
2864 return -ENOSYS;
2865 }
2866
2867 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2868}
2869
2870int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2871{
2872 CPUState *cs = CPU(cpu);
2873 struct kvm_ppc_resize_hpt rhpt = {
2874 .flags = flags,
2875 .shift = shift,
2876 };
2877
2878 if (!cap_resize_hpt) {
2879 return -ENOSYS;
2880 }
2881
2882 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2883}
2884
c363a37a
DHB
2885/*
2886 * This is a helper function to detect a post migration scenario
2887 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2888 * the guest kernel can't handle a PVR value other than the actual host
2889 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2890 *
2891 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2892 * (so, we're HV), return true. The workaround itself is done in
2893 * cpu_post_load.
2894 *
2895 * The order here is important: we'll only check for KVM PR as a
2896 * fallback if the guest kernel can't handle the situation itself.
2897 * We need to avoid as much as possible querying the running KVM type
2898 * in QEMU level.
2899 */
2900bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2901{
2902 CPUState *cs = CPU(cpu);
2903
2904 if (!kvm_enabled()) {
2905 return false;
2906 }
2907
2908 if (cap_ppc_pvr_compat) {
2909 return false;
2910 }
2911
2912 return !kvmppc_is_pr(cs->kvm_state);
2913}
a84f7179
ND
2914
2915void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2916{
2917 CPUState *cs = CPU(cpu);
2918
2919 if (kvm_enabled()) {
2920 kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2921 }
2922}
9723295a
GK
2923
2924void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2925{
2926 CPUState *cs = CPU(cpu);
2927
2928 if (kvm_enabled()) {
2929 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
2930 }
2931}
92a5199b
TL
2932
2933bool kvm_arch_cpu_check_are_resettable(void)
2934{
2935 return true;
2936}