]> git.proxmox.com Git - mirror_qemu.git/blame - target/ppc/kvm.c
Merge remote-tracking branch 'remotes/armbru/tags/pull-error-2019-12-17-v2' into...
[mirror_qemu.git] / target / ppc / kvm.c
CommitLineData
d76d1650
AJ
1/*
2 * PowerPC implementation of KVM hooks
3 *
4 * Copyright IBM Corp. 2007
90dc8812 5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
d76d1650
AJ
6 *
7 * Authors:
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
14 *
15 */
16
0d75590d 17#include "qemu/osdep.h"
eadaada1 18#include <dirent.h>
d76d1650 19#include <sys/ioctl.h>
4656e1f0 20#include <sys/vfs.h>
d76d1650
AJ
21
22#include <linux/kvm.h>
23
24#include "qemu-common.h"
30f4b05b 25#include "qapi/error.h"
072ed5f2 26#include "qemu/error-report.h"
33c11879 27#include "cpu.h"
715d4b96 28#include "cpu-models.h"
1de7afc9 29#include "qemu/timer.h"
b3946626 30#include "sysemu/hw_accel.h"
d76d1650 31#include "kvm_ppc.h"
9c17d615
PB
32#include "sysemu/cpus.h"
33#include "sysemu/device_tree.h"
d5aea6f3 34#include "mmu-hash64.h"
d76d1650 35
f61b4bed 36#include "hw/sysbus.h"
0d09e41a 37#include "hw/ppc/spapr.h"
7ebaf795 38#include "hw/ppc/spapr_cpu_core.h"
650d103d 39#include "hw/hw.h"
98a8b524 40#include "hw/ppc/ppc.h"
ca77ee28 41#include "migration/qemu-file-types.h"
31f2cb8f 42#include "sysemu/watchdog.h"
b36f100e 43#include "trace.h"
88365d17 44#include "exec/gdbstub.h"
4c663752 45#include "exec/memattrs.h"
9c607668 46#include "exec/ram_addr.h"
2d103aae 47#include "sysemu/hostmem.h"
f348b6d1 48#include "qemu/cutils.h"
db725815 49#include "qemu/main-loop.h"
9c607668 50#include "qemu/mmap-alloc.h"
f3d9f303 51#include "elf.h"
c64abd1f 52#include "sysemu/kvm_int.h"
f61b4bed 53
eadaada1
AG
54#define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
55
94a8d39a
JK
56const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_LAST_INFO
58};
59
c995e942 60static int cap_interrupt_unset;
90dc8812 61static int cap_segstate;
90dc8812 62static int cap_booke_sregs;
e97c3636 63static int cap_ppc_smt;
fa98fbfc 64static int cap_ppc_smt_possible;
0f5cb298 65static int cap_spapr_tce;
d6ee2a7c 66static int cap_spapr_tce_64;
da95324e 67static int cap_spapr_multitce;
9bb62a07 68static int cap_spapr_vfio;
f1af19d7 69static int cap_hior;
d67d40ea 70static int cap_one_reg;
3b961124 71static int cap_epr;
31f2cb8f 72static int cap_ppc_watchdog;
9b00ea49 73static int cap_papr;
e68cb8b4 74static int cap_htab_fd;
87a91de6 75static int cap_fixup_hcalls;
bac3bf28 76static int cap_htm; /* Hardware transactional memory support */
cf1c4cce
SB
77static int cap_mmu_radix;
78static int cap_mmu_hash_v3;
38afd772 79static int cap_xive;
b55d295e 80static int cap_resize_hpt;
c363a37a 81static int cap_ppc_pvr_compat;
8acc2ae5
SJS
82static int cap_ppc_safe_cache;
83static int cap_ppc_safe_bounds_check;
84static int cap_ppc_safe_indirect_branch;
8ff43ee4 85static int cap_ppc_count_cache_flush_assist;
b9a477b7 86static int cap_ppc_nested_kvm_hv;
7d050527 87static int cap_large_decr;
fc87e185 88
3c902d44
BB
89static uint32_t debug_inst_opcode;
90
c995e942
DG
91/*
92 * Check whether we are running with KVM-PR (instead of KVM-HV). This
96c9cff0
TH
93 * should only be used for fallback tests - generally we should use
94 * explicit capabilities for the features we want, rather than
c995e942
DG
95 * assuming what is/isn't available depending on the KVM variant.
96 */
96c9cff0
TH
97static bool kvmppc_is_pr(KVMState *ks)
98{
99 /* Assume KVM-PR if the GET_PVINFO capability is available */
70a0c19e 100 return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
96c9cff0
TH
101}
102
165dc3ed 103static int kvm_ppc_register_host_cpu_type(void);
8acc2ae5 104static void kvmppc_get_cpu_characteristics(KVMState *s);
7d050527 105static int kvmppc_get_dec_bits(void);
5ba4576b 106
b16565b3 107int kvm_arch_init(MachineState *ms, KVMState *s)
d76d1650 108{
fc87e185 109 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
90dc8812 110 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
90dc8812 111 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
6977afda 112 cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
0f5cb298 113 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
d6ee2a7c 114 cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
da95324e 115 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
9ded780c 116 cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
d67d40ea 117 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
f1af19d7 118 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
3b961124 119 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
31f2cb8f 120 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
c995e942
DG
121 /*
122 * Note: we don't set cap_papr here, because this capability is
123 * only activated after this by kvmppc_set_papr()
124 */
6977afda 125 cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
87a91de6 126 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
fa98fbfc 127 cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
bac3bf28 128 cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
cf1c4cce
SB
129 cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
130 cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
38afd772 131 cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
b55d295e 132 cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
8acc2ae5 133 kvmppc_get_cpu_characteristics(s);
b9a477b7 134 cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
7d050527 135 cap_large_decr = kvmppc_get_dec_bits();
c363a37a
DHB
136 /*
137 * Note: setting it to false because there is not such capability
138 * in KVM at this moment.
139 *
140 * TODO: call kvm_vm_check_extension() with the right capability
c995e942
DG
141 * after the kernel starts implementing it.
142 */
c363a37a 143 cap_ppc_pvr_compat = false;
fc87e185 144
1e8f51e8
SB
145 if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
146 error_report("KVM: Host kernel doesn't have level irq capability");
147 exit(1);
fc87e185
AG
148 }
149
165dc3ed 150 kvm_ppc_register_host_cpu_type();
5ba4576b 151
d76d1650
AJ
152 return 0;
153}
154
d525ffab
PB
155int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
156{
157 return 0;
158}
159
1bc22652 160static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
d76d1650 161{
1bc22652
AF
162 CPUPPCState *cenv = &cpu->env;
163 CPUState *cs = CPU(cpu);
861bbc80 164 struct kvm_sregs sregs;
5666ca4a
SW
165 int ret;
166
167 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
c995e942
DG
168 /*
169 * What we're really trying to say is "if we're on BookE, we
170 * use the native PVR for now". This is the only sane way to
171 * check it though, so we potentially confuse users that they
172 * can run BookE guests on BookS. Let's hope nobody dares
173 * enough :)
174 */
5666ca4a
SW
175 return 0;
176 } else {
90dc8812 177 if (!cap_segstate) {
64e07be5
AG
178 fprintf(stderr, "kvm error: missing PVR setting capability\n");
179 return -ENOSYS;
5666ca4a 180 }
5666ca4a
SW
181 }
182
1bc22652 183 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
5666ca4a
SW
184 if (ret) {
185 return ret;
186 }
861bbc80
AG
187
188 sregs.pvr = cenv->spr[SPR_PVR];
1bc22652 189 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
5666ca4a
SW
190}
191
93dd5e85 192/* Set up a shared TLB array with KVM */
1bc22652 193static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
93dd5e85 194{
1bc22652
AF
195 CPUPPCState *env = &cpu->env;
196 CPUState *cs = CPU(cpu);
93dd5e85
SW
197 struct kvm_book3e_206_tlb_params params = {};
198 struct kvm_config_tlb cfg = {};
93dd5e85
SW
199 unsigned int entries = 0;
200 int ret, i;
201
202 if (!kvm_enabled() ||
a60f24b5 203 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
93dd5e85
SW
204 return 0;
205 }
206
207 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
208
209 for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
210 params.tlb_sizes[i] = booke206_tlb_size(env, i);
211 params.tlb_ways[i] = booke206_tlb_ways(env, i);
212 entries += params.tlb_sizes[i];
213 }
214
215 assert(entries == env->nb_tlb);
216 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
217
218 env->tlb_dirty = true;
219
220 cfg.array = (uintptr_t)env->tlb.tlbm;
221 cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
222 cfg.params = (uintptr_t)&params;
223 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
224
48add816 225 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
93dd5e85
SW
226 if (ret < 0) {
227 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
228 __func__, strerror(-ret));
229 return ret;
230 }
231
232 env->kvm_sw_tlb = true;
233 return 0;
234}
235
4656e1f0
BH
236
237#if defined(TARGET_PPC64)
ab256960 238static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
4656e1f0 239{
71d0f1ea 240 int ret;
a60f24b5 241
ab256960
GK
242 assert(kvm_state != NULL);
243
244 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
71d0f1ea
GK
245 error_setg(errp, "KVM doesn't expose the MMU features it supports");
246 error_append_hint(errp, "Consider switching to a newer KVM\n");
247 return;
4656e1f0 248 }
4656e1f0 249
ab256960 250 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
71d0f1ea
GK
251 if (ret == 0) {
252 return;
4656e1f0
BH
253 }
254
71d0f1ea
GK
255 error_setg_errno(errp, -ret,
256 "KVM failed to provide the MMU features it supports");
4656e1f0
BH
257}
258
c64abd1f
SB
259struct ppc_radix_page_info *kvm_get_radix_page_info(void)
260{
261 KVMState *s = KVM_STATE(current_machine->accelerator);
262 struct ppc_radix_page_info *radix_page_info;
263 struct kvm_ppc_rmmu_info rmmu_info;
264 int i;
265
266 if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
267 return NULL;
268 }
269 if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
270 return NULL;
271 }
272 radix_page_info = g_malloc0(sizeof(*radix_page_info));
273 radix_page_info->count = 0;
274 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
275 if (rmmu_info.ap_encodings[i]) {
276 radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
277 radix_page_info->count++;
278 }
279 }
280 return radix_page_info;
281}
282
b4db5413
SJS
283target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
284 bool radix, bool gtse,
285 uint64_t proc_tbl)
286{
287 CPUState *cs = CPU(cpu);
288 int ret;
289 uint64_t flags = 0;
290 struct kvm_ppc_mmuv3_cfg cfg = {
291 .process_table = proc_tbl,
292 };
293
294 if (radix) {
295 flags |= KVM_PPC_MMUV3_RADIX;
296 }
297 if (gtse) {
298 flags |= KVM_PPC_MMUV3_GTSE;
299 }
300 cfg.flags = flags;
301 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
302 switch (ret) {
303 case 0:
304 return H_SUCCESS;
305 case -EINVAL:
306 return H_PARAMETER;
307 case -ENODEV:
308 return H_NOT_AVAILABLE;
309 default:
310 return H_HARDWARE;
311 }
312}
313
24c6863c
DG
314bool kvmppc_hpt_needs_host_contiguous_pages(void)
315{
24c6863c
DG
316 static struct kvm_ppc_smmu_info smmu_info;
317
318 if (!kvm_enabled()) {
319 return false;
320 }
321
ab256960 322 kvm_get_smmu_info(&smmu_info, &error_fatal);
24c6863c
DG
323 return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
324}
325
e5ca28ec 326void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
4656e1f0 327{
e5ca28ec 328 struct kvm_ppc_smmu_info smmu_info;
4656e1f0 329 int iq, ik, jq, jk;
71d0f1ea 330 Error *local_err = NULL;
4656e1f0 331
e5ca28ec
DG
332 /* For now, we only have anything to check on hash64 MMUs */
333 if (!cpu->hash64_opts || !kvm_enabled()) {
4656e1f0
BH
334 return;
335 }
336
ab256960 337 kvm_get_smmu_info(&smmu_info, &local_err);
71d0f1ea
GK
338 if (local_err) {
339 error_propagate(errp, local_err);
340 return;
341 }
4656e1f0 342
e5ca28ec
DG
343 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
344 && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
345 error_setg(errp,
346 "KVM does not support 1TiB segments which guest expects");
347 return;
df587133 348 }
4656e1f0 349
e5ca28ec
DG
350 if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
351 error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
352 smmu_info.slb_size, cpu->hash64_opts->slb_size);
353 return;
90da0d5a
BH
354 }
355
08215d8f 356 /*
e5ca28ec
DG
357 * Verify that every pagesize supported by the cpu model is
358 * supported by KVM with the same encodings
08215d8f 359 */
e5ca28ec 360 for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
b07c59f7 361 PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
e5ca28ec 362 struct kvm_ppc_one_seg_page_size *ksps;
4656e1f0 363
e5ca28ec
DG
364 for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
365 if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
4656e1f0
BH
366 break;
367 }
368 }
e5ca28ec
DG
369 if (ik >= ARRAY_SIZE(smmu_info.sps)) {
370 error_setg(errp, "KVM doesn't support for base page shift %u",
371 qsps->page_shift);
372 return;
373 }
374
375 ksps = &smmu_info.sps[ik];
376 if (ksps->slb_enc != qsps->slb_enc) {
377 error_setg(errp,
378"KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
379 ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
380 return;
381 }
382
383 for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
384 for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
385 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
386 break;
387 }
388 }
389
390 if (jk >= ARRAY_SIZE(ksps->enc)) {
391 error_setg(errp, "KVM doesn't support page shift %u/%u",
392 qsps->enc[jq].page_shift, qsps->page_shift);
393 return;
394 }
395 if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
396 error_setg(errp,
397"KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
398 ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
399 qsps->page_shift, qsps->enc[jq].pte_enc);
400 return;
401 }
4656e1f0
BH
402 }
403 }
4656e1f0 404
e5ca28ec 405 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
c995e942
DG
406 /*
407 * Mostly what guest pagesizes we can use are related to the
e5ca28ec
DG
408 * host pages used to map guest RAM, which is handled in the
409 * platform code. Cache-Inhibited largepages (64k) however are
410 * used for I/O, so if they're mapped to the host at all it
411 * will be a normal mapping, not a special hugepage one used
c995e942
DG
412 * for RAM.
413 */
038adc2f 414 if (qemu_real_host_page_size < 0x10000) {
e5ca28ec
DG
415 error_setg(errp,
416 "KVM can't supply 64kiB CI pages, which guest expects");
417 }
418 }
4656e1f0 419}
4656e1f0
BH
420#endif /* !defined (TARGET_PPC64) */
421
b164e48e
EH
422unsigned long kvm_arch_vcpu_id(CPUState *cpu)
423{
2e886fb3 424 return POWERPC_CPU(cpu)->vcpu_id;
b164e48e
EH
425}
426
c995e942
DG
427/*
428 * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports
429 * only 1 watchpoint, so array size of 4 is sufficient for now.
88365d17
BB
430 */
431#define MAX_HW_BKPTS 4
432
433static struct HWBreakpoint {
434 target_ulong addr;
435 int type;
436} hw_debug_points[MAX_HW_BKPTS];
437
438static CPUWatchpoint hw_watchpoint;
439
440/* Default there is no breakpoint and watchpoint supported */
441static int max_hw_breakpoint;
442static int max_hw_watchpoint;
443static int nb_hw_breakpoint;
444static int nb_hw_watchpoint;
445
446static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
447{
448 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
449 max_hw_breakpoint = 2;
450 max_hw_watchpoint = 2;
451 }
452
453 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
454 fprintf(stderr, "Error initializing h/w breakpoints\n");
455 return;
456 }
457}
458
20d695a9 459int kvm_arch_init_vcpu(CPUState *cs)
5666ca4a 460{
20d695a9
AF
461 PowerPCCPU *cpu = POWERPC_CPU(cs);
462 CPUPPCState *cenv = &cpu->env;
5666ca4a
SW
463 int ret;
464
4656e1f0 465 /* Synchronize sregs with kvm */
1bc22652 466 ret = kvm_arch_sync_sregs(cpu);
5666ca4a 467 if (ret) {
388e47c7
TH
468 if (ret == -EINVAL) {
469 error_report("Register sync failed... If you're using kvm-hv.ko,"
470 " only \"-cpu host\" is possible");
471 }
5666ca4a
SW
472 return ret;
473 }
861bbc80 474
93dd5e85
SW
475 switch (cenv->mmu_model) {
476 case POWERPC_MMU_BOOKE206:
7f516c96 477 /* This target supports access to KVM's guest TLB */
1bc22652 478 ret = kvm_booke206_tlb_init(cpu);
93dd5e85 479 break;
7f516c96
TH
480 case POWERPC_MMU_2_07:
481 if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
c995e942
DG
482 /*
483 * KVM-HV has transactional memory on POWER8 also without
484 * the KVM_CAP_PPC_HTM extension, so enable it here
485 * instead as long as it's availble to userspace on the
486 * host.
487 */
f3d9f303
SB
488 if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
489 cap_htm = true;
490 }
7f516c96
TH
491 }
492 break;
93dd5e85
SW
493 default:
494 break;
495 }
496
3c902d44 497 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
88365d17 498 kvmppc_hw_debug_points_init(cenv);
3c902d44 499
861bbc80 500 return ret;
d76d1650
AJ
501}
502
b1115c99
LA
503int kvm_arch_destroy_vcpu(CPUState *cs)
504{
505 return 0;
506}
507
1bc22652 508static void kvm_sw_tlb_put(PowerPCCPU *cpu)
93dd5e85 509{
1bc22652
AF
510 CPUPPCState *env = &cpu->env;
511 CPUState *cs = CPU(cpu);
93dd5e85
SW
512 struct kvm_dirty_tlb dirty_tlb;
513 unsigned char *bitmap;
514 int ret;
515
516 if (!env->kvm_sw_tlb) {
517 return;
518 }
519
520 bitmap = g_malloc((env->nb_tlb + 7) / 8);
521 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
522
523 dirty_tlb.bitmap = (uintptr_t)bitmap;
524 dirty_tlb.num_dirty = env->nb_tlb;
525
1bc22652 526 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
93dd5e85
SW
527 if (ret) {
528 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
529 __func__, strerror(-ret));
530 }
531
532 g_free(bitmap);
533}
534
d67d40ea
DG
535static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
536{
537 PowerPCCPU *cpu = POWERPC_CPU(cs);
538 CPUPPCState *env = &cpu->env;
539 union {
540 uint32_t u32;
541 uint64_t u64;
542 } val;
543 struct kvm_one_reg reg = {
544 .id = id,
545 .addr = (uintptr_t) &val,
546 };
547 int ret;
548
549 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
550 if (ret != 0) {
b36f100e 551 trace_kvm_failed_spr_get(spr, strerror(errno));
d67d40ea
DG
552 } else {
553 switch (id & KVM_REG_SIZE_MASK) {
554 case KVM_REG_SIZE_U32:
555 env->spr[spr] = val.u32;
556 break;
557
558 case KVM_REG_SIZE_U64:
559 env->spr[spr] = val.u64;
560 break;
561
562 default:
563 /* Don't handle this size yet */
564 abort();
565 }
566 }
567}
568
569static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
570{
571 PowerPCCPU *cpu = POWERPC_CPU(cs);
572 CPUPPCState *env = &cpu->env;
573 union {
574 uint32_t u32;
575 uint64_t u64;
576 } val;
577 struct kvm_one_reg reg = {
578 .id = id,
579 .addr = (uintptr_t) &val,
580 };
581 int ret;
582
583 switch (id & KVM_REG_SIZE_MASK) {
584 case KVM_REG_SIZE_U32:
585 val.u32 = env->spr[spr];
586 break;
587
588 case KVM_REG_SIZE_U64:
589 val.u64 = env->spr[spr];
590 break;
591
592 default:
593 /* Don't handle this size yet */
594 abort();
595 }
596
597 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
598 if (ret != 0) {
b36f100e 599 trace_kvm_failed_spr_set(spr, strerror(errno));
d67d40ea
DG
600 }
601}
602
70b79849
DG
603static int kvm_put_fp(CPUState *cs)
604{
605 PowerPCCPU *cpu = POWERPC_CPU(cs);
606 CPUPPCState *env = &cpu->env;
607 struct kvm_one_reg reg;
608 int i;
609 int ret;
610
611 if (env->insns_flags & PPC_FLOAT) {
612 uint64_t fpscr = env->fpscr;
613 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
614
615 reg.id = KVM_REG_PPC_FPSCR;
616 reg.addr = (uintptr_t)&fpscr;
617 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
618 if (ret < 0) {
8d83cbf1 619 trace_kvm_failed_fpscr_set(strerror(errno));
70b79849
DG
620 return ret;
621 }
622
623 for (i = 0; i < 32; i++) {
624 uint64_t vsr[2];
ef96e3ae
MCA
625 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
626 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
70b79849 627
3a4b791b 628#ifdef HOST_WORDS_BIGENDIAN
ef96e3ae
MCA
629 vsr[0] = float64_val(*fpr);
630 vsr[1] = *vsrl;
3a4b791b 631#else
ef96e3ae
MCA
632 vsr[0] = *vsrl;
633 vsr[1] = float64_val(*fpr);
3a4b791b 634#endif
70b79849
DG
635 reg.addr = (uintptr_t) &vsr;
636 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
637
638 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
639 if (ret < 0) {
8d83cbf1
GK
640 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
641 strerror(errno));
70b79849
DG
642 return ret;
643 }
644 }
645 }
646
647 if (env->insns_flags & PPC_ALTIVEC) {
648 reg.id = KVM_REG_PPC_VSCR;
649 reg.addr = (uintptr_t)&env->vscr;
650 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
651 if (ret < 0) {
8d83cbf1 652 trace_kvm_failed_vscr_set(strerror(errno));
70b79849
DG
653 return ret;
654 }
655
656 for (i = 0; i < 32; i++) {
657 reg.id = KVM_REG_PPC_VR(i);
ef96e3ae 658 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
70b79849
DG
659 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
660 if (ret < 0) {
8d83cbf1 661 trace_kvm_failed_vr_set(i, strerror(errno));
70b79849
DG
662 return ret;
663 }
664 }
665 }
666
667 return 0;
668}
669
670static int kvm_get_fp(CPUState *cs)
671{
672 PowerPCCPU *cpu = POWERPC_CPU(cs);
673 CPUPPCState *env = &cpu->env;
674 struct kvm_one_reg reg;
675 int i;
676 int ret;
677
678 if (env->insns_flags & PPC_FLOAT) {
679 uint64_t fpscr;
680 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
681
682 reg.id = KVM_REG_PPC_FPSCR;
683 reg.addr = (uintptr_t)&fpscr;
684 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
685 if (ret < 0) {
8d83cbf1 686 trace_kvm_failed_fpscr_get(strerror(errno));
70b79849
DG
687 return ret;
688 } else {
689 env->fpscr = fpscr;
690 }
691
692 for (i = 0; i < 32; i++) {
693 uint64_t vsr[2];
ef96e3ae
MCA
694 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
695 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
70b79849
DG
696
697 reg.addr = (uintptr_t) &vsr;
698 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
699
700 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
701 if (ret < 0) {
8d83cbf1
GK
702 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
703 strerror(errno));
70b79849
DG
704 return ret;
705 } else {
3a4b791b 706#ifdef HOST_WORDS_BIGENDIAN
ef96e3ae 707 *fpr = vsr[0];
70b79849 708 if (vsx) {
ef96e3ae 709 *vsrl = vsr[1];
70b79849 710 }
3a4b791b 711#else
ef96e3ae 712 *fpr = vsr[1];
3a4b791b 713 if (vsx) {
ef96e3ae 714 *vsrl = vsr[0];
3a4b791b
GK
715 }
716#endif
70b79849
DG
717 }
718 }
719 }
720
721 if (env->insns_flags & PPC_ALTIVEC) {
722 reg.id = KVM_REG_PPC_VSCR;
723 reg.addr = (uintptr_t)&env->vscr;
724 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
725 if (ret < 0) {
8d83cbf1 726 trace_kvm_failed_vscr_get(strerror(errno));
70b79849
DG
727 return ret;
728 }
729
730 for (i = 0; i < 32; i++) {
731 reg.id = KVM_REG_PPC_VR(i);
ef96e3ae 732 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
70b79849
DG
733 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
734 if (ret < 0) {
8d83cbf1 735 trace_kvm_failed_vr_get(i, strerror(errno));
70b79849
DG
736 return ret;
737 }
738 }
739 }
740
741 return 0;
742}
743
9b00ea49
DG
744#if defined(TARGET_PPC64)
745static int kvm_get_vpa(CPUState *cs)
746{
747 PowerPCCPU *cpu = POWERPC_CPU(cs);
ce2918cb 748 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
9b00ea49
DG
749 struct kvm_one_reg reg;
750 int ret;
751
752 reg.id = KVM_REG_PPC_VPA_ADDR;
7388efaf 753 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
9b00ea49
DG
754 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
755 if (ret < 0) {
8d83cbf1 756 trace_kvm_failed_vpa_addr_get(strerror(errno));
9b00ea49
DG
757 return ret;
758 }
759
7388efaf
DG
760 assert((uintptr_t)&spapr_cpu->slb_shadow_size
761 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
9b00ea49 762 reg.id = KVM_REG_PPC_VPA_SLB;
7388efaf 763 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
9b00ea49
DG
764 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
765 if (ret < 0) {
8d83cbf1 766 trace_kvm_failed_slb_get(strerror(errno));
9b00ea49
DG
767 return ret;
768 }
769
7388efaf
DG
770 assert((uintptr_t)&spapr_cpu->dtl_size
771 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
9b00ea49 772 reg.id = KVM_REG_PPC_VPA_DTL;
7388efaf 773 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
9b00ea49
DG
774 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
775 if (ret < 0) {
8d83cbf1 776 trace_kvm_failed_dtl_get(strerror(errno));
9b00ea49
DG
777 return ret;
778 }
779
780 return 0;
781}
782
783static int kvm_put_vpa(CPUState *cs)
784{
785 PowerPCCPU *cpu = POWERPC_CPU(cs);
ce2918cb 786 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
9b00ea49
DG
787 struct kvm_one_reg reg;
788 int ret;
789
c995e942
DG
790 /*
791 * SLB shadow or DTL can't be registered unless a master VPA is
9b00ea49
DG
792 * registered. That means when restoring state, if a VPA *is*
793 * registered, we need to set that up first. If not, we need to
c995e942
DG
794 * deregister the others before deregistering the master VPA
795 */
7388efaf
DG
796 assert(spapr_cpu->vpa_addr
797 || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
9b00ea49 798
7388efaf 799 if (spapr_cpu->vpa_addr) {
9b00ea49 800 reg.id = KVM_REG_PPC_VPA_ADDR;
7388efaf 801 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
9b00ea49
DG
802 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
803 if (ret < 0) {
8d83cbf1 804 trace_kvm_failed_vpa_addr_set(strerror(errno));
9b00ea49
DG
805 return ret;
806 }
807 }
808
7388efaf
DG
809 assert((uintptr_t)&spapr_cpu->slb_shadow_size
810 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
9b00ea49 811 reg.id = KVM_REG_PPC_VPA_SLB;
7388efaf 812 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
9b00ea49
DG
813 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
814 if (ret < 0) {
8d83cbf1 815 trace_kvm_failed_slb_set(strerror(errno));
9b00ea49
DG
816 return ret;
817 }
818
7388efaf
DG
819 assert((uintptr_t)&spapr_cpu->dtl_size
820 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
9b00ea49 821 reg.id = KVM_REG_PPC_VPA_DTL;
7388efaf 822 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
9b00ea49
DG
823 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
824 if (ret < 0) {
8d83cbf1 825 trace_kvm_failed_dtl_set(strerror(errno));
9b00ea49
DG
826 return ret;
827 }
828
7388efaf 829 if (!spapr_cpu->vpa_addr) {
9b00ea49 830 reg.id = KVM_REG_PPC_VPA_ADDR;
7388efaf 831 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
9b00ea49
DG
832 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
833 if (ret < 0) {
8d83cbf1 834 trace_kvm_failed_null_vpa_addr_set(strerror(errno));
9b00ea49
DG
835 return ret;
836 }
837 }
838
839 return 0;
840}
841#endif /* TARGET_PPC64 */
842
e5c0d3ce 843int kvmppc_put_books_sregs(PowerPCCPU *cpu)
a7a00a72
DG
844{
845 CPUPPCState *env = &cpu->env;
846 struct kvm_sregs sregs;
847 int i;
848
849 sregs.pvr = env->spr[SPR_PVR];
850
1ec26c75
GK
851 if (cpu->vhyp) {
852 PPCVirtualHypervisorClass *vhc =
853 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
854 sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
855 } else {
856 sregs.u.s.sdr1 = env->spr[SPR_SDR1];
857 }
a7a00a72
DG
858
859 /* Sync SLB */
860#ifdef TARGET_PPC64
861 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
862 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
863 if (env->slb[i].esid & SLB_ESID_V) {
864 sregs.u.s.ppc64.slb[i].slbe |= i;
865 }
866 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
867 }
868#endif
869
870 /* Sync SRs */
871 for (i = 0; i < 16; i++) {
872 sregs.u.s.ppc32.sr[i] = env->sr[i];
873 }
874
875 /* Sync BATs */
876 for (i = 0; i < 8; i++) {
877 /* Beware. We have to swap upper and lower bits here */
878 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
879 | env->DBAT[1][i];
880 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
881 | env->IBAT[1][i];
882 }
883
884 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
885}
886
20d695a9 887int kvm_arch_put_registers(CPUState *cs, int level)
d76d1650 888{
20d695a9
AF
889 PowerPCCPU *cpu = POWERPC_CPU(cs);
890 CPUPPCState *env = &cpu->env;
d76d1650
AJ
891 struct kvm_regs regs;
892 int ret;
893 int i;
894
1bc22652
AF
895 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
896 if (ret < 0) {
d76d1650 897 return ret;
1bc22652 898 }
d76d1650
AJ
899
900 regs.ctr = env->ctr;
901 regs.lr = env->lr;
da91a00f 902 regs.xer = cpu_read_xer(env);
d76d1650
AJ
903 regs.msr = env->msr;
904 regs.pc = env->nip;
905
906 regs.srr0 = env->spr[SPR_SRR0];
907 regs.srr1 = env->spr[SPR_SRR1];
908
909 regs.sprg0 = env->spr[SPR_SPRG0];
910 regs.sprg1 = env->spr[SPR_SPRG1];
911 regs.sprg2 = env->spr[SPR_SPRG2];
912 regs.sprg3 = env->spr[SPR_SPRG3];
913 regs.sprg4 = env->spr[SPR_SPRG4];
914 regs.sprg5 = env->spr[SPR_SPRG5];
915 regs.sprg6 = env->spr[SPR_SPRG6];
916 regs.sprg7 = env->spr[SPR_SPRG7];
917
90dc8812
SW
918 regs.pid = env->spr[SPR_BOOKE_PID];
919
c995e942 920 for (i = 0; i < 32; i++) {
d76d1650 921 regs.gpr[i] = env->gpr[i];
c995e942 922 }
d76d1650 923
4bddaf55
AK
924 regs.cr = 0;
925 for (i = 0; i < 8; i++) {
926 regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
927 }
928
1bc22652 929 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
c995e942 930 if (ret < 0) {
d76d1650 931 return ret;
c995e942 932 }
d76d1650 933
70b79849
DG
934 kvm_put_fp(cs);
935
93dd5e85 936 if (env->tlb_dirty) {
1bc22652 937 kvm_sw_tlb_put(cpu);
93dd5e85
SW
938 env->tlb_dirty = false;
939 }
940
f1af19d7 941 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
a7a00a72
DG
942 ret = kvmppc_put_books_sregs(cpu);
943 if (ret < 0) {
f1af19d7
DG
944 return ret;
945 }
946 }
947
948 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
d67d40ea
DG
949 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
950 }
f1af19d7 951
d67d40ea
DG
952 if (cap_one_reg) {
953 int i;
954
c995e942
DG
955 /*
956 * We deliberately ignore errors here, for kernels which have
d67d40ea
DG
957 * the ONE_REG calls, but don't support the specific
958 * registers, there's a reasonable chance things will still
c995e942
DG
959 * work, at least until we try to migrate.
960 */
d67d40ea
DG
961 for (i = 0; i < 1024; i++) {
962 uint64_t id = env->spr_cb[i].one_reg_id;
963
964 if (id != 0) {
965 kvm_put_one_spr(cs, id, i);
966 }
f1af19d7 967 }
9b00ea49
DG
968
969#ifdef TARGET_PPC64
80b3f79b
AK
970 if (msr_ts) {
971 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
972 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
973 }
974 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
975 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
976 }
977 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
978 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
979 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
980 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
981 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
982 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
983 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
984 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
985 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
986 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
987 }
988
9b00ea49
DG
989 if (cap_papr) {
990 if (kvm_put_vpa(cs) < 0) {
8d83cbf1 991 trace_kvm_failed_put_vpa();
9b00ea49
DG
992 }
993 }
98a8b524
AK
994
995 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
972bd576
AK
996
997 if (level > KVM_PUT_RUNTIME_STATE) {
998 kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
999 }
9b00ea49 1000#endif /* TARGET_PPC64 */
f1af19d7
DG
1001 }
1002
d76d1650
AJ
1003 return ret;
1004}
1005
c371c2e3
BB
1006static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1007{
1008 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1009}
1010
a7a00a72
DG
1011static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1012{
1013 CPUPPCState *env = &cpu->env;
1014 struct kvm_sregs sregs;
1015 int ret;
1016
1017 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1018 if (ret < 0) {
1019 return ret;
1020 }
1021
1022 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1023 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1024 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1025 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1026 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1027 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1028 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1029 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1030 env->spr[SPR_DECR] = sregs.u.e.dec;
1031 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1032 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1033 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1034 }
1035
1036 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1037 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1038 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1039 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1040 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1041 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1042 }
1043
1044 if (sregs.u.e.features & KVM_SREGS_E_64) {
1045 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1046 }
1047
1048 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1049 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1050 }
1051
1052 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1053 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1054 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0);
1055 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1056 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1);
1057 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1058 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2);
1059 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1060 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3);
1061 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1062 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4);
1063 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1064 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5);
1065 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1066 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6);
1067 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1068 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7);
1069 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1070 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8);
1071 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1072 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9);
1073 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1074 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10);
1075 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1076 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11);
1077 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1078 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12);
1079 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1080 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13);
1081 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1082 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14);
1083 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1084 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15);
1085
1086 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1087 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1088 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32);
1089 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1090 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33);
1091 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1092 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34);
1093 }
1094
1095 if (sregs.u.e.features & KVM_SREGS_E_PM) {
1096 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1097 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35);
1098 }
1099
1100 if (sregs.u.e.features & KVM_SREGS_E_PC) {
1101 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1102 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36);
1103 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1104 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1105 }
1106 }
1107
1108 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1109 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1110 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1111 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1112 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1113 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1114 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1115 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1116 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1117 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1118 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1119 }
1120
1121 if (sregs.u.e.features & KVM_SREGS_EXP) {
1122 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1123 }
1124
1125 if (sregs.u.e.features & KVM_SREGS_E_PD) {
1126 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1127 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1128 }
1129
1130 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1131 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1132 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1133 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1134
1135 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1136 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1137 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1138 }
1139 }
1140
1141 return 0;
1142}
1143
1144static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1145{
1146 CPUPPCState *env = &cpu->env;
1147 struct kvm_sregs sregs;
1148 int ret;
1149 int i;
1150
1151 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1152 if (ret < 0) {
1153 return ret;
1154 }
1155
e57ca75c 1156 if (!cpu->vhyp) {
a7a00a72
DG
1157 ppc_store_sdr1(env, sregs.u.s.sdr1);
1158 }
1159
1160 /* Sync SLB */
1161#ifdef TARGET_PPC64
1162 /*
1163 * The packed SLB array we get from KVM_GET_SREGS only contains
1164 * information about valid entries. So we flush our internal copy
1165 * to get rid of stale ones, then put all valid SLB entries back
1166 * in.
1167 */
1168 memset(env->slb, 0, sizeof(env->slb));
1169 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1170 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1171 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1172 /*
1173 * Only restore valid entries
1174 */
1175 if (rb & SLB_ESID_V) {
1176 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1177 }
1178 }
1179#endif
1180
1181 /* Sync SRs */
1182 for (i = 0; i < 16; i++) {
1183 env->sr[i] = sregs.u.s.ppc32.sr[i];
1184 }
1185
1186 /* Sync BATs */
1187 for (i = 0; i < 8; i++) {
1188 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1189 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1190 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1191 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1192 }
1193
1194 return 0;
1195}
1196
20d695a9 1197int kvm_arch_get_registers(CPUState *cs)
d76d1650 1198{
20d695a9
AF
1199 PowerPCCPU *cpu = POWERPC_CPU(cs);
1200 CPUPPCState *env = &cpu->env;
d76d1650 1201 struct kvm_regs regs;
90dc8812 1202 uint32_t cr;
138b38b6 1203 int i, ret;
d76d1650 1204
1bc22652 1205 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
c995e942 1206 if (ret < 0) {
d76d1650 1207 return ret;
c995e942 1208 }
d76d1650 1209
90dc8812
SW
1210 cr = regs.cr;
1211 for (i = 7; i >= 0; i--) {
1212 env->crf[i] = cr & 15;
1213 cr >>= 4;
1214 }
ba5e5090 1215
d76d1650
AJ
1216 env->ctr = regs.ctr;
1217 env->lr = regs.lr;
da91a00f 1218 cpu_write_xer(env, regs.xer);
d76d1650
AJ
1219 env->msr = regs.msr;
1220 env->nip = regs.pc;
1221
1222 env->spr[SPR_SRR0] = regs.srr0;
1223 env->spr[SPR_SRR1] = regs.srr1;
1224
1225 env->spr[SPR_SPRG0] = regs.sprg0;
1226 env->spr[SPR_SPRG1] = regs.sprg1;
1227 env->spr[SPR_SPRG2] = regs.sprg2;
1228 env->spr[SPR_SPRG3] = regs.sprg3;
1229 env->spr[SPR_SPRG4] = regs.sprg4;
1230 env->spr[SPR_SPRG5] = regs.sprg5;
1231 env->spr[SPR_SPRG6] = regs.sprg6;
1232 env->spr[SPR_SPRG7] = regs.sprg7;
1233
90dc8812
SW
1234 env->spr[SPR_BOOKE_PID] = regs.pid;
1235
c995e942 1236 for (i = 0; i < 32; i++) {
d76d1650 1237 env->gpr[i] = regs.gpr[i];
c995e942 1238 }
d76d1650 1239
70b79849
DG
1240 kvm_get_fp(cs);
1241
90dc8812 1242 if (cap_booke_sregs) {
a7a00a72 1243 ret = kvmppc_get_booke_sregs(cpu);
90dc8812
SW
1244 if (ret < 0) {
1245 return ret;
1246 }
fafc0b6a 1247 }
90dc8812 1248
90dc8812 1249 if (cap_segstate) {
a7a00a72 1250 ret = kvmppc_get_books_sregs(cpu);
90dc8812
SW
1251 if (ret < 0) {
1252 return ret;
1253 }
fafc0b6a 1254 }
ba5e5090 1255
d67d40ea
DG
1256 if (cap_hior) {
1257 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1258 }
1259
1260 if (cap_one_reg) {
1261 int i;
1262
c995e942
DG
1263 /*
1264 * We deliberately ignore errors here, for kernels which have
d67d40ea
DG
1265 * the ONE_REG calls, but don't support the specific
1266 * registers, there's a reasonable chance things will still
c995e942
DG
1267 * work, at least until we try to migrate.
1268 */
d67d40ea
DG
1269 for (i = 0; i < 1024; i++) {
1270 uint64_t id = env->spr_cb[i].one_reg_id;
1271
1272 if (id != 0) {
1273 kvm_get_one_spr(cs, id, i);
1274 }
1275 }
9b00ea49
DG
1276
1277#ifdef TARGET_PPC64
80b3f79b
AK
1278 if (msr_ts) {
1279 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1280 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1281 }
1282 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1283 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1284 }
1285 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1286 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1287 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1288 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1289 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1290 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1291 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1292 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1293 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1294 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1295 }
1296
9b00ea49
DG
1297 if (cap_papr) {
1298 if (kvm_get_vpa(cs) < 0) {
8d83cbf1 1299 trace_kvm_failed_get_vpa();
9b00ea49
DG
1300 }
1301 }
98a8b524
AK
1302
1303 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
972bd576 1304 kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
9b00ea49 1305#endif
d67d40ea
DG
1306 }
1307
d76d1650
AJ
1308 return 0;
1309}
1310
1bc22652 1311int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
fc87e185
AG
1312{
1313 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1314
1315 if (irq != PPC_INTERRUPT_EXT) {
1316 return 0;
1317 }
1318
1e8f51e8 1319 if (!kvm_enabled() || !cap_interrupt_unset) {
fc87e185
AG
1320 return 0;
1321 }
1322
1bc22652 1323 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
fc87e185
AG
1324
1325 return 0;
1326}
1327
a69dc537 1328#if defined(TARGET_PPC64)
16415335
AG
1329#define PPC_INPUT_INT PPC970_INPUT_INT
1330#else
1331#define PPC_INPUT_INT PPC6xx_INPUT_INT
1332#endif
1333
20d695a9 1334void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
d76d1650 1335{
1e8f51e8 1336 return;
d76d1650
AJ
1337}
1338
4c663752 1339MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
d76d1650 1340{
4c663752 1341 return MEMTXATTRS_UNSPECIFIED;
d76d1650
AJ
1342}
1343
20d695a9 1344int kvm_arch_process_async_events(CPUState *cs)
0af691d7 1345{
259186a7 1346 return cs->halted;
0af691d7
MT
1347}
1348
259186a7 1349static int kvmppc_handle_halt(PowerPCCPU *cpu)
d76d1650 1350{
259186a7
AF
1351 CPUState *cs = CPU(cpu);
1352 CPUPPCState *env = &cpu->env;
1353
1354 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
1355 cs->halted = 1;
27103424 1356 cs->exception_index = EXCP_HLT;
d76d1650
AJ
1357 }
1358
bb4ea393 1359 return 0;
d76d1650
AJ
1360}
1361
1362/* map dcr access to existing qemu dcr emulation */
c995e942
DG
1363static int kvmppc_handle_dcr_read(CPUPPCState *env,
1364 uint32_t dcrn, uint32_t *data)
d76d1650 1365{
c995e942 1366 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
d76d1650 1367 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
c995e942 1368 }
d76d1650 1369
bb4ea393 1370 return 0;
d76d1650
AJ
1371}
1372
c995e942
DG
1373static int kvmppc_handle_dcr_write(CPUPPCState *env,
1374 uint32_t dcrn, uint32_t data)
d76d1650 1375{
c995e942 1376 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
d76d1650 1377 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
c995e942 1378 }
d76d1650 1379
bb4ea393 1380 return 0;
d76d1650
AJ
1381}
1382
8a0548f9
BB
1383int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1384{
1385 /* Mixed endian case is not handled */
1386 uint32_t sc = debug_inst_opcode;
1387
1388 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1389 sizeof(sc), 0) ||
1390 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1391 return -EINVAL;
1392 }
1393
1394 return 0;
1395}
1396
1397int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1398{
1399 uint32_t sc;
1400
1401 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1402 sc != debug_inst_opcode ||
1403 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1404 sizeof(sc), 1)) {
1405 return -EINVAL;
1406 }
1407
1408 return 0;
1409}
1410
88365d17
BB
1411static int find_hw_breakpoint(target_ulong addr, int type)
1412{
1413 int n;
1414
1415 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1416 <= ARRAY_SIZE(hw_debug_points));
1417
1418 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1419 if (hw_debug_points[n].addr == addr &&
1420 hw_debug_points[n].type == type) {
1421 return n;
1422 }
1423 }
1424
1425 return -1;
1426}
1427
1428static int find_hw_watchpoint(target_ulong addr, int *flag)
1429{
1430 int n;
1431
1432 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1433 if (n >= 0) {
1434 *flag = BP_MEM_ACCESS;
1435 return n;
1436 }
1437
1438 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1439 if (n >= 0) {
1440 *flag = BP_MEM_WRITE;
1441 return n;
1442 }
1443
1444 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1445 if (n >= 0) {
1446 *flag = BP_MEM_READ;
1447 return n;
1448 }
1449
1450 return -1;
1451}
1452
1453int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1454 target_ulong len, int type)
1455{
1456 if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1457 return -ENOBUFS;
1458 }
1459
1460 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1461 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1462
1463 switch (type) {
1464 case GDB_BREAKPOINT_HW:
1465 if (nb_hw_breakpoint >= max_hw_breakpoint) {
1466 return -ENOBUFS;
1467 }
1468
1469 if (find_hw_breakpoint(addr, type) >= 0) {
1470 return -EEXIST;
1471 }
1472
1473 nb_hw_breakpoint++;
1474 break;
1475
1476 case GDB_WATCHPOINT_WRITE:
1477 case GDB_WATCHPOINT_READ:
1478 case GDB_WATCHPOINT_ACCESS:
1479 if (nb_hw_watchpoint >= max_hw_watchpoint) {
1480 return -ENOBUFS;
1481 }
1482
1483 if (find_hw_breakpoint(addr, type) >= 0) {
1484 return -EEXIST;
1485 }
1486
1487 nb_hw_watchpoint++;
1488 break;
1489
1490 default:
1491 return -ENOSYS;
1492 }
1493
1494 return 0;
1495}
1496
1497int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1498 target_ulong len, int type)
1499{
1500 int n;
1501
1502 n = find_hw_breakpoint(addr, type);
1503 if (n < 0) {
1504 return -ENOENT;
1505 }
1506
1507 switch (type) {
1508 case GDB_BREAKPOINT_HW:
1509 nb_hw_breakpoint--;
1510 break;
1511
1512 case GDB_WATCHPOINT_WRITE:
1513 case GDB_WATCHPOINT_READ:
1514 case GDB_WATCHPOINT_ACCESS:
1515 nb_hw_watchpoint--;
1516 break;
1517
1518 default:
1519 return -ENOSYS;
1520 }
1521 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1522
1523 return 0;
1524}
1525
1526void kvm_arch_remove_all_hw_breakpoints(void)
1527{
1528 nb_hw_breakpoint = nb_hw_watchpoint = 0;
1529}
1530
8a0548f9
BB
1531void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1532{
88365d17
BB
1533 int n;
1534
8a0548f9
BB
1535 /* Software Breakpoint updates */
1536 if (kvm_sw_breakpoints_active(cs)) {
1537 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1538 }
88365d17
BB
1539
1540 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1541 <= ARRAY_SIZE(hw_debug_points));
1542 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1543
1544 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1545 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1546 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1547 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1548 switch (hw_debug_points[n].type) {
1549 case GDB_BREAKPOINT_HW:
1550 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1551 break;
1552 case GDB_WATCHPOINT_WRITE:
1553 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1554 break;
1555 case GDB_WATCHPOINT_READ:
1556 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1557 break;
1558 case GDB_WATCHPOINT_ACCESS:
1559 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1560 KVMPPC_DEBUG_WATCH_READ;
1561 break;
1562 default:
1563 cpu_abort(cs, "Unsupported breakpoint type\n");
1564 }
1565 dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1566 }
1567 }
8a0548f9
BB
1568}
1569
2cbd1581
FR
1570static int kvm_handle_hw_breakpoint(CPUState *cs,
1571 struct kvm_debug_exit_arch *arch_info)
1572{
1573 int handle = 0;
1574 int n;
1575 int flag = 0;
1576
1577 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1578 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1579 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1580 if (n >= 0) {
1581 handle = 1;
1582 }
1583 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1584 KVMPPC_DEBUG_WATCH_WRITE)) {
1585 n = find_hw_watchpoint(arch_info->address, &flag);
1586 if (n >= 0) {
1587 handle = 1;
1588 cs->watchpoint_hit = &hw_watchpoint;
1589 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1590 hw_watchpoint.flags = flag;
1591 }
1592 }
1593 }
1594 return handle;
1595}
1596
468e3a1a
FR
1597static int kvm_handle_singlestep(void)
1598{
1599 return 1;
1600}
1601
1602static int kvm_handle_sw_breakpoint(void)
1603{
1604 return 1;
1605}
1606
8a0548f9
BB
1607static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1608{
1609 CPUState *cs = CPU(cpu);
1610 CPUPPCState *env = &cpu->env;
1611 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
8a0548f9 1612
88365d17 1613 if (cs->singlestep_enabled) {
468e3a1a
FR
1614 return kvm_handle_singlestep();
1615 }
8a0548f9 1616
468e3a1a
FR
1617 if (arch_info->status) {
1618 return kvm_handle_hw_breakpoint(cs, arch_info);
8a0548f9
BB
1619 }
1620
468e3a1a
FR
1621 if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1622 return kvm_handle_sw_breakpoint();
1623 }
1624
1625 /*
1626 * QEMU is not able to handle debug exception, so inject
1627 * program exception to guest;
1628 * Yes program exception NOT debug exception !!
1629 * When QEMU is using debug resources then debug exception must
1630 * be always set. To achieve this we set MSR_DE and also set
1631 * MSRP_DEP so guest cannot change MSR_DE.
1632 * When emulating debug resource for guest we want guest
1633 * to control MSR_DE (enable/disable debug interrupt on need).
1634 * Supporting both configurations are NOT possible.
1635 * So the result is that we cannot share debug resources
1636 * between QEMU and Guest on BOOKE architecture.
1637 * In the current design QEMU gets the priority over guest,
1638 * this means that if QEMU is using debug resources then guest
1639 * cannot use them;
1640 * For software breakpoint QEMU uses a privileged instruction;
1641 * So there cannot be any reason that we are here for guest
1642 * set debug exception, only possibility is guest executed a
1643 * privileged / illegal instruction and that's why we are
1644 * injecting a program interrupt.
1645 */
1646 cpu_synchronize_state(cs);
1647 /*
1648 * env->nip is PC, so increment this by 4 to use
1649 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1650 */
1651 env->nip += 4;
1652 cs->exception_index = POWERPC_EXCP_PROGRAM;
1653 env->error_code = POWERPC_EXCP_INVAL;
1654 ppc_cpu_do_interrupt(cs);
1655
1656 return 0;
8a0548f9
BB
1657}
1658
20d695a9 1659int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
d76d1650 1660{
20d695a9
AF
1661 PowerPCCPU *cpu = POWERPC_CPU(cs);
1662 CPUPPCState *env = &cpu->env;
bb4ea393 1663 int ret;
d76d1650 1664
4b8523ee
JK
1665 qemu_mutex_lock_iothread();
1666
d76d1650
AJ
1667 switch (run->exit_reason) {
1668 case KVM_EXIT_DCR:
1669 if (run->dcr.is_write) {
8d83cbf1 1670 trace_kvm_handle_dcr_write();
d76d1650
AJ
1671 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1672 } else {
228152c2 1673 trace_kvm_handle_dcr_read();
d76d1650
AJ
1674 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1675 }
1676 break;
1677 case KVM_EXIT_HLT:
8d83cbf1 1678 trace_kvm_handle_halt();
259186a7 1679 ret = kvmppc_handle_halt(cpu);
d76d1650 1680 break;
c6304a4a 1681#if defined(TARGET_PPC64)
f61b4bed 1682 case KVM_EXIT_PAPR_HCALL:
8d83cbf1 1683 trace_kvm_handle_papr_hcall();
20d695a9 1684 run->papr_hcall.ret = spapr_hypercall(cpu,
aa100fa4 1685 run->papr_hcall.nr,
f61b4bed 1686 run->papr_hcall.args);
78e8fde2 1687 ret = 0;
f61b4bed
AG
1688 break;
1689#endif
5b95b8b9 1690 case KVM_EXIT_EPR:
8d83cbf1 1691 trace_kvm_handle_epr();
933b19ea 1692 run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
5b95b8b9
AG
1693 ret = 0;
1694 break;
31f2cb8f 1695 case KVM_EXIT_WATCHDOG:
8d83cbf1 1696 trace_kvm_handle_watchdog_expiry();
31f2cb8f
BB
1697 watchdog_perform_action();
1698 ret = 0;
1699 break;
1700
8a0548f9 1701 case KVM_EXIT_DEBUG:
8d83cbf1 1702 trace_kvm_handle_debug_exception();
8a0548f9
BB
1703 if (kvm_handle_debug(cpu, run)) {
1704 ret = EXCP_DEBUG;
1705 break;
1706 }
1707 /* re-enter, this exception was guest-internal */
1708 ret = 0;
1709 break;
1710
73aaec4a
JK
1711 default:
1712 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1713 ret = -1;
1714 break;
d76d1650
AJ
1715 }
1716
4b8523ee 1717 qemu_mutex_unlock_iothread();
d76d1650
AJ
1718 return ret;
1719}
1720
31f2cb8f
BB
1721int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1722{
1723 CPUState *cs = CPU(cpu);
1724 uint32_t bits = tsr_bits;
1725 struct kvm_one_reg reg = {
1726 .id = KVM_REG_PPC_OR_TSR,
1727 .addr = (uintptr_t) &bits,
1728 };
1729
1730 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1731}
1732
1733int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1734{
1735
1736 CPUState *cs = CPU(cpu);
1737 uint32_t bits = tsr_bits;
1738 struct kvm_one_reg reg = {
1739 .id = KVM_REG_PPC_CLEAR_TSR,
1740 .addr = (uintptr_t) &bits,
1741 };
1742
1743 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1744}
1745
1746int kvmppc_set_tcr(PowerPCCPU *cpu)
1747{
1748 CPUState *cs = CPU(cpu);
1749 CPUPPCState *env = &cpu->env;
1750 uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1751
1752 struct kvm_one_reg reg = {
1753 .id = KVM_REG_PPC_TCR,
1754 .addr = (uintptr_t) &tcr,
1755 };
1756
1757 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1758}
1759
1760int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1761{
1762 CPUState *cs = CPU(cpu);
31f2cb8f
BB
1763 int ret;
1764
1765 if (!kvm_enabled()) {
1766 return -1;
1767 }
1768
1769 if (!cap_ppc_watchdog) {
1770 printf("warning: KVM does not support watchdog");
1771 return -1;
1772 }
1773
48add816 1774 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
31f2cb8f
BB
1775 if (ret < 0) {
1776 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1777 __func__, strerror(-ret));
1778 return ret;
1779 }
1780
1781 return ret;
1782}
1783
dc333cd6
AG
1784static int read_cpuinfo(const char *field, char *value, int len)
1785{
1786 FILE *f;
1787 int ret = -1;
1788 int field_len = strlen(field);
1789 char line[512];
1790
1791 f = fopen("/proc/cpuinfo", "r");
1792 if (!f) {
1793 return -1;
1794 }
1795
1796 do {
ef951443 1797 if (!fgets(line, sizeof(line), f)) {
dc333cd6
AG
1798 break;
1799 }
1800 if (!strncmp(line, field, field_len)) {
ae215068 1801 pstrcpy(value, len, line);
dc333cd6
AG
1802 ret = 0;
1803 break;
1804 }
c995e942 1805 } while (*line);
dc333cd6
AG
1806
1807 fclose(f);
1808
1809 return ret;
1810}
1811
1812uint32_t kvmppc_get_tbfreq(void)
1813{
1814 char line[512];
1815 char *ns;
73bcb24d 1816 uint32_t retval = NANOSECONDS_PER_SECOND;
dc333cd6
AG
1817
1818 if (read_cpuinfo("timebase", line, sizeof(line))) {
1819 return retval;
1820 }
1821
c995e942
DG
1822 ns = strchr(line, ':');
1823 if (!ns) {
dc333cd6
AG
1824 return retval;
1825 }
1826
1827 ns++;
1828
f9b8e7f6 1829 return atoi(ns);
dc333cd6 1830}
4513d923 1831
ef951443
ND
1832bool kvmppc_get_host_serial(char **value)
1833{
1834 return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1835 NULL);
1836}
1837
1838bool kvmppc_get_host_model(char **value)
1839{
1840 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1841}
1842
eadaada1
AG
1843/* Try to find a device tree node for a CPU with clock-frequency property */
1844static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1845{
1846 struct dirent *dirp;
1847 DIR *dp;
1848
c995e942
DG
1849 dp = opendir(PROC_DEVTREE_CPU);
1850 if (!dp) {
eadaada1
AG
1851 printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1852 return -1;
1853 }
1854
1855 buf[0] = '\0';
1856 while ((dirp = readdir(dp)) != NULL) {
1857 FILE *f;
1858 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1859 dirp->d_name);
1860 f = fopen(buf, "r");
1861 if (f) {
1862 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1863 fclose(f);
1864 break;
1865 }
1866 buf[0] = '\0';
1867 }
1868 closedir(dp);
1869 if (buf[0] == '\0') {
1870 printf("Unknown host!\n");
1871 return -1;
1872 }
1873
1874 return 0;
1875}
1876
7d94a30b 1877static uint64_t kvmppc_read_int_dt(const char *filename)
eadaada1 1878{
9bc884b7
DG
1879 union {
1880 uint32_t v32;
1881 uint64_t v64;
1882 } u;
eadaada1
AG
1883 FILE *f;
1884 int len;
1885
7d94a30b 1886 f = fopen(filename, "rb");
eadaada1
AG
1887 if (!f) {
1888 return -1;
1889 }
1890
9bc884b7 1891 len = fread(&u, 1, sizeof(u), f);
eadaada1
AG
1892 fclose(f);
1893 switch (len) {
9bc884b7
DG
1894 case 4:
1895 /* property is a 32-bit quantity */
1896 return be32_to_cpu(u.v32);
1897 case 8:
1898 return be64_to_cpu(u.v64);
eadaada1
AG
1899 }
1900
1901 return 0;
1902}
1903
c995e942
DG
1904/*
1905 * Read a CPU node property from the host device tree that's a single
7d94a30b 1906 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
c995e942
DG
1907 * (can't find or open the property, or doesn't understand the format)
1908 */
7d94a30b
SB
1909static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1910{
1911 char buf[PATH_MAX], *tmp;
1912 uint64_t val;
1913
1914 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1915 return -1;
1916 }
1917
1918 tmp = g_strdup_printf("%s/%s", buf, propname);
1919 val = kvmppc_read_int_dt(tmp);
1920 g_free(tmp);
1921
1922 return val;
1923}
1924
9bc884b7
DG
1925uint64_t kvmppc_get_clockfreq(void)
1926{
1927 return kvmppc_read_int_cpu_dt("clock-frequency");
1928}
1929
7d050527
SJS
1930static int kvmppc_get_dec_bits(void)
1931{
1932 int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1933
1934 if (nr_bits > 0) {
1935 return nr_bits;
1936 }
1937 return 0;
1938}
1939
1a61a9ae 1940static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
db70b311
RH
1941{
1942 CPUState *cs = env_cpu(env);
1a61a9ae 1943
6fd33a75 1944 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1a61a9ae
SY
1945 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1946 return 0;
1947 }
1948
1949 return 1;
1950}
1951
1952int kvmppc_get_hasidle(CPUPPCState *env)
1953{
1954 struct kvm_ppc_pvinfo pvinfo;
1955
1956 if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1957 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1958 return 1;
1959 }
1960
1961 return 0;
1962}
1963
1328c2bf 1964int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
45024f09 1965{
c995e942 1966 uint32_t *hc = (uint32_t *)buf;
45024f09
AG
1967 struct kvm_ppc_pvinfo pvinfo;
1968
1a61a9ae 1969 if (!kvmppc_get_pvinfo(env, &pvinfo)) {
45024f09 1970 memcpy(buf, pvinfo.hcall, buf_len);
45024f09
AG
1971 return 0;
1972 }
45024f09
AG
1973
1974 /*
d13fc32e 1975 * Fallback to always fail hypercalls regardless of endianness:
45024f09 1976 *
d13fc32e 1977 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
45024f09 1978 * li r3, -1
d13fc32e
AG
1979 * b .+8 (becomes nop in wrong endian)
1980 * bswap32(li r3, -1)
45024f09
AG
1981 */
1982
d13fc32e
AG
1983 hc[0] = cpu_to_be32(0x08000048);
1984 hc[1] = cpu_to_be32(0x3860ffff);
1985 hc[2] = cpu_to_be32(0x48000008);
1986 hc[3] = cpu_to_be32(bswap32(0x3860ffff));
45024f09 1987
0ddbd053 1988 return 1;
45024f09
AG
1989}
1990
026bfd89
DG
1991static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
1992{
1993 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
1994}
1995
1996void kvmppc_enable_logical_ci_hcalls(void)
1997{
1998 /*
1999 * FIXME: it would be nice if we could detect the cases where
2000 * we're using a device which requires the in kernel
2001 * implementation of these hcalls, but the kernel lacks them and
2002 * produce a warning.
2003 */
2004 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2005 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2006}
2007
ef9971dd
AK
2008void kvmppc_enable_set_mode_hcall(void)
2009{
2010 kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2011}
2012
5145ad4f
NW
2013void kvmppc_enable_clear_ref_mod_hcalls(void)
2014{
2015 kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2016 kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2017}
2018
68f9f708
SJS
2019void kvmppc_enable_h_page_init(void)
2020{
2021 kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2022}
2023
1bc22652 2024void kvmppc_set_papr(PowerPCCPU *cpu)
f61b4bed 2025{
1bc22652 2026 CPUState *cs = CPU(cpu);
f61b4bed
AG
2027 int ret;
2028
da20aed1
DG
2029 if (!kvm_enabled()) {
2030 return;
2031 }
2032
48add816 2033 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
f61b4bed 2034 if (ret) {
072ed5f2
TH
2035 error_report("This vCPU type or KVM version does not support PAPR");
2036 exit(1);
94135e81 2037 }
9b00ea49 2038
c995e942
DG
2039 /*
2040 * Update the capability flag so we sync the right information
2041 * with kvm
2042 */
9b00ea49 2043 cap_papr = 1;
f61b4bed
AG
2044}
2045
d6e166c0 2046int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
6db5bb0f 2047{
d6e166c0 2048 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
6db5bb0f
AK
2049}
2050
5b95b8b9
AG
2051void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2052{
5b95b8b9 2053 CPUState *cs = CPU(cpu);
5b95b8b9
AG
2054 int ret;
2055
48add816 2056 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
5b95b8b9 2057 if (ret && mpic_proxy) {
072ed5f2
TH
2058 error_report("This KVM version does not support EPR");
2059 exit(1);
5b95b8b9
AG
2060 }
2061}
2062
e97c3636
DG
2063int kvmppc_smt_threads(void)
2064{
2065 return cap_ppc_smt ? cap_ppc_smt : 1;
2066}
2067
fa98fbfc
SB
2068int kvmppc_set_smt_threads(int smt)
2069{
2070 int ret;
2071
2072 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2073 if (!ret) {
2074 cap_ppc_smt = smt;
2075 }
2076 return ret;
2077}
2078
0c115681 2079void kvmppc_error_append_smt_possible_hint(Error *const *errp)
fa98fbfc
SB
2080{
2081 int i;
2082 GString *g;
2083 char *s;
2084
2085 assert(kvm_enabled());
2086 if (cap_ppc_smt_possible) {
2087 g = g_string_new("Available VSMT modes:");
2088 for (i = 63; i >= 0; i--) {
2089 if ((1UL << i) & cap_ppc_smt_possible) {
2090 g_string_append_printf(g, " %lu", (1UL << i));
2091 }
2092 }
2093 s = g_string_free(g, false);
1a639fdf 2094 error_append_hint(errp, "%s.\n", s);
fa98fbfc
SB
2095 g_free(s);
2096 } else {
1a639fdf 2097 error_append_hint(errp,
fa98fbfc
SB
2098 "This KVM seems to be too old to support VSMT.\n");
2099 }
2100}
2101
2102
7f763a5d 2103#ifdef TARGET_PPC64
7f763a5d
DG
2104uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
2105{
f36951c1
DG
2106 struct kvm_ppc_smmu_info info;
2107 long rampagesize, best_page_shift;
2108 int i;
2109
c995e942
DG
2110 /*
2111 * Find the largest hardware supported page size that's less than
2112 * or equal to the (logical) backing page size of guest RAM
2113 */
ab256960 2114 kvm_get_smmu_info(&info, &error_fatal);
905b7ee4 2115 rampagesize = qemu_minrampagesize();
f36951c1
DG
2116 best_page_shift = 0;
2117
2118 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2119 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2120
2121 if (!sps->page_shift) {
2122 continue;
2123 }
2124
2125 if ((sps->page_shift > best_page_shift)
2126 && ((1UL << sps->page_shift) <= rampagesize)) {
2127 best_page_shift = sps->page_shift;
2128 }
2129 }
2130
7f763a5d 2131 return MIN(current_size,
f36951c1 2132 1ULL << (best_page_shift + hash_shift - 7));
7f763a5d
DG
2133}
2134#endif
2135
da95324e
AK
2136bool kvmppc_spapr_use_multitce(void)
2137{
2138 return cap_spapr_multitce;
2139}
2140
3dc410ae
AK
2141int kvmppc_spapr_enable_inkernel_multitce(void)
2142{
2143 int ret;
2144
2145 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2146 H_PUT_TCE_INDIRECT, 1);
2147 if (!ret) {
2148 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2149 H_STUFF_TCE, 1);
2150 }
2151
2152 return ret;
2153}
2154
d6ee2a7c
AK
2155void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2156 uint64_t bus_offset, uint32_t nb_table,
2157 int *pfd, bool need_vfio)
0f5cb298 2158{
0f5cb298
DG
2159 long len;
2160 int fd;
2161 void *table;
2162
c995e942
DG
2163 /*
2164 * Must set fd to -1 so we don't try to munmap when called for
b5aec396
DG
2165 * destroying the table, which the upper layers -will- do
2166 */
2167 *pfd = -1;
6a81dd17 2168 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
0f5cb298
DG
2169 return NULL;
2170 }
2171
d6ee2a7c
AK
2172 if (cap_spapr_tce_64) {
2173 struct kvm_create_spapr_tce_64 args = {
2174 .liobn = liobn,
2175 .page_shift = page_shift,
2176 .offset = bus_offset >> page_shift,
2177 .size = nb_table,
2178 .flags = 0
2179 };
2180 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2181 if (fd < 0) {
2182 fprintf(stderr,
2183 "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2184 liobn);
2185 return NULL;
2186 }
2187 } else if (cap_spapr_tce) {
2188 uint64_t window_size = (uint64_t) nb_table << page_shift;
2189 struct kvm_create_spapr_tce args = {
2190 .liobn = liobn,
2191 .window_size = window_size,
2192 };
2193 if ((window_size != args.window_size) || bus_offset) {
2194 return NULL;
2195 }
2196 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2197 if (fd < 0) {
2198 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2199 liobn);
2200 return NULL;
2201 }
2202 } else {
0f5cb298
DG
2203 return NULL;
2204 }
2205
d6ee2a7c 2206 len = nb_table * sizeof(uint64_t);
0f5cb298
DG
2207 /* FIXME: round this up to page size */
2208
c995e942 2209 table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
0f5cb298 2210 if (table == MAP_FAILED) {
b5aec396
DG
2211 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2212 liobn);
0f5cb298
DG
2213 close(fd);
2214 return NULL;
2215 }
2216
2217 *pfd = fd;
2218 return table;
2219}
2220
523e7b8a 2221int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
0f5cb298
DG
2222{
2223 long len;
2224
2225 if (fd < 0) {
2226 return -1;
2227 }
2228
523e7b8a 2229 len = nb_table * sizeof(uint64_t);
0f5cb298
DG
2230 if ((munmap(table, len) < 0) ||
2231 (close(fd) < 0)) {
b5aec396
DG
2232 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2233 strerror(errno));
0f5cb298
DG
2234 /* Leak the table */
2235 }
2236
2237 return 0;
2238}
2239
7f763a5d
DG
2240int kvmppc_reset_htab(int shift_hint)
2241{
2242 uint32_t shift = shift_hint;
2243
ace9a2cb
DG
2244 if (!kvm_enabled()) {
2245 /* Full emulation, tell caller to allocate htab itself */
2246 return 0;
2247 }
6977afda 2248 if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
7f763a5d
DG
2249 int ret;
2250 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
ace9a2cb 2251 if (ret == -ENOTTY) {
c995e942
DG
2252 /*
2253 * At least some versions of PR KVM advertise the
ace9a2cb
DG
2254 * capability, but don't implement the ioctl(). Oops.
2255 * Return 0 so that we allocate the htab in qemu, as is
c995e942
DG
2256 * correct for PR.
2257 */
ace9a2cb
DG
2258 return 0;
2259 } else if (ret < 0) {
7f763a5d
DG
2260 return ret;
2261 }
2262 return shift;
2263 }
2264
c995e942
DG
2265 /*
2266 * We have a kernel that predates the htab reset calls. For PR
ace9a2cb 2267 * KVM, we need to allocate the htab ourselves, for an HV KVM of
c995e942
DG
2268 * this era, it has allocated a 16MB fixed size hash table
2269 * already.
2270 */
96c9cff0 2271 if (kvmppc_is_pr(kvm_state)) {
ace9a2cb
DG
2272 /* PR - tell caller to allocate htab */
2273 return 0;
2274 } else {
2275 /* HV - assume 16MB kernel allocated htab */
2276 return 24;
2277 }
7f763a5d
DG
2278}
2279
a1e98583
DG
2280static inline uint32_t mfpvr(void)
2281{
2282 uint32_t pvr;
2283
2284 asm ("mfpvr %0"
2285 : "=r"(pvr));
2286 return pvr;
2287}
2288
a7342588
DG
2289static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2290{
2291 if (on) {
2292 *word |= flags;
2293 } else {
2294 *word &= ~flags;
2295 }
2296}
2297
2985b86b
AF
2298static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2299{
2300 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
0cbad81f
DG
2301 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2302 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
a1e98583 2303
cfe34f44 2304 /* Now fix up the class with information we can query from the host */
3bc9ccc0 2305 pcc->pvr = mfpvr();
a7342588 2306
3f2ca480
DG
2307 alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2308 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2309 alter_insns(&pcc->insns_flags2, PPC2_VSX,
2310 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2311 alter_insns(&pcc->insns_flags2, PPC2_DFP,
2312 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
0cbad81f
DG
2313
2314 if (dcache_size != -1) {
2315 pcc->l1_dcache_size = dcache_size;
2316 }
2317
2318 if (icache_size != -1) {
2319 pcc->l1_icache_size = icache_size;
2320 }
c64abd1f
SB
2321
2322#if defined(TARGET_PPC64)
2323 pcc->radix_page_info = kvm_get_radix_page_info();
5f3066d8
DG
2324
2325 if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2326 /*
2327 * POWER9 DD1 has some bugs which make it not really ISA 3.00
2328 * compliant. More importantly, advertising ISA 3.00
2329 * architected mode may prevent guests from activating
2330 * necessary DD1 workarounds.
2331 */
2332 pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2333 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2334 }
c64abd1f 2335#endif /* defined(TARGET_PPC64) */
a1e98583
DG
2336}
2337
3b961124
SY
2338bool kvmppc_has_cap_epr(void)
2339{
2340 return cap_epr;
2341}
2342
87a91de6
AG
2343bool kvmppc_has_cap_fixup_hcalls(void)
2344{
2345 return cap_fixup_hcalls;
2346}
2347
bac3bf28
TH
2348bool kvmppc_has_cap_htm(void)
2349{
2350 return cap_htm;
2351}
2352
cf1c4cce
SB
2353bool kvmppc_has_cap_mmu_radix(void)
2354{
2355 return cap_mmu_radix;
2356}
2357
2358bool kvmppc_has_cap_mmu_hash_v3(void)
2359{
2360 return cap_mmu_hash_v3;
2361}
2362
072f416a
SJS
2363static bool kvmppc_power8_host(void)
2364{
2365 bool ret = false;
2366#ifdef TARGET_PPC64
2367 {
2368 uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2369 ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2370 (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2371 (base_pvr == CPU_POWERPC_POWER8_BASE);
2372 }
2373#endif /* TARGET_PPC64 */
2374 return ret;
2375}
2376
8fea7044
SJS
2377static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2378{
072f416a
SJS
2379 bool l1d_thread_priv_req = !kvmppc_power8_host();
2380
8fea7044
SJS
2381 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2382 return 2;
072f416a
SJS
2383 } else if ((!l1d_thread_priv_req ||
2384 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
8fea7044
SJS
2385 (c.character & c.character_mask
2386 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2387 return 1;
2388 }
2389
2390 return 0;
2391}
2392
2393static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2394{
2395 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2396 return 2;
2397 } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2398 return 1;
2399 }
2400
2401 return 0;
2402}
2403
2404static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2405{
399b2896
SJS
2406 if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2407 (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2408 (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2409 return SPAPR_CAP_FIXED_NA;
2410 } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2411 return SPAPR_CAP_WORKAROUND;
2412 } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
8fea7044
SJS
2413 return SPAPR_CAP_FIXED_CCD;
2414 } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2415 return SPAPR_CAP_FIXED_IBS;
2416 }
2417
2418 return 0;
2419}
2420
8ff43ee4
SJS
2421static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2422{
2423 if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2424 return 1;
2425 }
2426 return 0;
2427}
2428
38afd772
CLG
2429bool kvmppc_has_cap_xive(void)
2430{
2431 return cap_xive;
2432}
2433
8acc2ae5
SJS
2434static void kvmppc_get_cpu_characteristics(KVMState *s)
2435{
2436 struct kvm_ppc_cpu_char c;
2437 int ret;
2438
2439 /* Assume broken */
2440 cap_ppc_safe_cache = 0;
2441 cap_ppc_safe_bounds_check = 0;
2442 cap_ppc_safe_indirect_branch = 0;
2443
2444 ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2445 if (!ret) {
2446 return;
2447 }
2448 ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2449 if (ret < 0) {
2450 return;
2451 }
8fea7044
SJS
2452
2453 cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2454 cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2455 cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
8ff43ee4
SJS
2456 cap_ppc_count_cache_flush_assist =
2457 parse_cap_ppc_count_cache_flush_assist(c);
8acc2ae5
SJS
2458}
2459
2460int kvmppc_get_cap_safe_cache(void)
2461{
2462 return cap_ppc_safe_cache;
2463}
2464
2465int kvmppc_get_cap_safe_bounds_check(void)
2466{
2467 return cap_ppc_safe_bounds_check;
2468}
2469
2470int kvmppc_get_cap_safe_indirect_branch(void)
2471{
2472 return cap_ppc_safe_indirect_branch;
2473}
2474
8ff43ee4
SJS
2475int kvmppc_get_cap_count_cache_flush_assist(void)
2476{
2477 return cap_ppc_count_cache_flush_assist;
2478}
2479
b9a477b7
SJS
2480bool kvmppc_has_cap_nested_kvm_hv(void)
2481{
2482 return !!cap_ppc_nested_kvm_hv;
2483}
2484
2485int kvmppc_set_cap_nested_kvm_hv(int enable)
2486{
2487 return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2488}
2489
9ded780c
AK
2490bool kvmppc_has_cap_spapr_vfio(void)
2491{
2492 return cap_spapr_vfio;
2493}
2494
7d050527
SJS
2495int kvmppc_get_cap_large_decr(void)
2496{
2497 return cap_large_decr;
2498}
2499
2500int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2501{
2502 CPUState *cs = CPU(cpu);
2503 uint64_t lpcr;
2504
2505 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2506 /* Do we need to modify the LPCR? */
2507 if (!!(lpcr & LPCR_LD) != !!enable) {
2508 if (enable) {
2509 lpcr |= LPCR_LD;
2510 } else {
2511 lpcr &= ~LPCR_LD;
2512 }
2513 kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2514 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2515
2516 if (!!(lpcr & LPCR_LD) != !!enable) {
2517 return -1;
2518 }
2519 }
2520
2521 return 0;
2522}
2523
52b2519c
TH
2524PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2525{
2526 uint32_t host_pvr = mfpvr();
2527 PowerPCCPUClass *pvr_pcc;
2528
2529 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2530 if (pvr_pcc == NULL) {
2531 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2532 }
2533
2534 return pvr_pcc;
2535}
2536
165dc3ed
DG
2537static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2538{
2539 MachineClass *mc = MACHINE_CLASS(oc);
2540
2541 mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2542}
2543
2544static int kvm_ppc_register_host_cpu_type(void)
5ba4576b
AF
2545{
2546 TypeInfo type_info = {
2547 .name = TYPE_HOST_POWERPC_CPU,
5ba4576b
AF
2548 .class_init = kvmppc_host_cpu_class_init,
2549 };
5ba4576b 2550 PowerPCCPUClass *pvr_pcc;
92e926e1 2551 ObjectClass *oc;
5b79b1ca 2552 DeviceClass *dc;
715d4b96 2553 int i;
5ba4576b 2554
52b2519c 2555 pvr_pcc = kvm_ppc_get_host_cpu_class();
5ba4576b
AF
2556 if (pvr_pcc == NULL) {
2557 return -1;
2558 }
2559 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2560 type_register(&type_info);
165dc3ed
DG
2561 /* override TCG default cpu type with 'host' cpu model */
2562 object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2563 false, NULL);
5b79b1ca 2564
92e926e1
GK
2565 oc = object_class_by_name(type_info.name);
2566 g_assert(oc);
2567
715d4b96
TH
2568 /*
2569 * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2570 * we want "POWER8" to be a "family" alias that points to the current
2571 * host CPU type, too)
2572 */
2573 dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2574 for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
c5354f54 2575 if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
715d4b96
TH
2576 char *suffix;
2577
2578 ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
c9137065 2579 suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
715d4b96
TH
2580 if (suffix) {
2581 *suffix = 0;
2582 }
715d4b96
TH
2583 break;
2584 }
2585 }
2586
5ba4576b
AF
2587 return 0;
2588}
2589
feaa64c4
DG
2590int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2591{
2592 struct kvm_rtas_token_args args = {
2593 .token = token,
2594 };
2595
2596 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2597 return -ENOENT;
2598 }
2599
7701aeed 2600 strncpy(args.name, function, sizeof(args.name) - 1);
feaa64c4
DG
2601
2602 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2603}
12b1143b 2604
14b0d748 2605int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
e68cb8b4
AK
2606{
2607 struct kvm_get_htab_fd s = {
2608 .flags = write ? KVM_GET_HTAB_WRITE : 0,
14b0d748 2609 .start_index = index,
e68cb8b4 2610 };
82be8e73 2611 int ret;
e68cb8b4
AK
2612
2613 if (!cap_htab_fd) {
14b0d748
GK
2614 error_setg(errp, "KVM version doesn't support %s the HPT",
2615 write ? "writing" : "reading");
82be8e73
GK
2616 return -ENOTSUP;
2617 }
2618
2619 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2620 if (ret < 0) {
14b0d748
GK
2621 error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2622 write ? "writing" : "reading", write ? "to" : "from",
2623 strerror(errno));
82be8e73 2624 return -errno;
e68cb8b4
AK
2625 }
2626
82be8e73 2627 return ret;
e68cb8b4
AK
2628}
2629
2630int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2631{
bc72ad67 2632 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
e68cb8b4
AK
2633 uint8_t buf[bufsize];
2634 ssize_t rc;
2635
2636 do {
2637 rc = read(fd, buf, bufsize);
2638 if (rc < 0) {
2639 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2640 strerror(errno));
2641 return rc;
2642 } else if (rc) {
e094c4c1
CLG
2643 uint8_t *buffer = buf;
2644 ssize_t n = rc;
2645 while (n) {
2646 struct kvm_get_htab_header *head =
2647 (struct kvm_get_htab_header *) buffer;
2648 size_t chunksize = sizeof(*head) +
2649 HASH_PTE_SIZE_64 * head->n_valid;
2650
2651 qemu_put_be32(f, head->index);
2652 qemu_put_be16(f, head->n_valid);
2653 qemu_put_be16(f, head->n_invalid);
2654 qemu_put_buffer(f, (void *)(head + 1),
2655 HASH_PTE_SIZE_64 * head->n_valid);
2656
2657 buffer += chunksize;
2658 n -= chunksize;
2659 }
e68cb8b4
AK
2660 }
2661 } while ((rc != 0)
c995e942
DG
2662 && ((max_ns < 0) ||
2663 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
e68cb8b4
AK
2664
2665 return (rc == 0) ? 1 : 0;
2666}
2667
2668int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2669 uint16_t n_valid, uint16_t n_invalid)
2670{
2671 struct kvm_get_htab_header *buf;
c995e942 2672 size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
e68cb8b4
AK
2673 ssize_t rc;
2674
2675 buf = alloca(chunksize);
e68cb8b4
AK
2676 buf->index = index;
2677 buf->n_valid = n_valid;
2678 buf->n_invalid = n_invalid;
2679
c995e942 2680 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
e68cb8b4
AK
2681
2682 rc = write(fd, buf, chunksize);
2683 if (rc < 0) {
2684 fprintf(stderr, "Error writing KVM hash table: %s\n",
2685 strerror(errno));
2686 return rc;
2687 }
2688 if (rc != chunksize) {
2689 /* We should never get a short write on a single chunk */
2690 fprintf(stderr, "Short write, restoring KVM hash table\n");
2691 return -1;
2692 }
2693 return 0;
2694}
2695
20d695a9 2696bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
4513d923
GN
2697{
2698 return true;
2699}
a1b87fe0 2700
82169660
SW
2701void kvm_arch_init_irq_routing(KVMState *s)
2702{
2703}
c65f9a07 2704
1ad9f0a4 2705void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
7c43bca0 2706{
1ad9f0a4
DG
2707 int fd, rc;
2708 int i;
7c43bca0 2709
14b0d748 2710 fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
7c43bca0 2711
1ad9f0a4
DG
2712 i = 0;
2713 while (i < n) {
2714 struct kvm_get_htab_header *hdr;
2715 int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2716 char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
7c43bca0 2717
1ad9f0a4
DG
2718 rc = read(fd, buf, sizeof(buf));
2719 if (rc < 0) {
2720 hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2721 }
7c43bca0 2722
1ad9f0a4
DG
2723 hdr = (struct kvm_get_htab_header *)buf;
2724 while ((i < n) && ((char *)hdr < (buf + rc))) {
a36593e1 2725 int invalid = hdr->n_invalid, valid = hdr->n_valid;
7c43bca0 2726
1ad9f0a4
DG
2727 if (hdr->index != (ptex + i)) {
2728 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2729 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2730 }
2731
a36593e1
AK
2732 if (n - i < valid) {
2733 valid = n - i;
2734 }
2735 memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2736 i += valid;
7c43bca0 2737
1ad9f0a4
DG
2738 if ((n - i) < invalid) {
2739 invalid = n - i;
2740 }
2741 memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
a36593e1 2742 i += invalid;
1ad9f0a4
DG
2743
2744 hdr = (struct kvm_get_htab_header *)
2745 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2746 }
2747 }
2748
2749 close(fd);
7c43bca0 2750}
c1385933 2751
1ad9f0a4 2752void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
c1385933 2753{
1ad9f0a4 2754 int fd, rc;
1ad9f0a4
DG
2755 struct {
2756 struct kvm_get_htab_header hdr;
2757 uint64_t pte0;
2758 uint64_t pte1;
2759 } buf;
c1385933 2760
14b0d748 2761 fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
c1385933 2762
1ad9f0a4
DG
2763 buf.hdr.n_valid = 1;
2764 buf.hdr.n_invalid = 0;
2765 buf.hdr.index = ptex;
2766 buf.pte0 = cpu_to_be64(pte0);
2767 buf.pte1 = cpu_to_be64(pte1);
c1385933 2768
1ad9f0a4
DG
2769 rc = write(fd, &buf, sizeof(buf));
2770 if (rc != sizeof(buf)) {
2771 hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2772 }
2773 close(fd);
c1385933 2774}
9e03a040
FB
2775
2776int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 2777 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040
FB
2778{
2779 return 0;
2780}
1850b6b7 2781
38d87493
PX
2782int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2783 int vector, PCIDevice *dev)
2784{
2785 return 0;
2786}
2787
2788int kvm_arch_release_virq_post(int virq)
2789{
2790 return 0;
2791}
2792
1850b6b7
EA
2793int kvm_arch_msi_data_to_gsi(uint32_t data)
2794{
2795 return data & 0xffff;
2796}
4d9392be
TH
2797
2798int kvmppc_enable_hwrng(void)
2799{
2800 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2801 return -1;
2802 }
2803
2804 return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2805}
30f4b05b
DG
2806
2807void kvmppc_check_papr_resize_hpt(Error **errp)
2808{
2809 if (!kvm_enabled()) {
b55d295e
DG
2810 return; /* No KVM, we're good */
2811 }
2812
2813 if (cap_resize_hpt) {
2814 return; /* Kernel has explicit support, we're good */
30f4b05b
DG
2815 }
2816
b55d295e
DG
2817 /* Otherwise fallback on looking for PR KVM */
2818 if (kvmppc_is_pr(kvm_state)) {
2819 return;
2820 }
30f4b05b
DG
2821
2822 error_setg(errp,
2823 "Hash page table resizing not available with this KVM version");
2824}
b55d295e
DG
2825
2826int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2827{
2828 CPUState *cs = CPU(cpu);
2829 struct kvm_ppc_resize_hpt rhpt = {
2830 .flags = flags,
2831 .shift = shift,
2832 };
2833
2834 if (!cap_resize_hpt) {
2835 return -ENOSYS;
2836 }
2837
2838 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2839}
2840
2841int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2842{
2843 CPUState *cs = CPU(cpu);
2844 struct kvm_ppc_resize_hpt rhpt = {
2845 .flags = flags,
2846 .shift = shift,
2847 };
2848
2849 if (!cap_resize_hpt) {
2850 return -ENOSYS;
2851 }
2852
2853 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2854}
2855
c363a37a
DHB
2856/*
2857 * This is a helper function to detect a post migration scenario
2858 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2859 * the guest kernel can't handle a PVR value other than the actual host
2860 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2861 *
2862 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2863 * (so, we're HV), return true. The workaround itself is done in
2864 * cpu_post_load.
2865 *
2866 * The order here is important: we'll only check for KVM PR as a
2867 * fallback if the guest kernel can't handle the situation itself.
2868 * We need to avoid as much as possible querying the running KVM type
2869 * in QEMU level.
2870 */
2871bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2872{
2873 CPUState *cs = CPU(cpu);
2874
2875 if (!kvm_enabled()) {
2876 return false;
2877 }
2878
2879 if (cap_ppc_pvr_compat) {
2880 return false;
2881 }
2882
2883 return !kvmppc_is_pr(cs->kvm_state);
2884}
a84f7179
ND
2885
2886void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2887{
2888 CPUState *cs = CPU(cpu);
2889
2890 if (kvm_enabled()) {
2891 kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2892 }
2893}
9723295a
GK
2894
2895void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2896{
2897 CPUState *cs = CPU(cpu);
2898
2899 if (kvm_enabled()) {
2900 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
2901 }
2902}