]> git.proxmox.com Git - mirror_qemu.git/blame - target/ppc/kvm.c
s390x/kvm: Configure page size after memory has actually been initialized
[mirror_qemu.git] / target / ppc / kvm.c
CommitLineData
d76d1650
AJ
1/*
2 * PowerPC implementation of KVM hooks
3 *
4 * Copyright IBM Corp. 2007
90dc8812 5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
d76d1650
AJ
6 *
7 * Authors:
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
14 *
15 */
16
0d75590d 17#include "qemu/osdep.h"
eadaada1 18#include <dirent.h>
d76d1650 19#include <sys/ioctl.h>
4656e1f0 20#include <sys/vfs.h>
d76d1650
AJ
21
22#include <linux/kvm.h>
23
24#include "qemu-common.h"
30f4b05b 25#include "qapi/error.h"
072ed5f2 26#include "qemu/error-report.h"
33c11879 27#include "cpu.h"
715d4b96 28#include "cpu-models.h"
1de7afc9 29#include "qemu/timer.h"
9c17d615 30#include "sysemu/sysemu.h"
b3946626 31#include "sysemu/hw_accel.h"
d76d1650 32#include "kvm_ppc.h"
9c17d615
PB
33#include "sysemu/cpus.h"
34#include "sysemu/device_tree.h"
d5aea6f3 35#include "mmu-hash64.h"
d76d1650 36
f61b4bed 37#include "hw/sysbus.h"
0d09e41a 38#include "hw/ppc/spapr.h"
7ebaf795 39#include "hw/ppc/spapr_cpu_core.h"
98a8b524 40#include "hw/ppc/ppc.h"
31f2cb8f 41#include "sysemu/watchdog.h"
b36f100e 42#include "trace.h"
88365d17 43#include "exec/gdbstub.h"
4c663752 44#include "exec/memattrs.h"
9c607668 45#include "exec/ram_addr.h"
2d103aae 46#include "sysemu/hostmem.h"
f348b6d1 47#include "qemu/cutils.h"
9c607668 48#include "qemu/mmap-alloc.h"
f3d9f303 49#include "elf.h"
c64abd1f 50#include "sysemu/kvm_int.h"
f61b4bed 51
d76d1650
AJ
52//#define DEBUG_KVM
53
54#ifdef DEBUG_KVM
da56ff91 55#define DPRINTF(fmt, ...) \
d76d1650
AJ
56 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57#else
da56ff91 58#define DPRINTF(fmt, ...) \
d76d1650
AJ
59 do { } while (0)
60#endif
61
eadaada1
AG
62#define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
63
94a8d39a
JK
64const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
65 KVM_CAP_LAST_INFO
66};
67
fc87e185
AG
68static int cap_interrupt_unset = false;
69static int cap_interrupt_level = false;
90dc8812 70static int cap_segstate;
90dc8812 71static int cap_booke_sregs;
e97c3636 72static int cap_ppc_smt;
fa98fbfc 73static int cap_ppc_smt_possible;
0f5cb298 74static int cap_spapr_tce;
d6ee2a7c 75static int cap_spapr_tce_64;
da95324e 76static int cap_spapr_multitce;
9bb62a07 77static int cap_spapr_vfio;
f1af19d7 78static int cap_hior;
d67d40ea 79static int cap_one_reg;
3b961124 80static int cap_epr;
31f2cb8f 81static int cap_ppc_watchdog;
9b00ea49 82static int cap_papr;
e68cb8b4 83static int cap_htab_fd;
87a91de6 84static int cap_fixup_hcalls;
bac3bf28 85static int cap_htm; /* Hardware transactional memory support */
cf1c4cce
SB
86static int cap_mmu_radix;
87static int cap_mmu_hash_v3;
b55d295e 88static int cap_resize_hpt;
c363a37a 89static int cap_ppc_pvr_compat;
8acc2ae5
SJS
90static int cap_ppc_safe_cache;
91static int cap_ppc_safe_bounds_check;
92static int cap_ppc_safe_indirect_branch;
8ff43ee4 93static int cap_ppc_count_cache_flush_assist;
b9a477b7 94static int cap_ppc_nested_kvm_hv;
7d050527 95static int cap_large_decr;
fc87e185 96
3c902d44
BB
97static uint32_t debug_inst_opcode;
98
c821c2bd
AG
99/* XXX We have a race condition where we actually have a level triggered
100 * interrupt, but the infrastructure can't expose that yet, so the guest
101 * takes but ignores it, goes to sleep and never gets notified that there's
102 * still an interrupt pending.
c6a94ba5 103 *
c821c2bd
AG
104 * As a quick workaround, let's just wake up again 20 ms after we injected
105 * an interrupt. That way we can assure that we're always reinjecting
106 * interrupts in case the guest swallowed them.
c6a94ba5
AG
107 */
108static QEMUTimer *idle_timer;
109
d5a68146 110static void kvm_kick_cpu(void *opaque)
c6a94ba5 111{
d5a68146 112 PowerPCCPU *cpu = opaque;
d5a68146 113
c08d7424 114 qemu_cpu_kick(CPU(cpu));
c6a94ba5
AG
115}
116
96c9cff0
TH
117/* Check whether we are running with KVM-PR (instead of KVM-HV). This
118 * should only be used for fallback tests - generally we should use
119 * explicit capabilities for the features we want, rather than
120 * assuming what is/isn't available depending on the KVM variant. */
121static bool kvmppc_is_pr(KVMState *ks)
122{
123 /* Assume KVM-PR if the GET_PVINFO capability is available */
70a0c19e 124 return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
96c9cff0
TH
125}
126
2e9c10eb 127static int kvm_ppc_register_host_cpu_type(MachineState *ms);
8acc2ae5 128static void kvmppc_get_cpu_characteristics(KVMState *s);
7d050527 129static int kvmppc_get_dec_bits(void);
5ba4576b 130
b16565b3 131int kvm_arch_init(MachineState *ms, KVMState *s)
d76d1650 132{
fc87e185 133 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
fc87e185 134 cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
90dc8812 135 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
90dc8812 136 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
6977afda 137 cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
0f5cb298 138 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
d6ee2a7c 139 cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
da95324e 140 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
9ded780c 141 cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
d67d40ea 142 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
f1af19d7 143 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
3b961124 144 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
31f2cb8f 145 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
9b00ea49
DG
146 /* Note: we don't set cap_papr here, because this capability is
147 * only activated after this by kvmppc_set_papr() */
6977afda 148 cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
87a91de6 149 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
fa98fbfc 150 cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
bac3bf28 151 cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
cf1c4cce
SB
152 cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
153 cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
b55d295e 154 cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
8acc2ae5 155 kvmppc_get_cpu_characteristics(s);
b9a477b7 156 cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
7d050527 157 cap_large_decr = kvmppc_get_dec_bits();
c363a37a
DHB
158 /*
159 * Note: setting it to false because there is not such capability
160 * in KVM at this moment.
161 *
162 * TODO: call kvm_vm_check_extension() with the right capability
163 * after the kernel starts implementing it.*/
164 cap_ppc_pvr_compat = false;
fc87e185
AG
165
166 if (!cap_interrupt_level) {
167 fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
168 "VM to stall at times!\n");
169 }
170
2e9c10eb 171 kvm_ppc_register_host_cpu_type(ms);
5ba4576b 172
d76d1650
AJ
173 return 0;
174}
175
d525ffab
PB
176int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
177{
178 return 0;
179}
180
1bc22652 181static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
d76d1650 182{
1bc22652
AF
183 CPUPPCState *cenv = &cpu->env;
184 CPUState *cs = CPU(cpu);
861bbc80 185 struct kvm_sregs sregs;
5666ca4a
SW
186 int ret;
187
188 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
64e07be5
AG
189 /* What we're really trying to say is "if we're on BookE, we use
190 the native PVR for now". This is the only sane way to check
191 it though, so we potentially confuse users that they can run
192 BookE guests on BookS. Let's hope nobody dares enough :) */
5666ca4a
SW
193 return 0;
194 } else {
90dc8812 195 if (!cap_segstate) {
64e07be5
AG
196 fprintf(stderr, "kvm error: missing PVR setting capability\n");
197 return -ENOSYS;
5666ca4a 198 }
5666ca4a
SW
199 }
200
1bc22652 201 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
5666ca4a
SW
202 if (ret) {
203 return ret;
204 }
861bbc80
AG
205
206 sregs.pvr = cenv->spr[SPR_PVR];
1bc22652 207 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
5666ca4a
SW
208}
209
93dd5e85 210/* Set up a shared TLB array with KVM */
1bc22652 211static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
93dd5e85 212{
1bc22652
AF
213 CPUPPCState *env = &cpu->env;
214 CPUState *cs = CPU(cpu);
93dd5e85
SW
215 struct kvm_book3e_206_tlb_params params = {};
216 struct kvm_config_tlb cfg = {};
93dd5e85
SW
217 unsigned int entries = 0;
218 int ret, i;
219
220 if (!kvm_enabled() ||
a60f24b5 221 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
93dd5e85
SW
222 return 0;
223 }
224
225 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
226
227 for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
228 params.tlb_sizes[i] = booke206_tlb_size(env, i);
229 params.tlb_ways[i] = booke206_tlb_ways(env, i);
230 entries += params.tlb_sizes[i];
231 }
232
233 assert(entries == env->nb_tlb);
234 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
235
236 env->tlb_dirty = true;
237
238 cfg.array = (uintptr_t)env->tlb.tlbm;
239 cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
240 cfg.params = (uintptr_t)&params;
241 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
242
48add816 243 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
93dd5e85
SW
244 if (ret < 0) {
245 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
246 __func__, strerror(-ret));
247 return ret;
248 }
249
250 env->kvm_sw_tlb = true;
251 return 0;
252}
253
4656e1f0
BH
254
255#if defined(TARGET_PPC64)
ab256960 256static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
4656e1f0 257{
71d0f1ea 258 int ret;
a60f24b5 259
ab256960
GK
260 assert(kvm_state != NULL);
261
262 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
71d0f1ea
GK
263 error_setg(errp, "KVM doesn't expose the MMU features it supports");
264 error_append_hint(errp, "Consider switching to a newer KVM\n");
265 return;
4656e1f0 266 }
4656e1f0 267
ab256960 268 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
71d0f1ea
GK
269 if (ret == 0) {
270 return;
4656e1f0
BH
271 }
272
71d0f1ea
GK
273 error_setg_errno(errp, -ret,
274 "KVM failed to provide the MMU features it supports");
4656e1f0
BH
275}
276
c64abd1f
SB
277struct ppc_radix_page_info *kvm_get_radix_page_info(void)
278{
279 KVMState *s = KVM_STATE(current_machine->accelerator);
280 struct ppc_radix_page_info *radix_page_info;
281 struct kvm_ppc_rmmu_info rmmu_info;
282 int i;
283
284 if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
285 return NULL;
286 }
287 if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
288 return NULL;
289 }
290 radix_page_info = g_malloc0(sizeof(*radix_page_info));
291 radix_page_info->count = 0;
292 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
293 if (rmmu_info.ap_encodings[i]) {
294 radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
295 radix_page_info->count++;
296 }
297 }
298 return radix_page_info;
299}
300
b4db5413
SJS
301target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
302 bool radix, bool gtse,
303 uint64_t proc_tbl)
304{
305 CPUState *cs = CPU(cpu);
306 int ret;
307 uint64_t flags = 0;
308 struct kvm_ppc_mmuv3_cfg cfg = {
309 .process_table = proc_tbl,
310 };
311
312 if (radix) {
313 flags |= KVM_PPC_MMUV3_RADIX;
314 }
315 if (gtse) {
316 flags |= KVM_PPC_MMUV3_GTSE;
317 }
318 cfg.flags = flags;
319 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
320 switch (ret) {
321 case 0:
322 return H_SUCCESS;
323 case -EINVAL:
324 return H_PARAMETER;
325 case -ENODEV:
326 return H_NOT_AVAILABLE;
327 default:
328 return H_HARDWARE;
329 }
330}
331
24c6863c
DG
332bool kvmppc_hpt_needs_host_contiguous_pages(void)
333{
24c6863c
DG
334 static struct kvm_ppc_smmu_info smmu_info;
335
336 if (!kvm_enabled()) {
337 return false;
338 }
339
ab256960 340 kvm_get_smmu_info(&smmu_info, &error_fatal);
24c6863c
DG
341 return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
342}
343
e5ca28ec 344void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
4656e1f0 345{
e5ca28ec 346 struct kvm_ppc_smmu_info smmu_info;
4656e1f0 347 int iq, ik, jq, jk;
71d0f1ea 348 Error *local_err = NULL;
4656e1f0 349
e5ca28ec
DG
350 /* For now, we only have anything to check on hash64 MMUs */
351 if (!cpu->hash64_opts || !kvm_enabled()) {
4656e1f0
BH
352 return;
353 }
354
ab256960 355 kvm_get_smmu_info(&smmu_info, &local_err);
71d0f1ea
GK
356 if (local_err) {
357 error_propagate(errp, local_err);
358 return;
359 }
4656e1f0 360
e5ca28ec
DG
361 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
362 && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
363 error_setg(errp,
364 "KVM does not support 1TiB segments which guest expects");
365 return;
df587133 366 }
4656e1f0 367
e5ca28ec
DG
368 if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
369 error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
370 smmu_info.slb_size, cpu->hash64_opts->slb_size);
371 return;
90da0d5a
BH
372 }
373
08215d8f 374 /*
e5ca28ec
DG
375 * Verify that every pagesize supported by the cpu model is
376 * supported by KVM with the same encodings
08215d8f 377 */
e5ca28ec 378 for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
b07c59f7 379 PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
e5ca28ec 380 struct kvm_ppc_one_seg_page_size *ksps;
4656e1f0 381
e5ca28ec
DG
382 for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
383 if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
4656e1f0
BH
384 break;
385 }
386 }
e5ca28ec
DG
387 if (ik >= ARRAY_SIZE(smmu_info.sps)) {
388 error_setg(errp, "KVM doesn't support for base page shift %u",
389 qsps->page_shift);
390 return;
391 }
392
393 ksps = &smmu_info.sps[ik];
394 if (ksps->slb_enc != qsps->slb_enc) {
395 error_setg(errp,
396"KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
397 ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
398 return;
399 }
400
401 for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
402 for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
403 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
404 break;
405 }
406 }
407
408 if (jk >= ARRAY_SIZE(ksps->enc)) {
409 error_setg(errp, "KVM doesn't support page shift %u/%u",
410 qsps->enc[jq].page_shift, qsps->page_shift);
411 return;
412 }
413 if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
414 error_setg(errp,
415"KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
416 ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
417 qsps->page_shift, qsps->enc[jq].pte_enc);
418 return;
419 }
4656e1f0
BH
420 }
421 }
4656e1f0 422
e5ca28ec
DG
423 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
424 /* Mostly what guest pagesizes we can use are related to the
425 * host pages used to map guest RAM, which is handled in the
426 * platform code. Cache-Inhibited largepages (64k) however are
427 * used for I/O, so if they're mapped to the host at all it
428 * will be a normal mapping, not a special hugepage one used
429 * for RAM. */
430 if (getpagesize() < 0x10000) {
431 error_setg(errp,
432 "KVM can't supply 64kiB CI pages, which guest expects");
433 }
434 }
4656e1f0 435}
4656e1f0
BH
436#endif /* !defined (TARGET_PPC64) */
437
b164e48e
EH
438unsigned long kvm_arch_vcpu_id(CPUState *cpu)
439{
2e886fb3 440 return POWERPC_CPU(cpu)->vcpu_id;
b164e48e
EH
441}
442
88365d17
BB
443/* e500 supports 2 h/w breakpoint and 2 watchpoint.
444 * book3s supports only 1 watchpoint, so array size
445 * of 4 is sufficient for now.
446 */
447#define MAX_HW_BKPTS 4
448
449static struct HWBreakpoint {
450 target_ulong addr;
451 int type;
452} hw_debug_points[MAX_HW_BKPTS];
453
454static CPUWatchpoint hw_watchpoint;
455
456/* Default there is no breakpoint and watchpoint supported */
457static int max_hw_breakpoint;
458static int max_hw_watchpoint;
459static int nb_hw_breakpoint;
460static int nb_hw_watchpoint;
461
462static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
463{
464 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
465 max_hw_breakpoint = 2;
466 max_hw_watchpoint = 2;
467 }
468
469 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
470 fprintf(stderr, "Error initializing h/w breakpoints\n");
471 return;
472 }
473}
474
20d695a9 475int kvm_arch_init_vcpu(CPUState *cs)
5666ca4a 476{
20d695a9
AF
477 PowerPCCPU *cpu = POWERPC_CPU(cs);
478 CPUPPCState *cenv = &cpu->env;
5666ca4a
SW
479 int ret;
480
4656e1f0 481 /* Synchronize sregs with kvm */
1bc22652 482 ret = kvm_arch_sync_sregs(cpu);
5666ca4a 483 if (ret) {
388e47c7
TH
484 if (ret == -EINVAL) {
485 error_report("Register sync failed... If you're using kvm-hv.ko,"
486 " only \"-cpu host\" is possible");
487 }
5666ca4a
SW
488 return ret;
489 }
861bbc80 490
bc72ad67 491 idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);
c821c2bd 492
93dd5e85
SW
493 switch (cenv->mmu_model) {
494 case POWERPC_MMU_BOOKE206:
7f516c96 495 /* This target supports access to KVM's guest TLB */
1bc22652 496 ret = kvm_booke206_tlb_init(cpu);
93dd5e85 497 break;
7f516c96
TH
498 case POWERPC_MMU_2_07:
499 if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
500 /* KVM-HV has transactional memory on POWER8 also without the
f3d9f303
SB
501 * KVM_CAP_PPC_HTM extension, so enable it here instead as
502 * long as it's availble to userspace on the host. */
503 if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
504 cap_htm = true;
505 }
7f516c96
TH
506 }
507 break;
93dd5e85
SW
508 default:
509 break;
510 }
511
3c902d44 512 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
88365d17 513 kvmppc_hw_debug_points_init(cenv);
3c902d44 514
861bbc80 515 return ret;
d76d1650
AJ
516}
517
1bc22652 518static void kvm_sw_tlb_put(PowerPCCPU *cpu)
93dd5e85 519{
1bc22652
AF
520 CPUPPCState *env = &cpu->env;
521 CPUState *cs = CPU(cpu);
93dd5e85
SW
522 struct kvm_dirty_tlb dirty_tlb;
523 unsigned char *bitmap;
524 int ret;
525
526 if (!env->kvm_sw_tlb) {
527 return;
528 }
529
530 bitmap = g_malloc((env->nb_tlb + 7) / 8);
531 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
532
533 dirty_tlb.bitmap = (uintptr_t)bitmap;
534 dirty_tlb.num_dirty = env->nb_tlb;
535
1bc22652 536 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
93dd5e85
SW
537 if (ret) {
538 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
539 __func__, strerror(-ret));
540 }
541
542 g_free(bitmap);
543}
544
d67d40ea
DG
545static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
546{
547 PowerPCCPU *cpu = POWERPC_CPU(cs);
548 CPUPPCState *env = &cpu->env;
549 union {
550 uint32_t u32;
551 uint64_t u64;
552 } val;
553 struct kvm_one_reg reg = {
554 .id = id,
555 .addr = (uintptr_t) &val,
556 };
557 int ret;
558
559 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
560 if (ret != 0) {
b36f100e 561 trace_kvm_failed_spr_get(spr, strerror(errno));
d67d40ea
DG
562 } else {
563 switch (id & KVM_REG_SIZE_MASK) {
564 case KVM_REG_SIZE_U32:
565 env->spr[spr] = val.u32;
566 break;
567
568 case KVM_REG_SIZE_U64:
569 env->spr[spr] = val.u64;
570 break;
571
572 default:
573 /* Don't handle this size yet */
574 abort();
575 }
576 }
577}
578
579static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
580{
581 PowerPCCPU *cpu = POWERPC_CPU(cs);
582 CPUPPCState *env = &cpu->env;
583 union {
584 uint32_t u32;
585 uint64_t u64;
586 } val;
587 struct kvm_one_reg reg = {
588 .id = id,
589 .addr = (uintptr_t) &val,
590 };
591 int ret;
592
593 switch (id & KVM_REG_SIZE_MASK) {
594 case KVM_REG_SIZE_U32:
595 val.u32 = env->spr[spr];
596 break;
597
598 case KVM_REG_SIZE_U64:
599 val.u64 = env->spr[spr];
600 break;
601
602 default:
603 /* Don't handle this size yet */
604 abort();
605 }
606
607 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
608 if (ret != 0) {
b36f100e 609 trace_kvm_failed_spr_set(spr, strerror(errno));
d67d40ea
DG
610 }
611}
612
70b79849
DG
613static int kvm_put_fp(CPUState *cs)
614{
615 PowerPCCPU *cpu = POWERPC_CPU(cs);
616 CPUPPCState *env = &cpu->env;
617 struct kvm_one_reg reg;
618 int i;
619 int ret;
620
621 if (env->insns_flags & PPC_FLOAT) {
622 uint64_t fpscr = env->fpscr;
623 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
624
625 reg.id = KVM_REG_PPC_FPSCR;
626 reg.addr = (uintptr_t)&fpscr;
627 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
628 if (ret < 0) {
da56ff91 629 DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno));
70b79849
DG
630 return ret;
631 }
632
633 for (i = 0; i < 32; i++) {
634 uint64_t vsr[2];
ef96e3ae
MCA
635 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
636 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
70b79849 637
3a4b791b 638#ifdef HOST_WORDS_BIGENDIAN
ef96e3ae
MCA
639 vsr[0] = float64_val(*fpr);
640 vsr[1] = *vsrl;
3a4b791b 641#else
ef96e3ae
MCA
642 vsr[0] = *vsrl;
643 vsr[1] = float64_val(*fpr);
3a4b791b 644#endif
70b79849
DG
645 reg.addr = (uintptr_t) &vsr;
646 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
647
648 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
649 if (ret < 0) {
da56ff91 650 DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR",
70b79849
DG
651 i, strerror(errno));
652 return ret;
653 }
654 }
655 }
656
657 if (env->insns_flags & PPC_ALTIVEC) {
658 reg.id = KVM_REG_PPC_VSCR;
659 reg.addr = (uintptr_t)&env->vscr;
660 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
661 if (ret < 0) {
da56ff91 662 DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno));
70b79849
DG
663 return ret;
664 }
665
666 for (i = 0; i < 32; i++) {
667 reg.id = KVM_REG_PPC_VR(i);
ef96e3ae 668 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
70b79849
DG
669 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
670 if (ret < 0) {
da56ff91 671 DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno));
70b79849
DG
672 return ret;
673 }
674 }
675 }
676
677 return 0;
678}
679
680static int kvm_get_fp(CPUState *cs)
681{
682 PowerPCCPU *cpu = POWERPC_CPU(cs);
683 CPUPPCState *env = &cpu->env;
684 struct kvm_one_reg reg;
685 int i;
686 int ret;
687
688 if (env->insns_flags & PPC_FLOAT) {
689 uint64_t fpscr;
690 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
691
692 reg.id = KVM_REG_PPC_FPSCR;
693 reg.addr = (uintptr_t)&fpscr;
694 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
695 if (ret < 0) {
da56ff91 696 DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno));
70b79849
DG
697 return ret;
698 } else {
699 env->fpscr = fpscr;
700 }
701
702 for (i = 0; i < 32; i++) {
703 uint64_t vsr[2];
ef96e3ae
MCA
704 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
705 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
70b79849
DG
706
707 reg.addr = (uintptr_t) &vsr;
708 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
709
710 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
711 if (ret < 0) {
da56ff91 712 DPRINTF("Unable to get %s%d from KVM: %s\n",
70b79849
DG
713 vsx ? "VSR" : "FPR", i, strerror(errno));
714 return ret;
715 } else {
3a4b791b 716#ifdef HOST_WORDS_BIGENDIAN
ef96e3ae 717 *fpr = vsr[0];
70b79849 718 if (vsx) {
ef96e3ae 719 *vsrl = vsr[1];
70b79849 720 }
3a4b791b 721#else
ef96e3ae 722 *fpr = vsr[1];
3a4b791b 723 if (vsx) {
ef96e3ae 724 *vsrl = vsr[0];
3a4b791b
GK
725 }
726#endif
70b79849
DG
727 }
728 }
729 }
730
731 if (env->insns_flags & PPC_ALTIVEC) {
732 reg.id = KVM_REG_PPC_VSCR;
733 reg.addr = (uintptr_t)&env->vscr;
734 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
735 if (ret < 0) {
da56ff91 736 DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno));
70b79849
DG
737 return ret;
738 }
739
740 for (i = 0; i < 32; i++) {
741 reg.id = KVM_REG_PPC_VR(i);
ef96e3ae 742 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
70b79849
DG
743 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
744 if (ret < 0) {
da56ff91 745 DPRINTF("Unable to get VR%d from KVM: %s\n",
70b79849
DG
746 i, strerror(errno));
747 return ret;
748 }
749 }
750 }
751
752 return 0;
753}
754
9b00ea49
DG
755#if defined(TARGET_PPC64)
756static int kvm_get_vpa(CPUState *cs)
757{
758 PowerPCCPU *cpu = POWERPC_CPU(cs);
ce2918cb 759 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
9b00ea49
DG
760 struct kvm_one_reg reg;
761 int ret;
762
763 reg.id = KVM_REG_PPC_VPA_ADDR;
7388efaf 764 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
9b00ea49
DG
765 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
766 if (ret < 0) {
da56ff91 767 DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno));
9b00ea49
DG
768 return ret;
769 }
770
7388efaf
DG
771 assert((uintptr_t)&spapr_cpu->slb_shadow_size
772 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
9b00ea49 773 reg.id = KVM_REG_PPC_VPA_SLB;
7388efaf 774 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
9b00ea49
DG
775 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
776 if (ret < 0) {
da56ff91 777 DPRINTF("Unable to get SLB shadow state from KVM: %s\n",
9b00ea49
DG
778 strerror(errno));
779 return ret;
780 }
781
7388efaf
DG
782 assert((uintptr_t)&spapr_cpu->dtl_size
783 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
9b00ea49 784 reg.id = KVM_REG_PPC_VPA_DTL;
7388efaf 785 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
9b00ea49
DG
786 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
787 if (ret < 0) {
da56ff91 788 DPRINTF("Unable to get dispatch trace log state from KVM: %s\n",
9b00ea49
DG
789 strerror(errno));
790 return ret;
791 }
792
793 return 0;
794}
795
796static int kvm_put_vpa(CPUState *cs)
797{
798 PowerPCCPU *cpu = POWERPC_CPU(cs);
ce2918cb 799 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
9b00ea49
DG
800 struct kvm_one_reg reg;
801 int ret;
802
803 /* SLB shadow or DTL can't be registered unless a master VPA is
804 * registered. That means when restoring state, if a VPA *is*
805 * registered, we need to set that up first. If not, we need to
806 * deregister the others before deregistering the master VPA */
7388efaf
DG
807 assert(spapr_cpu->vpa_addr
808 || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
9b00ea49 809
7388efaf 810 if (spapr_cpu->vpa_addr) {
9b00ea49 811 reg.id = KVM_REG_PPC_VPA_ADDR;
7388efaf 812 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
9b00ea49
DG
813 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
814 if (ret < 0) {
da56ff91 815 DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
9b00ea49
DG
816 return ret;
817 }
818 }
819
7388efaf
DG
820 assert((uintptr_t)&spapr_cpu->slb_shadow_size
821 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
9b00ea49 822 reg.id = KVM_REG_PPC_VPA_SLB;
7388efaf 823 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
9b00ea49
DG
824 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
825 if (ret < 0) {
da56ff91 826 DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno));
9b00ea49
DG
827 return ret;
828 }
829
7388efaf
DG
830 assert((uintptr_t)&spapr_cpu->dtl_size
831 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
9b00ea49 832 reg.id = KVM_REG_PPC_VPA_DTL;
7388efaf 833 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
9b00ea49
DG
834 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
835 if (ret < 0) {
da56ff91 836 DPRINTF("Unable to set dispatch trace log state to KVM: %s\n",
9b00ea49
DG
837 strerror(errno));
838 return ret;
839 }
840
7388efaf 841 if (!spapr_cpu->vpa_addr) {
9b00ea49 842 reg.id = KVM_REG_PPC_VPA_ADDR;
7388efaf 843 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
9b00ea49
DG
844 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
845 if (ret < 0) {
da56ff91 846 DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
9b00ea49
DG
847 return ret;
848 }
849 }
850
851 return 0;
852}
853#endif /* TARGET_PPC64 */
854
e5c0d3ce 855int kvmppc_put_books_sregs(PowerPCCPU *cpu)
a7a00a72
DG
856{
857 CPUPPCState *env = &cpu->env;
858 struct kvm_sregs sregs;
859 int i;
860
861 sregs.pvr = env->spr[SPR_PVR];
862
1ec26c75
GK
863 if (cpu->vhyp) {
864 PPCVirtualHypervisorClass *vhc =
865 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
866 sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
867 } else {
868 sregs.u.s.sdr1 = env->spr[SPR_SDR1];
869 }
a7a00a72
DG
870
871 /* Sync SLB */
872#ifdef TARGET_PPC64
873 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
874 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
875 if (env->slb[i].esid & SLB_ESID_V) {
876 sregs.u.s.ppc64.slb[i].slbe |= i;
877 }
878 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
879 }
880#endif
881
882 /* Sync SRs */
883 for (i = 0; i < 16; i++) {
884 sregs.u.s.ppc32.sr[i] = env->sr[i];
885 }
886
887 /* Sync BATs */
888 for (i = 0; i < 8; i++) {
889 /* Beware. We have to swap upper and lower bits here */
890 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
891 | env->DBAT[1][i];
892 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
893 | env->IBAT[1][i];
894 }
895
896 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
897}
898
20d695a9 899int kvm_arch_put_registers(CPUState *cs, int level)
d76d1650 900{
20d695a9
AF
901 PowerPCCPU *cpu = POWERPC_CPU(cs);
902 CPUPPCState *env = &cpu->env;
d76d1650
AJ
903 struct kvm_regs regs;
904 int ret;
905 int i;
906
1bc22652
AF
907 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
908 if (ret < 0) {
d76d1650 909 return ret;
1bc22652 910 }
d76d1650
AJ
911
912 regs.ctr = env->ctr;
913 regs.lr = env->lr;
da91a00f 914 regs.xer = cpu_read_xer(env);
d76d1650
AJ
915 regs.msr = env->msr;
916 regs.pc = env->nip;
917
918 regs.srr0 = env->spr[SPR_SRR0];
919 regs.srr1 = env->spr[SPR_SRR1];
920
921 regs.sprg0 = env->spr[SPR_SPRG0];
922 regs.sprg1 = env->spr[SPR_SPRG1];
923 regs.sprg2 = env->spr[SPR_SPRG2];
924 regs.sprg3 = env->spr[SPR_SPRG3];
925 regs.sprg4 = env->spr[SPR_SPRG4];
926 regs.sprg5 = env->spr[SPR_SPRG5];
927 regs.sprg6 = env->spr[SPR_SPRG6];
928 regs.sprg7 = env->spr[SPR_SPRG7];
929
90dc8812
SW
930 regs.pid = env->spr[SPR_BOOKE_PID];
931
d76d1650
AJ
932 for (i = 0;i < 32; i++)
933 regs.gpr[i] = env->gpr[i];
934
4bddaf55
AK
935 regs.cr = 0;
936 for (i = 0; i < 8; i++) {
937 regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
938 }
939
1bc22652 940 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
d76d1650
AJ
941 if (ret < 0)
942 return ret;
943
70b79849
DG
944 kvm_put_fp(cs);
945
93dd5e85 946 if (env->tlb_dirty) {
1bc22652 947 kvm_sw_tlb_put(cpu);
93dd5e85
SW
948 env->tlb_dirty = false;
949 }
950
f1af19d7 951 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
a7a00a72
DG
952 ret = kvmppc_put_books_sregs(cpu);
953 if (ret < 0) {
f1af19d7
DG
954 return ret;
955 }
956 }
957
958 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
d67d40ea
DG
959 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
960 }
f1af19d7 961
d67d40ea
DG
962 if (cap_one_reg) {
963 int i;
964
965 /* We deliberately ignore errors here, for kernels which have
966 * the ONE_REG calls, but don't support the specific
967 * registers, there's a reasonable chance things will still
968 * work, at least until we try to migrate. */
969 for (i = 0; i < 1024; i++) {
970 uint64_t id = env->spr_cb[i].one_reg_id;
971
972 if (id != 0) {
973 kvm_put_one_spr(cs, id, i);
974 }
f1af19d7 975 }
9b00ea49
DG
976
977#ifdef TARGET_PPC64
80b3f79b
AK
978 if (msr_ts) {
979 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
980 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
981 }
982 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
983 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
984 }
985 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
986 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
987 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
988 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
989 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
990 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
991 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
992 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
993 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
994 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
995 }
996
9b00ea49
DG
997 if (cap_papr) {
998 if (kvm_put_vpa(cs) < 0) {
da56ff91 999 DPRINTF("Warning: Unable to set VPA information to KVM\n");
9b00ea49
DG
1000 }
1001 }
98a8b524
AK
1002
1003 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
9b00ea49 1004#endif /* TARGET_PPC64 */
f1af19d7
DG
1005 }
1006
d76d1650
AJ
1007 return ret;
1008}
1009
c371c2e3
BB
1010static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1011{
1012 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1013}
1014
a7a00a72
DG
1015static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1016{
1017 CPUPPCState *env = &cpu->env;
1018 struct kvm_sregs sregs;
1019 int ret;
1020
1021 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1022 if (ret < 0) {
1023 return ret;
1024 }
1025
1026 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1027 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1028 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1029 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1030 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1031 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1032 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1033 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1034 env->spr[SPR_DECR] = sregs.u.e.dec;
1035 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1036 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1037 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1038 }
1039
1040 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1041 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1042 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1043 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1044 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1045 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1046 }
1047
1048 if (sregs.u.e.features & KVM_SREGS_E_64) {
1049 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1050 }
1051
1052 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1053 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1054 }
1055
1056 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1057 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1058 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0);
1059 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1060 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1);
1061 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1062 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2);
1063 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1064 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3);
1065 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1066 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4);
1067 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1068 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5);
1069 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1070 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6);
1071 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1072 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7);
1073 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1074 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8);
1075 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1076 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9);
1077 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1078 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10);
1079 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1080 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11);
1081 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1082 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12);
1083 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1084 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13);
1085 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1086 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14);
1087 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1088 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15);
1089
1090 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1091 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1092 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32);
1093 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1094 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33);
1095 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1096 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34);
1097 }
1098
1099 if (sregs.u.e.features & KVM_SREGS_E_PM) {
1100 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1101 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35);
1102 }
1103
1104 if (sregs.u.e.features & KVM_SREGS_E_PC) {
1105 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1106 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36);
1107 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1108 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1109 }
1110 }
1111
1112 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1113 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1114 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1115 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1116 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1117 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1118 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1119 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1120 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1121 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1122 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1123 }
1124
1125 if (sregs.u.e.features & KVM_SREGS_EXP) {
1126 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1127 }
1128
1129 if (sregs.u.e.features & KVM_SREGS_E_PD) {
1130 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1131 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1132 }
1133
1134 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1135 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1136 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1137 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1138
1139 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1140 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1141 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1142 }
1143 }
1144
1145 return 0;
1146}
1147
1148static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1149{
1150 CPUPPCState *env = &cpu->env;
1151 struct kvm_sregs sregs;
1152 int ret;
1153 int i;
1154
1155 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1156 if (ret < 0) {
1157 return ret;
1158 }
1159
e57ca75c 1160 if (!cpu->vhyp) {
a7a00a72
DG
1161 ppc_store_sdr1(env, sregs.u.s.sdr1);
1162 }
1163
1164 /* Sync SLB */
1165#ifdef TARGET_PPC64
1166 /*
1167 * The packed SLB array we get from KVM_GET_SREGS only contains
1168 * information about valid entries. So we flush our internal copy
1169 * to get rid of stale ones, then put all valid SLB entries back
1170 * in.
1171 */
1172 memset(env->slb, 0, sizeof(env->slb));
1173 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1174 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1175 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1176 /*
1177 * Only restore valid entries
1178 */
1179 if (rb & SLB_ESID_V) {
1180 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1181 }
1182 }
1183#endif
1184
1185 /* Sync SRs */
1186 for (i = 0; i < 16; i++) {
1187 env->sr[i] = sregs.u.s.ppc32.sr[i];
1188 }
1189
1190 /* Sync BATs */
1191 for (i = 0; i < 8; i++) {
1192 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1193 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1194 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1195 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1196 }
1197
1198 return 0;
1199}
1200
20d695a9 1201int kvm_arch_get_registers(CPUState *cs)
d76d1650 1202{
20d695a9
AF
1203 PowerPCCPU *cpu = POWERPC_CPU(cs);
1204 CPUPPCState *env = &cpu->env;
d76d1650 1205 struct kvm_regs regs;
90dc8812 1206 uint32_t cr;
138b38b6 1207 int i, ret;
d76d1650 1208
1bc22652 1209 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
d76d1650
AJ
1210 if (ret < 0)
1211 return ret;
1212
90dc8812
SW
1213 cr = regs.cr;
1214 for (i = 7; i >= 0; i--) {
1215 env->crf[i] = cr & 15;
1216 cr >>= 4;
1217 }
ba5e5090 1218
d76d1650
AJ
1219 env->ctr = regs.ctr;
1220 env->lr = regs.lr;
da91a00f 1221 cpu_write_xer(env, regs.xer);
d76d1650
AJ
1222 env->msr = regs.msr;
1223 env->nip = regs.pc;
1224
1225 env->spr[SPR_SRR0] = regs.srr0;
1226 env->spr[SPR_SRR1] = regs.srr1;
1227
1228 env->spr[SPR_SPRG0] = regs.sprg0;
1229 env->spr[SPR_SPRG1] = regs.sprg1;
1230 env->spr[SPR_SPRG2] = regs.sprg2;
1231 env->spr[SPR_SPRG3] = regs.sprg3;
1232 env->spr[SPR_SPRG4] = regs.sprg4;
1233 env->spr[SPR_SPRG5] = regs.sprg5;
1234 env->spr[SPR_SPRG6] = regs.sprg6;
1235 env->spr[SPR_SPRG7] = regs.sprg7;
1236
90dc8812
SW
1237 env->spr[SPR_BOOKE_PID] = regs.pid;
1238
d76d1650
AJ
1239 for (i = 0;i < 32; i++)
1240 env->gpr[i] = regs.gpr[i];
1241
70b79849
DG
1242 kvm_get_fp(cs);
1243
90dc8812 1244 if (cap_booke_sregs) {
a7a00a72 1245 ret = kvmppc_get_booke_sregs(cpu);
90dc8812
SW
1246 if (ret < 0) {
1247 return ret;
1248 }
fafc0b6a 1249 }
90dc8812 1250
90dc8812 1251 if (cap_segstate) {
a7a00a72 1252 ret = kvmppc_get_books_sregs(cpu);
90dc8812
SW
1253 if (ret < 0) {
1254 return ret;
1255 }
fafc0b6a 1256 }
ba5e5090 1257
d67d40ea
DG
1258 if (cap_hior) {
1259 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1260 }
1261
1262 if (cap_one_reg) {
1263 int i;
1264
1265 /* We deliberately ignore errors here, for kernels which have
1266 * the ONE_REG calls, but don't support the specific
1267 * registers, there's a reasonable chance things will still
1268 * work, at least until we try to migrate. */
1269 for (i = 0; i < 1024; i++) {
1270 uint64_t id = env->spr_cb[i].one_reg_id;
1271
1272 if (id != 0) {
1273 kvm_get_one_spr(cs, id, i);
1274 }
1275 }
9b00ea49
DG
1276
1277#ifdef TARGET_PPC64
80b3f79b
AK
1278 if (msr_ts) {
1279 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1280 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1281 }
1282 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1283 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1284 }
1285 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1286 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1287 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1288 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1289 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1290 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1291 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1292 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1293 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1294 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1295 }
1296
9b00ea49
DG
1297 if (cap_papr) {
1298 if (kvm_get_vpa(cs) < 0) {
da56ff91 1299 DPRINTF("Warning: Unable to get VPA information from KVM\n");
9b00ea49
DG
1300 }
1301 }
98a8b524
AK
1302
1303 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
9b00ea49 1304#endif
d67d40ea
DG
1305 }
1306
d76d1650
AJ
1307 return 0;
1308}
1309
1bc22652 1310int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
fc87e185
AG
1311{
1312 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1313
1314 if (irq != PPC_INTERRUPT_EXT) {
1315 return 0;
1316 }
1317
1318 if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
1319 return 0;
1320 }
1321
1bc22652 1322 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
fc87e185
AG
1323
1324 return 0;
1325}
1326
a69dc537 1327#if defined(TARGET_PPC64)
16415335
AG
1328#define PPC_INPUT_INT PPC970_INPUT_INT
1329#else
1330#define PPC_INPUT_INT PPC6xx_INPUT_INT
1331#endif
1332
20d695a9 1333void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
d76d1650 1334{
20d695a9
AF
1335 PowerPCCPU *cpu = POWERPC_CPU(cs);
1336 CPUPPCState *env = &cpu->env;
d76d1650
AJ
1337 int r;
1338 unsigned irq;
1339
4b8523ee
JK
1340 qemu_mutex_lock_iothread();
1341
5cbdb3a3 1342 /* PowerPC QEMU tracks the various core input pins (interrupt, critical
d76d1650 1343 * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
fc87e185
AG
1344 if (!cap_interrupt_level &&
1345 run->ready_for_interrupt_injection &&
259186a7 1346 (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
16415335 1347 (env->irq_input_state & (1<<PPC_INPUT_INT)))
d76d1650
AJ
1348 {
1349 /* For now KVM disregards the 'irq' argument. However, in the
1350 * future KVM could cache it in-kernel to avoid a heavyweight exit
1351 * when reading the UIC.
1352 */
fc87e185 1353 irq = KVM_INTERRUPT_SET;
d76d1650 1354
da56ff91 1355 DPRINTF("injected interrupt %d\n", irq);
1bc22652 1356 r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq);
55e5c285
AF
1357 if (r < 0) {
1358 printf("cpu %d fail inject %x\n", cs->cpu_index, irq);
1359 }
c821c2bd
AG
1360
1361 /* Always wake up soon in case the interrupt was level based */
bc72ad67 1362 timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
73bcb24d 1363 (NANOSECONDS_PER_SECOND / 50));
d76d1650
AJ
1364 }
1365
1366 /* We don't know if there are more interrupts pending after this. However,
1367 * the guest will return to userspace in the course of handling this one
1368 * anyways, so we will get a chance to deliver the rest. */
4b8523ee
JK
1369
1370 qemu_mutex_unlock_iothread();
d76d1650
AJ
1371}
1372
4c663752 1373MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
d76d1650 1374{
4c663752 1375 return MEMTXATTRS_UNSPECIFIED;
d76d1650
AJ
1376}
1377
20d695a9 1378int kvm_arch_process_async_events(CPUState *cs)
0af691d7 1379{
259186a7 1380 return cs->halted;
0af691d7
MT
1381}
1382
259186a7 1383static int kvmppc_handle_halt(PowerPCCPU *cpu)
d76d1650 1384{
259186a7
AF
1385 CPUState *cs = CPU(cpu);
1386 CPUPPCState *env = &cpu->env;
1387
1388 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
1389 cs->halted = 1;
27103424 1390 cs->exception_index = EXCP_HLT;
d76d1650
AJ
1391 }
1392
bb4ea393 1393 return 0;
d76d1650
AJ
1394}
1395
1396/* map dcr access to existing qemu dcr emulation */
1328c2bf 1397static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
d76d1650
AJ
1398{
1399 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
1400 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1401
bb4ea393 1402 return 0;
d76d1650
AJ
1403}
1404
1328c2bf 1405static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
d76d1650
AJ
1406{
1407 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
1408 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1409
bb4ea393 1410 return 0;
d76d1650
AJ
1411}
1412
8a0548f9
BB
1413int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1414{
1415 /* Mixed endian case is not handled */
1416 uint32_t sc = debug_inst_opcode;
1417
1418 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1419 sizeof(sc), 0) ||
1420 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1421 return -EINVAL;
1422 }
1423
1424 return 0;
1425}
1426
1427int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1428{
1429 uint32_t sc;
1430
1431 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1432 sc != debug_inst_opcode ||
1433 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1434 sizeof(sc), 1)) {
1435 return -EINVAL;
1436 }
1437
1438 return 0;
1439}
1440
88365d17
BB
1441static int find_hw_breakpoint(target_ulong addr, int type)
1442{
1443 int n;
1444
1445 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1446 <= ARRAY_SIZE(hw_debug_points));
1447
1448 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1449 if (hw_debug_points[n].addr == addr &&
1450 hw_debug_points[n].type == type) {
1451 return n;
1452 }
1453 }
1454
1455 return -1;
1456}
1457
1458static int find_hw_watchpoint(target_ulong addr, int *flag)
1459{
1460 int n;
1461
1462 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1463 if (n >= 0) {
1464 *flag = BP_MEM_ACCESS;
1465 return n;
1466 }
1467
1468 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1469 if (n >= 0) {
1470 *flag = BP_MEM_WRITE;
1471 return n;
1472 }
1473
1474 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1475 if (n >= 0) {
1476 *flag = BP_MEM_READ;
1477 return n;
1478 }
1479
1480 return -1;
1481}
1482
1483int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1484 target_ulong len, int type)
1485{
1486 if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1487 return -ENOBUFS;
1488 }
1489
1490 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1491 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1492
1493 switch (type) {
1494 case GDB_BREAKPOINT_HW:
1495 if (nb_hw_breakpoint >= max_hw_breakpoint) {
1496 return -ENOBUFS;
1497 }
1498
1499 if (find_hw_breakpoint(addr, type) >= 0) {
1500 return -EEXIST;
1501 }
1502
1503 nb_hw_breakpoint++;
1504 break;
1505
1506 case GDB_WATCHPOINT_WRITE:
1507 case GDB_WATCHPOINT_READ:
1508 case GDB_WATCHPOINT_ACCESS:
1509 if (nb_hw_watchpoint >= max_hw_watchpoint) {
1510 return -ENOBUFS;
1511 }
1512
1513 if (find_hw_breakpoint(addr, type) >= 0) {
1514 return -EEXIST;
1515 }
1516
1517 nb_hw_watchpoint++;
1518 break;
1519
1520 default:
1521 return -ENOSYS;
1522 }
1523
1524 return 0;
1525}
1526
1527int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1528 target_ulong len, int type)
1529{
1530 int n;
1531
1532 n = find_hw_breakpoint(addr, type);
1533 if (n < 0) {
1534 return -ENOENT;
1535 }
1536
1537 switch (type) {
1538 case GDB_BREAKPOINT_HW:
1539 nb_hw_breakpoint--;
1540 break;
1541
1542 case GDB_WATCHPOINT_WRITE:
1543 case GDB_WATCHPOINT_READ:
1544 case GDB_WATCHPOINT_ACCESS:
1545 nb_hw_watchpoint--;
1546 break;
1547
1548 default:
1549 return -ENOSYS;
1550 }
1551 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1552
1553 return 0;
1554}
1555
1556void kvm_arch_remove_all_hw_breakpoints(void)
1557{
1558 nb_hw_breakpoint = nb_hw_watchpoint = 0;
1559}
1560
8a0548f9
BB
1561void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1562{
88365d17
BB
1563 int n;
1564
8a0548f9
BB
1565 /* Software Breakpoint updates */
1566 if (kvm_sw_breakpoints_active(cs)) {
1567 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1568 }
88365d17
BB
1569
1570 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1571 <= ARRAY_SIZE(hw_debug_points));
1572 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1573
1574 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1575 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1576 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1577 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1578 switch (hw_debug_points[n].type) {
1579 case GDB_BREAKPOINT_HW:
1580 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1581 break;
1582 case GDB_WATCHPOINT_WRITE:
1583 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1584 break;
1585 case GDB_WATCHPOINT_READ:
1586 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1587 break;
1588 case GDB_WATCHPOINT_ACCESS:
1589 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1590 KVMPPC_DEBUG_WATCH_READ;
1591 break;
1592 default:
1593 cpu_abort(cs, "Unsupported breakpoint type\n");
1594 }
1595 dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1596 }
1597 }
8a0548f9
BB
1598}
1599
2cbd1581
FR
1600static int kvm_handle_hw_breakpoint(CPUState *cs,
1601 struct kvm_debug_exit_arch *arch_info)
1602{
1603 int handle = 0;
1604 int n;
1605 int flag = 0;
1606
1607 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1608 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1609 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1610 if (n >= 0) {
1611 handle = 1;
1612 }
1613 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1614 KVMPPC_DEBUG_WATCH_WRITE)) {
1615 n = find_hw_watchpoint(arch_info->address, &flag);
1616 if (n >= 0) {
1617 handle = 1;
1618 cs->watchpoint_hit = &hw_watchpoint;
1619 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1620 hw_watchpoint.flags = flag;
1621 }
1622 }
1623 }
1624 return handle;
1625}
1626
468e3a1a
FR
1627static int kvm_handle_singlestep(void)
1628{
1629 return 1;
1630}
1631
1632static int kvm_handle_sw_breakpoint(void)
1633{
1634 return 1;
1635}
1636
8a0548f9
BB
1637static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1638{
1639 CPUState *cs = CPU(cpu);
1640 CPUPPCState *env = &cpu->env;
1641 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
8a0548f9 1642
88365d17 1643 if (cs->singlestep_enabled) {
468e3a1a
FR
1644 return kvm_handle_singlestep();
1645 }
8a0548f9 1646
468e3a1a
FR
1647 if (arch_info->status) {
1648 return kvm_handle_hw_breakpoint(cs, arch_info);
8a0548f9
BB
1649 }
1650
468e3a1a
FR
1651 if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1652 return kvm_handle_sw_breakpoint();
1653 }
1654
1655 /*
1656 * QEMU is not able to handle debug exception, so inject
1657 * program exception to guest;
1658 * Yes program exception NOT debug exception !!
1659 * When QEMU is using debug resources then debug exception must
1660 * be always set. To achieve this we set MSR_DE and also set
1661 * MSRP_DEP so guest cannot change MSR_DE.
1662 * When emulating debug resource for guest we want guest
1663 * to control MSR_DE (enable/disable debug interrupt on need).
1664 * Supporting both configurations are NOT possible.
1665 * So the result is that we cannot share debug resources
1666 * between QEMU and Guest on BOOKE architecture.
1667 * In the current design QEMU gets the priority over guest,
1668 * this means that if QEMU is using debug resources then guest
1669 * cannot use them;
1670 * For software breakpoint QEMU uses a privileged instruction;
1671 * So there cannot be any reason that we are here for guest
1672 * set debug exception, only possibility is guest executed a
1673 * privileged / illegal instruction and that's why we are
1674 * injecting a program interrupt.
1675 */
1676 cpu_synchronize_state(cs);
1677 /*
1678 * env->nip is PC, so increment this by 4 to use
1679 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1680 */
1681 env->nip += 4;
1682 cs->exception_index = POWERPC_EXCP_PROGRAM;
1683 env->error_code = POWERPC_EXCP_INVAL;
1684 ppc_cpu_do_interrupt(cs);
1685
1686 return 0;
8a0548f9
BB
1687}
1688
20d695a9 1689int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
d76d1650 1690{
20d695a9
AF
1691 PowerPCCPU *cpu = POWERPC_CPU(cs);
1692 CPUPPCState *env = &cpu->env;
bb4ea393 1693 int ret;
d76d1650 1694
4b8523ee
JK
1695 qemu_mutex_lock_iothread();
1696
d76d1650
AJ
1697 switch (run->exit_reason) {
1698 case KVM_EXIT_DCR:
1699 if (run->dcr.is_write) {
da56ff91 1700 DPRINTF("handle dcr write\n");
d76d1650
AJ
1701 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1702 } else {
da56ff91 1703 DPRINTF("handle dcr read\n");
d76d1650
AJ
1704 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1705 }
1706 break;
1707 case KVM_EXIT_HLT:
da56ff91 1708 DPRINTF("handle halt\n");
259186a7 1709 ret = kvmppc_handle_halt(cpu);
d76d1650 1710 break;
c6304a4a 1711#if defined(TARGET_PPC64)
f61b4bed 1712 case KVM_EXIT_PAPR_HCALL:
da56ff91 1713 DPRINTF("handle PAPR hypercall\n");
20d695a9 1714 run->papr_hcall.ret = spapr_hypercall(cpu,
aa100fa4 1715 run->papr_hcall.nr,
f61b4bed 1716 run->papr_hcall.args);
78e8fde2 1717 ret = 0;
f61b4bed
AG
1718 break;
1719#endif
5b95b8b9 1720 case KVM_EXIT_EPR:
da56ff91 1721 DPRINTF("handle epr\n");
933b19ea 1722 run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
5b95b8b9
AG
1723 ret = 0;
1724 break;
31f2cb8f 1725 case KVM_EXIT_WATCHDOG:
da56ff91 1726 DPRINTF("handle watchdog expiry\n");
31f2cb8f
BB
1727 watchdog_perform_action();
1728 ret = 0;
1729 break;
1730
8a0548f9
BB
1731 case KVM_EXIT_DEBUG:
1732 DPRINTF("handle debug exception\n");
1733 if (kvm_handle_debug(cpu, run)) {
1734 ret = EXCP_DEBUG;
1735 break;
1736 }
1737 /* re-enter, this exception was guest-internal */
1738 ret = 0;
1739 break;
1740
73aaec4a
JK
1741 default:
1742 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1743 ret = -1;
1744 break;
d76d1650
AJ
1745 }
1746
4b8523ee 1747 qemu_mutex_unlock_iothread();
d76d1650
AJ
1748 return ret;
1749}
1750
31f2cb8f
BB
1751int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1752{
1753 CPUState *cs = CPU(cpu);
1754 uint32_t bits = tsr_bits;
1755 struct kvm_one_reg reg = {
1756 .id = KVM_REG_PPC_OR_TSR,
1757 .addr = (uintptr_t) &bits,
1758 };
1759
1760 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1761}
1762
1763int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1764{
1765
1766 CPUState *cs = CPU(cpu);
1767 uint32_t bits = tsr_bits;
1768 struct kvm_one_reg reg = {
1769 .id = KVM_REG_PPC_CLEAR_TSR,
1770 .addr = (uintptr_t) &bits,
1771 };
1772
1773 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1774}
1775
1776int kvmppc_set_tcr(PowerPCCPU *cpu)
1777{
1778 CPUState *cs = CPU(cpu);
1779 CPUPPCState *env = &cpu->env;
1780 uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1781
1782 struct kvm_one_reg reg = {
1783 .id = KVM_REG_PPC_TCR,
1784 .addr = (uintptr_t) &tcr,
1785 };
1786
1787 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1788}
1789
1790int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1791{
1792 CPUState *cs = CPU(cpu);
31f2cb8f
BB
1793 int ret;
1794
1795 if (!kvm_enabled()) {
1796 return -1;
1797 }
1798
1799 if (!cap_ppc_watchdog) {
1800 printf("warning: KVM does not support watchdog");
1801 return -1;
1802 }
1803
48add816 1804 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
31f2cb8f
BB
1805 if (ret < 0) {
1806 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1807 __func__, strerror(-ret));
1808 return ret;
1809 }
1810
1811 return ret;
1812}
1813
dc333cd6
AG
1814static int read_cpuinfo(const char *field, char *value, int len)
1815{
1816 FILE *f;
1817 int ret = -1;
1818 int field_len = strlen(field);
1819 char line[512];
1820
1821 f = fopen("/proc/cpuinfo", "r");
1822 if (!f) {
1823 return -1;
1824 }
1825
1826 do {
ef951443 1827 if (!fgets(line, sizeof(line), f)) {
dc333cd6
AG
1828 break;
1829 }
1830 if (!strncmp(line, field, field_len)) {
ae215068 1831 pstrcpy(value, len, line);
dc333cd6
AG
1832 ret = 0;
1833 break;
1834 }
1835 } while(*line);
1836
1837 fclose(f);
1838
1839 return ret;
1840}
1841
1842uint32_t kvmppc_get_tbfreq(void)
1843{
1844 char line[512];
1845 char *ns;
73bcb24d 1846 uint32_t retval = NANOSECONDS_PER_SECOND;
dc333cd6
AG
1847
1848 if (read_cpuinfo("timebase", line, sizeof(line))) {
1849 return retval;
1850 }
1851
1852 if (!(ns = strchr(line, ':'))) {
1853 return retval;
1854 }
1855
1856 ns++;
1857
f9b8e7f6 1858 return atoi(ns);
dc333cd6 1859}
4513d923 1860
ef951443
ND
1861bool kvmppc_get_host_serial(char **value)
1862{
1863 return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1864 NULL);
1865}
1866
1867bool kvmppc_get_host_model(char **value)
1868{
1869 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1870}
1871
eadaada1
AG
1872/* Try to find a device tree node for a CPU with clock-frequency property */
1873static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1874{
1875 struct dirent *dirp;
1876 DIR *dp;
1877
1878 if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
1879 printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1880 return -1;
1881 }
1882
1883 buf[0] = '\0';
1884 while ((dirp = readdir(dp)) != NULL) {
1885 FILE *f;
1886 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1887 dirp->d_name);
1888 f = fopen(buf, "r");
1889 if (f) {
1890 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1891 fclose(f);
1892 break;
1893 }
1894 buf[0] = '\0';
1895 }
1896 closedir(dp);
1897 if (buf[0] == '\0') {
1898 printf("Unknown host!\n");
1899 return -1;
1900 }
1901
1902 return 0;
1903}
1904
7d94a30b 1905static uint64_t kvmppc_read_int_dt(const char *filename)
eadaada1 1906{
9bc884b7
DG
1907 union {
1908 uint32_t v32;
1909 uint64_t v64;
1910 } u;
eadaada1
AG
1911 FILE *f;
1912 int len;
1913
7d94a30b 1914 f = fopen(filename, "rb");
eadaada1
AG
1915 if (!f) {
1916 return -1;
1917 }
1918
9bc884b7 1919 len = fread(&u, 1, sizeof(u), f);
eadaada1
AG
1920 fclose(f);
1921 switch (len) {
9bc884b7
DG
1922 case 4:
1923 /* property is a 32-bit quantity */
1924 return be32_to_cpu(u.v32);
1925 case 8:
1926 return be64_to_cpu(u.v64);
eadaada1
AG
1927 }
1928
1929 return 0;
1930}
1931
7d94a30b
SB
1932/* Read a CPU node property from the host device tree that's a single
1933 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
1934 * (can't find or open the property, or doesn't understand the
1935 * format) */
1936static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1937{
1938 char buf[PATH_MAX], *tmp;
1939 uint64_t val;
1940
1941 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1942 return -1;
1943 }
1944
1945 tmp = g_strdup_printf("%s/%s", buf, propname);
1946 val = kvmppc_read_int_dt(tmp);
1947 g_free(tmp);
1948
1949 return val;
1950}
1951
9bc884b7
DG
1952uint64_t kvmppc_get_clockfreq(void)
1953{
1954 return kvmppc_read_int_cpu_dt("clock-frequency");
1955}
1956
7d050527
SJS
1957static int kvmppc_get_dec_bits(void)
1958{
1959 int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1960
1961 if (nr_bits > 0) {
1962 return nr_bits;
1963 }
1964 return 0;
1965}
1966
1a61a9ae
SY
1967static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1968 {
1969 PowerPCCPU *cpu = ppc_env_get_cpu(env);
1970 CPUState *cs = CPU(cpu);
1971
6fd33a75 1972 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1a61a9ae
SY
1973 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1974 return 0;
1975 }
1976
1977 return 1;
1978}
1979
1980int kvmppc_get_hasidle(CPUPPCState *env)
1981{
1982 struct kvm_ppc_pvinfo pvinfo;
1983
1984 if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1985 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1986 return 1;
1987 }
1988
1989 return 0;
1990}
1991
1328c2bf 1992int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
45024f09
AG
1993{
1994 uint32_t *hc = (uint32_t*)buf;
45024f09
AG
1995 struct kvm_ppc_pvinfo pvinfo;
1996
1a61a9ae 1997 if (!kvmppc_get_pvinfo(env, &pvinfo)) {
45024f09 1998 memcpy(buf, pvinfo.hcall, buf_len);
45024f09
AG
1999 return 0;
2000 }
45024f09
AG
2001
2002 /*
d13fc32e 2003 * Fallback to always fail hypercalls regardless of endianness:
45024f09 2004 *
d13fc32e 2005 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
45024f09 2006 * li r3, -1
d13fc32e
AG
2007 * b .+8 (becomes nop in wrong endian)
2008 * bswap32(li r3, -1)
45024f09
AG
2009 */
2010
d13fc32e
AG
2011 hc[0] = cpu_to_be32(0x08000048);
2012 hc[1] = cpu_to_be32(0x3860ffff);
2013 hc[2] = cpu_to_be32(0x48000008);
2014 hc[3] = cpu_to_be32(bswap32(0x3860ffff));
45024f09 2015
0ddbd053 2016 return 1;
45024f09
AG
2017}
2018
026bfd89
DG
2019static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2020{
2021 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2022}
2023
2024void kvmppc_enable_logical_ci_hcalls(void)
2025{
2026 /*
2027 * FIXME: it would be nice if we could detect the cases where
2028 * we're using a device which requires the in kernel
2029 * implementation of these hcalls, but the kernel lacks them and
2030 * produce a warning.
2031 */
2032 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2033 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2034}
2035
ef9971dd
AK
2036void kvmppc_enable_set_mode_hcall(void)
2037{
2038 kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2039}
2040
5145ad4f
NW
2041void kvmppc_enable_clear_ref_mod_hcalls(void)
2042{
2043 kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2044 kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2045}
2046
68f9f708
SJS
2047void kvmppc_enable_h_page_init(void)
2048{
2049 kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2050}
2051
1bc22652 2052void kvmppc_set_papr(PowerPCCPU *cpu)
f61b4bed 2053{
1bc22652 2054 CPUState *cs = CPU(cpu);
f61b4bed
AG
2055 int ret;
2056
da20aed1
DG
2057 if (!kvm_enabled()) {
2058 return;
2059 }
2060
48add816 2061 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
f61b4bed 2062 if (ret) {
072ed5f2
TH
2063 error_report("This vCPU type or KVM version does not support PAPR");
2064 exit(1);
94135e81 2065 }
9b00ea49
DG
2066
2067 /* Update the capability flag so we sync the right information
2068 * with kvm */
2069 cap_papr = 1;
f61b4bed
AG
2070}
2071
d6e166c0 2072int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
6db5bb0f 2073{
d6e166c0 2074 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
6db5bb0f
AK
2075}
2076
5b95b8b9
AG
2077void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2078{
5b95b8b9 2079 CPUState *cs = CPU(cpu);
5b95b8b9
AG
2080 int ret;
2081
48add816 2082 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
5b95b8b9 2083 if (ret && mpic_proxy) {
072ed5f2
TH
2084 error_report("This KVM version does not support EPR");
2085 exit(1);
5b95b8b9
AG
2086 }
2087}
2088
e97c3636
DG
2089int kvmppc_smt_threads(void)
2090{
2091 return cap_ppc_smt ? cap_ppc_smt : 1;
2092}
2093
fa98fbfc
SB
2094int kvmppc_set_smt_threads(int smt)
2095{
2096 int ret;
2097
2098 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2099 if (!ret) {
2100 cap_ppc_smt = smt;
2101 }
2102 return ret;
2103}
2104
2105void kvmppc_hint_smt_possible(Error **errp)
2106{
2107 int i;
2108 GString *g;
2109 char *s;
2110
2111 assert(kvm_enabled());
2112 if (cap_ppc_smt_possible) {
2113 g = g_string_new("Available VSMT modes:");
2114 for (i = 63; i >= 0; i--) {
2115 if ((1UL << i) & cap_ppc_smt_possible) {
2116 g_string_append_printf(g, " %lu", (1UL << i));
2117 }
2118 }
2119 s = g_string_free(g, false);
2120 error_append_hint(errp, "%s.\n", s);
2121 g_free(s);
2122 } else {
2123 error_append_hint(errp,
2124 "This KVM seems to be too old to support VSMT.\n");
2125 }
2126}
2127
2128
7f763a5d 2129#ifdef TARGET_PPC64
7f763a5d
DG
2130uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
2131{
f36951c1
DG
2132 struct kvm_ppc_smmu_info info;
2133 long rampagesize, best_page_shift;
2134 int i;
2135
f36951c1
DG
2136 /* Find the largest hardware supported page size that's less than
2137 * or equal to the (logical) backing page size of guest RAM */
ab256960 2138 kvm_get_smmu_info(&info, &error_fatal);
9c607668 2139 rampagesize = qemu_getrampagesize();
f36951c1
DG
2140 best_page_shift = 0;
2141
2142 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2143 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2144
2145 if (!sps->page_shift) {
2146 continue;
2147 }
2148
2149 if ((sps->page_shift > best_page_shift)
2150 && ((1UL << sps->page_shift) <= rampagesize)) {
2151 best_page_shift = sps->page_shift;
2152 }
2153 }
2154
7f763a5d 2155 return MIN(current_size,
f36951c1 2156 1ULL << (best_page_shift + hash_shift - 7));
7f763a5d
DG
2157}
2158#endif
2159
da95324e
AK
2160bool kvmppc_spapr_use_multitce(void)
2161{
2162 return cap_spapr_multitce;
2163}
2164
3dc410ae
AK
2165int kvmppc_spapr_enable_inkernel_multitce(void)
2166{
2167 int ret;
2168
2169 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2170 H_PUT_TCE_INDIRECT, 1);
2171 if (!ret) {
2172 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2173 H_STUFF_TCE, 1);
2174 }
2175
2176 return ret;
2177}
2178
d6ee2a7c
AK
2179void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2180 uint64_t bus_offset, uint32_t nb_table,
2181 int *pfd, bool need_vfio)
0f5cb298 2182{
0f5cb298
DG
2183 long len;
2184 int fd;
2185 void *table;
2186
b5aec396
DG
2187 /* Must set fd to -1 so we don't try to munmap when called for
2188 * destroying the table, which the upper layers -will- do
2189 */
2190 *pfd = -1;
6a81dd17 2191 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
0f5cb298
DG
2192 return NULL;
2193 }
2194
d6ee2a7c
AK
2195 if (cap_spapr_tce_64) {
2196 struct kvm_create_spapr_tce_64 args = {
2197 .liobn = liobn,
2198 .page_shift = page_shift,
2199 .offset = bus_offset >> page_shift,
2200 .size = nb_table,
2201 .flags = 0
2202 };
2203 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2204 if (fd < 0) {
2205 fprintf(stderr,
2206 "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2207 liobn);
2208 return NULL;
2209 }
2210 } else if (cap_spapr_tce) {
2211 uint64_t window_size = (uint64_t) nb_table << page_shift;
2212 struct kvm_create_spapr_tce args = {
2213 .liobn = liobn,
2214 .window_size = window_size,
2215 };
2216 if ((window_size != args.window_size) || bus_offset) {
2217 return NULL;
2218 }
2219 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2220 if (fd < 0) {
2221 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2222 liobn);
2223 return NULL;
2224 }
2225 } else {
0f5cb298
DG
2226 return NULL;
2227 }
2228
d6ee2a7c 2229 len = nb_table * sizeof(uint64_t);
0f5cb298
DG
2230 /* FIXME: round this up to page size */
2231
74b41e56 2232 table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
0f5cb298 2233 if (table == MAP_FAILED) {
b5aec396
DG
2234 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2235 liobn);
0f5cb298
DG
2236 close(fd);
2237 return NULL;
2238 }
2239
2240 *pfd = fd;
2241 return table;
2242}
2243
523e7b8a 2244int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
0f5cb298
DG
2245{
2246 long len;
2247
2248 if (fd < 0) {
2249 return -1;
2250 }
2251
523e7b8a 2252 len = nb_table * sizeof(uint64_t);
0f5cb298
DG
2253 if ((munmap(table, len) < 0) ||
2254 (close(fd) < 0)) {
b5aec396
DG
2255 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2256 strerror(errno));
0f5cb298
DG
2257 /* Leak the table */
2258 }
2259
2260 return 0;
2261}
2262
7f763a5d
DG
2263int kvmppc_reset_htab(int shift_hint)
2264{
2265 uint32_t shift = shift_hint;
2266
ace9a2cb
DG
2267 if (!kvm_enabled()) {
2268 /* Full emulation, tell caller to allocate htab itself */
2269 return 0;
2270 }
6977afda 2271 if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
7f763a5d
DG
2272 int ret;
2273 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
ace9a2cb
DG
2274 if (ret == -ENOTTY) {
2275 /* At least some versions of PR KVM advertise the
2276 * capability, but don't implement the ioctl(). Oops.
2277 * Return 0 so that we allocate the htab in qemu, as is
2278 * correct for PR. */
2279 return 0;
2280 } else if (ret < 0) {
7f763a5d
DG
2281 return ret;
2282 }
2283 return shift;
2284 }
2285
ace9a2cb
DG
2286 /* We have a kernel that predates the htab reset calls. For PR
2287 * KVM, we need to allocate the htab ourselves, for an HV KVM of
96c9cff0
TH
2288 * this era, it has allocated a 16MB fixed size hash table already. */
2289 if (kvmppc_is_pr(kvm_state)) {
ace9a2cb
DG
2290 /* PR - tell caller to allocate htab */
2291 return 0;
2292 } else {
2293 /* HV - assume 16MB kernel allocated htab */
2294 return 24;
2295 }
7f763a5d
DG
2296}
2297
a1e98583
DG
2298static inline uint32_t mfpvr(void)
2299{
2300 uint32_t pvr;
2301
2302 asm ("mfpvr %0"
2303 : "=r"(pvr));
2304 return pvr;
2305}
2306
a7342588
DG
2307static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2308{
2309 if (on) {
2310 *word |= flags;
2311 } else {
2312 *word &= ~flags;
2313 }
2314}
2315
2985b86b
AF
2316static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2317{
2318 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
0cbad81f
DG
2319 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2320 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
a1e98583 2321
cfe34f44 2322 /* Now fix up the class with information we can query from the host */
3bc9ccc0 2323 pcc->pvr = mfpvr();
a7342588 2324
3f2ca480
DG
2325 alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2326 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2327 alter_insns(&pcc->insns_flags2, PPC2_VSX,
2328 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2329 alter_insns(&pcc->insns_flags2, PPC2_DFP,
2330 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
0cbad81f
DG
2331
2332 if (dcache_size != -1) {
2333 pcc->l1_dcache_size = dcache_size;
2334 }
2335
2336 if (icache_size != -1) {
2337 pcc->l1_icache_size = icache_size;
2338 }
c64abd1f
SB
2339
2340#if defined(TARGET_PPC64)
2341 pcc->radix_page_info = kvm_get_radix_page_info();
5f3066d8
DG
2342
2343 if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2344 /*
2345 * POWER9 DD1 has some bugs which make it not really ISA 3.00
2346 * compliant. More importantly, advertising ISA 3.00
2347 * architected mode may prevent guests from activating
2348 * necessary DD1 workarounds.
2349 */
2350 pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2351 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2352 }
c64abd1f 2353#endif /* defined(TARGET_PPC64) */
a1e98583
DG
2354}
2355
3b961124
SY
2356bool kvmppc_has_cap_epr(void)
2357{
2358 return cap_epr;
2359}
2360
87a91de6
AG
2361bool kvmppc_has_cap_fixup_hcalls(void)
2362{
2363 return cap_fixup_hcalls;
2364}
2365
bac3bf28
TH
2366bool kvmppc_has_cap_htm(void)
2367{
2368 return cap_htm;
2369}
2370
cf1c4cce
SB
2371bool kvmppc_has_cap_mmu_radix(void)
2372{
2373 return cap_mmu_radix;
2374}
2375
2376bool kvmppc_has_cap_mmu_hash_v3(void)
2377{
2378 return cap_mmu_hash_v3;
2379}
2380
072f416a
SJS
2381static bool kvmppc_power8_host(void)
2382{
2383 bool ret = false;
2384#ifdef TARGET_PPC64
2385 {
2386 uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2387 ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2388 (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2389 (base_pvr == CPU_POWERPC_POWER8_BASE);
2390 }
2391#endif /* TARGET_PPC64 */
2392 return ret;
2393}
2394
8fea7044
SJS
2395static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2396{
072f416a
SJS
2397 bool l1d_thread_priv_req = !kvmppc_power8_host();
2398
8fea7044
SJS
2399 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2400 return 2;
072f416a
SJS
2401 } else if ((!l1d_thread_priv_req ||
2402 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
8fea7044
SJS
2403 (c.character & c.character_mask
2404 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2405 return 1;
2406 }
2407
2408 return 0;
2409}
2410
2411static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2412{
2413 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2414 return 2;
2415 } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2416 return 1;
2417 }
2418
2419 return 0;
2420}
2421
2422static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2423{
399b2896
SJS
2424 if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2425 (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2426 (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2427 return SPAPR_CAP_FIXED_NA;
2428 } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2429 return SPAPR_CAP_WORKAROUND;
2430 } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
8fea7044
SJS
2431 return SPAPR_CAP_FIXED_CCD;
2432 } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2433 return SPAPR_CAP_FIXED_IBS;
2434 }
2435
2436 return 0;
2437}
2438
8ff43ee4
SJS
2439static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2440{
2441 if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2442 return 1;
2443 }
2444 return 0;
2445}
2446
8acc2ae5
SJS
2447static void kvmppc_get_cpu_characteristics(KVMState *s)
2448{
2449 struct kvm_ppc_cpu_char c;
2450 int ret;
2451
2452 /* Assume broken */
2453 cap_ppc_safe_cache = 0;
2454 cap_ppc_safe_bounds_check = 0;
2455 cap_ppc_safe_indirect_branch = 0;
2456
2457 ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2458 if (!ret) {
2459 return;
2460 }
2461 ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2462 if (ret < 0) {
2463 return;
2464 }
8fea7044
SJS
2465
2466 cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2467 cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2468 cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
8ff43ee4
SJS
2469 cap_ppc_count_cache_flush_assist =
2470 parse_cap_ppc_count_cache_flush_assist(c);
8acc2ae5
SJS
2471}
2472
2473int kvmppc_get_cap_safe_cache(void)
2474{
2475 return cap_ppc_safe_cache;
2476}
2477
2478int kvmppc_get_cap_safe_bounds_check(void)
2479{
2480 return cap_ppc_safe_bounds_check;
2481}
2482
2483int kvmppc_get_cap_safe_indirect_branch(void)
2484{
2485 return cap_ppc_safe_indirect_branch;
2486}
2487
8ff43ee4
SJS
2488int kvmppc_get_cap_count_cache_flush_assist(void)
2489{
2490 return cap_ppc_count_cache_flush_assist;
2491}
2492
b9a477b7
SJS
2493bool kvmppc_has_cap_nested_kvm_hv(void)
2494{
2495 return !!cap_ppc_nested_kvm_hv;
2496}
2497
2498int kvmppc_set_cap_nested_kvm_hv(int enable)
2499{
2500 return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2501}
2502
9ded780c
AK
2503bool kvmppc_has_cap_spapr_vfio(void)
2504{
2505 return cap_spapr_vfio;
2506}
2507
7d050527
SJS
2508int kvmppc_get_cap_large_decr(void)
2509{
2510 return cap_large_decr;
2511}
2512
2513int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2514{
2515 CPUState *cs = CPU(cpu);
2516 uint64_t lpcr;
2517
2518 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2519 /* Do we need to modify the LPCR? */
2520 if (!!(lpcr & LPCR_LD) != !!enable) {
2521 if (enable) {
2522 lpcr |= LPCR_LD;
2523 } else {
2524 lpcr &= ~LPCR_LD;
2525 }
2526 kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2527 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2528
2529 if (!!(lpcr & LPCR_LD) != !!enable) {
2530 return -1;
2531 }
2532 }
2533
2534 return 0;
2535}
2536
52b2519c
TH
2537PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2538{
2539 uint32_t host_pvr = mfpvr();
2540 PowerPCCPUClass *pvr_pcc;
2541
2542 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2543 if (pvr_pcc == NULL) {
2544 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2545 }
2546
2547 return pvr_pcc;
2548}
2549
2e9c10eb 2550static int kvm_ppc_register_host_cpu_type(MachineState *ms)
5ba4576b
AF
2551{
2552 TypeInfo type_info = {
2553 .name = TYPE_HOST_POWERPC_CPU,
5ba4576b
AF
2554 .class_init = kvmppc_host_cpu_class_init,
2555 };
2e9c10eb 2556 MachineClass *mc = MACHINE_GET_CLASS(ms);
5ba4576b 2557 PowerPCCPUClass *pvr_pcc;
92e926e1 2558 ObjectClass *oc;
5b79b1ca 2559 DeviceClass *dc;
715d4b96 2560 int i;
5ba4576b 2561
52b2519c 2562 pvr_pcc = kvm_ppc_get_host_cpu_class();
5ba4576b
AF
2563 if (pvr_pcc == NULL) {
2564 return -1;
2565 }
2566 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2567 type_register(&type_info);
2e9c10eb
IM
2568 if (object_dynamic_cast(OBJECT(ms), TYPE_SPAPR_MACHINE)) {
2569 /* override TCG default cpu type with 'host' cpu model */
2570 mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2571 }
5b79b1ca 2572
92e926e1
GK
2573 oc = object_class_by_name(type_info.name);
2574 g_assert(oc);
2575
715d4b96
TH
2576 /*
2577 * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2578 * we want "POWER8" to be a "family" alias that points to the current
2579 * host CPU type, too)
2580 */
2581 dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2582 for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
c5354f54 2583 if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
715d4b96
TH
2584 char *suffix;
2585
2586 ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
c9137065 2587 suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
715d4b96
TH
2588 if (suffix) {
2589 *suffix = 0;
2590 }
715d4b96
TH
2591 break;
2592 }
2593 }
2594
5ba4576b
AF
2595 return 0;
2596}
2597
feaa64c4
DG
2598int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2599{
2600 struct kvm_rtas_token_args args = {
2601 .token = token,
2602 };
2603
2604 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2605 return -ENOENT;
2606 }
2607
2608 strncpy(args.name, function, sizeof(args.name));
2609
2610 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2611}
12b1143b 2612
14b0d748 2613int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
e68cb8b4
AK
2614{
2615 struct kvm_get_htab_fd s = {
2616 .flags = write ? KVM_GET_HTAB_WRITE : 0,
14b0d748 2617 .start_index = index,
e68cb8b4 2618 };
82be8e73 2619 int ret;
e68cb8b4
AK
2620
2621 if (!cap_htab_fd) {
14b0d748
GK
2622 error_setg(errp, "KVM version doesn't support %s the HPT",
2623 write ? "writing" : "reading");
82be8e73
GK
2624 return -ENOTSUP;
2625 }
2626
2627 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2628 if (ret < 0) {
14b0d748
GK
2629 error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2630 write ? "writing" : "reading", write ? "to" : "from",
2631 strerror(errno));
82be8e73 2632 return -errno;
e68cb8b4
AK
2633 }
2634
82be8e73 2635 return ret;
e68cb8b4
AK
2636}
2637
2638int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2639{
bc72ad67 2640 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
e68cb8b4
AK
2641 uint8_t buf[bufsize];
2642 ssize_t rc;
2643
2644 do {
2645 rc = read(fd, buf, bufsize);
2646 if (rc < 0) {
2647 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2648 strerror(errno));
2649 return rc;
2650 } else if (rc) {
e094c4c1
CLG
2651 uint8_t *buffer = buf;
2652 ssize_t n = rc;
2653 while (n) {
2654 struct kvm_get_htab_header *head =
2655 (struct kvm_get_htab_header *) buffer;
2656 size_t chunksize = sizeof(*head) +
2657 HASH_PTE_SIZE_64 * head->n_valid;
2658
2659 qemu_put_be32(f, head->index);
2660 qemu_put_be16(f, head->n_valid);
2661 qemu_put_be16(f, head->n_invalid);
2662 qemu_put_buffer(f, (void *)(head + 1),
2663 HASH_PTE_SIZE_64 * head->n_valid);
2664
2665 buffer += chunksize;
2666 n -= chunksize;
2667 }
e68cb8b4
AK
2668 }
2669 } while ((rc != 0)
2670 && ((max_ns < 0)
bc72ad67 2671 || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
e68cb8b4
AK
2672
2673 return (rc == 0) ? 1 : 0;
2674}
2675
2676int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2677 uint16_t n_valid, uint16_t n_invalid)
2678{
2679 struct kvm_get_htab_header *buf;
2680 size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64;
2681 ssize_t rc;
2682
2683 buf = alloca(chunksize);
e68cb8b4
AK
2684 buf->index = index;
2685 buf->n_valid = n_valid;
2686 buf->n_invalid = n_invalid;
2687
2688 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid);
2689
2690 rc = write(fd, buf, chunksize);
2691 if (rc < 0) {
2692 fprintf(stderr, "Error writing KVM hash table: %s\n",
2693 strerror(errno));
2694 return rc;
2695 }
2696 if (rc != chunksize) {
2697 /* We should never get a short write on a single chunk */
2698 fprintf(stderr, "Short write, restoring KVM hash table\n");
2699 return -1;
2700 }
2701 return 0;
2702}
2703
20d695a9 2704bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
4513d923
GN
2705{
2706 return true;
2707}
a1b87fe0 2708
82169660
SW
2709void kvm_arch_init_irq_routing(KVMState *s)
2710{
2711}
c65f9a07 2712
1ad9f0a4 2713void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
7c43bca0 2714{
1ad9f0a4
DG
2715 int fd, rc;
2716 int i;
7c43bca0 2717
14b0d748 2718 fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
7c43bca0 2719
1ad9f0a4
DG
2720 i = 0;
2721 while (i < n) {
2722 struct kvm_get_htab_header *hdr;
2723 int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2724 char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
7c43bca0 2725
1ad9f0a4
DG
2726 rc = read(fd, buf, sizeof(buf));
2727 if (rc < 0) {
2728 hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2729 }
7c43bca0 2730
1ad9f0a4
DG
2731 hdr = (struct kvm_get_htab_header *)buf;
2732 while ((i < n) && ((char *)hdr < (buf + rc))) {
a36593e1 2733 int invalid = hdr->n_invalid, valid = hdr->n_valid;
7c43bca0 2734
1ad9f0a4
DG
2735 if (hdr->index != (ptex + i)) {
2736 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2737 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2738 }
2739
a36593e1
AK
2740 if (n - i < valid) {
2741 valid = n - i;
2742 }
2743 memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2744 i += valid;
7c43bca0 2745
1ad9f0a4
DG
2746 if ((n - i) < invalid) {
2747 invalid = n - i;
2748 }
2749 memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
a36593e1 2750 i += invalid;
1ad9f0a4
DG
2751
2752 hdr = (struct kvm_get_htab_header *)
2753 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2754 }
2755 }
2756
2757 close(fd);
7c43bca0 2758}
c1385933 2759
1ad9f0a4 2760void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
c1385933 2761{
1ad9f0a4 2762 int fd, rc;
1ad9f0a4
DG
2763 struct {
2764 struct kvm_get_htab_header hdr;
2765 uint64_t pte0;
2766 uint64_t pte1;
2767 } buf;
c1385933 2768
14b0d748 2769 fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
c1385933 2770
1ad9f0a4
DG
2771 buf.hdr.n_valid = 1;
2772 buf.hdr.n_invalid = 0;
2773 buf.hdr.index = ptex;
2774 buf.pte0 = cpu_to_be64(pte0);
2775 buf.pte1 = cpu_to_be64(pte1);
c1385933 2776
1ad9f0a4
DG
2777 rc = write(fd, &buf, sizeof(buf));
2778 if (rc != sizeof(buf)) {
2779 hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2780 }
2781 close(fd);
c1385933 2782}
9e03a040
FB
2783
2784int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 2785 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040
FB
2786{
2787 return 0;
2788}
1850b6b7 2789
38d87493
PX
2790int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2791 int vector, PCIDevice *dev)
2792{
2793 return 0;
2794}
2795
2796int kvm_arch_release_virq_post(int virq)
2797{
2798 return 0;
2799}
2800
1850b6b7
EA
2801int kvm_arch_msi_data_to_gsi(uint32_t data)
2802{
2803 return data & 0xffff;
2804}
4d9392be
TH
2805
2806int kvmppc_enable_hwrng(void)
2807{
2808 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2809 return -1;
2810 }
2811
2812 return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2813}
30f4b05b
DG
2814
2815void kvmppc_check_papr_resize_hpt(Error **errp)
2816{
2817 if (!kvm_enabled()) {
b55d295e
DG
2818 return; /* No KVM, we're good */
2819 }
2820
2821 if (cap_resize_hpt) {
2822 return; /* Kernel has explicit support, we're good */
30f4b05b
DG
2823 }
2824
b55d295e
DG
2825 /* Otherwise fallback on looking for PR KVM */
2826 if (kvmppc_is_pr(kvm_state)) {
2827 return;
2828 }
30f4b05b
DG
2829
2830 error_setg(errp,
2831 "Hash page table resizing not available with this KVM version");
2832}
b55d295e
DG
2833
2834int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2835{
2836 CPUState *cs = CPU(cpu);
2837 struct kvm_ppc_resize_hpt rhpt = {
2838 .flags = flags,
2839 .shift = shift,
2840 };
2841
2842 if (!cap_resize_hpt) {
2843 return -ENOSYS;
2844 }
2845
2846 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2847}
2848
2849int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2850{
2851 CPUState *cs = CPU(cpu);
2852 struct kvm_ppc_resize_hpt rhpt = {
2853 .flags = flags,
2854 .shift = shift,
2855 };
2856
2857 if (!cap_resize_hpt) {
2858 return -ENOSYS;
2859 }
2860
2861 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2862}
2863
c363a37a
DHB
2864/*
2865 * This is a helper function to detect a post migration scenario
2866 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2867 * the guest kernel can't handle a PVR value other than the actual host
2868 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2869 *
2870 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2871 * (so, we're HV), return true. The workaround itself is done in
2872 * cpu_post_load.
2873 *
2874 * The order here is important: we'll only check for KVM PR as a
2875 * fallback if the guest kernel can't handle the situation itself.
2876 * We need to avoid as much as possible querying the running KVM type
2877 * in QEMU level.
2878 */
2879bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2880{
2881 CPUState *cs = CPU(cpu);
2882
2883 if (!kvm_enabled()) {
2884 return false;
2885 }
2886
2887 if (cap_ppc_pvr_compat) {
2888 return false;
2889 }
2890
2891 return !kvmppc_is_pr(cs->kvm_state);
2892}
a84f7179
ND
2893
2894void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2895{
2896 CPUState *cs = CPU(cpu);
2897
2898 if (kvm_enabled()) {
2899 kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2900 }
2901}