]> git.proxmox.com Git - mirror_qemu.git/blame - target/riscv/cpu_helper.c
target/riscv/cpu.c: fix veyron-v1 CPU properties
[mirror_qemu.git] / target / riscv / cpu_helper.c
CommitLineData
0c3e702a 1/*
df354dd4 2 * RISC-V CPU helpers for qemu.
0c3e702a
MC
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
21#include "qemu/log.h"
7ec5d303 22#include "qemu/main-loop.h"
0c3e702a 23#include "cpu.h"
c8f8a995 24#include "internals.h"
892320fa 25#include "pmu.h"
0c3e702a 26#include "exec/exec-all.h"
8e2aa21b 27#include "instmap.h"
dcb32f1d 28#include "tcg/tcg-op.h"
929f0a7f 29#include "trace.h"
6b5fe137 30#include "semihosting/common-semi.h"
2c9d7471 31#include "sysemu/cpu-timers.h"
892320fa 32#include "cpu_bits.h"
2c9d7471 33#include "debug.h"
70f168f8 34#include "tcg/oversized-guest.h"
0c3e702a
MC
35
36int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
37{
38#ifdef CONFIG_USER_ONLY
39 return 0;
40#else
696bacde
RH
41 bool virt = env->virt_enabled;
42 int mode = env->priv;
c8f8a995
FW
43
44 /* All priv -> mmu_idx mapping are here */
696bacde 45 if (!ifetch) {
eaecd473
RH
46 uint64_t status = env->mstatus;
47
48 if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) {
696bacde 49 mode = get_field(env->mstatus, MSTATUS_MPP);
869d76f2
WL
50 virt = get_field(env->mstatus, MSTATUS_MPV) &&
51 (mode != PRV_M);
eaecd473
RH
52 if (virt) {
53 status = env->vsstatus;
54 }
696bacde 55 }
eaecd473 56 if (mode == PRV_S && get_field(status, MSTATUS_SUM)) {
696bacde
RH
57 mode = MMUIdx_S_SUM;
58 }
c8f8a995 59 }
696bacde
RH
60
61 return mode | (virt ? MMU_2STAGE_BIT : 0);
0c3e702a
MC
62#endif
63}
64
bb5de525
AJ
65void cpu_get_tb_cpu_state(CPURISCVState *env, vaddr *pc,
66 uint64_t *cs_base, uint32_t *pflags)
53677acf 67{
b4a99d40
FC
68 CPUState *cs = env_cpu(env);
69 RISCVCPU *cpu = RISCV_CPU(cs);
25f3ddff 70 RISCVExtStatus fs, vs;
53677acf
RH
71 uint32_t flags = 0;
72
8c796f1a 73 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
53677acf
RH
74 *cs_base = 0;
75
3f4a5a53 76 if (cpu->cfg.ext_zve32f) {
a689a82b
FC
77 /*
78 * If env->vl equals to VLMAX, we can use generic vector operation
79 * expanders (GVEC) to accerlate the vector operations.
80 * However, as LMUL could be a fractional number. The maximum
81 * vector size can be operated might be less than 8 bytes,
82 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
83 * only when maxsz >= 8 bytes.
84 */
718942ae 85 uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
a689a82b
FC
86 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
87 uint32_t maxsz = vlmax << sew;
88 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
89 (maxsz >= 8);
d96a271a 90 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
a689a82b 91 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
53677acf 92 flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
c45eff30 93 FIELD_EX64(env->vtype, VTYPE, VLMUL));
53677acf 94 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
f1eed927 95 flags = FIELD_DP32(flags, TB_FLAGS, VTA,
c45eff30 96 FIELD_EX64(env->vtype, VTYPE, VTA));
355d5584 97 flags = FIELD_DP32(flags, TB_FLAGS, VMA,
c45eff30 98 FIELD_EX64(env->vtype, VTYPE, VMA));
4acaa133 99 flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
53677acf
RH
100 } else {
101 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
102 }
103
104#ifdef CONFIG_USER_ONLY
25f3ddff
RH
105 fs = EXT_STATUS_DIRTY;
106 vs = EXT_STATUS_DIRTY;
53677acf 107#else
47debc72
FW
108 flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
109
53677acf 110 flags |= cpu_mmu_index(env, 0);
25f3ddff
RH
111 fs = get_field(env->mstatus, MSTATUS_FS);
112 vs = get_field(env->mstatus, MSTATUS_VS);
61b4b69d 113
0f58cbbe
RH
114 if (env->virt_enabled) {
115 flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
116 /*
117 * Merge DISABLED and !DIRTY states using MIN.
118 * We will set both fields when dirtying.
119 */
120 fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
121 vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
53677acf 122 }
0f58cbbe 123
e0b343b5
MC
124 /* With Zfinx, floating point is enabled/disabled by Smstateen. */
125 if (!riscv_has_ext(env, RVF)) {
126 fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE)
127 ? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED;
128 }
129
cdfb2905 130 if (cpu->cfg.debug && !icount_enabled()) {
577f0286 131 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
2c9d7471 132 }
53677acf
RH
133#endif
134
25f3ddff
RH
135 flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
136 flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
440544e1 137 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
b83e4f1d 138 if (env->cur_pmmask != 0) {
4208dc7e
LZ
139 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
140 }
141 if (env->cur_pmbase != 0) {
142 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
143 }
92371bd9 144
53677acf
RH
145 *pflags = flags;
146}
147
40bfa5f6
LZ
148void riscv_cpu_update_mask(CPURISCVState *env)
149{
b83e4f1d 150 target_ulong mask = 0, base = 0;
40bfa5f6
LZ
151 /*
152 * TODO: Current RVJ spec does not specify
153 * how the extension interacts with XLEN.
154 */
155#ifndef CONFIG_USER_ONLY
156 if (riscv_has_ext(env, RVJ)) {
157 switch (env->priv) {
158 case PRV_M:
159 if (env->mmte & M_PM_ENABLE) {
160 mask = env->mpmmask;
161 base = env->mpmbase;
162 }
163 break;
164 case PRV_S:
165 if (env->mmte & S_PM_ENABLE) {
166 mask = env->spmmask;
167 base = env->spmbase;
168 }
169 break;
170 case PRV_U:
171 if (env->mmte & U_PM_ENABLE) {
172 mask = env->upmmask;
173 base = env->upmbase;
174 }
175 break;
176 default:
177 g_assert_not_reached();
178 }
179 }
180#endif
181 if (env->xl == MXL_RV32) {
182 env->cur_pmmask = mask & UINT32_MAX;
183 env->cur_pmbase = base & UINT32_MAX;
184 } else {
185 env->cur_pmmask = mask;
186 env->cur_pmbase = base;
187 }
188}
189
0c3e702a 190#ifndef CONFIG_USER_ONLY
43dc93af
AP
191
192/*
193 * The HS-mode is allowed to configure priority only for the
194 * following VS-mode local interrupts:
195 *
196 * 0 (Reserved interrupt, reads as zero)
197 * 1 Supervisor software interrupt
198 * 4 (Reserved interrupt, reads as zero)
199 * 5 Supervisor timer interrupt
200 * 8 (Reserved interrupt, reads as zero)
201 * 13 (Reserved interrupt)
202 * 14 "
203 * 15 "
204 * 16 "
43577499
AP
205 * 17 "
206 * 18 "
207 * 19 "
208 * 20 "
209 * 21 "
43dc93af 210 * 22 "
43577499 211 * 23 "
43dc93af
AP
212 */
213
214static const int hviprio_index2irq[] = {
43577499 215 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
43dc93af
AP
216static const int hviprio_index2rdzero[] = {
217 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
218
219int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
0c3e702a 220{
43dc93af
AP
221 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
222 return -EINVAL;
223 }
3ef10a09 224
43dc93af
AP
225 if (out_irq) {
226 *out_irq = hviprio_index2irq[index];
227 }
3ef10a09 228
43dc93af
AP
229 if (out_rdzero) {
230 *out_rdzero = hviprio_index2rdzero[index];
231 }
cd032fe7 232
43dc93af
AP
233 return 0;
234}
3ef10a09 235
43dc93af
AP
236/*
237 * Default priorities of local interrupts are defined in the
238 * RISC-V Advanced Interrupt Architecture specification.
239 *
240 * ----------------------------------------------------------------
241 * Default |
242 * Priority | Major Interrupt Numbers
243 * ----------------------------------------------------------------
43577499
AP
244 * Highest | 47, 23, 46, 45, 22, 44,
245 * | 43, 21, 42, 41, 20, 40
43dc93af
AP
246 * |
247 * | 11 (0b), 3 (03), 7 (07)
248 * | 9 (09), 1 (01), 5 (05)
249 * | 12 (0c)
250 * | 10 (0a), 2 (02), 6 (06)
251 * |
43577499
AP
252 * | 39, 19, 38, 37, 18, 36,
253 * Lowest | 35, 17, 34, 33, 16, 32
43dc93af
AP
254 * ----------------------------------------------------------------
255 */
256static const uint8_t default_iprio[64] = {
c45eff30
WL
257 /* Custom interrupts 48 to 63 */
258 [63] = IPRIO_MMAXIPRIO,
259 [62] = IPRIO_MMAXIPRIO,
260 [61] = IPRIO_MMAXIPRIO,
261 [60] = IPRIO_MMAXIPRIO,
262 [59] = IPRIO_MMAXIPRIO,
263 [58] = IPRIO_MMAXIPRIO,
264 [57] = IPRIO_MMAXIPRIO,
265 [56] = IPRIO_MMAXIPRIO,
266 [55] = IPRIO_MMAXIPRIO,
267 [54] = IPRIO_MMAXIPRIO,
268 [53] = IPRIO_MMAXIPRIO,
269 [52] = IPRIO_MMAXIPRIO,
270 [51] = IPRIO_MMAXIPRIO,
271 [50] = IPRIO_MMAXIPRIO,
272 [49] = IPRIO_MMAXIPRIO,
273 [48] = IPRIO_MMAXIPRIO,
274
275 /* Custom interrupts 24 to 31 */
276 [31] = IPRIO_MMAXIPRIO,
277 [30] = IPRIO_MMAXIPRIO,
278 [29] = IPRIO_MMAXIPRIO,
279 [28] = IPRIO_MMAXIPRIO,
280 [27] = IPRIO_MMAXIPRIO,
281 [26] = IPRIO_MMAXIPRIO,
282 [25] = IPRIO_MMAXIPRIO,
283 [24] = IPRIO_MMAXIPRIO,
284
285 [47] = IPRIO_DEFAULT_UPPER,
286 [23] = IPRIO_DEFAULT_UPPER + 1,
287 [46] = IPRIO_DEFAULT_UPPER + 2,
288 [45] = IPRIO_DEFAULT_UPPER + 3,
289 [22] = IPRIO_DEFAULT_UPPER + 4,
290 [44] = IPRIO_DEFAULT_UPPER + 5,
291
292 [43] = IPRIO_DEFAULT_UPPER + 6,
293 [21] = IPRIO_DEFAULT_UPPER + 7,
294 [42] = IPRIO_DEFAULT_UPPER + 8,
295 [41] = IPRIO_DEFAULT_UPPER + 9,
296 [20] = IPRIO_DEFAULT_UPPER + 10,
297 [40] = IPRIO_DEFAULT_UPPER + 11,
298
299 [11] = IPRIO_DEFAULT_M,
300 [3] = IPRIO_DEFAULT_M + 1,
301 [7] = IPRIO_DEFAULT_M + 2,
302
303 [9] = IPRIO_DEFAULT_S,
304 [1] = IPRIO_DEFAULT_S + 1,
305 [5] = IPRIO_DEFAULT_S + 2,
306
307 [12] = IPRIO_DEFAULT_SGEXT,
308
309 [10] = IPRIO_DEFAULT_VS,
310 [2] = IPRIO_DEFAULT_VS + 1,
311 [6] = IPRIO_DEFAULT_VS + 2,
312
313 [39] = IPRIO_DEFAULT_LOWER,
314 [19] = IPRIO_DEFAULT_LOWER + 1,
315 [38] = IPRIO_DEFAULT_LOWER + 2,
316 [37] = IPRIO_DEFAULT_LOWER + 3,
317 [18] = IPRIO_DEFAULT_LOWER + 4,
318 [36] = IPRIO_DEFAULT_LOWER + 5,
319
320 [35] = IPRIO_DEFAULT_LOWER + 6,
321 [17] = IPRIO_DEFAULT_LOWER + 7,
322 [34] = IPRIO_DEFAULT_LOWER + 8,
323 [33] = IPRIO_DEFAULT_LOWER + 9,
324 [16] = IPRIO_DEFAULT_LOWER + 10,
325 [32] = IPRIO_DEFAULT_LOWER + 11,
43dc93af
AP
326};
327
328uint8_t riscv_cpu_default_priority(int irq)
329{
330 if (irq < 0 || irq > 63) {
331 return IPRIO_MMAXIPRIO;
332 }
333
334 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
335};
336
337static int riscv_cpu_pending_to_irq(CPURISCVState *env,
338 int extirq, unsigned int extirq_def_prio,
339 uint64_t pending, uint8_t *iprio)
340{
341 int irq, best_irq = RISCV_EXCP_NONE;
342 unsigned int prio, best_prio = UINT_MAX;
343
344 if (!pending) {
345 return RISCV_EXCP_NONE;
346 }
347
348 irq = ctz64(pending);
9c33e08b
WL
349 if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
350 riscv_cpu_cfg(env)->ext_ssaia)) {
43dc93af
AP
351 return irq;
352 }
353
354 pending = pending >> irq;
355 while (pending) {
356 prio = iprio[irq];
357 if (!prio) {
358 if (irq == extirq) {
359 prio = extirq_def_prio;
360 } else {
361 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
362 1 : IPRIO_MMAXIPRIO;
363 }
364 }
365 if ((pending & 0x1) && (prio <= best_prio)) {
366 best_irq = irq;
367 best_prio = prio;
368 }
369 irq++;
370 pending = pending >> 1;
371 }
372
373 return best_irq;
374}
375
8f42415f 376uint64_t riscv_cpu_all_pending(CPURISCVState *env)
43dc93af
AP
377{
378 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
379 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
3ec0fe18 380 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
43dc93af 381
3ec0fe18 382 return (env->mip | vsgein | vstip) & env->mie;
43dc93af
AP
383}
384
385int riscv_cpu_mirq_pending(CPURISCVState *env)
386{
387 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
388 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
389
390 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
391 irqs, env->miprio);
392}
393
394int riscv_cpu_sirq_pending(CPURISCVState *env)
395{
396 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
397 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
398
399 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
400 irqs, env->siprio);
401}
402
403int riscv_cpu_vsirq_pending(CPURISCVState *env)
404{
405 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
406 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
407
408 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
409 irqs >> 1, env->hviprio);
410}
411
412static int riscv_cpu_local_irq_pending(CPURISCVState *env)
413{
414 int virq;
415 uint64_t irqs, pending, mie, hsie, vsie;
416
417 /* Determine interrupt enable state of all privilege modes */
38256529 418 if (env->virt_enabled) {
43dc93af
AP
419 mie = 1;
420 hsie = 1;
421 vsie = (env->priv < PRV_S) ||
422 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
0c3e702a 423 } else {
43dc93af
AP
424 mie = (env->priv < PRV_M) ||
425 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
426 hsie = (env->priv < PRV_S) ||
427 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
428 vsie = 0;
429 }
430
431 /* Determine all pending interrupts */
432 pending = riscv_cpu_all_pending(env);
433
434 /* Check M-mode interrupts */
435 irqs = pending & ~env->mideleg & -mie;
436 if (irqs) {
437 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
438 irqs, env->miprio);
439 }
440
441 /* Check HS-mode interrupts */
442 irqs = pending & env->mideleg & ~env->hideleg & -hsie;
443 if (irqs) {
444 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
445 irqs, env->siprio);
0c3e702a 446 }
43dc93af
AP
447
448 /* Check VS-mode interrupts */
449 irqs = pending & env->mideleg & env->hideleg & -vsie;
450 if (irqs) {
451 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
452 irqs >> 1, env->hviprio);
453 return (virq <= 0) ? virq : virq + 1;
454 }
455
456 /* Indicate no pending interrupt */
457 return RISCV_EXCP_NONE;
0c3e702a 458}
0c3e702a
MC
459
460bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
461{
0c3e702a
MC
462 if (interrupt_request & CPU_INTERRUPT_HARD) {
463 RISCVCPU *cpu = RISCV_CPU(cs);
464 CPURISCVState *env = &cpu->env;
efbdbc26 465 int interruptno = riscv_cpu_local_irq_pending(env);
0c3e702a
MC
466 if (interruptno >= 0) {
467 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
468 riscv_cpu_do_interrupt(cs);
469 return true;
470 }
471 }
0c3e702a
MC
472 return false;
473}
474
b345b480
AF
475/* Return true is floating point support is currently enabled */
476bool riscv_cpu_fp_enabled(CPURISCVState *env)
477{
478 if (env->mstatus & MSTATUS_FS) {
38256529 479 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
29409c1d
AF
480 return false;
481 }
b345b480
AF
482 return true;
483 }
484
485 return false;
486}
487
61b4b69d
LZ
488/* Return true is vector support is currently enabled */
489bool riscv_cpu_vector_enabled(CPURISCVState *env)
490{
491 if (env->mstatus & MSTATUS_VS) {
38256529 492 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
61b4b69d
LZ
493 return false;
494 }
495 return true;
496 }
497
498 return false;
499}
500
66e594f2
AF
501void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
502{
c163b3ba 503 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
284d697c 504 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
61b4b69d 505 MSTATUS64_UXL | MSTATUS_VS;
c163b3ba
WL
506
507 if (riscv_has_ext(env, RVF)) {
508 mstatus_mask |= MSTATUS_FS;
509 }
38256529 510 bool current_virt = env->virt_enabled;
66e594f2
AF
511
512 g_assert(riscv_has_ext(env, RVH));
513
66e594f2
AF
514 if (current_virt) {
515 /* Current V=1 and we are about to change to V=0 */
516 env->vsstatus = env->mstatus & mstatus_mask;
517 env->mstatus &= ~mstatus_mask;
518 env->mstatus |= env->mstatus_hs;
519
520 env->vstvec = env->stvec;
521 env->stvec = env->stvec_hs;
522
523 env->vsscratch = env->sscratch;
524 env->sscratch = env->sscratch_hs;
525
526 env->vsepc = env->sepc;
527 env->sepc = env->sepc_hs;
528
529 env->vscause = env->scause;
530 env->scause = env->scause_hs;
531
ac12b601
AP
532 env->vstval = env->stval;
533 env->stval = env->stval_hs;
66e594f2
AF
534
535 env->vsatp = env->satp;
536 env->satp = env->satp_hs;
537 } else {
538 /* Current V=0 and we are about to change to V=1 */
539 env->mstatus_hs = env->mstatus & mstatus_mask;
540 env->mstatus &= ~mstatus_mask;
541 env->mstatus |= env->vsstatus;
542
543 env->stvec_hs = env->stvec;
544 env->stvec = env->vstvec;
545
546 env->sscratch_hs = env->sscratch;
547 env->sscratch = env->vsscratch;
548
549 env->sepc_hs = env->sepc;
550 env->sepc = env->vsepc;
551
552 env->scause_hs = env->scause;
553 env->scause = env->vscause;
554
ac12b601
AP
555 env->stval_hs = env->stval;
556 env->stval = env->vstval;
66e594f2
AF
557
558 env->satp_hs = env->satp;
559 env->satp = env->vsatp;
560 }
561}
562
cd032fe7
AP
563target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
564{
565 if (!riscv_has_ext(env, RVH)) {
566 return 0;
567 }
568
569 return env->geilen;
570}
571
572void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
573{
574 if (!riscv_has_ext(env, RVH)) {
575 return;
576 }
577
578 if (geilen > (TARGET_LONG_BITS - 1)) {
579 return;
580 }
581
582 env->geilen = geilen;
583}
584
c43732f5 585/* This function can only be called to set virt when RVH is enabled */
ef6bb7b6
AF
586void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
587{
eccc5a12 588 /* Flush the TLB on all virt mode changes. */
b3c5077b 589 if (env->virt_enabled != enable) {
eccc5a12
AF
590 tlb_flush(env_cpu(env));
591 }
592
b3c5077b 593 env->virt_enabled = enable;
02d9565b
AP
594
595 if (enable) {
596 /*
597 * The guest external interrupts from an interrupt controller are
598 * delivered only when the Guest/VM is running (i.e. V=1). This means
599 * any guest external interrupt which is triggered while the Guest/VM
600 * is not running (i.e. V=0) will be missed on QEMU resulting in guest
601 * with sluggish response to serial console input and other I/O events.
602 *
603 * To solve this, we check and inject interrupt after setting V=1.
604 */
bbb9fc25 605 riscv_cpu_update_mip(env, 0, 0);
02d9565b 606 }
ef6bb7b6
AF
607}
608
d028ac75 609int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
e3e7039c
MC
610{
611 CPURISCVState *env = &cpu->env;
612 if (env->miclaim & interrupts) {
613 return -1;
614 } else {
615 env->miclaim |= interrupts;
616 return 0;
617 }
618}
619
bbb9fc25
WL
620uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
621 uint64_t value)
df354dd4 622{
bbb9fc25 623 CPUState *cs = env_cpu(env);
3ec0fe18 624 uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
7ec5d303 625
38256529 626 if (env->virt_enabled) {
cd032fe7
AP
627 gein = get_field(env->hstatus, HSTATUS_VGEIN);
628 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
629 }
630
3ec0fe18
AP
631 vstip = env->vstime_irq ? MIP_VSTIP : 0;
632
b3eb5b86 633 QEMU_IOTHREAD_LOCK_GUARD();
df354dd4 634
7ec5d303 635 env->mip = (env->mip & ~mask) | (value & mask);
df354dd4 636
3ec0fe18 637 if (env->mip | vsgein | vstip) {
7ec5d303
AF
638 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
639 } else {
640 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
641 }
0a01f2ee 642
df354dd4
MC
643 return old;
644}
645
e2f01f3c
FC
646void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
647 void *arg)
c6957248
AP
648{
649 env->rdtime_fn = fn;
a47ef6e9 650 env->rdtime_fn_arg = arg;
c6957248
AP
651}
652
69077dd6
AP
653void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
654 int (*rmw_fn)(void *arg,
655 target_ulong reg,
656 target_ulong *val,
657 target_ulong new_val,
658 target_ulong write_mask),
659 void *rmw_fn_arg)
660{
661 if (priv <= PRV_M) {
662 env->aia_ireg_rmw_fn[priv] = rmw_fn;
663 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
664 }
665}
666
fb738839 667void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
df354dd4 668{
0c98ccef
WL
669 g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
670
5a4ae64c
LZ
671 if (icount_enabled() && newpriv != env->priv) {
672 riscv_itrigger_update_priv(env);
673 }
df354dd4
MC
674 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
675 env->priv = newpriv;
440544e1 676 env->xl = cpu_recompute_xl(env);
40bfa5f6 677 riscv_cpu_update_mask(env);
c13b169f
JS
678
679 /*
680 * Clear the load reservation - otherwise a reservation placed in one
681 * context/process can be used by another, resulting in an SC succeeding
682 * incorrectly. Version 2.2 of the ISA specification explicitly requires
683 * this behaviour, while later revisions say that the kernel "should" use
684 * an SC instruction to force the yielding of a load reservation on a
685 * preemptive context switch. As a result, do both.
686 */
687 env->load_res = -1;
df354dd4
MC
688}
689
b297129a
JS
690/*
691 * get_physical_address_pmp - check PMP permission for this physical address
692 *
693 * Match the PMP region and check permission for this physical address and it's
694 * TLB page. Returns 0 if the permission checking was successful
695 *
696 * @env: CPURISCVState
697 * @prot: The returned protection attributes
b297129a
JS
698 * @addr: The physical address to be checked permission
699 * @access_type: The type of MMU access
700 * @mode: Indicates current privilege level.
701 */
bfc7ee12 702static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr,
b297129a
JS
703 int size, MMUAccessType access_type,
704 int mode)
705{
706 pmp_priv_t pmp_priv;
e9c39713 707 bool pmp_has_privs;
b297129a 708
3fe40ef5 709 if (!riscv_cpu_cfg(env)->pmp) {
b297129a
JS
710 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
711 return TRANSLATE_SUCCESS;
712 }
713
e9c39713
WL
714 pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type,
715 &pmp_priv, mode);
716 if (!pmp_has_privs) {
b297129a
JS
717 *prot = 0;
718 return TRANSLATE_PMP_FAIL;
719 }
720
721 *prot = pmp_priv_to_page_prot(pmp_priv);
b297129a
JS
722
723 return TRANSLATE_SUCCESS;
724}
725
3b57254d
WL
726/*
727 * get_physical_address - get the physical address for this virtual address
0c3e702a
MC
728 *
729 * Do a page table walk to obtain the physical address corresponding to a
730 * virtual address. Returns 0 if the translation was successful
731 *
732 * Adapted from Spike's mmu_t::translate and mmu_t::walk
733 *
1448689c
AF
734 * @env: CPURISCVState
735 * @physical: This will be set to the calculated physical address
736 * @prot: The returned protection attributes
77dff650 737 * @addr: The virtual address or guest physical address to be translated
33a9a57d
YJ
738 * @fault_pte_addr: If not NULL, this will be set to fault pte address
739 * when a error occurs on pte address translation.
740 * This will already be shifted to match htval.
1448689c
AF
741 * @access_type: The type of MMU access
742 * @mmu_idx: Indicates current privilege level
743 * @first_stage: Are we in first stage translation?
744 * Second stage is used for hypervisor guest translation
36a18664 745 * @two_stage: Are we going to perform two stage translation
11c27c6d 746 * @is_debug: Is this access from a debugger or the monitor?
0c3e702a
MC
747 */
748static int get_physical_address(CPURISCVState *env, hwaddr *physical,
e1dd1507 749 int *ret_prot, vaddr addr,
33a9a57d 750 target_ulong *fault_pte_addr,
1448689c 751 int access_type, int mmu_idx,
11c27c6d
JF
752 bool first_stage, bool two_stage,
753 bool is_debug)
0c3e702a 754{
3b57254d
WL
755 /*
756 * NOTE: the env->pc value visible here will not be
0c3e702a 757 * correct, but the value visible to the exception handler
3b57254d
WL
758 * (riscv_cpu_do_interrupt) is correct
759 */
aacb578f
PD
760 MemTxResult res;
761 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
340b5805 762 int mode = mmuidx_priv(mmu_idx);
36a18664 763 bool use_background = false;
05e6ca5e 764 hwaddr ppn;
2bacb224
WL
765 int napot_bits = 0;
766 target_ulong napot_mask;
0c3e702a 767
36a18664
AF
768 /*
769 * Check if we should use the background registers for the two
770 * stage translation. We don't need to check if we actually need
771 * two stage translation as that happened before this function
772 * was called. Background registers will be used if the guest has
773 * forced a two stage translation to be on (in HS or M mode).
774 */
38256529 775 if (!env->virt_enabled && two_stage) {
29b3361b
AF
776 use_background = true;
777 }
778
dcf654a3 779 if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
0c3e702a 780 *physical = addr;
e1dd1507 781 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
0c3e702a
MC
782 return TRANSLATE_SUCCESS;
783 }
784
e1dd1507 785 *ret_prot = 0;
0c3e702a 786
ddf78132 787 hwaddr base;
38303e8a 788 int levels, ptidxbits, ptesize, vm, widened;
0c3e702a 789
1a9540d1
AF
790 if (first_stage == true) {
791 if (use_background) {
db23e5d9 792 if (riscv_cpu_mxl(env) == MXL_RV32) {
419ddf00
AF
793 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
794 vm = get_field(env->vsatp, SATP32_MODE);
795 } else {
796 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
797 vm = get_field(env->vsatp, SATP64_MODE);
798 }
36a18664 799 } else {
db23e5d9 800 if (riscv_cpu_mxl(env) == MXL_RV32) {
419ddf00
AF
801 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
802 vm = get_field(env->satp, SATP32_MODE);
803 } else {
804 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
805 vm = get_field(env->satp, SATP64_MODE);
806 }
0c3e702a 807 }
36a18664 808 widened = 0;
1a9540d1 809 } else {
db23e5d9 810 if (riscv_cpu_mxl(env) == MXL_RV32) {
994b6bb2
AF
811 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
812 vm = get_field(env->hgatp, SATP32_MODE);
813 } else {
814 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
815 vm = get_field(env->hgatp, SATP64_MODE);
816 }
1a9540d1
AF
817 widened = 2;
818 }
38303e8a 819
1a9540d1
AF
820 switch (vm) {
821 case VM_1_10_SV32:
822 levels = 2; ptidxbits = 10; ptesize = 4; break;
823 case VM_1_10_SV39:
824 levels = 3; ptidxbits = 9; ptesize = 8; break;
825 case VM_1_10_SV48:
826 levels = 4; ptidxbits = 9; ptesize = 8; break;
827 case VM_1_10_SV57:
828 levels = 5; ptidxbits = 9; ptesize = 8; break;
829 case VM_1_10_MBARE:
830 *physical = addr;
e1dd1507 831 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1a9540d1
AF
832 return TRANSLATE_SUCCESS;
833 default:
834 g_assert_not_reached();
0c3e702a
MC
835 }
836
3109cd98 837 CPUState *cs = env_cpu(env);
36a18664 838 int va_bits = PGSHIFT + levels * ptidxbits + widened;
36a18664 839
7bf14a2f
IR
840 if (first_stage == true) {
841 target_ulong mask, masked_msbs;
36a18664 842
7bf14a2f
IR
843 if (TARGET_LONG_BITS > (va_bits - 1)) {
844 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
845 } else {
846 mask = 0;
847 }
848 masked_msbs = (addr >> (va_bits - 1)) & mask;
849
850 if (masked_msbs != 0 && masked_msbs != mask) {
851 return TRANSLATE_FAIL;
852 }
853 } else {
854 if (vm != VM_1_10_SV32 && addr >> va_bits != 0) {
855 return TRANSLATE_FAIL;
856 }
0c3e702a
MC
857 }
858
8d6a00cd
RH
859 bool pbmte = env->menvcfg & MENVCFG_PBMTE;
860 bool hade = env->menvcfg & MENVCFG_HADE;
861
862 if (first_stage && two_stage && env->virt_enabled) {
863 pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
864 hade = hade && (env->henvcfg & HENVCFG_HADE);
865 }
866
0c3e702a 867 int ptshift = (levels - 1) * ptidxbits;
59688aa0
RH
868 target_ulong pte;
869 hwaddr pte_addr;
0c3e702a
MC
870 int i;
871
872#if !TCG_OVERSIZED_GUEST
873restart:
874#endif
875 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
36a18664
AF
876 target_ulong idx;
877 if (i == 0) {
878 idx = (addr >> (PGSHIFT + ptshift)) &
879 ((1 << (ptidxbits + widened)) - 1);
880 } else {
881 idx = (addr >> (PGSHIFT + ptshift)) &
0c3e702a 882 ((1 << ptidxbits) - 1);
36a18664 883 }
0c3e702a
MC
884
885 /* check that physical address of PTE is legal */
36a18664
AF
886
887 if (two_stage && first_stage) {
38472890 888 int vbase_prot;
36a18664
AF
889 hwaddr vbase;
890
891 /* Do the second stage translation on the base PTE address. */
88914473 892 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
33a9a57d 893 base, NULL, MMU_DATA_LOAD,
a427c836 894 MMUIdx_U, false, true,
11c27c6d 895 is_debug);
88914473
AF
896
897 if (vbase_ret != TRANSLATE_SUCCESS) {
33a9a57d
YJ
898 if (fault_pte_addr) {
899 *fault_pte_addr = (base + idx * ptesize) >> 2;
900 }
901 return TRANSLATE_G_STAGE_FAIL;
88914473 902 }
36a18664
AF
903
904 pte_addr = vbase + idx * ptesize;
905 } else {
906 pte_addr = base + idx * ptesize;
907 }
1f447aec 908
b297129a 909 int pmp_prot;
bfc7ee12 910 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr,
b297129a
JS
911 sizeof(target_ulong),
912 MMU_DATA_LOAD, PRV_S);
913 if (pmp_ret != TRANSLATE_SUCCESS) {
1f447aec
HA
914 return TRANSLATE_PMP_FAIL;
915 }
aacb578f 916
db23e5d9 917 if (riscv_cpu_mxl(env) == MXL_RV32) {
f08c7ff3
AF
918 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
919 } else {
920 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
921 }
922
aacb578f
PD
923 if (res != MEMTX_OK) {
924 return TRANSLATE_FAIL;
925 }
926
05e6ca5e
GR
927 if (riscv_cpu_sxl(env) == MXL_RV32) {
928 ppn = pte >> PTE_PPN_SHIFT;
05e6ca5e 929 } else {
190e9f8e
AG
930 if (pte & PTE_RESERVED) {
931 return TRANSLATE_FAIL;
932 }
933
934 if (!pbmte && (pte & PTE_PBMT)) {
05e6ca5e
GR
935 return TRANSLATE_FAIL;
936 }
190e9f8e
AG
937
938 if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
939 return TRANSLATE_FAIL;
940 }
941
942 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
05e6ca5e 943 }
0c3e702a 944
c3b03e58
MC
945 if (!(pte & PTE_V)) {
946 /* Invalid PTE */
947 return TRANSLATE_FAIL;
59688aa0
RH
948 }
949 if (pte & (PTE_R | PTE_W | PTE_X)) {
950 goto leaf;
951 }
952
953 /* Inner PTE, continue walking */
954 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
c3b03e58 955 return TRANSLATE_FAIL;
59688aa0
RH
956 }
957 base = ppn << PGSHIFT;
958 }
959
960 /* No leaf pte at any translation level. */
961 return TRANSLATE_FAIL;
962
963 leaf:
964 if (ppn & ((1ULL << ptshift) - 1)) {
965 /* Misaligned PPN */
966 return TRANSLATE_FAIL;
967 }
968 if (!pbmte && (pte & PTE_PBMT)) {
969 /* Reserved without Svpbmt. */
970 return TRANSLATE_FAIL;
971 }
a9d2e3ed
RH
972
973 /* Check for reserved combinations of RWX flags. */
974 switch (pte & (PTE_R | PTE_W | PTE_X)) {
975 case PTE_W:
976 case PTE_W | PTE_X:
59688aa0
RH
977 return TRANSLATE_FAIL;
978 }
a9d2e3ed 979
e1dd1507
RH
980 int prot = 0;
981 if (pte & PTE_R) {
982 prot |= PAGE_READ;
983 }
984 if (pte & PTE_W) {
985 prot |= PAGE_WRITE;
986 }
987 if (pte & PTE_X) {
988 bool mxr;
989
990 if (first_stage == true) {
991 mxr = get_field(env->mstatus, MSTATUS_MXR);
992 } else {
993 mxr = get_field(env->vsstatus, MSTATUS_MXR);
994 }
995 if (mxr) {
996 prot |= PAGE_READ;
997 }
998 prot |= PAGE_EXEC;
999 }
1000
38303e8a
RH
1001 if (pte & PTE_U) {
1002 if (mode != PRV_U) {
1003 if (!mmuidx_sum(mmu_idx)) {
1004 return TRANSLATE_FAIL;
1005 }
1006 /* SUM allows only read+write, not execute. */
1007 prot &= PAGE_READ | PAGE_WRITE;
1008 }
1009 } else if (mode != PRV_S) {
59688aa0
RH
1010 /* Supervisor PTE flags when not S mode */
1011 return TRANSLATE_FAIL;
1012 }
e1dd1507
RH
1013
1014 if (!((prot >> access_type) & 1)) {
1015 /* Access check failed */
59688aa0
RH
1016 return TRANSLATE_FAIL;
1017 }
1018
1019 /* If necessary, set accessed and dirty bits. */
1020 target_ulong updated_pte = pte | PTE_A |
0c3e702a
MC
1021 (access_type == MMU_DATA_STORE ? PTE_D : 0);
1022
59688aa0 1023 /* Page table updates need to be atomic with MTTCG enabled */
0a19bf5e 1024 if (updated_pte != pte && !is_debug) {
59688aa0
RH
1025 if (!hade) {
1026 return TRANSLATE_FAIL;
1027 }
0af3f115 1028
59688aa0
RH
1029 /*
1030 * - if accessed or dirty bits need updating, and the PTE is
1031 * in RAM, then we do so atomically with a compare and swap.
1032 * - if the PTE is in IO space or ROM, then it can't be updated
1033 * and we return TRANSLATE_FAIL.
1034 * - if the PTE changed by the time we went to update it, then
1035 * it is no longer valid and we must re-walk the page table.
1036 */
1037 MemoryRegion *mr;
1038 hwaddr l = sizeof(target_ulong), addr1;
1039 mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1040 false, MEMTXATTRS_UNSPECIFIED);
1041 if (memory_region_is_ram(mr)) {
1042 target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1);
0c3e702a 1043#if TCG_OVERSIZED_GUEST
59688aa0
RH
1044 /*
1045 * MTTCG is not enabled on oversized TCG guests so
1046 * page table updates do not need to be atomic
1047 */
1048 *pte_pa = pte = updated_pte;
0c3e702a 1049#else
59688aa0
RH
1050 target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte);
1051 if (old_pte != pte) {
1052 goto restart;
0c3e702a 1053 }
59688aa0
RH
1054 pte = updated_pte;
1055#endif
1056 } else {
3b57254d 1057 /*
59688aa0
RH
1058 * Misconfigured PTE in ROM (AD bits are not preset) or
1059 * PTE is in IO space and can't be updated atomically.
3b57254d 1060 */
59688aa0
RH
1061 return TRANSLATE_FAIL;
1062 }
1063 }
2bacb224 1064
59688aa0
RH
1065 /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */
1066 target_ulong vpn = addr >> PGSHIFT;
0c3e702a 1067
59688aa0
RH
1068 if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1069 napot_bits = ctzl(ppn) + 1;
1070 if ((i != (levels - 1)) || (napot_bits != 4)) {
1071 return TRANSLATE_FAIL;
0c3e702a
MC
1072 }
1073 }
59688aa0
RH
1074
1075 napot_mask = (1 << napot_bits) - 1;
1076 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1077 (vpn & (((target_ulong)1 << ptshift) - 1))
1078 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1079
59688aa0 1080 /*
e1dd1507
RH
1081 * Remove write permission unless this is a store, or the page is
1082 * already dirty, so that we TLB miss on later writes to update
1083 * the dirty bit.
59688aa0 1084 */
e1dd1507
RH
1085 if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) {
1086 prot &= ~PAGE_WRITE;
59688aa0 1087 }
e1dd1507
RH
1088 *ret_prot = prot;
1089
59688aa0 1090 return TRANSLATE_SUCCESS;
0c3e702a
MC
1091}
1092
1093static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1448689c 1094 MMUAccessType access_type, bool pmp_violation,
8e2aa21b
AP
1095 bool first_stage, bool two_stage,
1096 bool two_stage_indirect)
0c3e702a 1097{
3109cd98 1098 CPUState *cs = env_cpu(env);
994b6bb2 1099 int page_fault_exceptions, vm;
419ddf00
AF
1100 uint64_t stap_mode;
1101
db23e5d9 1102 if (riscv_cpu_mxl(env) == MXL_RV32) {
419ddf00
AF
1103 stap_mode = SATP32_MODE;
1104 } else {
1105 stap_mode = SATP64_MODE;
1106 }
994b6bb2 1107
1448689c 1108 if (first_stage) {
419ddf00 1109 vm = get_field(env->satp, stap_mode);
1448689c 1110 } else {
419ddf00 1111 vm = get_field(env->hgatp, stap_mode);
1448689c 1112 }
419ddf00 1113
994b6bb2
AF
1114 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1115
0c3e702a
MC
1116 switch (access_type) {
1117 case MMU_INST_FETCH:
38256529 1118 if (env->virt_enabled && !first_stage) {
b2ef6ab9
AF
1119 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1120 } else {
1121 cs->exception_index = page_fault_exceptions ?
1122 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1123 }
0c3e702a
MC
1124 break;
1125 case MMU_DATA_LOAD:
1c1c060a 1126 if (two_stage && !first_stage) {
b2ef6ab9
AF
1127 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1128 } else {
1129 cs->exception_index = page_fault_exceptions ?
1130 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1131 }
0c3e702a
MC
1132 break;
1133 case MMU_DATA_STORE:
1c1c060a 1134 if (two_stage && !first_stage) {
b2ef6ab9
AF
1135 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1136 } else {
1137 cs->exception_index = page_fault_exceptions ?
246f8796
WL
1138 RISCV_EXCP_STORE_PAGE_FAULT :
1139 RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
b2ef6ab9 1140 }
0c3e702a
MC
1141 break;
1142 default:
1143 g_assert_not_reached();
1144 }
1145 env->badaddr = address;
ec352d0c 1146 env->two_stage_lookup = two_stage;
8e2aa21b 1147 env->two_stage_indirect_lookup = two_stage_indirect;
0c3e702a
MC
1148}
1149
1150hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1151{
1152 RISCVCPU *cpu = RISCV_CPU(cs);
36a18664 1153 CPURISCVState *env = &cpu->env;
0c3e702a
MC
1154 hwaddr phys_addr;
1155 int prot;
1156 int mmu_idx = cpu_mmu_index(&cpu->env, false);
1157
33a9a57d 1158 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
38256529 1159 true, env->virt_enabled, true)) {
0c3e702a
MC
1160 return -1;
1161 }
36a18664 1162
38256529 1163 if (env->virt_enabled) {
33a9a57d 1164 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
11c27c6d 1165 0, mmu_idx, false, true, true)) {
36a18664
AF
1166 return -1;
1167 }
1168 }
1169
9ef82119 1170 return phys_addr & TARGET_PAGE_MASK;
0c3e702a
MC
1171}
1172
37207e12
PD
1173void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1174 vaddr addr, unsigned size,
1175 MMUAccessType access_type,
1176 int mmu_idx, MemTxAttrs attrs,
1177 MemTxResult response, uintptr_t retaddr)
cbf58276
MC
1178{
1179 RISCVCPU *cpu = RISCV_CPU(cs);
1180 CPURISCVState *env = &cpu->env;
1181
37207e12 1182 if (access_type == MMU_DATA_STORE) {
cbf58276 1183 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
f9e580c1 1184 } else if (access_type == MMU_DATA_LOAD) {
cbf58276 1185 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
f9e580c1
EB
1186 } else {
1187 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
cbf58276
MC
1188 }
1189
1190 env->badaddr = addr;
696bacde 1191 env->two_stage_lookup = mmuidx_2stage(mmu_idx);
8e2aa21b 1192 env->two_stage_indirect_lookup = false;
ac684717 1193 cpu_loop_exit_restore(cs, retaddr);
cbf58276
MC
1194}
1195
0c3e702a
MC
1196void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1197 MMUAccessType access_type, int mmu_idx,
1198 uintptr_t retaddr)
1199{
1200 RISCVCPU *cpu = RISCV_CPU(cs);
1201 CPURISCVState *env = &cpu->env;
1202 switch (access_type) {
1203 case MMU_INST_FETCH:
1204 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1205 break;
1206 case MMU_DATA_LOAD:
1207 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1208 break;
1209 case MMU_DATA_STORE:
1210 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1211 break;
1212 default:
1213 g_assert_not_reached();
1214 }
1215 env->badaddr = addr;
696bacde 1216 env->two_stage_lookup = mmuidx_2stage(mmu_idx);
8e2aa21b 1217 env->two_stage_indirect_lookup = false;
ac684717 1218 cpu_loop_exit_restore(cs, retaddr);
0c3e702a 1219}
0c3e702a 1220
892320fa
AP
1221
1222static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1223{
1224 enum riscv_pmu_event_idx pmu_event_type;
1225
1226 switch (access_type) {
1227 case MMU_INST_FETCH:
1228 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1229 break;
1230 case MMU_DATA_LOAD:
1231 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1232 break;
1233 case MMU_DATA_STORE:
1234 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1235 break;
1236 default:
1237 return;
1238 }
1239
1240 riscv_pmu_incr_ctr(cpu, pmu_event_type);
1241}
1242
8a4ca3c1
RH
1243bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1244 MMUAccessType access_type, int mmu_idx,
1245 bool probe, uintptr_t retaddr)
0c3e702a
MC
1246{
1247 RISCVCPU *cpu = RISCV_CPU(cs);
1248 CPURISCVState *env = &cpu->env;
36a18664 1249 vaddr im_address;
0c3e702a 1250 hwaddr pa = 0;
b297129a 1251 int prot, prot2, prot_pmp;
635b0b0e 1252 bool pmp_violation = false;
36a18664 1253 bool first_stage_error = true;
696bacde 1254 bool two_stage_lookup = mmuidx_2stage(mmu_idx);
8e2aa21b 1255 bool two_stage_indirect_error = false;
0c3e702a 1256 int ret = TRANSLATE_FAIL;
cc0fdb29 1257 int mode = mmu_idx;
b297129a
JS
1258 /* default TLB page size */
1259 target_ulong tlb_size = TARGET_PAGE_SIZE;
0c3e702a 1260
36a18664
AF
1261 env->guest_phys_fault_addr = 0;
1262
8a4ca3c1
RH
1263 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1264 __func__, address, access_type, mmu_idx);
1265
eacd03cb 1266 pmu_tlb_fill_incr_ctr(cpu, access_type);
696bacde 1267 if (two_stage_lookup) {
36a18664 1268 /* Two stage lookup */
33a9a57d
YJ
1269 ret = get_physical_address(env, &pa, &prot, address,
1270 &env->guest_phys_fault_addr, access_type,
11c27c6d 1271 mmu_idx, true, true, false);
36a18664 1272
33a9a57d
YJ
1273 /*
1274 * A G-stage exception may be triggered during two state lookup.
1275 * And the env->guest_phys_fault_addr has already been set in
1276 * get_physical_address().
1277 */
1278 if (ret == TRANSLATE_G_STAGE_FAIL) {
1279 first_stage_error = false;
8e2aa21b 1280 two_stage_indirect_error = true;
33a9a57d
YJ
1281 access_type = MMU_DATA_LOAD;
1282 }
1283
36a18664
AF
1284 qemu_log_mask(CPU_LOG_MMU,
1285 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
883f2c59 1286 HWADDR_FMT_plx " prot %d\n",
36a18664
AF
1287 __func__, address, ret, pa, prot);
1288
33a9a57d 1289 if (ret == TRANSLATE_SUCCESS) {
36a18664
AF
1290 /* Second stage lookup */
1291 im_address = pa;
1292
33a9a57d 1293 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
a427c836 1294 access_type, MMUIdx_U, false, true,
11c27c6d 1295 false);
36a18664
AF
1296
1297 qemu_log_mask(CPU_LOG_MMU,
c45eff30
WL
1298 "%s 2nd-stage address=%" VADDR_PRIx
1299 " ret %d physical "
1300 HWADDR_FMT_plx " prot %d\n",
1301 __func__, im_address, ret, pa, prot2);
8f67cd6d
AF
1302
1303 prot &= prot2;
36a18664 1304
b297129a 1305 if (ret == TRANSLATE_SUCCESS) {
bfc7ee12 1306 ret = get_physical_address_pmp(env, &prot_pmp, pa,
b297129a 1307 size, access_type, mode);
bfc7ee12 1308 tlb_size = pmp_get_tlb_size(env, pa);
663e1193
JS
1309
1310 qemu_log_mask(CPU_LOG_MMU,
883f2c59 1311 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
663e1193
JS
1312 " %d tlb_size " TARGET_FMT_lu "\n",
1313 __func__, pa, ret, prot_pmp, tlb_size);
1314
b297129a 1315 prot &= prot_pmp;
36a18664
AF
1316 }
1317
1318 if (ret != TRANSLATE_SUCCESS) {
1319 /*
1320 * Guest physical address translation failed, this is a HS
1321 * level exception
1322 */
1323 first_stage_error = false;
1324 env->guest_phys_fault_addr = (im_address |
1325 (address &
1326 (TARGET_PAGE_SIZE - 1))) >> 2;
1327 }
1328 }
1329 } else {
1330 /* Single stage lookup */
33a9a57d 1331 ret = get_physical_address(env, &pa, &prot, address, NULL,
11c27c6d 1332 access_type, mmu_idx, true, false, false);
36a18664
AF
1333
1334 qemu_log_mask(CPU_LOG_MMU,
1335 "%s address=%" VADDR_PRIx " ret %d physical "
883f2c59 1336 HWADDR_FMT_plx " prot %d\n",
36a18664 1337 __func__, address, ret, pa, prot);
8a4ca3c1 1338
b297129a 1339 if (ret == TRANSLATE_SUCCESS) {
bfc7ee12 1340 ret = get_physical_address_pmp(env, &prot_pmp, pa,
b297129a 1341 size, access_type, mode);
bfc7ee12 1342 tlb_size = pmp_get_tlb_size(env, pa);
663e1193
JS
1343
1344 qemu_log_mask(CPU_LOG_MMU,
883f2c59 1345 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
663e1193
JS
1346 " %d tlb_size " TARGET_FMT_lu "\n",
1347 __func__, pa, ret, prot_pmp, tlb_size);
1348
b297129a
JS
1349 prot &= prot_pmp;
1350 }
1f447aec 1351 }
b297129a 1352
1f447aec 1353 if (ret == TRANSLATE_PMP_FAIL) {
635b0b0e 1354 pmp_violation = true;
0c3e702a 1355 }
36a18664 1356
0c3e702a 1357 if (ret == TRANSLATE_SUCCESS) {
b297129a
JS
1358 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1359 prot, mmu_idx, tlb_size);
8a4ca3c1
RH
1360 return true;
1361 } else if (probe) {
1362 return false;
1363 } else {
1c1c060a 1364 raise_mmu_exception(env, address, access_type, pmp_violation,
696bacde 1365 first_stage_error, two_stage_lookup,
8e2aa21b 1366 two_stage_indirect_error);
ac684717 1367 cpu_loop_exit_restore(cs, retaddr);
0c3e702a 1368 }
36a18664
AF
1369
1370 return true;
0c3e702a 1371}
8e2aa21b
AP
1372
1373static target_ulong riscv_transformed_insn(CPURISCVState *env,
1374 target_ulong insn,
1375 target_ulong taddr)
1376{
1377 target_ulong xinsn = 0;
1378 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1379
1380 /*
1381 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1382 * be uncompressed. The Quadrant 1 of RVC instruction space need
1383 * not be transformed because these instructions won't generate
1384 * any load/store trap.
1385 */
1386
1387 if ((insn & 0x3) != 0x3) {
1388 /* Transform 16bit instruction into 32bit instruction */
1389 switch (GET_C_OP(insn)) {
1390 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1391 switch (GET_C_FUNC(insn)) {
1392 case OPC_RISC_C_FUNC_FLD_LQ:
1393 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1394 xinsn = OPC_RISC_FLD;
1395 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1396 access_rs1 = GET_C_RS1S(insn);
1397 access_imm = GET_C_LD_IMM(insn);
1398 access_size = 8;
1399 }
1400 break;
1401 case OPC_RISC_C_FUNC_LW: /* C.LW */
1402 xinsn = OPC_RISC_LW;
1403 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1404 access_rs1 = GET_C_RS1S(insn);
1405 access_imm = GET_C_LW_IMM(insn);
1406 access_size = 4;
1407 break;
1408 case OPC_RISC_C_FUNC_FLW_LD:
1409 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1410 xinsn = OPC_RISC_FLW;
1411 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1412 access_rs1 = GET_C_RS1S(insn);
1413 access_imm = GET_C_LW_IMM(insn);
1414 access_size = 4;
1415 } else { /* C.LD (RV64/RV128) */
1416 xinsn = OPC_RISC_LD;
1417 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1418 access_rs1 = GET_C_RS1S(insn);
1419 access_imm = GET_C_LD_IMM(insn);
1420 access_size = 8;
1421 }
1422 break;
1423 case OPC_RISC_C_FUNC_FSD_SQ:
1424 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1425 xinsn = OPC_RISC_FSD;
1426 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1427 access_rs1 = GET_C_RS1S(insn);
1428 access_imm = GET_C_SD_IMM(insn);
1429 access_size = 8;
1430 }
1431 break;
1432 case OPC_RISC_C_FUNC_SW: /* C.SW */
1433 xinsn = OPC_RISC_SW;
1434 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1435 access_rs1 = GET_C_RS1S(insn);
1436 access_imm = GET_C_SW_IMM(insn);
1437 access_size = 4;
1438 break;
1439 case OPC_RISC_C_FUNC_FSW_SD:
1440 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1441 xinsn = OPC_RISC_FSW;
1442 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1443 access_rs1 = GET_C_RS1S(insn);
1444 access_imm = GET_C_SW_IMM(insn);
1445 access_size = 4;
1446 } else { /* C.SD (RV64/RV128) */
1447 xinsn = OPC_RISC_SD;
1448 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1449 access_rs1 = GET_C_RS1S(insn);
1450 access_imm = GET_C_SD_IMM(insn);
1451 access_size = 8;
1452 }
1453 break;
1454 default:
1455 break;
1456 }
1457 break;
1458 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1459 switch (GET_C_FUNC(insn)) {
1460 case OPC_RISC_C_FUNC_FLDSP_LQSP:
1461 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1462 xinsn = OPC_RISC_FLD;
1463 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1464 access_rs1 = 2;
1465 access_imm = GET_C_LDSP_IMM(insn);
1466 access_size = 8;
1467 }
1468 break;
1469 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1470 xinsn = OPC_RISC_LW;
1471 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1472 access_rs1 = 2;
1473 access_imm = GET_C_LWSP_IMM(insn);
1474 access_size = 4;
1475 break;
1476 case OPC_RISC_C_FUNC_FLWSP_LDSP:
1477 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1478 xinsn = OPC_RISC_FLW;
1479 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1480 access_rs1 = 2;
1481 access_imm = GET_C_LWSP_IMM(insn);
1482 access_size = 4;
1483 } else { /* C.LDSP (RV64/RV128) */
1484 xinsn = OPC_RISC_LD;
1485 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1486 access_rs1 = 2;
1487 access_imm = GET_C_LDSP_IMM(insn);
1488 access_size = 8;
1489 }
1490 break;
1491 case OPC_RISC_C_FUNC_FSDSP_SQSP:
1492 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1493 xinsn = OPC_RISC_FSD;
1494 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1495 access_rs1 = 2;
1496 access_imm = GET_C_SDSP_IMM(insn);
1497 access_size = 8;
1498 }
1499 break;
1500 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1501 xinsn = OPC_RISC_SW;
1502 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1503 access_rs1 = 2;
1504 access_imm = GET_C_SWSP_IMM(insn);
1505 access_size = 4;
1506 break;
1507 case 7:
1508 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1509 xinsn = OPC_RISC_FSW;
1510 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1511 access_rs1 = 2;
1512 access_imm = GET_C_SWSP_IMM(insn);
1513 access_size = 4;
1514 } else { /* C.SDSP (RV64/RV128) */
1515 xinsn = OPC_RISC_SD;
1516 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1517 access_rs1 = 2;
1518 access_imm = GET_C_SDSP_IMM(insn);
1519 access_size = 8;
1520 }
1521 break;
1522 default:
1523 break;
1524 }
1525 break;
1526 default:
1527 break;
1528 }
1529
1530 /*
1531 * Clear Bit1 of transformed instruction to indicate that
1532 * original insruction was a 16bit instruction
1533 */
1534 xinsn &= ~((target_ulong)0x2);
1535 } else {
1536 /* Transform 32bit (or wider) instructions */
1537 switch (MASK_OP_MAJOR(insn)) {
1538 case OPC_RISC_ATOMIC:
1539 xinsn = insn;
1540 access_rs1 = GET_RS1(insn);
1541 access_size = 1 << GET_FUNCT3(insn);
1542 break;
1543 case OPC_RISC_LOAD:
1544 case OPC_RISC_FP_LOAD:
1545 xinsn = SET_I_IMM(insn, 0);
1546 access_rs1 = GET_RS1(insn);
1547 access_imm = GET_IMM(insn);
1548 access_size = 1 << GET_FUNCT3(insn);
1549 break;
1550 case OPC_RISC_STORE:
1551 case OPC_RISC_FP_STORE:
1552 xinsn = SET_S_IMM(insn, 0);
1553 access_rs1 = GET_RS1(insn);
1554 access_imm = GET_STORE_IMM(insn);
1555 access_size = 1 << GET_FUNCT3(insn);
1556 break;
1557 case OPC_RISC_SYSTEM:
1558 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1559 xinsn = insn;
1560 access_rs1 = GET_RS1(insn);
1561 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1562 access_size = 1 << access_size;
1563 }
1564 break;
1565 default:
1566 break;
1567 }
1568 }
1569
1570 if (access_size) {
1571 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1572 (access_size - 1));
1573 }
1574
1575 return xinsn;
1576}
263e2ab2 1577#endif /* !CONFIG_USER_ONLY */
0c3e702a
MC
1578
1579/*
1580 * Handle Traps
1581 *
1582 * Adapted from Spike's processor_t::take_trap.
1583 *
1584 */
1585void riscv_cpu_do_interrupt(CPUState *cs)
1586{
1587#if !defined(CONFIG_USER_ONLY)
1588
1589 RISCVCPU *cpu = RISCV_CPU(cs);
1590 CPURISCVState *env = &cpu->env;
86d0c457 1591 bool write_gva = false;
284d697c 1592 uint64_t s;
0c3e702a 1593
3b57254d
WL
1594 /*
1595 * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
acbbb94e
MC
1596 * so we mask off the MSB and separate into trap type and cause.
1597 */
1598 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1599 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
d028ac75 1600 uint64_t deleg = async ? env->mideleg : env->medeleg;
acbbb94e 1601 target_ulong tval = 0;
8e2aa21b 1602 target_ulong tinst = 0;
30675539
AF
1603 target_ulong htval = 0;
1604 target_ulong mtval2 = 0;
acbbb94e 1605
a10b9d93 1606 if (cause == RISCV_EXCP_SEMIHOST) {
7d7fb116
PM
1607 do_common_semihosting(cs);
1608 env->pc += 4;
1609 return;
a10b9d93
KP
1610 }
1611
acbbb94e
MC
1612 if (!async) {
1613 /* set tval to badaddr for traps with address information */
1614 switch (cause) {
ab67a1d0
AF
1615 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1616 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
acbbb94e
MC
1617 case RISCV_EXCP_LOAD_ADDR_MIS:
1618 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1619 case RISCV_EXCP_LOAD_ACCESS_FAULT:
1620 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
acbbb94e
MC
1621 case RISCV_EXCP_LOAD_PAGE_FAULT:
1622 case RISCV_EXCP_STORE_PAGE_FAULT:
24826da0 1623 write_gva = env->two_stage_lookup;
acbbb94e 1624 tval = env->badaddr;
8e2aa21b
AP
1625 if (env->two_stage_indirect_lookup) {
1626 /*
1627 * special pseudoinstruction for G-stage fault taken while
1628 * doing VS-stage page table walk.
1629 */
1630 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1631 } else {
1632 /*
1633 * The "Addr. Offset" field in transformed instruction is
1634 * non-zero only for misaligned access.
1635 */
1636 tinst = riscv_transformed_insn(env, env->bins, tval);
1637 }
1638 break;
1639 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1640 case RISCV_EXCP_INST_ADDR_MIS:
1641 case RISCV_EXCP_INST_ACCESS_FAULT:
1642 case RISCV_EXCP_INST_PAGE_FAULT:
1643 write_gva = env->two_stage_lookup;
1644 tval = env->badaddr;
1645 if (env->two_stage_indirect_lookup) {
1646 /*
1647 * special pseudoinstruction for G-stage fault taken while
1648 * doing VS-stage page table walk.
1649 */
1650 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1651 }
acbbb94e 1652 break;
48eaeb56 1653 case RISCV_EXCP_ILLEGAL_INST:
62cf0245 1654 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
48eaeb56
AF
1655 tval = env->bins;
1656 break;
26934f9a
SM
1657 case RISCV_EXCP_BREAKPOINT:
1658 if (cs->watchpoint_hit) {
1659 tval = cs->watchpoint_hit->hitaddr;
1660 cs->watchpoint_hit = NULL;
1661 }
1662 break;
acbbb94e
MC
1663 default:
1664 break;
0c3e702a 1665 }
acbbb94e
MC
1666 /* ecall is dispatched as one cause so translate based on mode */
1667 if (cause == RISCV_EXCP_U_ECALL) {
1668 assert(env->priv <= 3);
5eb9e782
AF
1669
1670 if (env->priv == PRV_M) {
1671 cause = RISCV_EXCP_M_ECALL;
38256529 1672 } else if (env->priv == PRV_S && env->virt_enabled) {
5eb9e782 1673 cause = RISCV_EXCP_VS_ECALL;
38256529 1674 } else if (env->priv == PRV_S && !env->virt_enabled) {
5eb9e782
AF
1675 cause = RISCV_EXCP_S_ECALL;
1676 } else if (env->priv == PRV_U) {
1677 cause = RISCV_EXCP_U_ECALL;
1678 }
0c3e702a
MC
1679 }
1680 }
1681
c51a3f5d 1682 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
69430111
AF
1683 riscv_cpu_get_trap_name(cause, async));
1684
1685 qemu_log_mask(CPU_LOG_INT,
1686 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1687 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1688 __func__, env->mhartid, async, cause, env->pc, tval,
1689 riscv_cpu_get_trap_name(cause, async));
0c3e702a 1690
acbbb94e
MC
1691 if (env->priv <= PRV_S &&
1692 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
0c3e702a 1693 /* handle the trap in S-mode */
5eb9e782 1694 if (riscv_has_ext(env, RVH)) {
d028ac75 1695 uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1c1c060a 1696
38256529 1697 if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
84b1c04b 1698 /* Trap to VS mode */
c5969a3a
RK
1699 /*
1700 * See if we need to adjust cause. Yes if its VS mode interrupt
1701 * no if hypervisor has delegated one of hs mode's interrupt
1702 */
1703 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
84b1c04b 1704 cause == IRQ_VS_EXT) {
c5969a3a 1705 cause = cause - 1;
84b1c04b 1706 }
86d0c457 1707 write_gva = false;
38256529 1708 } else if (env->virt_enabled) {
5eb9e782
AF
1709 /* Trap into HS mode, from virt */
1710 riscv_cpu_swap_hypervisor_regs(env);
f2d5850f 1711 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
ace54453 1712 env->priv);
2136b6c3 1713 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
86d0c457 1714
30675539
AF
1715 htval = env->guest_phys_fault_addr;
1716
5eb9e782 1717 riscv_cpu_set_virt_enabled(env, 0);
5eb9e782
AF
1718 } else {
1719 /* Trap into HS mode */
ec352d0c 1720 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
30675539 1721 htval = env->guest_phys_fault_addr;
5eb9e782 1722 }
86d0c457 1723 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
5eb9e782
AF
1724 }
1725
1726 s = env->mstatus;
1a9540d1 1727 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
0c3e702a
MC
1728 s = set_field(s, MSTATUS_SPP, env->priv);
1729 s = set_field(s, MSTATUS_SIE, 0);
c7b95171 1730 env->mstatus = s;
16fdb8ff 1731 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
acbbb94e 1732 env->sepc = env->pc;
ac12b601 1733 env->stval = tval;
30675539 1734 env->htval = htval;
8e2aa21b 1735 env->htinst = tinst;
acbbb94e 1736 env->pc = (env->stvec >> 2 << 2) +
c45eff30 1737 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
fb738839 1738 riscv_cpu_set_mode(env, PRV_S);
0c3e702a 1739 } else {
acbbb94e 1740 /* handle the trap in M-mode */
5eb9e782 1741 if (riscv_has_ext(env, RVH)) {
38256529 1742 if (env->virt_enabled) {
5eb9e782
AF
1743 riscv_cpu_swap_hypervisor_regs(env);
1744 }
1745 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
38256529
WL
1746 env->virt_enabled);
1747 if (env->virt_enabled && tval) {
9034e90a
AF
1748 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1749 }
5eb9e782 1750
30675539
AF
1751 mtval2 = env->guest_phys_fault_addr;
1752
5eb9e782
AF
1753 /* Trapping to M mode, virt is disabled */
1754 riscv_cpu_set_virt_enabled(env, 0);
5eb9e782
AF
1755 }
1756
1757 s = env->mstatus;
1a9540d1 1758 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
0c3e702a
MC
1759 s = set_field(s, MSTATUS_MPP, env->priv);
1760 s = set_field(s, MSTATUS_MIE, 0);
c7b95171 1761 env->mstatus = s;
acbbb94e
MC
1762 env->mcause = cause | ~(((target_ulong)-1) >> async);
1763 env->mepc = env->pc;
ac12b601 1764 env->mtval = tval;
30675539 1765 env->mtval2 = mtval2;
8e2aa21b 1766 env->mtinst = tinst;
acbbb94e 1767 env->pc = (env->mtvec >> 2 << 2) +
c45eff30 1768 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
fb738839 1769 riscv_cpu_set_mode(env, PRV_M);
0c3e702a 1770 }
d9360e96 1771
3b57254d
WL
1772 /*
1773 * NOTE: it is not necessary to yield load reservations here. It is only
d9360e96
MC
1774 * necessary for an SC from "another hart" to cause a load reservation
1775 * to be yielded. Refer to the memory consistency model section of the
1776 * RISC-V ISA Specification.
1777 */
1778
ec352d0c 1779 env->two_stage_lookup = false;
8e2aa21b 1780 env->two_stage_indirect_lookup = false;
0c3e702a 1781#endif
330d2ae3 1782 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
0c3e702a 1783}