]> git.proxmox.com Git - mirror_qemu.git/blame - target/riscv/cpu_helper.c
target/ppc: Implement ppc_cpu_record_sigsegv
[mirror_qemu.git] / target / riscv / cpu_helper.c
CommitLineData
0c3e702a 1/*
df354dd4 2 * RISC-V CPU helpers for qemu.
0c3e702a
MC
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
21#include "qemu/log.h"
7ec5d303 22#include "qemu/main-loop.h"
0c3e702a
MC
23#include "cpu.h"
24#include "exec/exec-all.h"
dcb32f1d 25#include "tcg/tcg-op.h"
929f0a7f 26#include "trace.h"
6b5fe137 27#include "semihosting/common-semi.h"
0c3e702a
MC
28
29int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
30{
31#ifdef CONFIG_USER_ONLY
32 return 0;
33#else
34 return env->priv;
35#endif
36}
37
92371bd9
RH
38static RISCVMXL cpu_get_xl(CPURISCVState *env)
39{
40#if defined(TARGET_RISCV32)
41 return MXL_RV32;
42#elif defined(CONFIG_USER_ONLY)
43 return MXL_RV64;
44#else
45 RISCVMXL xl = riscv_cpu_mxl(env);
46
47 /*
48 * When emulating a 32-bit-only cpu, use RV32.
49 * When emulating a 64-bit cpu, and MXL has been reduced to RV32,
50 * MSTATUSH doesn't have UXL/SXL, therefore XLEN cannot be widened
51 * back to RV64 for lower privs.
52 */
53 if (xl != MXL_RV32) {
54 switch (env->priv) {
55 case PRV_M:
56 break;
57 case PRV_U:
58 xl = get_field(env->mstatus, MSTATUS64_UXL);
59 break;
60 default: /* PRV_S | PRV_H */
61 xl = get_field(env->mstatus, MSTATUS64_SXL);
62 break;
63 }
64 }
65 return xl;
66#endif
67}
68
53677acf
RH
69void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
70 target_ulong *cs_base, uint32_t *pflags)
71{
72 uint32_t flags = 0;
73
74 *pc = env->pc;
75 *cs_base = 0;
76
77 if (riscv_has_ext(env, RVV)) {
78 uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype);
79 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl);
80 flags = FIELD_DP32(flags, TB_FLAGS, VILL,
81 FIELD_EX64(env->vtype, VTYPE, VILL));
82 flags = FIELD_DP32(flags, TB_FLAGS, SEW,
83 FIELD_EX64(env->vtype, VTYPE, VSEW));
84 flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
85 FIELD_EX64(env->vtype, VTYPE, VLMUL));
86 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
87 } else {
88 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
89 }
90
91#ifdef CONFIG_USER_ONLY
92 flags |= TB_FLAGS_MSTATUS_FS;
93#else
94 flags |= cpu_mmu_index(env, 0);
95 if (riscv_cpu_fp_enabled(env)) {
96 flags |= env->mstatus & MSTATUS_FS;
97 }
98
99 if (riscv_has_ext(env, RVH)) {
100 if (env->priv == PRV_M ||
101 (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
102 (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
103 get_field(env->hstatus, HSTATUS_HU))) {
104 flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
105 }
106
107 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
108 get_field(env->mstatus_hs, MSTATUS_FS));
109 }
0774a7a1
AP
110 if (riscv_has_ext(env, RVJ)) {
111 int priv = flags & TB_FLAGS_PRIV_MMU_MASK;
112 bool pm_enabled = false;
113 switch (priv) {
114 case PRV_U:
115 pm_enabled = env->mmte & U_PM_ENABLE;
116 break;
117 case PRV_S:
118 pm_enabled = env->mmte & S_PM_ENABLE;
119 break;
120 case PRV_M:
121 pm_enabled = env->mmte & M_PM_ENABLE;
122 break;
123 default:
124 g_assert_not_reached();
125 }
126 flags = FIELD_DP32(flags, TB_FLAGS, PM_ENABLED, pm_enabled);
127 }
53677acf
RH
128#endif
129
92371bd9
RH
130 flags = FIELD_DP32(flags, TB_FLAGS, XL, cpu_get_xl(env));
131
53677acf
RH
132 *pflags = flags;
133}
134
0c3e702a 135#ifndef CONFIG_USER_ONLY
efbdbc26 136static int riscv_cpu_local_irq_pending(CPURISCVState *env)
0c3e702a 137{
487a9955 138 target_ulong virt_enabled = riscv_cpu_virt_enabled(env);
3ef10a09 139
efbdbc26
MC
140 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
141 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
3ef10a09 142
487a9955 143 target_ulong pending = env->mip & env->mie;
3ef10a09
AF
144
145 target_ulong mie = env->priv < PRV_M ||
146 (env->priv == PRV_M && mstatus_mie);
147 target_ulong sie = env->priv < PRV_S ||
148 (env->priv == PRV_S && mstatus_sie);
487a9955
JM
149 target_ulong hsie = virt_enabled || sie;
150 target_ulong vsie = virt_enabled && sie;
3ef10a09 151
487a9955
JM
152 target_ulong irqs =
153 (pending & ~env->mideleg & -mie) |
154 (pending & env->mideleg & ~env->hideleg & -hsie) |
155 (pending & env->mideleg & env->hideleg & -vsie);
0c3e702a 156
efbdbc26
MC
157 if (irqs) {
158 return ctz64(irqs); /* since non-zero */
0c3e702a 159 } else {
330d2ae3 160 return RISCV_EXCP_NONE; /* indicates no pending interrupt */
0c3e702a
MC
161 }
162}
0c3e702a
MC
163
164bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
165{
0c3e702a
MC
166 if (interrupt_request & CPU_INTERRUPT_HARD) {
167 RISCVCPU *cpu = RISCV_CPU(cs);
168 CPURISCVState *env = &cpu->env;
efbdbc26 169 int interruptno = riscv_cpu_local_irq_pending(env);
0c3e702a
MC
170 if (interruptno >= 0) {
171 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
172 riscv_cpu_do_interrupt(cs);
173 return true;
174 }
175 }
0c3e702a
MC
176 return false;
177}
178
b345b480
AF
179/* Return true is floating point support is currently enabled */
180bool riscv_cpu_fp_enabled(CPURISCVState *env)
181{
182 if (env->mstatus & MSTATUS_FS) {
29409c1d
AF
183 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
184 return false;
185 }
b345b480
AF
186 return true;
187 }
188
189 return false;
190}
191
66e594f2
AF
192void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
193{
284d697c
YJ
194 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
195 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
b550f894 196 MSTATUS64_UXL;
66e594f2
AF
197 bool current_virt = riscv_cpu_virt_enabled(env);
198
199 g_assert(riscv_has_ext(env, RVH));
200
66e594f2
AF
201 if (current_virt) {
202 /* Current V=1 and we are about to change to V=0 */
203 env->vsstatus = env->mstatus & mstatus_mask;
204 env->mstatus &= ~mstatus_mask;
205 env->mstatus |= env->mstatus_hs;
206
207 env->vstvec = env->stvec;
208 env->stvec = env->stvec_hs;
209
210 env->vsscratch = env->sscratch;
211 env->sscratch = env->sscratch_hs;
212
213 env->vsepc = env->sepc;
214 env->sepc = env->sepc_hs;
215
216 env->vscause = env->scause;
217 env->scause = env->scause_hs;
218
ac12b601
AP
219 env->vstval = env->stval;
220 env->stval = env->stval_hs;
66e594f2
AF
221
222 env->vsatp = env->satp;
223 env->satp = env->satp_hs;
224 } else {
225 /* Current V=0 and we are about to change to V=1 */
226 env->mstatus_hs = env->mstatus & mstatus_mask;
227 env->mstatus &= ~mstatus_mask;
228 env->mstatus |= env->vsstatus;
229
230 env->stvec_hs = env->stvec;
231 env->stvec = env->vstvec;
232
233 env->sscratch_hs = env->sscratch;
234 env->sscratch = env->vsscratch;
235
236 env->sepc_hs = env->sepc;
237 env->sepc = env->vsepc;
238
239 env->scause_hs = env->scause;
240 env->scause = env->vscause;
241
ac12b601
AP
242 env->stval_hs = env->stval;
243 env->stval = env->vstval;
66e594f2
AF
244
245 env->satp_hs = env->satp;
246 env->satp = env->vsatp;
247 }
248}
249
ef6bb7b6
AF
250bool riscv_cpu_virt_enabled(CPURISCVState *env)
251{
252 if (!riscv_has_ext(env, RVH)) {
253 return false;
254 }
255
256 return get_field(env->virt, VIRT_ONOFF);
257}
258
259void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
260{
261 if (!riscv_has_ext(env, RVH)) {
262 return;
263 }
264
eccc5a12
AF
265 /* Flush the TLB on all virt mode changes. */
266 if (get_field(env->virt, VIRT_ONOFF) != enable) {
267 tlb_flush(env_cpu(env));
268 }
269
ef6bb7b6
AF
270 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
271}
272
1c1c060a 273bool riscv_cpu_two_stage_lookup(int mmu_idx)
5a894dd7 274{
1c1c060a 275 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
5a894dd7
AF
276}
277
e3e7039c
MC
278int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
279{
280 CPURISCVState *env = &cpu->env;
281 if (env->miclaim & interrupts) {
282 return -1;
283 } else {
284 env->miclaim |= interrupts;
285 return 0;
286 }
287}
288
df354dd4
MC
289uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
290{
291 CPURISCVState *env = &cpu->env;
0a01f2ee 292 CPUState *cs = CPU(cpu);
7ec5d303
AF
293 uint32_t old = env->mip;
294 bool locked = false;
295
296 if (!qemu_mutex_iothread_locked()) {
297 locked = true;
298 qemu_mutex_lock_iothread();
299 }
df354dd4 300
7ec5d303 301 env->mip = (env->mip & ~mask) | (value & mask);
df354dd4 302
7ec5d303
AF
303 if (env->mip) {
304 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
305 } else {
306 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
307 }
0a01f2ee 308
7ec5d303
AF
309 if (locked) {
310 qemu_mutex_unlock_iothread();
311 }
df354dd4
MC
312
313 return old;
314}
315
a47ef6e9
BM
316void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t),
317 uint32_t arg)
c6957248
AP
318{
319 env->rdtime_fn = fn;
a47ef6e9 320 env->rdtime_fn_arg = arg;
c6957248
AP
321}
322
fb738839 323void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
df354dd4
MC
324{
325 if (newpriv > PRV_M) {
326 g_assert_not_reached();
327 }
328 if (newpriv == PRV_H) {
329 newpriv = PRV_U;
330 }
331 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
332 env->priv = newpriv;
c13b169f
JS
333
334 /*
335 * Clear the load reservation - otherwise a reservation placed in one
336 * context/process can be used by another, resulting in an SC succeeding
337 * incorrectly. Version 2.2 of the ISA specification explicitly requires
338 * this behaviour, while later revisions say that the kernel "should" use
339 * an SC instruction to force the yielding of a load reservation on a
340 * preemptive context switch. As a result, do both.
341 */
342 env->load_res = -1;
df354dd4
MC
343}
344
b297129a
JS
345/*
346 * get_physical_address_pmp - check PMP permission for this physical address
347 *
348 * Match the PMP region and check permission for this physical address and it's
349 * TLB page. Returns 0 if the permission checking was successful
350 *
351 * @env: CPURISCVState
352 * @prot: The returned protection attributes
353 * @tlb_size: TLB page size containing addr. It could be modified after PMP
354 * permission checking. NULL if not set TLB page for addr.
355 * @addr: The physical address to be checked permission
356 * @access_type: The type of MMU access
357 * @mode: Indicates current privilege level.
358 */
359static int get_physical_address_pmp(CPURISCVState *env, int *prot,
360 target_ulong *tlb_size, hwaddr addr,
361 int size, MMUAccessType access_type,
362 int mode)
363{
364 pmp_priv_t pmp_priv;
365 target_ulong tlb_size_pmp = 0;
366
367 if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
368 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
369 return TRANSLATE_SUCCESS;
370 }
371
372 if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv,
373 mode)) {
374 *prot = 0;
375 return TRANSLATE_PMP_FAIL;
376 }
377
378 *prot = pmp_priv_to_page_prot(pmp_priv);
379 if (tlb_size != NULL) {
380 if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) {
381 *tlb_size = tlb_size_pmp;
382 }
383 }
384
385 return TRANSLATE_SUCCESS;
386}
387
0c3e702a
MC
388/* get_physical_address - get the physical address for this virtual address
389 *
390 * Do a page table walk to obtain the physical address corresponding to a
391 * virtual address. Returns 0 if the translation was successful
392 *
393 * Adapted from Spike's mmu_t::translate and mmu_t::walk
394 *
1448689c
AF
395 * @env: CPURISCVState
396 * @physical: This will be set to the calculated physical address
397 * @prot: The returned protection attributes
398 * @addr: The virtual address to be translated
33a9a57d
YJ
399 * @fault_pte_addr: If not NULL, this will be set to fault pte address
400 * when a error occurs on pte address translation.
401 * This will already be shifted to match htval.
1448689c
AF
402 * @access_type: The type of MMU access
403 * @mmu_idx: Indicates current privilege level
404 * @first_stage: Are we in first stage translation?
405 * Second stage is used for hypervisor guest translation
36a18664 406 * @two_stage: Are we going to perform two stage translation
11c27c6d 407 * @is_debug: Is this access from a debugger or the monitor?
0c3e702a
MC
408 */
409static int get_physical_address(CPURISCVState *env, hwaddr *physical,
410 int *prot, target_ulong addr,
33a9a57d 411 target_ulong *fault_pte_addr,
1448689c 412 int access_type, int mmu_idx,
11c27c6d
JF
413 bool first_stage, bool two_stage,
414 bool is_debug)
0c3e702a
MC
415{
416 /* NOTE: the env->pc value visible here will not be
417 * correct, but the value visible to the exception handler
418 * (riscv_cpu_do_interrupt) is correct */
aacb578f
PD
419 MemTxResult res;
420 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
c445593d 421 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
36a18664 422 bool use_background = false;
0c3e702a 423
36a18664
AF
424 /*
425 * Check if we should use the background registers for the two
426 * stage translation. We don't need to check if we actually need
427 * two stage translation as that happened before this function
428 * was called. Background registers will be used if the guest has
429 * forced a two stage translation to be on (in HS or M mode).
430 */
db9ab38b 431 if (!riscv_cpu_virt_enabled(env) && two_stage) {
29b3361b
AF
432 use_background = true;
433 }
434
90ec1cff
GK
435 /* MPRV does not affect the virtual-machine load/store
436 instructions, HLV, HLVX, and HSV. */
437 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
438 mode = get_field(env->hstatus, HSTATUS_SPVP);
439 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
0c3e702a
MC
440 if (get_field(env->mstatus, MSTATUS_MPRV)) {
441 mode = get_field(env->mstatus, MSTATUS_MPP);
442 }
443 }
444
36a18664
AF
445 if (first_stage == false) {
446 /* We are in stage 2 translation, this is similar to stage 1. */
447 /* Stage 2 is always taken as U-mode */
448 mode = PRV_U;
449 }
450
0c3e702a
MC
451 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
452 *physical = addr;
453 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
454 return TRANSLATE_SUCCESS;
455 }
456
457 *prot = 0;
458
ddf78132 459 hwaddr base;
36a18664
AF
460 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
461
462 if (first_stage == true) {
463 mxr = get_field(env->mstatus, MSTATUS_MXR);
464 } else {
465 mxr = get_field(env->vsstatus, MSTATUS_MXR);
466 }
0c3e702a 467
1a9540d1
AF
468 if (first_stage == true) {
469 if (use_background) {
db23e5d9 470 if (riscv_cpu_mxl(env) == MXL_RV32) {
419ddf00
AF
471 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
472 vm = get_field(env->vsatp, SATP32_MODE);
473 } else {
474 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
475 vm = get_field(env->vsatp, SATP64_MODE);
476 }
36a18664 477 } else {
db23e5d9 478 if (riscv_cpu_mxl(env) == MXL_RV32) {
419ddf00
AF
479 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
480 vm = get_field(env->satp, SATP32_MODE);
481 } else {
482 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
483 vm = get_field(env->satp, SATP64_MODE);
484 }
0c3e702a 485 }
36a18664 486 widened = 0;
1a9540d1 487 } else {
db23e5d9 488 if (riscv_cpu_mxl(env) == MXL_RV32) {
994b6bb2
AF
489 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
490 vm = get_field(env->hgatp, SATP32_MODE);
491 } else {
492 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
493 vm = get_field(env->hgatp, SATP64_MODE);
494 }
1a9540d1
AF
495 widened = 2;
496 }
c63ca4ff 497 /* status.SUM will be ignored if execute on background */
11c27c6d 498 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
1a9540d1
AF
499 switch (vm) {
500 case VM_1_10_SV32:
501 levels = 2; ptidxbits = 10; ptesize = 4; break;
502 case VM_1_10_SV39:
503 levels = 3; ptidxbits = 9; ptesize = 8; break;
504 case VM_1_10_SV48:
505 levels = 4; ptidxbits = 9; ptesize = 8; break;
506 case VM_1_10_SV57:
507 levels = 5; ptidxbits = 9; ptesize = 8; break;
508 case VM_1_10_MBARE:
509 *physical = addr;
510 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
511 return TRANSLATE_SUCCESS;
512 default:
513 g_assert_not_reached();
0c3e702a
MC
514 }
515
3109cd98 516 CPUState *cs = env_cpu(env);
36a18664
AF
517 int va_bits = PGSHIFT + levels * ptidxbits + widened;
518 target_ulong mask, masked_msbs;
519
520 if (TARGET_LONG_BITS > (va_bits - 1)) {
521 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
522 } else {
523 mask = 0;
524 }
525 masked_msbs = (addr >> (va_bits - 1)) & mask;
526
0c3e702a
MC
527 if (masked_msbs != 0 && masked_msbs != mask) {
528 return TRANSLATE_FAIL;
529 }
530
531 int ptshift = (levels - 1) * ptidxbits;
532 int i;
533
534#if !TCG_OVERSIZED_GUEST
535restart:
536#endif
537 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
36a18664
AF
538 target_ulong idx;
539 if (i == 0) {
540 idx = (addr >> (PGSHIFT + ptshift)) &
541 ((1 << (ptidxbits + widened)) - 1);
542 } else {
543 idx = (addr >> (PGSHIFT + ptshift)) &
0c3e702a 544 ((1 << ptidxbits) - 1);
36a18664 545 }
0c3e702a
MC
546
547 /* check that physical address of PTE is legal */
36a18664
AF
548 hwaddr pte_addr;
549
550 if (two_stage && first_stage) {
38472890 551 int vbase_prot;
36a18664
AF
552 hwaddr vbase;
553
554 /* Do the second stage translation on the base PTE address. */
88914473 555 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
33a9a57d 556 base, NULL, MMU_DATA_LOAD,
11c27c6d
JF
557 mmu_idx, false, true,
558 is_debug);
88914473
AF
559
560 if (vbase_ret != TRANSLATE_SUCCESS) {
33a9a57d
YJ
561 if (fault_pte_addr) {
562 *fault_pte_addr = (base + idx * ptesize) >> 2;
563 }
564 return TRANSLATE_G_STAGE_FAIL;
88914473 565 }
36a18664
AF
566
567 pte_addr = vbase + idx * ptesize;
568 } else {
569 pte_addr = base + idx * ptesize;
570 }
1f447aec 571
b297129a
JS
572 int pmp_prot;
573 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
574 sizeof(target_ulong),
575 MMU_DATA_LOAD, PRV_S);
576 if (pmp_ret != TRANSLATE_SUCCESS) {
1f447aec
HA
577 return TRANSLATE_PMP_FAIL;
578 }
aacb578f 579
f08c7ff3 580 target_ulong pte;
db23e5d9 581 if (riscv_cpu_mxl(env) == MXL_RV32) {
f08c7ff3
AF
582 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
583 } else {
584 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
585 }
586
aacb578f
PD
587 if (res != MEMTX_OK) {
588 return TRANSLATE_FAIL;
589 }
590
ddf78132 591 hwaddr ppn = pte >> PTE_PPN_SHIFT;
0c3e702a 592
c3b03e58
MC
593 if (!(pte & PTE_V)) {
594 /* Invalid PTE */
595 return TRANSLATE_FAIL;
596 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
597 /* Inner PTE, continue walking */
0c3e702a 598 base = ppn << PGSHIFT;
c3b03e58
MC
599 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
600 /* Reserved leaf PTE flags: PTE_W */
601 return TRANSLATE_FAIL;
602 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
603 /* Reserved leaf PTE flags: PTE_W + PTE_X */
604 return TRANSLATE_FAIL;
605 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
606 (!sum || access_type == MMU_INST_FETCH))) {
607 /* User PTE flags when not U mode and mstatus.SUM is not set,
608 or the access type is an instruction fetch */
609 return TRANSLATE_FAIL;
610 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
611 /* Supervisor PTE flags when not S mode */
612 return TRANSLATE_FAIL;
613 } else if (ppn & ((1ULL << ptshift) - 1)) {
614 /* Misaligned PPN */
615 return TRANSLATE_FAIL;
616 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
617 ((pte & PTE_X) && mxr))) {
618 /* Read access check failed */
619 return TRANSLATE_FAIL;
620 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
621 /* Write access check failed */
622 return TRANSLATE_FAIL;
623 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
624 /* Fetch access check failed */
625 return TRANSLATE_FAIL;
0c3e702a
MC
626 } else {
627 /* if necessary, set accessed and dirty bits. */
628 target_ulong updated_pte = pte | PTE_A |
629 (access_type == MMU_DATA_STORE ? PTE_D : 0);
630
631 /* Page table updates need to be atomic with MTTCG enabled */
632 if (updated_pte != pte) {
c3b03e58
MC
633 /*
634 * - if accessed or dirty bits need updating, and the PTE is
635 * in RAM, then we do so atomically with a compare and swap.
636 * - if the PTE is in IO space or ROM, then it can't be updated
637 * and we return TRANSLATE_FAIL.
638 * - if the PTE changed by the time we went to update it, then
639 * it is no longer valid and we must re-walk the page table.
640 */
0c3e702a
MC
641 MemoryRegion *mr;
642 hwaddr l = sizeof(target_ulong), addr1;
643 mr = address_space_translate(cs->as, pte_addr,
bc6b1cec 644 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
c3b03e58 645 if (memory_region_is_ram(mr)) {
0c3e702a
MC
646 target_ulong *pte_pa =
647 qemu_map_ram_ptr(mr->ram_block, addr1);
648#if TCG_OVERSIZED_GUEST
649 /* MTTCG is not enabled on oversized TCG guests so
650 * page table updates do not need to be atomic */
651 *pte_pa = pte = updated_pte;
652#else
653 target_ulong old_pte =
d73415a3 654 qatomic_cmpxchg(pte_pa, pte, updated_pte);
0c3e702a
MC
655 if (old_pte != pte) {
656 goto restart;
657 } else {
658 pte = updated_pte;
659 }
660#endif
661 } else {
662 /* misconfigured PTE in ROM (AD bits are not preset) or
663 * PTE is in IO space and can't be updated atomically */
664 return TRANSLATE_FAIL;
665 }
666 }
667
668 /* for superpage mappings, make a fake leaf PTE for the TLB's
669 benefit. */
670 target_ulong vpn = addr >> PGSHIFT;
9ef82119
ZL
671 *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) |
672 (addr & ~TARGET_PAGE_MASK);
0c3e702a 673
c3b03e58
MC
674 /* set permissions on the TLB entry */
675 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
0c3e702a
MC
676 *prot |= PAGE_READ;
677 }
678 if ((pte & PTE_X)) {
679 *prot |= PAGE_EXEC;
680 }
c3b03e58
MC
681 /* add write permission on stores or if the page is already dirty,
682 so that we TLB miss on later writes to update the dirty bit */
0c3e702a
MC
683 if ((pte & PTE_W) &&
684 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
685 *prot |= PAGE_WRITE;
686 }
687 return TRANSLATE_SUCCESS;
688 }
689 }
690 return TRANSLATE_FAIL;
691}
692
693static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1448689c 694 MMUAccessType access_type, bool pmp_violation,
1c1c060a 695 bool first_stage, bool two_stage)
0c3e702a 696{
3109cd98 697 CPUState *cs = env_cpu(env);
994b6bb2 698 int page_fault_exceptions, vm;
419ddf00
AF
699 uint64_t stap_mode;
700
db23e5d9 701 if (riscv_cpu_mxl(env) == MXL_RV32) {
419ddf00
AF
702 stap_mode = SATP32_MODE;
703 } else {
704 stap_mode = SATP64_MODE;
705 }
994b6bb2 706
1448689c 707 if (first_stage) {
419ddf00 708 vm = get_field(env->satp, stap_mode);
1448689c 709 } else {
419ddf00 710 vm = get_field(env->hgatp, stap_mode);
1448689c 711 }
419ddf00 712
994b6bb2
AF
713 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
714
0c3e702a
MC
715 switch (access_type) {
716 case MMU_INST_FETCH:
b2ef6ab9
AF
717 if (riscv_cpu_virt_enabled(env) && !first_stage) {
718 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
719 } else {
720 cs->exception_index = page_fault_exceptions ?
721 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
722 }
0c3e702a
MC
723 break;
724 case MMU_DATA_LOAD:
1c1c060a 725 if (two_stage && !first_stage) {
b2ef6ab9
AF
726 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
727 } else {
728 cs->exception_index = page_fault_exceptions ?
729 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
730 }
0c3e702a
MC
731 break;
732 case MMU_DATA_STORE:
1c1c060a 733 if (two_stage && !first_stage) {
b2ef6ab9
AF
734 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
735 } else {
736 cs->exception_index = page_fault_exceptions ?
737 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
738 }
0c3e702a
MC
739 break;
740 default:
741 g_assert_not_reached();
742 }
743 env->badaddr = address;
ec352d0c 744 env->two_stage_lookup = two_stage;
0c3e702a
MC
745}
746
747hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
748{
749 RISCVCPU *cpu = RISCV_CPU(cs);
36a18664 750 CPURISCVState *env = &cpu->env;
0c3e702a
MC
751 hwaddr phys_addr;
752 int prot;
753 int mmu_idx = cpu_mmu_index(&cpu->env, false);
754
33a9a57d 755 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
11c27c6d 756 true, riscv_cpu_virt_enabled(env), true)) {
0c3e702a
MC
757 return -1;
758 }
36a18664
AF
759
760 if (riscv_cpu_virt_enabled(env)) {
33a9a57d 761 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
11c27c6d 762 0, mmu_idx, false, true, true)) {
36a18664
AF
763 return -1;
764 }
765 }
766
9ef82119 767 return phys_addr & TARGET_PAGE_MASK;
0c3e702a
MC
768}
769
37207e12
PD
770void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
771 vaddr addr, unsigned size,
772 MMUAccessType access_type,
773 int mmu_idx, MemTxAttrs attrs,
774 MemTxResult response, uintptr_t retaddr)
cbf58276
MC
775{
776 RISCVCPU *cpu = RISCV_CPU(cs);
777 CPURISCVState *env = &cpu->env;
778
37207e12 779 if (access_type == MMU_DATA_STORE) {
cbf58276 780 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
f9e580c1 781 } else if (access_type == MMU_DATA_LOAD) {
cbf58276 782 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
f9e580c1
EB
783 } else {
784 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
cbf58276
MC
785 }
786
787 env->badaddr = addr;
ec352d0c
GK
788 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
789 riscv_cpu_two_stage_lookup(mmu_idx);
37207e12 790 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
cbf58276
MC
791}
792
0c3e702a
MC
793void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
794 MMUAccessType access_type, int mmu_idx,
795 uintptr_t retaddr)
796{
797 RISCVCPU *cpu = RISCV_CPU(cs);
798 CPURISCVState *env = &cpu->env;
799 switch (access_type) {
800 case MMU_INST_FETCH:
801 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
802 break;
803 case MMU_DATA_LOAD:
804 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
805 break;
806 case MMU_DATA_STORE:
807 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
808 break;
809 default:
810 g_assert_not_reached();
811 }
812 env->badaddr = addr;
ec352d0c
GK
813 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
814 riscv_cpu_two_stage_lookup(mmu_idx);
fb738839 815 riscv_raise_exception(env, cs->exception_index, retaddr);
0c3e702a 816}
cbc183d2 817#endif /* !CONFIG_USER_ONLY */
0c3e702a 818
8a4ca3c1
RH
819bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
820 MMUAccessType access_type, int mmu_idx,
821 bool probe, uintptr_t retaddr)
0c3e702a
MC
822{
823 RISCVCPU *cpu = RISCV_CPU(cs);
824 CPURISCVState *env = &cpu->env;
2921343b 825#ifndef CONFIG_USER_ONLY
36a18664 826 vaddr im_address;
0c3e702a 827 hwaddr pa = 0;
b297129a 828 int prot, prot2, prot_pmp;
635b0b0e 829 bool pmp_violation = false;
36a18664 830 bool first_stage_error = true;
1c1c060a 831 bool two_stage_lookup = false;
0c3e702a 832 int ret = TRANSLATE_FAIL;
cc0fdb29 833 int mode = mmu_idx;
b297129a
JS
834 /* default TLB page size */
835 target_ulong tlb_size = TARGET_PAGE_SIZE;
0c3e702a 836
36a18664
AF
837 env->guest_phys_fault_addr = 0;
838
8a4ca3c1
RH
839 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
840 __func__, address, access_type, mmu_idx);
841
90ec1cff
GK
842 /* MPRV does not affect the virtual-machine load/store
843 instructions, HLV, HLVX, and HSV. */
844 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
845 mode = get_field(env->hstatus, HSTATUS_SPVP);
846 } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
847 get_field(env->mstatus, MSTATUS_MPRV)) {
848 mode = get_field(env->mstatus, MSTATUS_MPP);
849 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
850 two_stage_lookup = true;
cc0fdb29
HA
851 }
852 }
853
29b3361b 854 if (riscv_cpu_virt_enabled(env) ||
1c1c060a
AF
855 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
856 access_type != MMU_INST_FETCH)) {
36a18664 857 /* Two stage lookup */
33a9a57d
YJ
858 ret = get_physical_address(env, &pa, &prot, address,
859 &env->guest_phys_fault_addr, access_type,
11c27c6d 860 mmu_idx, true, true, false);
36a18664 861
33a9a57d
YJ
862 /*
863 * A G-stage exception may be triggered during two state lookup.
864 * And the env->guest_phys_fault_addr has already been set in
865 * get_physical_address().
866 */
867 if (ret == TRANSLATE_G_STAGE_FAIL) {
868 first_stage_error = false;
869 access_type = MMU_DATA_LOAD;
870 }
871
36a18664
AF
872 qemu_log_mask(CPU_LOG_MMU,
873 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
874 TARGET_FMT_plx " prot %d\n",
875 __func__, address, ret, pa, prot);
876
33a9a57d 877 if (ret == TRANSLATE_SUCCESS) {
36a18664
AF
878 /* Second stage lookup */
879 im_address = pa;
880
33a9a57d 881 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
11c27c6d
JF
882 access_type, mmu_idx, false, true,
883 false);
36a18664
AF
884
885 qemu_log_mask(CPU_LOG_MMU,
886 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
887 TARGET_FMT_plx " prot %d\n",
8f67cd6d
AF
888 __func__, im_address, ret, pa, prot2);
889
890 prot &= prot2;
36a18664 891
b297129a
JS
892 if (ret == TRANSLATE_SUCCESS) {
893 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
894 size, access_type, mode);
663e1193
JS
895
896 qemu_log_mask(CPU_LOG_MMU,
897 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
898 " %d tlb_size " TARGET_FMT_lu "\n",
899 __func__, pa, ret, prot_pmp, tlb_size);
900
b297129a 901 prot &= prot_pmp;
36a18664
AF
902 }
903
904 if (ret != TRANSLATE_SUCCESS) {
905 /*
906 * Guest physical address translation failed, this is a HS
907 * level exception
908 */
909 first_stage_error = false;
910 env->guest_phys_fault_addr = (im_address |
911 (address &
912 (TARGET_PAGE_SIZE - 1))) >> 2;
913 }
914 }
915 } else {
916 /* Single stage lookup */
33a9a57d 917 ret = get_physical_address(env, &pa, &prot, address, NULL,
11c27c6d 918 access_type, mmu_idx, true, false, false);
36a18664
AF
919
920 qemu_log_mask(CPU_LOG_MMU,
921 "%s address=%" VADDR_PRIx " ret %d physical "
922 TARGET_FMT_plx " prot %d\n",
923 __func__, address, ret, pa, prot);
8a4ca3c1 924
b297129a
JS
925 if (ret == TRANSLATE_SUCCESS) {
926 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
927 size, access_type, mode);
663e1193
JS
928
929 qemu_log_mask(CPU_LOG_MMU,
930 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
931 " %d tlb_size " TARGET_FMT_lu "\n",
932 __func__, pa, ret, prot_pmp, tlb_size);
933
b297129a
JS
934 prot &= prot_pmp;
935 }
1f447aec 936 }
b297129a 937
1f447aec 938 if (ret == TRANSLATE_PMP_FAIL) {
635b0b0e 939 pmp_violation = true;
0c3e702a 940 }
36a18664 941
0c3e702a 942 if (ret == TRANSLATE_SUCCESS) {
b297129a
JS
943 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
944 prot, mmu_idx, tlb_size);
8a4ca3c1
RH
945 return true;
946 } else if (probe) {
947 return false;
948 } else {
1c1c060a
AF
949 raise_mmu_exception(env, address, access_type, pmp_violation,
950 first_stage_error,
951 riscv_cpu_virt_enabled(env) ||
952 riscv_cpu_two_stage_lookup(mmu_idx));
8a4ca3c1 953 riscv_raise_exception(env, cs->exception_index, retaddr);
0c3e702a 954 }
36a18664
AF
955
956 return true;
957
0c3e702a 958#else
8a4ca3c1 959 switch (access_type) {
0c3e702a
MC
960 case MMU_INST_FETCH:
961 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
962 break;
963 case MMU_DATA_LOAD:
964 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
965 break;
966 case MMU_DATA_STORE:
967 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
968 break;
2921343b
GM
969 default:
970 g_assert_not_reached();
0c3e702a 971 }
2921343b 972 env->badaddr = address;
8a4ca3c1 973 cpu_loop_exit_restore(cs, retaddr);
0c3e702a 974#endif
0c3e702a
MC
975}
976
977/*
978 * Handle Traps
979 *
980 * Adapted from Spike's processor_t::take_trap.
981 *
982 */
983void riscv_cpu_do_interrupt(CPUState *cs)
984{
985#if !defined(CONFIG_USER_ONLY)
986
987 RISCVCPU *cpu = RISCV_CPU(cs);
988 CPURISCVState *env = &cpu->env;
284d697c 989 uint64_t s;
0c3e702a 990
acbbb94e
MC
991 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
992 * so we mask off the MSB and separate into trap type and cause.
993 */
994 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
995 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
996 target_ulong deleg = async ? env->mideleg : env->medeleg;
4aeb9e26 997 bool write_tval = false;
acbbb94e 998 target_ulong tval = 0;
30675539
AF
999 target_ulong htval = 0;
1000 target_ulong mtval2 = 0;
acbbb94e 1001
a10b9d93
KP
1002 if (cause == RISCV_EXCP_SEMIHOST) {
1003 if (env->priv >= PRV_S) {
1004 env->gpr[xA0] = do_common_semihosting(cs);
1005 env->pc += 4;
1006 return;
1007 }
1008 cause = RISCV_EXCP_BREAKPOINT;
1009 }
1010
acbbb94e
MC
1011 if (!async) {
1012 /* set tval to badaddr for traps with address information */
1013 switch (cause) {
ab67a1d0
AF
1014 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1015 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1016 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
acbbb94e
MC
1017 case RISCV_EXCP_INST_ADDR_MIS:
1018 case RISCV_EXCP_INST_ACCESS_FAULT:
1019 case RISCV_EXCP_LOAD_ADDR_MIS:
1020 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1021 case RISCV_EXCP_LOAD_ACCESS_FAULT:
1022 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1023 case RISCV_EXCP_INST_PAGE_FAULT:
1024 case RISCV_EXCP_LOAD_PAGE_FAULT:
1025 case RISCV_EXCP_STORE_PAGE_FAULT:
4aeb9e26 1026 write_tval = true;
acbbb94e
MC
1027 tval = env->badaddr;
1028 break;
1029 default:
1030 break;
0c3e702a 1031 }
acbbb94e
MC
1032 /* ecall is dispatched as one cause so translate based on mode */
1033 if (cause == RISCV_EXCP_U_ECALL) {
1034 assert(env->priv <= 3);
5eb9e782
AF
1035
1036 if (env->priv == PRV_M) {
1037 cause = RISCV_EXCP_M_ECALL;
1038 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
1039 cause = RISCV_EXCP_VS_ECALL;
1040 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
1041 cause = RISCV_EXCP_S_ECALL;
1042 } else if (env->priv == PRV_U) {
1043 cause = RISCV_EXCP_U_ECALL;
1044 }
0c3e702a
MC
1045 }
1046 }
1047
c51a3f5d 1048 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
69430111
AF
1049 riscv_cpu_get_trap_name(cause, async));
1050
1051 qemu_log_mask(CPU_LOG_INT,
1052 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1053 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1054 __func__, env->mhartid, async, cause, env->pc, tval,
1055 riscv_cpu_get_trap_name(cause, async));
0c3e702a 1056
acbbb94e
MC
1057 if (env->priv <= PRV_S &&
1058 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
0c3e702a 1059 /* handle the trap in S-mode */
5eb9e782
AF
1060 if (riscv_has_ext(env, RVH)) {
1061 target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
1c1c060a 1062
ec352d0c 1063 if (env->two_stage_lookup && write_tval) {
9034e90a
AF
1064 /*
1065 * If we are writing a guest virtual address to stval, set
1066 * this to 1. If we are trapping to VS we will set this to 0
1067 * later.
1068 */
1069 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1);
1070 } else {
1071 /* For other HS-mode traps, we set this to 0. */
1072 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
1073 }
1074
50d16087 1075 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
84b1c04b 1076 /* Trap to VS mode */
c5969a3a
RK
1077 /*
1078 * See if we need to adjust cause. Yes if its VS mode interrupt
1079 * no if hypervisor has delegated one of hs mode's interrupt
1080 */
1081 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
84b1c04b 1082 cause == IRQ_VS_EXT) {
c5969a3a 1083 cause = cause - 1;
84b1c04b 1084 }
9034e90a 1085 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
5eb9e782
AF
1086 } else if (riscv_cpu_virt_enabled(env)) {
1087 /* Trap into HS mode, from virt */
1088 riscv_cpu_swap_hypervisor_regs(env);
f2d5850f 1089 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
ace54453 1090 env->priv);
5eb9e782
AF
1091 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1092 riscv_cpu_virt_enabled(env));
1093
30675539
AF
1094 htval = env->guest_phys_fault_addr;
1095
5eb9e782 1096 riscv_cpu_set_virt_enabled(env, 0);
5eb9e782
AF
1097 } else {
1098 /* Trap into HS mode */
ec352d0c 1099 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
30675539 1100 htval = env->guest_phys_fault_addr;
5eb9e782
AF
1101 }
1102 }
1103
1104 s = env->mstatus;
1a9540d1 1105 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
0c3e702a
MC
1106 s = set_field(s, MSTATUS_SPP, env->priv);
1107 s = set_field(s, MSTATUS_SIE, 0);
c7b95171 1108 env->mstatus = s;
16fdb8ff 1109 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
acbbb94e 1110 env->sepc = env->pc;
ac12b601 1111 env->stval = tval;
30675539 1112 env->htval = htval;
acbbb94e
MC
1113 env->pc = (env->stvec >> 2 << 2) +
1114 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
fb738839 1115 riscv_cpu_set_mode(env, PRV_S);
0c3e702a 1116 } else {
acbbb94e 1117 /* handle the trap in M-mode */
5eb9e782
AF
1118 if (riscv_has_ext(env, RVH)) {
1119 if (riscv_cpu_virt_enabled(env)) {
1120 riscv_cpu_swap_hypervisor_regs(env);
1121 }
1122 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
284d697c 1123 riscv_cpu_virt_enabled(env));
9034e90a
AF
1124 if (riscv_cpu_virt_enabled(env) && tval) {
1125 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1126 }
5eb9e782 1127
30675539
AF
1128 mtval2 = env->guest_phys_fault_addr;
1129
5eb9e782
AF
1130 /* Trapping to M mode, virt is disabled */
1131 riscv_cpu_set_virt_enabled(env, 0);
5eb9e782
AF
1132 }
1133
1134 s = env->mstatus;
1a9540d1 1135 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
0c3e702a
MC
1136 s = set_field(s, MSTATUS_MPP, env->priv);
1137 s = set_field(s, MSTATUS_MIE, 0);
c7b95171 1138 env->mstatus = s;
acbbb94e
MC
1139 env->mcause = cause | ~(((target_ulong)-1) >> async);
1140 env->mepc = env->pc;
ac12b601 1141 env->mtval = tval;
30675539 1142 env->mtval2 = mtval2;
acbbb94e
MC
1143 env->pc = (env->mtvec >> 2 << 2) +
1144 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
fb738839 1145 riscv_cpu_set_mode(env, PRV_M);
0c3e702a 1146 }
d9360e96
MC
1147
1148 /* NOTE: it is not necessary to yield load reservations here. It is only
1149 * necessary for an SC from "another hart" to cause a load reservation
1150 * to be yielded. Refer to the memory consistency model section of the
1151 * RISC-V ISA Specification.
1152 */
1153
ec352d0c 1154 env->two_stage_lookup = false;
0c3e702a 1155#endif
330d2ae3 1156 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
0c3e702a 1157}