]> git.proxmox.com Git - mirror_qemu.git/blame - target/riscv/cpu_helper.c
target/riscv: Fix PMP range boundary address bug
[mirror_qemu.git] / target / riscv / cpu_helper.c
CommitLineData
0c3e702a 1/*
df354dd4 2 * RISC-V CPU helpers for qemu.
0c3e702a
MC
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
21#include "qemu/log.h"
22#include "cpu.h"
23#include "exec/exec-all.h"
24#include "tcg-op.h"
929f0a7f 25#include "trace.h"
0c3e702a
MC
26
27int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
28{
29#ifdef CONFIG_USER_ONLY
30 return 0;
31#else
32 return env->priv;
33#endif
34}
35
36#ifndef CONFIG_USER_ONLY
efbdbc26 37static int riscv_cpu_local_irq_pending(CPURISCVState *env)
0c3e702a 38{
efbdbc26
MC
39 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
40 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
41 target_ulong pending = atomic_read(&env->mip) & env->mie;
42 target_ulong mie = env->priv < PRV_M || (env->priv == PRV_M && mstatus_mie);
43 target_ulong sie = env->priv < PRV_S || (env->priv == PRV_S && mstatus_sie);
44 target_ulong irqs = (pending & ~env->mideleg & -mie) |
45 (pending & env->mideleg & -sie);
0c3e702a 46
efbdbc26
MC
47 if (irqs) {
48 return ctz64(irqs); /* since non-zero */
0c3e702a
MC
49 } else {
50 return EXCP_NONE; /* indicates no pending interrupt */
51 }
52}
53#endif
54
55bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
56{
57#if !defined(CONFIG_USER_ONLY)
58 if (interrupt_request & CPU_INTERRUPT_HARD) {
59 RISCVCPU *cpu = RISCV_CPU(cs);
60 CPURISCVState *env = &cpu->env;
efbdbc26 61 int interruptno = riscv_cpu_local_irq_pending(env);
0c3e702a
MC
62 if (interruptno >= 0) {
63 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
64 riscv_cpu_do_interrupt(cs);
65 return true;
66 }
67 }
68#endif
69 return false;
70}
71
72#if !defined(CONFIG_USER_ONLY)
73
e3e7039c
MC
74int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
75{
76 CPURISCVState *env = &cpu->env;
77 if (env->miclaim & interrupts) {
78 return -1;
79 } else {
80 env->miclaim |= interrupts;
81 return 0;
82 }
83}
84
0a01f2ee
AF
85struct CpuAsyncInfo {
86 uint32_t new_mip;
87};
88
89static void riscv_cpu_update_mip_irqs_async(CPUState *target_cpu_state,
90 run_on_cpu_data data)
91{
0a01f2ee
AF
92 struct CpuAsyncInfo *info = (struct CpuAsyncInfo *) data.host_ptr;
93
94 if (info->new_mip) {
3109cd98 95 cpu_interrupt(target_cpu_state, CPU_INTERRUPT_HARD);
0a01f2ee 96 } else {
3109cd98 97 cpu_reset_interrupt(target_cpu_state, CPU_INTERRUPT_HARD);
0a01f2ee
AF
98 }
99
100 g_free(info);
101}
102
df354dd4
MC
103uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
104{
105 CPURISCVState *env = &cpu->env;
0a01f2ee
AF
106 CPUState *cs = CPU(cpu);
107 struct CpuAsyncInfo *info;
df354dd4
MC
108 uint32_t old, new, cmp = atomic_read(&env->mip);
109
110 do {
111 old = cmp;
112 new = (old & ~mask) | (value & mask);
113 cmp = atomic_cmpxchg(&env->mip, old, new);
114 } while (old != cmp);
115
0a01f2ee
AF
116 info = g_new(struct CpuAsyncInfo, 1);
117 info->new_mip = new;
118
119 async_run_on_cpu(cs, riscv_cpu_update_mip_irqs_async,
120 RUN_ON_CPU_HOST_PTR(info));
df354dd4
MC
121
122 return old;
123}
124
fb738839 125void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
df354dd4
MC
126{
127 if (newpriv > PRV_M) {
128 g_assert_not_reached();
129 }
130 if (newpriv == PRV_H) {
131 newpriv = PRV_U;
132 }
133 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
134 env->priv = newpriv;
135}
136
0c3e702a
MC
137/* get_physical_address - get the physical address for this virtual address
138 *
139 * Do a page table walk to obtain the physical address corresponding to a
140 * virtual address. Returns 0 if the translation was successful
141 *
142 * Adapted from Spike's mmu_t::translate and mmu_t::walk
143 *
144 */
145static int get_physical_address(CPURISCVState *env, hwaddr *physical,
146 int *prot, target_ulong addr,
147 int access_type, int mmu_idx)
148{
149 /* NOTE: the env->pc value visible here will not be
150 * correct, but the value visible to the exception handler
151 * (riscv_cpu_do_interrupt) is correct */
152
153 int mode = mmu_idx;
154
155 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
156 if (get_field(env->mstatus, MSTATUS_MPRV)) {
157 mode = get_field(env->mstatus, MSTATUS_MPP);
158 }
159 }
160
161 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
162 *physical = addr;
163 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
164 return TRANSLATE_SUCCESS;
165 }
166
167 *prot = 0;
168
169 target_ulong base;
170 int levels, ptidxbits, ptesize, vm, sum;
171 int mxr = get_field(env->mstatus, MSTATUS_MXR);
172
173 if (env->priv_ver >= PRIV_VERSION_1_10_0) {
174 base = get_field(env->satp, SATP_PPN) << PGSHIFT;
175 sum = get_field(env->mstatus, MSTATUS_SUM);
176 vm = get_field(env->satp, SATP_MODE);
177 switch (vm) {
178 case VM_1_10_SV32:
179 levels = 2; ptidxbits = 10; ptesize = 4; break;
180 case VM_1_10_SV39:
181 levels = 3; ptidxbits = 9; ptesize = 8; break;
182 case VM_1_10_SV48:
183 levels = 4; ptidxbits = 9; ptesize = 8; break;
184 case VM_1_10_SV57:
185 levels = 5; ptidxbits = 9; ptesize = 8; break;
186 case VM_1_10_MBARE:
187 *physical = addr;
188 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
189 return TRANSLATE_SUCCESS;
190 default:
191 g_assert_not_reached();
192 }
193 } else {
194 base = env->sptbr << PGSHIFT;
195 sum = !get_field(env->mstatus, MSTATUS_PUM);
196 vm = get_field(env->mstatus, MSTATUS_VM);
197 switch (vm) {
198 case VM_1_09_SV32:
199 levels = 2; ptidxbits = 10; ptesize = 4; break;
200 case VM_1_09_SV39:
201 levels = 3; ptidxbits = 9; ptesize = 8; break;
202 case VM_1_09_SV48:
203 levels = 4; ptidxbits = 9; ptesize = 8; break;
204 case VM_1_09_MBARE:
205 *physical = addr;
206 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
207 return TRANSLATE_SUCCESS;
208 default:
209 g_assert_not_reached();
210 }
211 }
212
3109cd98 213 CPUState *cs = env_cpu(env);
0c3e702a
MC
214 int va_bits = PGSHIFT + levels * ptidxbits;
215 target_ulong mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
216 target_ulong masked_msbs = (addr >> (va_bits - 1)) & mask;
217 if (masked_msbs != 0 && masked_msbs != mask) {
218 return TRANSLATE_FAIL;
219 }
220
221 int ptshift = (levels - 1) * ptidxbits;
222 int i;
223
224#if !TCG_OVERSIZED_GUEST
225restart:
226#endif
227 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
228 target_ulong idx = (addr >> (PGSHIFT + ptshift)) &
229 ((1 << ptidxbits) - 1);
230
231 /* check that physical address of PTE is legal */
232 target_ulong pte_addr = base + idx * ptesize;
233#if defined(TARGET_RISCV32)
234 target_ulong pte = ldl_phys(cs->as, pte_addr);
235#elif defined(TARGET_RISCV64)
236 target_ulong pte = ldq_phys(cs->as, pte_addr);
237#endif
238 target_ulong ppn = pte >> PTE_PPN_SHIFT;
239
c3b03e58
MC
240 if (!(pte & PTE_V)) {
241 /* Invalid PTE */
242 return TRANSLATE_FAIL;
243 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
244 /* Inner PTE, continue walking */
0c3e702a 245 base = ppn << PGSHIFT;
c3b03e58
MC
246 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
247 /* Reserved leaf PTE flags: PTE_W */
248 return TRANSLATE_FAIL;
249 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
250 /* Reserved leaf PTE flags: PTE_W + PTE_X */
251 return TRANSLATE_FAIL;
252 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
253 (!sum || access_type == MMU_INST_FETCH))) {
254 /* User PTE flags when not U mode and mstatus.SUM is not set,
255 or the access type is an instruction fetch */
256 return TRANSLATE_FAIL;
257 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
258 /* Supervisor PTE flags when not S mode */
259 return TRANSLATE_FAIL;
260 } else if (ppn & ((1ULL << ptshift) - 1)) {
261 /* Misaligned PPN */
262 return TRANSLATE_FAIL;
263 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
264 ((pte & PTE_X) && mxr))) {
265 /* Read access check failed */
266 return TRANSLATE_FAIL;
267 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
268 /* Write access check failed */
269 return TRANSLATE_FAIL;
270 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
271 /* Fetch access check failed */
272 return TRANSLATE_FAIL;
0c3e702a
MC
273 } else {
274 /* if necessary, set accessed and dirty bits. */
275 target_ulong updated_pte = pte | PTE_A |
276 (access_type == MMU_DATA_STORE ? PTE_D : 0);
277
278 /* Page table updates need to be atomic with MTTCG enabled */
279 if (updated_pte != pte) {
c3b03e58
MC
280 /*
281 * - if accessed or dirty bits need updating, and the PTE is
282 * in RAM, then we do so atomically with a compare and swap.
283 * - if the PTE is in IO space or ROM, then it can't be updated
284 * and we return TRANSLATE_FAIL.
285 * - if the PTE changed by the time we went to update it, then
286 * it is no longer valid and we must re-walk the page table.
287 */
0c3e702a
MC
288 MemoryRegion *mr;
289 hwaddr l = sizeof(target_ulong), addr1;
290 mr = address_space_translate(cs->as, pte_addr,
bc6b1cec 291 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
c3b03e58 292 if (memory_region_is_ram(mr)) {
0c3e702a
MC
293 target_ulong *pte_pa =
294 qemu_map_ram_ptr(mr->ram_block, addr1);
295#if TCG_OVERSIZED_GUEST
296 /* MTTCG is not enabled on oversized TCG guests so
297 * page table updates do not need to be atomic */
298 *pte_pa = pte = updated_pte;
299#else
300 target_ulong old_pte =
301 atomic_cmpxchg(pte_pa, pte, updated_pte);
302 if (old_pte != pte) {
303 goto restart;
304 } else {
305 pte = updated_pte;
306 }
307#endif
308 } else {
309 /* misconfigured PTE in ROM (AD bits are not preset) or
310 * PTE is in IO space and can't be updated atomically */
311 return TRANSLATE_FAIL;
312 }
313 }
314
315 /* for superpage mappings, make a fake leaf PTE for the TLB's
316 benefit. */
317 target_ulong vpn = addr >> PGSHIFT;
318 *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
319
c3b03e58
MC
320 /* set permissions on the TLB entry */
321 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
0c3e702a
MC
322 *prot |= PAGE_READ;
323 }
324 if ((pte & PTE_X)) {
325 *prot |= PAGE_EXEC;
326 }
c3b03e58
MC
327 /* add write permission on stores or if the page is already dirty,
328 so that we TLB miss on later writes to update the dirty bit */
0c3e702a
MC
329 if ((pte & PTE_W) &&
330 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
331 *prot |= PAGE_WRITE;
332 }
333 return TRANSLATE_SUCCESS;
334 }
335 }
336 return TRANSLATE_FAIL;
337}
338
339static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
340 MMUAccessType access_type)
341{
3109cd98 342 CPUState *cs = env_cpu(env);
0c3e702a
MC
343 int page_fault_exceptions =
344 (env->priv_ver >= PRIV_VERSION_1_10_0) &&
345 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE;
346 switch (access_type) {
347 case MMU_INST_FETCH:
348 cs->exception_index = page_fault_exceptions ?
349 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
350 break;
351 case MMU_DATA_LOAD:
352 cs->exception_index = page_fault_exceptions ?
353 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
354 break;
355 case MMU_DATA_STORE:
356 cs->exception_index = page_fault_exceptions ?
357 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
358 break;
359 default:
360 g_assert_not_reached();
361 }
362 env->badaddr = address;
363}
364
365hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
366{
367 RISCVCPU *cpu = RISCV_CPU(cs);
368 hwaddr phys_addr;
369 int prot;
370 int mmu_idx = cpu_mmu_index(&cpu->env, false);
371
372 if (get_physical_address(&cpu->env, &phys_addr, &prot, addr, 0, mmu_idx)) {
373 return -1;
374 }
375 return phys_addr;
376}
377
378void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
379 MMUAccessType access_type, int mmu_idx,
380 uintptr_t retaddr)
381{
382 RISCVCPU *cpu = RISCV_CPU(cs);
383 CPURISCVState *env = &cpu->env;
384 switch (access_type) {
385 case MMU_INST_FETCH:
386 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
387 break;
388 case MMU_DATA_LOAD:
389 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
390 break;
391 case MMU_DATA_STORE:
392 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
393 break;
394 default:
395 g_assert_not_reached();
396 }
397 env->badaddr = addr;
fb738839 398 riscv_raise_exception(env, cs->exception_index, retaddr);
0c3e702a 399}
0c3e702a
MC
400#endif
401
8a4ca3c1
RH
402bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
403 MMUAccessType access_type, int mmu_idx,
404 bool probe, uintptr_t retaddr)
0c3e702a 405{
8a4ca3c1 406#ifndef CONFIG_USER_ONLY
0c3e702a
MC
407 RISCVCPU *cpu = RISCV_CPU(cs);
408 CPURISCVState *env = &cpu->env;
0c3e702a
MC
409 hwaddr pa = 0;
410 int prot;
0c3e702a
MC
411 int ret = TRANSLATE_FAIL;
412
8a4ca3c1
RH
413 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
414 __func__, address, access_type, mmu_idx);
415
416 ret = get_physical_address(env, &pa, &prot, address, access_type, mmu_idx);
0c3e702a 417
0c3e702a 418 qemu_log_mask(CPU_LOG_MMU,
8a4ca3c1
RH
419 "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx
420 " prot %d\n", __func__, address, ret, pa, prot);
421
a88365c1 422 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
8a4ca3c1 423 !pmp_hart_has_privs(env, pa, TARGET_PAGE_SIZE, 1 << access_type)) {
0c3e702a
MC
424 ret = TRANSLATE_FAIL;
425 }
426 if (ret == TRANSLATE_SUCCESS) {
427 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
428 prot, mmu_idx, TARGET_PAGE_SIZE);
8a4ca3c1
RH
429 return true;
430 } else if (probe) {
431 return false;
432 } else {
433 raise_mmu_exception(env, address, access_type);
434 riscv_raise_exception(env, cs->exception_index, retaddr);
0c3e702a
MC
435 }
436#else
8a4ca3c1 437 switch (access_type) {
0c3e702a
MC
438 case MMU_INST_FETCH:
439 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
440 break;
441 case MMU_DATA_LOAD:
442 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
443 break;
444 case MMU_DATA_STORE:
445 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
446 break;
447 }
8a4ca3c1 448 cpu_loop_exit_restore(cs, retaddr);
0c3e702a 449#endif
0c3e702a
MC
450}
451
452/*
453 * Handle Traps
454 *
455 * Adapted from Spike's processor_t::take_trap.
456 *
457 */
458void riscv_cpu_do_interrupt(CPUState *cs)
459{
460#if !defined(CONFIG_USER_ONLY)
461
462 RISCVCPU *cpu = RISCV_CPU(cs);
463 CPURISCVState *env = &cpu->env;
464
acbbb94e
MC
465 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
466 * so we mask off the MSB and separate into trap type and cause.
467 */
468 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
469 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
470 target_ulong deleg = async ? env->mideleg : env->medeleg;
471 target_ulong tval = 0;
472
473 static const int ecall_cause_map[] = {
474 [PRV_U] = RISCV_EXCP_U_ECALL,
475 [PRV_S] = RISCV_EXCP_S_ECALL,
476 [PRV_H] = RISCV_EXCP_H_ECALL,
477 [PRV_M] = RISCV_EXCP_M_ECALL
478 };
479
480 if (!async) {
481 /* set tval to badaddr for traps with address information */
482 switch (cause) {
483 case RISCV_EXCP_INST_ADDR_MIS:
484 case RISCV_EXCP_INST_ACCESS_FAULT:
485 case RISCV_EXCP_LOAD_ADDR_MIS:
486 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
487 case RISCV_EXCP_LOAD_ACCESS_FAULT:
488 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
489 case RISCV_EXCP_INST_PAGE_FAULT:
490 case RISCV_EXCP_LOAD_PAGE_FAULT:
491 case RISCV_EXCP_STORE_PAGE_FAULT:
492 tval = env->badaddr;
493 break;
494 default:
495 break;
0c3e702a 496 }
acbbb94e
MC
497 /* ecall is dispatched as one cause so translate based on mode */
498 if (cause == RISCV_EXCP_U_ECALL) {
499 assert(env->priv <= 3);
500 cause = ecall_cause_map[env->priv];
0c3e702a
MC
501 }
502 }
503
929f0a7f
MC
504 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 16 ?
505 (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
0c3e702a 506
acbbb94e
MC
507 if (env->priv <= PRV_S &&
508 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
0c3e702a 509 /* handle the trap in S-mode */
0c3e702a
MC
510 target_ulong s = env->mstatus;
511 s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
512 get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
513 s = set_field(s, MSTATUS_SPP, env->priv);
514 s = set_field(s, MSTATUS_SIE, 0);
c7b95171 515 env->mstatus = s;
16fdb8ff 516 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
acbbb94e
MC
517 env->sepc = env->pc;
518 env->sbadaddr = tval;
519 env->pc = (env->stvec >> 2 << 2) +
520 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
fb738839 521 riscv_cpu_set_mode(env, PRV_S);
0c3e702a 522 } else {
acbbb94e 523 /* handle the trap in M-mode */
0c3e702a
MC
524 target_ulong s = env->mstatus;
525 s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
526 get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
527 s = set_field(s, MSTATUS_MPP, env->priv);
528 s = set_field(s, MSTATUS_MIE, 0);
c7b95171 529 env->mstatus = s;
acbbb94e
MC
530 env->mcause = cause | ~(((target_ulong)-1) >> async);
531 env->mepc = env->pc;
532 env->mbadaddr = tval;
533 env->pc = (env->mtvec >> 2 << 2) +
534 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
fb738839 535 riscv_cpu_set_mode(env, PRV_M);
0c3e702a 536 }
d9360e96
MC
537
538 /* NOTE: it is not necessary to yield load reservations here. It is only
539 * necessary for an SC from "another hart" to cause a load reservation
540 * to be yielded. Refer to the memory consistency model section of the
541 * RISC-V ISA Specification.
542 */
543
0c3e702a
MC
544#endif
545 cs->exception_index = EXCP_NONE; /* mark handled to qemu */
546}