]> git.proxmox.com Git - mirror_qemu.git/blame - target/riscv/cpu_helper.c
target/riscv: Enable native debug itrigger
[mirror_qemu.git] / target / riscv / cpu_helper.c
CommitLineData
0c3e702a 1/*
df354dd4 2 * RISC-V CPU helpers for qemu.
0c3e702a
MC
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
21#include "qemu/log.h"
7ec5d303 22#include "qemu/main-loop.h"
0c3e702a 23#include "cpu.h"
892320fa 24#include "pmu.h"
0c3e702a 25#include "exec/exec-all.h"
8e2aa21b 26#include "instmap.h"
dcb32f1d 27#include "tcg/tcg-op.h"
929f0a7f 28#include "trace.h"
6b5fe137 29#include "semihosting/common-semi.h"
2c9d7471 30#include "sysemu/cpu-timers.h"
892320fa 31#include "cpu_bits.h"
2c9d7471 32#include "debug.h"
0c3e702a
MC
33
34int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
35{
36#ifdef CONFIG_USER_ONLY
37 return 0;
38#else
39 return env->priv;
40#endif
41}
42
53677acf
RH
43void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
44 target_ulong *cs_base, uint32_t *pflags)
45{
b4a99d40
FC
46 CPUState *cs = env_cpu(env);
47 RISCVCPU *cpu = RISCV_CPU(cs);
48
53677acf
RH
49 uint32_t flags = 0;
50
8c796f1a 51 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
53677acf
RH
52 *cs_base = 0;
53
32e579b8 54 if (riscv_has_ext(env, RVV) || cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) {
a689a82b
FC
55 /*
56 * If env->vl equals to VLMAX, we can use generic vector operation
57 * expanders (GVEC) to accerlate the vector operations.
58 * However, as LMUL could be a fractional number. The maximum
59 * vector size can be operated might be less than 8 bytes,
60 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
61 * only when maxsz >= 8 bytes.
62 */
53677acf 63 uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype);
a689a82b
FC
64 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
65 uint32_t maxsz = vlmax << sew;
66 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
67 (maxsz >= 8);
d96a271a 68 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
a689a82b 69 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
53677acf
RH
70 flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
71 FIELD_EX64(env->vtype, VTYPE, VLMUL));
72 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
f1eed927 73 flags = FIELD_DP32(flags, TB_FLAGS, VTA,
74 FIELD_EX64(env->vtype, VTYPE, VTA));
355d5584
YTC
75 flags = FIELD_DP32(flags, TB_FLAGS, VMA,
76 FIELD_EX64(env->vtype, VTYPE, VMA));
53677acf
RH
77 } else {
78 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
79 }
80
81#ifdef CONFIG_USER_ONLY
82 flags |= TB_FLAGS_MSTATUS_FS;
61b4b69d 83 flags |= TB_FLAGS_MSTATUS_VS;
53677acf
RH
84#else
85 flags |= cpu_mmu_index(env, 0);
86 if (riscv_cpu_fp_enabled(env)) {
87 flags |= env->mstatus & MSTATUS_FS;
88 }
89
61b4b69d
LZ
90 if (riscv_cpu_vector_enabled(env)) {
91 flags |= env->mstatus & MSTATUS_VS;
92 }
93
53677acf
RH
94 if (riscv_has_ext(env, RVH)) {
95 if (env->priv == PRV_M ||
96 (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
97 (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
98 get_field(env->hstatus, HSTATUS_HU))) {
99 flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
100 }
101
102 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
103 get_field(env->mstatus_hs, MSTATUS_FS));
8e1ee1fb
FC
104
105 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS,
106 get_field(env->mstatus_hs, MSTATUS_VS));
53677acf 107 }
2c9d7471
LZ
108 if (riscv_feature(env, RISCV_FEATURE_DEBUG) && !icount_enabled()) {
109 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER,
110 riscv_itrigger_enabled(env));
111 }
53677acf
RH
112#endif
113
440544e1 114 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
4208dc7e
LZ
115 if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
116 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
117 }
118 if (env->cur_pmbase != 0) {
119 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
120 }
92371bd9 121
53677acf
RH
122 *pflags = flags;
123}
124
40bfa5f6
LZ
125void riscv_cpu_update_mask(CPURISCVState *env)
126{
127 target_ulong mask = -1, base = 0;
128 /*
129 * TODO: Current RVJ spec does not specify
130 * how the extension interacts with XLEN.
131 */
132#ifndef CONFIG_USER_ONLY
133 if (riscv_has_ext(env, RVJ)) {
134 switch (env->priv) {
135 case PRV_M:
136 if (env->mmte & M_PM_ENABLE) {
137 mask = env->mpmmask;
138 base = env->mpmbase;
139 }
140 break;
141 case PRV_S:
142 if (env->mmte & S_PM_ENABLE) {
143 mask = env->spmmask;
144 base = env->spmbase;
145 }
146 break;
147 case PRV_U:
148 if (env->mmte & U_PM_ENABLE) {
149 mask = env->upmmask;
150 base = env->upmbase;
151 }
152 break;
153 default:
154 g_assert_not_reached();
155 }
156 }
157#endif
158 if (env->xl == MXL_RV32) {
159 env->cur_pmmask = mask & UINT32_MAX;
160 env->cur_pmbase = base & UINT32_MAX;
161 } else {
162 env->cur_pmmask = mask;
163 env->cur_pmbase = base;
164 }
165}
166
0c3e702a 167#ifndef CONFIG_USER_ONLY
43dc93af
AP
168
169/*
170 * The HS-mode is allowed to configure priority only for the
171 * following VS-mode local interrupts:
172 *
173 * 0 (Reserved interrupt, reads as zero)
174 * 1 Supervisor software interrupt
175 * 4 (Reserved interrupt, reads as zero)
176 * 5 Supervisor timer interrupt
177 * 8 (Reserved interrupt, reads as zero)
178 * 13 (Reserved interrupt)
179 * 14 "
180 * 15 "
181 * 16 "
43577499
AP
182 * 17 "
183 * 18 "
184 * 19 "
185 * 20 "
186 * 21 "
43dc93af 187 * 22 "
43577499 188 * 23 "
43dc93af
AP
189 */
190
191static const int hviprio_index2irq[] = {
43577499 192 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
43dc93af
AP
193static const int hviprio_index2rdzero[] = {
194 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
195
196int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
0c3e702a 197{
43dc93af
AP
198 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
199 return -EINVAL;
200 }
3ef10a09 201
43dc93af
AP
202 if (out_irq) {
203 *out_irq = hviprio_index2irq[index];
204 }
3ef10a09 205
43dc93af
AP
206 if (out_rdzero) {
207 *out_rdzero = hviprio_index2rdzero[index];
208 }
cd032fe7 209
43dc93af
AP
210 return 0;
211}
3ef10a09 212
43dc93af
AP
213/*
214 * Default priorities of local interrupts are defined in the
215 * RISC-V Advanced Interrupt Architecture specification.
216 *
217 * ----------------------------------------------------------------
218 * Default |
219 * Priority | Major Interrupt Numbers
220 * ----------------------------------------------------------------
43577499
AP
221 * Highest | 47, 23, 46, 45, 22, 44,
222 * | 43, 21, 42, 41, 20, 40
43dc93af
AP
223 * |
224 * | 11 (0b), 3 (03), 7 (07)
225 * | 9 (09), 1 (01), 5 (05)
226 * | 12 (0c)
227 * | 10 (0a), 2 (02), 6 (06)
228 * |
43577499
AP
229 * | 39, 19, 38, 37, 18, 36,
230 * Lowest | 35, 17, 34, 33, 16, 32
43dc93af
AP
231 * ----------------------------------------------------------------
232 */
233static const uint8_t default_iprio[64] = {
43577499
AP
234 /* Custom interrupts 48 to 63 */
235 [63] = IPRIO_MMAXIPRIO,
236 [62] = IPRIO_MMAXIPRIO,
237 [61] = IPRIO_MMAXIPRIO,
238 [60] = IPRIO_MMAXIPRIO,
239 [59] = IPRIO_MMAXIPRIO,
240 [58] = IPRIO_MMAXIPRIO,
241 [57] = IPRIO_MMAXIPRIO,
242 [56] = IPRIO_MMAXIPRIO,
243 [55] = IPRIO_MMAXIPRIO,
244 [54] = IPRIO_MMAXIPRIO,
245 [53] = IPRIO_MMAXIPRIO,
246 [52] = IPRIO_MMAXIPRIO,
247 [51] = IPRIO_MMAXIPRIO,
248 [50] = IPRIO_MMAXIPRIO,
249 [49] = IPRIO_MMAXIPRIO,
250 [48] = IPRIO_MMAXIPRIO,
251
252 /* Custom interrupts 24 to 31 */
253 [31] = IPRIO_MMAXIPRIO,
254 [30] = IPRIO_MMAXIPRIO,
255 [29] = IPRIO_MMAXIPRIO,
256 [28] = IPRIO_MMAXIPRIO,
257 [27] = IPRIO_MMAXIPRIO,
258 [26] = IPRIO_MMAXIPRIO,
259 [25] = IPRIO_MMAXIPRIO,
260 [24] = IPRIO_MMAXIPRIO,
261
262 [47] = IPRIO_DEFAULT_UPPER,
263 [23] = IPRIO_DEFAULT_UPPER + 1,
264 [46] = IPRIO_DEFAULT_UPPER + 2,
265 [45] = IPRIO_DEFAULT_UPPER + 3,
266 [22] = IPRIO_DEFAULT_UPPER + 4,
267 [44] = IPRIO_DEFAULT_UPPER + 5,
268
269 [43] = IPRIO_DEFAULT_UPPER + 6,
270 [21] = IPRIO_DEFAULT_UPPER + 7,
271 [42] = IPRIO_DEFAULT_UPPER + 8,
272 [41] = IPRIO_DEFAULT_UPPER + 9,
273 [20] = IPRIO_DEFAULT_UPPER + 10,
274 [40] = IPRIO_DEFAULT_UPPER + 11,
43dc93af
AP
275
276 [11] = IPRIO_DEFAULT_M,
277 [3] = IPRIO_DEFAULT_M + 1,
278 [7] = IPRIO_DEFAULT_M + 2,
279
280 [9] = IPRIO_DEFAULT_S,
281 [1] = IPRIO_DEFAULT_S + 1,
282 [5] = IPRIO_DEFAULT_S + 2,
283
284 [12] = IPRIO_DEFAULT_SGEXT,
285
286 [10] = IPRIO_DEFAULT_VS,
287 [2] = IPRIO_DEFAULT_VS + 1,
288 [6] = IPRIO_DEFAULT_VS + 2,
289
43577499
AP
290 [39] = IPRIO_DEFAULT_LOWER,
291 [19] = IPRIO_DEFAULT_LOWER + 1,
292 [38] = IPRIO_DEFAULT_LOWER + 2,
293 [37] = IPRIO_DEFAULT_LOWER + 3,
294 [18] = IPRIO_DEFAULT_LOWER + 4,
295 [36] = IPRIO_DEFAULT_LOWER + 5,
296
297 [35] = IPRIO_DEFAULT_LOWER + 6,
298 [17] = IPRIO_DEFAULT_LOWER + 7,
299 [34] = IPRIO_DEFAULT_LOWER + 8,
300 [33] = IPRIO_DEFAULT_LOWER + 9,
301 [16] = IPRIO_DEFAULT_LOWER + 10,
302 [32] = IPRIO_DEFAULT_LOWER + 11,
43dc93af
AP
303};
304
305uint8_t riscv_cpu_default_priority(int irq)
306{
307 if (irq < 0 || irq > 63) {
308 return IPRIO_MMAXIPRIO;
309 }
310
311 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
312};
313
314static int riscv_cpu_pending_to_irq(CPURISCVState *env,
315 int extirq, unsigned int extirq_def_prio,
316 uint64_t pending, uint8_t *iprio)
317{
dc9acc9c 318 RISCVCPU *cpu = env_archcpu(env);
43dc93af
AP
319 int irq, best_irq = RISCV_EXCP_NONE;
320 unsigned int prio, best_prio = UINT_MAX;
321
322 if (!pending) {
323 return RISCV_EXCP_NONE;
324 }
325
326 irq = ctz64(pending);
dc9acc9c 327 if (!((extirq == IRQ_M_EXT) ? cpu->cfg.ext_smaia : cpu->cfg.ext_ssaia)) {
43dc93af
AP
328 return irq;
329 }
330
331 pending = pending >> irq;
332 while (pending) {
333 prio = iprio[irq];
334 if (!prio) {
335 if (irq == extirq) {
336 prio = extirq_def_prio;
337 } else {
338 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
339 1 : IPRIO_MMAXIPRIO;
340 }
341 }
342 if ((pending & 0x1) && (prio <= best_prio)) {
343 best_irq = irq;
344 best_prio = prio;
345 }
346 irq++;
347 pending = pending >> 1;
348 }
349
350 return best_irq;
351}
352
8f42415f 353uint64_t riscv_cpu_all_pending(CPURISCVState *env)
43dc93af
AP
354{
355 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
356 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
3ec0fe18 357 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
43dc93af 358
3ec0fe18 359 return (env->mip | vsgein | vstip) & env->mie;
43dc93af
AP
360}
361
362int riscv_cpu_mirq_pending(CPURISCVState *env)
363{
364 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
365 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
366
367 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
368 irqs, env->miprio);
369}
370
371int riscv_cpu_sirq_pending(CPURISCVState *env)
372{
373 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
374 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
375
376 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
377 irqs, env->siprio);
378}
379
380int riscv_cpu_vsirq_pending(CPURISCVState *env)
381{
382 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
383 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
384
385 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
386 irqs >> 1, env->hviprio);
387}
388
389static int riscv_cpu_local_irq_pending(CPURISCVState *env)
390{
391 int virq;
392 uint64_t irqs, pending, mie, hsie, vsie;
393
394 /* Determine interrupt enable state of all privilege modes */
395 if (riscv_cpu_virt_enabled(env)) {
396 mie = 1;
397 hsie = 1;
398 vsie = (env->priv < PRV_S) ||
399 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
0c3e702a 400 } else {
43dc93af
AP
401 mie = (env->priv < PRV_M) ||
402 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
403 hsie = (env->priv < PRV_S) ||
404 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
405 vsie = 0;
406 }
407
408 /* Determine all pending interrupts */
409 pending = riscv_cpu_all_pending(env);
410
411 /* Check M-mode interrupts */
412 irqs = pending & ~env->mideleg & -mie;
413 if (irqs) {
414 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
415 irqs, env->miprio);
416 }
417
418 /* Check HS-mode interrupts */
419 irqs = pending & env->mideleg & ~env->hideleg & -hsie;
420 if (irqs) {
421 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
422 irqs, env->siprio);
0c3e702a 423 }
43dc93af
AP
424
425 /* Check VS-mode interrupts */
426 irqs = pending & env->mideleg & env->hideleg & -vsie;
427 if (irqs) {
428 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
429 irqs >> 1, env->hviprio);
430 return (virq <= 0) ? virq : virq + 1;
431 }
432
433 /* Indicate no pending interrupt */
434 return RISCV_EXCP_NONE;
0c3e702a 435}
0c3e702a
MC
436
437bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
438{
0c3e702a
MC
439 if (interrupt_request & CPU_INTERRUPT_HARD) {
440 RISCVCPU *cpu = RISCV_CPU(cs);
441 CPURISCVState *env = &cpu->env;
efbdbc26 442 int interruptno = riscv_cpu_local_irq_pending(env);
0c3e702a
MC
443 if (interruptno >= 0) {
444 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
445 riscv_cpu_do_interrupt(cs);
446 return true;
447 }
448 }
0c3e702a
MC
449 return false;
450}
451
b345b480
AF
452/* Return true is floating point support is currently enabled */
453bool riscv_cpu_fp_enabled(CPURISCVState *env)
454{
455 if (env->mstatus & MSTATUS_FS) {
29409c1d
AF
456 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
457 return false;
458 }
b345b480
AF
459 return true;
460 }
461
462 return false;
463}
464
61b4b69d
LZ
465/* Return true is vector support is currently enabled */
466bool riscv_cpu_vector_enabled(CPURISCVState *env)
467{
468 if (env->mstatus & MSTATUS_VS) {
469 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) {
470 return false;
471 }
472 return true;
473 }
474
475 return false;
476}
477
66e594f2
AF
478void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
479{
c163b3ba 480 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
284d697c 481 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
61b4b69d 482 MSTATUS64_UXL | MSTATUS_VS;
c163b3ba
WL
483
484 if (riscv_has_ext(env, RVF)) {
485 mstatus_mask |= MSTATUS_FS;
486 }
66e594f2
AF
487 bool current_virt = riscv_cpu_virt_enabled(env);
488
489 g_assert(riscv_has_ext(env, RVH));
490
66e594f2
AF
491 if (current_virt) {
492 /* Current V=1 and we are about to change to V=0 */
493 env->vsstatus = env->mstatus & mstatus_mask;
494 env->mstatus &= ~mstatus_mask;
495 env->mstatus |= env->mstatus_hs;
496
497 env->vstvec = env->stvec;
498 env->stvec = env->stvec_hs;
499
500 env->vsscratch = env->sscratch;
501 env->sscratch = env->sscratch_hs;
502
503 env->vsepc = env->sepc;
504 env->sepc = env->sepc_hs;
505
506 env->vscause = env->scause;
507 env->scause = env->scause_hs;
508
ac12b601
AP
509 env->vstval = env->stval;
510 env->stval = env->stval_hs;
66e594f2
AF
511
512 env->vsatp = env->satp;
513 env->satp = env->satp_hs;
514 } else {
515 /* Current V=0 and we are about to change to V=1 */
516 env->mstatus_hs = env->mstatus & mstatus_mask;
517 env->mstatus &= ~mstatus_mask;
518 env->mstatus |= env->vsstatus;
519
520 env->stvec_hs = env->stvec;
521 env->stvec = env->vstvec;
522
523 env->sscratch_hs = env->sscratch;
524 env->sscratch = env->vsscratch;
525
526 env->sepc_hs = env->sepc;
527 env->sepc = env->vsepc;
528
529 env->scause_hs = env->scause;
530 env->scause = env->vscause;
531
ac12b601
AP
532 env->stval_hs = env->stval;
533 env->stval = env->vstval;
66e594f2
AF
534
535 env->satp_hs = env->satp;
536 env->satp = env->vsatp;
537 }
538}
539
cd032fe7
AP
540target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
541{
542 if (!riscv_has_ext(env, RVH)) {
543 return 0;
544 }
545
546 return env->geilen;
547}
548
549void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
550{
551 if (!riscv_has_ext(env, RVH)) {
552 return;
553 }
554
555 if (geilen > (TARGET_LONG_BITS - 1)) {
556 return;
557 }
558
559 env->geilen = geilen;
560}
561
ef6bb7b6
AF
562bool riscv_cpu_virt_enabled(CPURISCVState *env)
563{
564 if (!riscv_has_ext(env, RVH)) {
565 return false;
566 }
567
568 return get_field(env->virt, VIRT_ONOFF);
569}
570
571void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
572{
573 if (!riscv_has_ext(env, RVH)) {
574 return;
575 }
576
eccc5a12
AF
577 /* Flush the TLB on all virt mode changes. */
578 if (get_field(env->virt, VIRT_ONOFF) != enable) {
579 tlb_flush(env_cpu(env));
580 }
581
ef6bb7b6 582 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
02d9565b
AP
583
584 if (enable) {
585 /*
586 * The guest external interrupts from an interrupt controller are
587 * delivered only when the Guest/VM is running (i.e. V=1). This means
588 * any guest external interrupt which is triggered while the Guest/VM
589 * is not running (i.e. V=0) will be missed on QEMU resulting in guest
590 * with sluggish response to serial console input and other I/O events.
591 *
592 * To solve this, we check and inject interrupt after setting V=1.
593 */
594 riscv_cpu_update_mip(env_archcpu(env), 0, 0);
595 }
ef6bb7b6
AF
596}
597
1c1c060a 598bool riscv_cpu_two_stage_lookup(int mmu_idx)
5a894dd7 599{
1c1c060a 600 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
5a894dd7
AF
601}
602
d028ac75 603int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
e3e7039c
MC
604{
605 CPURISCVState *env = &cpu->env;
606 if (env->miclaim & interrupts) {
607 return -1;
608 } else {
609 env->miclaim |= interrupts;
610 return 0;
611 }
612}
613
d028ac75 614uint64_t riscv_cpu_update_mip(RISCVCPU *cpu, uint64_t mask, uint64_t value)
df354dd4
MC
615{
616 CPURISCVState *env = &cpu->env;
0a01f2ee 617 CPUState *cs = CPU(cpu);
3ec0fe18 618 uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
7ec5d303
AF
619 bool locked = false;
620
cd032fe7
AP
621 if (riscv_cpu_virt_enabled(env)) {
622 gein = get_field(env->hstatus, HSTATUS_VGEIN);
623 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
624 }
625
3ec0fe18
AP
626 /* No need to update mip for VSTIP */
627 mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask;
628 vstip = env->vstime_irq ? MIP_VSTIP : 0;
629
7ec5d303
AF
630 if (!qemu_mutex_iothread_locked()) {
631 locked = true;
632 qemu_mutex_lock_iothread();
633 }
df354dd4 634
7ec5d303 635 env->mip = (env->mip & ~mask) | (value & mask);
df354dd4 636
3ec0fe18 637 if (env->mip | vsgein | vstip) {
7ec5d303
AF
638 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
639 } else {
640 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
641 }
0a01f2ee 642
7ec5d303
AF
643 if (locked) {
644 qemu_mutex_unlock_iothread();
645 }
df354dd4
MC
646
647 return old;
648}
649
e2f01f3c
FC
650void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
651 void *arg)
c6957248
AP
652{
653 env->rdtime_fn = fn;
a47ef6e9 654 env->rdtime_fn_arg = arg;
c6957248
AP
655}
656
69077dd6
AP
657void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
658 int (*rmw_fn)(void *arg,
659 target_ulong reg,
660 target_ulong *val,
661 target_ulong new_val,
662 target_ulong write_mask),
663 void *rmw_fn_arg)
664{
665 if (priv <= PRV_M) {
666 env->aia_ireg_rmw_fn[priv] = rmw_fn;
667 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
668 }
669}
670
fb738839 671void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
df354dd4
MC
672{
673 if (newpriv > PRV_M) {
674 g_assert_not_reached();
675 }
676 if (newpriv == PRV_H) {
677 newpriv = PRV_U;
678 }
5a4ae64c
LZ
679 if (icount_enabled() && newpriv != env->priv) {
680 riscv_itrigger_update_priv(env);
681 }
df354dd4
MC
682 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
683 env->priv = newpriv;
440544e1 684 env->xl = cpu_recompute_xl(env);
40bfa5f6 685 riscv_cpu_update_mask(env);
c13b169f
JS
686
687 /*
688 * Clear the load reservation - otherwise a reservation placed in one
689 * context/process can be used by another, resulting in an SC succeeding
690 * incorrectly. Version 2.2 of the ISA specification explicitly requires
691 * this behaviour, while later revisions say that the kernel "should" use
692 * an SC instruction to force the yielding of a load reservation on a
693 * preemptive context switch. As a result, do both.
694 */
695 env->load_res = -1;
df354dd4
MC
696}
697
b297129a
JS
698/*
699 * get_physical_address_pmp - check PMP permission for this physical address
700 *
701 * Match the PMP region and check permission for this physical address and it's
702 * TLB page. Returns 0 if the permission checking was successful
703 *
704 * @env: CPURISCVState
705 * @prot: The returned protection attributes
706 * @tlb_size: TLB page size containing addr. It could be modified after PMP
707 * permission checking. NULL if not set TLB page for addr.
708 * @addr: The physical address to be checked permission
709 * @access_type: The type of MMU access
710 * @mode: Indicates current privilege level.
711 */
712static int get_physical_address_pmp(CPURISCVState *env, int *prot,
713 target_ulong *tlb_size, hwaddr addr,
714 int size, MMUAccessType access_type,
715 int mode)
716{
717 pmp_priv_t pmp_priv;
824cac68 718 int pmp_index = -1;
b297129a
JS
719
720 if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
721 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
722 return TRANSLATE_SUCCESS;
723 }
724
824cac68
LZ
725 pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
726 &pmp_priv, mode);
727 if (pmp_index < 0) {
b297129a
JS
728 *prot = 0;
729 return TRANSLATE_PMP_FAIL;
730 }
731
732 *prot = pmp_priv_to_page_prot(pmp_priv);
824cac68
LZ
733 if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
734 target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
735 target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
736
737 *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
b297129a
JS
738 }
739
740 return TRANSLATE_SUCCESS;
741}
742
0c3e702a
MC
743/* get_physical_address - get the physical address for this virtual address
744 *
745 * Do a page table walk to obtain the physical address corresponding to a
746 * virtual address. Returns 0 if the translation was successful
747 *
748 * Adapted from Spike's mmu_t::translate and mmu_t::walk
749 *
1448689c
AF
750 * @env: CPURISCVState
751 * @physical: This will be set to the calculated physical address
752 * @prot: The returned protection attributes
753 * @addr: The virtual address to be translated
33a9a57d
YJ
754 * @fault_pte_addr: If not NULL, this will be set to fault pte address
755 * when a error occurs on pte address translation.
756 * This will already be shifted to match htval.
1448689c
AF
757 * @access_type: The type of MMU access
758 * @mmu_idx: Indicates current privilege level
759 * @first_stage: Are we in first stage translation?
760 * Second stage is used for hypervisor guest translation
36a18664 761 * @two_stage: Are we going to perform two stage translation
11c27c6d 762 * @is_debug: Is this access from a debugger or the monitor?
0c3e702a
MC
763 */
764static int get_physical_address(CPURISCVState *env, hwaddr *physical,
765 int *prot, target_ulong addr,
33a9a57d 766 target_ulong *fault_pte_addr,
1448689c 767 int access_type, int mmu_idx,
11c27c6d
JF
768 bool first_stage, bool two_stage,
769 bool is_debug)
0c3e702a
MC
770{
771 /* NOTE: the env->pc value visible here will not be
772 * correct, but the value visible to the exception handler
773 * (riscv_cpu_do_interrupt) is correct */
aacb578f
PD
774 MemTxResult res;
775 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
c445593d 776 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
36a18664 777 bool use_background = false;
05e6ca5e
GR
778 hwaddr ppn;
779 RISCVCPU *cpu = env_archcpu(env);
2bacb224
WL
780 int napot_bits = 0;
781 target_ulong napot_mask;
0c3e702a 782
36a18664
AF
783 /*
784 * Check if we should use the background registers for the two
785 * stage translation. We don't need to check if we actually need
786 * two stage translation as that happened before this function
787 * was called. Background registers will be used if the guest has
788 * forced a two stage translation to be on (in HS or M mode).
789 */
db9ab38b 790 if (!riscv_cpu_virt_enabled(env) && two_stage) {
29b3361b
AF
791 use_background = true;
792 }
793
90ec1cff
GK
794 /* MPRV does not affect the virtual-machine load/store
795 instructions, HLV, HLVX, and HSV. */
796 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
797 mode = get_field(env->hstatus, HSTATUS_SPVP);
798 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
0c3e702a
MC
799 if (get_field(env->mstatus, MSTATUS_MPRV)) {
800 mode = get_field(env->mstatus, MSTATUS_MPP);
801 }
802 }
803
36a18664
AF
804 if (first_stage == false) {
805 /* We are in stage 2 translation, this is similar to stage 1. */
806 /* Stage 2 is always taken as U-mode */
807 mode = PRV_U;
808 }
809
0c3e702a
MC
810 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
811 *physical = addr;
812 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
813 return TRANSLATE_SUCCESS;
814 }
815
816 *prot = 0;
817
ddf78132 818 hwaddr base;
36a18664
AF
819 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
820
821 if (first_stage == true) {
822 mxr = get_field(env->mstatus, MSTATUS_MXR);
823 } else {
824 mxr = get_field(env->vsstatus, MSTATUS_MXR);
825 }
0c3e702a 826
1a9540d1
AF
827 if (first_stage == true) {
828 if (use_background) {
db23e5d9 829 if (riscv_cpu_mxl(env) == MXL_RV32) {
419ddf00
AF
830 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
831 vm = get_field(env->vsatp, SATP32_MODE);
832 } else {
833 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
834 vm = get_field(env->vsatp, SATP64_MODE);
835 }
36a18664 836 } else {
db23e5d9 837 if (riscv_cpu_mxl(env) == MXL_RV32) {
419ddf00
AF
838 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
839 vm = get_field(env->satp, SATP32_MODE);
840 } else {
841 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
842 vm = get_field(env->satp, SATP64_MODE);
843 }
0c3e702a 844 }
36a18664 845 widened = 0;
1a9540d1 846 } else {
db23e5d9 847 if (riscv_cpu_mxl(env) == MXL_RV32) {
994b6bb2
AF
848 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
849 vm = get_field(env->hgatp, SATP32_MODE);
850 } else {
851 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
852 vm = get_field(env->hgatp, SATP64_MODE);
853 }
1a9540d1
AF
854 widened = 2;
855 }
c63ca4ff 856 /* status.SUM will be ignored if execute on background */
11c27c6d 857 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
1a9540d1
AF
858 switch (vm) {
859 case VM_1_10_SV32:
860 levels = 2; ptidxbits = 10; ptesize = 4; break;
861 case VM_1_10_SV39:
862 levels = 3; ptidxbits = 9; ptesize = 8; break;
863 case VM_1_10_SV48:
864 levels = 4; ptidxbits = 9; ptesize = 8; break;
865 case VM_1_10_SV57:
866 levels = 5; ptidxbits = 9; ptesize = 8; break;
867 case VM_1_10_MBARE:
868 *physical = addr;
869 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
870 return TRANSLATE_SUCCESS;
871 default:
872 g_assert_not_reached();
0c3e702a
MC
873 }
874
3109cd98 875 CPUState *cs = env_cpu(env);
36a18664
AF
876 int va_bits = PGSHIFT + levels * ptidxbits + widened;
877 target_ulong mask, masked_msbs;
878
879 if (TARGET_LONG_BITS > (va_bits - 1)) {
880 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
881 } else {
882 mask = 0;
883 }
884 masked_msbs = (addr >> (va_bits - 1)) & mask;
885
0c3e702a
MC
886 if (masked_msbs != 0 && masked_msbs != mask) {
887 return TRANSLATE_FAIL;
888 }
889
890 int ptshift = (levels - 1) * ptidxbits;
891 int i;
892
893#if !TCG_OVERSIZED_GUEST
894restart:
895#endif
896 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
36a18664
AF
897 target_ulong idx;
898 if (i == 0) {
899 idx = (addr >> (PGSHIFT + ptshift)) &
900 ((1 << (ptidxbits + widened)) - 1);
901 } else {
902 idx = (addr >> (PGSHIFT + ptshift)) &
0c3e702a 903 ((1 << ptidxbits) - 1);
36a18664 904 }
0c3e702a
MC
905
906 /* check that physical address of PTE is legal */
36a18664
AF
907 hwaddr pte_addr;
908
909 if (two_stage && first_stage) {
38472890 910 int vbase_prot;
36a18664
AF
911 hwaddr vbase;
912
913 /* Do the second stage translation on the base PTE address. */
88914473 914 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
33a9a57d 915 base, NULL, MMU_DATA_LOAD,
11c27c6d
JF
916 mmu_idx, false, true,
917 is_debug);
88914473
AF
918
919 if (vbase_ret != TRANSLATE_SUCCESS) {
33a9a57d
YJ
920 if (fault_pte_addr) {
921 *fault_pte_addr = (base + idx * ptesize) >> 2;
922 }
923 return TRANSLATE_G_STAGE_FAIL;
88914473 924 }
36a18664
AF
925
926 pte_addr = vbase + idx * ptesize;
927 } else {
928 pte_addr = base + idx * ptesize;
929 }
1f447aec 930
b297129a
JS
931 int pmp_prot;
932 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
933 sizeof(target_ulong),
934 MMU_DATA_LOAD, PRV_S);
935 if (pmp_ret != TRANSLATE_SUCCESS) {
1f447aec
HA
936 return TRANSLATE_PMP_FAIL;
937 }
aacb578f 938
f08c7ff3 939 target_ulong pte;
db23e5d9 940 if (riscv_cpu_mxl(env) == MXL_RV32) {
f08c7ff3
AF
941 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
942 } else {
943 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
944 }
945
aacb578f
PD
946 if (res != MEMTX_OK) {
947 return TRANSLATE_FAIL;
948 }
949
05e6ca5e
GR
950 if (riscv_cpu_sxl(env) == MXL_RV32) {
951 ppn = pte >> PTE_PPN_SHIFT;
952 } else if (cpu->cfg.ext_svpbmt || cpu->cfg.ext_svnapot) {
953 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
954 } else {
955 ppn = pte >> PTE_PPN_SHIFT;
956 if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
957 return TRANSLATE_FAIL;
958 }
959 }
0c3e702a 960
c3b03e58
MC
961 if (!(pte & PTE_V)) {
962 /* Invalid PTE */
963 return TRANSLATE_FAIL;
bbce8ba8
WL
964 } else if (!cpu->cfg.ext_svpbmt && (pte & PTE_PBMT)) {
965 return TRANSLATE_FAIL;
c3b03e58
MC
966 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
967 /* Inner PTE, continue walking */
bbce8ba8 968 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
b6ecc63c
WL
969 return TRANSLATE_FAIL;
970 }
0c3e702a 971 base = ppn << PGSHIFT;
c3b03e58
MC
972 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
973 /* Reserved leaf PTE flags: PTE_W */
974 return TRANSLATE_FAIL;
975 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
976 /* Reserved leaf PTE flags: PTE_W + PTE_X */
977 return TRANSLATE_FAIL;
978 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
979 (!sum || access_type == MMU_INST_FETCH))) {
980 /* User PTE flags when not U mode and mstatus.SUM is not set,
981 or the access type is an instruction fetch */
982 return TRANSLATE_FAIL;
983 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
984 /* Supervisor PTE flags when not S mode */
985 return TRANSLATE_FAIL;
986 } else if (ppn & ((1ULL << ptshift) - 1)) {
987 /* Misaligned PPN */
988 return TRANSLATE_FAIL;
989 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
990 ((pte & PTE_X) && mxr))) {
991 /* Read access check failed */
992 return TRANSLATE_FAIL;
993 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
994 /* Write access check failed */
995 return TRANSLATE_FAIL;
996 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
997 /* Fetch access check failed */
998 return TRANSLATE_FAIL;
0c3e702a
MC
999 } else {
1000 /* if necessary, set accessed and dirty bits. */
1001 target_ulong updated_pte = pte | PTE_A |
1002 (access_type == MMU_DATA_STORE ? PTE_D : 0);
1003
1004 /* Page table updates need to be atomic with MTTCG enabled */
1005 if (updated_pte != pte) {
c3b03e58
MC
1006 /*
1007 * - if accessed or dirty bits need updating, and the PTE is
1008 * in RAM, then we do so atomically with a compare and swap.
1009 * - if the PTE is in IO space or ROM, then it can't be updated
1010 * and we return TRANSLATE_FAIL.
1011 * - if the PTE changed by the time we went to update it, then
1012 * it is no longer valid and we must re-walk the page table.
1013 */
0c3e702a
MC
1014 MemoryRegion *mr;
1015 hwaddr l = sizeof(target_ulong), addr1;
1016 mr = address_space_translate(cs->as, pte_addr,
bc6b1cec 1017 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
c3b03e58 1018 if (memory_region_is_ram(mr)) {
0c3e702a
MC
1019 target_ulong *pte_pa =
1020 qemu_map_ram_ptr(mr->ram_block, addr1);
1021#if TCG_OVERSIZED_GUEST
1022 /* MTTCG is not enabled on oversized TCG guests so
1023 * page table updates do not need to be atomic */
1024 *pte_pa = pte = updated_pte;
1025#else
1026 target_ulong old_pte =
d73415a3 1027 qatomic_cmpxchg(pte_pa, pte, updated_pte);
0c3e702a
MC
1028 if (old_pte != pte) {
1029 goto restart;
1030 } else {
1031 pte = updated_pte;
1032 }
1033#endif
1034 } else {
1035 /* misconfigured PTE in ROM (AD bits are not preset) or
1036 * PTE is in IO space and can't be updated atomically */
1037 return TRANSLATE_FAIL;
1038 }
1039 }
1040
1041 /* for superpage mappings, make a fake leaf PTE for the TLB's
1042 benefit. */
1043 target_ulong vpn = addr >> PGSHIFT;
2bacb224
WL
1044
1045 if (cpu->cfg.ext_svnapot && (pte & PTE_N)) {
1046 napot_bits = ctzl(ppn) + 1;
1047 if ((i != (levels - 1)) || (napot_bits != 4)) {
1048 return TRANSLATE_FAIL;
1049 }
1050 }
1051
1052 napot_mask = (1 << napot_bits) - 1;
1053 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1054 (vpn & (((target_ulong)1 << ptshift) - 1))
1055 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
0c3e702a 1056
c3b03e58
MC
1057 /* set permissions on the TLB entry */
1058 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
0c3e702a
MC
1059 *prot |= PAGE_READ;
1060 }
1061 if ((pte & PTE_X)) {
1062 *prot |= PAGE_EXEC;
1063 }
c3b03e58
MC
1064 /* add write permission on stores or if the page is already dirty,
1065 so that we TLB miss on later writes to update the dirty bit */
0c3e702a
MC
1066 if ((pte & PTE_W) &&
1067 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1068 *prot |= PAGE_WRITE;
1069 }
1070 return TRANSLATE_SUCCESS;
1071 }
1072 }
1073 return TRANSLATE_FAIL;
1074}
1075
1076static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1448689c 1077 MMUAccessType access_type, bool pmp_violation,
8e2aa21b
AP
1078 bool first_stage, bool two_stage,
1079 bool two_stage_indirect)
0c3e702a 1080{
3109cd98 1081 CPUState *cs = env_cpu(env);
994b6bb2 1082 int page_fault_exceptions, vm;
419ddf00
AF
1083 uint64_t stap_mode;
1084
db23e5d9 1085 if (riscv_cpu_mxl(env) == MXL_RV32) {
419ddf00
AF
1086 stap_mode = SATP32_MODE;
1087 } else {
1088 stap_mode = SATP64_MODE;
1089 }
994b6bb2 1090
1448689c 1091 if (first_stage) {
419ddf00 1092 vm = get_field(env->satp, stap_mode);
1448689c 1093 } else {
419ddf00 1094 vm = get_field(env->hgatp, stap_mode);
1448689c 1095 }
419ddf00 1096
994b6bb2
AF
1097 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1098
0c3e702a
MC
1099 switch (access_type) {
1100 case MMU_INST_FETCH:
b2ef6ab9
AF
1101 if (riscv_cpu_virt_enabled(env) && !first_stage) {
1102 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1103 } else {
1104 cs->exception_index = page_fault_exceptions ?
1105 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1106 }
0c3e702a
MC
1107 break;
1108 case MMU_DATA_LOAD:
1c1c060a 1109 if (two_stage && !first_stage) {
b2ef6ab9
AF
1110 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1111 } else {
1112 cs->exception_index = page_fault_exceptions ?
1113 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1114 }
0c3e702a
MC
1115 break;
1116 case MMU_DATA_STORE:
1c1c060a 1117 if (two_stage && !first_stage) {
b2ef6ab9
AF
1118 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1119 } else {
1120 cs->exception_index = page_fault_exceptions ?
1121 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1122 }
0c3e702a
MC
1123 break;
1124 default:
1125 g_assert_not_reached();
1126 }
1127 env->badaddr = address;
ec352d0c 1128 env->two_stage_lookup = two_stage;
8e2aa21b 1129 env->two_stage_indirect_lookup = two_stage_indirect;
0c3e702a
MC
1130}
1131
1132hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1133{
1134 RISCVCPU *cpu = RISCV_CPU(cs);
36a18664 1135 CPURISCVState *env = &cpu->env;
0c3e702a
MC
1136 hwaddr phys_addr;
1137 int prot;
1138 int mmu_idx = cpu_mmu_index(&cpu->env, false);
1139
33a9a57d 1140 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
11c27c6d 1141 true, riscv_cpu_virt_enabled(env), true)) {
0c3e702a
MC
1142 return -1;
1143 }
36a18664
AF
1144
1145 if (riscv_cpu_virt_enabled(env)) {
33a9a57d 1146 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
11c27c6d 1147 0, mmu_idx, false, true, true)) {
36a18664
AF
1148 return -1;
1149 }
1150 }
1151
9ef82119 1152 return phys_addr & TARGET_PAGE_MASK;
0c3e702a
MC
1153}
1154
37207e12
PD
1155void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1156 vaddr addr, unsigned size,
1157 MMUAccessType access_type,
1158 int mmu_idx, MemTxAttrs attrs,
1159 MemTxResult response, uintptr_t retaddr)
cbf58276
MC
1160{
1161 RISCVCPU *cpu = RISCV_CPU(cs);
1162 CPURISCVState *env = &cpu->env;
1163
37207e12 1164 if (access_type == MMU_DATA_STORE) {
cbf58276 1165 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
f9e580c1 1166 } else if (access_type == MMU_DATA_LOAD) {
cbf58276 1167 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
f9e580c1
EB
1168 } else {
1169 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
cbf58276
MC
1170 }
1171
1172 env->badaddr = addr;
ec352d0c
GK
1173 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1174 riscv_cpu_two_stage_lookup(mmu_idx);
8e2aa21b 1175 env->two_stage_indirect_lookup = false;
ac684717 1176 cpu_loop_exit_restore(cs, retaddr);
cbf58276
MC
1177}
1178
0c3e702a
MC
1179void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1180 MMUAccessType access_type, int mmu_idx,
1181 uintptr_t retaddr)
1182{
1183 RISCVCPU *cpu = RISCV_CPU(cs);
1184 CPURISCVState *env = &cpu->env;
1185 switch (access_type) {
1186 case MMU_INST_FETCH:
1187 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1188 break;
1189 case MMU_DATA_LOAD:
1190 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1191 break;
1192 case MMU_DATA_STORE:
1193 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1194 break;
1195 default:
1196 g_assert_not_reached();
1197 }
1198 env->badaddr = addr;
ec352d0c
GK
1199 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1200 riscv_cpu_two_stage_lookup(mmu_idx);
8e2aa21b 1201 env->two_stage_indirect_lookup = false;
ac684717 1202 cpu_loop_exit_restore(cs, retaddr);
0c3e702a 1203}
0c3e702a 1204
892320fa
AP
1205
1206static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1207{
1208 enum riscv_pmu_event_idx pmu_event_type;
1209
1210 switch (access_type) {
1211 case MMU_INST_FETCH:
1212 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1213 break;
1214 case MMU_DATA_LOAD:
1215 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1216 break;
1217 case MMU_DATA_STORE:
1218 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1219 break;
1220 default:
1221 return;
1222 }
1223
1224 riscv_pmu_incr_ctr(cpu, pmu_event_type);
1225}
1226
8a4ca3c1
RH
1227bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1228 MMUAccessType access_type, int mmu_idx,
1229 bool probe, uintptr_t retaddr)
0c3e702a
MC
1230{
1231 RISCVCPU *cpu = RISCV_CPU(cs);
1232 CPURISCVState *env = &cpu->env;
36a18664 1233 vaddr im_address;
0c3e702a 1234 hwaddr pa = 0;
b297129a 1235 int prot, prot2, prot_pmp;
635b0b0e 1236 bool pmp_violation = false;
36a18664 1237 bool first_stage_error = true;
1c1c060a 1238 bool two_stage_lookup = false;
8e2aa21b 1239 bool two_stage_indirect_error = false;
0c3e702a 1240 int ret = TRANSLATE_FAIL;
cc0fdb29 1241 int mode = mmu_idx;
b297129a
JS
1242 /* default TLB page size */
1243 target_ulong tlb_size = TARGET_PAGE_SIZE;
0c3e702a 1244
36a18664
AF
1245 env->guest_phys_fault_addr = 0;
1246
8a4ca3c1
RH
1247 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1248 __func__, address, access_type, mmu_idx);
1249
90ec1cff
GK
1250 /* MPRV does not affect the virtual-machine load/store
1251 instructions, HLV, HLVX, and HSV. */
1252 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1253 mode = get_field(env->hstatus, HSTATUS_SPVP);
1254 } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1255 get_field(env->mstatus, MSTATUS_MPRV)) {
1256 mode = get_field(env->mstatus, MSTATUS_MPP);
1257 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1258 two_stage_lookup = true;
cc0fdb29
HA
1259 }
1260 }
1261
29b3361b 1262 if (riscv_cpu_virt_enabled(env) ||
1c1c060a
AF
1263 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1264 access_type != MMU_INST_FETCH)) {
36a18664 1265 /* Two stage lookup */
33a9a57d
YJ
1266 ret = get_physical_address(env, &pa, &prot, address,
1267 &env->guest_phys_fault_addr, access_type,
11c27c6d 1268 mmu_idx, true, true, false);
36a18664 1269
33a9a57d
YJ
1270 /*
1271 * A G-stage exception may be triggered during two state lookup.
1272 * And the env->guest_phys_fault_addr has already been set in
1273 * get_physical_address().
1274 */
1275 if (ret == TRANSLATE_G_STAGE_FAIL) {
1276 first_stage_error = false;
8e2aa21b 1277 two_stage_indirect_error = true;
33a9a57d
YJ
1278 access_type = MMU_DATA_LOAD;
1279 }
1280
36a18664
AF
1281 qemu_log_mask(CPU_LOG_MMU,
1282 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1283 TARGET_FMT_plx " prot %d\n",
1284 __func__, address, ret, pa, prot);
1285
33a9a57d 1286 if (ret == TRANSLATE_SUCCESS) {
36a18664
AF
1287 /* Second stage lookup */
1288 im_address = pa;
1289
33a9a57d 1290 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
11c27c6d
JF
1291 access_type, mmu_idx, false, true,
1292 false);
36a18664
AF
1293
1294 qemu_log_mask(CPU_LOG_MMU,
1295 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
1296 TARGET_FMT_plx " prot %d\n",
8f67cd6d
AF
1297 __func__, im_address, ret, pa, prot2);
1298
1299 prot &= prot2;
36a18664 1300
b297129a
JS
1301 if (ret == TRANSLATE_SUCCESS) {
1302 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1303 size, access_type, mode);
663e1193
JS
1304
1305 qemu_log_mask(CPU_LOG_MMU,
1306 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
1307 " %d tlb_size " TARGET_FMT_lu "\n",
1308 __func__, pa, ret, prot_pmp, tlb_size);
1309
b297129a 1310 prot &= prot_pmp;
36a18664
AF
1311 }
1312
1313 if (ret != TRANSLATE_SUCCESS) {
1314 /*
1315 * Guest physical address translation failed, this is a HS
1316 * level exception
1317 */
1318 first_stage_error = false;
1319 env->guest_phys_fault_addr = (im_address |
1320 (address &
1321 (TARGET_PAGE_SIZE - 1))) >> 2;
1322 }
1323 }
1324 } else {
892320fa 1325 pmu_tlb_fill_incr_ctr(cpu, access_type);
36a18664 1326 /* Single stage lookup */
33a9a57d 1327 ret = get_physical_address(env, &pa, &prot, address, NULL,
11c27c6d 1328 access_type, mmu_idx, true, false, false);
36a18664
AF
1329
1330 qemu_log_mask(CPU_LOG_MMU,
1331 "%s address=%" VADDR_PRIx " ret %d physical "
1332 TARGET_FMT_plx " prot %d\n",
1333 __func__, address, ret, pa, prot);
8a4ca3c1 1334
b297129a
JS
1335 if (ret == TRANSLATE_SUCCESS) {
1336 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1337 size, access_type, mode);
663e1193
JS
1338
1339 qemu_log_mask(CPU_LOG_MMU,
1340 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
1341 " %d tlb_size " TARGET_FMT_lu "\n",
1342 __func__, pa, ret, prot_pmp, tlb_size);
1343
b297129a
JS
1344 prot &= prot_pmp;
1345 }
1f447aec 1346 }
b297129a 1347
1f447aec 1348 if (ret == TRANSLATE_PMP_FAIL) {
635b0b0e 1349 pmp_violation = true;
0c3e702a 1350 }
36a18664 1351
0c3e702a 1352 if (ret == TRANSLATE_SUCCESS) {
b297129a
JS
1353 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1354 prot, mmu_idx, tlb_size);
8a4ca3c1
RH
1355 return true;
1356 } else if (probe) {
1357 return false;
1358 } else {
1c1c060a
AF
1359 raise_mmu_exception(env, address, access_type, pmp_violation,
1360 first_stage_error,
1361 riscv_cpu_virt_enabled(env) ||
8e2aa21b
AP
1362 riscv_cpu_two_stage_lookup(mmu_idx),
1363 two_stage_indirect_error);
ac684717 1364 cpu_loop_exit_restore(cs, retaddr);
0c3e702a 1365 }
36a18664
AF
1366
1367 return true;
0c3e702a 1368}
8e2aa21b
AP
1369
1370static target_ulong riscv_transformed_insn(CPURISCVState *env,
1371 target_ulong insn,
1372 target_ulong taddr)
1373{
1374 target_ulong xinsn = 0;
1375 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1376
1377 /*
1378 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1379 * be uncompressed. The Quadrant 1 of RVC instruction space need
1380 * not be transformed because these instructions won't generate
1381 * any load/store trap.
1382 */
1383
1384 if ((insn & 0x3) != 0x3) {
1385 /* Transform 16bit instruction into 32bit instruction */
1386 switch (GET_C_OP(insn)) {
1387 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1388 switch (GET_C_FUNC(insn)) {
1389 case OPC_RISC_C_FUNC_FLD_LQ:
1390 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1391 xinsn = OPC_RISC_FLD;
1392 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1393 access_rs1 = GET_C_RS1S(insn);
1394 access_imm = GET_C_LD_IMM(insn);
1395 access_size = 8;
1396 }
1397 break;
1398 case OPC_RISC_C_FUNC_LW: /* C.LW */
1399 xinsn = OPC_RISC_LW;
1400 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1401 access_rs1 = GET_C_RS1S(insn);
1402 access_imm = GET_C_LW_IMM(insn);
1403 access_size = 4;
1404 break;
1405 case OPC_RISC_C_FUNC_FLW_LD:
1406 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1407 xinsn = OPC_RISC_FLW;
1408 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1409 access_rs1 = GET_C_RS1S(insn);
1410 access_imm = GET_C_LW_IMM(insn);
1411 access_size = 4;
1412 } else { /* C.LD (RV64/RV128) */
1413 xinsn = OPC_RISC_LD;
1414 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1415 access_rs1 = GET_C_RS1S(insn);
1416 access_imm = GET_C_LD_IMM(insn);
1417 access_size = 8;
1418 }
1419 break;
1420 case OPC_RISC_C_FUNC_FSD_SQ:
1421 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1422 xinsn = OPC_RISC_FSD;
1423 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1424 access_rs1 = GET_C_RS1S(insn);
1425 access_imm = GET_C_SD_IMM(insn);
1426 access_size = 8;
1427 }
1428 break;
1429 case OPC_RISC_C_FUNC_SW: /* C.SW */
1430 xinsn = OPC_RISC_SW;
1431 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1432 access_rs1 = GET_C_RS1S(insn);
1433 access_imm = GET_C_SW_IMM(insn);
1434 access_size = 4;
1435 break;
1436 case OPC_RISC_C_FUNC_FSW_SD:
1437 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1438 xinsn = OPC_RISC_FSW;
1439 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1440 access_rs1 = GET_C_RS1S(insn);
1441 access_imm = GET_C_SW_IMM(insn);
1442 access_size = 4;
1443 } else { /* C.SD (RV64/RV128) */
1444 xinsn = OPC_RISC_SD;
1445 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1446 access_rs1 = GET_C_RS1S(insn);
1447 access_imm = GET_C_SD_IMM(insn);
1448 access_size = 8;
1449 }
1450 break;
1451 default:
1452 break;
1453 }
1454 break;
1455 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1456 switch (GET_C_FUNC(insn)) {
1457 case OPC_RISC_C_FUNC_FLDSP_LQSP:
1458 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1459 xinsn = OPC_RISC_FLD;
1460 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1461 access_rs1 = 2;
1462 access_imm = GET_C_LDSP_IMM(insn);
1463 access_size = 8;
1464 }
1465 break;
1466 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1467 xinsn = OPC_RISC_LW;
1468 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1469 access_rs1 = 2;
1470 access_imm = GET_C_LWSP_IMM(insn);
1471 access_size = 4;
1472 break;
1473 case OPC_RISC_C_FUNC_FLWSP_LDSP:
1474 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1475 xinsn = OPC_RISC_FLW;
1476 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1477 access_rs1 = 2;
1478 access_imm = GET_C_LWSP_IMM(insn);
1479 access_size = 4;
1480 } else { /* C.LDSP (RV64/RV128) */
1481 xinsn = OPC_RISC_LD;
1482 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1483 access_rs1 = 2;
1484 access_imm = GET_C_LDSP_IMM(insn);
1485 access_size = 8;
1486 }
1487 break;
1488 case OPC_RISC_C_FUNC_FSDSP_SQSP:
1489 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1490 xinsn = OPC_RISC_FSD;
1491 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1492 access_rs1 = 2;
1493 access_imm = GET_C_SDSP_IMM(insn);
1494 access_size = 8;
1495 }
1496 break;
1497 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1498 xinsn = OPC_RISC_SW;
1499 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1500 access_rs1 = 2;
1501 access_imm = GET_C_SWSP_IMM(insn);
1502 access_size = 4;
1503 break;
1504 case 7:
1505 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1506 xinsn = OPC_RISC_FSW;
1507 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1508 access_rs1 = 2;
1509 access_imm = GET_C_SWSP_IMM(insn);
1510 access_size = 4;
1511 } else { /* C.SDSP (RV64/RV128) */
1512 xinsn = OPC_RISC_SD;
1513 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1514 access_rs1 = 2;
1515 access_imm = GET_C_SDSP_IMM(insn);
1516 access_size = 8;
1517 }
1518 break;
1519 default:
1520 break;
1521 }
1522 break;
1523 default:
1524 break;
1525 }
1526
1527 /*
1528 * Clear Bit1 of transformed instruction to indicate that
1529 * original insruction was a 16bit instruction
1530 */
1531 xinsn &= ~((target_ulong)0x2);
1532 } else {
1533 /* Transform 32bit (or wider) instructions */
1534 switch (MASK_OP_MAJOR(insn)) {
1535 case OPC_RISC_ATOMIC:
1536 xinsn = insn;
1537 access_rs1 = GET_RS1(insn);
1538 access_size = 1 << GET_FUNCT3(insn);
1539 break;
1540 case OPC_RISC_LOAD:
1541 case OPC_RISC_FP_LOAD:
1542 xinsn = SET_I_IMM(insn, 0);
1543 access_rs1 = GET_RS1(insn);
1544 access_imm = GET_IMM(insn);
1545 access_size = 1 << GET_FUNCT3(insn);
1546 break;
1547 case OPC_RISC_STORE:
1548 case OPC_RISC_FP_STORE:
1549 xinsn = SET_S_IMM(insn, 0);
1550 access_rs1 = GET_RS1(insn);
1551 access_imm = GET_STORE_IMM(insn);
1552 access_size = 1 << GET_FUNCT3(insn);
1553 break;
1554 case OPC_RISC_SYSTEM:
1555 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1556 xinsn = insn;
1557 access_rs1 = GET_RS1(insn);
1558 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1559 access_size = 1 << access_size;
1560 }
1561 break;
1562 default:
1563 break;
1564 }
1565 }
1566
1567 if (access_size) {
1568 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1569 (access_size - 1));
1570 }
1571
1572 return xinsn;
1573}
263e2ab2 1574#endif /* !CONFIG_USER_ONLY */
0c3e702a
MC
1575
1576/*
1577 * Handle Traps
1578 *
1579 * Adapted from Spike's processor_t::take_trap.
1580 *
1581 */
1582void riscv_cpu_do_interrupt(CPUState *cs)
1583{
1584#if !defined(CONFIG_USER_ONLY)
1585
1586 RISCVCPU *cpu = RISCV_CPU(cs);
1587 CPURISCVState *env = &cpu->env;
86d0c457 1588 bool write_gva = false;
284d697c 1589 uint64_t s;
0c3e702a 1590
acbbb94e
MC
1591 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1592 * so we mask off the MSB and separate into trap type and cause.
1593 */
1594 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1595 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
d028ac75 1596 uint64_t deleg = async ? env->mideleg : env->medeleg;
acbbb94e 1597 target_ulong tval = 0;
8e2aa21b 1598 target_ulong tinst = 0;
30675539
AF
1599 target_ulong htval = 0;
1600 target_ulong mtval2 = 0;
acbbb94e 1601
a10b9d93 1602 if (cause == RISCV_EXCP_SEMIHOST) {
7d7fb116
PM
1603 do_common_semihosting(cs);
1604 env->pc += 4;
1605 return;
a10b9d93
KP
1606 }
1607
acbbb94e
MC
1608 if (!async) {
1609 /* set tval to badaddr for traps with address information */
1610 switch (cause) {
ab67a1d0
AF
1611 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1612 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
acbbb94e
MC
1613 case RISCV_EXCP_LOAD_ADDR_MIS:
1614 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1615 case RISCV_EXCP_LOAD_ACCESS_FAULT:
1616 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
acbbb94e
MC
1617 case RISCV_EXCP_LOAD_PAGE_FAULT:
1618 case RISCV_EXCP_STORE_PAGE_FAULT:
24826da0 1619 write_gva = env->two_stage_lookup;
acbbb94e 1620 tval = env->badaddr;
8e2aa21b
AP
1621 if (env->two_stage_indirect_lookup) {
1622 /*
1623 * special pseudoinstruction for G-stage fault taken while
1624 * doing VS-stage page table walk.
1625 */
1626 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1627 } else {
1628 /*
1629 * The "Addr. Offset" field in transformed instruction is
1630 * non-zero only for misaligned access.
1631 */
1632 tinst = riscv_transformed_insn(env, env->bins, tval);
1633 }
1634 break;
1635 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1636 case RISCV_EXCP_INST_ADDR_MIS:
1637 case RISCV_EXCP_INST_ACCESS_FAULT:
1638 case RISCV_EXCP_INST_PAGE_FAULT:
1639 write_gva = env->two_stage_lookup;
1640 tval = env->badaddr;
1641 if (env->two_stage_indirect_lookup) {
1642 /*
1643 * special pseudoinstruction for G-stage fault taken while
1644 * doing VS-stage page table walk.
1645 */
1646 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1647 }
acbbb94e 1648 break;
48eaeb56 1649 case RISCV_EXCP_ILLEGAL_INST:
62cf0245 1650 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
48eaeb56
AF
1651 tval = env->bins;
1652 break;
acbbb94e
MC
1653 default:
1654 break;
0c3e702a 1655 }
acbbb94e
MC
1656 /* ecall is dispatched as one cause so translate based on mode */
1657 if (cause == RISCV_EXCP_U_ECALL) {
1658 assert(env->priv <= 3);
5eb9e782
AF
1659
1660 if (env->priv == PRV_M) {
1661 cause = RISCV_EXCP_M_ECALL;
1662 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
1663 cause = RISCV_EXCP_VS_ECALL;
1664 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
1665 cause = RISCV_EXCP_S_ECALL;
1666 } else if (env->priv == PRV_U) {
1667 cause = RISCV_EXCP_U_ECALL;
1668 }
0c3e702a
MC
1669 }
1670 }
1671
c51a3f5d 1672 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
69430111
AF
1673 riscv_cpu_get_trap_name(cause, async));
1674
1675 qemu_log_mask(CPU_LOG_INT,
1676 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1677 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1678 __func__, env->mhartid, async, cause, env->pc, tval,
1679 riscv_cpu_get_trap_name(cause, async));
0c3e702a 1680
acbbb94e
MC
1681 if (env->priv <= PRV_S &&
1682 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
0c3e702a 1683 /* handle the trap in S-mode */
5eb9e782 1684 if (riscv_has_ext(env, RVH)) {
d028ac75 1685 uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1c1c060a 1686
50d16087 1687 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
84b1c04b 1688 /* Trap to VS mode */
c5969a3a
RK
1689 /*
1690 * See if we need to adjust cause. Yes if its VS mode interrupt
1691 * no if hypervisor has delegated one of hs mode's interrupt
1692 */
1693 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
84b1c04b 1694 cause == IRQ_VS_EXT) {
c5969a3a 1695 cause = cause - 1;
84b1c04b 1696 }
86d0c457 1697 write_gva = false;
5eb9e782
AF
1698 } else if (riscv_cpu_virt_enabled(env)) {
1699 /* Trap into HS mode, from virt */
1700 riscv_cpu_swap_hypervisor_regs(env);
f2d5850f 1701 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
ace54453 1702 env->priv);
5eb9e782
AF
1703 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1704 riscv_cpu_virt_enabled(env));
1705
86d0c457 1706
30675539
AF
1707 htval = env->guest_phys_fault_addr;
1708
5eb9e782 1709 riscv_cpu_set_virt_enabled(env, 0);
5eb9e782
AF
1710 } else {
1711 /* Trap into HS mode */
ec352d0c 1712 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
30675539 1713 htval = env->guest_phys_fault_addr;
5eb9e782 1714 }
86d0c457 1715 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
5eb9e782
AF
1716 }
1717
1718 s = env->mstatus;
1a9540d1 1719 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
0c3e702a
MC
1720 s = set_field(s, MSTATUS_SPP, env->priv);
1721 s = set_field(s, MSTATUS_SIE, 0);
c7b95171 1722 env->mstatus = s;
16fdb8ff 1723 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
acbbb94e 1724 env->sepc = env->pc;
ac12b601 1725 env->stval = tval;
30675539 1726 env->htval = htval;
8e2aa21b 1727 env->htinst = tinst;
acbbb94e
MC
1728 env->pc = (env->stvec >> 2 << 2) +
1729 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
fb738839 1730 riscv_cpu_set_mode(env, PRV_S);
0c3e702a 1731 } else {
acbbb94e 1732 /* handle the trap in M-mode */
5eb9e782
AF
1733 if (riscv_has_ext(env, RVH)) {
1734 if (riscv_cpu_virt_enabled(env)) {
1735 riscv_cpu_swap_hypervisor_regs(env);
1736 }
1737 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
284d697c 1738 riscv_cpu_virt_enabled(env));
9034e90a
AF
1739 if (riscv_cpu_virt_enabled(env) && tval) {
1740 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1741 }
5eb9e782 1742
30675539
AF
1743 mtval2 = env->guest_phys_fault_addr;
1744
5eb9e782
AF
1745 /* Trapping to M mode, virt is disabled */
1746 riscv_cpu_set_virt_enabled(env, 0);
5eb9e782
AF
1747 }
1748
1749 s = env->mstatus;
1a9540d1 1750 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
0c3e702a
MC
1751 s = set_field(s, MSTATUS_MPP, env->priv);
1752 s = set_field(s, MSTATUS_MIE, 0);
c7b95171 1753 env->mstatus = s;
acbbb94e
MC
1754 env->mcause = cause | ~(((target_ulong)-1) >> async);
1755 env->mepc = env->pc;
ac12b601 1756 env->mtval = tval;
30675539 1757 env->mtval2 = mtval2;
8e2aa21b 1758 env->mtinst = tinst;
acbbb94e
MC
1759 env->pc = (env->mtvec >> 2 << 2) +
1760 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
fb738839 1761 riscv_cpu_set_mode(env, PRV_M);
0c3e702a 1762 }
d9360e96
MC
1763
1764 /* NOTE: it is not necessary to yield load reservations here. It is only
1765 * necessary for an SC from "another hart" to cause a load reservation
1766 * to be yielded. Refer to the memory consistency model section of the
1767 * RISC-V ISA Specification.
1768 */
1769
ec352d0c 1770 env->two_stage_lookup = false;
8e2aa21b 1771 env->two_stage_indirect_lookup = false;
0c3e702a 1772#endif
330d2ae3 1773 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
0c3e702a 1774}